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1. INTRODUCTION 

 

One of the most important questions for iteroparous species is that how much to invest 

into current reproduction so that they have enough energy for self-maintenance, survival and 

future reproduction. Environmental and social conditions, furthermore the actual health status 

of the individuals can all have strong effect on the availability of resources which may affect 

the investment between and within reproductive events. Birds offer an exciting model system 

to study reproductive allocation, since prenatal development of embryos is separated both 

from their mother and their siblings. Differential allocation before birth is thus possible only 

during egg formation. After hatching, females are further able to alter their parental 

investments, however, in many species males also feed their offspring thus have possibilities 

to interact.  

 

1.1. Environmental constraints in reproductive investment 

 

It has been demonstrated that reproductive investment has serious energetic costs, which 

in turn affect also the survival chances of the parents. During egg laying 35-60% of the daily 

energy intake of the females is allocated for egg formation, while their protein ingestion is 

increased by 86-230% (Ojanen 1983, Robbins 1983). In addition, the energy requirements of 

incubation and feeding of the young are also large. It has been shown that incubating females 

spend 20-30% more energy than non incubating individuals (Williams 1996), while the basic 

metabolic rate of the parents during chick rearing is three-four times larger than those 

individuals which do not care for their young (Clutton-Brock and Godfray 1995, Nilsson 

2002).  

Environmental conditions have been shown to affect energy availability to the parents. In 

warmer weather the activity of flying insects is increased (Taylor 1963, Bryant 1975), while 

the availability of insect prey decreases during cold days. In addition, under unfavourable 

weather conditions females need to allocate more energy also to their own thermoregulation, 

which further reduces the amount of energy available for reproduction. Both direct (Otto 

1979) and indirect measures (daily average temperature (Haftorn 1986) or rainfall (Ludvig 

1993)) of food availability during egg formation were shown to affect females’ reproductive 

investment into their clutch. These findings were supported by a study on the Collared 

Flycatcher (Ficedula albicollis), where females laid smaller eggs in years with cold 

temperature during egg formation (Hargitai et al. 2005). This suggests that nutrition 
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investment into the eggs was constrained by food availability also in this species. This may 

have strong fitness consequences on nestling growth and survival. 

 

1.2. Adaptive decisions in reproductive investments 

 

Adaptive decisions may also have an important role in shaping the reproductive 

investment of the animals. For example females mated to a high quality male or a mate 

carrying “good genes” may invest more into the current reproduction to increase the 

probability of male retention (differential allocation hypothesis, Burley 1988) or because the 

estimated reproductive success of young inheriting “good genes” will be higher (Sheldon 

2000). However, reproductive value of the young may differ not only between but also within 

reproductive events. For instance females often start to incubate their eggs before clutch 

completion. Thus nestlings from last laid eggs hatch later and often remain smaller throughout 

the nestling period. This is because last laid eggs often act as insurance in the case of hatching 

failure occurring in the clutch (Clifford and Anderson 2001). Nestlings from last laid eggs 

may also act as surplus, which can be reared under favourable circumstances but can be 

sacrificed if environmental conditions deteriorate (Lack 1954). In these cases, less investment 

into last laid offspring is expected. However, if the adaptive value of certain young is 

expected to be higher, e.g. because females cuckold their social mate with a higher quality 

male or the survival probability of one of the sexes is expected to be better, preferential 

investment in the more valuable young can be advantageous.  

 

1.2.1. Hatching asynchrony 

 

Females in many bird species start to incubate their eggs before clutch completion. This 

results in hatching asynchrony and in turn a pronounced size hierarchy among nestlings. As a 

result later hatching offspring experience competitive disadvantages compared to their 

nestmates. Many hypotheses have been proposed to explain the adaptive function of this 

phenomenon (reviewed in Nilsson 1993, Stenning 1996).  

Some of the hypotheses suggest that hatching asynchrony acts as a tool by which females 

are able to influence the survival probabilities of their young. The brood reduction hypothesis 

(Lack 1954), for example, predicts that hatching asynchrony is advantageous in unpredictable 

environments. When food is abundant, all nestlings can fledge independent of hatching order. 

However, in cases of food-shortage, older nestlings outcompete their younger siblings and 
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consequently, younger ones might quickly starve to death. By sacrificing the smallest 

nestlings, the rest of the brood can survive and fledge in better condition. This confers 

benefits both to the surviving young and the parents, since fledglings in better condition might 

survive better (Pettifor et al. 2001) and therefore increase the fitness of their parents more 

than fledglings in poorer condition. The sibling rivalry reduction hypothesis (Hahn 1981) 

predicts that in broods with an already established size hierarchy among nestlings (due to 

hatching asynchrony), sibling competition and thus energy expenditure of the nestlings is 

reduced. This results in faster growth or better body condition than in synchronous broods. 

Furthermore, the pronounced age hierarchy among siblings may reduce the peak energetic 

costs of the parents when feeding their young, since nestlings reach their maximum growth 

rate and thus the highest food demand at different times (peak load reduction hypothesis: 

Hussell 1972). 

Another group of hypotheses argues that hatching asynchrony is only a by-product of 

starting the incubation before clutch completion, which is adaptive for reasons other than 

establishing sibling size asymmetry. If there is heavy nest predation or food resources are 

strongly declining during the chick-rearing period, by starting the incubation before clutch 

completion females can shorten the average time that offspring spend in the nest (i.e. the 

combined length of the egg and nestling phase). Thus females can reduce the risk of predation 

on their broods and prevent starvation at least of those nestlings which hatch and thus fledge 

earlier (nest failure hypothesis: Clark and Wilson 1981; hurry-up hypothesis: Hussell 1972). 

According to the egg viability hypothesis (Arnold et al. 1987, Veiga 1992) females start to 

incubate before completing their clutches in order to protect the hatchability of their eggs, 

since the viability of unincubated eggs may decline with time. 

When looking specifically at the effects of hatching asynchrony on the last hatched 

nestlings, it is often found that the size handicap with which these nestlings start their life 

results in disadvantages when competing for food (Ostreiher 1997, Pettifor et al. 2001). Thus 

they might fledge with a smaller weight (Cotton et al. 1999, Clotfelter et al. 2000) and 

experience a lower survival probability later in life (Oddie 2000). Therefore in species where 

size asymmetry among siblings is only a by-product of earlier onset of incubation, 

compensation for the detrimental effects of hatching asynchrony by laying larger eggs at the 

end of the laying sequence is beneficial (Howe 1976, Hillström 1999, Rutkowska and Cicho  

2005). However, if females follow a brood reduction strategy or sibling size hierarchy is 

adaptive among nestlings, allocating less nutrients into the last laid eggs can be advantageous 

(Slagsvold et al. 1984, Williams et al. 1993, Schwabl et al. 1997). 
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1.2.2. Egg components and offspring fitness 

 

Several studies have demonstrated that egg size reflects the lipid and/or protein content of 

the eggs (e.g. Meathrel and Ryder 1987, Williams 1994, Hill et al. 1995, Royle et al. 1999, 

Jager et al. 2000, Badzinski et al. 2002, Reynolds et al. 2003). Thus, egg size has serious 

consequences on the growth and survival of developing embryos. Nestlings from larger eggs 

are structurally larger, have more resource reserves, grow more quickly and have higher 

survival probabilities (Parsons 1970, Williams 1994, Blomqvist et al. 1997) therefore 

nestlings would clearly benefit from hatching from large eggs. However, both environmental 

conditions and adaptive decisions (Burley 1988) shape egg size. For example, in the Mallard 

(Anas plathyrynchos) and the Zebra Finch (Taeniopygia guttata), females laid larger eggs 

when mated to high quality males (Cunningham and Russell 2000, Rutstein et al. 2004) and 

as a result, produced offspring of higher survival prospects when paired with more attractive 

males. By producing eggs of different size females may adaptively manipulate the level of 

sibling competition in the brood (Howe 1976, Clark and Wilson 1981, Slagsvold et al. 1984). 

This was discussed above. 

Though the main sources generating phenotypic differences within broods are hatching 

asynchrony and egg size, there are other egg components which may have serious fitness 

consequences. Carotenoids can act as antioxidants (Edge et al. 1997), protecting tissues of 

bird embryos from the attack of free radicals, which are the by-products of rapid oxidative 

metabolism (von Schantz et al. 1999) and they may also stimulate and regulate immune 

response through various mechanisms (Bendich 1989). It was found in the Barn Swallow 

(Hirundo rustica) that nestlings hatching from eggs with higher carotenoid concentration had 

better cellular immune response (Saino et al. 2003), while results on Blue Tits (Parus 

caeruleus) showed that higher carotenoid level in the eggs helped the maturation of the 

immune system (Biard et al. 2005). Hatching and fledging success of Zebra Finch nestlings 

were also positively related to the amount of carotenoids in the egg (McGraw et al. 2005). 

However, carotenoids are also a limiting resource in natural environment (Olson and Owens 

1998) thus females may incur significant costs by allocating carotenoids into their eggs. The 

amount of carotenoids allocated into the egg yolk depends on the availability of carotenoid 

rich food on the breeding territory (Blount et al. 2002a, b) and also on the own need of the 

females (Thompson et al. 1997).  

Mothers can influence the survival chances of their offspring also by allocating various 

immune components into their eggs providing passive defence against diseases in the first 
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days of nestlings’ life, since the immune system of the chicks is underdeveloped upon 

hatching (Gasparini et al. 2001) but it may also have long-lasting effects on the offspring’s 

own immune system (Grindstaff et al. 2006, Reid et al. 2006). Egg white contains an 

antibiotic component, the lysosime, and also immunoglobulin A and M, while the yolk 

contains immunoglobulin G (Apanius 1998, Grindstaff et al. 2003). Since producing these 

components is probably costly to the females it is not surprising that immunoglobulins in the 

eggs were found to be correlated with body condition or health status of the mothers (Blount 

et al. 2002a, Buechler et al. 2002) and were also affected by mate quality (Saino et al. 2002).   

Beneficial effects of yolk testosterone on nestling development have also been shown for 

many species. Testosterone increases the competitive ability (Schwabl 1993, Lipar and 

Ketterson 2000) and the development of nestlings (Schwabl 1996, Eising et al. 2001). Thus 

elevated testosterone might increase also the survival prospects of the young. In 

asynchronously hatching species it is often found that females invest testosterone 

differentially into later laid eggs thus enhancing or reducing the survival probabilities of later 

hatching offspring (Schwabl et al. 1997, Eising et al 2001). Female Zebra Finches laid eggs 

containing more testosterone when mated to attractive males (Gil et al. 1999) which can be 

interpreted as preferential allocation into more valuable broods. While a study on the Collared 

Flycatcher found that females allocated more testosterone into clutches of subadult males, 

which may be interpreted as a ”help” to nestlings of inexperienced, young males (Michl et al. 

2005). 

 

1.2.3. Adaptive decisions after hatching  

 

Food allocation patterns may be the outcome of nestling competition (Ostreiher 1997, 

Viñuela 1999) and/or the result of active parental decisions (Lyon et al. 1994, Kölliker et al. 

1998). The importance of these two factors may vary considerably among species, but if 

parents have any control over food allocation, they are expected to base their decision on the 

need of their young (Godfray 1991), while also taking into account the possible costs and 

benefits of rearing an individual offspring (Kilner and Johnstone 1997). Therefore after 

hatching of the chicks, females may either continue to support the nestlings already preferred 

by early maternal effects, e.g. by unevenly distributing the food, or they may alter their 

preference according to environmental changes during the incubation period. Feeding the 

chicks, however, is not exclusively the task of the females in most bird species, therefore male 

parents also have the opportunity to influence the survival and reproductive prospects of their 
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young. Paternal preferences may be in agreement with maternal preferences, however conflict 

could arise over food allocation if certain young increases the fitness of one parent more than 

the other (e.g. extra-pair nestlings increase maternal, but not paternal fitness). 

 

1.2.4. The role of mate choice in offspring quality 

 

Mothers can increase their reproductive success also by choosing high quality males as 

partners based on the expression of their secondary sexual characters (e.g. by inheriting good 

genes). However, the question arises how females can assess the quality of their prospective 

mates through their secondary sexual characters. With other words, how the physiological 

status/genetic quality of the males are reflected through their secondary sexual characters. 

According to the Hamilton and Zuk (1982) hypothesis the expression of male secondary 

sexual characters may be limited by blood parasites. Thus males with elaborate secondary 

sexual characters are presumably less parasitized. This may enable females to assess the 

quality of their prospective mates based on signal quality and to choose mates resistant to 

blood parasite infections, thereby increasing their own reproductive success. Several studies 

have supported the predictions of this hypothesis and showed that parasites had indeed 

negative effects on the expression of secondary sexual characters (Milinski and Bakker 1990, 

Thompson et al. 1997, Figuerola et al. 1999, Spencer et al. 2005), and in some studies females 

were found to choose more ornamented mates that are less parasitized (Kennedy et al. 1987; 

Wiehn et al. 1997). This is advantageous for several reasons. Offspring of less parasitized 

males might inherit resistance genes to parasitic infections (Barber et al. 2001, Langefors et 

al. 2001, Lohm et al. 2002) or these nestlings just simply grow better because their fathers can 

provide better parental care (Buchanan et al. 1999). Some other studies, which did not 

investigate parasite infection in the birds, also found that males with elaborate ornamentation 

provided more food during courtship (Hill 1991), had better territories (Keyser and Hill 2000) 

and proved to be better parents when rearing their young (Linville et al. 1998, Buchanan and 

Catchpole 2000). Therefore the nestlings of attractive males grow (Petrie 1994) and survive 

better (Norris 1993, Hasselquist et al. 1996) and also have better reproductive success than 

those of less ornamented individuals (Hill 1991).  

If during social mate choice females fail to find a good quality male then they can still 

increase the quality of their young by extra-pair copulations. Extra-pair copulations can result 

in direct (e.g. parental investment in the offspring by the extra-pair mate) or indirect benefits 

for the females (for a review see Griffith et al. 2002). Indirect benefits may involve fertility 
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insurance (Sheldon 1994, Gray 1997) and various types of genetic benefits. Females may for 

example participate in extra-pair copulations to increase the genetic variability of their 

offspring as a risk spreading strategy (Williams 1975, Westneat et al. 1990), or they may seek 

for extra-pair fathers with compatible genes (Johnsen et al. 2000, Foerster et al. 2003). 

However, the most thoroughly studied hypothesis is that females try to gain “good genes” to 

their offspring, which could then improve the survival (Hasselquist et al. 1996, Kempenaers et 

al. 1997) and/or future reproductive performance of the young (Schmoll et al. 2005). 

One example of sexual character dependent extra-pair fertilizations was found in the 

Swedish population of the Collared Flycatcher. It was shown that the forehead patch size of 

the males (a heritable and condition dependent secondary sexual character) predicted the 

paternity in the broods (Sheldon et al. 1997). Extra-pair young sired by large patched males 

fledged in better condition than their half-sibs and the difference between the chicks increased 

with the difference in the forehead patch size between the social and extra-pair father.  

 

1.3. The role of parasites in reproductive success of the birds 

 

Parasites can have severe negative impacts on their bird hosts. It was demonstrated that 

ectoparasite load in the nests affects hatching success (Oppliger et al. 1994, Tomás et al. 

2007) and parental body mass at the end of the nestling period negatively (Christe et al. 

2002). While infestation by Blowfly larvae (Protocalliphora spp.) had negative effects on 

body size and mass of fledglings (Hurtrez-Boussés et al. 1998). Furthermore, blood sucking 

Dipterans can transmit microparasites (e.g. avian Haemosporidian parasites) between birds 

which also affect the health and reproductive success of their hosts. Biting Midges 

(Ceratopogonidae) and Hippoboscid Flies (Hippoboscidae) transmit Haemoproteus parasites, 

while Mosquitoes (Culicidae) and Simuliid Flies (Simuliidae) are the vectors of Plasmodium 

and Leucocytozoon species, respectively. 

Haemosporidian parasites have complex life-cycles. They develop in two groups of host: 

in the birds and the vectors. Vectors inoculate sporozoites into the birds’ blood stream, which 

after multiple asexual divisions in various tissues produce merozoites. Merozoites invade the 

blood cells of the birds where gametocytes are formed, which are sucked up by Dipterans 

when feeding on infected birds. The fertilization takes place in the midgut of the vector where 

the zygotes develop further. Here sporozoites are formed which penetrate the salivary glands 

of the vectors and later infect the birds (Valki nas 2005). The major difference in the life-

cycle of these parasites is that asexual division of merozoites does occur in hosts’ blood cells 
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if Plasmodium species infect the birds but not in the case of Haemoproteus and 

Leucocytozoon infection when only gametocytes are formed.  

