Bond University Research Repository

In silico analysis of the interactions of ginger actives with the serotonin (5-HT3)receptor

Lohning, Anna Elizabeth; Marx, Wolfgang; Isenring, Elisabeth

Unpublished: 27/09/2017

Document Version: Peer reviewed version

Link to publication in Bond University research repository.

Recommended citation(APA): Lohning, A. E., Marx, W., & Isenring, E. (2017). *In silico analysis of the interactions of ginger actives with the serotonin (5-HT3)receptor*. MM2017 Molecular Modelling Conference, Perth/Margaret River, Australia.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

For more information, or if you believe that this document breaches copyright, please contact the Bond University research repository coordinator.

NEW SOUTH WALE

AUSTRALIAN

MM2017 - Association of Molecular Modellers of Australasia (AMMA)

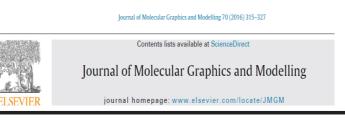
In silico analysis of the interactions of ginger actives with the serotonin $(5-HT_3)$ receptor

SOUTH

Presenter: Asst/Prof. Anna Lohning Faculty of Health Sciences & Medicine Bond University Gold Coast, Australia

In silico analysis of the interactions of ginger actives with the serotonin (5-HT₃) receptor *Lohning, Anna E., Marx, Wolfgang*

Clinical study :- Ginger as an effective anti-emetic agent for use in chemotherapy


Marshall, S., McCarthy, A., McKavanagh, D., Vitetta, L., Sali, A.,., Lohning, A., Marx, W., Crichton, M., Reid, K., Isenring, E.

Presentation Overview

- Rationale
- Background / Aim
- Methods
- Results
- Conclusions /
- Planned work \bullet

In silico investigation into the interactions between murine 5-HT₃ receptor and the principle active compounds of ginger (Zingiber officinale)

Anna E. Lohning, Wolfgang Marx*, Liz Isenring Faculty of Health Sciences & Medicine, Bond University, Gold Coast, 4229, Australia

(CrossMark

The Effect of a Standardized Ginger Extract on Chemotherapy-Induced Nausea-Related Quality of Life in Patients Undergoing Moderately or Highly **Emetogenic Chemotherapy: A Double Blind**, Randomized, Placebo Controlled Trial

MDPI

Wolfgang Marx 1,2,3,4,*, Alexandra L. McCarthy 5,6, Karin Ried 3, Dan McKavanagh 6,7, Luis Vitetta 8,9 ⁽ⁱ⁾, Avni Sali³, Anna Lohning¹ and Elisabeth Isenring^{1,2}

- 1 Faculty of Health Sciences and Medicine, Bond University, Gold Coast, OLD 4226, Australia; alohning@bond.edu.au (A.L.); lisenrin@bond.edu.au (E.L)
- Department of Nutrition and Dietetics, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia National Institute of Integrative Medicine, Melbourne, VIC 3122, Australia; karinried@niim.com.au (K.R.)
- asali@niim.com.au (A.S.)
- School of Allied Health, La Trobe University, Melbourne, VIC 3086, Australia
- Division of Cancer Services, Princess Alexandra Hospital, and Institute of Health and Biomedical Innovation, Brisbane, QLD 4102, Australia; alexandra.mccarthy@auckland.ac.nz
- School of Nursing, University of Auckland, Auckland 1010, New Zealand; Daniel.Mckavanagh@health.qld.gov.au
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4072, Australia
 - Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia; luis.vitetta@sydney.edu.au
 - Medlab Clinical Ltd., Alexandria, Sydney, NSW 2015, Australia
 - * Correspondence: w.marx@latrobe.edu.au; Tel.: +61-03-9479-3069

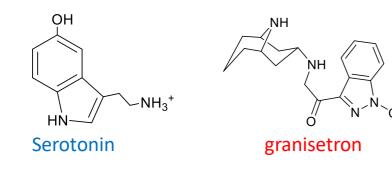
Received: 30 June 2017; Accepted: 8 August 2017; Published: 12 August 2017

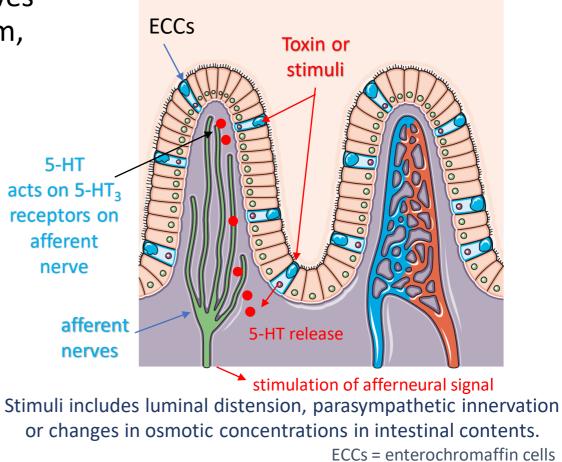
Rationale

- Chemotherapy-induced nausea and vomiting (CINV) poses a <u>major obstacle</u> to patients. <u>Variable responses</u> to current treatments for <u>CINV reduces their</u> <u>effectiveness</u> providing impetus to <u>develop more effective treatments</u> (Hsieh, 2015).
- Clinical trials have shown preliminary support for the <u>use of ginger</u> in multiple types of nausea (motion, morning sickness, <u>chemotherapy-induced</u>) (Marx, 2013).
- A <u>key finding</u> from a double-blinded, randomized-controlled trial (Marx, 2017) in chemotherapy-naïve patients was that intervention participants <u>reported</u> <u>significantly better</u> CINV-related <u>quality of life (QoL)</u> & <u>less fatigue</u> than placebo participants (Marx et al 2017).

