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Chapter 1

Introduction and Motivation

"All models are wrong, but some models are useful." - George Box.

We as humans build an understanding of our environment through models. Ranging from
physical laws of the universe to microscopic biological interactions, abstract models guide
our way of thinking about ourselves and the surroundings we live in. But what is the
fundamental origin of those models? How do we build them or test if they actually reflect
the nature they try to model? The answer is simple: through observations and interactions
with our world. In other words, all models and approaches are at some point data-based.

Among all models, mathematical constructions play a central role. While qualitative de-
scriptions provide intuition about behavior or reasons, mathematical models allow to go
beyond intuition by quantifying processes. Yet, the origin of most mathematical construc-
tions like physical or economical laws is (at least partially) based on an observation or an
experiment. After describing them in mathematical terms, they can be transferred to other
domains or generalized in various ways. The key to this generalization is often their de-
pendence on parameters, where different values of those parameters enable the astonishing
flexibility of mathematical constructions.

However, four main drivers are changing our ways to obtain new models. First, there is
an ever increasing demand for simulating complex processes. Among the most demand-
ing quests is certainly to model or even create general intelligence. Second, our ability to
observe the world is drastically increasing by the development of new sensors like med-
ical devices or everyday tools like smartphones. Third, we are not only able to measure
this data, but can also store and access it when needed. Fourth, growing computational
resources permit to process these observations.

All these changes fuel the construction of ever increasingly complex models. The key un-
derlying mechanisms, however, remain. Starting with known mathematical constructions
obtained through observations and quantification, we transfer the models to new domains
by adding parameters to these models. Once data is available in this new domain, pa-
rameters are identified to obtain a specification of the parametrized model. While these
traditional mechanisms still form the basis, their balance is shifting. Since more complex
behavior is being modeled, our knowledge and thus our starting models for identification



Chapter 1. Introduction and Motivation

need to be more flexible. Hence, more parameters are added and the attention of the
modeling process is shifting towards the identification of the parameters. Since we often
do not know how to model the problem at hand, thinking about this process as learning
from observations is many times fitting.

When thinking about these constructions as functions which receive an input and return
a desired output, neural networks are natural candidates since they are parametrized and
most importantly flexible functions. Mathematically speaking, they are universal approz-
imators (Cybenko, 1989). However, this property is often not the main reason for their
usage, since other models like kernel approaches share this property (Micchelli et al., 2006).
Most interestingly, they allow the processing of inputs in several steps or in hierarchies,
which enables to incorporate knowledge about the target domain in a natural manner.
For example, the visual processing of our brain is often modeled using these abstract
mechanisms.

Thus, neural networks fundamentally follow the classical approach of using knowledge ob-
tained from other tasks and adding flexibility through parametrization. Most prominently,
specific neural network architectures, called convolutional neural networks (CNNs), were
designed from knowledge about signal processing and human vision (LeCun et al., 2015).
Even in other domains like language understanding, neural networks allow to incorporate
structures, which we think as human helpful for models targeting not only an understand-
ing of language but also the generation of creative text or speech.

Since this domain knowledge, besides flexibility, is one of the main drivers of neural network
architecture design, studying the question

What kind of architecture should I use/ design in a new environment?

forms one of the two main pillars of this thesis. In particular, we will discuss approaches to
design suitable architecture for the processing of mass spectra and test their applicability
to tumor classification tasks. Based on given similarities and differences to image data, we
modify standard CNNs to better respect the nature of spectra arising from imaging mass
spectrometry measurements.

While domain knowledge plays a pivotal role for neural networks, their flexibility is the
answer to the growing demand of complex models and the availability of data. However,
this flexibility brings many challenges. For once, the learning process is hard to under-
stand. Yet, this is usually not surprising since it is often designed to adapt to behavior,
that we do not know how to model ourselves. After training, using the neural network is
straightforward and enables access to models with high complexity. Yet, even understand-
ing basic mechanisms of these models is often beyond our current abilities. This not only
hinders their usage in high-stakes applications, but also slows down the development of
better models.

One way to circumvent these problems is by enforcing certain guarantees, which hold no
matter which parameters the model learns. For example, having the guarantee to reverse
the processing of the network could allow to answer the question:

If the output is Y, what is the corresponding input X ?
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Having access to an answer to the question above could for example tell us, which inputs
certain worst-case outputs induce. More positively, it also permits access to an input that
results in a desired output behavior.

In mathematical terms, these guarantees are met when the model is invertible. This prop-
erty can be very powerful not only to provide an answer to the questions above, but also
to reason about inputs in a probabilistic manner. As we will see in this thesis, it will even
allow us to generate new data. Thus the study of invertible neural networks will form
the second main pillar. For this, we first dive into an analysis to which degree standard
network architectures are invertible. Afterwards, we introduce new structures to obtain
guaranteed invertibility. Having this property, we then propose an algorithm to use these
networks for generative modeling. Finally, we discuss how invertible networks can help to
understand and control learned representations of data.

As emphasized in this introduction, mathematical modeling is based on two major compo-
nents: constructing a parametrized model using domain knowledge and learning/ identify-
ing the parameters from data/ observations. First, we provide an overview of the articles
that serve as the basis of this thesis. Afterwards, we introduce core concepts of neural
network models and the learning process in the next chapter. In this foundation chapter,
we reverse the ordering above (fitting to the major theme of this thesis) and start with
the statistical fundamentals of learning. Then we discuss models based on neural network
architectures. At the end of this chapter, we state the goals of this thesis more precisely.

1.1 Published Articles and Contribution of Author

Each chapter in this thesis is based on parts of an article by the author and collaborators,
as indicated in the beginning of each chapter. In general, some aspects of those article are
not presented in this thesis and only referenced. In most cases, those parts were omitted
because they were orthogonal to the main focus of this thesis. In some cases, the research of
the omitted parts was not conducted by the author and thus is only reviewed or referenced
in this thesis.

This section briefly states the role of the author in each published article (below the
article), listed by the appearance of the article in this thesis:

Jens Behrmann, Soren Dittmer, Pascal Fernsel, Peter Maass: Invariance and in-
verse stability under ReLU, 2019, (submitted to IEEE Transactions on Neural Net-
works and Learning Systems)

Jens Behrmann contributed to all aspects of the article, in equal contribution with Séren
Dittmer. This article serves as the basis for chapter 3.

Jens Behrmann, Will Grathwohl, Ricky T. Q. Chen, David Duvenaud, Jorn-
Henrik Jacobsen: Invertible residual networks, 2019, (International Conference on
Machine Learning (ICML))
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Jens Behrmann contributed to all aspects of the article, in equal contribution with Will
Grathwohl and Jorn-Henrik Jacobsen. This article serves as the basis for chapter 4.

Ricky T. Q. Chen, Jens Behrmann, David Duvenaud, Jérn-Henrik Jacobsen:
Residual flows: invertible generative modeling, 2019, (under submission; early version
presented at: ICML workshop on Invertible Networks and Normalizing Flows)

Jens Behrmann derived the generalization of i-ResNets to £,-norms, which is the basis
for the presentation of the i-ResNet in chapter 4. Furthermore, Jens Behrmann derived
and implemented the Neumann gradient estimator and contributed to the proofs of the
unbiased estimators. The experiments and the improvements for generative modeling
based on i-ResNets are only referenced in chapter 5.

Jorn-Henrik Jacobsen, Jens Behrmann, Richard Zemel, Matthias Bethge: Fxces-
sive invariance causes adversarial vulnerability, 2019, (International Conference on
Learning Representations (ICLR))

Jens Behrmann contributed to the conceptual idea of the reverse view on adversarial
examples, to the analysis of the proposed independence cross-entropy loss and to the
design of some experiments. The other contributions of this article are only referenced or
reviewed in the related work section of chapter 6.

Jorn-Henrik Jacobsen, Jens Behrmann, Nicholas Carlini, Florian Tramer, Nico-
las Papernot: Ezploiting excessive invariance caused by norm-Bounded adversarial
robustness, 2019, (under submission; early version presented at: ICLR workshop on
Safe Machine Learning: Specification, Robustness and Assurance)

Jens Behrmann contributed to the main concept of the article, to the definition of both
modes of adversarial examples and to the theoretical analysis based on the synthetic
spheres dataset. This article and in particular the synthetic datasets serves as an example
in chapter 6, while other contributions of this article are only reviewed.

Jens Behrmann, Christian Etmann, Tobias Boskamp, Rita Casadonte, Jorg
Kriegsmann, Peter Maass: Deep learning for tumor classification in imaging mass
spectrometry, 2018, Bioinformatics, volume 34, issue 7, pages 1215 - 1223

Jens Behrmann contributed to all aspects of the article, in equal contribution with Chris-
tian Etmann. This article serves as the basis for chapter 7.

Remark:

At several places in this thesis, above articles are only cited. The symbol *** highlights
those articles, in order to distinguish these articles by the author of the thesis from other
articles. For example: (Behrmann et al., 2018a***) or (Jacobsen et al., 2019b***).



Chapter 2

Mathematical Foundations of
Deep Learning

2.1 Statistical Learning

2.1.1 Goals of Learning

In order to introduce the fundamental goals of learning, we will first lay the setting from
a probabilistic viewpoint. In general, we will consider the probability space (2, .4, P) with
following elements:

e () denotes the sample space: all possible outcomes of the random experiment.

o ACP(Q) (power set) denotes the o-algebra of €, called the event space: the space
of potential results of the experiment

e P: A — [0,1] denotes the probability measure on the event space.

Furthermore, let V' : Q — €' denote a random variable, where € is called the target space
of the random variable. If ' = R, we call V a real random variable. If Q' = [N], where
[N] :={1,...,N}, we call V a (finite) discrete random variable. A realization of a random
variable corresponds to V(w) = v, with w € Q.

The distribution of random variable V' with respect to the probability space (£2,.4,P)
is Py = Po V1. For notational convenience, we will use the notation V ~ D := Py to
denote that random variable V' has distribution D. Furthermore, if the probability measure
P is absolutely continuous with respect to the measure X used for the target space € of
random variable V', we can uniquely identify the distribution via a probability density
function (pdf) p: Q' — Ry as

PV € 4] = /A p(v) dA(v),

where [, p(v) d\(v) =1 and A € A.
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When considering real random variables, we use the Lebesgue measure for A and simplify
the notation via dA(v) = dv. For discrete random variables, the measure \ refers to the
counting measure and we write

[ #0) r@) = 3 (o).

A vEA

In this case, we call p a probability mass function (pmf) to emphasize the distinction
between real and discrete random variables. Furthermore, for discriminative models we
will often consider the conditional pdf/pmf p(y | X = x) := %, where we condition the
random variable Y on the realization z of random variable X. To shorten notation, we

will sometimes use p(y | z) :=p(y | X = z).

To simplify subsequent discussions, we will restrict ourselves to the most often encountered
case of real random variables with target space R? under the Lebesgue measure and discrete
random variables over [N]. For a generalization to other domains and measures, as well
as for a measure-theoretic treatment of probability theory we refer to (Billingsley, 1995).

Based on the previously introduced notation, we formulate the goal of learning via a risk
function, see for example (Shalev-Shwartz and Ben-David, 2014, sec. 3.2.2).

Definition 2.1 (Risk function). Consider a set of models F and let £ be any function
with € : F x Q — Ry (called loss function from now on). Further, let D be a distribution
over the sample space ) and F € F. Then, we define the risk function L as

Ln(F) = Eyuplt(F, )]
Note, that the above definition incorporates:

e Prediction tasks with Q = X' x ), where a categorical domain Y refers to classification
and continuous domains Y = R? to regression.

e Unsupervised tasks with Q = X, e.g. density estimation of real random variables
over R%.

However, in practical scenarios we do not have access to the data distribution D, but only
to a sample T = {v®}Y, where v; € Q. Thus, we need to consider an empirical risk,
which is defined as follows, see (Shalev-Shwartz and Ben-David, 2014, sec. 3.2.2).

Definition 2.2 (Empirical risk). Let T = {v®YN| be a training set, where v are real-
izations of random variables V@ that are independent and identically distributed (short:
i.i.d.). Further. let ¢, F' be defined as in Definition 2.1. Then, we define the empirical risk
L as

1Y ,
LT(F) = ST UF D).
=1

While estimating the true risk via the empirical risk is a key idea of learning from samples,
the set of models under consideration F is another crucial ingredient of learning. Since we
choose an appropiate F, we call this set hypothesis class. Combining these ideas leads to
the following formalization, see (Shalev-Shwartz and Ben-David, 2014, sec. 2.3):
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Definition 2.3 (Empirical risk minimization with inductive bias). Let T = {v®}N | be
a training set of realizations of i.i.d. random variables. Further, let model F' be from the
hypothesis class F and let £ : F x Q — Ry define a loss function. Then, empirical risk
minimization (ERM) with inductive bias is formulated as

N
1 .
F* € argmin Ly (F) = argmin — E O(F,vD).
FeF rer N =

This restricted search over a hypothesis class refers to an inductive bias since this choice
is made before seeing training examples. Ideally this choice reflects some prior knowledge
about the learning task at hand. While this seems restrictive, an ERM learner without
any inductive bias will lead to severe overfitting. This results in a tradeoff, called bias-
complexity tradeoff. On the one hand, choosing rich hypothesis classes allows to achieve
a small empirical risk. On the other hand, rich classes can result in an increase of the
estimation error, see (Shalev-Shwartz and Ben-David, 2014, sec. 5.2) for a more detailed
discussion.

This thesis explores various instances of inducing a bias into the learning process by
studying neural network architecture design principles. Another crucial choice for ERM is
the loss function, for which we introduce examples in the next section.

2.1.2 Maximum Likelihood Estimation

While the previous section studied learning using an abstract formalism, this section pro-
ceeds by making two fundamental assumptions:

e Hypothesis class F is restricted to parametric models

e Loss functions ¢ are derived based on generative assumptions on data.

In particular, we associate a model F' € F to a parameter § € ©, where © denotes the
parameter space. For example, an affine function F' : R — R, with  — ax 4+ b, can be
identified via its slope a € R and bias b € R, hence 6 = (a,b) and © = R2.

By using these parametric models as a probability density function (pdf, in case of regres-
sion or density estimation) or probability mass function (pmf, in case of classification), we
can formulate the likelihood function, see e.g. (Held and Bove, 2013):

Definition 2.4 (Likelihood function). Let §# € © denote a parameter and let v € €.
Further, let pg(v) denote a probability density function (pdf) or probability mass function
(pmf). Then, we call £ : © x Q" — Ry the likelihood loss, where the mapping v — pg(v) is
the pdf/pmf and 6 — py(v) is the likelihood function.

This definition leads us to the powerful idea of maximum likelihood estimation, see e.g.
(Held and Bove, 2013):
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Definition 2.5 (Maximum likelihood estimation). Let v € ' be fized, § € © and ¢ denote
the likelihood loss from Definition 2./. Then, Oy is called a maximum likelihood estimate
(MLE) if

OrLE € argmax £(0,v) = argmin(—log £(6,v)).
€O 0ce
Remark 2.6. Above reformulation using the logarithm is valid since the logarithm is
strictly monotone. Furthermore, for multiple i.i.d. realizations v e [N], the logarithm
turns a product of likelihoods into a sum of likelihoods and thus simplifies the derivative.
Additionally, this negative log-likelihood allows to switch from maximization to minimiza-
tion, which is more common in numerical optimization.

Furthermore, MLE is a special case of empirical risk minimization (ERM) with the likeli-
hood loss, see (Shalev-Shwartz and Ben-David, 2014, sec. 24.1.2), since

1 XN . N .
0 =0 € argmin L7(f) = argmin — > —log £(6,v)) = argmin — > — log pg(v®).
MEE = TERM ogee 7 9gee N; g4 ) ege@ N; gpo(v")

However, note that MLE optimizes in parameter space O, wheres ERM was defined (Def.
2.3) via optimizing over functions in F.

In addition to considering parametric models as the hypothesis class, assumptions on
the data generation process allow to derive particular loss functions and models. For this,
consider a supervised learning task with = X' x ). If we formulate the goal of learning in a
discriminative manner, we need to find a parametric conditional probability py(y|X = z),
which explains the training data well. For example, least-squares with linear regression can
be derived as a MLE via the generative assumption of linear dependence under additive
Gaussian noise, i.e.

ylx) =wlz+e, e~N(0, %),
where A/ denotes the normal distribution with variance o2, w, € R? the true weights,

z € R? the inputs and 3 € R the targets, see (Murphy, 2013, sec. 7.2).

While the above regression example is an often encountered problem, in this thesis we focus
on classification as well as on maximum likelihood based unsupervised learning (which will
be discussed in chapter 5). Consider the following model for classification with C' classes,
see (Murphy, 2013, sec. 8.3.7):

Definition 2.7 (Multi-class logistic regression). Let x € R? denote the inputs and let
labels y € {0,1}C (one-hot encoded) be categorically distributed as

C
Cat(y | p) = [T =Y,
k=1

where 1[-] denotes the indicator function and py is the probability that y is from class k.
By assuming linear dependence of the label y on the inputs x after a softmax function,
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multi-class logistic regression can be formulated via

( | ) ( ) exp (W,?x)
p@YZk X==x :SOftmaXka: ,
chlzl exp(Wlz)

where Y = k denotes that the target is from class k, W € R€*?¢ and W), denotes the k-th
row of W. In this case, the parameter 0 is described by the matriz W.

Remark 2.8. The negative log-likelihood with multi-class logistic regression is often called
categorical cross-entropy in the deep learning literature. In this thesis we will adopt both
terms and primarily use cross-entropy when studying loss functions from a information-
theoretic perspective.

More generally, the exponential family allows generative assumptions beyond additive
Gaussian noise and categorical distributions. Corresponding maximum likelihood ap-
proaches can be found in (Murphy, 2013, sec. 9.3). Before we relax above assumptions of
linear dependence between inputs x and targets y using deep neural networks, we briefly
review some core concepts from information theory.

2.1.3 Information Theory

Information theory is tightly related to machine learning, such that many algorithms
can be developed and studied via information-theoretic considerations (see e.g. in section
6.4.2 of this thesis). A pivotal concept is the relative entropy/ Kullback-Leibler divergence,
which can be interpreted as the dissimilarity of a probability distribution ¢ to a reference
distribution p, see (Cover and Thomas, 2006, sec. 2.3):

Definition 2.9 (Kullback-Leibler divergence). Let p, q denote two probability density func-
tions on €, where the support of p is contained in q (supp(p) C supp(q)). Then, the
Kullback-Leibler (KL) divergence is defined as

Diap(v) ) = |, p(o)log 23

Further, we write in short Dir(p || q).

The KL-divergence is not a metric since it is not symmetric and does not satisfy the
triangle inequality. But it is always non-negative and zero if and only if p = ¢, see (Cover
and Thomas, 2006, Thm. 2.6.3):

Lemma 2.10 (Information Inequality). Let p,q be defined as in Definition 2.9. Then,

Dkr(p | q) >0,

where D (p || ) =0 if and only if p = q almost everywhere.
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Proof. Following (Cover and Thomas, 2006), we have

—Dkr(pll q) = /Q/ p(v) log E gdv Ey [log ]ZEZ;] <logEy [ZEZH

= log p(v)ﬁdv =logl =0,

o p(v)

where the inequality follows from Jensen’s inequality. Furthermore, the integral simplifies
because [, q(v)dv = 1 due to g being a probability density function. Equality holds, iff
we have equality in Jensen’s inequality, which occurs iff p = ¢ almost everywhere. ]

Based on the Kullback-Leibler divergence, we can further define mutual information (MI)
as a key quantity to measure dependence between random variables, see (Cover and
Thomas, 2006, sec. 2.3 and 2.5). MI will be a crucial property in information-theoretic
considerations in section 6.4.2.

Definition 2.11 (Mutual information (MI)). Let X,Y be random variables on spaces X,
Y with joint probability density p(x,y) and marginal densities p(x), p(y). Then the mutual
information based on the Kullback-Leibler divergence (see Definition 2.9) is defined as

HX:Y) = Diaplo) | palp) = [ plava)og mdﬂc dy.

For a discrete random variable y, the integral turns into a sum over all possible events ).
The conditional mutual information with random variable Z is defined as

p(z,ylz)
IX;YZ:/ g, 2)log DY) g s
GYIZ) = [z PO 02108 sy e W 42

Besides mutual information, we introduce the notion of entropy, see (Cover and Thomas,
2006, sec. 2.2 and sec. 9.1) first to understand properties of mutual information and second
to understand the connection between the Kullback-Leibler divergence and negative log-
likelihood.

Definition 2.12 (Entropy, joint entropy, conditional entropy). Let Y be a discrete ran-
dom variable on Y and X be a continuous random variable on X with marginal densities
p(y),p(x). Then the entropy H(Y) and differential entropy h(X) are defined as

Zp ) log p(y
h(X) = - /X p() log p(a)da.

The joint entropy for continuous random variables X,Y with joint density p(x,y) is defined
as

WX,Y) = - /X Pl logp(.y)d dy.

Furthermore, the conditional entropy is defined as

W(Y1X) = [ p@h(v|X =)z =~ [ p(@) [ plla)ogp(yix)dy .
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After introducing above information-theoretic quantities, we state some properties of mu-
tual information and entropy, see (Cover and Thomas, 2006, Thm. 2.4.1, Thm. 2.5.2 and
Thm. 2.8.1).

Lemma 2.13 (Properties of mutual information (MI) and entropy). Let X,Y,Z be con-
tinuous random wvariables and D : X — Z be a deterministic transform. Then following
properties hold:

(i) MI and entropy: I(X;Y) = h(Y) — h(Y|X)
(ii) Chain rule of MI: I(X;Y,Z)=1(X;Y)+ I(X; Z]Y)
(i4i) Data processing inequality of MI: I(X;Y) > I(D(X);Y).

Proof. See (Cover and Thomas, 2006) for the proofs, in particular we refer for (i) to
Theorem 2.4.1, for (ii) to Theorem 2.5.2. and for (iii) to Theorem 2.8.1. O

Furthermore, there is a tight connection between the Kullback-Leibler divergence and
maximum likelihood estimation (MLE), see (Shalev-Shwartz and Ben-David, 2014, sec.
24.1.2). This equivalence allows us to reason statistically via MLE or in an information-
theoretic manner via the Kullback-Leibler divergence.

Lemma 2.14. Let p denote the pdf of a random variable V. ~ D and let pg denote the
likelthood function of a parametric model. Then, minimizing the negative log-likelihood is
equivalent to minimizing the Kullback-Leibler divergence between p and pg, hence
Orvre € argmin By p [—log pp(v)] = argmin D1 (p || pe).
€O 0co

Proof. Following the derivation in (Shalev-Shwartz and Ben-David, 2014, sec. 24.1.2), it
holds

L 1
= /Q p(v) log 70(0) + p(v)log p(v) + p(v) log mdv

— [ p)lo ”du+/ v)log o

=Dgr(p | PG) +h(V),

where h(V') denotes the (differential) entropy (Definition 2.12). Since h(V') is independent
of 8, the claimed equivalence holds. O

We return to information-theoretic considerations in the overview of deep generative mod-

els in chapter 5.

Further, we leverage several of the presented properties to derive an al-
ternative loss function in section 6.4.2. For an extensive treatment of information theory
we refer to (Cover and Thomas, 2006) and for an advanced mathematical introduction
to (Polyanskiy and Wu, 2015). After reviewing some fundamental goals of learning, we

introduce deep neural networks in the subsequent section.
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2.2 Deep Neural Networks

Deep learning had a major impact on many fields such as computer vision, natural language
processing, speech recognition, reinforcement learning and artificial intelligence in general,
see e.g. (LeCun et al., 2015). A cornerstone of deep learning is to compose the processing
from raw inputs to targets via a cascade of differentiable transforms. This in turn enables
learning in an end-to-end fashion via gradient-based approaches. Often, this concept is
referred to as representation learning and is implemented by deep neural networks.

In this section, we introduce the main mathematical concepts used in the subsequent
chapters. While there are plenty of resources that build up an intuition of deep neural
networks, we focus on technical aspects and aim towards a brief introduction. For a broader
discussion on deep learning, we refer to (Goodfellow et al., 2016).