Once infected, parasites usually persist in the birds for many years or even the whole life 

(the dynamics of parasitemia of Plasmodium parasites can be seen on Figure 1). Generally, 

birds which survived the acute infection (thus maintaining chronic or latent infections) are 

detected in the wild. In these stages parasites can be detected from the blood when short-term 

recrudescence or relapse takes place (usually at the beginning of bird’s breeding season). 

These parasites during various stages of their life-cycle can cause anaemia, block up 

capillaries in different organs and decrease the oxygen-binding capacity of haemoglobin. The 

symptoms are more severe during acute infections and as a consequence several individuals 

perish (Valki nas 2005).  

 

 
 

Figure 1. Schematic representation of the dynamics of parasitemia of Plasmodium parasites in birds: I - 

prepatent period (parasites develop in internal organs); II - primary parasitemia; III - latent stage of infection 

(parasites are absent in the blood but persist in internal organs); IV - secondary parasitemia due to relapse 

(synchronized with the breeding period of birds); a - c – stages of parasitemia: a – acute including the crisis 

(lasts from one week up to several weeks), b – chronic (the length of this stage is variable), c – recrudescence. 

The abscissa is a calendar and the ordinate is a relative intensity of parasitemia (from Valki nas 2005).     

 

Behavioural ecological studies also reported negative effects of these parasites on bird 

reproduction. Females, infected with Haemoproteus species lay significantly smaller clutches 

than non-infected individuals (Marzal et al. 2005), and as a result of changes in their 

thermoregulation and incubation ability, significantly fewer nestlings hatch from their fertile 

eggs (Sanz et al. 2001, Marzal et al. 2005). Moreover, it has been demonstrated that blood 

parasite infection has negative effect also on parental care (Buchanan et al. 1999), and as a 

result fewer nestlings fledge from broods reared by infected parents (Merino et al. 2000).  



13

2. AIMS OF THE STUDIES 

 

2.1. The effect of egg size and hatching asynchrony on nestling performance  

 

In study 1 we aimed to investigate whether Collared Flycatcher females enhance or reduce 

the disadvantages of their last hatched chicks. If the pronounced size hierarchy is adaptive 

from the viewpoint of parental fitness (e.g. in the case of brood reduction and the sibling 

rivalry hypotheses) parents have no interest in compensating for this disadvantage. They may 

even reduce the investment into the last laid eggs (for testosterone see: Schwabl et al. 1997, 

for nutrients see: Arnold 1989, Heeb 1994, Viñuela 1997), thereby exaggerating the 

competitive disadvantage of the surplus offspring. However, if the size hierarchy among 

nestlings is only the by-product of earlier start of incubation before the whole clutch has been 

laid down parents would benefit from such a compensation. The most obvious way is the 

preferential feeding of the later hatched offspring by one or both of the parents (Gottlander 

1987). However, compensation may also act through preferential maternal investment into the 

later laid eggs. This differential investment may manifest in an elevated level of testosterone 

to increase the competitive ability and the development of nestlings (Schwabl 1993, Schwabl 

1996, Lipar and Ketterson 2000, Eising et al. 2001) and in preferential nutrient investment 

into the eggs (Howe 1976, Cicho  1997, Royle et al. 1999, Reynolds et al. 2003).  

In the Collared Flycatcher parents do not discriminate between nestlings of different size 

when allocating food in the brood (Rosivall et al. 2005), thus parental compensation for 

hatching asynchrony, if it happens, is possible only during the egg-laying period. Since 

females do not allocate testosterone differentially in relation to laying order (Michl et al. 

2005) we assessed the nutrient contents of the eggs (by measuring egg size) and investigated 

its effect on nestling growth. Though some earlier studies have already attempted to 

investigate the effect of laying order on the growth and fledgling condition of nestling 

passerines, only a few of them linked the growth of individual nestlings to the exact laying 

and hatching order (Badyaev et al. 2002).  

In study 1 we found successful compensation in terms of egg size for the detrimental 

effects of hatching asynchrony. Furthermore, Hargitai and her colleagues (2005) also showed 

that egg size increased with laying order in years with a warm pre-laying period, however in 

colder years there was no such relationship. Since ambient temperature affects the availability 

of insect prey in general (Taylor 1963, Bryant 1975), and pre-laying temperature was 

positively correlated with the food abundance during the nestling period in the study 
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population (Spearman rank correlation: N = 6, R = 0.89, p = 0.019) we refer to warm and cold 

years as good and bad quality years, respectively.  

Two explanations arise for the difference in the egg size pattern between good and bad 

years. First, females follow different strategies when they allocate nutrients into the eggs. This 

is because the adaptive value of size hierarchy differs between good and bad years with 

sibling size asymmetry being disadvantageous in good years but advantageous or neutral in 

bad years. Second, although compensation for hatching asynchrony would be beneficial 

independent of year type, because of energetic constraints during egg laying (i.e. less food is 

available) females are simply not able to lay larger eggs at the end of the laying sequence in 

poor years. In study 2 we aimed to test the first hypothesis so that we altered the rearing 

conditions of the chicks by conducting a brood-size manipulation experiment and measured 

the effects of size hierarchy on nestling growth, fledging size and parental survival.  

If the strategy of the females differs between good and bad quality years (first hypothesis), 

we would expect that hatching asynchrony and the resulting size hierarchy is either 

advantageous or has no effect on the fitness of the parents rearing enlarged broods (i.e. 

females did not compensate for hatching asynchrony in poor years (Hargitai et al. 2005); see 

Table 1). The benefits could arise through the reduced peak load of the parents or decreased 

nestling competition (see above), which might have an important role under severe 

conditions. On the other hand, we expect that hatching asynchrony has negative effects on 

parental fitness in reduced broods, as in previous studies hatching asynchrony was 

compensated for in good years (Hargitai et al. 2005, study 1). In cases of good food supply 

maximum parental workload may not be an issue and females may prefer to decrease the 

detrimental effects of hatching asynchrony on the growth of the last hatched young (for 

details see study 1). However, hatching asynchrony is expected to have negative effects on 

both enlarged and reduced broods if the lack of maternal compensation in poor years is only 

due to energetic constraints imposed on females during egg laying (second hypothesis; Table 

1).  
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Table 1. Predictions on the effects of hatching asynchrony (HA) in experimentally simulated good and bad years 

in the view of former studies on this species (+ means positive relationship, 0 means no relationship and – means 

negative relationship in the table). 

 

Predicted effect of HA on parental 
fitness / brood performance 

 Relationship of 
egg size and laying 

order 

Effect of egg size 
pattern on the 

disadvantage of the 
last chick 

Year dependent 
female strategy 

Energetic 
constraint 

Good year + - - - 
Poor year 0 not applicable + / 0 - 

 

 

2.2. The effect of parental quality and extra-pair copulations on nestling performance 

 

We also aimed to investigate whether the size of secondary sexual characters of the social 

mates predicts females’ participation in extra-pair copulations and whether extra-pair young 

perform better than their nestmates. Therefore in study 3 we examined the growth and 

fledging size of extra-pair and within-pair offspring. We also controlled for the possible 

confounding effect of offspring sex, because females may adjust their brood sex ratio in 

relation to the same attractivity signals as they use in extra-pair mate choice (Ellegren et al. 

1996, but see Rosivall et al. 2004), and sexes may differ in their growth rate even in 

monomorphic species (Martins 2004). In addition, the effect of sex on offspring performance 

is interesting per se, because it may explain previously found seasonal shift in brood sex 

ratios in this population (Rosivall et al. 2004). 

We were also interested in how parental quality affects nestling growth and performance 

and whether secondary sexual characters signal the ability of males to avoid parasitic 

infections. Therefore in study 4 we investigated the relationship between male attractiveness 

(measured as the size of the forehead and the wing patch) and avian malaria (Haemoproteus 

and Plasmodium parasites sensu Pérez-Tris et al. 2005) infection, and the association between 

male secondary sexual characters, parental malaria infection and nestling performance. To 

control for environmental conditions nestlings were reared in simulated good and bad 

environments so that chicks were cross-fostered in reduced or enlarged broods. The cross–

fostering design helped us to separate early maternal and genetic effects from rearing effects.  

Collared Flycatcher males have two heritable, sexually selected, white plumage characters 

(forehead patch and wing patch; Sheldon et al. 1997, Sheldon and Ellegren 1999, Qvarnström 

et al. 2000, Michl et al. 2002, Garamszegi et al. 2006), however, their function differ 

significantly between populations. In a Swedish population of this species, the white wing 
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patch is known to be important in extra-pair mate choice (Sheldon and Ellegren 1999) but it 

was unrelated to the body condition of the males (Garant et al. 2004). In our Hungarian study 

population, however, wing patch size is a condition dependent signal (Török et al. 2003) and 

has an important role in male territorial behaviour (Garamszegi et al. 2006) but its role in 

extra-pair mate choice is not known. On the other hand forehead patch is a condition 

dependent signal in the Swedish population (Gustafsson et al. 1995, Sheldon et al. 1997, 

Qvarnström 1999) but not so in our population (Hegyi et al. 2002, Hegyi et al. 2006a). Still, 

there is some indication also in our population that males with large forehead patch are of 

better quality because the song rate of these males decreased less after immune challenge 

(Garamszegi et al. 2004a) and large patched males start to breed earlier in the season (Hegyi 

et al. 2007). In the Swedish Collared Flycatcher population, the forehead patch play an 

important role in mate choice (Sheldon et al. 1997) but in our Hungarian population results 

are mixed (Michl et al. 2002 vs. Garamszegi et al. 2004a). One study showed that mates of 

small patched males were more likely to participate in extra-pair copulations (Michl et al. 

2002) just like in the Swedish study, but another study found no such relationship 

(Garamszegi et al. 2004a). Therefore it is not clear how females benefit from extra-pair 

fertilizations.  

 

2.3. Between-year dynamics of Haemosporidian parasites  

 

Though previous studies showed that avian malaria parasites might have important 

consequences on the host none of these investigations aimed to assess the long-term effects of 

these parasites. Thus information on the real fitness effects of these parasites is rather scarce. 

To get more complete picture on the effects of these parasites I aimed to study how acute 

infections detected from nestlings affect their own growth and performance. I screened also 

adult samples collected from different years for the presence of avian malaria. I aimed to 

assess parasite composition in different years and the long-term effects of different parasites 

on the host. However, because of the low prevalence and high diversity of these parasites in 

Collared Flycatchers, in study 5, I present only some preliminary results on the distribution of 

these parasites between years. The discovery of their long-term effects on the hosts remains 

the task of future studies.  
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2.4. A methodological note 

 

Recently several studies have demonstrated that polymerase chain reaction (PCR)-based 

methods have higher sensitivity at low levels of parasitemia (Richard et al. 2002, 

Waldenström et al. 2004), though they are not flawless (Cosgrove et al. 2006, Valki nas et al. 

2006). By the use of nested PCR (i.e. when the screening is conducted using two PCRs that 

are performed sequentially) the sensitivity is even more increased (Waldenström et al. 2004). 

However, this approach is more costly and takes additional time. In addition, along with the 

increase in sensitivity comes the risk of contaminations and amplification of non-target DNA, 

i.e., genes for which the primers were not designed (reviewed in Burkardt 2000, Freed and 

Cann 2006). To ensure that the correct target gene has been amplified, most studies also 

sequence the PCR product. However, as the sample sizes in datasets used for molecular, 

biological, and ecological studies steadily increase, combined with a decrease in the cost of 

running PCRs, large scale ecological and biological studies may use nested PCR protocols 

just to screen samples for positive or negative amplifications for a group of parasites or 

microorganisms. To ensure the validity of such studies, it is therefore, of importance to 

investigate and note any shortcomings or pitfalls when using nested PCR methods to screen 

for microorganisms. Therefore I report a cautionary note in study 6 regarding misleading 

amplifications when using a highly sensitive nested PCR protocol (described in Hellgren et al. 

2004) for the detection of Haemosporidian parasites.  

 

 

3. METHODS 

 

3.1. Description of the study area and the species  

 

The studies in this thesis were conducted in an artificial nest box plot in the Pilis 

Mountains, Hungary (47 43  N, 19 01  E) in 2002, 2003 and 2004. The study plot is a part of 

a continuous, unmanaged, oak-dominated woodland, a protected area of the Duna-Ipoly 

National Park. The dominant trees are the Sessile Oak (Quercus petraea) and the Turkey Oak 

(Quercus cerris) (Figure 2). 80-90% of the almost 800 nest boxes is occupied each year 

mainly by Collared Flycatchers and in smaller numbers by Great Tits (Parus major) and Blue 

Tits. My study species, the Collared Flycatcher, is a small hole nesting, long-distance 

migratory passerine bird, ideal study object of behavioural studies, since it prefers to breed in 
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artificial nestboxes (Gustafsson 1988). Furthermore, the high site fidelity of the species 

(Könczey et al. 1992) allows us also to follow the individuals’ reproductive success over 

years and thus to estimate their lifetime reproductive success.  

Males are black on their back, are white on their ventral part and have a conspicuous 

white collar on their neck. They also have two sexually selected white plumage characters, the 

wing patch and the forehead patch. The forehead patch appears when males emerge from their 

female-like cryptic plumage in late winter. Wing patches, on the other hand, are renewed 

during the complete post-breeding moult in summer (Cramp and Perrins 1993). The adult 

(more than one-year-old) males can easily be distinguished morphologically from subadult 

(one-year-old) males because adult males have blacker wing feathers and have bigger wing 

patches. Females are brownish coloured on their back and white on their ventral part. They do 

not have a forehead patch but have a wing patch, which is as small as that of the subadult 

males (Svensson 1992) (Figure 2).  

In mid April adult males arrive from their wintering sites (Middle and South Africa) to 

their breeding territories and occupy a territory (which is a nest box and its close 

surroundings). Females arrive a few days later and choose males (nest boxes). Subadult males 

arrive even later and generally breed in the second half of the breeding season (Hegyi et al. 

2006a). Males breed socially monogamously but a few of them (6-10%) are polygynous 

(Török et al. 1998, Garamszegi et al. 2004b) and the rate of extra-pair fertilizations can be as 

high as 40% in this population (Michl et al. 2002). Collared Flycatchers breed once in a year, 

females usually lay 5-7 eggs and they incubate alone. The eggs hatch approximately 12 days 

after the last egg was laid. Both parents feed their nestlings that usually fledge 14-15 days 

after hatching.  
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Figure 2. Typical picture of the habitat (upper part, left). Female Collared Flycatcher incubating her clutch 

(upper part, right). Subadult male (bottom, left), adult male Collared Flycatcher (bottom, right) (photos by 

Miklós Laczi).  

 

3.2. Field methods 

 

3.2.1. Morphological measurements of the parents 

 

When nestlings were 10-12 days old, adults were captured at their nests by spring trap and 

standard morphological measurements were taken. Their tarsus length was measured to the 

nearest 0.1 mm and their body mass to the nearest 0.1 gram. The size of the forehead patch of 

the males, which is the product of its maximum height and width, was measured with a digital 

calliper to the nearest 0.1 mm. We also estimated the wing patch size of the males as the sum 

of the lengths of white bars on the outer vanes of the 4-8th primaries measured from the tip of 

the coverts. A small blood sample (10-50 μl) was also taken from each parent and stored in 

SET-buffer (0.15 M NaCl, 0.05 M Tris, 0.001 M EDTA, pH 8.0) or in absolute ethanol and 

kept in either in a small transportable refrigerator (between 0°C and 10°C) or on room 

temperature in the field and later on -20°C until analyses.  

Blood samples were also collected from various African resident and European migratory 

bird species in Jos, Nigeria (9 56  N, 8 52  E) during autumn 2003 by researchers at Lund 
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University in order to screen these samples for the presence of Haemosporidian parasites (for 

the complete list of bird species and their parasites see Appendix). 

 

3.2.2. General nestling handling procedures 

 

Body mass was measured (to the nearest 0.1 g) every second day from hatching or from 2-

day-age of the nestlings (specified later) until 14 days of age or until fledging. The length of 

the 3rd outer primary was measured from day 8 until day 14 or until fledging (to the nearest 

0.5 mm). On day 14 tarsus length was also measured (to the nearest 0.1 mm). A small blood 

sample (10-50 μl) was taken from nestlings at 10-12 days of their age and stored in SET-

buffer or in absolute ethanol and kept in a refrigerator in the field and later on -20°C until 

analyses. From embryos and nestlings that died during our studies (specified later in the data 

analyses sections) tissue samples were collected and preserved as the blood samples.  

 

3.2.3. Field methods in the Maternal compensation study (study 1) and the Paternity study 

(study 3) 

 

Eggs were numbered with a permanent marker from the laying of the first egg until clutch 

completion. The length and width of the eggs were measured to the nearest 0.1 mm using a 

calliper. All clutches were placed into an incubator (PL Machine SK75) one day before the 

expected hatching date and replaced with plastic eggs of approximately equal size and weight. 