Hsieh, R.K., et al, Support. Care Cancer 2015, 23, 263-272 Marx, W., et al, Nutr. Rev. 2013, 71, 245-254 Marx, W., et al, Nutrients 2017, 9, 867 (Accepted August 2017)

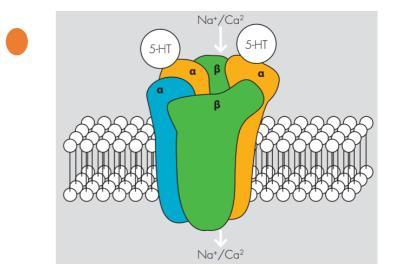
Rationale (cont'd)

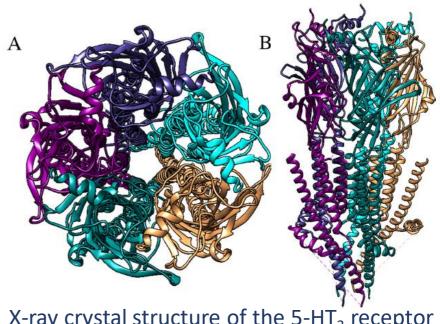

- In conjunction with the ongoing clinical studies, we're interested in the <u>mechanistic aspects</u> of how <u>ginger may function</u> as an anti-emetic.
- In vitro studies have shown the active compounds in ginger
 - a) Inhibit *serotonin (5-HT₃)-induced contractions* in guinea pig ileum¹
 - b) Inhibit *serotonin-mediated signalling* (possibly in a non-competitive manner)²
- Current anti-emetic treatment for CINV (eg granisetron) <u>target 5-HT₃ receptors</u>
- Understanding the details of how ginger actives bind and interact with this receptor will help guide the design for *more effective treatments*.


1 Pertz, J. et al Planta Med. 77 (10) (2011) 973–978 2 Walstab, J.et al Neurogastroentereol. Motil., 25 (2013) 439-447 (e302); 2 Abdel-Aziz,H. et al Planta Med. 71 (2005) 609–616.

Introduction

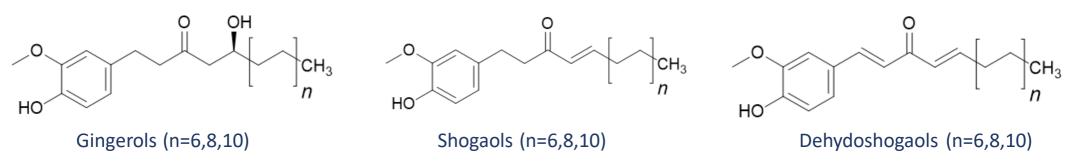
- Serotonin binds to receptors on afferent nerves sending a signal to the central nervous system, mediating a range of physiological functions.
- Current treatment for CINV involves use of anti-emetics (setrons) that <u>competitively</u> <u>inhibit</u> 5-HT₃ receptors thus decreasing 5-HT response.





Introduction (cont'd)

- The 5-HT₃ subtype of serotonin receptors are cationic, <u>pentameric</u> ion channels. Other examples of this receptor type include GABA, glycine, nAch receptors.
- 5 distinct subunits (5-HT3_{A→E}) leads to <u>complexity</u> <u>of function</u>. (eg Zn^{2+●} & small alcohols effect functional state of receptor.
- Functionally, the channel can be either open, closed or desensitized – serotonin binds with high affinity to the <u>open</u> channel but

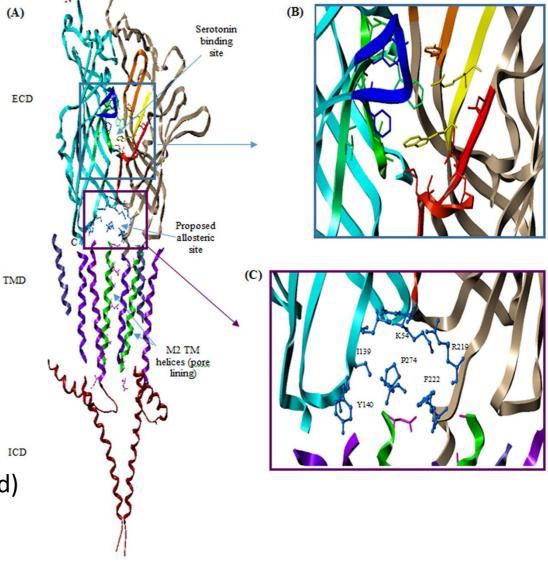


X-ray crystal structure of the $5-HT_3$ receptor (4pir.pdb) (Hassaine 2014) A (top); B (side)

Introduction (cont'd)

• <u>Gingerols</u> are the primary bioactives within the non-volatile, pungent component of the ginger rhizomes (*Zingiber officinale*).