2.2.1 Feedforward Neural Networks

Neural networks are usually defined as a composition of parametrized affine and non-
linear activation functions. In this thesis, we focus on feedforward neural networks as

defined below:

Definition 2.15 (Basic feedforward neural network). Let L denote the number of layers,
then we call Fy : RY —» RY ¢ (basic) feedforward neural network with L layers if

Fy=fyo-ofj,
where
fo(a') = ¢'(A'%" + ), iell]

denotes a layer. Further, A* € R™*"i s called a linear layer, b* € R™ a bias and ¢' an
elementwise non-linear function. This elementwise function ¢' : R™i — R™: transforms
each element separately as

¢*(z1)
¢'(z) = : ;
by using a non-linear activation function ¢*. Note, that the input/output dimension of Fy
fizes the dimension of AL € R¥*"L gnd A' € R™*4 while all inner dimension can be

freely chosen but must match m; = n;y1. The vector 8 € RP will be called the parameters of
the neural network and comprises all free entries of the linear layers and biases. Formally,

0= (0p2par(AL), op2par(bl), ..., op2par(Al), op2par(b1)> ,

where op2par(A?) and op2par(b') is an operation-to-parameter mapping. The ' are called
activations of input x in layer 1.
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Example 2.16 (Operation-to-parameter mapping). As there are many ways to
parametrize the operations in a neural network (most prominently, dense and convolutional
parametrization), we introduce the operation-to-parameter mapping op2par to formalize
the relationship between parameters and operation. For example, consider the matrices

a1l a a1 a
Al (G a2 and A2 — (@ @ ,
a1 a2 az a2
where the matriz A% has shared parameters.
Then, we have op2par(A') = (a11, as1, a12,az) and op2par(A?) = (ay,az). Note that we

also use op2par for the biases b® since parameters can be shared for biases as well (e.g. in
convolutional layers).

Similarly to the above abstraction, one can think of a parameter-to-operation mapping
which builds the operations like a matrix multiplication via a given parameter vector.
In general, these considerations are an abstraction to describe the connection between
parameters and operations in the neural network. The architecture of the neural network
then comprises all hyper-parameters like the depth L, the width in each layer m; and the
implementation of the mappings between parameters and operations.

We further introduce the following:

Example 2.17 (Vectorization). Let A € R™*™ and vec(A) denote the columnwise stacking
of the matriz A into a vector R™™. For A' and A? from Example 2.16, it is

Vec(Al) = (a11,a21,a12,a22) and VGC(A2) = (a1, a9, a1,a9).

Note, that op2par(A2?) # vec(A?) since parameters are shared, while op2par(A') =
vec(AY).

Using above definitions and abstractions, we define:

Definition 2.18 (Multi-Layer perceptron). Let Fy be as in Definition 2.15. If
op2par(A’) = vec(AY), Vie L],

we call Fy a multi-layer perceptron (MLP). Furthermore, we call the matrices A® fully-
connected or dense.

The term fully-connected refers to viewing each output of a hidden layer fg as a neuron
and considering the matrix A’ as the connection between neurons in layer ¢ and i — 1.
For an intuition and connections of (artificial) neural networks to neuroscience, we refer
to (Goodfellow et al., 2016).

The introduction of feedforward neural networks allows a generalization of linear regression
(see section 2.1.2) and, more importantly for further considerations, a generalization of
multi-class logistic regression (see Definition 2.7):
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Definition 2.19 (Multi-class classification with neural networks). Let = € R? denote the
inputs and let labels y € {0,1}C (one-hot encoded) be categorically distributed as

C
Cat(y | ) = [ =",
k=1

where I[-] denotes the indicator function and py is the probability that y is from class
k. Multi-class classification with o feedforward neural network Fy : R® — RS can be
formulated via

exp(Fy(x
oY = | X = ) = softmax(Fy(a))s = ,S,lpe(x If((iji)k/),

where Y = k denotes that the target is from class k.

As it turns out, above generalization using neural networks is very powerful from an
approximation-theoretic point of view. It is regarded as an universal approximator of
continuous functions on bounded domains when using at least one hidden layer, non-
polynomial activation functions ¢ and the width is allowed to grow infinitely, see (Cybenko,
1989) for an early result or (Goodfellow et al., 2016) for an overview.

Besides the affine mappings, the non-linear activation function ¢* is an important property
of a neural network. Following common activation functions will be discussed in this thesis:

e Rectified-linear unit (Glorot et al., 2011): ReLU(x) = max(x, 0)
e Hyberbolic tangent: tanh(z)

e Exponential linear unit (Clevert et al., 2016): o« > 0

0
ELU(z) =4 " Ty

ale® —1), else

For an overview of most common activation functions, we refer to (Goodfellow et al., 2016).
While this section covers basic feedforward neural networks, many variants are developed.
One of the most prominent subtype of feedforward neural networks are convolutional
neural networks, which will be introduced in the next section.

2.2.2 Convolutional Neural Networks

While MLPs are powerful models from an approximation-theoretic point of view, they
do not incorporate any knowledge about the input structure. Especially images are very
structured as neighboring pixels are often strongly correlated. A well-suited operation for
such correlation structures are convolutions.

In this section, we take a rather technical approach to define convolutional layers on 2D
spatial data with multiple channels. In particular, we follow the notation in (Sedghi et al.,
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2019), which allows us to discuss the matrix structure underlying a convolutional layer in
a precise manner. Moreover, we focus on the circular convolution which allows to transfer
the convolution theorem from the continuous domain to discrete data. Further remarks
about different variants of discrete convolution are given at the end of the section.

First, we start by considering only a single filter:
Definition 2.20 (2D circular discrete convolution). Let X € R¥*? be an input image
and W € RF¥*F be the convolutional filter. Further, let W € R%? be the zero-padded

convolutional kernel, where W;; = Wij if index i < k and j < k and W;; = 0 else. Then,
the circular discrete convolution corresponds to the operation

d—1d-1
Y= Xivp%d jrg%aWprigrr 0.7 € [d],
p=0¢=0

where % denotes the modulo operation, with the exception that i % i = i.

In order to write above convolution as a matrix-vector operation, we first need the defini-
tion of a circulant matrix:

Definition 2.21 (Circulant matrix). Let a € R? (row vector), then we call the matriz

al a2 o .. ad
_ ag ar - ag—1
circ(a) =
a2 a3 .. al

a circulant matriz defined by row vector a. Thus, by definition it is op2par(circ(a)) = a.

Then, we can write the 2D circular discrete convolution as a matrix-vector product using
a doubly block circulant matrix, see (Sedghi et al., 2019):

Lemma 2.22. Let X, W be as in Definition 2.20. Further, let X = vec(X), Y = vec(Y)
be the vectors obtained by stacking the columns of X, Y. Then,

YV = AX,

where A € RE*® s g doubly block circulant matrixz (see Definition 2.21)

circ(Wy,:) circ(Wa.) ---  circ(Wy.)
circ(Wg,.) circ(Wy,.) --- circ(Wg-1,)
circ(Wa.) circ(Wa.) ---  circ(Wy,)

where W . denotes the i-th row of W. Thus, by definition it is op2par(A) = vec(W), where
vec denotes the vectorization of the 2D-matriz W (see Example 2.17).
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Hence, a single filter on 2D spatial inputs already induces two hierarchies: circulant matri-
ces due to circular convolution and block structure due to 2D inputs. Yet, in convolutional
layers there is another dimension, the so-called channel dimension. Thus, we consider in-
puts X € R™*4Xd with m channels. Furthermore, let n denote the number of output
channels of the convolutional layer.

Definition 2.23 (Convolutional layer). Let X € R™*4%d gnd W € R&XXm denote the
zero-padded 4D kernel tensor. Then, a convolutional layer implements the multi-channel
convolution as

m d—1 d—1
Yoij =2 > Y Xiitp%d jrq%d Wottgrielr 467 € [d], ¢ € [n],
I=1 p=0 ¢=0

where % denotes the modulo operation, with the exception that i % i = i.

This operation can be written via matrix-vector products as follows, see (Sedghi et al.,
2019):

Lemma 2.24 (Convolutional layer as matrix-vector product). Let X, W be as in Defini-
tion 2.25. Then, we can write a convolutional layer as a matriz-vector product

Y = AX,
where A € R xmd o o block matriz
Ayg o Ay
Anl e Anm

where each A;; is a doubly circulant matriz from Lemma 2.22. Thus, by definition it

is op2par(A) = vec(W), where vec denotes the vectorization of the 4D-tensor W (see
Ezample 2.17).

Hence, the multi-channel convolution of a convolutional layer introduces a third hierarchy
into the operation. While above considerations are of rather technical nature, they are
helpful to grasp several properties of convolutional layers:

e They allow to compute singular values efficiently in comparison to a naive compu-
tation on A, see (Sedghi et al., 2019).

e They serve to understand the construction of the matrix-vector product structure un-
derlying convolutional layers. Hence, convolutional neural networks (CNNs), where
(some) linear layers are implemented via convolutional layers, are sub-classes of feed-
forward neural networks.

e Convolutional layers are highly structured by using parameter sharing, see also
(Goodfellow et al., 2016). Hence, 8(A) # vec(A) as in MLPs. Instead, 6(A) =
vec(W), where W corresponds to the non-padded convolutional kernel.
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In practice, however, convolutional layers are often modified in several ways. The most
common modification from the circular convolution presented in this section, are different
ways to handle image boundaries like same/ valid convolution. Furthermore, strided con-
volutions apply the convolutional kernel not at every spatial position as introduced above.
The main idea of this operation is to downsample the spatial dimension. For an extensive
discussion on different choices of convolutional layers, we refer to (Goodfellow et al., 2016).

While we introduced the most basic concepts of MLPs and CNNs, there are more building
blocks in practice like:

e Pooling layers to downsample the spatial dimension, see (Goodfellow et al., 2016)

e Normalization layers like batch normalization (Ioffe and Szegedy, 2015) or spectral
normalization (Miyato et al., 2018)

e Dropout layers, see (Srivastava et al., 2014).

To summarize, we have introduced deep neural networks as a generalization of linear
models (Def. 2.19). Furthermore, the goal of learning was formulated using a risk function
(Def. 2.1) which needs to be approximated by an empirical risk (Def. 2.2). Yet, there is
still one missing piece: how to find an empirical risk minimizer (Def. 2.3)7 This learning
step will be discussed in the following section.

2.2.3 Learning Neural Networks

We begin by considering the empirical risk of hypothesis F € F, which was defined in
Definition 2.3 as
1 :
Lr(F) = & Y (F,o),

i=1

where T = {v®}Y | is an iid. training set with ) € @' and a loss ¢ as defined in
Definition 2.1. Since neural networks are parametric models with 8 € O, we consider ERM
in parameter space © instead of minimization directly in the hypothesis space F.

Definition 2.25 (ERM with neural networks). Let T denote a training set and Fy a
neural network. Then, when assuming an argmin

N
1 ,
0* € argmin Ly (Fy) = argmin — E U(Fp,v™)

90 oo N o

exist, we define the parameter 0* as the empirical risk minimizer for a neural network Fy«
within the parameter space and model architecture.

The most common approach to finding such a parameter 6* is via gradient-based meth-
ods. However, following often encountered situation makes computing the full-gradient
Vo L7(0) prohibitive in practice:
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e high-dimensional inputs like high-resolution images, spectral data, sound etc.

e large number of training points like 1.2 Mio. images in the ImageNet dataset (Deng
et al., 2009)

e large neural networks like typical CNN-based image classifiers.

Thus, a stochastic approximation is usually preferred, see (Goodfellow et al., 2016):

Definition 2.26 (Stochastic gradient descent). Let L7 (Fy) denote the training loss, which
is differentiable with respect to 6. Further, let L1(Fy) an unbiased estimate of the training
loss, i.e.

E |Ly(Fy)| = LT (F). (2.1)

Furthermore, let 0% € © be an initial parameter vector. Then, stochastic gradient descent
(SGD) is defined via the update rule

0[k+1] _ a[k} Y VQIA/'[]]E}(FH[’“]) ke [K]a

where K denotes the number of iterations, f,[7’f] is an unbiased estimate depending on
iteration k and A > 0 is the learning rate.

Remark 2.27. (Stochastic estimation of gradient) Note, that we deliberately did not spec-
ify the random variable over which the expectation in (2.1) is taken. Most commonly, the
i.1.d. training set T is randomly divided into M disjoint mini-batches T; such that

M ~
UTi=T.
i=1

Then, if D is a uniform distribution over i € [M], it holds

Eip [Lﬁ(Fg)] = L (Fy).

This approach is also called mini-batch SGD. Once all mini-batches were used for a gradi-
ent update, we call this set of SGD-steps an epoch. Furthermore, in chapter 5 we will look
into a loss function that requires estimation techniques to enable an efficient evaluation
even for a fized mini-batch.

While SGD is at the core of most optimization algorithms in deep learning, there are
plenty of variants and extensions. Most popular approaches are for instance either SGD
enhanced with momentum or adaptive algorithms like ADAM (Kingma and Ba, 2014).
Those adaptive algorithms employ a learning rate A separately for each entry of 6 based on
statistics of previous updates. For a discussion of optimization algorithms in deep learning,
we refer to (Goodfellow et al., 2016).

Besides choosing an optimization algorithm and a corresponding stochastic estimation of
the loss, being able to compute the gradient VgLﬁ_ (Fy) is crucial. An efficient algorithm for
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computing this gradient is backpropagation, see (Goodfellow et al., 2016) for an extensive
introduction. This algorithm can be analyzed via reverse-mode Automatic Differentiation
(AD) on computational graphs, which forms the basis of modern deep learning frameworks
like TensorFlow (Abadi et al., 2015) or PyTorch (Paszke et al., 2017).

Automatic differentiation is a set of techniques to numerically evaluate the exact gradient
up to machine precision (Deisenroth et al., 2019). AD works by building a computational
graph using intermediate values and the chain rule of differentiation to compute deriva-
tives. More formally, see (Deisenroth et al., 2019, sec. 5.6.2):

Definition 2.28 (Reverse-mode Automatic Differentiation (AD)). Let f : R? — R and
x € RY be the inputs, x; for i € [d] denoting each individual entry. Further, let z for
l € [D] denote intermediate features and let y = f(x) denote the output variable. Then,
assume that the computation graph can be expressed as

For 1 € [D], compute: 21 = Gi(Tpa(z))s (2.2)

where gi(+) are elementary functions like sin, cos,exp and xpg(.,) are the parent-nodes of
the variable z; in the computational graph. Given these functions, we can compute the
derivative of the function step-by-step with the chain rule. Recall, that % = 1. For other
variables x;, we apply the chain rule

. 9f _ Z of 0z Z af dg

Ti = 81‘1 (97218.%'Z - 872’[(9.1'17

(2.3)

{zp|zi€Pa(z)} {zp|zi€Pa(z)}

where Pa(z;) is the set of parent nodes of z; in the computational graph. The computation
in (2.2) corresponds to the forward pass of a neural network f and (2.3) to the backward
pass, hence the above is called reverse-mode AD.

Remark 2.29. Besides reverse-mode AD, there is also forward-mode AD which is more
suited to functions f : RY — RY where d' > d. Since d < d in most ML-tasks, or even
d = 1 if we compute derivatives with respect to a loss function, reverse-mode is more
common in machine learning (Baydin et al., 2018).

Besides allowing to calculate VoL (Fp) in an efficient and exact manner, reverse-mode
AD can compute vector-Jacobian products efficiently, see (Baydin et al., 2018): Let f :
R? — R? and let J;(z) denote the Jacobian of f at . Then for f(z) = (y1,...,ya) and
column-vector v € Rd/, the vector-Jacobian product

Iy Oy
ox1 T ox1
T . . .
(% Jf({L‘) = (Ul e Ud/) : :
Ay1 Oygr
ox; e oy

can be computed in a matrix-free/ implicit manner by setting & = v as the initialization
for the reverse-mode phase. This operations requires only a single reverse-mode AD call,
whereas a direct computation via instantiating J¢(z) would require d’ reverse-mode AD
calls. While these considerations may appear rather technical at this stage, this efficient
computation of vector-Jacobian products will be crucial in chapter 5.
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To summarize, learning neural networks builds upon two main pillars: First, stochastic
gradient descent (SGD) allows efficient optimization of the weights. Second, gradients of
even complex neural networks can be efficiently computed via backpropagation or more
generally reverse-mode automatic differentiation.

So far we have introduced the main ideas of learning and deep neural networks, which
serve as the foundation of this thesis. The next section aims to bridge these fundamental
concepts with the research contributions in the subsequent chapters.

2.2.4 Goals of Thesis and Overview

The universal function approximation theorem (Cybenko, 1989) claims that even basic
feedforward neural networks (Definition 2.15) are able to represent any continuous func-
tion on a bounded domain. Yet, modern deep neural network architectures like Residual
Networks (He et al., 2016) or Universal Transformers (Dehghani et al., 2019) move further
and further away from this vanilla architecture.

Following this trend, the goal of this thesis is to study non-standard designs of neural
network architectures in a principled manner. In particular, we will focus on two design
principles:

e Design of invertible neural networks

e Design of neural networks architectures based on domain knowledge.

In mathematical terms, this thesis focuses on certain hypothesis spaces F, which serve as
an inductive bias for empirical risk minimization

F* € argmin Lp(F).
FeF

In the first part, we study neural networks F' which build a hypothesis space of (partly)
invertible functions. We begin by analyzing the invertibility of standard architectures in
chapter 3. In particular, preimages of ReLU-layers and inverse stability are investigated
from a theoretical and empirical perspective. This stability analysis then lead us to the
idea of invertible residual networks in chapter 4. Based on invertible residual networks,
chapter 5 discusses the application to maximum likelihood based generative modeling. The
main part on invertible networks then ends with a reverse view on adversarial examples
in chapter 6. In that chapter, a modification of common loss functions Lp(F') based on
information-theoretic considerations is proposed.

After an in-depth analysis of invertible neural networks, chapter 7 introduces a convolu-
tional neural network architecture which reflects the domain knowledge of mass spectra
obtained from Imaging Mass Spectrometry measurements. This architecture is then ap-
plied to tumor classification and compared to other approaches. Finally, a conclusion
summarizes the thesis and discusses future work.



Chapter 3

Invariance and Inverse Stability
under ReLLU

"There is mothing more practical than a good theory" - Kurt Lewin.

This chapter analyzes standard feedforward networks through the lens of invertibility. In
particular, we link invariance to the preimage of activations of ReLU-layers and robustness
to inverse stability. These insights will motivate the inclusion of additional structure in
subsequent sections, which enables control over the preimage and inverse stability of neural
networks.

This section is mainly based on the following article:

Jens Behrmann, Séren Dittmer, Pascal Fernsel, Peter Maass: Invariance and in-
verse stability under ReLU, 2019, (submitted to IEEE Transactions on Neural Net-
works and Learning Systems)

3.1 Introduction and Motivation

Invariance and stability /robustness are two of the most important properties character-
izing the behavior of a neural network. Due to growing requirements like robustness to
adversarial examples (Szegedy et al., 2014) and the increasing use of deep learning in
safety-critical applications, there has been a surge in interest in these properties. They
are key mechanisms for dealing with uninformative properties of the input (Achille and
Soatto, 2018; Mallat, 2016) and are studied from the information-theoretic perspective in
form of the loss of information about the input (Tishby and Zaslavsky, 2015; Saxe et al.,
2018).

Invariance and stability are also tightly linked to robustness against adversarial attacks
(Cisse et al., 2017; Tsuzuku et al., 2018; Simon-Gabriel et al., 2018), generalization (Sokoli¢
et al., 2017; Gouk et al., 2018) and even the training of Generative Adversarial Networks
(Miyato et al., 2018). In general, stability is studied via two basic properties:

21
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e Locally via analyzing a norm of the Jacobian, see e.g. (Sokoli¢ et al., 2017; Simon-
Gabriel et al., 2018).

e Globally via bounding Lipschitz constants, see e.g. (Cisse et al., 2017; Miyato et al.,
2018; Tsuzuku et al., 2018).

From a high-level perspective, each of these approaches studies an upper bound on stability.
Both the Lipschitz constant and Jacobian norm quantify the highest possible change under
a perturbation with a given magnitude. We, unlike the approaches above, aim to broaden
our understanding by analyzing the lowest possible change under a perturbation.

More formally, we study which perturbations Az that do not (or only little) affect the
outcome of a network F'. Note that we dropped the dependence of F' on parameter 6, since
we are not concerned with learning in this chapter. Our analysis considers a given input
data point x and investigates the Ax’s, such that

F(z) = F(z + Ax) (invariant)
or ||F(x)—F(x+ Az)|| <e (stable),

where a small £ > 0 is given. In particular, if F' is invariant to perturbations Ax, then x
and x + Az lie in the preimage of the output z = F(z), i.e. F' is not uniquely invertible.
Robustness towards large perturbations induces an instable inverse mapping as small
changes in the output can be due to large changes in the input.

While these properties may be influenced by many factors, we simplify the setting by:

(i) Focusing on vanilla feedforward networks with ReLU-activations (see Def. 2.15)

(ii) Only providing conditions, when certain properties are fulfilled. Thus neglecting the
influence of the data distribution and learning algorithm.

In particular, we characterize the preimage of ReLU-layers as a single point (singleton),
finite (bounded) or infinite (unbounded). Further, we study the stability of the linearization
of rectifier networks via its singular values.

To illustrate these locally changing properties and to demonstrate their tight connec-
tion, we visualize the behavior on a synthetic problem in Figure 3.1. As ReLU-layers are
piecewise linear, the local behavior is constant on convex polytopes (Raghu et al., 2017).
Further, the regions with infinite/finite preimages correspond to regions with condition
number of one or zero, while singleton preimages link to condition numbers larger than
one. Thus, both properties are tightly connected and investigating one property alone
would yield only an incomplete picture.

3.2 Related Work

While analyzing invariance and robustness properties is a major topic in theoretical treat-
ments of deep networks (Mallat, 2016), studying it via the inverse is less common. Several
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Figure 3.1: Left: Prediction of a small ReLU-network (one hidden layer with 3 neurons)
trained to distinguish samples from two circles. Mliddle: Characterization of the preimage
of first layer activations into unbounded (infinite), compact (finite) or unique (a single
point). Right: Condition of the linearization of the first layer at each point.

works like (Mahendran and Vedaldi, 2015), (Mahendran and Vedaldi, 2016) or (Dosovit-
skiy and Brox, 2016) focus on reconstructing inputs from features of convolutional neural
networks (CNNs) to visualize the information content of features. Instead, we investigate
potential mechanisms affecting the invertibility.

(Carlsson et al., 2017) give a first geometrical view on the shape of preimages of outputs
from ReLU layers, which is directly related to the question of injectivity of the mapping
under ReLU. (Shang et al., 2016) analyze the reconstruction property of cReLU (concate-
nated ReLU); however, the more general situation of using the standard rectifier is not
studied. A notable other line of work assumes random weights in order to derive guaran-
tees for invertibility, see (Gilbert et al., 2017) or (Arora et al., 2015), whereas we focus on
the preimage of ReLLU-activations without assumptions on the weights.

Two main resources for our view of rectifier networks as piecewise linear models are (Mont-
ufar et al., 2014) and (Raghu et al., 2017). Closest to our approach is the work of (Bruna
et al., 2014) on global statements of injectivity and stability of a single layer includ-
ing ReLU and pooling. The authors focus on global injectivity and stability bounds via
combinatorial statements over all configurations attainable by ReLLU and pooling. These
conditions are valid on the entire input space, while the restriction to parts of the input
space may yield situations far from these worst-case conditions.

3.3 Pre-Images of ReLU Layers

In this section, we analyze different kinds of preimages of a ReLLU-layer and investigate
under which conditions the inverse image of a given point is a singleton (a set containing
exactly one element) or has finite/infinite volume.

The analysis of preimages of a given output can be studied in two ways: 1) study single
layers separately or 2) multiple layers at once. Note that, the concatenation of two injective
functions is again injective, while a non-injective function followed by an injective function
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(a) (b) (c) (d)

Figure 3.2: Visualization of omnidirectionality: gray lines are hyperplanes with normal
vectors (arrows) from the rows of A and translation b. (a) Omnidirectional tuple (A4,b)
for p € R?, as hyperplanes intersect in p and normal vectors are omnidirectional. (b)

ZA A

Intersection in p, but vector-free halfspaces (hence, not omnidirectional). (c¢) Intersection
in p, but vector-free halfspaces (hence, not omnidirectional). (d) Hyperplanes do not
intersect in a point, but normal vectors are omnidirectional.

is non-injective. Hence, studying single layers is crucial. We therefore develop a theory for
the case of single layers in this section. Notice that in case of multiple layers one is also
required to investigate the image space of the previous layer.

We will focus our study on the most common activation function: ReLU. One of its key
features is the non-injectivity, which is caused by the constant mapping on the negative half
space. It provides neural networks with an efficient way to deploy invariances. Basically
all other common activation functions are injective, which would lead to a straightforward
analysis of the preimages. However, injective activations like ELU (Clevert et al., 2016)
and Leaky ReLU (Maas et al., 2013) only swap the invariance for robustness, which in
turn leads to the problem of having instable inverses. This question of stability will be
analyzed in more detail in Section 3.4.