All females accepted these dummy eggs as their own and continued the incubation. The 

original eggs were hatched in separated compartments at 37.2ºC and 70-80% humidity. All 

embryos, which were still alive when placed into the incubator, hatched successfully. We 

checked hatching every hour from 4:15 am to 9:00 pm. For eggs hatching during the night we 

assumed that they hatched halfway between the last and the first checking. 

Each hatchling was weighed to the nearest 0.01 g with an electronic balance (Mettler 

PM4800), marked individually on their breast with a permanent non-toxic pen and returned to 

their nest immediately or early the following morning if they hatched during the night. Colour 

marking was randomized in relation to hatching order. We followed body mass increase from 

the day when the first chick(s) in a brood hatched (day 0) and the growth of the wing feathers 

from day 8 every second day until fledging. On day 14 tarsus length was also measured. 
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3.2.4. Field methods in the Hatching asynchrony study (study 2) and the Parental quality 

study (study 4) 

 

To analyse the effects of hatching asynchrony (study 2) or parental quality (study 4) under 

simulated good and bad food supply pairs of enlarged and reduced broods with the same 

hatching date were created. The original brood size of the brood pairs was the same in all but 

one case (in this case the difference was one chick between the two broods). We partially 

cross-fostered broods two days after hatching so that 4 chicks were moved from nest A to nest 

B and 2 chicks were moved from nest B to nest A. As a result we had enlarged (+2 chicks) 

and reduced (-2 chicks) broods consisting of approximately equal numbers of their own and 

foster chicks which were selected randomly with respect to their size. Earlier studies have 

shown that though parents are to some extent able to adjust their provisioning rate according 

to the altered demand of their brood, which results in a change in work load, brood size 

manipulations can successfully alter the feeding rate to individual nestlings (for Collared 

Flycatchers see: Török and Tóth 1990; for other bird species see e.g.: Cronmiller and 

Thompson 1980, Nur 1984, Martins and Wright 1993) and change the level of nestling 

competition (Neuenschwander et al. 2003). Thus enlarged and reduced broods have already 

been used to simulate years with bad and good food supply, respectively, e.g. by Merilä 

(1996) and Råberg et al. (2005). 

Each nestling was weighed on the day of swapping and marked individually by clipping 

tufts of down on its head and back. Body mass of the nestlings was measured from day 2 and 

the length of the third outer primary from day 8 every second day. On day 14 tarsus length 

was also measured. 

3.3. Laboratory methods 

 

3.3.1. Sex determination  

 

Since sex identification of the nestlings is not possible via visual characters we used 

molecular markers for this purpose. These primers simultaneously amplify homologous parts 

of CHD-W and CHD-Z genes.  

DNA from blood samples was extracted by the standard phenol-chlorophorm or by 

ammonium-acetate methods (Nicholls et al. 2000) and concentration of genomic DNA was 

adjusted to 25 ng/μl. We applied one of these extraction protocols and DNA concentration 
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was adjusted in the same way in all the studies in which DNA work was performed (see later 

paternity analysis and parasite detection). 

Some of the adult samples were used as controls during molecular sexing. The sex of 

these birds was always correctly determined. Our thermal profile differed from the original 

protocol (Fridolfsson and Ellegren 1999) in that we used 10ºC and 5ºC lower annealing 

temperatures for the “touch down” and the following cycles respectively (for more details see 

Rosivall et al. 2004). PCR products were run in 2% agarose gels, pre-stained with ethidium-

bromide, and detected in a FluorImager (Vistra). In some of the samples (that were collected 

in 2002), DNA was partially degraded due to storing problems, preventing us from sexing 

these offspring with the above protocol. In these cases, we used a special asymmetric nested 

PCR protocol (for details see Rosivall et al. 2004).  

 

3.3.2. Paternity analysis 

 

We assessed paternity by using four highly variable microsatellite loci (FhU2–4 [Ellegren 

1992, Primmer et al. 1996] and PdO 5 [Griffith et al. 1999]). We modified the original 

thermal profiles slightly to improve PCR amplification. PCRs were performed in 10 l 

volumes on a 9700 Thermal Cycler (Applied Biosystems). In case of using the PdO 5 and 

Fhu4 primer pairs the reaction volumes contained 25 ng DNA, 0.5 units of Taq DNA 

polymerase, 0.4 M of each primer, 1x PCR buffer, 0.125 mM of each nucleotide and 1.5 mM 

MgCl2. When using the Fhu3 primer pairs the reaction volume contained 25ng DNA, 0.5 

units of Taq DNA polymerase, 0.4 M of each primer, 1x PCR buffer, 0.125 mM of each 

nucleotide and 1.0 mM MgCl2. And finally, when Fhu2 primer pairs were applied the reaction 

volume contained 25ng DNA, 0.5 units of Taq DNA polymerase, 0.3 M of each primer, 1x 

PCR buffer, 0.125 mM of each nucleotide and 1.25 mM MgCl2. 

The thermal profile for PdO 5, FhU2 and FhU4 primer pairs started with 2 min of 

denaturation at 94ºC, followed by 30 cycles at 94ºC for 30s, 60ºC for 30s and 72ºC for 30s, 

and ended with an elongation step at 72ºC for 10min. The thermal profile for FhU3 primer 

pairs was different: the denaturation lasted for 3 min at 94 ºC and was followed by 10 “touch 

down” cycles in which the denaturation step at 94 ºC lasted for 15s, the annealing temperature 

decreased by 0.8 ºC in each cycle starting from 63 ºC. This was followed by an elongation 

step at 72ºC for 30s in each cycle. After the “touch down” cycles 22 cycles were applied with 

the following profile: 94ºC for 15s, 55ºC for 30s and 72ºC for 30s. The protocol ended with 

an elongation step at 72ºC for 10min.  
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The PCR products were run on 6% polyacrylamid gels and visualized using a FluorImager 

(Vistra). The samples of all members of a family were run on the same gel so any mismatch in 

the genotypes between offspring and putative parents could be detected. Assuming Mendelian 

inheritance, we classified offspring as extra-pair young if they showed genotype mismatch 

with their putative father. Mutations are very unlikely to confound our results, because no 

single-locus mismatch has been found between mothers and offspring, which could have been 

the indicative of high mutation rate. 

 

3.3.3. Molecular detection of Haemosporidian parasites 

 

Nested PCRs were performed using the protocol described by Waldenström et al. (2004) 

and Hellgren et al (2004). The two protocols differ in the fact that the Waldenström et al. 

protocol detects only avian malaria (Haemoproteus and Plasmodium) parasites while the 

Hellgren et al. protocol detects both avian malaria parasites and also Leucocytozoon parasites. 

In the first step of these nested PCRs the primer pair targets at the mtDNA of the parasites and 

amplifies a longer fragment of the cytochrome b gene which is present in avian malaria 

parasites (Waldenström et al. 2004) or in avian malaria parasites and Leucocytozoon species 

(Hellgren et al. 2004). The length of the fragment after the first reaction is either 580 basepair 

long or 617 basepair long (including primers) when using the Waldenström et al. or the 

Hellgren et al. protocol, respectively. The second primer pair which is internally nested, 

increases the specificity of the first reaction but still amplifies fragments from both parasite 

genera of Haemoproteus and Plasmodium when using either protocol, however, the 

amplification of the Leucocytozoon genus is separated from the detection of avian malaria 

parasites species in the Hellgren et al. protocol. In this reaction a shorter, 524-basepair-long 

fragment (including primers) for avian malaria parasites is amplified by the Waldenström et 

al. protocol while 527-basepair-long and 526-basepair-long fragments (including primers) are 

amplified for avian malaria parasites and for Leucocytozoon species respectively, in the 

Hellgren et al. protocol.  

In all PCRs both negative (ddH2O) and positive controls (samples from birds which were 

previously confirmed to be infected) were included among the samples to control for possible 

contaminations and failures during PCRs, respectively. To reduce the risk of loosing 

infections either because of low quality DNA (e.g. due to degradation) or because of sampling 

error we sexed all individuals and screened all samples twice for blood parasites. All samples 

with positive amplification were sequenced directly using BigDye  Terminator v3.1 cycle 
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sequencing kit and products from the sequencing reactions were run on an ABI PRISM  

3100 Genetic Analyser (Applied Biosystems). Sequences were edited and aligned using the 

program BioEdit (Hall 1999) and identified to genus level by comparing sequence data with 

that of previously identified parasites. Samples included in study 4 showing at least one 

double peak in the raw sequence data (Figure 3) were subjected to a second, independent 

amplification, using the same procedure as described above, and the resulting PCR products 

were cloned using a TOPO TA-Cloning kit® (Invitrogen) as described by Pérez-Tris and 

Bensch (2005).  

 

 
 

Figure 3. Sequence chromatogram indicating the presence of at least two different parasite lineages in the 

sample. Different malaria lineages were distinguished by one or more nucleotide differences based on agreement 

between scientists working in the area (Bensch et al. 2004).   

3.4. Data analyses 

 

3.4.1. General methods 

 

It has been shown previously that the age of the males might indicate their quality, since 

older males have already lived longer, can occupy better territories or prove to be better 

parents when rearing their young (Forslund and Pärt 1995, Sætre et al. 1995). Furthermore, 

one study on our Hungarian Collared Flycatcher population showed that nestlings originated 

from subadult males grow slower and are in worse body condition at fledging (Hegyi et al. 

2006b). Thus based on plumage characteristics we identified the binary age of the males 

during courtship (i.e. subadult or adult) and included only broods of adult males in our 

experiments. Identification of female age is not possible through plumage characters (only by 

using capture-recapture data), thus in our studies we did not control for female age. 

Since food conditions change as the season progresses we always tried to limit the number 

of days elapsed between the laying date of the first and the last broods included in our studies. 



25

The first egg was laid within a 6-, 4- and 8-day interval in studies conducted in 2002, 2003 

and 2004, respectively. Furthermore, those broods, which were provisioned by only one 

parent or were secondary broods of polygynous males were not included in our studies.  

Feather growth was found to increase linearly so we calculated the slope of a linear 

regression for each nestling to describe feather growth rate (Nilsson and Svensson 1996). 

However, we analysed individual body mass growth in two different ways depending on the 

models fit best to our dataset. We either entered the body mass data between day 2 and day 12 

into the General Linear Mixed Model of SAS as a dependent variable while using age as a 

repeated measure variable or used the logistic growth model of Starck and Ricklefs (1998): 

W=A/(1+exp(-K*(t-ti))), where K is the rate of mass increase, A is the asymptotic mass and t 

is the age of the individual. All statistical analyses were performed in Statistica for Windows, 

in SPSS and in SAS. Details of different statistical analyses are given at the data analysis 

section of the different studies.  

 

3.4.2. Maternal compensation for hatching asynchrony (study 1)  

 

In this study we used 45 clutches consisting of 6 or 7 eggs (22 in 2002 and 23 in 2003). 

Because it may be different being laid sixth in a clutch of 6 eggs or 7 eggs, we ranked each 

egg into one of the following five categories: first, second, middles, penultimate and last laid 

egg. See e.g. Magrath et al. (2003) for a similar grouping. 

Egg volume (V) was calculated according to the formula V= -0,042+0,4976*L*W2, where 

L= egg length and W= egg width, described by Ojanen et al. (1978) for a sibling species, the 

Pied Flycatcher (Ficedula hypoleuca). Place of a chick in the hatching order was described by 

the hatching time, which was calculated as the time elapsed between the first hatching in a 

brood and the hatching of the chick in question. Hatching time was therefore 0.0h for the 

chicks hatched first in a brood. Mass was found to increase logistically with time, so we 

calculated the rate of mass increase (from day 0 until fledging) using a logistic growth model 

(see above) where the accurate age of the individuals was calculated from their hatching time. 

The growth of the primaries was described with data collected from day 8 until fledging. Here 

we did not control for the accurate hatching time.  

Unless stated otherwise, analyses were performed using general linear mixed models with 

laying order as repeated measure factor and year and brood size as factors. The covariance 

structure of the model was selected on the basis of Schwarz’s Bayesian Information Criterion 

(BIC). For all but one of the dependent variables the best fit was achieved by using first order 
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autoregressive covariance, therefore we used this covariance structure throughout the 

analyses. This covariance structure assumes that measurements closer in the repeated measure 

sequence are more similar to each other, which is our expectation if eggs are laid sequentially. 

Denominator degrees of freedoms are obtained by Satterthwaite approximation and are 

therefore not integers. Post hoc comparisons were performed contrasting the groups in 

question in the Test Subcommand of the SPSS. Statistical analyses were performed using 

SPSS 11.0 and Statistica for Windows 4.5. 

Sample sizes varied among dependent variables. Five broods (2 and 3 in 2002 and 2003, 

respectively) were not included in the nestling growth analyses, because females reared their 

young alone. Inclusion of these broods in the investigation of egg size patterns did not change 

the result, therefore they were kept in this analysis. Feather growth was measured in 34 

broods only, therefore this analysis is based on a smaller dataset. Because of unhatched, died 

or not measured nestlings some data were occasionally missing. However, hatching success 

and subsequent nestling survival (95.82% and 98.80%, respectively) were not related to 

laying order ( 2-test were used to compare the distribution of hatched/survived chick to the 

number of observations throughout the laying order; hatching success: 2=0.615, df= 4, 

p=0.961; survival: 2= 0.080, df= 4, p= 0.999) and therefore they are not expected to affect 

the outcome of our analyses. 

 

3.4.3. The effects of hatching asynchrony and rearing environment (study 2)  

 

Altogether, we studied 48 broods with the most common brood size being of 6 or 7 

nestlings. One brood which was depredated on day 4, was excluded from the analyses as were 

those broods, which were secondary broods of polygynous males or reared by only one 

parent. The remaining 43 nests were retained for the analyses. We analysed nestling growth 

and fledging size data both at the individual and brood levels in order to estimate the effect of 

hatching asynchrony and brood size manipulation on both the individual nestlings and the 

parental fitness.  

In study 1 we found that the extent of hatching asynchrony in a brood was correlated with 

the coefficient of variation (CV) of 2-day body mass when controlled for year (using GLM: F 

= 18.84, df = 1, 38, p < 0.001). Similarly, the hatching time of an individual nestling (i.e. the 

time elapsed between the first hatching in the given brood and the hatching of the chick in 

question) was correlated with the corrected deviation (CD) of nestling body mass from the 
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brood mean (CD = (a - ) / , where  = mean body mass of the brood on day 2, a = the 2 day 

body mass of the chick in question; using GLM: F = 468.36, df = 1, 212, p < 0.001). 

Therefore, in the present study we did not directly measure hatching asynchrony but used CV 

(“size variation” later on) and CD (“relative size” later on) to estimate the effect of hatching 

asynchrony on nestling performance at the brood and the individual level, respectively. 

In the individual level analyses we used General Linear Mixed Models including 

manipulation category (i.e. enlarged or reduced) as a factor, relative size as a covariate and 

the interaction of these terms. Original and rearing broods were also included as random 

factors. Dependent variables were wing feather length (the length of the third outer primary), 

body mass and tarsus length on day 14, and wing feather growth rate. The growth of the 

primaries was described with the slope of a linear regression for each nestling using data 

collected between day 8 and day 12. Body mass growth was analysed by entering the body 

mass data between day 2 and day 12 into the model as a dependent variable while using age 

as a repeated measure variable. The interaction of explanatory variables with age indicates an 

effect on nestling growth. The covariance structure of the model was selected on the basis of 

the Akaike Information Criterion values (Burnham and Anderson 1998). 

In the brood level analyses we used General Linear Models including the brood means of 

nestling size and feather growth rate as dependent variables, manipulation category as a 

factor, size variation as a covariate and the interaction of these terms. When analysing body 

mass growth we entered the brood means of body mass between day 2 and day 12 into the 

model as dependent variable and used age as a repeated measure variable. Similar analyses 

were performed for the mean value of the two largest chicks in the broods in order to estimate 

the effect of the explanatory variables specifically on the nestlings with a competitive 

advantage. The two largest chicks were the chicks, which weighed the most on day 2. 

After the analyses of our initial models, we performed a step-wise backward deletion of 

non-significant terms. All analyses were performed using the Mixed Procedure of SAS 8.02 

(SAS Institute, Cary, North Carolina). 

Two broods were depredated after day 12, 6 nestlings had already fledged before the final 

measurements were taken, and some measurements were occasionally missing, therefore 

sample sizes varied among analyses. Nestlings which died (6 out of 162 and 2 out of 110 in 

enlarged and reduced broods, respectively) were excluded from the analyses. Brood means 

were calculated for the rest of the chicks in the brood.  