- In vitro studies by Abdel Aziz in 2005 found that 6S, 6G, 8G and 10G <u>inhibited 5-</u> <u>HT₃-induced contractions</u> of the isolated guinea-pig ileum.
- Since they were unable to displace ³HGR65630 (a competitive inhibitor) a <u>non-competitive mechanism was proposed (potential allosteric site)</u> Similar findings were reported by Walstab in 2013.
- However the mechanism remains unclear^{1,2}

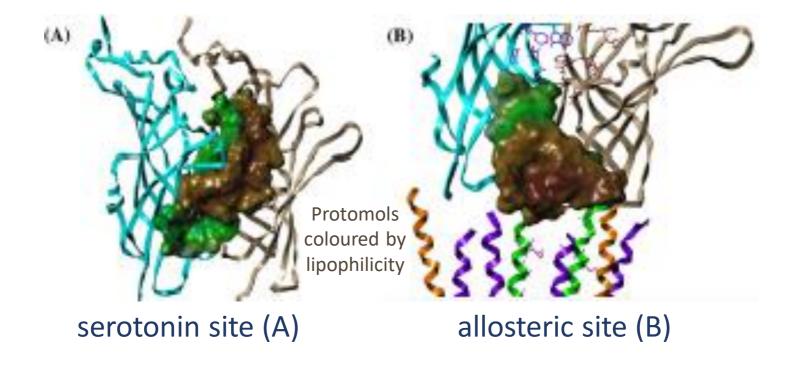

1 Ryan, J.L., et al Support. Care Cancer 2- (2012) 1479-1489. 2 Marx , W. et al Curr. Opin. Support, Paliat. Care 9(2) (2015) 189-195. Aims

- Given there is no ligand-bound crystal structure to date, we aim to probe the *serotonin* and *proposed allosteric sites* with a range of *in silico* techniques that may suggest ginger actives may play a role at the 5-HT₃ receptor
- 2. To compare the stability of 6-gingerol, serotonin and granisetron in each site using molecular dynamics simulations.

Target preparation

- Homopentameric mouse 5-HT₃ receptor (4pir.pdb)
- Both serotonin & allosteric sites are located at interface of two subunits (principle/complementary) with key interacting residues from both subunits (A_pA_c) extracted
- 2 subunits (A_PA_C) extracted for analysis (ECM/TM/ICD)*
- Energy minimized (Gast-Hückel charges & H added)

* SYBYLx2.1.1 molecular modelling software

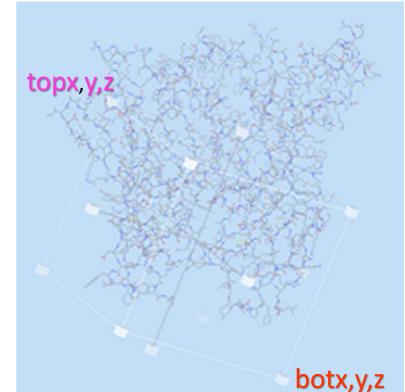

Ligand database preparation

• Structures obtained either from Pubchem/PDB databases or prepared in ChemDraw.

Ligand	Туре		
Serotonin, (5-HT)	cognate ligand		
6,8,10-G 6,8,10-S 6,8,10-DHSG	Gingerols Shogaols Dehydroshogaols		
capsaicin, curcumin	Structural analogs of ginger actives		
granisetron,	Positive Controls (5-HT site) (Setrons)	* Energy minimiza	ation Protocol
ondansetron, etc	(competitive)	Forcefield	Amber FF99 Amber atom types
PU02, bicurculline, etc	Positive Controls (allosteric	Charges	Gasteiger-Huckel
	site) (non-competitive)	Method	Steepest Descent
Acetylcholine, GABA	Negative Controls (Decoys)	Convergence	0.5 kcal/mol

Molecular Docking (Surflex-Dock 2.1)

- Protocol: Serotonin site (multi-channel) Allosteric site (residue-based)
- "Flexible" docking approach (ligand & protein atoms around site of interest).
- Poses ranked according to Total Score $(1/K_d)$ loosely approximating a <u>theoretical</u> binding affinity.
- *C-score* validation. Compares 4 scoring functions each with different weightings for non-bonded interactions)



2. GRID Analysis

- Interaction energies calculated at each grid point (kcal/mol) (Goodford, 1985).
- Grid box (dimensions (topx,y,z; botx,y,z)) generated around each site. (0.33 Å resolution)
- A set of small atomic/molecular probes was selected to mimic the chemical properties of key functional groups of the ligands.

3. Sequence Alignment

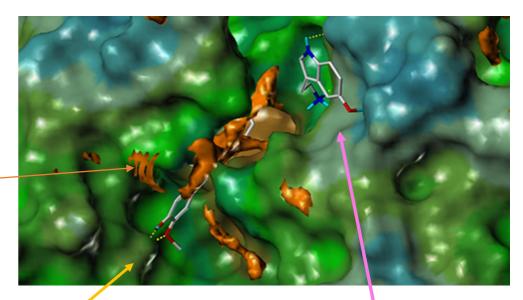
 ClustalOmega alignment between mouse and human 5-HT₃ receptor sequences was performed to identify the degree of homology and identify conservation of residues likely to be important in ligand binding.

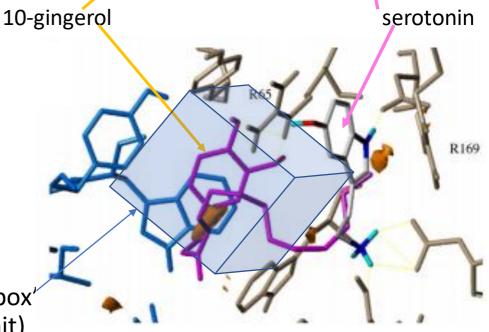
GRID for serotonin site

	Serotonin Site	Allosteric site
Bottom	144.82	138.06
Тор	181.15	184.06
Y	157.57	166.93
у	193.9	209.93
Ζ	231.82	250.75
z	277.82	293.75

Molecular Dynamics Simulations

- Target Preparation
 - Initially a solvated dimer (A_PA_C), ECD domain in dodecahedron box (SPC water)
 - Gromacs-5.04 (FF gromos54a7_FF gromos54a7)
- Ligand Preparation
 - Topologies obtained from ATB¹ & superimposed onto docked ligand pose.
- Usual preparation prior to full MD production run
 - EM (steepest descent, 1000 steps, conv.
 - NVT ensemble Canonical isothermal thermostat (Berendson temp coupling)
 - NPT ensemble barostat
 - MD 10ns, 2fs ts