We start by introducing one of our main tools:

Definition 3.1 (Omnidirectionality). We define following geometric properties of linear
and affine mappings:

i) A € R™*" is called omnidirectional if every linear open halfspace in R™ contains a
row of A, i.e. for every given x € R™\ {0} there exists an index i € [m], such that
(aj,x) > 0, where a; is a row of A and (-,-) denotes the Euclidian inner product.

ii) A € R™™ and b € R™ are called omnidirectional for the point p € R™ if A is
omnidirectional and b = — Ap.

Consider a matrix A which is omnidirectional: Then, for every direction of a hyperplane
through the origin forming two halfspaces, there is a vector from the rows of A inside each
open halfspace. Hence, the term omnidirectional (see Figure 3.2 for an illustration). Note
that the hyperplanes are due to ReLU as it maps the open halfspace to positive values and
the closed halfspace to zero. A straightforward way to construct an omnidirectional matrix
is by taking a matrix whose rows form a spanning set F and use the vertical concatenation
of F and —F. This idea is related to cReLU (Shang et al., 2016).

Omnidirectionality is directly related to the ReLU-layer preimages and will provide us
with a method to characterize their volume (see Theorem 3.3). To analyze such inverse
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images, we consider y = ReLU(Az +b) for a given output y € R™ with A € R™*" b € R™
and z € R". If we know A, b and y, we can write the equation as the mixed linear system

A|y>0x + b‘y>0 = y|y>0 (3.1)
A|y:0w + b‘y:() =0,

where A|yso denotes the restriction of the matrix A to the rows, which are specified by
the index set {i : y; > 0}. Further, the notation y < 0 refers to the elementwise relation
for vectors y € R,

Remark 3.2. [t is possible to enrich the mized system to include conditions/priors on x
(e.g. x € RYy).

The inequality system in (3.2) links its set of solutions, and therefore the volume of the
preimages of the ReLU-layer, with the omnidirectionality of A and b. For this we define

A= A07T,

where O € R¥*™ denotes an orthonormal basis of the null-space N(A|,~0) with k :=
dim NV (Alys-0). Further, we define

b= bly=o + Aly=0(Prr(al,,.0)- ),

where Py, denotes the orthogonal projection into the closed space V. By using these defi-
nitions, we are ready to state the main result in this section:

Theorem 3.3 (Preimages of ReLU-layers). Let A,b and k = dim N (A|,0) be as above.
The preimage of a point y under a ReLU-layer is

i) for k =0 a singleton.

ii) for k > 0 a singleton, if and only if there exists an index set I for the rows of A and
b, such that (A|7,b|;) is omnidirectional for some point p € R

iii) for k > 0 a compact polytope with finite volume, if and only if A is omnidirectional.

Proof. We refer to (Behrmann et al., 2018a***) since this proof requires the introduction
of some technical Lemmas. O

Thus, omnidirectionality allows (in theory) to distinguish whether the inverse image of a
ReLU-layer is a singleton, a compact polytope or has infinite volume. In (Behrmann et al.,
2018a***), omnidirectionality is further linked to the convex hull spanned by the rows of
A. This allows to derive an algorithm to check uniqueness of the preimage based on linear
programming.

After discussing these qualitative insights into the preimage of RelLU-layers, we next turn
to the study of inverse stability to extend our understanding of the invertibility of ReLLU-
networks.
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3.4 Inverse Stability under ReLU

3.4.1 Theoretical Analysis

In this section, we analyze the robustness of rectifier MLPs (see Definition 2.18) against
large perturbations via studying the stability of the inverse mapping. In particular, we
study the effect of ReLLU on the singular values of the linearization of network F'. While the
linearization of a network F' at some point z only provides a first impression on its global
stability properties, the linearization of ReLU networks is exact in some neighborhood due
to its piecewise-linear nature (Raghu et al., 2017). In particular, the input space R? of a
rectifier network F' is partitioned into convex polytopes Pg, corresponding to a different
affine function on each region (see Figure 3.1). Hence, for each polytope P in the set of all
input polytopes Pr, the network F' can be simplified as F'(x) = Apxz + bp for all x € P.

In particular, each of the linearized matrices Ap can be written via a chain of weight
matrix multiplications that incorporates the effect of ReLU. To this end, the following
definition from (Bruna et al., 2014) introduces 1) admissible index sets that formalize all
possible local behaviors and 2) diagonal matrices to locally model the effect of ReLU, see
(Wang et al., 2016):

Definition 3.4 (Admissible index sets, ReLU as diagonal matrix). We introduce the fol-
lowing notation:

(i) An index set I' for a layer | is admissible if
ﬂ {xl : <azl,aé> > —b;i}N ﬂ {azl : (xl,ab < —b} #10,
igI! icll

l

where ak is a row of Al.

(ii) Further, let Dy denote a diagonal matriz with (D) = 1 for i & I and (Dy)y =0
for i € I, where I is an admissible index set. Using this notation, the mapping of
pre-activation z € R% under ReLU can be written as

ReLU(z) = Dyz  with I = {i € [d] : z; < 0}.

Thus, the linearization Ap of a network with L layers is a matrix chain
Ap=A'D ALY D AL
where A! are the weight matrices of layer [ and

I' = {i e [d] : (Ala!1 +bh); <0}

Of special interest for a stability analysis is the range of possible effects by the application of
the rectifier. Since the effect by ReLLU corresponds to the application of Dy for admissible I,
we now turn to studying the changes of the singular values of a general matrix A compared
to Dy A. For example, the matrix A could represent the chain of matrix products up to
pre-activations in layer [. Then, the effect of ReLLU can be globally upper bounded:
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Lemma 3.5 (Global upper bound for largest and smallest singular value). Let o; be the
singular values of Dy A. Then for all admissible index sets I, the smallest non-zero singular
value is upper bounded by min{o; : o7 > 0} < &y, where k = N —|I| and &1 > ... > 65 >0
are the non-zero singular values of A.

Furthermore, the largest singular value is upper bounded by max{o; : oy > 0} < 71.

Proof. The upper bound on the largest singular value is trivial, as ReLU is contractive as
|DrAz|j2 < ||Az||2 for all I and x € R™.
To prove the upper bound for the smallest singular value, we assume

oy = min{o; : 07 > 0} > Gy, (3.3)

and aim to produce a contradiction. Consider all singular vectors o« with k* > k from
matrix A. It holds for all vy«

O > O = ||AOp+||2 > || Dr A+ ||2, (3.4)
as Dy is a projection matrix and thus non-expansive. As

oM = min ”D]AJIHQ,
[[=]l2=1

xE./\[(D]A)L

all o~ € N(DrA)*+. Otherwise, a U+ would be a minimizer by estimation 3.4, which would
violate the assumption 3.3.

Due to N(DrA)* @ N(DrA) = R”, it holds @y« € N(DjA). As @ are orthogonal,
dim(span(vg+)) = [I| + 1 (note: k* = k,...,N and k = N — |I|, thus there are |I| + 1 sin-
gular vectors vg+ in total). Furthermore, 0+ are not in N (A) by definition (corresponding
singular values are strictly positive).

Hence, the nullspace of Dy must have dim(N (Dy)) > |I|+ 1. But Dy is the identity matrix
except |I| zeros on the diagonal, thus dim(N(Dy)) = |I|, which yields a contradiction. [J

Lemma 3.5 analyzes the best case scenario with respect to the highest value of the smallest
singular value. While this would yield a more stable inverse mapping, one needs to keep
in mind that A (Ap) grows by the corresponding elimination of rows via D;. Moreover,
reaching this bound is very unlikely as it requires the singular vectors to perfectly align
with the directions that collapse due to D;. Thus, we now turn to study effects which
could happen locally for some input polytopes P.

An example of a drastic effect through the application of ReLU is depicted in Figure
3.3. Since one vector is only weakly correlated to the removed vector and the situation is
overdetermined, removing this feature for some inputs x in the blue area leaves over the
strongly correlated features. While the two singular values of the 3-vectors-system were
close to one, the singular vectors after the removal by ReLU are badly ill-conditioned. As
many modern deep networks increase the dimension in the first layers, redundant situations
as in Figure 3.3 are common, which are inherently vulnerable to such phenomena. For
example, (Rodriguez et al., 2017) proposed a regularizer to avoid such strongly correlated
features. The following lemma formalizes the situation exemplified before:
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Figure 3.3: Removal of vectors due to ReLU (red crosses) for the marked points x. The
remaining vectors are only weakly correlated to the removed one, thus yielding an unstable
inverse. Left: Unbiased case with b = 0, Right: Biased case with b # 0.

Lemma 3.6 (Removal of weakly correlated rows). Let A € R™ ™ with rows a; and
I C [m]. For a fited k € I (I admissible) let ar € N(DrA)*, where N denotes the

null-space. Moreover, let

l|akl|2
/M )

with M = m—|I| and constant ¢ > 0. Then for the singular values oy # 0 of D1 A, it holds

Vi g1 [{aj,ar)| <c (3.5)
0 < ox =min{o;: 07 #0} < c.
Proof. Consider v = ”;ﬁ Then,
(DrAv)y, =0,

since k € I (k-th row of Dy is zero). Furthermore, for all j # k it holds by condition 3.5

(ag,aj) _ |[{a,a;)] c
DiAv); = < < .
Drdv)i = Taile = Tanle = Vaz

Hence,

e (5 () o (i) =

As a, € N(DrA)Y, v € N(DjA)* as well. Thus,

oK = min ID1A|2 < | DrAvl|z < c.
T2
‘Z‘E./\/’(D[A)L

O]

Lemma 3.6 provides an upper bound on the smallest singular value, given a condition on
the correlation of all a; and a;. However, the condition 3.5 depends on the number M
of remaining rows a;. Hence, in a highly redundant setting, even after removal by ReLU
(large N), ¢ needs to be large such that the correlation fulfills the condition. Yet, in this
case the upper bound on the smallest singular value, given by ¢, is high.

Effect under multiple layers: For the effect of ReLLU applied to multiple layers, we are
particularly interested in following questions:



3.4. Inverse Stability under ReLU 29

e Can the application of another layer have a pre-conditioning effect yielding a stable
inverse?

e What happens when we only compose orthogonal matrices which have stable in-
verses?

Note e.g. that a way to enforce an approximate orthogonality constraint was proposed
for CNNs in (Cisse et al., 2017), however only for the filters of the convolution. For both
situations the answer is similar: the nonlinear nature of ReLU induces locally different
effects. Thus, if we choose a pre-conditioner A! for a specific matrix Algl, it might not
stabilize the matrix product for matrices Al};1 corresponding to different input polytopes
pP*.

For the case of composing only orthogonal matrices, consider a network up to layer [ — 1,
where the linearization Aé;l has orthogonal columns (assume the network gets larger, thus
Al]§1 has more rows than columns). Then, the application of ReLLU as in

A'DpAG?

removes the orthogonality property of the rows of A%l if setting entries in the rows
from I' to zero results in non-orthogonal columns (which is likely when considering dense
matrices). Hence, Dy Aﬁ;l is not orthogonal for some I'. In this case, the matrix product
A'Dy, Aé.? ! is not orthogonal, which results in decaying singular values.

This is why, even when especially designing the network by e.g. orthogonal matrices,
stability issues with respect to the inverse arise. To conclude this section, we remark that
the presented results are rather of a qualitative nature showcasing effects of ReLU on the
singular values. Yet, the analysis does not require any assumptions and is thus valid for
any feedforward network. Note that this includes CNNs without pooling as convolutional
layer can be expressed via matrix-vector products (see Definition 2.23). To illustrate some
quantitative effects, we provide numerical examples in the subsequent subsection.

3.4.2 Numerical Analysis

In this section, we show how the previously discussed theoretical stability properties can
be examined for a given network. In particular, we conduct experiments on CIFAR10
(Krizhevsky and Hinton, 2009) using two baseline CNNs (architectures in Table 3.1) using
the standard training setups from Keras (Chollet et al., 2015) (example cifar10_cnn).
Our CNNs use only strides instead of pooling and use no residual connections and normal-
ization layers. Thus, the architectures fit to the theoretical study as the strided discrete
convolution can be written as a matrix-vector multiplication (see Definition 2.23).

Singular values over multiple layers: Most interesting is the development of singular
values over multiple layer as several effects are potentially at interplay. Figure 3.4 shows
the evolution of all singular values in convolutional layers (layers 1-6, after application of
ReLU). While the shape of the curve is similar for layer 1-5, it can be seen that the largest
singular value grows. On the other hand, the small singular values decrease significantly.



Chapter 3. Invariance and Inverse Stability under ReLU

Table 3.1: Overview of WideCIFAR and ThinCIFAR architectures.

Index Type kernel size stride +# feature maps # output units

0 Input layer - - 3

1 Convolutional layer (3,3) (1,1) 32/ 32 -

2 Convolutional layer (3,3) (2,2) 64 / 32 -

3 Convolutional layer (3,3) (1,1) 64 / 16 -

4 Convolutional layer (3,3) (1,1) 32/ 16 -

5 Convolutional layer (3,3) (1,1) 32/ 16 -

6 Convolutional layer (3,3) (2,2) 64 / 32 -

7 Dense layer - - - 512

8 Dense layer (softmax) - - - 10

Note that this growth of the largest singular values is in line with observations in the ad-
versarial examples literature, see e.g. (Szegedy et al., 2014). While many defense strategies
like (Cisse et al., 2017) or (Jia, 2017) focus on the largest singular value, the behavior of
the smaller singular values is usually not studied.

Relationship between stability and invariance: While invariance is characterized
by zero singular values, the condition number only takes non-zero singular values into
account, see e.g. layer 6 in Figure 3.4. This tight relationship is further investigated in
Figure 3.4, which compares the output size, the condition number and the number of
non-zero singular values vs. the layers for WideCIFAR and ThinCIFAR. In combination
with lower output dimension, ReLU has a different effect for ThinCIFAR. The number of
singular values decreases in layer 5, which cuts off the smallest singular values, resulting in a
lower condition number. Yet, there are more invariant directions within the corresponding
linear region. For a visual comparison on the synthetic example see Figure 3.1.

Computational costs and scaling analysis: First, we remark that the linearization of
a network F for an input point x° can be computed via backpropagation. In particular,
reverse-mode automatic differentiation requires d’-calls, where d’ is the output dimension
of F' (see section 2.2.3 for more details). After acquiring the linearization Ap, computing
the full singular value decomposition (SVD) scales cubically with the dimension of Ap.
Especially, early CNN-layers have high dimensional outputs which may cause memory
issues when computing the entire SVD. We thus choose a small CNN trained on CIFAR10
as these inputs are only of size 32 x 32 x 3. To scale this analysis up to e.g. ImageNet with
VGG-networks, a restriction to a window of the input image is necessary to reduce the
complexity of the full SVD especially for early layers. See (Jacobsen et al., 2018), where
the linearization Ap was acquired only for an input window. Then, the SVD was computed
on this smaller matrix A, in order to estimate the stability of the entire i-RevNet trained
on ImageNet.
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Figure 3.4: Left: Decay of singular values over the layers of the network. Here, each layer
includes the convolution and ReLU-activation. Reported number are taken from median
over 50 samples. Right: Comparison of WideCIFAR (blue) and ThinCIFAR (red). Top:
number of output units per layer, Middle: number of singular values, Bottom: Behavior
of condition number, each curve over the layers. Here, layers are split into conv-layer
and ReL.U-activation layer. Singular values and condition number are the median over 50
samples from the CIFARI0 test set.

3.5 Conclusion and Future Work

We presented the study of the inverse as an approach to better understand the invariance
and robustness properties of ReLU networks. Particularly, we studied two main effects:

(i) Conditions under which the preimage of a ReLLU layer is a point, finite or infinite

(ii) Effects of ReLU on the inverse stability of the linearization.

By deriving approaches to numerically examine these effects, we highlighted the broad
range of possible effects. While above analysis allowed us to better understand the key
mechanisms affecting invertibility of rectifier networks, several limitations remain, which
could be tackled in future work:

Inverse stability for convolutional neural networks: For inverse stability, we con-
sider the linearization Ap = AYD;L-1 A¥~1... Dp Al for an input polytope P. In convolu-
tional networks, each A! implements a multi-channel discrete convolution. While singular
values of each A' can be efficiently computed by leveraging the convolutional structure,
see (Sedghi et al., 2019), the shared structure is not preserved in the matrix chain Ap due
to the application of ReLU (expressed via Dji). Thus, a tighter analysis that leverages the
convolutional structure in A’, compared to our general assumption of A’ being any linear
mapping, is not straightforward with current tools. Yet, advances in this direction would
certainly lead to further insights.

Extension of inverse stability across polytopes: In our stability analysis, we employ
a piecewise-linear viewpoint. This allows to characterize stability via the singular values
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of the linearization, which is exact within an input polytope. However, when considering
an e-ball B.(y) around a point y = Apz + b, to model e.g. reconstruction from noisy
activations y, further questions arise:

(i) Can all points in B.(y) be reached by an z* from the polytope P?

(ii) Are points from another polytope P’ mapping to points in B.(y)?

In this case, the inverse stability needs to be augmented by nonlinear considerations to
model movements between piecewise-linear regions.

Practical implications: Despite above limitations, the presented analysis on the preim-
ages of ReLLU-layers and inverse stability showed the breadth of potential effects arising
in standard architectures. In terms of network design, a major conclusion is that standard
networks allow only limited control over the invertibility. In particular:

e Injective activation functions (tanh, leakyReLU, ELU etc.) remove the discussed
preimages, but yield an instable inverse due to saturation.

e Regularizing correlations (Rodriguez et al., 2017) is connected to inverse stability
(see Lemma 3.6), but lacks a way to provide guarantees.

Hence, additional structure is required to allow for guaranteed invertibility of neural net-
works. In the following chapter, we present a principled way to design powerful bijective
and inverse stable networks by drawing inspiration from stability analysis.
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Invertible Residual Networks

The previous chapter gave an impression, why controlling the invertibility with standard
architectures is a difficult endeavor. By using the concept of stability, we thus introduce
specialized invertible neural networks based on residual connections and contractions.
After discussing the underlying concepts, we study the proposed invertible residual network
numerically and apply it to several image classification benchmarks.

This section is mainly based on the article:

Jens Behrmann, Will Grathwohl, Ricky T. Q. Chen, David Duvenaud, Jérn-
Henrik Jacobsen: Invertible residual networks, 2019, (International Conference on
Machine Learning (ICML))

The generalization to other norms is based on following article (article above only consid-
ered {9-norm):

Ricky T. Q. Chen, Jens Behrmann, David Duvenaud, Jorn-Henrik Jacobsen:
Residual Flows: invertible generative modeling, 2019, (under submission; early ver-
sion presented at: ICML workshop on Invertible Networks and Normalizing Flows)

4.1 Introduction and Motivation

Invertible networks have been shown to produce competitive performance on discrimina-
tive (Gomez et al., 2017; Jacobsen et al., 2018) and generative (Dinh et al., 2014, 2017,
Kingma and Dhariwal, 2018) tasks independently, albeit in the same model paradigm.
They typically rely on fixed dimension splitting heuristics, but common splittings in-
terleaved with non-volume conserving elements are constraining and their choice has a
significant impact on performance (Kingma and Dhariwal, 2018; Dinh et al., 2017). This
makes building reversible networks a difficult task.

To overcome this problem, we leverage the viewpoint of Residual Networks (He et al.,
2016) (ResNets) as an Euler discretization of ordinary differential equations (ODEs), see
(Haber and Ruthotto, 2018; Ruthotto and Haber, 2018; Lu et al., 2017; Ciccone et al.,
2018). In particular, we show that invertible ResNets (i-ResNets) can be constructed by

33
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Standard ResNet Invertible ResNet
Output Output

Depth

Input Input

Figure 4.1: Dynamics of a standard residual network (left) and invertible residual network
(right). Invertible ResNets describe a bijective continuous dynamic while regular ResNets
result in crossing and collapsing paths (circled in white) which correspond to non-bijective
continuous dynamics. Due to collapsing paths, standard ResNets are not a valid density
model.

simply changing the normalization scheme of standard ResNets. As an intuition, Figure
4.1 visualizes the differences in the dynamics learned by standard and invertible ResNets.

This approach allows unconstrained architectures for each residual block, while only re-
quiring a Lipschitz constant smaller than one for each block'. By leveraging this stability
constraint, we further get stability bounds both for the forward and inverse mapping.

After introducing the i-ResNet, we show that standard ResNets are not guaranteed to be
invertible without the proposed stability constraint. Finally, we demonstrate that this re-
striction negligibly impacts performance when building image classifiers - they perform on
par with their non-invertible counterparts on classifying MNIST, CIFAR10 and CIFAR100
images.

4.2 Enforcing Invertibility in Residual Networks

Residual networks differ in the structure from standard feedforward networks in one fun-
damental aspect. In addition to the composition of affine and non-linear mappings, they
employ identity paths. Mathematically, a residual layer can be written as

Ti1 = T + 9o, (T1),

where gy is a (usually shallow) standard network, called residual block, and ¢t denotes
the layer index. Strikingly, there is a similarity between ResNet architectures and Euler’s

Note that this still allows for arbitrarily high Lipschitz constants of the full network.
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method for ODE initial value problems. Those two approaches can be formulated as

Tir1 = ¢ + go, (T4)

Tyl = Tt + hfet (xt)v

where z; € R? represent activations or states, ¢ represents layer indices or time index,
h > 0 is a time step size, and gy, is a residual block. Note, that we use T' (instead of L) to
denote the number of layers in order to emphasize its relationship to time. This connection
has attracted research at the intersection of deep learning and dynamical systems, see e.g.
(Lu et al., 2017; Haber and Ruthotto, 2018; Ruthotto and Haber, 2018; Chen et al., 2018).
However, little attention has been paid to the dynamics backwards in time

Ty = Typ1 — go, (@)

Tt = Tg41 — hfet ($t)7

which amounts to the implicit backward Euler discretization. Most notably, solving the
dynamics backwards in time would implement an inverse of the corresponding ResNet. The
following theorem states that a simple condition suffices to make the dynamics solvable
and thus renders the ResNet invertible:

Theorem 4.1 (Sufficient condition for invertible ResNets). Consider p € [1,00] and let
Fyp o (RG] ) — (R - |lp) with Fy = (ff o...0 f}) denote a ResNet with blocks
f =1+ gg,. Then, the ResNet Fy is invertible if

Lip(gs,) < 1, forallt=1,...,T,

where Lip(gp,) s a Lipschitz constant of gp, .

Proof. Since the ResNet Fy is a composition of functions, it is invertible if each block f}
is invertible. Let x;11 € R? be arbitrary and rearrange to get the fixed-point equation
xt = Ty41 — go, (7). Rewriting as an iteration yields

0 k+1 k
x,E l= xey1  and ac,[t L Tpy1 — ggt(x}f ]), (4.1)
where limg_, o xi’“] = x; is the fixed-point if the iteration converges. As gy, : (R%,]| - ||,) —
(R, || - ||,) is an operator on the Banach space (R%] - [|,), the contraction condition
Lip(gp,) < 1 guarantees convergence due to the Banach fixed-point theorem. O

Remark 4.2. The condition above was also stated in (Zhao et al., 2019) (Appendiz D),
however, their proof restricts the domain of the residual block g to be bounded and applies
only to linear operators g, because the inverse was given by a convergent Neumann series.

Remark 4.3. This condition is not necessary for invertibility. Other approaches (Dinh
et al., 2014, 2017; Jacobsen et al., 2018; Chang et al., 2018; Kingma and Dhariwal, 2018)
rely on partitioning dimensions or autoregressive structures to create analytical inverses.

In addition to ensuring invertibility of a ResNet, we can make further statements about
the properties of the inverse:
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Algorithm 1 Inverse of i-ResNet layer via fixed-point iteration.

Input: activation y, contractive residual block g, number of fixed-point iterations n
Init: z[0 .= Y
for k=0,...,ndo
2l =y — g(alt)
end for

Corollary 4.4 (Invertible ResNet as diffeomorphism). Let Fy denote an invertible ResNet,
where the condition from Theorem 4.1 holds. Further, let the activation functions ¢ used
in the residual blocks be continuously differentiable, i.e. ¢ € C1(R). If this holds, then

Fp e C'(RY)  and F;'e CHRY),

which makes the invertible ResNet a diffeomorphism.

Proof. The first statement Fy € C*(R?) directly follows from the compositional structure
of feedforward neural networks (see Def. 2.15), since compositions of C'-functions are in
C'. Furthermore, Fy ! is assumed to exist. Hence, Fy Lect (R9) follows directly by the
inverse function theorem. O

While enforcing Lip(g) < 1 makes the ResNet invertible, we have no analytic closed-form
of its inverse. As shown in the proof of Theorem 4.1, however, we can approximate the
inverse up to an arbitrary precision through a simple fixed-point iteration (see Algorithm
1). Note that the starting value #9 for the fixed-point iteration is arbitrary, because the
fixed-point is unique. However, using z[% = y for initializing is a good starting guess,
since y was obtained from z only via a bounded perturbation of the identity. Furthermore,
we can make the following statement about the error after k iterations of the fixed-point
iteration:

Lemma 4.5 (Error of fixed-point iteration). Let Lip(g) =: L < 1 and z[% be the initial
iterate of the fized-point iteration x4 = 20 — g(x[k}). Furthermore, denote the fixed-
point as x. Then the error after k iterations is bounded by

2 = 2, < T 2t = 2.