The two manipulation categories did not differ in terms of the size difference between the 

largest and smallest chicks in the broods on day 2 (t41 = -0.69 p = 0.496). The average 
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difference was 1.44 ± 0.13 and 1.30 ± 0.02 g (mean ± SE in enlarged and reduced broods, 

respectively), which corresponds to a hatching span of 30.65 and 29.22 hours respectively 

(the hatching asynchrony (HA) estimate is based on data from study 1; equation of the linear 

regression HA = 16.04 + 10.16 x mass2dmax-min, where mass2dmax-min is the mass difference 

between the heaviest and the lightest chick at 2 days of age).  

We also analysed the effect of manipulation and the estimated hatching asynchrony on the 

survival of the parents. Because of the high site fidelity of breeding individuals (Könczey et 

al. 1992) we considered those individuals which were recaptured in two years following the 

experiment as survivors while non-recaptured birds as non-survivors. Survival was analysed 

using Generalized Linear Models with binomial error and logit link including manipulation 

category as a factor, size variation as a covariate and the interaction of these terms. Since the 

dispersion parameter was larger than 1.0 we tested the significance of the parameters with an 

F test (Crawley 1993); d scale option was used in SAS 8.2. 

 

3.4.4. The effects of extra-pair paternity and sex on nestling performance (study 3)  

  

We obtained performance, sex and paternity data for 32 broods (13 and 19 broods in 2002 

and 2003, respectively). Four of the parents were captured in both years, and to avoid 

pseudoreplication we included only one of their broods. In one brood, all the chicks were 

sired by foreign males (at least two different individuals). Since in this case we cannot 

exclude the possibility that another male than the social mate was captured and sampled in the 

nest box, this brood was omitted from all analyses.  

Throughout the study, we used individual based analyses (General Linear Mixed Models) 

with brood identity as a random factor. When we analysed the effect of extra-pair paternity on 

offspring growth and fledging size, only nestlings from mixed paternity broods were included 

(n=87 chicks). The effect of sex, however, was analysed also on a larger data set including 

170 chicks. Because the effect of possible confounding factors on nestling performance, such 

as laying order, brood size and year, were analysed in study 1 using a larger dataset, we 

included only those factors in the present analyses that were significant in that study. Laying 

order had a significant effect on most of the growth and size parameters and it was therefore 

included in all analyses. We also included the laying order x paternity and laying order x sex 

interactions in our initial models. Because it may be different being laid sixth in different 

sized clutches, we ranked each nestling into one of the following five categories: hatched 

from the first, second, middle, penultimate or last laid egg.  
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Post-hatching performance of the young was investigated by analysing the effect of the 

above variables on measures of body size (tarsus length, body mass, feather length), and body 

condition on day 14 (just before fledging), and also on feather growth rate and body mass 

change during growth. As year had a significant effect on feather length at fledging in study 1, 

we controlled for year when analysing feather length patterns (but not in other analyses). 

Body condition of the chicks was estimated as the residual body mass on tarsus length. 

Feather growth rate was analysed from 8 until fledging of the nestlings. In the case of body 

mass growth, we used body mass as dependent variable and nestling age (2-12 day) as a 

repeated measure variable. The interactions of age with other variables were also included in 

the model. Significant effects for age interactions indicated that the given variables affected 

nestling growth. 

The speed of embryonic growth was investigated by analysing the hatching time of the 

young (i.e. the time elapsed between the first hatching in a brood and the hatching of the chick 

in question). When controlled for laying order, this value should clearly show whether there is 

any difference between the development rate of extra-pair and within-pair embryos. On a 

larger dataset, the brood size x year x laying order interaction affected hatching time of the 

nestlings, and therefore this interaction was also included in the hatching time analysis (but 

not in other analyses).  

In all above analyses, non-significant variables (except those background variables which 

were significant on a larger dataset (see above)) were deleted from the models one by one 

starting with the highest order interactions. These analyses were performed using the SAS 8.2 

program. Nestling mortality was not analysed, because in broods where we had data on 

paternity, only four nestlings/embryos died. 

When testing the effect of laying order on sex and paternity of the offspring, we compared 

the observed versus expected number of male/extra-pair young in different positions using 2-

test. The effect of paternity on offspring sex was tested using Generalized Linear Mixed 

Models (glimmix macro), with brood identity as a random factor. 

When we investigated the effects of parental traits on paternity of the broods, we used 

some additional data collected in 2004. If a parent was breeding in multiple years, it was 

entered to our analysis only once. So the sample size in this analysis was 61 broods. To 

analyse our data, we used generalized linear models with backward-stepwise deletion of the 

non-significant terms. 
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3.4.5. The effects of parental quality and malaria infection on nestling performance (study 4)  

 

When we analysed the effects of parental traits and malaria infection on nestling growth 

and fledging size we performed three sets of analyses. First, we investigated the effects of 

putative parental traits on nestling performance. In these analyses all nestlings that originated 

from a given brood (before cross-fostering) were included and malaria infection and 

morphological traits of the parents belonging to these broods were used as independent 

variables. The second analysis was restricted to those chicks, which were genetically related 

to their putative parents (all genetic offspring independent of cross-fostering). Finally, we also 

analysed the effects of traits of the rearing parents (i.e. the parents that reared the nestlings 

after cross-fostering) on nestling performance (all nestlings that were fed by a social pair). 

Altogether we identified 10 lineages of avian malaria in this study (different malaria lineages 

were distinguished by one or more nucleotide differences based on agreement between 

scientists working in the area (Bensch et al. 2004)) and the overall prevalence of these 

parasites was 30.2%. In the above analyses therefore birds were treated either infected or 

uninfected with avian malaria. 

We used General Linear Mixed Models including manipulation category (i.e. enlarged or 

reduced) and malaria infection in female and male parents as factors, forehead and wing patch 

size of the male, tarsus length of the male and the female as covariates, and second order 

interactions of manipulation category with all the other independent variables. Original and 

rearing broods were also included as random factors. Dependent variables were wing feather 

length (the length of the third outer primary) and body mass on day 14, wing feather growth 

rate and mass growth rate of individual nestlings. The growth of the primaries was analysed 

between day 8 and 12. Body mass growth was analysed between day 2 until day 14, 

calculating the rate of body mass increase for each individual from the logistic growth model. 

Two broods were depredated after day 12, 6 nestlings had already fledged before the final 

measurements were taken, therefore for 15 individuals we did not have body mass data on day 

14. For these nestlings we calculated K from day 2 to day 12. Because the inclusion of these 

individuals in the present analysis did not change the results they were not omitted. Nestlings 

that died during growth (6 out of 162 and 2 out of 110 in enlarged and reduced broods, 

respectively) were excluded from all analyses.  

After the analyses of our initial models, we performed a step-wise backward deletion of 

non-significant terms. All analyses were performed using the Mixed Procedure of SAS 8.2 

(SAS Institute, Cary, North Carolina). 
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When we analysed the relationship between malaria infection and the secondary sexual 

characters of the males we used Generalized Linear Models with binomial error and logit link. 

The size of male secondary sexual characters and tarsus length were continuous predictor 

variables. Since the dispersion parameter was larger than 1.0 we tested the significance of the 

parameters with an F test (Crawley 1993); the d scale option was used in SAS 8.2. 

 

 

4. RESULTS 

 

4.1. Maternal compensation for hatching asynchrony (study 1) 

 

We found that in Collared Flycatcher clutches, egg volume increased with laying order 

(Table 2, Figure 4). Hatching mass showed a similar increase (Table 2), and it was the 

consequence of increasing egg volume, because when the residuals of hatching mass on egg 

volume were entered to the mixed model, laying order was not significant (F = 0.40, df = 4, 

115.85, p = 0.81). 
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Figure 4. Egg volume (Mean ± SE) in relation to laying order. 

 

The significant overall effect of laying order on hatching time indicates that broods 

hatched asynchronously, but there was a difference between the two study years (Table 2, 

Figure 5). In 2002 the last egg hatched later in clutches with 6 eggs (p < 0.001), while the last 
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two in clutches with 7 eggs (both for last-earlier laid and penultimate-earlier laid comparison 

p < 0.001). In 2003 the last two eggs hatched later independent of the brood size (all p < 

0.007). When we entered the hatching asynchrony (the time difference between the first and 

last hatching) to an ANOVA with brood size and year as factors, the overall year effect was 

significant (F = 5.62, df = 1, 33, p = 0.024). In 2003 hatching asynchrony was higher (Mean ± 

SE was 25.20 ± 1.78 and 29.50 ± 1.65 in 2002 and 2003, respectively). The difference was 

more pronounced for 6-egg clutches (year x brood size F = 4.12 df = 1, 33, p = 0.051). 
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Figure 5. Hatching time (Mean ± SE) in relation to laying order in broods of six (a) and seven (b) eggs. 

Hatching time is the time elapsed between the first hatching in a brood and the hatching of the chick in question. 

Hatching time was therefore 0.0 h for the chicks hatched first in a brood. Open circles, 2002; filled circles 2003. 
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Though the laying order x brood size x year interaction was significant, there was no 

overall effect of laying order on the growth of primaries (Table 2). However, laying order 

affected the mass increase of the nestlings (Table 2, Figure 6).  
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Figure 6. Mass growth in relation to laying order. K is the growth rate from the logistic growth function 

[W=A/(1+exp(-K*(t-ti)))], Means ± SE are shown. 

 

Nestlings hatched from last laid eggs experienced lower growth rate (K). In spite of the 

lower mass increase, there was no relationship between laying order and body mass before 

fledging (day 14; see Table 2). However, the primaries of the chicks hatched from the last egg 

were shorter than those of their nestmates (Table 2; Figure 7). These results were consistent 

across years, even though in 2003 the length of the primaries was overall significantly shorter 

than in 2002. 
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Figure 7. Length of the third primary (Mean ± SE) before fledging (day 14) in relation to laying order. Open 

circles, 2002; filled circles 2003. 

 

The compensatory effect of larger last egg, can be tested by correlating the relative egg 

size of the last chicks (compared to their siblings) with their relative growth rate or fledging 

size. In the case of fledging mass, correlation with relative egg size is not expected, because in 

our broods, most chicks reached their maximal weight latest on day 14. However, the 

advantage of larger egg size was apparent, when we analysed its effect on body mass growth, 

while controlling for the effect of hatching asynchrony. In a multiple regression, relative 

hatching time (i.e. the difference between the hatching time of the last chick and the mean of 

its siblings) negatively affected the relative body mass growth rate of the last chick (ß = -0.37, 

F = 6.11, df = 1, 32, p = 0.019), while relative egg size had a significant positive effect (ß = 

0.37, F = 6.19, df = 1, 32, p = 0.018). Relative egg size also tended to affect the feather 

growth rate (ß = 0.35, F = 3.58, df = 1, 27, p = 0.069), though it was not affected by the 

relative hatching time (F = 1.14, df = 1, 27, p = 0.29). Finally, the lag of the last chick before 

fledging, in terms of feather length, was affected by both relative hatching time (ß = -0.41, F 

= 7.68, df = 1, 32, p = 0.009) and relative egg size (ß = 0.32, F = 4.73, df = 1, 32, p = 0.037). 

The later the nestling hatched compared to its siblings, the larger its disadvantage was, 

however this disadvantage was decreasing with increasing egg size. 
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Table 2. The effect of laying order (first, second, middle, penultimate, last), brood size (6, 7) and study year (2002, 2003) on egg volume, hatching asynchrony (time since the 

first nestling in the focal brood hatched), nestling growth (K of the logistic mass growth curve and the slope of the linear feather growth) and fledgling size (body mass and 

length of the third outer primary on day 14). Displayed are F values with degrees of freedom in parentheses. Asterisks indicate the level of significance (* p<0.05, *** 

p<0.005). 

 
 Egg volume Hatching mass Hatching time Mass growth Feather growth 14d mass 14d feather 

Brood size   1.06 (1, 41.90) 1.17 (1, 36.19)   10.76 (1, 51.43)*** 0.25 (1, 43.15) 0.02 (1, 34.63) 0.05 (1, 40.83)   0.03 (1, 38.81) 

Year   1.02 (1, 41.90)  0.03 (1, 36.19)     2.35 (1, 51.43) 0.23 (1, 43.15) 0.33 (1, 34.63) 0.99 (1, 40.83) 22.99 (1, 38.81)*** 

Laying order 15.65 (4, 154.69)*** 5.14 (4, 123.08)*** 135.13 (4, 114.13)*** 7.55 (4, 121.07)*** 1.52 (4, 88.90) 0.24 (4, 124.35) 15.71 (4, 111.24)*** 

Brood size*year   1.29 (1, 41.90) 2.29 (1, 36.19)     0.64 (1, 51.43) 1.31 (1, 43.15) 0.17 (1, 34.63) 2.32 (1, 40.83)   1.82 (1, 38.81) 

Brood size*laying order   1.081 (4, 154.69) 0.34 (4, 123.08)     1.85 (4, 114.13) 1.30 (4, 121.07) 1.68 (4, 88.90) 0.75 (4, 124.35)   1.62 (4, 111.24) 

Year*laying order   1.18 (4, 154.69) 0.28 (4, 123.08)     2.02 (4, 114.13) 2.27 (4, 121.07) 0.62 (4, 88.90) 1.40 (4, 124.35)   0.33 (4, 111.24) 

Brood size*year*laying order   0.68 (4, 154.69) 0.87 (4, 123.08)     2.49 (4, 114.13)* 0.72 (4, 121.07) 3.27 (4, 88.90)* 0.22 (4, 124.35)   0.18 (4, 111.24) 
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4.2. The effects of hatching asynchrony and rearing environment (study 2)  

 

4.2.1. Growth and fledging size of individual nestlings

 

To investigate the possible fitness consequences of nestling size hierarchy under different 

rearing conditions, we analysed the effects of relative size of nestlings and brood size 

manipulation on body mass and feather growth rate and fledging sizes of the nestlings. The 

overall effects of these two variables and the interaction term were significant for all growth 

and fledging size parameters (Table 3, Table 4). Separate analyses of enlarged and reduced 

broods showed that initially smaller nestlings experienced slower body mass growth and 

smaller wing feather length at fledging in both manipulation categories (all p < 0.001; Figure 

9a, Figure 8b) with the disadvantage being larger in enlarged broods. However, feather 

growth rate, as well as the tarsus length and body mass of fledglings was affected only in 

enlarged broods (enlarged broods: all p < 0.006, reduced broods all p > 0.548; Figure 8a, 8c).  
 

Table 3. The effects of relative size (CD), brood size manipulation (enlarged, reduced) and age on body mass of 

individual nestlings. Displayed are F values with degrees of freedom in parentheses. Asterisks indicate the level 

of significance (*** p<0.005). Table shows the variables retained in the final model. 
 

Effect F (df) 

Age 4922.78 (5, 1482)*** 

Manipulation     58.95 (1, 1482)*** 

CD   680.20 (1, 1482)*** 

Age*manipulation     83.32 (5, 1482)*** 

Age*CD     22.18 (5, 1482)*** 

Manipulation*CD     48.44 (1, 1482)*** 

Age*manipulation*CD       6.49 (5, 1482)*** 

 
Table 4. The effects of relative size (CD) and brood size manipulation (enlarged, reduced) on feather growth rate 

and fledgling size (body mass, length of the third outer primary and tarsus length on day 14) of individual 

nestlings. Displayed are F values with degrees of freedom in parentheses. Asterisks indicate the level of 

significance (* p<0.05, *** p<0.005). Table shows the variables retained in the final model. 
 

Effect Feather growth 14d mass 14d feather 14d tarsus 

Manipulation 29.93 (1, 192)*** 17.30 (1, 180)***     8.74 (1, 180)*** 11.00 (1, 177)*** 

CD  4.39 (1, 192)* 45.29 (1, 180)*** 305.90 (1, 180)*** 28.61 (1, 177)*** 

Manipulation*CD   8.84 (1, 192)*** 52.08 (1, 180)***   43.61 (1, 180)*** 24.54 (1, 177)*** 
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Figure 8. Feather growth and fledging size in relation to the relative size of individual nestlings (CD = (a - ) / , 

where  = mean body mass of the brood on day 2, a = the 2 day body mass of the chick in question). Open 

circles, dashed line: enlarged broods; filled circles, solid line: reduced broods. a) growth rate of the 3rd outer 

primary ; b) the length of the 3rd outer primary on day 14; c) tarsus length on day 14. 
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4.2.2. Average performance of the broods and survival of the parents 

 

With respect to parental fitness brood performance may have a more important role than 

that of the individual nestlings. Therefore we performed similar analyses as above to evaluate 

the effects of estimated hatching asynchrony on average nestling growth and fledgling size. 

We also analysed how brood size manipulation and the magnitude of hatching asynchrony 

affected the survival of the parents.  