Key MDP Parameters


Neighbour coupling (Verlet) E'statics (Reaction-field, epsilon = 78)

¹*Malde AK, Zuo L, Breeze M, Stroet M, Poger D, Nair PC, Oostenbrink C, Mark AE*.An Automated force field Topology Builder (ATB) and repository: version 1.0. *Journal of Chemical Theory and Computation*, 2011, 7(12), 4026-4037

Serotonin site

- GRID analysis & Connolly surface (top) show lipophilicity nature of serotonin site.
 - orange contours (GRID 1.5 kcal/mol, strong interactions with hydrophobic probe)
 - Serotonin (total score 5.7) and 10G (total score 10.81) docked into the serotonin binding site.
 - Top scoring 10G (& all other ligands) docked into a location <u>distinct and more hydrophobic</u> than that of serotonin.
 - Residues previously thought to be important for binding serotonin: **S176**, **R65**, **D42**
 - Additional residues found to interact with setrons and ginger compounds: E173, D177 (E209 (granisetron)
 - Position of key residues forming 'aromatic box' (Y207, W156 P subunit; Y127, W63 C subunit)

Results:

Sequence alignment (ClustalOmega)

- subunits A and B of the mouse & human 5-HT₃ receptors
- Key residues highlighted for :-
 - principle subunit (blue shaded box)
 - complementary subunit (grey shaded box)
 - pore-facing residues of TM2 (red star *)
 - TM regions M1-M4 (<u>underlined</u>).
- Results show human & mouse 5-HT_{3A} share ~85% sequence homology while 5-HT_{3B} share ~73%. Human A & B subunits share only ~44%.

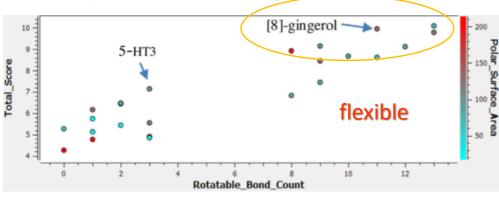
Key Finding:

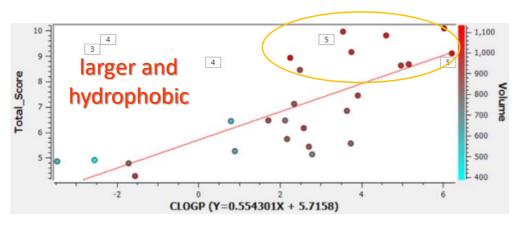
All residues required for stabilising ginger compounds in both sites were conserved between mouse & human

B hun

nan use nan use	101005264109735_97363 ap10229791040718_00082 ap1046090120738_00082 ap1082828108738_00088	HISYMAPLES CITES SOLATE - HEDDENIE HERDENIE HISYMAPLES CITES SOLATE - HEDDENIE HERDENIE HISYMAPLES CITES OF SUSS - HETTERIES SOLATE HISYMAPLES CITES OF SUSS - HETTERIES SOLATENE HISYMAPLES CITES OF SUSS - HETTERIES SOLATENE HISYMAPLES CITES OF SUSS - HETTERIES SOLATENE HISYMAPLES CITES SOLATENE HISYMAPLES SOLATENE HISYMAPLES CITES SOLATENE HISYMAPLES SOLATENE HISYMAPLES SOLATENE HISYMAPLES CITES SOLATENE
	#p1085264189738_9536# #p1922979189786_80088 #p1948059189738_80088 #p10926251689738_80088	
	#p1095244154T18_8008 #p1023979155556_80085 #p1048096185736_80085 #p104808555158T36_80085	Landing were and a state of the provided by the provided of the provided by th
	epi098294184738_80008 3pi023979484738_80088 spi046290180738_8088 epi04629358738_8088	Indian provide a structure property from a structure provide a structure of the structure o
	#9105526415HT35_83688 #9195397918HT38_85888 #9104600519HT38_8588 #910459519HT38_8588 #9108583819HT38_8588	
	#p1095254130T35_00388 #p1953979139T38_00388 #p1046005159T38_00388 #p1093555158T38_00388	YVELINTIANENDARYLPHCAAPTATYLWATVINBERG NEVELINEIPLANDONPOLINTERONIKITLLANDWEITVAR YVELLERIPLANDONPOLINTERONIKITLLANDWEITVAR TYNELERIPLANDONPOLINTERONASI POLINTYTY IRRET NALLINEIPLANDENDENTLIPPICAAPI POLINTYTY IRRET
	AD1095244184738_87388 AD1923979181738_87388 AD1946047184738_87388 AD1946047184738_87388 AD1947875181738_80588	THE WEITER SECTION OF THE ALL OF THE WEITER SECTION OF THE ALL OF
	##1098284184738_90708 #p1023979159738_00081 #p104098538738_00081 #p1087875159735_00782	
1	Rp1095264130738_00588 Rp1923979188738_00588 Rp1946096135738_00588 Rp1092828188738_00588	
pe)	api (145264) (14735), 157680 api (253975) (14735), 167680 api (246395) (14735), 167685 api (242425) (14735), 167685 api (242425) (14735), 167685	OURAPIE/ALIA POILLPOINT REALVET FLASHWARM