1-L
Proof. First, via induction we prove that
2+ — 2y, < LT — 200, (4.2)

holds. The base case with k = 0 is trivial, since L? = 1. Consider the inductive step, where
k — k + 1. For this introduce the mapping ¢*(z¥) := 20 — g(zl*)) = 21, Since 2
acts as a constant offset, we have Lip(¢g*) = Lip(¢g) = L < 1. Using this in the inductive
steps yields
22— 2, = Jlg* (@) — g* (2 ),
< Ll g,

< ¥ et — ),
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where we used that the statement (4.2) holds for k.
Next, let m > k > 0. Then by adding zeros, using the triangular inequality and using
(4.2), we have

2 =g, < 37 fall - 01,
I=k+1

< 3 LYt =2,
l=k+1
m—(k+1)
= L0 — 0, N Lk
=0

Now, let m — oo. Then, we have

o=, = lim_ ol - 2,

< ZHalt - 20, > 1
=0
k
= e~ 2,

which holds by the properties of a geometric series. O

Thus, the error decay exponentially in the number of iterations k and smaller Lipschitz
constants will yield faster convergence. Furthermore, it is important to note that the rate of
the convergence does not depend on the input dimension d. Hence, this approach naturally
scales to high-dimensional settings.
Additional to invertibility, a contractive residual block also renders the residual layer bi-
Lipschitz:
Lemma 4.6 (Lipschitz constants of forward and inverse mapping). Let F(z) = = + g(x)
with Lip(g) =: L < 1 denote the residual layer. Then, it holds
1

Lip(F) <1+ L and UMF*)gT—z.
Proof. First note, that Lip(F) < 1+ L follows directly from the addition of Lipschitz
constants. For the inverse, consider

1E(z) = F)llp = [l =y + 9(2) = 9(W)ll,

> [lz = yllp = llg(z) = 9l (4.3)

2 ||z = yllp = Lllz = yllp, (4.4)

where we apply the reverse triangular inequality in (4.3) and use the Lipschitz constant
of g in (4.4). For all z,w € R? denote z = F~!(2) and y = F~!(w). Inserting above yields

IF(F~H(2)) = F(F~ (w))llp = (1= D)IIF~(2) = F (w)],
1
1-L

which proves the claimed Lipschitz constant. O

= Iz = wlly = [F7H(z) = F~H(w)]l,
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To conclude, invertible ResNets offer stability guarantees for both their forward and inverse
mapping by construction.

So far, we discussed when ResNets are guaranteed to be invertible, but without presenting
an approach to satisfy the condition. In the following subsection, we thus discuss several
ways to enforce the Lipschitz condition.

4.2.1 Satisfying the Lipschitz Condition

We implement residual blocks as a composition of 1-Lipschitz nonlinearities ¢ and affine
mappings. For example, in our convolutional networks we use blocks with three layers, i.e.

g(z) = A3¢(A2(p(A1d(x) + b1) + b2) + b3, (4.5)
where A; are convolutional layers and b; denote biases.

Remark 4.7. We slightly changed notation (A; instead of A to denote the i-th linear
layer) in order to avoid confusion, because we need matrix powers in chapter 5 in connec-
tion with invertible ResNets.

In this discussion and subsequent experiments we focus on a Lipschitz condition for p = 2
(contractive residual blocks in || -||2), because the Euclidean norm is often a natural choice.
For a more general discussion involving different p-norms and even mixed matrix norms,
we refer to the follow-up work (Chen et al., 2019%**).

In the case of the 3-layers residual block in (4.5), the Lipschitz constant of g can be upper
bounded in a data-independent manner via

3
Lip(g) < [T ll4ill2, (4.6)
i=1

if the activation function is 1-Lipschitz, i.e. Lip(¢) < 1.

Remark 4.8 (On different activation functions). Most activation functions like ReLU,
ELU or tanh are 1-Lipschitz and thus this condition poses only a minor restriction. How-
ever, in (Chen et al., 2019***) a less-common activation function was used, which required
further scaling to satisfy this upper bound.

Hence, by the data-independent upper bound it holds
Lip(g) <1, if ||Ai]l2 <1 fori=1,2,3, (4.7)

where || - ||2 denotes the spectral norm of the linear operator. Note, that regularizing the
spectral norm of the Jacobian of g as e.g. in (Sokoli¢ et al., 2017) only reduces it locally
and does not guarantee the above condition. Thus, we explicitly enforce ||4;]2 < 1 for
each layer.

To ensure that [|A4;]]2 < 1 holds, we employ a variant of spectral normalization, which
was introduced in (Miyato et al., 2018) for the regularization of Generative Adversarial



4.2. Enforcing Invertibility in Residual Networks 39

Networks (GANs) (Goodfellow et al., 2014). In particular, (Miyato et al., 2018) relied
on a power-iteration on the parameter matrix W of a convolutional operator A;, which
computes an approximation &1 < ||[W||2 (for details on the difference between W and A;
see section 2.2.2). However, if the filter kernels of the convolutional layer A; are larger
than 1 X 1, one needs to consider the bound

[ 4ill2 < v/nlW ][z, (4.8)

which connects the spectral norm of the parameter matrix with the spectral norm of
the convolution operator, see (Tsuzuku et al., 2018, Corollary 1). In this bound, n acts a
constant, that depends on the filter size, strides and boundary handling of the convolution.
Hence, using the upper bound (4.8) to ensure ||A;||2 < 1 is possible, but might be more
restrictive than necessary. This is why we directly perform the power-iteration on A; and
AlT to approximate the spectral norm of the convolutional operator directly as proposed
in (Gouk et al., 2018).

The power-iteration then yields an approximation &; from below, i.e. ; < ||A4;||2. Using
this approximation, we normalize via
p CAi/a'i, ifc/&i<1

A= , 4.9
A, else (4.9)

where the hyper-parameter ¢ € (0,1) is a scaling coefficient. Since &; is only an approxima-
tion from below, ||A4;||2 < ¢ is not guaranteed, which is why we need to run an additional
check after training:

Remark 4.9 (Checking spectral norm of linear layers after training). After training
(Sedghi et al., 2019) offer an approach to inspect ||A;l|2 exactly using the singular value
decomposition (SVD) on the Fourier transformed (FFT) parameter matriz W. As a con-
sequence, this allow to check if Lip(g) < 1 holds in all cases. However, we note that the
approach in (Sedghi et al., 2019) relies on circular convolutions and is not exact if other
boundary extensions were used for the convolution. Hence, a second way to check if the
Lipschitz condition holds after training is to run the power-iteration until convergence
(power-iteration is guaranteed to converge for an approzimation of | - ||2).

In (Behrmann et al., 2019***), the SVD-FFT based variant from (Sedghi et al., 2019)
was used, while the follow-up study from (Chen et al., 2019***) used an adaptive version
of the spectral normalization to ensure that the power-iteration converged up to a given
tolerance.

Motivation for power-iteration on linear layers: The approach described above
relies on two key properties: First, data-independent upper bounds of Lipschitz constants
(4.6). Second, efficient approximation of spectral norm via power-iterations. While these
data-independent bounds are often loose in practice, finding an alternative is difficult,
because the computation of Lipschitz constants of even two-layer neural networks is NP-
hard (Virmaux and Scaman, 2018).

There are several alternative to ensure || 4;||2 < 1 during training, yet each approach has
either computational drawbacks or does not apply to convolutional layers:
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e Parametrization of orthogonal matrices, e.g. via Householder reflections as proposed
for recurrent neural networks (RNNs) in (Mhammedi et al., 2017): not applicable to
convolutional layers as the spectrum of the convolutional operator A; (see Definition
2.23) differs from the spectrum of the parameter matrix W (obtained by writing the
4D kernel tensor as a matrix). For details, we refer to the discussion in (Sedghi et al.,
2019) and the bound (4.8) from (Tsuzuku et al., 2018).

e Bjorck orthogonalization as in (Anil et al., 2019): so far only applied to fully-
connected layers. The application to convolutional layer might be computationally
expensive or less straightforward due to their more complex structure.

e Projection via efficient computation of SVD of convolutional layers as in (Sedghi
et al., 2019): this approach presents an alternative to spectral normalization, but did
not scale as good as spectral normalization in our experiments. The main bottleneck
of this approach are convolutional layers with many input and output channels,
which unfortunately was a common setting in our experiments.

To summarize, spectral normalization presents a salable approach to enforce the Lipschitz-
constraint with respect to the fo-norm. However, the approximation via power-iteration
only yields a lower bound. To still ensure invertibility, either an appropriate number of
iterations or an adaptive version with a given tolerance needs to be used. Furthermore,
power iteration adds computational cost, which increases if a higher number of power
iterations are used.

After introducing the condition to turn a ResNet into an invertible ResNet and proposing
an efficient methodology to satisfy this condition, we now turn to a numerical analysis.

4.3 Numerical Analysis

To compare the invertibility and discriminative performance of i-ResNets with standard
ResNet architectures, we train both models on CIFAR10, CIFAR100, and MNIST. First,
we numerically validate the invertibility of i-ResNets by the fixed-point iteration and
observe that the invertibility of vanilla ResNets is task-dependent. Second, we compare
the performance on the mentioned image classification benchmarks.

4.3.1 Validating Invertibility

The CIFAR and MNIST models have 54 and 21 residual blocks, respectively and we use
identical settings for all other hyperparameters. We replace strided downsampling with
invertible downsampling (Jacobsen et al., 2018) to ensure bijectivity, see Appendix A.1 for
training and architectural details. Furthermore, we increase the number of input channels
to 16 by padding with zeros. This is analogous to the common practice of projecting the
data into a higher-dimensional space using a standard convolutional layer at the input of
a model, but this mapping is injective.
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Figure 4.2: Maximal singular value of each convolutional layer for various trained ResNets
on Cifarl0. Left: Vanilla and Batchnorm ResNet singular values. It is likely that the
baseline ResNets are not invertible as roughly two thirds of their layers have singular
values fairly above one, making the blocks non-contractive. Right: Singular values for
our 4 spectrally normalized ResNets. The regularization is effective and in every case the
single ResNet block remains a contraction.
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Figure 4.3: Original images (top), i-ResNets with ¢ = 0.9 (middle) and reconstructions
from vanilla (bottom). Surprisingly, MNIST reconstructions are close to exact for both
models, even without explicitly enforcing the Lipschitz constant. On CIFAR10 however,
reconstructions completely fail for the vanilla ResNet, but are qualitatively and quantita-
tively exact for our proposed network.
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Figure 4.4: Trade-off between number of fixed-point iterations and reconstruction error
(log scale) for computing the inverse for different normalization coefficients of trained
invertible ResNets (on CIFAR10). The reconstruction error decays quickly. 5-20 iterations
are sufficient respectively to obtain visually perfect reconstructions. Note that one iteration
corresponds to the time of one forward pass, thus inversion is approximately 5-20 times
slower than inference. This corresponds to a reconstruction time of 0.15-0.75 seconds for
a batch of 100 CIFAR10 images with 5-20 iterations and 4.3 seconds with 100 iterations
(see section 4.3.2 for more details).

Singular values of learned mappings: We train standard ResNets and i-ResNets with
various layer-wise scaling coefficients (¢ € {.3,.5,.7,.9}). After training, we inspect the
learned transformations at each layer by computing the largest singular value of each
convolutional layer based on the approach in (Sedghi et al., 2019). It is clearly visible
(Figure 4.2 (left)) that the vanilla and BatchNorm models have many singular values
above one, making their residual connections (potentially) non-invertible. Conversely, in
the i-ResNet models (Figure 4.2 (right)), all singular values are below 1 (and roughly equal
to ¢), which indicates that their residual connections are invertible. Hence, the proposed
spectral normalization scheme works and allows to enforce invertibility.

Computing image reconstructions with fixed-point iteration: To obtain the nu-
merical inverse, we apply 100 fixed-point iterations for each block (Algorithm 1). We
observe that i-ResNets can be inverted using this method, whereas with standard ResNets
this is not guaranteed (Figure 4.3 (top)). Interestingly, on MNIST we find that standard
ResNets are indeed invertible after training on MNIST (Figure 4.3 (bottom)). Note, that
a high number of fixed-point iteration is chosen to ensure that the poor reconstructions
for vanilla ResNets are not due to using too few iterations.

Convergence of fixed-point iteration: In practice, far fewer iterations than 100 suffice,
as the trade-off between reconstruction error and number of iterations visualized in Figure
4.4 shows. Thus, the Lipschitz coefficient ¢ further controls the convergence speed as
discussed in Lemma 4.5. For example, the number of iterations needed for convergence is
approximately halved when reducing the spectral normalization coefficient by 0.2.
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ResNet-164 ‘ Vanilla. ¢=09 ¢=08 ¢=07 ¢=06 ¢=0.5

MNIST - 0.38 0.40 0.42 0.40 0.42 0.86
CIFARI10 5.50 6.69 6.78 6.86 6.93 7.72 8.71
CIFAR100 24.30 23.97 24.58 24.99 25.99 27.30 29.45
Guaranteed Inverse No No Yes Yes Yes Yes Yes

Table 4.1: Comparison of classification error (in %) of i-ResNets to a ResNet-164 baseline
architecture of similar depth and width with varying Lipschitz constraints via coefficients c.
Vanilla shares the same architecture as the i-ResNets, but without the Lipschitz constraint.

4.3.2 Image Classification

Classification and reconstruction results for a baseline pre-activation ResNet-164, a ResNet
with architecture like i-ResNets without Lipschitz constraint (denoted as vanilla) and five
invertible ResNets with different spectral normalization coefficients are shown in Table 4.1.
The results illustrate that for larger constants, our proposed invertible ResNets perform
competitively with the baselines in terms of classification performance, while being prov-
ably invertible. When applying very conservative normalization (small ¢), the classification
error becomes higher on all datasets tested.

Runtime of forward and backward pass: The runtime on 4 GeForce GTX 1080Ti
GPUs with one spectral norm iteration was 0.5 sec for a forward and backward pass using
a batch with 128 samples, while it took 0.2 sec without spectral normalization.

Costs of reconstruction: The reconstruction error decays quickly and the errors are
already imperceptible after 5-20 fixed-point iterations. To better understand the compu-
tational cost of one fixed-point iteration, it is helpful to compare a residual layer to a step
from Algorithm 1. Since the only difference is the input and the plus/minus sign, their
computational costs are identical. Thus, above reconstruction has the same cost as 5-20
forward passes. On our hardware the reconstruction of 100 CIFAR10 images took between
0.15-0.75 seconds.

In addition to the presented classification results in Table 4.1, we refer to (Behrmann
et al., 2019™**) for a comparison of i-ResNets with the current state-of-the-art flow-based
density model Glow (Kingma and Dhariwal, 2018).

In summary, we observe that guaranteed invertibility without additional constraints is
unlikely, but possible, whereas it is hard to predict if networks will have this property. In
our proposed model, we can guarantee the existence of an inverse without significantly
harming classification performance.

4.4 Related Work

Due to the similarity of ResNets and Euler discretizations, there are many connections
between i-ResNets and ODEs, which we review in this section. Note, that a review of other
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approaches to design invertible networks is postponed to the next chapter on generative
models in order to jointly discuss the networks architectures and their applicability to
flow-based density modeling.

Relationship of i-ResNets to Neural ODEs: The view of deep networks as dynamics
over time offers two fundamental learning approaches:

(i) Direct learning of dynamics using discrete architectures like ResNets, see (Haber and
Ruthotto, 2018; Ruthotto and Haber, 2018; Lu et al., 2017; Ciccone et al., 2018)

(ii) Indirect learning of dynamics via parametrizing an ODE with a neural network, see
(Chen et al., 2018; Grathwohl et al., 2019).

The dynamics x(t) of a fixed ResNet Fy are only defined at time points ¢; corresponding to
each block gy, . However, a linear interpolation in time can be used to generate continuous
dynamics. See for example Figure 4.1, where the continuous dynamics of a linearly interpo-
lated invertible ResNet are shown against those of a standard ResNet. Invertible ResNets
are bijective along the continuous path, while regular ResNets may result in crossing or
merging paths. The indirect approach of learning an ODE, on the other hand, adapts the
discretization based on an ODE-solver, but does not have a fixed computational budget
compared to an i-ResNet.

Stability of ODEs: There are two main approaches to study the stability of ODEs:

(i) Studying the behavior for ¢ — co.

(ii) Considering Lipschitz stability over finite time intervals [0, 7).

Based on time-invariant dynamics f(x(t)), (Ciccone et al., 2018) constructed asymptoti-
cally stable ResNets using anti-symmetric layers such that Re(A(J;g)) < 0. Here, Re(A(+))
denotes the real-part of eigenvalues and J,g the Jacobian at point . By projecting weights
based on the Gershgorin circle theorem, they further fulfilled p(J,g) < 1, where p(+) is the
spectral radius. This approach yields an asymptotically stable ResNet with shared weights
over layers.

On the other hand, (Haber and Ruthotto, 2018; Ruthotto and Haber, 2018) considered
time-dependent dynamics f(x(t),6(t)) corresponding to standard ResNets. They induce
stability by using anti-symmetric layers and projections of the weights. Contrarily, initial
value problems on [0, 7] are well-posed for Lipschitz continuous dynamics (Ascher, 2008).
Thus, the invertible ResNet with Lip(f) < 1 can be understood as a stabilizer of an ODE
for step size h = 1, yet without a restriction to anti-symmetric layers as in (Ruthotto and
Haber, 2018; Haber and Ruthotto, 2018; Ciccone et al., 2018).

4.5 Conclusion and Future Work

Invertible residual networks (i-ResNets) share a clear analogy to the forward and backward
Euler discretization of ODEs. Building invertible neural networks based on stability allows
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unconstrained architectures without the need of arbitrarily splitting input dimensions like
previous approaches (Dinh et al., 2014, 2017; Chang et al., 2018). Compared to vanilla
ResNets, only a small adaption via spectral normalization was necessary to guarantee
invertibility based on the ¢3-norm. For results using i-ResNets based on other norms, we
refer to the follow-up work (Chen et al., 2019%**).

Lipschitz conditions: An interesting avenue for future work is the investigation of other
approaches to satisfy the Lipschitz condition. While spectral normalization was mainly
chosen for computational reasons, other choices might be favorable in lower-dimensional
settings where scalability is less of a concern. In general, however, learning and designing
networks with a Lipschitz constraint is challenging. For example, we need to constrain each
linear layer in the block instead of being able to directly control the Lipschitz constant of
a block. See (Anil et al., 2019) for a promising approach for addressing this problem.

Generalization to other discretization schemes: Besides exploring the Lipschitz con-
dition, a generalization of i-ResNets beyond their corresponding forward and backward
Euler discretization schemes could further increase the flexibility of invertible networks.
For example, trading off the one-pass forward of i-ResNets with a faster inversion method
than fixed-point iterations, might allow to use these invertible networks in applications
where faster inverses are necessary.

However, it is unclear if invertible networks based e.g. on multi-step discretization schemes
are strictly better. Whereas multi-step discretization is usually favored over simple schemes
like Euler integration when solving ODEs, the situation might be different when designing
architectures. When solving ODEs, the ODE itself is fixed since it describes a given (phys-
ical) behavior, thus each integration scheme aims to solve the same ODE. For architecture
design, however, there is no fixed underlying dynamics to be solved. Only the training
data provides a rough outline of potentially useful dynamics. Hence, besides generalizing
i-ResNets to other connection schemes, an interesting aspect for future work would be to
gain a better understanding of changes in the dynamics when only training data is given,
instead of a fixed ODE.

Universal approximation: A theoretical understanding of the expressivity of invert-
ible neural networks is still in its infancy. As each invertible architecture requires certain
constraints or conditions, it would be beneficial for further architecture design to have
a mathematical understanding how each design choice influences the functions that the
architecture is able to approximate.
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Chapter 5

Generative Modeling with
Invertible Residual Networks

"What I cannot create, I do not understand.” - Richard Feynman.

In this chapter, we focus on maximum likelihood based density modeling using the pro-
posed invertible residual networks (i-ResNets). After an introduction to deep generative
modeling, we start by discussing a change of variables of probability densities under a
diffeomorphism. Second, we leverage i-ResNets as a bijective function approximator to
describe a likelihood model based on the mentioned change of variables. This approach,
however, is difficult to scale to high-dimensional settings such as density models for images.
Thus, we discuss approximations based on a truncation of a matrix power series, random-
ization and automatic differentiation. The chapter finishes with a numerical comparison
of i-ResNets to other flow-based density models.

This chapter is mainly based on the following article:

Jens Behrmann, Will Grathwohl, Ricky T. Q. Chen, David Duvenaud, Jorn-
Henrik Jacobsen: Invertible residual networks, 2019, (International Conference on
Machine Learning (ICML))

5.1 Generative Modeling - Overview

Besides regression, classification and dimensionality reduction, density estimation is an-
other major pillar of machine learning. Estimating the density p(z) from a set of training
samples T = {x(i)}f\il is at the core of probabilistic unsupervised learning and generative
modeling. Being able to both evaluate the model density py(z) and generate samples from
it, opens a multitude of use-cases like:

e Learning priors from data for Bayesian inference, see e.g. (Zoran and Weiss, 2011)
e Semi-supervised learning, see e.g. (Atanov et al., 2019)

e Detecting out-of-distribution examples, see e.g. (Nalisnick et al., 2019)

47
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Data forward KL reverse KL

Figure 5.1: From (Theis et al., 2016): Different objective functions lead to different
density models. Left: data distribution. Middle: uni-modal Gaussian model fitted via
the forward Kullback-Leibler (KL) divergence to a multi-modal distribution. Right: uni-
modal Gaussian model fitted via the reverse KL-divergence.

e Detecting adversarial examples, see e.g. (Fetaya et al., 2019).

While there is a vast amount of different approaches to generative modeling like mixture
models, energy-based models, graphical models or implicit models requiring Markov Chain
Monte Carlo approximations, this overview discusses the currently most popular deep
learning approaches to generative modeling. For an extensive overview on (probabilistic)
generative models, we refer to (Murphy, 2013).

Consider a parametrized density model py(z) with parameters § € RP. A natural way to
evaluate density models pg is by computing the forward Kullback-Leibler (KL) divergence

Disp(o) | pa(@)) = [ ple)log 210 6.)

for inputs # € R? (see Definition 2.9). Minimizing the KL-divergence is equivalent to
maximizing likelihood (see Lemma 2.14) and thus follows a standard statistical approach
to density estimation. However, as noted e.g. in (Theis et al., 2016), density models py need
to cover the whole data space, as pg(x(i)) ~ 0 for a sample z(® from the data distribution
can result in arbitrarily large objective, since log pg (:c(i)) goes to infinity.

As models trained to minimize the forward KL-divergence need to cover the entire data
space, models with limited capacity will fail to grasp the essence of the data. See for
example Figure 5.1 (middle) from (Theis et al., 2016), where a uni-modal Gaussian is
fitted to a mixture of Gaussians. The model needs to cover both modes and thus assigns
high likelihood to data which lies in low-density regions. To avoid such misspecifications,
it is essential to use models with the capacity to model complex multi-modal distributions
when training via maximum likelihood. As i-ResNets have been shown to be a powerful
family of (invertible) neural networks in the previous chapter, we study how to train
i-ResNets as generative models via maximum likelihood in this chapter.

Since the KL-divergence is not symmetric (Cover and Thomas, 2006, Sec. 2.3), another
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measure of interest is the reverse KL-divergence

Dicw(pol@) || p()) = [ po(a) g fjj(g dx (5.2)
= Epy(x) log po(z)] — Epy () [log ()], (5.3)

where the first term is the negative entropy of z ~ pp(z) and the second term is the
log probability of samples from the density model py(x) under the true data distribution
p(z). Hence, minimizing the reverse KL-divergence leads towards a model py(x) with high
entropy and samples x ~ py(x) with high likelihood under the true distribution.

Remark 5.1. We identified the distribution with the density in the considerations above.
By assuming that there is a density for random variable X (which is given by our density
model pg by construction), this identification is valid, because there is a unique correspon-
dence between the distribution and density via the theorem of Radon-Nikodym.