Brood enlargement had an overall negative effect on body mass and feather growth rate 

and also on all measures of fledgling size (all p < 0.019). However, estimated hatching span 

of the brood affected only the average mass growth so that a higher initial size variation 

resulted in slower body mass growth (Figure 9b, Table 5). Neither initial size variation of the 

brood (for females: p = 0.908, for males: p = 0.110) nor brood size manipulation (for females 

p = 0.259, for males p = 0.105) affected survival of the parents.  
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Figure 9. a) Body mass growth of individual nestlings in relation to their relative size (CD = (a - ) / , where  

= mean body mass of the brood on day 2, a = the 2 day body mass of the chick in question). b) Average body 

mass growth in relation to initial size variation (CV) in the broods. Grey dots, dashed line: enlarged broods; 

black dots, solid line: reduced broods. 
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4.2.3. Average growth and fledging size of the initially heaviest chicks  

 

According to some of the hypotheses proposed to explain the function of hatching 

asynchrony, it is also possible that the size hierarchy in the broods is beneficial only for 

nestlings with a competitive advantage. Therefore we aimed to examine the effect of hatching 

asynchrony on nestlings with a higher rank in the size hierarchy.  

We found that body mass and wing feathers of the two largest chicks grew slower in 

enlarged broods than in reduced broods (for feather growth rate F = 19.55 df = 1, 41 p < 

0.001; for body mass growth see Table 5) while brood size manipulation had no effect on the 

fledging sizes of these nestlings (all p > 0.402). The estimated hatching asynchrony did not 

affect any of the growth and fledging size parameters (all p > 0.246).  

 
Table 5. The effects of size variation (CV), brood size manipulation and age on average mass of the broods and 

the two largest nestlings. Displayed are F values with degrees of freedom in parentheses. Asterisks indicate the 

level of significance (* p<0.05, *** p<0.005). Table shows the variables retained in the final model. 

 

Effect Mass growth of the broods Mass growth of the largest nestlings 

Age 646.38 (5, 200)*** 3613.71 (5, 205)*** 

Manipulation   54.94 (1, 40)***     26.81 (1, 41)*** 

CV     6.18 (1, 40)*    Removed 

Age*manipulation   30.43 (5, 200)***     20.91 (5, 205)*** 

Age*CV     3.76 (5, 200)***    Removed 

Manipulation*CV    Removed    Removed 

Age*Manipulation*CV    Removed    Removed 
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4.3. The effects of extra-pair paternity and sex on nestling performance (study 3) 

 

A large proportion, 55.74% of the broods contained extra-pair young. Altogether 20.61% 

of the nestlings were sired by extra-pair fathers. None of the paternal traits (forehead patch 

size, wing patch size, body size and condition) predicted the females’ participation in extra-

pair copulations (Table 6). The timing of breeding and female body condition also showed no 

relationship with the paternity of the broods. However, the broods of large females were less 

likely to contain extra-pair young than that of small females (Table 6, Figure 10). 

 
Table 6. The effect of parental traits on paternity of the broods. The significant variable retained in the final 

model is in bold. Values indicated for non-significant terms are derived from the last model, in which the given 

variable was included during the backward stepwise model selection. 

 

parental trait F df P 

female tarsus length 7.32 1,59 0.009 

male wing patch size 0.29 1,58 0.589 

female body condition 0.30 1,56 0.583 

male body condition 0.26 1,55 0.615 

male forehead patch size 0.13 1,54 0.721 

laying date 0.02 1,53 0.881 

male tarsus length 0.00 1,52 0.967 
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Figure 10. The relationship between female body size and paternity of the broods. Mean ± SD (whiskers) and 

SE (boxes) are indicated. 

 

The embryonic development of extra-pair young was not faster than that of their half-sibs 

as indicated by the lack of difference in hatching time (Table 7a). They did not perform better 

after hatching either (Table 7a). Extra-pair young did not differ in body mass and feather 

growth from their half-sibs. Furthermore, nestlings fledged with the same size (body mass, 

tarsus length, feather length) and body condition independent of paternity. In broods with 

mixed paternity, the occurrence of extra-pair young was independent of laying order ( 2 = 

4.42, df = 6, p = 0.621). Sex of the extra- and within-pair young did not differ (proportion of 

males for extra-pair young = 0.453, for within-pair young = 0.441; F1, 84.5 = 0.01, p = 0.922). 

As paternity did not affect any of the measures of offspring performance, we repeated all 

analyses with the inclusion of broods of genetically monogamous pairs when we analysed the 

effect of sex on nestling growth and size (Table 7b). Though we found no sex difference in 

the hatching time of male and female nestlings (indicating that they developed with the same 

speed until hatching), male nestlings gained body mass faster after hatching as indicated by 

the sex x age interaction effect on body mass (Figure 11, Table 7b). By the time of fledging, 

the sex difference in body mass had disappeared. However, the tarsus length was significantly 

longer in females than in males (Figure 12, Table 7b), although the mean difference was only 

0.7%. Since we estimated nestling body condition as the residual of body mass on tarsus 

length, females seemed to be in worse body condition on day 14. Though males tended to 
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have faster feather growth than females, this difference was not significant and there was no 

sex difference in feather length at fledging (Table 7b). The sex of the young was independent 

of their place in the laying order ( 2 = 3.41, df = 4, p = 0.491). 
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Figure 11. The effect of sex on nestling growth. Asterisks indicate significant difference in body mass between 

males (black box) and females (open box) when body mass was analysed separately in each age category. Mean 

± SD (whiskers) and SE (boxes) are indicated.  
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Figure 12. Sex difference in nestling tarsus length on day14. Mean ± SD (whiskers) and SE (boxes) are 

indicated. 
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Table 7. The effect of paternity and sex on nestling growth and size. Significant variables retained in the final model are in bold. Background variables other than laying order 

(see methods) are not indicated. Values indicated for non-significant terms are derived from the last model, in which the given variable was included during the backward 

stepwise model selection. Note that in case of mass growth where we used a repeated measure approach, all effects are interactions with age (e.g. “laying order” in the table 

refers to “laying order x age”), because these interactions show whether the given variable (e.g. “laying order”) had an effect on mass growth. 

 

 

hatching time 

(~embryonic growth) mass growth 14d mass 14d tarsus length 14d condition feather growth 14d feather length 

 F df p F df p F df p F Df p F df p F df p F df p 

a) mixed paternity broods                      

laying order 65.80 4, 56 <0.001 2.79 20, 467 <0.001 0.22 4, 64 0.925 1.63 4, 65 0.177 0.90 4, 64 0.467 1.57 4, 58 0.196 13.34 4, 66 <0.001 

sex 0.83 1, 54 0.366 1.93 5, 460 0.088 0.78 1, 68 0.382 3.94 1, 69 0.051 3.40 1, 69 0.069 0.23 1, 57 0.631 0.78 1, 64 0.380 

laying order x sex 1.59 4, 50 0.191 0.70 20, 407 0.828 1.53 4, 60 0.204 0.09 4, 56 0.984 1.52 4, 60 0.208 0.19 4, 48 0.943 1.38 4, 60 0.251 

paternity 1.32 1, 55 0.255 0.74 5, 447 0.594 0.96 1, 69 0.331 0.20 1, 64 0.658 1.60 1, 68 0.210 0.01 1, 56 0.917 1.47 1, 65 0.230 

laying order x paternity 0.72 4, 46 0.580 1.44 20, 427 0.101 0.97 4, 56 0.433 0.59 4, 60 0.671 1.56 4, 56 0.199 0.54 4, 52 0.709 0.43 4, 56 0.788 

                      

b) all broods                      

laying order 96.55 4, 122 <0.001 7.89 20, 939 <0.001 1.14 4, 128 0.340 2.15 4, 120 0.079 0.19 4, 119 0.943 1.52 4, 105 0.202 28.89 4, 121 <0.001 

sex 0.57 1, 121 0.450 3.41 5, 939 0.005 1.57 1, 132 0.213 5.64 1, 124 0.019 4.21 1, 123 0.042 3.76 1, 109 0.055 1.24 1, 120 0.268 

laying order x sex 0.27 4, 117 0.896 1.05 20, 915 0.404 0.17 4, 124 0.951 0.26 4, 116 0.903 0.15 4, 115 0.964 0.06 4, 101 0.993 1.80 4, 116 0.133 
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4.4. The effects of parental quality and malaria infection on nestling performance (study 4) 

  

4.4.1. Male quality and malaria infection 

 

We found no correlation between avian malaria infection and male wing patch size (F = 

0.74, df = 1, 39, p = 0.394), forehead patch size (F = 0.65, df = 1, 40, p = 0.426) or tarsus 

length (F = 0.40, df = 1, 41, p = 0.531). 

 

4.4.2. Quality of the putative parents and nestling performance 

 

We investigated how origin of the nestlings (i.e. early maternal investment and genetic 

quality of the parents) affected the growth and fledging size of the offspring under good and 

bad rearing conditions. Brood size enlargement had an overall negative effect on all growth 

rate and fledging size parameters (Table 8). However, none of the secondary sexual characters 

of the putative fathers correlated with any of the nestling growth and fledging size parameters 

(Table 8). Tarsus length of the putative fathers showed a positive relationship with wing 

feather length before fledging (Table 8, Figure 13a). Tarsus length of the mothers, however, 

did not correlate with any of the nestling traits. Avian malaria infection in the parents did not 

correlate with any of the nestling growth and fledgling size parameters (Table 8). None of the 

interactions between parental traits and rearing conditions were significant (Table 8).  

When we restricted our analyses only to those nestlings that were proved to be genetically 

related to their putative parents (i.e. extra pair young were omitted) the results did not change 

qualitatively (results not shown). The only difference was that the relationship between the 

tarsus length of the genetic father and the 14-day wing feather length of their offspring 

became weaker (F = 3.87, df = 1, 121, p = 0.052) probably due to the lower sample size.  
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Figure 13. Offspring wing feather length at fledging (day 14) in relation to a) the tarsus length of the putative 

fathers; b) the tarsus length of the rearing fathers. 
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Table 8. The effect of morphology and malaria infection in putative parents on offspring performance. Significant variables retained in the final model are in bold. Values 

indicated for non-significant terms are derived from the last model, in which the given variable was included during the backward stepwise model selection. FPS means 

forehead patch size, WPS means wing patch size. 

 
 Mass growth rate Feather growth rate Body mass on day14 Feather length on day14 

 F Df p F Df p F df p F df p 

Manipulation 123.63 1, 187 < 0.001 26.34 1, 187 < 0.001 14.27 1, 176 < 0.001 17.32 1, 175 < 0.001 

FPS 0.10 1, 186 0.749 1.23 1, 187 0.269 0.39 1, 175 0.534 0.20 1, 175 0.652 

WPS 2.26 1, 187 0.134 0.19 1, 186 0.665 0.05 1, 175 0.822 0.14 1, 175 0.710 

Male tarsus 2.71 1, 187 0.101 0.36 1, 187 0.550 2.36 1, 175 0.126 4.86 1, 175 0.029 

Female tarsus 1.43 1, 187 0.233 1.86 1, 187 0.174 0.97 1, 175 0.325 0.59 1, 175 0.444 

Male malaria 1.76 1, 187 0.186 0.02 1, 186 0.875 0.41 1, 175 0.524 0.62 1, 175 0.434 

Female malaria 1.45 1, 187 0.230 1.06 1, 187 0.304 2.71 1, 175 0.102 1.65 1, 175 0.200 

FPS*manipulation 1.39 1, 185 0.240 0.02 1, 180 0.889 1.68 1, 173 0.197 0.57 1, 170 0.451 

WPS*manipulation 1.60 1, 183 0.207 0.30 1, 182 0.582 0.24 1, 171 0.623 0.12 1, 169 0.726 

Male tarsus*manipulation 2.34 1, 184 0.128 0.07 1, 181 0.785 0.13 1, 170 0.716 0.97 1, 173 0.326 

Female tarsus*manipulation 0.62 1, 181 0.431 1.57 1, 184 0.212 0.01 1, 169 0.928 0.42 1, 171 0.520 

Male malaria*manipulation 0.03 1, 180 0.855 1.30 1, 185 0.257 1.97 1, 174 0.162 1.87 1, 174 0.173 

Female malaria*manipulation 0.64 1, 182 0.426 0.86 1, 183 0.356 0.89 1, 172 0.346 1.01 1, 172 0.317 
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4.4.3. Quality of the rearing parents and nestling performance 

 

Malaria infection and morphological traits of the parents may be related to their parental 

investment during chick rearing and may in turn affect the growth and size of their offspring 

independent of early maternal and genetic effects. Therefore we performed the same analyses 

as above using the traits of the rearing parents as independent variables. Similarly to the 

above results, brood enlargement had an overall negative effect on all measures of nestling 

growth and fledging size (Table 9). Out of the two secondary sexual characters of male 

Collared Flycatchers only the size of the forehead patch showed a positive relationship with 

nestling growth in a way that wing feathers of nestlings reared by large patched males grew at 

a higher rate (Table 9, Figure 14). Neither forehead patch nor wing patch size was related to 

fledging size. Male tarsus length correlated positively with the 14-day wing feather length of 

the nestlings (Figure 13b), while female tarsus length did not show any relationship with the 

growth and fledging size parameters (Table 9). Avian malaria infection in rearing females and 

males did not show any relationship with the measures of nestling performance, and none of 

the parental traits × rearing condition interactions was significant (Table 9). 

 

 

30 40 50 60 70 80 90

Forehead patch size of the rearing father (mm2)

2.0

2.4

2.8

3.2

3.6

4.0

4.4

4.8

5.2

W
in

g 
fe

at
he

r g
ro

w
th

 ra
te

 (m
m

/d
ay

)

 
 

Figure 14. Wing feather growth rate of the nestlings in relation to forehead patch size of the rearing fathers. 
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Table 9. The effect of morphology and malaria infection in rearing parents on offspring performance. Significant variables retained in the final model are in bold. Values 

indicated for non-significant terms are derived from the last model, in which the given variable was included during the backward stepwise model selection. FPS means 

forehead patch size, WPS means wing patch size. 

 

 Mass growth rate Feather growth rate Body mass on day14 Feather length on day14 

 F df p F Df p F df p F df p 

Manipulation 122.80 1, 194 < 0.001 26.78 1, 194 < 0.001 16.25 1, 182 < 0.001 9.09 1, 182 0.003 

FPS 0.03 1, 193 0.864 7.46 1, 194 0.007 0.13 1, 181 0.719 0.79 1, 180 0.374 

WPS 0.62 1, 193 0.433 0.19 1, 193 0.664 0.14 1, 181 0.705 0.15 1, 181 0.699 

Male tarsus 1.76 1, 193 0.186 0.15 1, 193 0.699 1.88 1, 182 0.172 7.26 1, 182 0.008 

Female tarsus 0.03 1, 192 0.859 1.35 1, 193 0.247 0.06 1, 180 0.803 1.90 1, 180 0.170 

Male malaria 0.19 1, 193 0.664 0.01 1, 192 0.906 0.37 1, 181 0.544 2.04 1, 182 0.155 

Female malaria 1.08 1, 193 0.300 0.15 1, 193 0.701 0.01 1, 182 0.941 1.91 1, 181 0.168 

FPS*manipulation 0.64 1, 192 0.425 0.75 1, 192 0.389 3.73 1, 181 0.055 2.45 1, 180 0.119 

WPS*manipulation 1.12 1, 192 0.291 2.30 1, 191 0.131 0.70 1, 181 0.404 0.35 1, 181 0.557 

Male tarsus*manipulation 1.11 1, 192 0.294 1.01 1, 192 0.316 0.49 1, 180 0.486 3.36 1, 181 0.068 

Female tarsus*manipulation 0.33 1, 192 0.564 2.34 1, 192 0.128 0.56 1, 181 0.457 0.09 1, 181 0.766 

Male malaria*manipulation 0.94 1, 193 0.333 1.64 1, 192 0.202 1.08 1, 181 0.300 0.18 1, 181 0.672 

Female malaria*manipulation 0.16 1, 192 0.688 1.12 1, 192 0.291 1.69 1, 181 0.195 3.53 1, 180 0.062 
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4.5. Between-year dynamics of Haemosporidian parasites (study 5) 

 

As a part of our long-term study we regularly collect blood samples from adults during the 

chick rearing period each year. I have analysed some of these samples for avian malaria from 

year 2002 (N=144), 2003 (N=88) and 2004 (N=113). The distribution of parasite lineages is 

shown in Table 10. Our data clearly demonstrate that two Haemoproteus lineages (H-Coll2, 

and H-Coll3) are the most abundant and show more or less stable prevalence in each year. 