Results – Summary of Molecular Docking

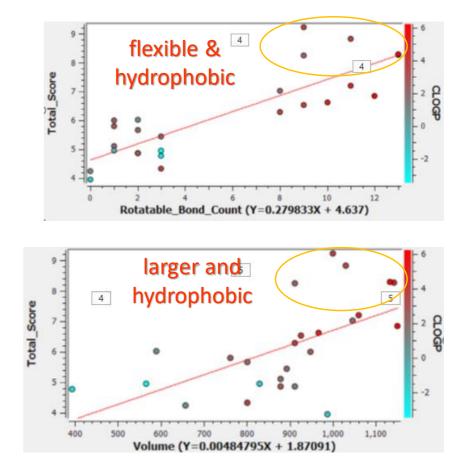

Sorted by clogP Serotonin site		Sorted by Total Score Serotonin site			Sorted by Total Score Allosteric site						
compound	clogP	Total Score SERO	Total Score ALLO	compound	dogP	Total Score SERO	Total Score ALLO	compound	clogP	Total Score SERO	Total Score ALLC
10-5	5.9	9.34	8.29	10-G	5.3	10.8	8.26	capsaicin	3.6	8.54	9.23
8-DHSG	5.7	8.56	6.61	10-S	5.9	9.34	8.29	10-S	5.9	9.34	8.29
10-G	5.3	10.8	8.26	curcumin	3.2	8.77	7.02	10-G	5.3	10.8	8.26
6-DHSG	4.6	6.97	6.28	6-G	2.5	8.7	8.26	6-G	2.5	8.7	8.26
6-S	3.7	8.31	6.52	8-DHSG	5.7	8.56	6.61	curcumin	3.2	8,77	7.02
PU02	3.7	5.8	4.33	capsaicin	3.6	8.54	9.23	8-DHSG	5.7	8.56	6.61
capsaicin	3.6	8.54	9.23	6-S	3.7	8.31	6.52	6-S	3.7	8.31	6.52
curcumin	3.2	8.77	7.02	bicurculline	2.6	7.09	6.01	6-DHSG	4.6	6.97	6.28
bicurculline	2.6	7.09	6.01	6-DHSG	4.6	6.97	6.28	serotonin	0.2	5.63	6.02
6-G	2.5	8.7	8.26	PU02	3.7	5.8	4.33	bicurculline	2.6	7.09	6.01
VUF1066	2.4	5.13	5.8	serotonin	0.2	5.63	6.02	VUF1066	2.4	5.13	5.8
ondansetron	2.1	5.22	4.85	granisetron	1.5	5.51	4.87	acetylcholine	-3.7	4.9	4.98
granisetron	1.5	5.51	4.87	ondansetron	2.1	5.22	4.85	picrotoxin	0.5	4.77	4.96
varenicline	0.8	5.09	4.23	VUF1066	2.4	5.13	5.8	granisetron	1.5	5.51	4.87
picrotoxin	0.5	4.77	4.96	EP enicline	0.8	5.09	4.23	ondansetron	2.1	5.22	4.85
serotonin	0.2	5.63	6.02	acetylcholine	-3.7	4.9	4.98	GABA	-3.2	4.9	4.76
ginkgolide	-0.4	4.25	3.94	GABA	-3.2	4.9	4.76	PU02	3.7	5.8	4.33
GABA	-3.2	4.9	4.76	picrotoxin	0.5	4.77	4.96	varenicline	0.8	5.09	4.23
acetylcholine	-3.7	4.9	4.98	ginkgolide	-0.4	4.25	3.94	ginkgolide	-0.4	4.25	3.94

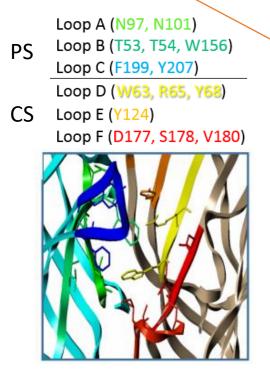

- Serotonin scored mid field in both sites (polar)
- Ginger compounds scored high in both sites (as did structural analogs (all amongst most hydrophobic)
- Competitive antagonists scored mid field at both sites (very similar clogPs)
- Polar non-competitive antagonists (NCAs) scored lowest in serotonon site. The more lipophilic NCAs scored higher in serotonin site. (Nb. allosteric modulators are more potent in heteromeric receptors)
- Decoys (highly polar) scored poorly in both sites. (Most polar scored mid range in allosteric site)

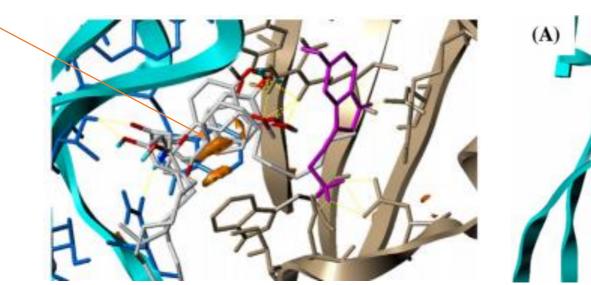
Polarity was a key factor for binding in serotonin site than the allosteric site

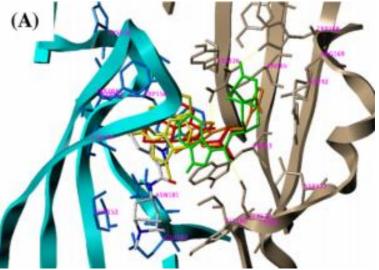
Serotonin site

- Ligand flexibility played a more important role than PSA in scoring
- Compounds scored high that were :-




Allosteric site


- Ligand lipophilicity (clogP) & flexibility / size were positively correlated.
- Compounds scored high that were :-



Serotonin site

- Our results confirmed the importance of key residues thought to stabilise serotonin in this site, especially R65, N101, T154.
- Our results identified novel interactions with serotonin (D177, E173) and dolasetron (E209) and gingerols (K211, E209, L157)
- GRID successfully predicted position of aromatic ring of docked ginger actives.