Given a model with low capacity (like a uni-modal Gaussian), minimizing the reverse
KL-divergence on a mixture of Gaussians may lead to a density model which covers a
single mode well, see Figure 5.1 (right) from (Theis et al., 2016). While this approach is
favorable if high-quality samples are the main goal, it might not capture the whole data
distribution. Yet more importantly, minimizing the second term requires access to the
unknown true density p(z). However, different variants of Generative Adversarial Networks
(GANS) were shown to correspond to certain f-divergences (Nowozin et al., 2016). Thus,
by using GANs one can circumvent the need for the true density p(z) for the reverse
KL-divergence. Yet, the correspondence between GANs and f-divergences relies on the
tightness of lower bounds (Nowozin et al., 2016), which is hard to evaluate or even achieve
in practical scenarios.

Similarly, a Variational Autoencoder (VAE) (Kingma and Welling, 2014) only provides
a variational lower bound using an inference model (encoder) g4(z|z) and a decoder
po(x,2) = po(z|z)pe(z). This bound on the likelihood (evidence) py(x) can be derived
using Lemma 2.10 (Kullback-Leibler divergence non-negative). Let 2 € R? be the input
data and z € R? a latent variable. Then the bound (evidence lower bound, ELBO)

logpal@) = [, as(:la)dzlog po()

= Eq¢(z|$) [Ingg (ﬁ)]

pa(x,Z)]
=K 1
q4(2|T) _og po(z|z)
[ po(w,2)qe(2|7)
=E, () |log DA 240327
W) |05 (oo (21
. polz,2) { %(le)}
=E, (21« +E,;. (212) |10
94 (2|T) i q¢(z|x) a0 (2|z) gpg(z\x)
=Ly 0(x) =Dk r(g0(2|z) || po(z|z))

> Lyo(x)
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holds and is tight under a perfect inference model, i.e. if and only if go(z|z) = po(z|x), see
(Kingma and Welling, 2014; Kingma, 2017).

While both GANs and VAEs are promising directions for generative modeling, we focus
on models which can be trained exactly via maximum likelihood, as these models do not
require a mechanism to tighten bounds. Furthermore, to avoid situations visualized in
Figure 5.1 (middle), we aim towards high-capacity models using deep neural networks.

A popular approach for maximum likelihood modeling with deep networks relies on the
chain rule of probability

d
po(z1,..a) = [ o, (ilz1...io1)
i1

where © = (x1,...,24) € R% For example, Masked Autoregressive Flows (MAFs) learn
a neural network to model parameters of a one-dimensional Gaussian distribution condi-
tioned on previous inputs (Papamakarios et al., 2017). While allowing for exact likelihood
models, this approach has two main drawbacks. First, an ordering of the input dimensions
needs to be chosen, which might be non-obvious for some input data like images. Second,
while evaluation and training via maximum likelihood is fast, sampling from the learned
density can be slow since it scales with the input dimensions (Papamakarios et al., 2017).

A second approach to maximum likelihood modeling is given by normalizing flows (Deco
and Brauer, 1995; Rezende and Mohamed, 2015), which rely on invertible mappings. Thus,
this approach both fits our goal of using exact maximum likelihood models and leverages
the main architecture principle of this thesis - invertible neural networks. In this chapter,
we first introduce the modeling approach underlying normalizing flows and discuss how to
use i-ResNets in this framework.

5.2 Maximume-likelihood Modeling with i-ResNets

We can define a simple generative model for data z € R? by first sampling z ~ pz(z), where
z € R% and pz(z) is a corresponding density given by a simple base distribution like a
standard normal distribution. Then, by defining x := ®(z) for some function ® : R — R9,
we can map samples z to the data space. If ® is a diffeomorphism, there is an inverse
F := &1, which allows to compute the likelihood of any input = under this model using
the change of variables formula:

Lemma 5.2 (Change of variables for probability density functions). Let F : RY — R?
be a diffeomorphism. Furthermore, let px and pz be the probability density function for
random variable X and Z. Then by a change of variables using F', it holds

logpx (z) =logpz(F(x)) + log| det Jp(x)|, (5.4)

where Jp(x) is the Jacobian of F evaluated at x.
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Proof. We adapt the derivations from (Billingsley, 1995). Let A C R? be an open set and
® ¢ C'(R?) be a diffeomorphism. Then, the probability for the d-dimensional real random
variable X with pdf px(z) under transform ®~! can be re-written via

P[@1(X) € A] = P[®(d (X)) € ®(A)] = P[X € (A)].
Since X is a continuous random variable with pdf px(x), it is

PX € ®(A)] = / px(x) dx.
2(A)
By the change of variables (Theorem 17.2 in (Billingsley, 1995)), above integral can be
reformulated by the transform & as

/. ()= /A Po-1(x) (@1 (2))] det Jy— (z)] da.

Now denote F := &1 Z:= ®71(X) and 2z := & !(z). Then, random variable X has the
density (with respect to Lebesgue measure)

px(z) = pz(z)| det Jr(z)]

and (5.4) follows by applying the logarithm. O

Models of this form are known as normalizing flows (Deco and Brauer, 1995; Rezende and
Mohamed, 2015), because the transform F' acts as a flow that normalizes the inputs. They
have recently become a popular modeling approach for high-dimensional data due to the
introduction of powerful bijective function approximators whose Jacobian log-determinant
can be efficiently computed (Dinh et al., 2014, 2017; Kingma and Dhariwal, 2018; Chen
et al., 2018) or approximated (Grathwohl et al., 2019).

Since i-ResNets are diffeomorphisms (if C'-activation functions are used, see Corollary
4.4), we can use them to parameterize F' in Equation (5.4). Samples from this model can
be drawn by first sampling z ~ pz(z) and then computing z = F~!(z) with Algorithm
1. In Figure 5.2, we show an example of using an i-ResNet to define a generative model
on some two-dimensional datasets and compare the performance to Glow (Kingma and
Dhariwal, 2018).

Remark 5.3 (Sampling speed when using i-ResNets). A major advantage of normalizing
flows over autoregressive deep generative models is their fast inference and sampling speed,
as both forward and inverse can be computed in a single pass of the network (Dinh et al.,
2017; Kingma and Dhariwal, 2018). While being slower to invert compared to Real-NVP
(Dinh et al., 2017) or Glow (Kingma and Dhariwal, 2018), i-ResNets present a different
tradeoff to autogressive models like MAF (Papamakarios et al., 2017). Whereas autore-
gressive approaches need a fized number of iterations equal to the dimensionality of inputs,
i-ResNets rely on an approzimation of the inverse using the fixed-point iteration. However,
the convergence rate is independent of the dimension (see Lemma /.5). Thus, a good ap-
proximation may be faster to achieve than the sampling in autoregressive models, especially
in high-dimensional settings such as image generation.
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Data Samples Glow i-ResNet

Figure 5.2: Visual comparison of i-ResNet normalizing flow and Glow (Kingma and
Dhariwal, 2018). In this setting, pz(z) is a factorized Gaussian prior. Samples z ~ pz(z) get
mapped by F~! to the data space, which allows to model complex probability distributions.
We refer to (Behrmann et al., 2019***) for details of this experiment.

5.2.1 Scaling to Higher Dimensions

While the invertibility of i-ResNets allows to define a normalizing flow, we must com-
pute log | det Jp(z)| to evaluate the likelihood of the data under the model. Computing
this quantity has a time cost of O(d?) in general, which makes naively scaling to high-
dimensional data impossible.

To bypass this constraint we present a tractable approximation to the log-determinant
term in Equation (5.4), which will scale to high dimensions d. First, we note that the
Lipschitz constrained perturbations x + g(x) of the identity yield positive determinants.
Note that we restrict the discussion to a Lipschitz constraint based on the fo-norm. In
general, any p € [l,00] suffices, because any induced matrix norm upper bounds the
spectral radius (Horn and Johnson, 2012).

Lemma 5.4 (Positive determinant of Jacobian of invertible residual layers). Let F(x) =
(I + g("))(z) denote a residual layer and Jp(z) = I + Jy(z) its Jacobian at x € Re. If
Lip(g) < 1 holds, then

det Jp(z) > 0.

Proof. Let \; denote the eigenvalues. First, we have
Ai(Jr () = Ai(Jg(z)) +1 (5.5)

and ||Jg(x)||2 < 1 for all & due to the condition Lip(g) < 1. Since the spectral radius is
upper bounded as p(Jy(z)) < ||J4(2)||2, we also have |A;(Jg(x))| < 1 for all i. Hence, the
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real part Re(\;(Jp(x))) is positive by inserting into (5.5). Thus

det JF($) = H)\Z(JF(x)) > 0,

because complex eigenvalues come in conjugated pairs, which renders the product above
real-valued and positive. ]

Combining the result from Lemma 5.4 with the matrix identity logdet(A) = tr(log(A))
for non-singular A € R¥? (see e.g. (Withers and Nadarajah, 2010)), we have

log | det Jp(x)| = tr(log Jr),

where tr denotes the matrix trace and log the matrix logarithm. Thus, for z = F(z) =
(I+g)(x),itis

log p(z) = logp.(z) + tr (log (I + Jy(x))) .

The trace of the matrix logarithm can be expressed as a power series (Hall, 2015)

) tr(Jk
tr (log (1 + J,(2) = Z(—l)’f“(,j), (56)
k=1

which converges if p(J;) < 1. Hence, due to the Lipschitz constraint, we can compute the
log-determinant via the above power series with guaranteed convergence.

Before we present a stochastic approximation to the above power series, we observe fol-

lowing properties of i-ResNets:

Lemma 5.5 (Lower and upper bounds on log-determinant). Let Fy : R? — R with
Fyp = (ff o...0f}) denote an invertible ResNet with blocks f} = I + g,. Then, we can
obtain the following bounds

T

d) log(1 — Lip(gr)) < log | det Jp(z)]
t=1
T

d) log(1 + Lip(gt)) > log | det Jp(x)],
t=1

for all x € R,

Proof. First, the sum over the layers is due to the function composition, because Jp(x) =
[1; J4:(z) and

T T
log | det Jr(x)| = log (H det J (33)) = Z logdet J:(z),
t=1 t=1

where we use the positivity of the determinant (see Lemma 5.4). Furthermore, note that

(0a(A))" < [Lo:(4) = [det A] < (o1(A4))°
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for a matrix A with largest singular values o1 and smallest o4. Further, we have o;(J) <
(1 + Lip(g¢)) and o4(Jy) < (1 — Lip(g¢)), which follows from Theorem 4.6. Inserting this
and applying the logarithm rules finally yields the claimed bounds. O

Thus, both the number of layers T" and the Lipschitz constant affect the contraction and
expansion bounds of i-ResNets and must be taken into account when designing such an
architecture.

5.2.2 Stochastic Approximation of log-determinant

Expressing the log-determinant with the power series in (5.6) has three main computa-

tional drawbacks:

1) Computing tr(J,) exactly costs O(d?), or approximately needs d evaluations of g as
each entry of the diagonal of the Jacobian requires the computation of a separate
derivative of g, see (Grathwohl et al., 2019).

2) Matrix powers J; are needed, which requires the knowledge of the full Jacobian.

3) The series is infinite.

Fortunately, drawback 1) and 2) can be alleviated. First, vector-Jacobian products vTJg
can be computed at approximately the same cost as evaluating g through reverse-mode
automatic differentiation (see Definition 2.28). Second, a stochastic approximation of the
matrix trace is given by the following lemma, see (Hutchinson, 1990; Avron and Toledo,
2011):

Lemma 5.6 (Stochastic estimation of matrix trace). Let A € R™? and v be a random
vector on R? with E[v] = 0 and E[vv”] = I, where I denotes the identity. Then, we get an
unbiased estimate of the matriz trace via

tr(A) = E[vT Av).

Proof. Following (Adams et al., 2018), we have

E[v” Av] = Eftr(v" Av)] (5.7)
= E[tr (AUUT)] (5.8)
= tr(E[AvT]) (5.9)
=tr (AE[U’UT]> (5.10)
= tr(A). (5.11)

Here we used in (5.7) the trace of scalar equals the scalar, in (5.8) the invariance to
cyclic permutation, in (5.9) the linearity of trace, in (5.10) the linearity of the expectation
operator and matrix A and in (5.11) the assumption E[vv?] = I. O
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Algorithm 2 Forward pass of an invertible ResNet with Lipschitz constraint and log-
determinant approximation, SN denotes spectral normalization based on (4.9).

Input: data point x, network F', residual block g, number of power series terms n
for Each residual block do
Lip constraint: flj := SN(A;, z) for linear Layer A;.
Draw v from N(0, I) (single vector v for trace estimation or multiple vectors)
w’ =T
logdet :=0
for k=1ton do
w? := w! J, (vector-Jacobian product)
log det := log det + [(—1)**1wT v /K]
end for
end for

This estimator is known as the Hutchinson’s trace estimator and can be used to esti-
mate tr(Jéf). Common choices of distributions for the random vectors v are Gaussian or
Rademacher distributions, see (Avron and Toledo, 2011).

While this allows for an unbiased estimate of the matrix trace, the computational cost is
still unbounded due to drawback 3). Hence, the power series (5.6) will be truncated at
index n. For a summary of the proposed steps, we refer to Algorithm 2.

Remark 5.7 (Biased stochastic gradient descent (SGD)). In addition to randomly sam-
pling training subsets, the unbiased trace estimator introduces a second source of random-
ness in the computation of gradients used for SGD (see Definition 2.26). However, the
truncation turns the unbiased estimator into a biased estimator, where the bias depends
on the truncation error. Fortunately, this error can be bounded as we demonstrate in the
next section.

5.2.3 Error of Power Series Truncation

We estimate log | det(I + J,)| with the finite power series

n tr(Jé“)
PS(Jg,n) =Y (—D)FT—=22 (5.12)
k
k=1

where we have (with some abuse of notation) PS(J,, 00) = tr(log(I + Jy)). In particular,
we are interested in bounding the truncation error of the log-determinant as a function of
the data dimension d, the Lipschitz constant Lip(g) and the number of terms in the series
n.

Theorem 5.8 (Approximation error of loss). Let g denote the residual function and J,
the Jacobian as before. Then, the error of a truncated power series at term n is bounded
as

|PS(J,,n) —logdet(I + J,)| < —d <10g(1 ~Lip(g) + 3 LP}i”) .
k=1
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Proof. We begin by noting that

|PS(Jg,n) —trlog(Jy)| =

(]2
=
B
=
-+
~
/N
<%
SN—

IN
(]2
|
N
>
£
-+
=
—
<3
~

IA
g

<d Y Lip(g)’ﬂ (5.13)

where inequality (5.13) follows from

d d
e (T3) < NP < S ] < dp(Jf)
i=1 =1

< d||Jyll2 < d|lJgll5 < d Lip(g)*. (5.14)

We note that the full series can be written as

® Li k
3 Lplisﬂ = —log(1 — Lip(g)).
k=1

Hence, we can bound the approximation error by
n L- k
|PS(Jy,n) —trlog(Jy)| < —d (log(l —Lip(g)) + Y W) .

k=1 k

O]

While the result above gives an error bound for the evaluation of the loss, the error in the
gradient of the loss is of greater interest during training. Similarly to the preceding result,
we can make a statement about the error:

Theorem 5.9 (Convergence rate of gradient approximation). Let 6 € RP denote the
parameters of network F' and let g, J, be as before. Further, assume bounded inputs and
a Lipschitz activation function with Lipschitz derivative. Then, we obtain the convergence
rate

Vo (logdet (I + Jg)) — PS(Jg,n)) |lec = O(c"),

where ¢ := Lip(g) and n denotes the number of terms used in the power series.
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Proof. First, we derive an expression for the derivative with respect to parameter 6; via

ilogdet (I + Jg(x,0))

6,

" det(I +Zg(x,9)) {a% det (I + Jy( "))] (5.15)

= det(uljg(x’ ) {det(u Ty(w,0)) tr ((I+ J@,e))*Wﬂ (5.16)

= tr ((I + Jy(x, 9))1W>

= tr ((I + Jy(z, 9))1W>

=t (lZPl)ng(mﬁ)k] W) : (5.17)
k=0 %

Note, that (5.15) follows from the chain rule of differentiation. For the derivative of the
determinant in (5.16), see (Petersen and Pedersen, 2012, Eq. 46). Furthermore, (5.17)
follows from the properties of a Neumann series which converges due to ||Jq(x,0)[[2 < 1.

By definition of || - ||, it is

9 p§(1,(0),50) — 2-PS(J,(68),n)

”VQPS(Jg(H),OO) - VQPS(JQ(H) )HOO - max 00; 00;

7'—, =P

i

which is why, we consider an arbitrary ¢ from now on. We have

0 0 VI SO BA L)
55, PSn0):09) = g PSU®)m)| = 3 (-1 (st 02222
<a 3 | 2rl]
k=n+1 ¢ 2

where we used the same arguments as in estimation (5.14) (in proof of Theorem 5.8).

In order to bound HM

o e need to look into the design of the residual block. We

assume contractive and element-wise activation functions (hence ¢'(-) < 1) and N linear
layers A; in a residual block. Then, we can write the Jacobian as a matrix product

Jy(2,0) = ALDy --- AT Dy,

where D; = diag(¢'(z;_1)) with pre-activations z;_; € RY,

Since we need to bound the derivative of the Jacobian with respect to weights 6;, dou-
ble backpropagation (Drucker and Lecun, 1992) is necessary. In general, the terms || A7 |2,

|Dill2, 110712 := lldiag(¢” (zim1) 2, || (%) ],

tive, see (Etmann, 2019). Hence, in order to bound ‘

and ||z||2 appear in the bound of the deriva-
8.7, (x,0)
00;

, we bound the previous
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terms as follows

147 1|2 < Lip(g) (5.19)
|| D;ll2 < const, (5.20)
|| D} ||l2 < const (5.21)
|z||2 < const (5.22)
OANT
H(aa) <Al + . (5.23)
! 2

The bound (5.20) is due to the assumption of a Lipschitz activation function and (5.21) is
due to assuming a Lipschitz derivative of the activation function. Note, that we are using
continuously differentiable activations functions (i.e. not ReLU). This assumptions holds
for common functions like ELU, softplus and tanh. Furthermore, (5.22) holds by assuming
bounded inputs and due to the network being Lipschitz continuous. To understand the
bound (5.23), we denote s as the amount of parameter sharing of 6;. For example, if 6; is
a entry from a convolution kernel, s = w - h with w spatial width and h spatial height. Let
| - ||F denote the Frobenius-norm. Then

(%)
00;

<||4illF + s,
9

since

00; 0, else

a&M%m{L it Apn = 0;

Hence, each term appearing in the second derivative H%Hz is bounded. We denote

this bound by a(g,0,z) < co. Note that we do not give an exact bound on H%&’Q)‘

)

2
since we are only interested in the existence of such a bound in order to proof the claimed

convergence rate.

Inserting above in (5.18) and denoting ¢ := Lip(g), yields

9 pS(J4(6),00) — 0-PS(Jy(6), )

< K
20, 20, < da(g,0,x) Z c

k=n+1
N 1 1—c" n
:a(d,g,Q,:U)(l_C—(l_c +c ))

Letting f(n) := a(d, g,0,x) (i — (11__Cn + c")) and g(n) = ¢", then

[

lim f(n)‘ = const < 00,
n—oo g(n)

which proves the claimed convergence rate. O
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5.3 Dequantization and Evaluation

So far, we discussed how to fit a continuous density model with inputs z € R%. However,
many practical applications involve quantized inputs. For example, RGB-images are quan-
tized to = € {0,...,255}%. Since the discrete data distribution has differential entropy of
negative infinity, fitting a continuous density model to discrete data can lead to arbitrarily
high likelihoods even on test data (Theis et al., 2016).

For this reason, the discrete data is usually dequantized using uniform noise. Fortunately,
this lead to a lower bound on the log-likelihood of the discrete data, see (Theis et al.,
2016):

Lemma 5.10 (Lower bound on discrete data log-likelihood). Let x € {0,...,255} be the
discrete data and y = x +u the dequantized data, where u is drawn uniformly from [0,1).
Further, denote the discrete probability mass function as Ppogei(z) and pmodel(x) as the
density on the dequantized data. Then, we obtain the lower bound

Eprdata Uog pmodel(y)] < Ewadam [log Pmodel(y)}v

where Pyga denotes the original distribution of the discrete data and pgeq the density of
the dequantized data.

Proof. Following (Theis et al., 2016), by Jensen‘s inequality we have

Ey~paata 108 Prmodet ()] = Z Piata () /[0 )

S Z Pdata(w) lOg /[0 l)d pmodel(x + u>du

u 10g Pmodel (1‘ =+ u>du

= EyPyora 108 Praode ()]

O]

As a consequence, maximizing the log-likelihood of the continuous model on the dequan-
tized data cannot lead to degenerate solutions, since its bounded from above by the log-
likelihood of a discrete model. However, (Ho et al., 2019) argue that assigning uniform
density to a hypercube z + [0,1)? results in an unnatural task for continuous density
models like neural networks. For this reason, (Ho et al., 2019) go a step further and ex-
plore variational dequantization. While this is an interesting further research direction for
i-ResNets, we use uniform dequantization in the following experiments since it is more
commonly used.

Evaluation: Log-likelihoods are usually reported in bits/dim, hence for evaluation we
need to transform the logarithm with base e to a base of 2. Furthermore, the input
data from {0,..., 255} is usually scaled to [0, 1]¢, which can be accounted for by adding
log,(256). Lastly, dividing by the input dimension d allows to compare results across input
domain with different dimension.
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Figure 5.3: Bias and standard deviation of our log-determinant estimator as the number
of power series terms increases. Variance is due to the stochastic trace estimator.

5.4 Numerical Analysis

We run a number of experiments to verify the utility of i-ResNets for building gener-
ative models. First, Figure 5.2 shows the density learned by an i-ResNet compared to
Glow (Kingma and Dhariwal, 2018) on 2-dimensional synthetic tasks. For details on this
experiment, we refer to (Behrmann et al., 2019%***).

Second, we evaluate i-ResNets as a generative model for images on MNIST and CIFAR10.
Our models consist of multiple invertible residual layers followed by invertible downsam-
pling or dimension “squeezing” to downsample the spatial dimensions. See (Jacobsen et al.,
2018) for more details on these downsampling operations. Furthermore, we use multi-scale
architectures like those of (Dinh et al., 2017; Kingma and Dhariwal, 2018). In these ex-
periments we train i-ResNets using the log-determinant approximation from Algorithm 2
with a single random vector v for trace estimation (single vector for each input sample and
each residual layer). A complete description of the architectures, as well as experimental
and evaluation details can be found in Appendix A.2.

In terms of the computation times, the log-determinant approximation with 5 series terms
roughly increases the computation times by a factor of 4 (in comparison to the classification
model). Furthermore, we plot the bias and variance of our log-determinant estimator in
Figure 5.3. To get a visual idea of the trained generative model, we show some random
samples from our CIFAR10 model in Figure 5.4.

The resulting performance in bits/dim and a comparison to other generative models can
be found in Table 5.1. While our models did not perform as well as Glow (Kingma and
Dhariwal, 2018) and FFJORD (Grathwohl et al., 2019), we find it intriguing that ResNets,
with very little modification, can create a generative model competitive with these highly
engineered models. Even more interesting, follow-up work from (Chen et al., 2019%***)
showed that constructing an unbiased estimator can close this gap in performance and
improve upon all other results from Table 5.1.
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Figure 5.4: CIFAR10 samples from our i-ResNet, see Appendix A.2 for details.

Method | MNIST ~ CIFAR10
NICE (Dinh et al., 2014) 4.36 4.48%
MADE (Germain et al., 2015) 2.04 5.67
MAF (Papamakarios et al., 2017) 1.89 4.31
Real NVP (Dinh et al., 2017) 1.06 3.49
Glow (Kingma and Dhariwal, 2018) 1.05 3.35
FFJORD (Grathwohl et al., 2019) 0.99 3.40
i-ResNet | 1.06 3.45

Table 5.1: MNIST and CIFARI0 bits/dim results compared to other likelihood-based
models. 1 Uses ZCA preprocessing making results not directly comparable.

5.5 Related Work

After introducing i-ResNets in the previous chapter and discussing how to use them as a
generative model, we now review other approaches to design invertible networks. After-
wards, we shortly discuss the growing body of literature on the approximation of spectral
functions like the log-determinant.

5.5.1 Comparison of Invertible Architectures

We put our focus on invertible architectures with efficient inverse computation, namely
NICE (Dinh et al., 2014), i-RevNet (Jacobsen et al., 2018), Real-NVP (Dinh et al., 2017),
Glow (Kingma and Dhariwal, 2018) and Neural ODEs (Chen et al., 2018) and its stochas-
tic density estimator FFJORD (Grathwohl et al., 2019). A summary of the comparison
between different invertible networks is given in Table 5.2.