The prevalence of different Plasmodium lineages is low compared to that of Haemoproteus 

species and varies from year to year. Samples were collected also from 10-12 day-old 

nestlings in order to analyse circulating avian malaria parasites from their blood and to assess 

the fitness consequences of infection on chicks. Both female and male parents of these 

nestlings were infected with either Haemoproteus or Plasmodium species thus the probability 

for nestlings to be infected in the nest was higher compared to the population average (overall 

prevalence of malaria in adults was 29.2%, 34.1% and 30.1% in 2002, 2003 and 2004, 

respectively). However, none of the 23 nestling samples showed positive amplification for 

these parasites.  
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Table 10. Distribution of different avian malaria lineages between years in samples collected from 2002, 2003, 

2004. “H” means Haemoproteus and “P” means Plasmodium in lineage names. Two lineages in the heading 

mean that the individual was infected with two different parasite lineages at the time of sampling. 
 

  Year  

Lineages 2002 2003 2004 

Haemoproteus    

 H-COLL2 13 4 11 

 H-COLL3 15 9 9 

Plasmodium    

 P-AEMO01   1 

 P-BT8 1 1  

 P-COLL1 1   

 P-COLL4 1   

 P-COLL6  1 1 

 P-COLL7 1   

 P-COLL8 1   

 P-COLL9   1 

 P-COLL10  1 1 

 P-COLL11  1  

 P-GRW4   1 

 P-GRW9 1 6 3 

 P-GRW11  1  

 P-RTSR1 1   

 P-SGS1 2 2 1 

 P-WW4 3 2 1 

Mixed infection    

 H-COLL2+H-COLL3   1 

 H-COLL2+P-GRW9   1 

 P-COLL8+P-GRW9   1 

 P-GRW14+P-GRW9   1 

Unresolved mixed 2 2  

Not infected 102 58 79 

Screened individuals 144 88 113 
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4.6. A methodological note (study 6) 

 

A subsample (N=186) of adult Collared Flycatchers screened for avian malaria was also 

tested for Leucocytozoon infection. However, out of the screened samples only four showed a 

positive amplification for Leucocytozoon species. Because of the low prevalence of 

Leucocytozoon species I did not investigate the effects of these parasites in any of my studies. 

However, 10 of the screened samples showed “false” amplifications for Leucocytozoon 

parasites. In a larger dataset (N=495), including European migrant and African resident bird 

species (for details on screened bird species see Appendix) I also faced this problem since 123 

of the screened samples produced a PCR product, however, in 23 cases the fragments seen on 

agarose gels were slightly longer than the usual 526-basepair-long Leucocytozoon specific 

fragment including primers (Figure 15). Despite several trials I was not able to sequence these 

fragments with the primers that are designed for the direct sequencing of Leucocytozoon 

species. New extractions and re-running of the PCRs under sterile conditions gave the same 

result excluding the possibility of contamination during the reactions. Interestingly, these 

longer fragments were amplified only if the birds were infected with either Haemoproteus or 

Plasmodium. Sequencing with the first primer pair (which is designed for the simultaneous 

detection of Haemoproteus, Plasmodium and Leucocytozoon species) showed that this 617-

basepair-long fragment (including primers) was a Haemoproteus or Plasmodium sequence 

indicating „false” amplification during the reactions specific for Leucocytozoon parasites. 

Therefore, next I investigated how these Haemoproteus or Plasmodium parasite sequences 

can be amplified in a reaction, which was designed to detect only Leucocytozoon species.  

I supposed that the reason for this „false” amplification was not that the Leucocytozoon-

specific primers in some cases amplify avian malaria parasites but instead that certain malaria 

lineages were amplified somehow better in the first PCR and the result of this amplification 

was seen also after the second PCR. To test this, I diluted the PCR products from the first 

reaction to the same concentration as I used in the second reaction and visualized the samples 

on 2% agarose gel. These tests never resulted in any PCR product visible on the gel 

suggesting that the first reaction in itself is not enough to result in a visible 617-basepair-long 

band on the agarose gel after the second PCR. 

I then performed a special nested PCR. In the first step I used the same conditions as 

described by Hellgren et al. (2004). However, in the second PCR specific to Leucocytozoon 

species all reagents except the second primer pair were added to the samples and the reaction 

was performed. After visualizing the products from the second PCR on an agarose gel I 
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obtained a 617-basepair-long band that contained the same 570-basepair-long Haemoproteus 

or Plasmodium sequence as I got when running the nested PCR with the Leucocytozoon 

specific primers. This means that the primers from the first PCR continued the amplification 

of the 570-basepair-long fragment from the first reaction also in the second reaction, though 

no additional primers were added and a 12.5 times dilution was applied.  

 

 
 

Figure 15. Products from the nested PCR specific to Leucocytozoon species after running in 2% agarose gel (for 

30 min with 5 V/cm). S: 1 kb molecular standard, L: normal Leucocytozoon bands, F: false Leucocytozoon 

bands, N: negative control. Length of different fragments are shown on the left side of the size standard.  
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5. DISCUSSION  

 

5.1. The role of egg size and hatching asynchrony in nestling growth and performance 

 

I aimed to investigate whether in the asynchronously hatching Collared Flycatcher there 

exists a compensatory mechanism for the detrimental effects of hatching asynchrony in terms 

of egg size or the parents magnify the disadvantage of the last chick. From this viewpoint, 

hypotheses concerning hatching asynchrony (reviewed in Nilsson 1993, Stenning 1996) can 

be divided into two groups. Some of the hypotheses assume that parents start to incubate 

before clutch completion in order to enlarge the competitive disparities among nestlings. The 

brood reduction hypothesis (Lack 1954) predicts that under good food supply all young can 

be fledged independent of hatching order, while in case of food-shortage the smallest 

nestlings may die but the rest of the brood is fledged in better condition. The pre-determined 

size hierarchy among nestlings can reduce sibling competition and thus energy expenditure of 

the chicks (sibling rivalry reduction hypothesis: Hahn 1981) resulting in better nestling 

performance than in broods where all young are of the same size. The pronounced age 

hierarchy among siblings may also reduce parental energetic costs during feeding because 

nestlings reach their highest food demand at different times (peak load reduction hypothesis: 

Hussell 1972). 

On the other hand a group of the hypotheses assumes that starting the incubation before 

clutch completion is adaptive for reasons other than establishing sibling size asymmetry. By 

hatching the nestlings asynchronously a part of the brood can be fledged earlier which is 

advantageous if there is heavy nest predation or food resources are strongly declining during 

the chick-rearing period (nest failure hypothesis: Clark and Wilson 1981; hurry-up 

hypothesis: Hussell 1972). The early start of incubation may also be adaptive in protecting the 

viability of eggs (egg viability hypothesis: Arnold et al. 1987, Veiga 1992). 

If females start to incubate before clutch completion to enhance the competitive disparities 

among nestlings, they are not expected to compensate for the disadvantages of the last chick 

moreover they may even reduce the investment into the later laid eggs (Heeb 1994, Schwabl 

et al. 1997, Viñuela 1997). In other cases compensation for the disadvantages of the last 

hatched chick may increase the fitness of the females. In species with no conspicuous 

physical competition but with remarkable hatching asynchrony among nestlings, most 

hypotheses predict that establishing competitive disparities and reducing investment into later 

laid eggs has probably no adaptive value (but see insurance egg hypothesis: Clifford and 
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Anderson 2001). Indeed, in the Collared Flycatcher where there is no direct aggression 

between the nestlings (personal observation), we found that females increased the egg size in 

relation to laying order, thus probably providing nutritional help for the later hatching young 

(Figure 4, study 1).  

Some previous studies have also found similar egg size increase in relation to laying order 

(Howe 1976, Cicho  1997) and hypothesized that it might adaptively reduce the detrimental 

effects of hatching asynchrony. In study 1, we investigated the growth and fledging size of 

individual nestlings. We found that body mass before fledging was not related to laying order, 

which might be the effect of the logistic nature of the growth curve (i.e. older siblings finished 

their growth few days before fledging, thus last chicks had time to catch up), or the joint 

effects of logistic mass growth and larger last eggs. The fact that independent of the relative 

size of the eggs most of the last chicks reached their maximum weight latest on day 14, might 

indicate that larger egg size is not needed to reach the same size as their older offspring. But it 

is hard to draw conclusions, because we do not exactly know how nestlings would have 

grown if they had hatched from smaller eggs. However, nestlings from last laid eggs 

experienced slower body mass growth (Figure 6, study 1), and had shorter primaries before 

fledging than their siblings (Figure 7, study 1). These disadvantages were increasing with 

increasing hatching asynchrony but were partially counterbalanced by the larger egg size.  

The hatching asynchrony and nestling development patterns within broods were consistent 

across years in study 1. The only difference between the two subsequent years was that 

hatching asynchrony was higher and penultimate eggs hatched relatively later in 2003 (Figure 

5), which probably means that in this year females started to incubate their broods earlier. 

This phenomenon is presumably the consequence of the higher mean temperature in 2003. 

The daily maximum temperature exceeded 25 C some days and 20 C every day during the 

egg-laying period of the studied broods (Török et al. unpublished data). Such temperatures 

may cause lower egg viability if eggs are not incubated (von Schalkwyk et al. 1999, Viñuela 

2000, Sahan et al. 2003). Thus it may explain why females started to incubate relatively 

earlier in this year. Alternatively, higher mean temperatures may result in better food supply, 

which may also cause increased hatching asynchrony (Nilsson 1993). 

Similarly to our findings Hargitai and her colleagues (2005) also showed that females laid 

larger eggs at the end of the laying sequence, however, this pattern was apparent only in good 

quality years but not in poor years. Therefore I assumed that the size hierarchy might have 

different effects on parental and offspring fitness depending on environmental conditions so 

that size hierarchy is adaptive or neutral in bad years but disadvantageous in good years. To 
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test this we applied a brood size manipulation experiment in study 2 in order to simulate good 

and bad quality years keeping hatching asynchrony in the natural range.  

However, nestlings with a relatively smaller size early in life suffered from reduced 

performance both in enlarged and reduced broods. They gained body mass more slowly and 

had shorter wing feathers before fledging (Figure 8b, Figure 9a, study 2). The negative effects 

of small initial size were even more pronounced in enlarged broods where even feather 

growth rate and fledgling size (body mass and tarsus length) were correlated with relative size 

on day 2 (Figure 8, study 2). Reduced growth or bad body condition early in life was reported 

to have negative impact, for example, on immune responsiveness, intensity of parasite 

infection, adult condition, elaboration of secondary sexual characters, time of sexual 

maturation and long-term survival in vertebrates, even if they could catch up later in size 

(Birkhead et al. 1999, Morgan and Metcalfe 2001, Blount et al. 2003, Stjernman et al. 2004a). 

Despite these negative effects on individual nestlings it is still possible that size hierarchy has 

beneficial effects at the brood level or for the parents. However this study showed that 

average body mass growth of the brood was negatively affected by the initial size variation 

(Figure 9b, study 2), and even nestlings with a competitive advantage did not benefit from 

hatching asynchrony.  

I conclude that our results on nestling growth and fledgling size in study 2 do not support 

the predictions of the hypotheses that assume that hatching asynchrony is advantageous 

because of the pre-determined sibling size asymmetry in the broods. According to the sibling 

rivalry reduction hypothesis (Hahn 1981), nestlings should have experienced a better growth 

rate or should have fledged in better condition in asynchronous broods, since in these broods 

chicks could allocate saved energy into their maintenance.  

The peak load reduction hypothesis (Hussell 1972) also predicts either the nestlings or the 

parents to benefit from a size hierarchy because in situations of food shortage (poor years or 

enlarged broods) parents could more easily meet the requirements of their progeny if nestlings 

reach their maximum energy demand at different times. Thus at least in enlarged broods, 

nestlings in more asynchronous broods should have grown faster (because they should receive 

enough food during their rapid growing period) or parents should have had higher survival 

probability (because they could save time for foraging for themselves in the most demanding 

phase of chick rearing) than those in synchronous broods. However, parents did not benefit 

from the increased size variation in the broods since parental survival was independent of the 

estimated hatching asynchrony under both conditions (for similar results see Stoleson and 

Beissinger 1997). 
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Finally, the brood reduction hypothesis (Lack 1954) is probably not applicable in Collared 

Flycatchers, because this hypothesis assumes that parents cannot predict the environment in 

which they will rear their offspring. In this case we should have found similar investments 

into the eggs independent of the quality of the year. Furthermore, in this study nestling 

mortality was very low (altogether 6 out of 162 and 2 out of 110 nestlings died in enlarged 

and reduced broods, respectively) suggesting that direct aggression is weak between nestlings, 

disabling efficient brood reduction.  

Based on our results on nestling growth and parental survival I conclude that pronounced 

nestling size hierarchy is not beneficial in the Collared Flycatcher and parents would benefit 

from a compensatory investment into the last laid eggs. Our results also show that this 

compensatory investment would be even more beneficial in poor years than it was found to be 

in good years. This is because asynchronous broods suffered more in enlarged than in reduced 

broods. The fact that female Collared Flycatchers did not lay larger final eggs in cold years 

(Hargitai et al. 2005) suggests that they were not able to invest preferentially into those eggs. 

This was probably because of their poor energetic conditions due to ambient temperatures 

affecting both the size of insect populations and the activity of flying insects (Taylor 1963, 

Bryant 1975), thus the food availability to the parents.  

Our results on the growth of the nestlings (study 1, study 2) are in concordance with 

previous findings in other species. In the Marsh Tit (Parus palustris) mass growth was found 

to be depressed in the last hatched nestlings as a consequence of hatching asynchrony 

(Nilsson and Svensson 1996, Nilsson and Gårdmark 2001). On the other hand, the 

disadvantage of those chicks did not manifest in low feather growth rates (Zach 1982, Nilsson 

and Svensson 1996). In the Great Tit, parents were found to preferentially feed already 

fledged young if these and their siblings in the nests were begging simultaneously (Lemel 

1989). This suggested that the priority of feather growth to mass growth reflects the 

importance of synchronized fledging, which in turn may have effects on the survival 

prospects of the nestlings. We got similar results under natural conditions (study 1) and in 

experimentally simulated “good quality years” (study 2), that is nestlings experiencing 

relatively smaller size early in life showed slower mass but not slower feather growth rates. 

However, small chicks in enlarged broods (study 2) were not able to keep up with their 

siblings even in feather growth. In this manipulation category, small nestlings also 

experienced reduced mass growth and smaller size at fledging. 
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5.2. The role of extra-pair copulations and sex in nestling performance 

 

In addition to egg size and hatching asynchrony, females have further possibilities to alter 

the survival probabilities of their young within a clutch e.g. by choosing extra-pair mates. In 

our study population of Collared Flycatchers a previous study showed that forehead patch 

play an important role in extra-pair mate choice (Michl et al. 2002). By preventing sperm 

transfer by the social mate and analysing the sperm numbers on the perivitelline layer of the 

eggs, Michl et al. (2002) came to the conclusion that female Collared Flycatchers mated to 

males with a large forehead patch were faithful, whereas females mated to small patched 

males engaged in extra-pair copulations. Contrary to these results, in study 3, forehead patch 

size of the males was not related to the paternity in their broods. Neither was paternity related 

to another secondary sexual character, the wing patch of the males and it was also 

independent of male body size and body condition. Though we have no information on song 

characteristics of the males, which may also indicate their quality and may be correlated with 

paternity (Garamszegi et al. 2004a), the observed pattern suggests that participation of 

females in extra-pair copulations was independent of the quality of their mates. This 

suggestion is also supported by the fact that extra-pair young did not differ from their half-

sibs in any measures of performance. Nestlings grew with the same rate (both before and after 

hatching) and fledged with the same size and body condition independent of their genetic 

origin. If only those females which had poor quality social mates engaged in extra-pair 

copulations, we would have expected to find differences in offspring performance, as reported 

previously in a Swedish population of Collared Flycatchers. In the Swedish population, extra-

pair young fledged in better condition than their within-pair half sibs (Sheldon et al. 1997). It 

has to be noted, however, that we cannot completely exclude the possibility that females 

obtained good genes for their young, because good genes may show their effect during e.g. an 

immune challenge or later in life. 