Granisetron (atom colours) **ondasetron**; **dolasetron**; **palonosetron**

- Serotonin site total scores ranged from 4.25-10.81 (-logK_D)
 - 10G scored highest (ginger actives & structural analogs scored highly)
- Allosteric site total scores ranged from 3.94-9.23 (-logK_D)
 - Capsaicin (structural analog) scored highest followed by gingerol compounds in <u>allosteric site</u>
- Experimental IC₅₀ data (where available) included for comparison with docking scores for highest binding pose/ligand.

Serotonin Site Allosteric Site									
Compound	IC ₅₀	Total score (- logK _d)	Cscore	Hbonds ^b	Interacting Residues ^c	Total score (- logK _d)	Cscore	Hbonds ^b	Interacting Residues ^c
Ginger Compo	unds								
6G	30 <i>u</i> M (rat) ⁱ	8.7	1	3	E209 R65	8.26	1	4	E219 Q56 F222 E53
8G	uM range ⁱⁱ	10.25	5	4	T154 E209 R65	8.84	5	3	E53 R219 F222
10G	uM range ⁱⁱ	10.81	4	5	T154 E209 K211 T152	8.26	1	5	T280 1139 E53 Q56
6 S	9,3 <i>u</i> M (rat) ⁱ	8.31	0	2	N101 W156	6.52	0	3	E53 F222 Q56
8 S	uM range ⁱⁱ	9.06	5	4	R65 S155 T154	7.19	2	2	K54 F222
10S	иM	9.34	2	2	T152 N101	8.29	5	1	F222
	range								
6DHSG	-	6.97	0	3	T152 N101 K211	6.28	0	3	E53 Q56 K54
8DHSG	-	8.56	0	3	L157 N101 Y207	6.61	0	1	E186
10DHSG	-	9.07	2	2	L157 N101	6.85	4	3	E53 Q56 K54
Endogenous Li	gand								
serotonin	7.8 uM ^{a,i}	5.63	4	5	E173 S176 D42 D177	6.02	0	4	Q184 E53 D138 L137
Structural Ana	logues of gi	nger acti	ves	1					
Capsaicin	-	8.54	0	4	R65 N101	9.23	1	3	K54 R219 F222
Curcumin	-	8.77	0	9	R65 T154 S155 D177 S179	7.02	0	3	R219 E53 E186

Residues in blue (previously suggested by Hassaine to be important for stabilising serotonin

- The setron family of anti-emetics ranked midfield at both sites
- Non-competitive ligands scored poorly as did decoys. (Nb. Allosteric ligands are observed to be more potent towards heteromeric targets)

- Cscores were high for 10G indicating a <u>consensus</u> between scoring functions for their <u>overall ranking</u>.
- Cscores were similarly high for serotonin, some setrons & non-competitive ligands.

			Ser	otonin Site		Allosteric Site				
Compound	IC50	Total score (- logK _d)	Cscore	Hbonds ^b	Interacting Residues ^e	Total score (- logK _d)	Cscore	Hbonds ^b	Interacting Residues ^e	
Competitive An	tagonists									
Ondansetron	4.9 nM (human)	5.22	5	1	T154	4.85	0	1	Q56	
Granisetron	1.4 nM (human)	5.51	5	1	E209	4.87	0	0	-	
Palonosetron	31.6 nM (rat)	5.74	0	1	R65	5.1	0	0	-	
Dolasetron	20.03 nM (NG108- 15)	6.9	0	3	R65 T154	5.43	1	0	-	
Ramosetron	11-12 nM (human)	6.48	4	1	T154	5.65	2	2	P274 Q56	
VUF10166[41]	40nM (AB subunit only)	5.13	5	1	R65	5.8	4	0	-	
Agonist (non-sp	ecific)							1	1	
Varenicline[43]	5.9 uM[42] (EC ₅₀)	5.09	4	2	R65 N101	4.23	3	1	P274	
Non-Competitiv	e Ligands		·	·				·	·	
PU02	1.3 <i>u</i> M (human)	5.8	5	3	D177 <u>S179</u>	4.33	2	1	D138	
Bicuculline	191 uM[44]	7.09	5	1	R65	6.01	1	3	-	
Picrotoxin	440 uM[44]	4.77	5	4	E102 S150 S136 N148	4.96	0	4	Y46 N183 S136	
Ginkgolide	727 uM[44]	4.25	2	7	K211 S150 E102 T152 N101	3.94	3	3	T280 D138 1139	
Decoys						1				
Acetylcholine	-	4.9	0	0		4.95	3	1	-	
GABA	-	4.9	4	3	W156 R65	4.76	1	3	-	

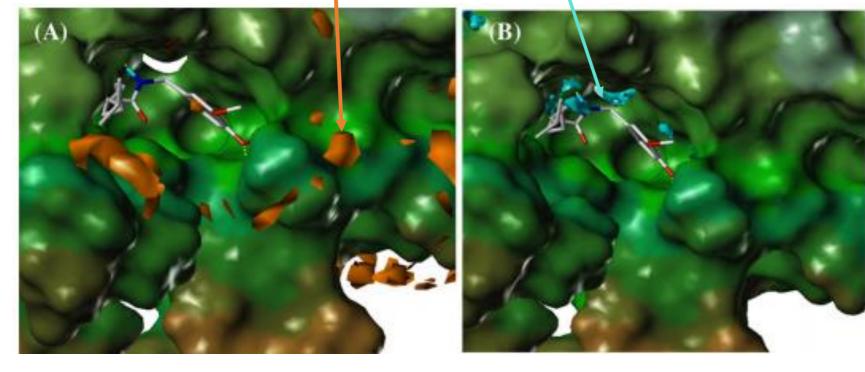
Allosteric site

Allosteric modulation permits fine-tuning of ion permeation via signal dampening.