The dimension-splitting approach used in NICE, i-RevNet and Real-NVP results in ana-
lytic forward and inverse mappings. However, this restriction required the introduction of
additional steps like invertible 1 X 1 convolutions in Glow (Kingma and Dhariwal, 2018).
These 1 X 1 convolutions need to be inverted numerically, making Glow altogether not
analytically invertible. In contrast, i-ResNet can be viewed as an intermediate approach,
where the forward mapping is given in closed-form, while the inverse can be approximated
via a fixed-point iteration.
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Method ‘ ResNet NICE Real-NVP Glow FFJORD | i-ResNet
Free-form v X X X 4 4
Analytic Forward v v v v X v
Analytic Inverse N/A v v X X X
Non-volume Preserving N/A X 4 4 v v
Exact Likelihood N/A v v/ v X X
Unbiased Stoch. Log-Det Est. | N/A N/A N/A N/A v X

Table 5.2: Comparing i-ResNet and ResNets to NICE (Dinh et al., 2014), Real-NVP
(Dinh et al., 2017), Glow (Kingma and Dhariwal, 2018) and FFJORD (Grathwohl et al.,
2019). Non-volume preserving refers to the ability to allow for contraction and expan-
sions and exact likelihood to compute the change of variables (5.4) exactly. The unbiased
estimator refers to a stochastic approximation of the log-determinant, see section 5.2.2.
We note, however, that the follow-up work (Chen et al., 2019***) introduces an unbiased
estimator for i-ResNet architectures.

Furthermore, an i-ResNet block has a Lipschitz bound both for forward and inverse
(Lemma 4.6), while other approaches do not have this property by construction. Thus,
employing i-ResNets in stability-critical applications could be a promising avenue for fu-
ture work. Particularly interesting would be the usage of invertible ResNets in inverse
problems, see e.g. (Ardizzone et al., 2019) for first studies in this area.

Neural ODEs (Chen et al., 2018) allow free-form dynamics similar to i-ResNets, meaning
that any architecture could be used as long as the input and output dimensions are the
same. To obtain discrete forward and inverse dynamics, Neural ODEs rely on adaptive
ODE solvers, which allows for an accuracy vs. speed tradeoff. Yet, scalability to very high
input dimension such as high-resolution images remains unclear.

5.5.2 Spectral Sum Approximations

The approximation of spectral sums like the log-determinant is of broad interest for many
other machine learning applications such as Gaussian Process regression (Dong et al.,
2017). Among others, Taylor approximation (Boutsidis et al., 2017) of the log-determinant
similar to our approach or Chebyshev polynomials (Han et al., 2016) are used. In (Boutsidis
et al., 2017), error bounds on the estimation via truncated power series and stochastic
trace estimation are given for symmetric positive definite matrices. However, I + J, is not
symmetric in our case and thus, their analysis does not apply here.

Recently, unbiased estimates (Adams et al., 2018) and unbiased gradient estimators (Han
et al., 2018) were proposed for symmetric positive definite matrices. Furthermore, Cheby-
shev polynomials have been used to approximate the log-determinant of Jacobian of deep
neural networks in (Ramesh and LeCun, 2018) to evaluate the likelihood of GANs.
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5.6 Conclusion and Future Work

Generative modeling is often understood as a key step towards a holistic understanding of
data. Among generative approaches, normalizing flows stand out since they allow to use the
maximum likelihood principle by leveraging invertible transforms for a change of variables.
Due to their flexibility, i-ResNets are suitable candidates for such generative models. They
allow a free-form Jacobian (no structural constraint), in contrast to other approaches
based on dimension splitting (Dinh et al., 2014, 2017; Kingma and Dhariwal, 2018). Yet,
this free-form has one major drawback: the log-determinant needs to be computed, which
is prohibitive in high-dimensions. To circumvent this problem, we introduced a simple
estimator and demonstrated its usefulness for image data.

The log-determinant estimator introduces two major disadvantages:

(i) Additional memory-cost due to saving all summands of the power series for back-
propagation

(ii) Biased estimation of the log-determinant.

However, both disadvantages can be addressed. First, a memory-efficient gradient estima-
tor can be derived based on a Neumann series. Second, the estimator presented in section
5.2.2 can be made unbiased via randomizing the truncation index and reweighting each
summand. These changes not only allows training i-ResNets with less memory resources,
it further improves the results presented in this chapter. For details on this, we refer to
the follow-up work:

Ricky T. Q. Chen, Jens Behrmann, David Duvenaud, Jorn-Henrik Jacobsen:
Residual flows for invertible generative modeling, 2019, (under submission; early ver-
sion presented at: ICML workshop on Invertible Networks and Normalizing Flows)

While the follow-up work above already removed multiple drawbacks, future work could fo-
cus on further improving the presented methodology. In particular, a better understanding
of the variance of the used log-determinant estimator might lead to variance reduction ap-
proaches, which may speedup convergence. Furthermore, studying whether i-ResNets (or
other invertible architectures) can approximate any distribution via a change of variables
could guide future algorithmic research.

Besides a mathematical analysis, using these flow-based models in multiple applications
should be one of the next steps. For example, maximum-a-posteriori (MAP) inference,
where the prior is learned via an i-ResNet, could offer a novel deep learning approach
to inverse problems. Additionally, using flows for out-of-distribution detection or semi-
supervised learning could further increase the application spectrum of invertible networks.
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Chapter 6

Reverse View on Adversarial
Examples

"All models are wrong, but some are deadly.” - Nassim Taleb.

Since the discovery of adversarial examples (Biggio et al., 2013; Szegedy et al., 2014),
they were mostly studied via worst-case robustness under an attack to the model. In
this chapter, we introduce a second viewpoint on adversarial examples by reversing this
definition. This reverse view uncovers excessive invariance of deep networks to changes in
the input space, which might then be exploited by an adversary.

Since invariance is hard to control when using standard architectures (see chapter 3),
we study the usage of invertible networks, which are (by design) not invariant to any
transformations in the input. When performing classification, however, we need to project
features onto classes which necessarily introduces invariant directions. Yet, as we will show,
invertible networks still offer a mechanism to control invariance.

This chapter focuses on conceptual insights and theoretical considerations, which are based
on the articles below. We also briefly review invariance-based attacks and further empirical
studies, but encourage the reader to consult the following articles for an in-depth:

Jorn-Henrik Jacobsen, Jens Behrmann, Richard Zemel, Matthias Bethge: Fxces-
sive invariance causes adversarial vulnerability, 2019, (International Conference on
Learning Representations (ICLR))

Jorn-Henrik Jacobsen, Jens Behrmann, Nicholas Carlini, Florian Tramer, Nico-
las Papernot: Ezploiting excessive invariance caused by norm-Bounded adversarial
robustness, 2019, (under submission; early version presented at: ICLR workshop on
Safe Machine Learning: Specification, Robustness and Assurance)

6.1 Introduction and Motivation

Research on adversarial examples is motivated by a spectrum of questions. These range
from the security of models deployed in the presence of real-world adversaries to the need

65
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Top-1: Bullfrog Top-2: Acorn Top-3: Garter snake Top-999: Rotisserie Top-1000: Tiger shark

Figure 6.1: From (Jacobsen et al., 2019b***): All images shown cause a competitive
ImageNet-trained network to output the ezact same probabilities over all 1000 classes
(logits shown above each image). The leftmost image is from the ImageNet validation set;
all other images are constructed such that they match the non-class related information
of images taken from other classes (for details see section 6.3). The excessive invariance
revealed by this set of adversarial examples demonstrates that the logits contain only
a small fraction of the information perceptually relevant to humans for discrimination
between the classes.

to capture limitations of representations and their (in)ability to generalize from training
data (Gilmer et al., 2018a). The broadest accepted definition of an adversarial example is
“an input to a ML model that is intentionally designed by an attacker to fool the model
into producing an incorrect output” (Goodfellow and Papernot, 2017). To enable concrete
progress, many definitions of adversarial examples were introduced in the literature since
their initial discovery (Biggio et al., 2013; Szegedy et al., 2014). Each of them employs a
different degree of formalism and corresponds to a distinct set of assumptions about the
adversary, i.e., threat model.

So far, the study of adversarial examples has mostly been concerned with the setting of
small perturbation, or e-adversaries (Goodfellow et al., 2015; Madry et al., 2017; Raghu-
nathan et al., 2018). Perturbation-based adversarial examples are appealing because they
allow to quantitatively measure notions of adversarial robustness (Brendel et al., 2018).
However, recent work argued that the perturbation-based approach is unrealistically re-
strictive and called for the need of generalizing the concept of adversarial examples to the
unrestricted case (Song et al., 2018; Brown et al., 2018). Yet, settings beyond e-robustness
are hard to formalize (Gilmer et al., 2018a).

We argue here for an alternative, complementary viewpoint on the problem of adversarial
examples. Rather than perturbing the input to change the classifier’s output, invariance-
based adversarial examples are obtained by modifying the input as much as possible, while
keeping the decision of the classifier identical. Accordingly, they correspond to a lack of
sensitivity of the model: the model’s constant prediction does not reflect the expected
change in the input’s true label. In Figure 6.1, an illustration of such model failures is
shown.

The invariance perspective suggests that adversarial vulnerability is a consequence of nar-
row learning, yielding classifiers that rely only on few highly predictive features in their
decisions and fail to capture all predictive features. This has also been supported by
the observation that deep networks strongly rely on spectral statistical regularities (Jo
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and Bengio, 2017), or stationary statistics (Gatys et al., 2015) to make their decisions,
rather than more abstract features like shape and appearance. We hypothesize that a ma-
jor reason for this excessive invariance can be understood from an information-theoretic
viewpoint of cross-entropy training. This procedure maximizes a bound on the mutual
information between labels and representation, thus it is giving no incentive to explain all
class-dependent aspects of the input. This may be desirable in some cases, but to achieve
truly general understanding of a scene or an object, machine learning models have to
learn to successfully separate essence from nuisance and subsequently generalize even un-
der shifted input distributions (e.g. due to distortion of inputs or due to using the model
in a new environment).

6.2 Two Complementary Approaches to Adversarial Exam-
ples

In this section, we define preimages and establish a link to adversarial examples.

Definition 6.1 (Preimages / Invariance). Let F : R? — R be a neural network, where
F = flo...ofl with layers f' and let F* denote the network up to layer i. Further, let
D :R% — {1,...,C} be a classifier with D = argmax,_; _ o softmax(F(z));. Then, for
input © € RY, we define the following preimages:

(i) i-th layer preimage: {z* € R? | Fi(z*) = F'(z)}
(ii) Logit preimage: {z* € R? | F(x*) = F(z)}
(iii) Argmazx preimage: {z* € R? | D(z*) = D(z)},

where (i) C (ii) C (iii) by the compositional nature of classifier D.
Let G denote the subnetwork F*, the entire network F or the classifier D. Then, we say
that the (sub-)network G is invariant to perturbations Ax if G(x + Az) = G(z).

Non-singleton preimages (preimages containing more elements than input z) after the i-th
layer can occur, if the chain f?o---o f! is not injective, for instance due to subsampling
or non-injective activation functions like ReLU. For a discussion on the effect of ReLU
on preimages see chapter 3. This accumulated invariance can become problematic if not
controlled properly, as we will show in the following.

We define perturbation-based adversarial examples by introducing the notion of an oracle
(e.g., a human decision-maker or the unknown input-output function considered in learning
theory):

Definition 6.2 (Perturbation-based Adversarial Examples). Let G denote the i-th layer,
logit or argmax of the classifier. A perturbation-based adversarial example (or per-
turbation adversarial) x* € RY corresponding to a legitimate test input x € R fulfills:

(i) Created by adversary: x* € R? is created by an algorithm A : R — RY with «* =
A(x).
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(ii) Perturbation of output: ||G(x*) — G(z)|| > ¢ and O(x*) = O(x), where perturbation
§ > 0 is set by the adversary and O : R — {1,... C} denotes the oracle.

Furthermore, x* is e-bounded if |z — x*| < ¢, where || - || is a norm on R% and € > 0.

Property (i) allows us to distinguish perturbation-based adversarial examples from points
that are misclassified by the model without adversarial intervention. Furthermore, the
above definition incorporates adversarial perturbations designed for hidden features as
in (Sabour et al., 2016), while usually the decision of the classifier D (argmax-operation
on logits) is used as the perturbation target. Our definition also identifies e-bounded
perturbation-based adversarial examples (Goodfellow et al., 2015) as a specific case of un-
bounded perturbation-based adversarial examples. However, as our goal is to characterize
general invariances of the network, we do not restrict ourselves to bounded perturbations.

Definition 6.3 (Invariance-based Adversarial Examples). Let G denote the i-th layer,
logit or argmax of the classifier. An invariance-based adversarial example z* € R?
corresponding to a legitimate test input x € R? fulfills:

(i) Created by adversary: z* € R is created by an algorithm A : R — R? with x — z*.

(ii) Lies in preimage of x under G: G(x*) = G(x) and O(x) # O(z*), where O : R? —
{1,...,C} denotes the oracle.

As a consequence, D(z) = D(z*) also holds for invariance-based adversarial examples,
where D is the classifier. Intuitively, adversarial perturbations cause the output of the
classifier to change while the oracle would still consider the new input x* as being from
the original class. Whereas perturbation-based adversarial examples exploit the classifier’s
excessive sensitivity in task-irrelevant directions, invariance-based adversarial examples
explore the classifier’s preimage to identify excessive invariance in task-relevant directions:
its prediction is unchanged while the oracle’s output differs. Briefly put, perturbation-based
and invariance-based adversarial examples are complementary failure modes of the learned
classifier.

When not restricting to e-perturbations, perturbation-based and invariance-based adver-
sarial examples yield the same input z* via

¥ =x1+ Az, D(z")# D(z1), O(x*)=0O(x1) (6.1)
¥ =x9+ Axg, D(z%) = D(z2), O(z*)# O(x2),

with different reference points z1 and x2 (see Figure 6.2). Hence, the key difference is
the change of reference, which allows us to approach these failure modes from different
directions. To connect these failure modes with an intuitive understanding of variations in
the data, we now introduce the notion of invariance to nuisance and semantic variations,
see also (Achille and Soatto, 2018).

Definition 6.4 (Semantic and nuisance perturbations of an input). Let O be an oracle
(Definition 6.2) and x € R Then, a perturbation Ax of an input x € R is called
semantic, if O(z) # O(z + Az) and nuisance if O(x) = O(z + Ax).
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Perturbation-based:
F(x) # F()
y=y

— Invariance-based:
y#£y

Figure 6.2: Connection between invariance-based (long pink arrow) and perturbation-
based adversarial examples (short orange arrow). Class distributions are shown in green
and blue; the dashed line is the decision-boundary of a classifier. All adversarial examples
can be reached either by crossing the decision-boundary of the classifier via perturbations,
or by moving within the preimage of the classifier to mis-classified regions. The two view-
points are complementary to one another and highlight that adversarial vulnerability is
not only caused by excessive sensitivity to semantically meaningless perturbations, but
also by excessive insensitivity (invariance) to semantically meaningful transformations.

For example, such a nuisance perturbation could be a translation or occlusion in image
classification. However, these concepts are easier to understand for following synthetic
example, where nuisance and semantics can be explicitly formalized as rotation and norm
scaling:

Example 6.5 (Semantic and nuisance on Adversarial Spheres (Gilmer et al., 2018b)).
Consider the task: Distinguish points from two cocentric spheres (class 1: ||z|2 = R1 and
class 2: ||x||2 = R1). Further, let (r,¢) denote the spherical coordinates of x. Then, any
perturbation Ax, x* = x + Ax with r* # r is semantic. On the other hand, if r* = r, then
the perturbation is a nuisance with respect to the task of discriminating two spheres.

W) is invariant to any

In this example, the max-margin classifier D(z) = sign (HxH -
nuisance perturbation, while being only sensitive to semantic perturbations. In summary,
the transformation to spherical coordinates allows to linearize semantic and nuisance per-
turbations. Using this notion, invariance-based adversarial examples can be attributed to

perturbations of * = z + Ax with the following two properties:

(i) The perturbed sample z* stays in the preimage {z* € R? | D(2*) = D(x)} of the
classifier

(ii) The perturbation Az is semantic, as O(z) # O(x + Ax).

Thus, the failure of the classifier D can be thought of a mis-alignment between its invari-
ance (expressed through the preimage) and the semantics of the data/ task (expressed by
the oracle).
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Figure 6.3: Robustness experiment on spheres with radii Ry = 1 and Ry = 1.3 and mis-
aligned classifier for d = 500 dimensions and n = 10 unused dimensions. Left: Attacking
points from the outer sphere with perturbation-based attacks, with accuracy dropping
when increasing the upper bound on 12-norm perturbations. Right: Attacking points from
the inner sphere with invariance-based attacks, with accuracy dropping when increasing
the upper bound on /s-norm perturbations. Each attack mode has a different effect on
the manifold. Red arrows indicate the only possible direction of attack for each sphere.
Perturbation attacks fail on the inner sphere, while invariance attacks fail on the outer
sphere. Hence, both attacks are needed for a full account of model failures.

6.2.1 Comparing Invariance-based and Perturbation-based Robustness

We now investigate the relationship between the two adversarial example definitions from
the previous section. In a general setting, invariance and stability may be uncoupled.
For this consider a linear classifier with matrix A. The perturbation-robustness is tightly
related to forward stability, since the effect of an input perturbation can be upper bounded
by the largest singular value of A. On the other hand, the invariance-view relates to the
stability of the inverse (smallest singular value of A) and to the null-space of A. As largest
and smallest singular values are uncoupled when considering arbitrary matrices A, the
relationship between both viewpoints is likely non-trivial in practice.

Next, we show how the analysis of perturbation-based and invariance-based adversarial
examples can uncover different model failures. To do so, we again consider the synthetic
adversarial spheres problem of (Gilmer et al., 2018b) from Example 6.5. As mentioned, the
dataset was designed such that a robust (i.e. max-margin) classifier exists. Our analysis
considers a similar, but slightly sub-optimal classifier in order to study model failures in
a controlled setting:

Example 6.6 (Mis-aligned classifier on adversarial spheres). Let input x = (z1,...,xq) €
R? be sampled from one of two spheres with radii Ry < Ra. Then, consider the classifier

D(z) = sign ([|z1,....d—nll2 — 1),

which computes the norm of x from its first d — n cartesian coordinates and outputs -1
(respectively +1) for the inner (respectively outer) sphere. The bias b is chosen, such that
the classifier D is the maz-margin classifier on the (finite) training set T = {x@}N,
(under the assumption of separability, i.e. | < u):

u—

l= max |z _a-nll2, w= min |z _g-nl2, b=1+
zWDeT zDeT 2

[ |l2=R1 [ ||2=R



6.2. Two Complementary Approaches to Adversarial Examples 71

Even though this sub-optimal classifier reaches nearly 100% on finite test data, the model
is imperfect in the presence of adversaries that operate on the manifold (i.e., produce
adversarial examples that remain on one of the two spheres, but are misclassified by
the classifier). Most interestingly, the perturbation-based and invariance-based approaches
uncover different failures:

(Analytic) perturbation-based attack: All points = from the outer sphere (i.e., ||z||2 =
Rs) can be perturbed to z*, where O(x) = D(x) # D(z*), while staying on the outer sphere
(i.e., ||[z*]]2 = R2):

(i) Perturbation of decision: 7 ,_, = a (21, 4—n), where scaling a > 0 is chosen such
that [[z7  ;_pll2 <b

(ii) Projection to outer sphere: xfl_nw7d = ¢ (4—n,.. 4), where scaling ¢ > 0 is chosen

such that [|zj_, ,ll2 = \/R§ - Hﬂ,d—n”%

For points z from the inner sphere, this is not possible if b > R;.

(Analytic) invariance-based attack: All points z from the inner sphere (||z||2 = R1)
can be perturbed to z*, where D(z) = D(z*) # O(z*), despite being in fact on the outer
sphere after the perturbation has been added (i.e., ||z*|2 = R2):

(i) Fixing the used dimensions: ] , , =21, d-n

(ii) Perturbation of unused dimensions: z;_, ;= a (24—n,. 4), Where scaling a > 0 is

chosen such that [|zj_, _allo = /B3 — ll2} _4_,[3.

For points = from the outer sphere, this is not possible if b > Rj.

In Figure 6.3, we plot the mean accuracy over points sampled either from the inner or outer
sphere. It is visualized as a function of the norm of the adversarial manipulation added
to create perturbation-based and invariance-based adversarial examples. This illustrates
how the robustness regime differs significantly between the two variants of adversarial
examples. Therefore, by looking only at perturbation-based (respectively invariance-based)
adversarial examples, important model failings may be overlooked. This is exacerbated
when the data is sampled in an unbalanced fashion from the two spheres: the inner sphere
is robust to perturbation adversarial examples while the outer sphere is robust to invariance
adversarial examples (for accurate models).

Furthermore, (Jacobsen et al., 2019a***) showed on nearly all state-of-the-art robust
MNIST models that hardening the model towards bounded perturbation-robustness can
induce new invariance-based vulnerabilities. Thus when investigating a model, both fail-
ures should be taken into account. In the following section, we review recent approaches
to attack a model based on excessive invariance.
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6.3 Review of Invariance Attacks

There has been some recent work that pushed the boundary to understand attacks in the
context of excessive invariance:

e An attack leveraging bijective networks to analytically compute invariance-based
adversarial examples (Jacobsen et al., 2019b***). This attack is applicable for large-
scale problems like ImageNet (see Figure 6.1) and will be discussed in more detail
in this section.

e Model-agnostic attacks on MNIST to reveal invariance-based vulnerability even
within small £,-norm balls (Jacobsen et al., 2019a***).

e Linear programming based attacks that exploit ReLLU layer preimage vulnerabilities
(Behrmann et al., 2018a***). See section 3.3 and, in particular, Theorem 3.3 for
more details on the preimage of ReLu layers.

e Feature collisions that identify polytopes, in which all inputs are misclassified while
causing identical activations (Li et al., 2019).

e Unrestricted adversarial examples, leveraging Generative Adversarial Networks
(GANSs) to generate misclassified, but realistic inputs (Song et al., 2018).

Of special interest for the discussion here is the metameric sampling attack from (Jacob-
sen et al., 2019b™**) which makes explicit use of invertible networks. First, metameric
sampling relies on classifiers with a simplified read-out:

Definition 6.7 (Bijective classifier with simplified read-out). Let Fp : R — R? denote
bijective network and denote the classifier Dy as
Dy = argmax softmax(Fy(z)1,..c)k,
k=1,...C

where C' < d denotes the number of classes. Further, denote z = Fp(x) and zs = 21, c as
the logits (semantic variables) and z, = zc41,.. 4 as the nuisance variables (zy is not used
for classification). Then, the classifier Dy has a simplified read-out structure, since it only
uses the first C' outputs of the bijective network Fy without further transformations.

An example of such a classifier, called fi-RevNet (fully-invertible reversible networks), was
introduced in (Jacobsen et al., 2019b***). This structure allows to define a simple analytic
invariance-based attack, see (Jacobsen et al., 2019b***):

Definition 6.8 (Metameric sampling). Let Fy and Dy define a classifier with simplified
read-out and Fe_l be the inverse. Further, let z € R% be an input sample from class i
and & € R? be a reference sample from class j # i. Then, metameric sampling generates
invariance-based adversarial examples via

Tmet = F_I(ZSa 2n)a

where zg are the semantic variables from input x and Z, are the nuisance variables from
the reference sample .
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Remark 6.9. Metameric sampling only generates invariance-based adversarial examples
by Definition 0.3, if the oulput x,et is legitimate. While this termed was not defined
in a technical manner, for images we could think of naturally looking examples or non-
suspicious examples as judged visually by a human observer. Experimentally (Jacobsen
et al., 2019b***) find that this sampling procedure reveals adversarial subspaces, that are
indeed visually close to natural images on ImageNet (see Figure 6.1).

Thus, metameric sampling (which relies on invertible networks) offers an analytic tool
to inspect dependencies between semantic and nuisance variables without the need for
expensive and approximate optimization procedures. In conclusion, invertible networks
can play a crucial role to uncover this striking behavior. In the subsequent section, we go
even one step further and study following two questions:

(i) How do invertible networks allow to control invariance and why do we need invertible
networks?

(ii) Can this be leveraged to avoid those model failures, which are uncovered by
invariance-based adversarial examples?

6.4 Controlling the Behavior of the Inverse Mapping

6.4.1 On the Need of Invertible Networks

A particularly promising architecture class to control invariance-based robustness may
be invertible networks, such as i-RevNet (Jacobsen et al., 2018) or i-ResNets (chapter 4).
They cannot build any invariance up until the final layer by construction, which is typically
followed by a linear layer that projects down to the class logits. Thus in invertible networks,
analyzing invariance-based vulnerability boils down to analyzing the invariance caused by
this final linear operator. As an example, see the classifier with simplified read-out structure
(Definition 6.7).