The question arises why two studies conducted in the same study plot came to different 

conclusions. Though the sample size was moderate in the earlier study due to methodological 

constraints (Michl et al. 2002) and thus statistical artefact as an explanation cannot be 

excluded, methodological differences between the studies raise an exciting possibility. By 

preventing sperm transfer by the social mate and analysing the sperm numbers on the 

perivitelline layer of the eggs, Michl et al. (2002) could detect extra-pair copulations only 

during egg laying. However, it is clear from our data that extra-pair young occurred already in 

the first egg (Figure 16), thus females had to copulate with non-pair males also before egg 
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laying. Pre-laying copulations with non-pair, non-neighbour males have been suggested in 

other species too (Dunn et al. 1994). These copulations could have happened before mate 

choice (when females were visiting multiple male territories) or after mate choice. While in 

the second case mate quality dependent extra-pair copulation is reasonable to expect, in the 

first case, females have no knowledge about their future mate, so mate quality independent 

“extra-pair” copulations are expected. Participation of females in copulations before mate 

choice could be explained by multiple reasons: a) males may be able to force females to 

copulate with them because they are not yet guarded; b) females may actively solicit 

copulations to gain different benefits (see introduction and Griffith et al. (2002) for a review) 

without risking reduced paternal care. Anyway, if many females participate in male quality 

independent extra-pair copulation before mate choice but only those females continue the 

pursuit of extra-pair copulations after mate choice, which finally end up with a low quality 

male, different investigation methods may come to different conclusions. By counting the 

sperms on the perivitelline layers, only those extra-pair copulations can be detected which 

happened after the start of egg laying, so the investigators are expected to find male-quality 

dependent extra-pair copulation pattern like Michl et al. (2002). However, sperms from 

premating copulations may survive until egg laying and result in extra-pair young, so 

paternity analysis of nestlings may show that extra-pair copulations are independent of male 

quality. 
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Figure 16. The proportion of extra-pair (black) and within-pair (white) young in relation to laying order in 

mixed-paternity broods. 
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While the above hypothesis may explain the difference found within the same study plot 

using different methods, differences among studies using the same method (Sheldon and 

Ellegren 1999, Garamszegi et al. 2004a, Krist et al. 2005 and study 3) are hard to explain. 

However, I would like to highlight an interesting point that is male quality was suggested to 

have a role in extra-pair copulations in studies with low proportion of mixed paternity broods 

(Sheldon and Ellegren 1999, Garamszegi et al. 2004a; 32.9% and 30.6%, respectively), while 

studies which found high proportion of mixed paternity broods (Krist et al. 2005 and study 3, 

51.9% and 55.74%, respectively) came to the opposite conclusion. This is not surprising 

given that it is unlikely that more than half of the females are mated to low quality males.  

The role of female characteristics in extra-pair copulations has received little attention so 

far. The constrained female hypothesis (Mulder et al. 1994, Gowaty 1996) suggests that 

females, which need less help from the social mate in rearing the chicks are more likely to 

risk reduced care as a cost of extra-pair matings. As a consequence, one may expect that good 

quality females are more likely to have extra-pair young. Male preference for high quality 

females in extra-pair matings would also result in such a pattern. However, our data show that 

larger females (suggested to be of better quality; Garamszegi et al. 2004c) were less likely to 

participate in extra-pair copulations (Figure 10, study 3). If extra-pair copulations (or 

premating-copulations) are mainly due to males forcing unguarded females to copulate 

(Clutton-Brock and Parker 1995), the pattern could be explained by large females being more 

likely to successfully counteract these attempts. Alternatively, small, low quality females may 

benefit more from extra-pair copulations, however, it is unclear how, because extra-pair 

young did not perform better than within-pair young. 

Though the primary goal of study 3 was to investigate factors, which determine paternity 

in Collared Flycatcher broods and the effect of paternity on offspring performance, we also 

included offspring sex in the latter analyses as it may confound the observed growth patterns 

for the following reasons. First, females may manipulate the sex of their offspring in relation 

to paternity, if paternity of an offspring is predictable for example on the basis of laying order. 

Second, even in sexually size monomorphic species males and females may grow at different 

rates (Martins 2004). We found that the paternity of the young was not related to laying order, 

and similarly to the results of a previous study on a Swedish population (Sheldon and 

Ellegren 1996), the sex ratio of extra- and within-pair young did not differ. However, male 

nestlings had a faster body mass growth than females, even if females had caught up in body 

mass by day 14 (Figure 11, study 3). Surprisingly, on day 14 the tarsus of the females was 

longer than that of males (Figure 12, study 3). This apparent contradiction may be explained 
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by the different developmental states of the sexes. Body mass growth data imply that male 

nestlings grew faster, suggesting that on day 14 sons were more developed. Tarsus 

measurements of the nestlings show a slight decrease after the tarsus reaches its maximal 

length, probably due to water loss from the tissues. If males reach this phase of development 

faster, their tarsus size may appear to be smaller and consequently the estimate of female 

condition become systematically lower than that of males (similar sex difference in body 

condition was found in Krist et al. 2004). Indeed, in a small subset of the chicks where we 

measured tarsus length also during development, the change in tarsus length between day 14 

and the day when the largest tarsus was measured prior to day 14 was more negative in males 

than in females (males = -0.604%, n = 23; females = -0.178%, n = 26). The difference 

(0.426%) is rather close to the difference observed between the tarsus length of males and 

females on day 14 (0.7%). This result clearly shows that caution has to be taken when using 

the residual body mass as an estimate of body condition in developing young, because it may 

primarily be determined by the developmental state of the offspring. 

Our results on sex dependent growth rates have other implications too. In a previous study 

on sex ratio adjustment in Collared Flycatchers, Rosivall and his colleagues (2004) showed 

that females produced male-biased brood sex ratios late in the season. They then hypothesized 

that this pattern could be adaptive if male nestlings perform better late in the season. For 

example, faster development of males may be beneficial because this allows for earlier 

fledging. On the other hand faster development may require more resources and result in 

developmental failures when food is scarce. Further studies should clarify whether sexual 

differences in growth rate are dependent on rearing conditions and explain the observed sex 

ratio pattern like in the zebra finch (Kilner 1998, Martins 2004). 

 

5.3. The role of parental quality in nestling performance  

 

Reproductive allocation of birds is constrained also by their own health state. For example 

birds infected with avian malaria are often in poor nutritional condition and as a result their 

pre- and post-natal parental investments are reduced (Sanz et al. 2001, Marzal et al. 2005). 

This alter also the growth (Goodbred and Holmes 1996) and fledging success of the nestlings 

(Voltura et al. 2002). Unlike these studies we did not find any effect of malaria infection in 

the genetic mothers on the growth rate or fledging size of their nestlings (study 4), suggesting 

that presence of malaria in the blood did not alter maternal incubation behaviour or allocation 

of essential egg components. Though we did not directly measure parental care we suppose 
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that malaria parasites probably have limited effects on parental care, since malaria infection in 

the rearing parents did not correlate with the performance of their nestlings. I have to note, 

however, that because of the low prevalence of avian malaria in adult individuals (only 30.2% 

of them were infected), I was unable to separately analyse the effects of different malaria 

lineages on nestling performance. In addition, by using a PCR method I probably detected 

both acute and chronic avian malaria infections and as a previous study showed that chronic 

malaria infections may have no effect on the reproductive success of the birds (Kilpatrick et 

al. 2006).  

Though in study 4 we did not find negative effects of parental avian malaria infection on 

nestling performance, it can still be beneficial for the females to choose males that are free 

from blood parasites. If these males are resistant to malaria infections this mate choice would 

confer indirect benefits to the offspring through resistance genes (Barber et al. 2001, 

Langefors et al. 2001, Lohm et al. 2002). According to the Hamilton-Zuk hypothesis (1982), 

more elaborate secondary sexual characters may indicate resistance against blood parasites 

(Figuerola et al. 1999). In contrast to the predictions of this hypothesis we did not find any 

relationship between malaria infections and secondary sexual characters. This result is not 

surprising regarding that forehead patch is not a condition dependent secondary sexual signal 

in our population (Hegyi et al. 2002, 2006a), however, wing patch was expected to be linked 

to malaria infection via its condition dependence (Török et al. 2003). Alternatively, Stjernman 

et al. (2004b) proposed that stabilising selection may act on parasite resistance and the size of 

the ornaments is optimized to maintain a standard level of parasite burden. This is because 

both too low and too high defense against parasites would result in fitness related costs for the 

birds (Råberg et al. 1998). Furthermore we included only adult (i.e. more than 1-year-old) 

males in this study to control for the possible confounding effects of paternal age on offspring 

growth (Hegyi et al. 2006b). It is possible that these birds acquired the infection a year before 

in the breeding territory or at their wintering quarters in Africa and thus being in the chronic 

phase of the infection there was no detectable effect of parental malaria infection on nestling 

performance and on the expression of secondary sexual characters.  

Though forehead patch size of the males was not related to malaria infection our data 

suggest that females may benefit from mating with males that have a large forehead patch 

because nestlings reared by such males had a faster wing feather growth (which has been 

previously reported to have important fitness consequences, see above) (Figure 14, study 4). 

Fast feather growth of nestlings reared by large forehead patched males suggests that these 

nestlings were developing under better conditions and thus that they could allocate more 
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resources into feather growth than nestlings of smaller patched males. This result could be 

caused by several factors. It may indicate that more ornamented males are better fathers 

(Linville et al. 1998, Buchanan and Catchpole 2000), that they have better food sources on 

their territories (Keyser and Hill 2000) or that females mated to high-quality males invest 

more into their nestlings during chick rearing (Limbourg et al. 2004). Interestingly, the 

condition dependent wing patch size of the males was not related to nestling performance in 

Collared Flycatchers. One possible explanation is that large patched males are subjected to 

increased aggression during the mating period (Garamszegi et al. 2006) and cannot invest 

more in the chicks even if they are of superior quality.  

One may argue that the lack of positive relationship between the size of the secondary 

sexual characters of the putative fathers and the growth of their nestlings can be explained by 

differential maternal allocation into eggs of less ornamented fathers which are of worse 

parental quality. However, previous studies on this species showed no differential maternal 

investments in relation to male ornamentation (for egg size see: Hargitai et al. 2005, for 

carotenoids see: Török et al. 2007) though paternal care was not assessed. 

Tarsus length of the genetic fathers correlated positively with wing feather length of their 

14 days old offspring (Figure 13a, study 4). This may either reflect that larger males produce 

larger offspring or that larger males have better genes that are inherited by their offspring 

making them superior in utilizing resources or coping with stress allowing them to reach a 

larger size. Since nutrients, carotenoids, hormones and antibodies that females allocate into 

the eggs can have long lasting effects on nestling performance (Schwabl 1996, Biard et al. 

2005, Reid et al. 2006, study 1) it is also possible that the above relationship is the result of 

preferential maternal investment in the eggs and not of genetic effects. However, no 

preferential investment of egg components in relation to paternal size was found in our 

population of Collared Flycatchers (Hargitai et al. 2005, Török et al. 2007). 

For several species it has been demonstrated that larger males are better fathers (Keyser 

and Hill 2000) or occupy better territories (Keyser and Hill 2000, Candolin and Voigt 2001) 

which in turn significantly affects the size of their offspring (Kruuk et al. 2001). Our results 

also suggest that body size indicates paternal quality, since also the wing feather length of 

fledglings correlated positively with the tarsus length of the rearing fathers (Figure 13b, study

4). 
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5.4. Avian Haemosporidian parasites in the Collared Flycatcher 

 

Acute avian malaria infections may have serious consequences on the hosts’ health and 

reproductive success (Atkinson and van Riper III 1991, Valki nas 2005). However, 

distinguishing between the different infection stages (Figure 1) would require the thorough 

investigation of regularly collected blood samples and this is difficult for wild species without 

much disturbance. Therefore in study 5 I intended to study the effects of avian malaria 

parasites on Collared Flycatcher nestlings because they can be infected only after hatching, so 

their infection stage should certainly be acute (Hasselquist et al. 2007). I used a PCR-based 

molecular method (Waldenström et al. 2004) which is more sensitive than the microscopical 

investigation of blood smears. It successfully and reliably detects infections in as low 

intensities as 1 parasite per 100.000 host blood cells and sometimes also in dilutions 

corresponding to 1 parasite per 1.000.000 host blood cells (Waldenström et al. 2004). 

Therefore I predicted that avian malaria could be detected soon after the prepatent period, i.e. 

when these parasites appear in the blood. However, none of the 23 samples collected from 10-

12-day-old nestlings showed any signs of infection even though their parents were infected 

with either Haemoproteus or Plasmodium. The lack of Haemoproteus parasites in the blood 

of the nestlings is not surprising given that the prepatent period of these parasites varies 

between 11 days and three weeks. However, the prepatent period of Plasmodium spp. 

generally does not exceed five days (Valki nas 2005). To be able to detect these parasites 

from blood samples of 10-12-day-old nestlings, however, infection should have occurred 

early in life (i.e. until 5-6 days of age) when nestlings are still ectothermic. But actively 

brooded nestlings are difficult targets for mosquitoes. This fact may explain the lack of these 

parasites in nestlings’ blood.  

In addition, it is possible that out of the 19 avian malaria lineages found in adult birds 

(Table 10, study 5) only a small proportion may be transmitted at the birds’ breeding sites 

thus be detected also in nestlings. Though it has been demonstrated that migratory birds can 

be infected at their breeding sites in Europe, at stopover sites during migration and also at the 

wintering sites in Africa (Waldenström et al. 2002) it has also been shown that these parasites 

generally have highly restricted transmission areas and only a few species are transmitted 

both in Europe and Africa (Waldenström et al. 2002, Hellgren et al. 2007). Indeed, until now 

only three Plasmodium lineages are proved to be transmitted in Europe (P-COLL1, P-

GRW11, P-SGS1; Hellgren et al., 2007, Szöll si et al. unpublished data). Two out of them 
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were also shown to be transmitted at our study site (P-GRW11, P-SGS1; Szöll si et al. 

unpublished data) because they were detected also from resident species.  

The remaining 16 avian malaria lineages detected in adult Collared Flycatchers have been 

found only in migratory and in some African resident species until now. However, the lack of 

information on European transmission of these parasites does not mean that they are 

transmitted elsewhere, since until now only 450 bird species were sampled with various 

efforts from all over the world (http://mbio-serv4.mbioekol.lu.se/avianmalaria).  

Differences between the prevalence of various parasite lineages in adults (i.e. 

Haemoproteus lineages are more common and do not fluctuate as much between years as 

Plasmodium lineages) might be explained by the fact that Plasmodium species are more 

pathogenic than Haemoproteus parasites (Atkinson and van Riper III 1991). Thus only those 

individuals, which have survived the infection, can breed and as a result sampled. In addition, 

different parasite species within the same genus may also have different pathogenicity. I 

suppose that those parasites are less virulent which can persist for several years within the 

same individual and thus cause chronic infections for the host. However, to be able to 

investigate this question the analysis of a larger dataset is needed in which the fates of 

different host individuals and/or different lineages are followed throughout years or the whole 

life.  

 

5.5. Problems when using nested PCR for parasite screening 

 

I applied a widely used nested PCR protocol (Hellgren et al. 2004) in the detection of 

avian Haemosporidian parasites and found that in some cases when the birds were infected 

with avian malaria the primers from the first PCR (which amplify a common sequence of the 

genera Plasmodium, Haemoproteus and Leucocytozoon) continued the amplification of the 

fragment from the first reaction also in the second reaction which is specific to Leucocytozoon 

parasites. Even though no additional primers were added and a 12.5 times dilution was 

applied (study 6). The fact that I did not always obtain these longer fragments when the birds 

were infected with avian malaria species suggests that there are a few lineages for which the 

amplification by the first primer pair is stronger. Indeed, out of the 63 avian malaria lineages 

that were found in our 181 malaria positive samples, only 9 produced these 617-basepair-long 

“false” Leucocytozoon bands (see Appendix). The 9 lineages that caused these amplifications 

were not particularly closely related (mean Jukes-Cantor distance: Haemoproteus spp.: 0.062 

± 0.008 S.E.; Plasmodium spp.: 0.059 ± 0.006 S.E.) compared to the mean genetic distance 
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between all lineages in our database (mean Jukes-Cantor distance: Haemoproteus spp.: 0.055 

± 0.006 S.E.; Plasmodium spp.: 0.058 ± 0.006 S.E.). This indicates that the 9 lineages do not 

group into a closely related clade of avian haemosporidians and the strong amplification 

might be a result of high parasite intensity, or similar differences in the primer binding sites 

that increases the amplification success. The latter notion is supported by the study of 

Valki nas et al. (2006) who found that in case of mixed infections of avian malaria parasites, 

some lineages were detected preferentially, but that this was not related to the level of 

parasitemia of different lineages in the blood. In addition, Sowmya et al. (2006) and Sipos et 

al. (2007) showed that differences in the primer-binding sites can affect the amplification 

success.  