The larger volume allows gingerols to adopt a more **extended** conformation facilitating favourable hydrophobic interactions with the transmembrane region.

Picrotoxin (NCA) is able to differentiate between A & B subunits¹.

1 Thompson, A.J. et al Trends Pharmacol. Sci. (2013) 34(2), 100-109

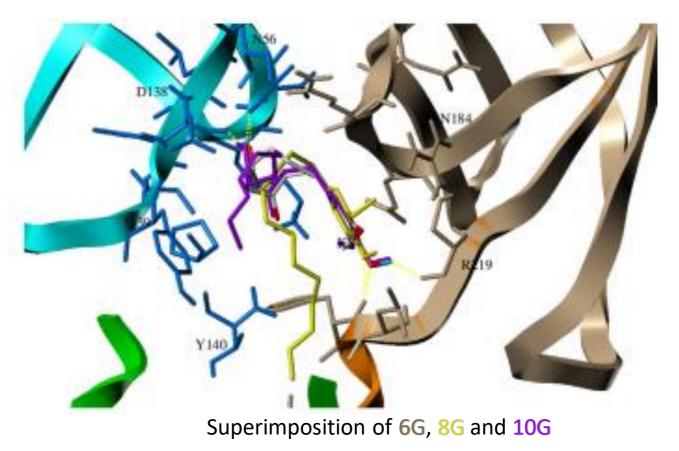

Results: Molecular Docking Allosteric site

Top scoring ligand, capsaicin. Ginger actives also score well. This site was found to be more hydrophobic compared to the serotonin site.

(A): GRID contours for a hydrophobic probe (-0.5 kcal/mol).

(B): water probe (-11 kcal/mol) coincides with polar groups

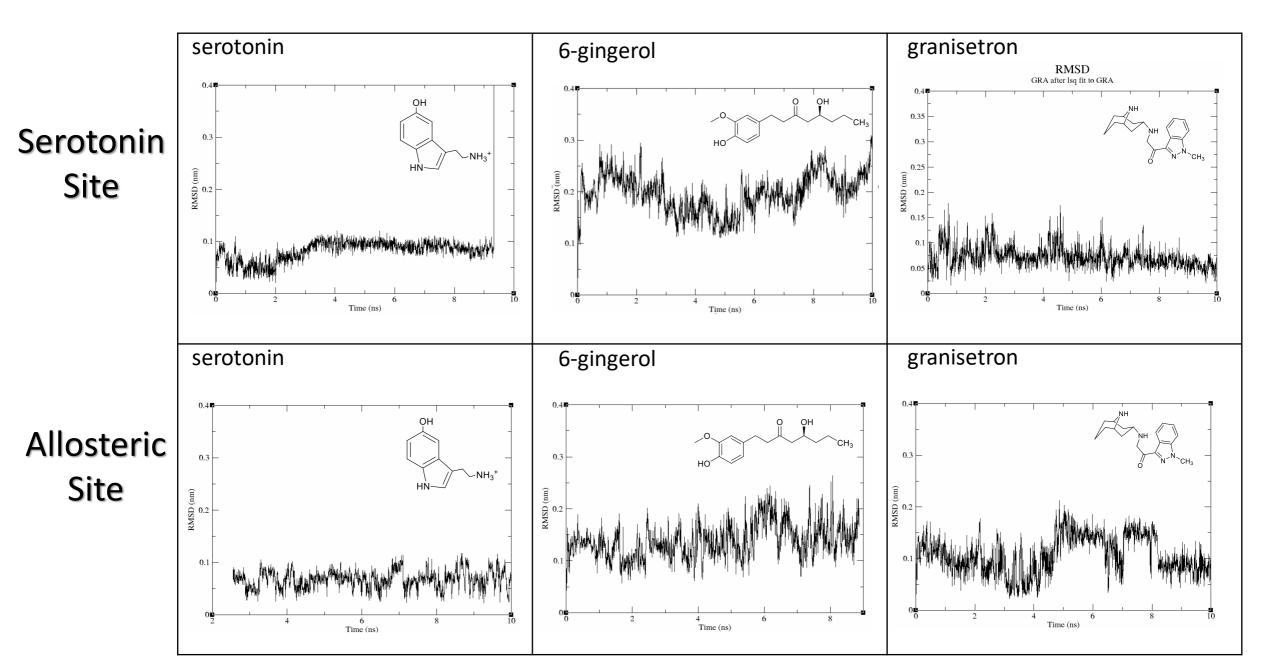
Connolly surface coloured by lipophilic character