On the other hand, controlling invariance in standard architectures is difficult. See for
example Theorem 3.3, where conditions of the preimage of ReL.U-layers are given. Even this
single layer can show entirely different behavior over the input space. Thus, in this section
we concentrate on invertible networks, which simplify the study of invariance drastically.

Remark 6.10. While we focus on invariance in this section, extending the viewpoint to
the stability of the inverse would be of major interest. Especially the previously proposed
i-ResNet would be a promising model class, because it allows to control forward and inverse
stability by design (see Theorem /.G on the Lipschitz constant of the forward and inverse

mapping).

6.4.2 Independence Cross-Entropy via Information Theory

In this section, we identify why the cross-entropy objective (or equivalently the nega-
tive log-likelihood, see Remark 2.8) does not necessarily encourage to explain all task-
dependent variations of the data and propose a way to fix this. In particular, we employ
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an information-theoretic viewpoint for our analysis, which is why we use the term cross-
entropy instead of negative log-likelihood (for their equivalence see Lemma 2.14).

We leverage bijective classifiers with simplified readout-structure (Definition 6.7) and turn
the splitting of semantics and nuisances into a formal explanation framework using infor-
mation theory: Let (X,Y) ~ Dyxy,where the label Y is a discrete random variable over
{0,1}“. Then, the goal of a feature extractor can be stated as maximizing the mutual in-
formation (see Definition 2.11) between semantic features Z; (logits) extracted by network
Fy and labels Y, denoted by I(Y; Z;).

Remark 6.11. We use capital letters to denote the random wvariables X,Y, Zs, Z, and
reason about their statistical properties, while small letters are used to denote their real-
izations (samples x, transformed features zs, z, and labels y). Here, random variables Z
and Z, are deterministic transformations of random variable X, i.e.

Zy=Fy(X)1,..c and Z,=Fy(X)cn,. .
where the transform is given by an invertible network Fy.

The previously discussed failures required a modification of the inputs X ~ D (we drop the
subscript for convenience), for example via metameric sampling. To formalize these modifi-
cations, we now introduce the concept of an adversarial distribution shift Daq, 7 D.
Our first assumptions for D4y, is

ID 44, (Zn;Y) < Ip(Zn;Y).

Intuitively, the nuisance variables Z,, of our network do not become more informative
about Y by the shift in the input distribution. Thus, D 44, may reduce the predictiveness
of features encoded in Zg, but does not introduce or increase the predictive value of
variations captured in Z,. Second, we assume (see Def. 2.11 for conditional MI)

IDAdU (Y; ZS‘ZTL) S IDAdU (Y; ZS)?

which corresponds to positive or zero interaction information, see (Ghassami and Kiyavash,
2017). While the information in Zg and Z,, can be redundant in this assumption, synergetic
effects where conditioning on Z,, increases the mutual information between Y and Z, are
excluded.

Remark 6.12. While the assumptions may be hard to verify or unrealistic in real-world
applications, (Jacobsen et al., 2019b***) studied a synthetic example where above assump-
tions were valid. In particular, an additional feature (texture or watermark pizel) was
planted into each image of an MNIST digit. During training time this feature was predic-
tive of the target label, while the relationship was randomized at test time (corresponding
to a distribution shift between training and test).

At this point, we use that bijective networks Fy capture all variations by design. In

information-theoretic terms this translates to information invariance, see (Kraskov et al.,
2004) and (Polyanskiy and Wu, 2015):
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Lemma 6.13 (Invariance of mutual information (MI) under reparametrization). Let X
be a continuous random variables on R and Y be a discrete random variable on {0,1}€.
Further, let F : R — R? be a deterministic homomorphism. Then, mutual information is
invariant under F' and it holds

I(Y;X) = I(Y; F(X)). (6.3)

Proof. We follow the derivations from (Polyanskiy and Wu, 2015). Consider the chain of
data processing

(Y, X) = (Y, F(X)) = (Y, FY(F(X))) = (Y, X).
Then by the data processing inequality (see Lemma 2.13, (iv)), it holds
I(Y;X) > I(Y; F(x)) > I(Y; FTHF(X))) = 1(Y; X).

Hence equality (6.3) must hold, which proves the invariance under reparametrization. [

We can now apply this property of MI to the homomorphism (bijective) Fp. Consider the
splitting of (Zs, Z,) = Z = Fy(X) as in Remark 6.11. Then by the chain rule of MI (see
Lemma 2.13, (ii)), we can reformulate via

I(Y;X) =1(Y; Fy(X)) = I(Y; Zs, Zn)
= I(Y; Zs) + I(Y§ Zn‘Zs) (64)
=1(Y;Z,) + 1(Y; Zs| Zy), (6.5)

where I(Y; Z,|Zs) denotes the conditional MI (see Def. 2.11). Most interestingly, above
reformulation offers two ways to increase the (conditional) MI between labels Y and se-
mantic features Z,:

(i) Direct increase of I(Y; Zs) (see formulation (6.4))

(ii) Indirect increase of I(Y; Zs|Z,) via decreasing I(Y'; Z,,) (see formulation (6.5)).

Usually in a classification task, only I(Y; Zs) is actively increased via training a feature
extractor. While this approach is sufficient in most cases, as expressed via high accuracies
on training and test data, it may fail under Djgq,. This highlights why cross-entropy
training may not be sufficient to overcome excessive semantic invariance. However, by
leveraging the bijection Fy we can minimize the unused mutual information 1(Y; Z,,) using
the intuition of a nuisance classifier. For an empirical analysis of a nuisance classifier, see
the experiment on the adversarial spheres problem in (Jacobsen et al., 2019b***).

This nuisance classifier can be formulated via the following extended loss:

Definition 6.14 (Independence cross-entropy loss). Let T = {(z® y) N be the
training set and let Fy : R® — R? a bijective network with parameters § € RP' and
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Fy(z) = softmax(Fp(x)1._c). Furthermore, let Dy, : R™C — [0,1]¢ be the nuisance
classifier with 0,,. € RP2, Then, we define the independence cross-entropy loss as

N C ) ~ ' N C ; )
Licr(0,0ue,T) = 3.5~y log Bz (2?); + 33" 4" 1og Dy, (Ff" (29));

i=1j=1 i=1j=1

::ESCE(GzT) ::L‘"nCE(eyench)

This loss is then optimized via the minimaz-problem

rrbin I{glaX ‘CiCE(ea Ones T)

nc

The underlying principles of the nuisance classification loss £,,cr can be understood using
a variational lower bound on mutual information, which was given in (Barber and Agakov,
2003):

Lemma 6.15 (Variational lower bound on mutual information). Let X,Y be random
variables (as in Lemma 6.13) with conditional density p(y|X = x). Further, let qo(y|X =
x) be a variational density depending on parameter 6. Then, the lower bound

I(Y;X) 2 (YY) + EonxByyix log go(y| X = 2)] =: Ip(Y; X)

holds with equality if and only if p(y| X = x) = qo(y| X = x).

Proof. Following the derivation in (Barber and Agakov, 2003) and including the
information-theoretic properties from section 2.1.3, we have

I(Y;X) = H(Y) — H(Y|X) (6.6)
=H(Y)+Ex jip(yle = x)log p(y;| X = 93)] (6.7)
)+ B | S plalX = o) o <p<yjrx - x)W)] (6:5)

= a0 (y;|X = )
= H(Y)+Ex jZip(yj!X = x)log (qo(y;|X = 7))

+Ex [Drn(p(y|X =) || ¢o(y| X = 2))] (6.9)

C
> H(Y)+Ex | Y p(yj|X = z)log (go(y;| X = z))
j=1

In above derivation, (6.6) was given in Lemma 2.13 (i), (6.7) is the conditional entropy from
Definition 2.12, (6.8) is due to the addition of a zero term and (6.9) applies the logarithm
rules and the KL divergence (see Definition 2.9). Most importantly, the inequality (and
the iff-statement in the Lemma) is due to the information inequality (Lemma 2.10). [
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While this lower bound removes the need of having access to the unknown conditional
density p(y|X = z), estimating the expectation Ey x still requires sampling from Dy x.
This, however, is possible using the data pairs (:L'(i),y(i)) from the training set 7. By
leveraging this variational bound, we can state the effect of the nuisance classification loss
L,cg in the following theorem.

Note that we consider stochastic encoders to simplify the proof and discuss the extension
to deterministic encoders (neural network Fp that maps z to z) in Remark 6.17.

Theorem 6.16 (Effect of nuisance classifier for stochastic encoders). Let random variables
XY, Zs, Z, and neural network Fy be defined as before. Further, let Fy denote a stochastic
transform, where z =: Fj(z) = Fy(x) + € and ¢ ~ N(0,02). Thus, the conditional density
po(z|X = x) is given by the stochastic encoder Fy.

Then, the minimization/mazimization of the nuisance classification loss Lncr (from Def.
6.14) has following effects:

(i) Minimization of lower bound on Ip(Y; Zy,):
Set 0y := argmaxy Lnop(0,0n). Then

rvnc

0" = argmin L,,cp(9,0;.)
%

minimizes lgx (Y'; Zy), where lox (Y; Zn) < Ip(Y; Zy,) as given in Lemma 0.15.

(7i) Mazimization to tighten bound on Ip(Y; Zy,):
Set 0* := argming L,cr(0,0n.). Then

0" . = argmax L,cr (0%, 0)

enc

mazximizes lgx (Y'; Zy), which is a lower bound since Ipx (Y; Zn) < Ip(Y'; Zy).

Proof. We start by using the variational lower bound on MI from Lemma 6.15. Let the
nuisance classifier Dy, (Z,) model the variational posterior gy, . (y|Zn = z»). Then we have
the lower bound

I(Y; Z,) > W(Y) +Ez,Eyyz, log Dy, ()] = 1o, (V: Z,). (6.10)

Estimating this bound via Monte Carlo simulation requires sampling from the conditional
density p(y|Z, = z,), but we have only access to samples from p(y|X = z) via the
training set 7. Thus, we need to consider the stochastic encoder py(zs|X = x) given by
the stochastic neural network F. Hence, we have

p(YlZn = 20)p(2n) = P(Y, 20)

p(x,y, 2p) dz

d

p(zn|X =2, Y = y)p(y|X = 2)p(z) dx (6.11)

d

P(zal X = 2)p(y|X = 2)p(a) de, (6.12)

d

I
T
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where we used in (6.11) the chain rule of probability. For (6.12), we used the conditional
independence of Z,, and Y when conditioned on X, since Z, is given by the stochastic
transform Fy (X).

Rewriting (6.12) using expectations and inserting into (6.10) thus yields

Hence, the right hand side above is estimated by the nuisance classifier loss £,,c g, if the
limit for o — 0 in the stochastic encoding F converges to the deterministic encoding Fp
(see the subsequent remark). O

Remark 6.17 (Stochastic vs. deterministic encoding). Theorem .16 assumed a stochastic
neural network Fy to allow a reasoning via densities. However, in the definition of the
loss (Def. 6.1/) we considered only deterministic neural networks Fy so far. To keep the
focus on an understanding of the main principles of the proposed loss, we only sketch the
necessary steps to lift the statement to the deterministic case: First, consider

2= Fj(x) = Fy(z) +¢, N(0,0?)

in the limit when variance o — 0, which converges to Fy in Lebesgue spaces (when fixing
the normalization constant #} Then insert this limit outside the integral in (6.12).
This limit can be moved inside the integral, if the theorem of dominated convergence holds.
This is possible, if f(zn) = log Dy, (zn) is continuous and compactly supported, which
holds by assuming bounded inputs = to the (continuous) network Fy.

By using these results, we can now state the main result under the assumed distribution
shift and successful minimization:

Theorem 6.18 (Information Ip,, (Y;Zs) maximal after distribution shift). Let D q,
denote the adversarial distribution and D the training distribution. Assume Ip(Y; Z,) =

0 by minimizing Licp and assume that the distribution shift satisfies Ip,, (Z,;Y) <
In(Zn;Y) and Ip,,, (Y Zs|Zy) < Ip,,,(Y; Zs) as previously. Then, it holds

Ip,, (Y Z) =Ip(Y; X).

Proof. By information invariance under reparametrization (Lemma 6.13) and the chain
rule of mutual information (Lemma 2.13), we have

IDAd'U (Y; X) = IDAd'u (Y; ZS’ Zn)
= 1Ip 4, (Y5 Z,) + Ip 4, (Y Zs|Zy)
S IDAdv (Y7 ZS)

As Z; = Fp(X)1,.. ¢ is given by a deterministic transform Fy, we further have the inequality
Ip,,Y;X)>1Ip,, (Y;Z) via the data processing inequality (Lemma 2.13). Hence, the
claimed equality must hold. O
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Figure 6.4: Left: Mutual information under distribution Dy,qn, Right: Effect of distribu-
tional shift to Dyg4,. Each case under training with cross-entropy (CE) and independence
cross-entropy (iCE). Under distribution D, the iCE-loss minimizes I(Y; Z,) (Theorem
6.16), but has no effect as the CE-loss already maximizes I(Y; Z;). However under the
shift to D g4y, the information I(Y; Z5) decreases when training only under the CE-loss (or-
ange arrow), while the iCE-loss induces I(Y; Z,,) = 0 and thus leaves I(Y’; Z;) unchanged
(Theorem 6.18).

Thus, incorporating the nuisance classifier allows for the discussed indirect increase of
Ip,, (Y;Z) under the assumptions of the specified adversarial distribution shift. A visu-
alization of the studied effects is given in Figure 6.4.

To aid stability and further encourage factorization of Zs; and Z, in practice, we add a
maximum likelihood term to our independence cross-entropy objective as

N d-C

L0,0ne.T) = Licn(0,00) — 3 Y log (pi( B @ ))ldet (T, (M), (6.13)
=1 k=1

=LyrE,(0),T

where det(Jp,(x)) denotes the determinant of the Jacobian of Fy at x and py, ~ N (B, Vk)
with Sk, % learned parameter. See chapter 5 for details on using maximum likelihood via
the change of variables.

To better understand this term, the following Lemma describes that optimizing Lk,
on the nuisance variables together with L;0p amounts to maximum likelihood estimation
(MLE) under a factorial prior.

Lemma 6.19 (Effect of MLE-term). Let random variables Zs, Z,, and training set T be
defined as before. Then, the MLE-term in (6.13) together with a cross-entropy loss on the
semantics zs yields a parameter 0* for the encoding Fy via

0* = argmin Lyop(0,T) + Lyvre, (0,T),
0
which minimizes the mutual information I(Zs; Zy,).

Proof. Let Zs := softmax(zs). Then minimizing the loss terms Lsop and Lyrg, is a
maximum likelihood estimation under the factorial prior

d—C
p(Zs, 2n) = p(Z)p(2n) = Cat((Zs)1.-- -, (Zs)e) ] pr(zn)
k=1
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Figure 6.5: From (Jacobsen et al., 2019b): Samples & = F~!(zs, ,) with logit activations
zs taken from original image and Z, obtained by linearly interpolating from the original
nuisance z, (first row) to the nuisance of a target example z; (last row upper block). The
used target example is shown at the bottom. When training with cross-entropy, virtu-
ally any image can be turned into any class without changing the logits z, illustrating
strong vulnerability to invariance-based adversaries. Yet, training with independence cross-
entropy solves the problem and interpolations between nuisances z, and z;; preserve the
semantic content of the image.

where Cat is a categorical distribution. Further, note that softmax is shift-invariant, i.e.
softmax(z + ¢) = softmax(z). Thus, the factorial prior on Z, (which is fitted via cross-
entropy on the semantics) and Z,, yields independence between logits Zs and Z,, up to
a constant c. Finally note, that the log term and summation in Ly, and Log is a
reformulation for the sake of computational simplicity, but does not change its minimizer
as the logarithm is strictly monotone. O

Remark 6.20 (Mutual information bounded from above). Since our goal is to simultane-
ously mazimize 1(Y; Zs) and minimize 1(Y; Z,) (even after a distribution shift), we need
to ensure that this objective is well-defined. In general, MI can be unbounded from above
for continuous random variables. However, due to the data processing inequality (Lemma
2.13), we have

I(Y; Z,) = 1(Z; Fy(X)) < I(V; X).

Hence, we have a fized upper bound given by our data T = {(x(i),y(i))}i]il. In comparison
to work by (Belghazi et al., 2018), there is no need for gradient clipping in our setting.
Furthermore, switching to other divergences like the bounded Jensen-Shannon divergence
as in (Hjelm et al., 2019) is not necessary, but might be an interesting avenue for future
work.

Just as in GANs (Goodfellow et al., 2014), our analysis relies on having a tight bound,
which is met under a perfect nuisance classifier and convergence of the MLE-term. Since
this is hard to achieve in practice, it is important to analyze the success of the objective
after training. For a numerical analysis of the application of independence cross-entropy
(Definition 6.14) under a simple distribution shift, we refer to (Jacobsen et al., 2019b***).
Furthermore, we add a qualitative result from (Jacobsen et al., 2019b***) in Figure 6.5.
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6.4.3 Related Work on Information Theory in Deep Learning

Information theory, and especially the study of mutual information, has gained recent in-
terest in deep learning due to the information bottleneck theory (Tishby and Zaslavsky,
2015; Shwartz-Ziv and Tishby, 2017; Alemi et al., 2017) and usage in generative modelling
(Chen et al., 2016; Hjelm et al., 2019). As a consequence, the estimation of mutual infor-
mation has attracted growing attention, see e.g. (Barber and Agakov, 2003; Alemi et al.,
2018; Achille and Soatto, 2018; Belghazi et al., 2018).

The concept of group-wise independence between latent variables goes back to classical
independent subspace analysis (Hyvérinen and Hoyer, 2000) and received attention in
learning unbiased representations, e.g. see the Fair Variational Autoencoder (Louizos et al.,
2015). Furthermore, extending cross-entropy losses via entropy terms (Pereyra et al., 2017)
or minimizing predictability of variables (Schmidhuber, 1991) has been introduced for
other applications. Our proposed loss also shows similarity to the GAN loss (Goodfellow
et al., 2014). However, in our case there is no notion of real or fake samples. Despite
those differences, exploring similarities in the underlying minimax-optimization problem
is a promising avenue for future work.

6.5 Conclusion and Future Work

To conclude, we introduced excessive invariance as a reverse viewpoint on adversarial
examples. We showed, that the invariance-based adversarial examples is a complementary
failure mode to the commonly studied case of perturbation-based adversarial examples
for discriminative models. A first study of their relationship was done using the synthetic
example of adversarial spheres by (Gilmer et al., 2018b). Further studies in (Jacobsen
et al., 2019a™**) show how models trained to be £,-robust are often even more vulnerable
to invariance-based attacks. Thus, the presented reverse viewpoint should be employed in
addition to the common robustness studies in order to obtain a holistic understanding of
the worst-case behavior of a model under a distribution shift.

In line of the main focus of this work, invertible neural networks played a crucial role to
uncover the invariance-based model failures. Even more importantly, these architectures
may allow to control the invariant directions via the concept of a splitting into semantic
and nuisance features as advocated in this chapter. In summary, the ability to invert the
feature extraction process, paired with guarantees about information preservation, may
be crucial towards obtaining reliable models even under worst-case scenarios.

Despite these promising first steps, many open questions remain:

e How to quantify invariance-based vulnerability in order to enable a comparison be-
tween models?

e How to improve the proposed independence cross-entropy loss? In particular, study-
ing upper bounds on I(Y; Z,) could allow to drop the assumption of a perfect nui-
sance classifier, which is hard to achieve in practice.
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e How to extend the study of invariance to input perturbations that allow small
changes in the output?

Furthermore, an exciting future direction would be the usage of i-ResNets, because they
are designed to be forward and inverse stable (see Chapter 4 and in particular Lemma
4.6).



Chapter 7

Domain Knowledge: Architectures
for Imaging Mass Spectrometry

In this chapter, we focus on the second pillar of this thesis: using domain knowledge to de-
sign principled neural network architectures. First, we briefly discuss common approaches
to incorporate knowledge about the data structure into architectures. This overview is fol-
lowed by a comparison of the structures underlying images and mass spectra, which leads
us to a customized convolutional network architecture. Finally, we study the behavior of
these networks on two challenging tumor classification tasks.

This chapter is mainly based on following article:

Jens Behrmann, Christian Etmann, Tobias Boskamp, Rita Casadonte, Jorg
Kriegsmann, Peter Maass: Deep learning for tumor classification in imaging mass
spectrometry, 2018, Bioinformatics, 34(7), pages 1215 - 1223

7.1 Domain Knowledge in Deep Learning

Fully-connected neural networks (MLPs) are universal function approximators (Cybenko,
1989) and thus allow to solve any function approximation task, provided the network is
sufficiently wide or deep. Yet, network architectures for practical learning tasks often differ
drastically from vanilla fully-connected designs. The most prominent example are convo-
lutional neural networks (see Definition 2.23), which formed the basis of the architectures
studied in the previous chapters.

In mathematical terms, the selection of the hypothesis space F for empiricial risk mini-

mization

F* € argmin Lp(F),
FeF

induces a certain bias (besides other choices like the regularization procedure or the opti-
mizer). Ideally, this hypothesis space F, and thus the design of the network’s architecture,
is guided by a-priori knowledge about the data and/or the learning task. When applied

83
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meaningfully, this domain knowledge can significantly reduce the sample complexity of
the learning process and improve generalization. In this section, we shortly discuss some
approaches to encode domain knowledge into architectures. For a more detailed overview
we refer to (Goodfellow et al., 2016) as well as to a more recent discussion by (Battaglia
et al., 2018).

Most prominently, convolutional neural networks (CNNs) are equivariant to spatial trans-
lations (Kondor and Trivedi, 2018). They induce a bias via locality, since the filters used
for the convolution operation have a limited spatial extend. Recurrent neural networks
(RNNs), on the other hand, are equivariant to time translations. Typically, they are used
for sequential data and for tasks where a hidden state of some dynamical process needs
to be modelled. While many tasks involve sequential data or images, there is a multi-
tude of more specialized architectures. For example, when considering relational data like
graphs, graph neural networks (GNNs) have become a predominant architecture, see e.g.
(Battaglia et al., 2018).

In this chapter, we are interested in extending the design space of neural network archi-
tectures to incorporate knowledge about mass spectra arising in tumor classification from
Imaging Mass Spectrometry (IMS). Since this data structure shares similarity to images,
concepts from CNN-architectures can be transferred. For example, both images and IMS
spectra are defined over grids and exhibit local structures. However, many differences ap-
pear at closer inspection, which is why we introduce a modified CNN-architecture for mass
spectra.

This chapter is structured as follows: We first give a brief introduction to tumor typing
with IMS data to better understand the broader field of application. Then, we discuss
approaches to incorporate domain knowledge into architectures for IMS data processing
and test their performance on two real-world tasks.

7.2 Tumor Typing with Imaging Mass Spectrometry

Imaging Mass spectrometry (IMS) is a label-free technique for spatially resolved molecular
analysis of small to large molecules. Given a thin tissue section, mass spectra are recorded
at multiple spatial positions on the tissue, yielding an image where each spot represents
a mass spectrum. These spectra relate the molecular masses to their relative molecular
abundances and thus offer insights into the chemical composition of a region within the
tissue, see e.g. (Stoeckli et al., 2001). In this chapter, we consider matrix-assisted laser
desorption/ionization imaging mass spectrometry (MALDI IMS) (Caprioli et al., 1997)
for our study. However, the analysis and methods should also be applicable to other IMS
modalities like SIMS (Benninghoven and Loebach, 1971).

In MALDI IMS, molecules of interest co-crystallize with an organic matrix compound
that assists in the desorption and ionization of the molecules on irradiation with a laser
beam. This sample preparation of applying a matrix in the last step is also applicable
to formalin-fixed paraffin-embedded (FFPE) tissue, a common tissue storage solution in
pathology.
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Figure 7.1: Overview on structural hierarchies of the IMS data, from TMA to tissue
core to a single spectrum. Left, a HE-image of a TMA is shown, which is measured in
a single IMS measurement. The red box (left) marks the four tissue cores shown in the
middle. These tissue cores have two annotations, the outer region marks the measurement
region for the laser, while the inner region are the Region-of-Interest (ROI) annotated by
a pathologist. Furthermore, the red and green dots correspond to a spot of the imaging
data. Each of these spots correspond to a mass spectrum shown in the right figure.

Hence, MALDI IMS has a high potential for many pathological applications, as discussed
by (Aichler and Walch, 2015) or (Kriegsmann et al., 2015). One of the main advantages
of MALDI IMS is that it allows high-throughput analysis of several tumor cores from
different patients by arranging them in a single tissue microarray (TMA) (Casadonte
et al., 2017). See Figure 7.1 (left) for an image of a TMA. Thus, within a single run of the
mass spectrometer a large cohort of potentially cancerous tissue can be analyzed in order
to extract biochemical information in a spatial manner. This biochemical information may
then be used for 1) the determination of the cancer subtypes or 2) the identification of the
origin of the primary tumor in patients with metastatic disease. In both cases, an accurate
typing of a tumor is crucial for successful treatment of patients. For related studies see
e.g. (Casadonte et al., 2014).

