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THE CONTROLLABILITY FUNCTION METHOD 

Anton OKUN1, Yevhen LOS2 

The paper is devoted to the control problem for the movement of an overhead 
crane with the use of a dynamic model in the form of "trolley - cargo" mechanical 
system and the driving force as a control parameter. To solve the system of 
differential equations, which describe the movement of the system taking into 
account constraints for the control, the controllability function method is applied. 
The algorithm for solving the problem is described, a program is developed as well 
as difficulties, which occur while implementing the method, and ways of its solution 
are marked. Results of constructing the control and system trajectories are also 
provided as an example of the program work. 
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1. Introduction 

In this paper we consider the control problem for the following mechanical 
system (a “trolley-cargo” system): an overhead crane, that is, a trolley, which 
moves along a horizontal rail, and a cargo which is attached to the trolley by 
means of an inextensible weightless absolutely flexible rope. We use this model 
as it was described in [1]. As a control we chose the moving force, as was 
suggested in [1] because choosing velocity or acceleration of the trolley as a 
control complicates the control mechanism. 

2. Description of the method 

The linearized equations of the movement for the described system, shown 
in Fig.1, are given by 
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1. 1m and 2m  are the masses of, respectively, the trolley and the cargo; 
2. ( )F t  is the moving force; 
3. W  is a value of the rolling resistance to the cargo wheels; 
4. l  is the length of the rope; 
5. 1x  and 2x  are the distances from the center of mass of, respectively, the 
trolley and the cargo to the initial point; 
6. 1x  and 2x  are the accelerations of, respectively, the trolley and the cargo; 
7. 1x  is the velocity of the trolley; 
8. g  is the gravity constant. 

 
 

Fig.1 Trolley-cargo model 
 
For this “trolley-cargo” system we researched the following problem: to 

transfer the system from any given initial position of the trolley and cargo to some 
given final position of the system, so that the trolley and the cargo stop there, and 
the cargo is in state of equilibrium. The control which transfers the system from 
one point to another must be bounded, and the time of the movement must be 
finite. 

The linearized system of differential equations with the control which 
describes the movement of the overhead crane is in its simplest variation written 
as follows: 
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2. Tyyyyy )( 4321=  is the vector of coordinates, where 1y  is the distance 
from the center of mass of the trolley to the initial point, 2y  is the velocity of 
the trolley, 3y  is the distance from the center of mass of the cargo to the initial 
point, 4y  is the velocity of cargo; 

3. 12 )(*)()( mysignWtFtU −=  is the control function, where )(tF  is the 
moving force applied to the cargo, and W  is a value of the rolling resistance 
to the cargo wheels. We assume that )(tF  is bounded, therefore dtU ≤)( . 
The direction of the resistance force depends on the direction of the trolley’s 
movement. 

Using the non-singular change of variables Lyx = , where 
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this system is transformed to 
1 1( ) ( ) ( )x t A x t B U t= +                                         (2) 
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Further we deal with this representation of the original system. 
The control problem for the “trolley-cargo system” which is mentioned above 
leads to the 0-controllability problem for the linear system (2). Namely, the 
problem is to construct a continuous bounded program control U = U(t) which 
transfers the system from a given starting point inside some region into zero, such 
that the time of this transfer is finite. 

We research this problem using the controllability function method which 
was proposed by V.I. Korobov in 1979. We apply the simplest version of this 
method where controllability function is in fact the time of movement. The 
algorithm is as follows: 

for a given 0x  ( 0x  is the initial point of movement) 
1. Build matrix 
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2. Solve equation 
( )000 ,)(2 xxNa θθ =                                         (4) 

with respect to θ and obtain the root θ0. a0 is defined according to a theorem of [4]. 
3. Build the control  

1
1 0( , ) 1 2 ( )U t x B N t x−= θ −                                     (5) 

4. Solve the Cauchy problem 
1 1
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and obtain the solution )(tx . 
By this means 

1
1 0( ) ( , ( )) 1 2 ( ) ( )U t U t x t B N t x t−= = θ −                              (7) 

transfers the system from 0x  into zero for the time θ0. It can be shown that 
equation (4) has the unique positive solution, that )(1 θ−N  is in fact non-singular 
and invertible for all 0>θ , and that for sufficiently small 0a  the control (7) is 
bounded: ( )U t d≤ . 

The method by itself is much more general then its variation on the above. 
Originally the controllability function method was developed for positional 
synthesis problem. Roughly speaking, if )(xθ  is the solution of (4), then the 
control ( )U x  is a feedback control which solves the positional synthesis problem. 
This method is applicable for some classes of nonlinear control systems 

( , , )x f t x U= . 
If on step 2 we solve the equation  

( )000 ,)(2 xxNa θθν =                                         (8) 
where 12 +≥ pν  is a natural number, we get the control with bounded derivatives 
for the orders up to the p , including p . 

The complete description and argumentation of the method, as well as its 
generalizations can be found in [2, 3, 4]. 

3. Implementation of the method 

When implementating, difficulties appear on the third, and, consequently, 
fourth step of the algorithm. This happens because the matrix 1−N  from (3) is ill-
conditioned when the parameter θ is small. To obtain the inverse matrix N  with 
sufficient precision we used Taylor series representation for this matrix, replacing 
it by sufficiently large number of the Taylor series terms. Difficulties on the 
fourth step of the algorithm arise because the control that is constructed oscillates 
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when t is close to θ0. This oscillations can be somewhat smoothed by constructing 
inertial control, using equation (8) instead of (4) when ν  is at least 3. 

Authors wrote the program for constructing the control and trajectory in 
Mathematica software. As an example of its work, the system where 12 21 mm =  
and gl =  was considered. For Tx )0909(0 =  we get the time of the 
movement 7.849 0 =θ  and graphics of the trajectory and control have the 
following look (Fig. 2 and 3): 

 
Fig. 2 

Components of the trajectory of the system 

 
Fig. 3 Control 

 
If we intent to build the inertial control and solve the equation (8) with 

3=ν  for the same system and initial point, we get the time of the movement 
16.415  0 =θ  and graphics of the trajectory and control are presented in Fig. 4 and 

5. 
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Fig. 4 Components of the trajectory of the system 

 
Fig. 5 Control 

4. Conclusions 

Thus, the controllability function method allows us to effectively create 
bounded controls that solve the control problem for an overhead crane. Notice that 
inertial controls behave more regular while increasing the time of movement for 
the system. 
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