Allosteric site

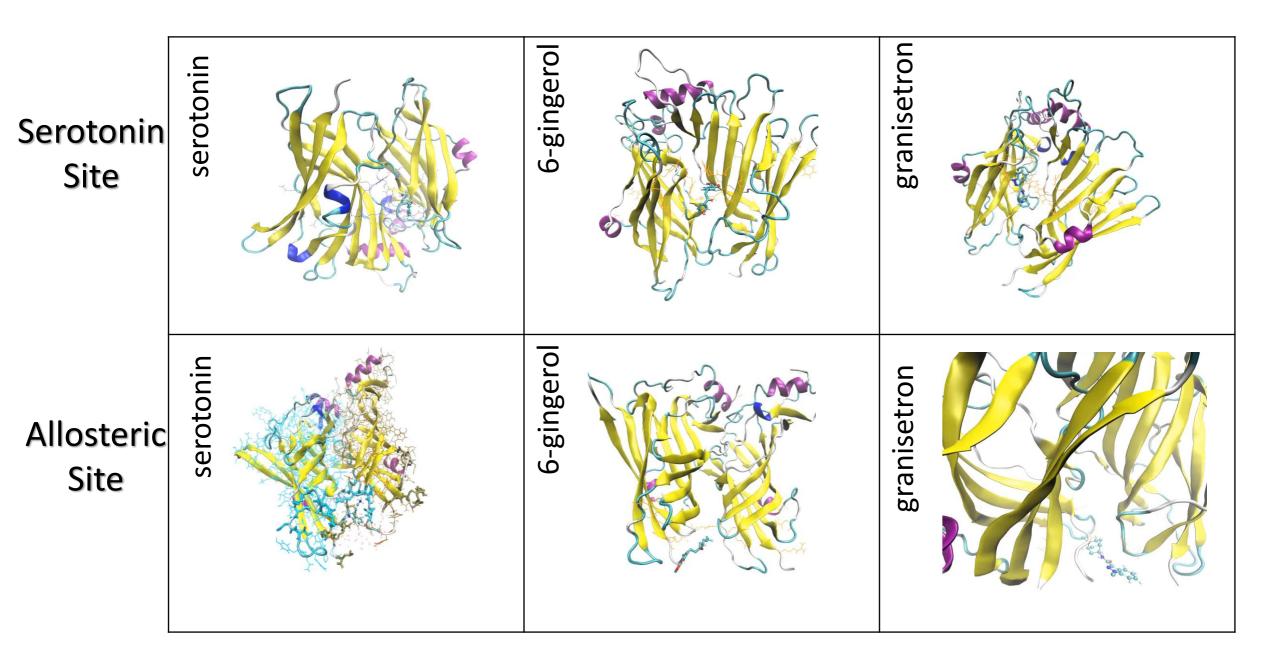
• Ginger actives ranked highly.

Gingerols > shogaols > DHSGs

- Order correlates with the higher polarity of the site.
- Unlike serotonin site, polarity was not the key determinant contributing to score
 - Eg. PU02 (clogP similar to ginger actives) scored low)


Key Finding:

Flexibility and hydrogen bonding capacity played a key role in binding interaction


Potential Energy over 10ns simulation

RMSD Comparison of Ligand Stability

Trajectories

Conclusion from MD analysis ... to date

Limitations

- Species differences
- Functional State
- Subunit Composition
- Transmembrane/ECM interface another potential binding site
- Inherent in Molecular Docking approaches are
 - Inaccuracies in the energy models used to score potential ligand/receptor complexes
 - The inability of current methods to account for conformational changes that occur during the binding process not only for the ligand, but also for the receptor (ie. how to cope with protein flexibility (1000's of degrees of freedom)
 - The above can be alleviated by using the more robust, Molecular Dynamics (full protein flexibility) – see later.

Conclusions / Future Directions

<u>Key Findings</u>

- Serotonin bound to a site distinct from other ligands in serotonin site. This correlated with site hydrophobicity (.
- Ligand hydrophobicity directly correlated to higher scoring in serotonin site while ligand flexibility and hydrogen bonding capacity facilitated more potent interactions at the allosteric site.
- Our results were in agreeance with a number of key residues involved in stabilising serotonin (R65, N101 & T154) at the orthogonal site. Novel residues (E102 & R219) could be exploited in drug design.
- At allosteric site, novel residues, R219, Q56, F222, Q53 and I139 were important in stabilising ginger actives.
- Ginger compounds scored highly in both sites.
 - Structural characteristics (flexibility, hydrophobicity, Hbond acceptors/donors) enable them to exploit complementary features in a binding pocket. Similar dual roles have been observed.

Conclusions / Future Directions

Analytical analysis

Quantification of ginger actives was conducted in a range of commercial ginger

products to determine (Marx et al (2016)

Research paper

Determination of the concentration of major active anti-emetic constituents within commercial ginger food products and dietary supplements

Wolfgang Marx[®], Elisabeth A. Isenring, Anna E. Lohning Faculty of Health Sciences and Medicine, Bond University, Queensland, Australia

Future Work in Progress

<u>Clinical:-</u> A larger clinical trial has been accepted for funding (NHMRC, Feb 2017). <u>Mechanistic</u>:- MD for pentameric ion channel in membrane.

Clinical Research Team / Collaborators / Funding Bodies

Research Team

Professor Liz Isenring Head of Program, Nutrition & Dietetics Research Group Bond University, Gold Coast, Australia

Australian Government

National Health and Medical Research Council

Dr. Wolfgang Marx School of Allied Health, LaTrobe University, Melbourne, Australia

Alexandra McCarthy, Princess Alexandra Hospital, QLD, Australia, Division of Cancer Services, Institute of Health and Biomedical Innovation, Brisbane, QLD, Australia; School of Nursing, University of Auckland, Auckland, NZ.

Karin Ried, Research Director, National Institute of Integrative Medicine

Dan McKavanagh, School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia; School of Nursing, University of Auckland, Auckland, NZ.

Luis Vitetta, Medlab Clinical Ltd, Sydney, NSW, Australia/University of Sydney, Sydney Medical School, Sydney, NSW, Australia.

Avni Sali, National Institute of Integrative Medicine, Melbourne, VIC, Australia

Thank you!

Questions