Based on these results, I suggest the necessity to apply molecular standards and positive 

controls in each gel during the detection of Leucocytozoon parasites and run PCR products in 

a well separating agarose gel for a period long enough to be able to detect differences between 

fragment lengths. If deviations from the standard Leucocytozoon fragment length are detected, 

then identification of the different fragments is essential to avoid the risk of considering 

“false” detections as normal Leucocytozoon infection. More generally, to avoid the problems 

that primer pairs from the first reaction continue to amplify also in the second PCR when 

using a nested approach, I suggest the following. First, primer pairs should be designed so that 

the optimal annealing temperatures for the first and second primer pairs, if possible, are 

different. Second, the amount of primers used in the first reaction should be optimized so that 

the amount of leftover is reduced without affecting the outcome of the results. Third, a 

cleaning step should be inserted after the first PCR and only the cleaned PCR product should 

be carried over in the second reaction. 

 

 

6. FINAL REMARKS AND PERSPECTIVES 

 

Results presented in this thesis (study 1) together with previous papers on the 

asynchronously hatching Collared Flycatcher (Hargitai et al. 2005, 2007, Török et al. 2007) 

suggest that this species follows a compensatory rather than a brood reduction strategy when 

they allocate egg components in relation to laying order. The amount of nutrients (study 1, 

Hargitai et al. 2005), carotenoids (Török et al. 2007) and immunoglobulins (Hargitai et al. 

2007) increase in the eggs with laying order. The lack of relationship between egg size and 

laying order in bad years suggests that food supply probably acts as a constraint and laying 
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females are not able to compensate for the disadvantages of the last hatched nestlings 

(Hargitai et al. 2005). This is supported by the fact that hatching asynchrony is not adaptive in 

this species, since neither the broods on average nor parents benefited from the pre-

determined size hierarchy. The negative effects of hatching asynchrony were even more 

pronounced in bad years (study 2).  

Therefore the question arises why females still hatch their broods asynchronously and 

what factors initiate incubating behaviour. Though changes in hormonal levels in the females 

are the proximate determinants of the start of incubation behaviour (Mead and Morton 1985), 

from the evolutionary point of view, the identification of ultimate factors, such as 

environmental conditions is more interesting. High daily temperatures during laying cause 

lower egg viability if eggs are not incubated (von Schalkwyk et al. 1999, Viñuela 2000, Sahan 

et al. 2003) therefore starting to incubate in time is crucial from the viewpoint of brood 

survival. Indeed, in a year with warmer mean temperatures during laying, hatching 

asynchrony was more pronounced in the broods (study 1) suggesting that females started to 

incubate earlier than in colder years. However, to understand the findings of correlative 

studies experimental approaches are needed to demonstrate that nest temperature has indeed 

important role in the initiation of incubating behaviour of the females. 

In study 3 we found that secondary sexual characters of the social mate did not play an 

important role in extra-pair copulations and a high proportion of the females cuckolded their 

mates. In this study we only were able to identify whether a young was related to their social 

parents but the genetic fathers of the extra-pair young could not be determined. However, to 

understand the various benefits that arise from extra-pair copulations it would be important to 

identify the genetic fathers also of extra-pair young. This would require a more extensive 

laboratory work during which also samples from neighbouring males (with which females 

could have cuckolded their mates) should be analysed. In addition, more primers should be 

developed and optimised to identify the extra-pair fathers of these nestlings. 

In a correlative study (study 4) I found that secondary sexual characters did not signal the 

ability of males to avoid malaria infections and nestlings of infected parents did not perform 

worse than young reared by malaria free parents. However, in this study chronic and acute 

infections could not be separated. To distinguish between chronic and acute infections blood 

samples should regularly be collected and analysed by microscopy or by quantitative PCR 

methods. However, regular collection of blood samples from wild species is difficult without 

much disturbance. In addition, the low prevalence of parasite lineages did not allow for the 

separate analysis of the effects of different avian malaria species though their pathogenicity 
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probably varies between lineages. To investigate this, sample size should be increased and the 

fate of different host individuals and/or different lineages should be followed throughout 

years or even the whole life. 
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9. SUMMARY 

 

One of the most important questions for iteroparous species is that how much to invest 

into current reproduction so that they have enough energy for self-maintenance, survival and 

future reproduction. Environmental and social conditions, furthermore the actual health status 

of the individuals can all have strong effects on the availability of resources which may affect 

the investment between and within reproductive events. 

In my thesis I investigated how egg size affects the growth and fledging size of Collared 

Flycatcher nestlings and whether females reduce or enhance the size handicap of the 

asynchronously hatching last nestlings by differential allocation of nutrients into the last egg. 

We found that nestlings from the last laid eggs hatched later and experienced slower growth. 

However, the disadvantage of these nestlings was partially counterbalanced by the larger eggs 

from which they hatched. Since a previous study found that this compensatory mechanism 

was present only in years with good food supply but not in bad years, we tested whether 

hatching asynchrony also has different effects on fitness under different conditions. We found 

that hatching asynchrony has negative effects both under good and bad conditions and 

females would benefit from laying larger eggs at the end of the laying sequence independent 

of year quality.  

I also investigated whether the expression of secondary sexual characters indicates the 

ability of males to avoid malaria infections and if malaria infection and quality of the parents 

affect the growth of their nestlings. Though secondary sexual signals did not predict 

resistance against avian malaria we found that wing feathers of nestlings reared by fathers 

with a large forehead patch grew faster. We further investigated the role of secondary sexual 

characters in extra-pair copulations. We predicted that the probability that females participate 

in extra-pair copulations depends on the quality (ornamentation) of their mates. However, 

secondary sexual signals of the mates did not predict the females’ participation in extra-pair 

copulations and extra-pair nestlings did not grow better or fledge with a larger size. 

Independent of the paternity of the nestlings we found that male nestlings grew faster, 

however further studies should clarify the function of sex dependent growth rate in this 

species. In summary, the results presented in my thesis show that different constraints and 

adaptive decisions influence nestling performance and thus fitness of the Collared Flycatcher. 
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10. ÖSSZEFOGLALÓ 

 

Az egyik legfontosabb kérdés iteropár fajok számára az, hogy hogyan osszák szét az 

elérhet  forrásokat a különböz  szaporodási események között úgy, hogy azokból 

önfenntartásukra és túlélésükre is maradjon. Miután az egyed környezete, szociális 

körülményei és aktuális egészségi állapota is komoly hatást gyakorolhat a források 

elérhet ségére és eloszthatóságára, ezért a különböz  szaporodási események közötti, s t az 

adott szaporodási eseményen belüli egyenletes forráselosztás sem feltétlenül maximalizálja az 

egyed rátermettségét. 

Doktori dolgozatomban azt vizsgáltam, hogy a tojások mérete hogyan befolyásolja az 

örvös légykapó fiókák növekedését és kirepülési méretét és vajon a tojó madarak az utolsó 

tojásokba való differenciális tápanyag befektetéssel növelik, vagy csökkentik az utolsó fiókák 

kelési aszinkróniából ered  mérethátrányát. Azt találtuk, hogy az utolsó tojásokból származó 

fiókák kés bb keltek és lassabban növekedtek mint testvéreik, azonban mérethátrányukat a 

tojók részben kompenzálni tudták azzal, hogy az utolsó tojásokba több tápanyagot juttattak. 

Egy korábbi tanulmány szerint azonban ez a kompenzációs mechanizmus csak jó 

táplálékellátottságú években volt kimutatható, míg rossz években a tojásméret nem n tt a 

tojások lerakási sorrendjével. Ezért megvizsgáltuk azt is, hogy a kelési aszinkrónia 

rátermettségre gyakorolt hatása eltér -e különböz  évtípusok között. Azt találtuk, hogy a 

kelési aszinkrónia sem jó, sem pedig rossz körülmények között nem el nyös, és évtípustól 

függetlenül adaptív lenne az utolsó fiókák mérethátrányát kompenzálni.  

Azt is vizsgáltuk, hogy a hím örvös légykapók másodlagos nemi jellegeinek kifejez dése 

jelzi-e a maláriás fert zések elkerülésére/legy zésére való képességüket, illetve hogy a szül k 

maláriával való fert zöttsége és min sége hogyan befolyásolja a fiókák növekedését. A 

másodlagos nemi jellegek mérete ugyan nem jelezte a hímek maláriával szembeni 

rezisztenciáját, viszont a nagy homlokfolttal rendelkez  hímek által nevelt fiókák szárnytollai 

gyorsabban növekedtek. A másodlagos nemi jellegek fontos szerepet játszhatnak a páron 

kívüli párzások során is, hiszen a tojók félrelépésének valószín sége összefügghet szociális 

párjuk min ségével, ornamentáltságával. Azonban eredményeink szerint a tojók páron kívüli 

párzásokban való résztvételének valószín sége nem függött szociális párjuk másodlagos nemi 

bélyegeinek kifejez dését l. Így az sem meglep , hogy a páron kívüli párzásokból származó 

fiókák nem növekedtek gyorsabban és nem értek el nagyobb kirepülési méretet, mint 

testvéreik. Függetlenül attól azonban, hogy a fiókák szociális vagy páron kívüli párzásokból 

származtak, azt találtuk, hogy a hím fiókák gyorsabban n ttek, mint tojó testvéreik, azonban 
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az ivarfügg  növekedés funkciójának felderítéséhez további tanulmányokra lenne szükség. 

Összefoglalva, az eredményeim azt mutatják, hogy különböz  kényszerek és adaptív döntések 

együttesen határozzák meg a fiókák növekedését és így az örvös légykapó rátermettségét.  
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13. APPENDIX 

 
Species screened for the presence of avian malaria and Leucocytozoon in study 6. Malaria lineages which 

produced “false” Leucocytozoon bands are in bold. “H” means Haemoproteus, “P” means Plasmodium and “L” 

means Leucocytozoon in lineage names. 

 

Common name Scientific name Family 
Malaria 
lineage 

Leucocytozoon 
lineage 

     
African Paradise Flycatcher  Terpsiphone viridis Monarchidae P-AEMO01  
African Thrush Turdus pelios Turdidae P-PLASM29 L-LEUCO40 
   P-PLASM32 L-LEUCO41 
   P-SYAT05  
African Yellow White-Eye Zosterops senegalensis Zosteropidae H-HAEMO21 L-LEUCO59 
   H-HAEMO22  
Bar-Breasted Firefinch Lagonosticta rufopicta Estrildidae   
Beautiful sunbird Nectarinia pulchella Nectarinidae H-HAEMO13  
Black-Bellied Firefinch Lagonosticta rara Estrildidae   
Blackcap Babbler Turdoides reinwardtii Timaliidae H-HAEMO14  
Black-Necked Weaver Ploceus nigricollis Ploceidae H-HAEMO9  
   H-HIPOL1  
Black-Rumped Waxbill Estrilda troglodytes Estrildidae H-HAEMO15  
Black-Winged Bishop Euplectes hordeaceus Ploceidae   L-LEUCO44 
Bronze Manakin Lonchura cucullata Estrildidae     
Bush Petronia Petronia dentata Passeridae H-HAEMO11  
Cinnamon-Breasted Bunting Emberiza tahapisi Emberizidae P-SGS1  
   P-SYAT05  
Common Bulbul Pycnonotus barbatus Pycnonotidae H-HAEMO23  
    H-HAEMO24 L-LEUCO43 
   P-GRW9  
   P-WW3  
Collared Flycatcher Ficedula albicollis Muscicapidae H-COLL3  

   
H-COLL2+  
H-COLL3  

Common Whitethroat Sylvia communis Sylviidae H-HAEMO18 L-LEUCO49 
    H-HAEMO19  
   H-HAEMO20  
Copper Sunbird Cinnyris cupreus Nectarinidae P-PLASM39 L-LEUCO51 
Dorst's Cisticola Cisticola dorsti Cisticolidae  L-LEUCO54 
Eurasian Wryneck Jynx torquilla Picidae    
Garden Warbler Sylvia borin Sylviidae H-SYBOR1 L-LEUCO46 
   P-GRW2 L-S3 
   P-GRW11 L-S5 
    P-PLASM26  
   P-PLASM30  
    P-PLASM33  
   P-SGS1  
   P-TURDUS1  
Green-Headed Sunbird Cyanomitra verticalis Nectarinidae H-HAEMO15  
Grey-Backed Camaroptera Camaroptera brevicaudata Cisticolidae P-PLASM37 L-LEUCO59 
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Common name Scientific name Family 
Malaria 
lineage 

Leucocytozoon 
lineage 

     
Icterine Warbler Hippolais icterina Sylviidae       
Lavender Waxbill Estrilda caerulescens Estrildidae H-HAEMO15  
Little Weaver Ploceus luteolus Ploceidae   
Long-Billed Pipit Anthus similis Motacillidae P-PLASM35 L-LEUCO59 
Melodious Warbler Hippolais polyglotta Sylviidae H-HIPOL1  

Mocking Cliff-Chat 
Myrmecocichla 
cinnamomeiventris Muscicapidae P-BSR2  

Nightingale Luscinia megarhynchos Muscicapidae       
Northern Crombec Sylvietta brachyura Sylviidae       
Orange-Cheeked Waxbill Estrilda melpoda Estrildidae       
Pied Flycatcher Ficedula hypoleuca Muscicapidae H-PFC1 L-LEUCO52 
   P-SYBOR2  
Pin-Tailed Whydah Vidua macroura Viduidae     
Plain-Backed Pipit Anthus leucophrys Motacillidae P-PLASM25  
Pygmy Sunbird Hedydipna platura Nectarinidae P-PLASM38  
Quail Finch Ortygospiza atricollis Estrildidae   
Red Bishop Euplectes orix Ploceidae H-HAEMO1 L-A12 
   H-HAEMO2 L-LEUCO44 
   H-HAEMO3 L-LEUCO53 

   H-HAEMO4 L-LEUCO54 
   H-HAEMO5 L-LEUCO57 
   P-PLASM27 L-LEUCO58 
   P-PLASM34 L-LEUCO59 

    
L-LEUCO69+       
L-LEUCO70 

Red-Billed Firefinch Lagonosticta senegala Estrildidae P-PLASM28  
Red-Cheeked Cordon Bleu Uraeginthus bengalus  Estrildidae H-HAEMO16 L-LEUCO56 
   H-HAEMO17 L-LEUCO59 

   
H-HAEMO16+   
H-HAEMO17  

   H-WW1  
   P-PLASM28  
   P-PLASM34  
Red-Winged Warbler Heliolais erythropterus Cisticolidae P-PLASM34  
Rock-Firefinch Lagonisticta sanguinodorsalis Estrildidae P-PLASM34  
Scarlet-Chested Sunbird Chalcomitra senegalensis Nectarinidae P-PLASM28 L-LEUCO55 
     L-LEUCO59 
Singing Cisticola Cisticola cantans Cisticolidae P-PLASM34  
Snowy-Crowned Robin Chat Cossypha niveicapilla Muscicapidae   
Speckle-Fronted Weaver Sporopipes frontalis Ploceidae  L-LEUCO54 
Sulphur-Breasted Bush-Shrike Malaconotus sulfureopectus Malaconotidae   L-LEUCO47 
Sun Lark Galerida modesta Alaudidae P-PLASM36  
Tawny-Flanked Prinia Prinia subflava Cisticolidae    
Tree Pipit Anthus trivialis Motacillidae H-YWT2 L-LEUCO48 
   P-PLASM25 L-LEUCO50 
Variable Sunbird Cinnyris venustus Nectarinidae H-HAEMO12  
   P-PLASM28  
   P-PLASM39  
Vieillot's Barbet Lybius vieilloti Capitonidae   
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Common name Scientific name Family 
Malaria 
lineage 

Leucocytozoon 
lineage 

     
Village Weaver Plocues cucullatus Ploceidae H-HAEMO6 L-LEUCO44 
   H-HAEMO7 L-LEUCO59 
   H-HAEMO8  
Vitelline Masked Weaver Ploceus velatus Ploceidae H-HAEMO8 L-LEUCO44 
   H-HAEMO10 L-LEUCO59 
    P-COLL7 L-LEUCO60 
    P-WW3  
West African Thrush Turdus pelios Turdidae P-PLASM29 L-LEUCO42 
Whinchat Saxicola rubetra Muscicapidae H-HIICT1 L-LEUCO53 
   H-ROBIN1  
   P-SGS1  
White-Crowned Robin Chat Cossypha albicapilla Muscicapidae   
Willow Warbler Phylloscopus trochilus Sylviidae H-HAEMO24 L-BT1 
    H-WW1 L-LEUCO45 
   P-PLASM31  
Yellow-Penduline Tit Anthoscopus parvulus Remizidae   
Yellow-Fronted Tinkerbird Pogoniulus chrysoconus Capitonidae   
Yellow-Mantled Widowbird Euplectes macrourus Ploceidae H-HAEMO4 L-LEUCO54 
   H-HAEMO22 L-LEUCO55 
   H-WW1 L-LEUCO61 
   P-PLASM27  
    P-PLASM34  
Zitting Cisticola Cisticola juncidis Cisticolidae   
 

 