While current MALDI IMS instruments are able to acquire molecular information at a
high spatial resolution (< 20um center-to-center spacing between each ablated laser spot)
at short measurement times (> 20 pixels/s), advanced bioinformatic tools may help to
extract knowledge in a robust manner. This has been recognized as a challenging task
in bioinformatics as it involves analyzing spatially distributed high-dimensional spectra
(Alexandrov, 2012). Especially in tumor classification, a robust feature extraction proce-
dure is required in order to integrate this workflow into a reliable routine.

In our application, we focus on processing each spectrum separately, because the mass
spectra (see Figure 7.1 (right)) are measured from small tissue core regions (diameter of
0.6 - 1.0 mm) with little varying structure within a single core (see Figure 7.1 (middle)).
This core represents only a small portion of the original tumor biopsy (~ 20x20 mm)
from which it was extracted. Thus, the morphological heterogeneity of such tissue cores is
strongly reduced when compared with the original tumor sample. In this study, > 80% of
the tissue analyzed was composed of tumor cells only.

Beside classical approaches like the ones studied by (Boskamp et al., 2017), where a sep-
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arate feature extraction and classification stage was used, end-to-end learning where fea-
tures and classification are learned in one step offers a promising alternative. Due to the
astonishing success of analyzing high-dimensional data with deep learning, we aim to-
wards solving the challenges when applying deep networks to tumor classification based
on MALDI IMS. One of the main challenges is to find a suitable architecture, which we
discuss in-depth here.

7.3 Architectures for IMS Spectra

7.3.1 Comparing IMS spectra to Images

After preprocessing the data (see (Behrmann et al., 2018b***) for details), each spectrum
measured in a tissue spot by IMS is handled separately. For an illustration of a spectrum,
see Figure 7.1 (right). We denote a spectrum as a data point = € R?, where d denotes
the number of m/z-bins. For example, d = 27286 in one of the conducted experiments.
These spectra can thus be viewed as structured data points on a pre-defined grid (the
m/z-bins). In this regard spectra are similar to images, where the grid is given by the
pixels. Thus, mass spectra can be viewed as one-dimensional images. However, one major
difference to images is that the underlying grid of these spectra is not necessarily equidis-
tant. Still, as a first step a reasonable assumption is that methods commonly applied to
image classification are also suitable for mass spectra.

Two of the main driving forces/ ideas behind the design of deep CNNs for images are:

e The need to handle high-dimensional data, which is why the idea of convolutional
transforms with their few parameters of the filter kernel plays a key role.

e The assumption of several levels of abstraction in the data, which motivates the
layered architecture of CNNs.

While the first layers may be able to extract edges in images, the goal of higher layers is
to extract more complex shapes like curves or even entire structures like faces of humans.
However, this common interpretation of the functionality of CNNs on images is often too
simple. As (Geirhos et al., 2019) show empirically on ImageNet (Deng et al., 2009), CNNs
can be strongly biased towards texture or shape, depending on the learning task and the
available data. Thus, following analogies of CNNs on images extracting shapes and our
modified CNN on IMS spectra extracting similar hierarchical characteristics need to be
taken with caution.

Assuming CNNs indeed follow such hierarchical extraction steps, we now discuss the analo-
gies of images and IMS spectra. First, IMS spectra are also high-dimensional data lying
on a grid, where the area between grid points are called m/z-bins. Hence, CNNs can of-
fer the same remedy for working in a high-dimensional domain by grouping neighboring
m/z-bins together via convolutions. As the spectra are transformed through the network,
this grouping of neighboring m/z-bins grows. By applying subsampling to these groups via
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Table 7.1: Some analogies of image features and IMS spectra features on several hierar-
chical levels.

Images IMS spectra

low-level edges peaks
mid-level | contours | isotope patterns
high-level | objects | protein patterns

pooling or strided convolution (see basics on CNNs in section 2.2.2), the obtained feature
maps become lower dimensional.

Altogether, similar ideas are transferable to IMS data in order to extract features from
high-dimensional data. However, it is important to discuss the underlying assumptions.
The main assumption of a convolutional transform is that neighboring m/z-bins are corre-
lated, which can be exploited by a filter kernel. This is certainly plausible when considering
raw data from a time-of-flight (TOF) mass spectrometer, where a peak is spread over sev-
eral m/z-bins. On the other hand, deep CNNs perform the mentioned grouping also on
transformed data in order to extract higher-level features. Here, its impact onto spectral
data is less obvious. While peaks may be the counterpart of edges in images, mid-level fea-
tures may be represented by isotope patterns or even adduct patterns of the same peptide.
See for example (Shank et al., 2015), where this assumption was used to extract patterns
from the data. On the highest level, tryptic-digested proteins may contribute to several
measured peptides, resulting in patterns across the entire mass range. See for example
(Boskamp et al., 2017), where the idea is to extract these characteristic spectral patterns.
The key difference between these patterns is their position on the mass grid. While isotope
patterns can be considered local as they are formed in a small connected mass interval,
protein patterns are non-local as the digested peptides may be spread irregularly over the
entire measurement range. See Table 7.1 for a summary of the discussed analogies.

7.3.2 Constructing an IMS Architecture

This assumption of the composition of the spectral data leads us to an adapted architecture
design for IMS spectra, which we name IsotopeNet (see Figure 7.2 for a visualization of
its working principle). In particular, we encode our domain knowledge as follows:

e We estimate the number of m/z-bins of large measurable isotope patterns of peptides
based on a model of an average amino acid.

e Using this estimate, we restrict the local grouping roughly to the size of large isotope
patterns, such that one variable is able to encode such a local feature.

e The downsampling rate by strided convolutions is determined by an average distance
between peaks.
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Figure 7.2: From (Behrmann et al., 2018b***): Overview over the working principle of
IsotopeNet. The first row shows a section of a recorded mass spectrum of a squamous
cell carcinoma. Several residual layers of depths 2 extract interesting features of small
portions of the previous layers’ outputs. Due to their consecutive (and partially strided)
convolutions, an increasingly large portion of the input spectrum influences each spot in
the deeper layers of the neural network. This is signified by the receptive fields on the
right hand side, which reach the size of a whole isotopic pattern after the 4th residual
layer (before the locally connected layer).



7.8. Architectures for IMS Spectra 89

IS
ES

@ @ IS A
=3 ® o [
T T T

number of bins

@
b
T

32+

30 1 1 1 1 1 1 1 1
500 1000 1500 2000 2500 3000 3500 4000 4500 5000

mass range [Da]

Figure 7.3: Number of bins per isotope pattern over the given mass range, shown in
blue. Due to the decreasing m/z-resolution the number of bins decrease despite a growing
number of peaks. As a comparison, the number of bins of the receptive field of IsotopeNet
is drawn in red. Note, that the jumps are due to threshold ¢;5,, which rejects very unlikely
isotopes.

Above design choices are crucial, but only partially describe the network architecture.
Additionally, the filter sizes and number of filters needs to be chosen. Thus, we discuss
these aspects and the non-equidistant binning in more detail in the following paragraphs:

Estimation of Isotope Size: The size of large isotope patterns of peptides served as a
guideline to design the convolutional part of IsotopeNet. More specifically, the receptive
fields after the convolutional transforms should be able to cover even the largest observable
isotope patterns, because they are considered to be the mid-level features the deep network
needs to extract. Hence, an estimation of the size of isotope patterns in terms of m/z-bins
is required to design appropriate receptive fields. Note that the m/z-resolution decreases
over the mass range (see discussion on non-equidistant binning after the next paragraph).
A simple model for isotope patterns of peptides has been proposed by (Senko et al., 1995),
where an average amino acid named Awveragine serves as a basis for modeling peptides
at a given mass. This model takes into account the proportion of each amino acid in
homo sapiens and estimates the number of carbon atoms. Based on this estimate, the
isotope distribution is modeled by a Bernoulli distribution, using the stable isotope rates
of carbon. Furthermore, we set a threshold ¢;5, = 0.005 by visual examination to cut off
very unlikely and, compared to the most abundant peak, insignificant isotopes. A way to
adjust this threshold to the data at hand is by 1) simulating isotope patterns of molecules
with high intensity and 2) visually comparing peak height to the noise level of the data.
Yet, a thorough study of the influence of this parameter is beyond the scope of this study
as it only serves as a guideline for the architecture design. Finally, we convolve each peak
with a Gaussian filter.

This model allows for a computation of the number of m/z-bins for the estimated isotope
patterns, as shown in Figure 7.3 (in blue). Next, we go back to the original task of designing
the convolutional transforms and try to answer following question: how large should we
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Figure 7.4: Non-equidistant binning of TOF data (examplified for task ADSQ). In blue,
the development of m/z-bin size over the mass range is shown. In red, an average m/z-
resolution is drawn, which was used as a guideline for the stride.

set the receptive field? Our choice is depicted in Figure 7.3 as the straight line (43 bins
over the entire mass range). Hence, the used receptive field is larger than the estimated
isotope patterns, which enables the network to encode these local features. A description

of the computation of receptive fields and further discussions can be found in (Luo et al.,
2016).

Filter sizes and downsampling: In addition to the desired size of the receptive field as
described above, the exact scheme of filtering and downsampling needs to be specified as
well. First of all, small filters of size 3 are used throughout IsotopeNet in order to capture
small differences between neighboring bins.

Moreover, the first application of strided convolutions employs the convolutional kernel
with a step size of 5 (see Table 7.2) in order to decrease the spatial dimension of the
feature maps. This step size is motivated by the distance between the individual peaks of
isotope patterns. Due to the peptide nature of the measurements, the peaks occur with a
distance of roughly 1 Da. As the average bin size is 0.163 Da (see Figure 7.4), on average
6.14 m/z-bins cover one such interval of width 1 Da. Thus, with a stride of 6, each variable
in the following layer encodes approximately one peak on average. In order to prevent too
much information loss in lower-resolved parts of the m/z-axis, we picked a slightly lower
stride of 5 instead.

The second downsampling operation is realized as a convolution of stride 3. Here, the
stride was chosen to reach the desired receptive field size.

Non-equidistant binning: The m/z-binning is usually not equidistant over the mass
range for TOF spectra, see Figure 7.4 for an example. Yet, the convolutional kernels are
applied bin-wise with the same width, which results in a broader filter for large masses
due to the binning. An alternative would be to interpolate the data in order to ensure an
equidistant binning. Yet, this would have the disadvantage of adding another preprocessing
step to the computational pipeline and could introducing artifacts to the data.

In convolutional networks, however, several feature maps are used per layer to enable the
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Table 7.2: Architecture of IsotopeNet. Total number of trainable parameters is 13935.

Layer depth kernel size stride # feature maps
Input layer - - - 1
Residual layer 2 3 1 8
Residual layer 2 3 ) 8
Residual layer 2 3 1 8
Residual layer 2 3 3 1
ReLU nonlinearity - - - 1
Locally connected layer - 3 1 1
Fully connected (softmax) - - - 1

network to extract a variety of features. This idea is also transferable to the above case of
non-equidistant binning since different filters may be able to specialize on different mass
ranges in the course of the training (if necessary). Furthermore, the application of several
filters enables the network to account for violations of the discussed assumptions on the
distance between peaks or isotope pattern sizes. Due to the binning or mis-alignment of
peaks, the width and shape may undergo different changes which can be captured using
several convolutional kernels.

Processing after convolutional transforms: After the convolutional transforms, a
locally-connected layer (similar to convolutional layer that uses local information, except
that weights are not shared) is used to process also those local input features, which
are encoded in the two neighboring variables. Furthermore, this operation enables the
network to handle each local region differently due to unshared weights. Hence, a focus
only on important peptides for the given classification task is possible. For an example,
see the squamous cell carcinoma tumor spectrum in Figure 7.2. Moreover, we compare the
proposed architecture to a deep Residual Network (He et al., 2016) with the architecture
given in Table A.1. The architecture of IsotopeNet is summarized in Table 7.2.

However, we emphasized that the adapted architecture is geared towards TOF data with
a focus on peptide measurements and is only a step towards a deep network design based
on domain knowledge. Especially for other measurement objectives like the extraction
of metabolites or non-TOF data, different design choices may be more suitable. Yet, we
believe that previous considerations can serve as a starting point for those explorations.

7.4 Results

7.4.1 Datasets and Evaluation

In this study we test the proposed CNNs on two challenging real-world datasets consisting
of 12 MALDI IMS measurements of a large cohort of tumor tissue cores. In this comparison,
we use the same setting as in the previous study by (Boskamp et al., 2017), in order to
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establish a solid comparison of the proposed methods to other common approaches. For a
detailed description of the setup, we refer to (Behrmann et al., 2018b***).

We consider two different classification tasks:

e Tumor subtyping of adenocarcinoma vs. squamos cell carcinoma (called task ADSQ)

e Primary tumor typing of lung vs. pancreas tumor (called task LP).

In the ADSQ dataset there are annotated subregions called Regions-of-Interest (ROI), see
Figure 7.1 (middle). These regions were marked by a pathologist as relevant subregions
within the tissue core for subtyping the tumor. In order to perform classification solely on
those subregions, only those spectra within each ROI are used for task ADSQ), resulting in
a reduced number of spectra of 4672. Note that previous studies using whole tissue cores
yielded inferior results. On the other hand, we used the entire tissue core for task LP,
which also include spots with non-tumor cells, resulting in a total of 27475 spectra.

For evaluation of performance we performed randomized 4-fold cross-validation on TMA
level, see (Behrmann et al., 2018b***) for more details. As a single performance measure
we report the balanced accuracy

1 /TP TN
JAcc= = [ — + —
balAcc 2<P+N>’

where T'P/P denotes true positive/ positive (j = 1) and TIN/N denotes true negative/
negative (j = 2). This measure is, unlike the accuracy, not biased by the relative class
proportions in the data. Furthermore, we report the median balanced accuracy of the four
cross-validation runs.

As a simple baseline method we use a feature extraction based on discriminative m/z-
values, as it was done in (Boskamp et al., 2017). This method aims at identifying indi-
vidual m/z-values by computing the Mann-Whitney-Wilcoxon statistic for each m/z-value
separately (called ROC method here). After computing this statistic, we perform a selec-
tion of discriminative m/z-values by taking those K features with the highest test statistic
in a range from K = 5 to K = 100. Subsequent to feature extraction by discriminative
m/z-values, a linear discriminant analysis (LDA) classifier is used, a standard algorithm
for creating classification models (Hastie et al., 2001).

7.4.2 Model Comparison

In this comparison we used a ResNet (see Table A.1 in Appendix A.3) and the specialized
architecture for IMS (named IsotopeNet), which we discussed previously in section 7.3.
The training parameters are given in Table A.2 in Appendix A.3.

Figure 7.5 (left) reports the results on both tasks ADSQ and LP, where the method
ROC/LDA refers to the baseline model. For ROC/LDA we report the worst and the best
performance over the number of features K from K = 5 to K = 100 in order to get
an impression of the variance. For task ADSQ ROC/LDA reaches a balanced accuracy
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Figure 7.5: Left: Comparison table of 4-fold cross-validation on both tasks. For
ROC/LDA the worst and best results over 5 to 100 features are reported in the table.
For ResidualNet and IsotopeNet, the table shows the median obtained from four runs
with identical parameter settings, together with the interquartile range to estimate the
spread. The core level results are obtained by taking the majority of the predicted label.
Right: Boxplot of the balanced accuracy from each method over the four cross-validation
folds, reported on spot level for both tasks.

of 78.7% on spot level and 82.7% by aggregation on cores for task ADSQ, while the
performance for task LP is about 5% higher.

-

Figure 7.5 (left) further shows how the ResidualNet compares to the domain adapted
architecture IsotopeNet. Due to the stochasticity of the training process through stochastic
gradient descent (see Definition 2.26), random initialization and regularization by dropout
(Srivastava et al., 2014), both methods were run four times using the same parameter
setting. From those four runs the median balanced accuracy is reported to get a robust
idea of the average performance. Note that we did not use ensembles, which could improve
performance even further. In addition, the interquartile range is stated below the median
to estimate the variance induced by the mentioned stochasticity. Overall, the domain
adapted architecture IsotopeNet performs better than both ResidualNet and ROC/LDA.
For example, the spot level balanced accuracy for task ADSQ is 84.5%.

Whereas the previous discussion considered the variance of several runs over the entire
dataset, Figure 7.5 (right) visualizes the variance over the cross-validation folds on spot
level. To obtain this box plot, we computed the balanced accuracy of the four identical
runs for each fold. For ROC/LDA, however, only the best model over the number of
features was selected. As visible from the red median line, IsotopeNet outperforms the
other methods on both tasks.

7.5 Conclusion and Future Work

This chapter discusses first steps towards the integration of knowledge about mass spectra
into convolutional architectures. In particular, we studied tumor classification tasks based
on IMS data from time-of-flight (TOF) devices. Most importantly, the size of the receptive
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fields was guided by the size of isotope patterns. To separate neighboring isotope patterns,
locally-connected layers followed the processing via convolutions. Furthermore, the filter
size in the first layer was adapted to the common peak width of TOF mass spectra. Finally,
the architecture was compared to a vanilla ResNet and to a simple baseline on two chal-
lenging tasks. As the evaluation via cross-validation showed, the customized architecture
outperformed the baseline, which again emphasizes the need to induce a meaningful bias
into the learning problem.

Next, we discuss further topics and future work:

Interpretation of models: While the focus of this chapter was on the design of cus-
tomized architectures for IMS data, interpreting the learned model is crucial for sensitive
applications like tumor classification. Unlike image features like shapes or texture, fea-
tures of IMS data (peaks, isotope patterns) have a fixed position (when neglecting small
mass mis-alignments). This property simplifies a global model interpretation, as sensitiv-
ity maps can be averaged over multiple samples in a meaningful manner. For details on
the interpretation of the models presented in this chapter, we refer to (Behrmann et al.,
2018b***).

Incorporating additional structure: The presented IsotopeNet only partially incorpo-
rates our domain knowledge. As visible in Figure 7.4, IMS spectra from TOF devices lie on
a non-equidistant grid. However, the filters of the convolution operations have fixed width
and are thus applied over different ranges depending on the m/z-value. Thus, resampling
the data to an equidistant grid might better suit the application of a vanilla convolution.
According to the topic of this thesis, this knowledge could also be incorporated into the
architecture by:

(i) Modeling the filters in the continuous domain with restricted physical width (in
terms of m/z).

(ii) Discretizing the filters for a usage in a modified convolutional layer.

In summary, deep neural networks may significantly impact the common approaches to
classifying imaging mass spectrometry data since this data is highly structured and high-
dimensional. Yet, the field is still in an early stage where only limited data is available
and many data characteristics strongly vary across devices and laboratories. Thus, incor-
porating the data structure into the network architecture is a crucial step, besides gaining
a better understanding of technical and biological variations.



Chapter 8

Summary and Conclusion

This thesis studied how to guide the modeling of neural network architectures by requiring
invertibility or incorporating domain knowledge. Starting with an analysis of the invert-
ibility of standard architectures, we arrived at the conclusion that additional structure is
required to obtain guaranteed invertibility. The stability analysis then resulted in an in-
vertible network architecture without structural constraints. Afterwards, two applications
of invertible models were studied: generative modeling and understanding learned repre-
sentations. Finally, the second design principle focused on incorporating domain knowledge
into architectures for mass spectra arising from imaging mass spectrometry measurements.

As each chapter had a dedicated outlook focusing on next steps to improve the considered
aspects, we broaden our view in this outlook. Most notably, this thesis studied neural
network architectures and loss functions which required invertible models. However, the
learning process involves (at least) one additional aspect: the learning algorithm. While
we used standard algorithms based on stochastic gradient descent, other algorithms could
be of interest. Furthermore, studying the interaction of model properties like stability en-
forced via Lipschitz conditions and gradient-based optimization could yield further insights
into shortcomings of current approaches. While studying the full interplay of model archi-
tecture, training objectives, data and learning algorithms, instead of focusing on isolated
properties is hard, it is most likely essential for long-term progress.

Furthermore, there are many more design principles for neural networks. For example,
some loss functions like Wasserstein distances or adversarial robustness require models
with bounded Lipschitz constants (Arjovsky et al., 2017; Anil et al., 2019). Similarly,
using deep networks for ill-posed inverse problems might require stable networks to bound
the influence of imprecise measurements. Whereas stability played a role for designing
invertible residual networks (i-ResNets), the main focus was on invertibility.

As a summary, this thesis demonstrated how mathematical guarantees of neural network
properties can be obtained and even leveraged to go beyond common objectives. Focusing
on underlying principles will remain crucial, especially when models become increasingly
flexible and interact in complex environments.
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Appendix A

Experimental Details

A.1 Classification with Invertible Residual Networks

Architecture: We use pre-activation ResNets with 39 convolutional bottleneck blocks
with 3 convolution layers each and kernel sizes of 3 x 3,1 x 1,3 x 3 respectively. All
models use the ELU nonlinearity (Clevert et al., 2016). In the BatchNorm version, we
apply batch normalization before every nonlinearity and in the invertible models we use
ActNorm (Kingma and Dhariwal, 2018) between each residual block. The network has 2
downsampling stages after 13 and 26 blocks, where a dimension squeezing operation is
used to decrease the spatial resolution. This reduces the spatial dimension by a factor of
two in each direction, while increasing the number of channels by a factor of four. All
models transform the input data to a 8 x 8 x 256 tensor. Then, we apply BatchNorm,
a nonlinearity and average pooling to a get 256-dimensional vector. A linear classifier is
used on top of this representation.

Injective Padding: Since our invertible models are not able to increase the dimension
of their latent representation, we use injective padding as in (Jacobsen et al., 2018).
This operation concatenates channels of zeros to the input, increasing the size of the
transformed tensor. This is analogous to the standard practice of projecting the data into
a higher-dimensional space using a convolution layer at the input of a model, but this
mapping is injective. We add 13 channels of zero to all models tested, thus the input to
our first residual block is a tensor of size 32 x 32 x 16. We experimented with removing
this step, but found it led to approximately a 2% decrease in accuracy for our CIFAR10
models.

Training: We train for 200 epochs with momentum SGD and a weight decay of 5e-4.
The learning rate is set to 0.1 and decayed by a factor of 0.2 after 60, 120 and 160 epochs.
For data augmentation, we apply random shifts of up to two pixels for MNIST and shifts/
random horizontal flips for CIFAR(10/100) during training. The inputs for MNIST are
normalized to [-0.5,0.5]. For CIFAR(10/100), we normalize by subtracting the mean and
dividing by the standard deviation of the training set.
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A.2 Generative Modeling with Invertible Residual Net-
works

MNIST and CIFAR: The structure of our generative models closely resembles that of
Glow (Kingma and Dhariwal, 2018). The model consists of scale-blocks, which are groups of
i-ResNet blocks that operate at different spatial resolutions. After each scale-block, apart
from the last, we perform a squeeze operation which decreases the spatial resolution by 2
in each dimension and multiplies the number of channels by 4 (invertible downsampling
from (Jacobsen et al., 2018)).

Our MNIST and CIFAR10 models have three scale-blocks. Each scale-block has 32 invert-
ible residual layers. Each layer consists of three convolutions of 3 X 3, 1 X 1, 3 x 3 filters
with ELU (Clevert et al., 2016) nonlinearities in between. Each hidden convolutional layer

(middle layer when using 3 convolutional layers) has 32 filters in the MNIST model and
512 filters in the CIFAR10 model.

We train for 200 epochs using the Adamax (Kingma and Ba, 2014) optimizer with a
learning rate of 0.003. Throughout training we estimate the log-determinant in Equation
(5.4) using the power-series approximation (Equation (5.6)) with ten terms for the MNIST
model and 5 terms for the CIFAR10 model.

Evaluation: During evaluation, we use the bound presented in Section 5.2.3 to determine
the number of terms needed to give an estimate with bias less than 0.0001 bit/dim. We
then average over enough samples from Hutchinson’s estimator (Hutchinson, 1990), such
that the standard error is less than 0.0001 bit/dim. Thus, we can report the bit/dim of
our model up to a tolerance of 0.0002.
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A.3 Details on Imaging Mass Spectrometry Experiments

Table A.1: Architecture of ResidualNet used in chapter 7. Total number of trainable
parameters is 2132130.

Layer depth  kernel size stride # feature maps
Input layer - - - 1
Residual layer 2 ) 1 16
Residual layer 2 5 3 32
Residual layer 2 ) 1 32
Residual layer 2 5 3 64
Residual layer 2 ) 1 64
Residual layer (5x) 2 5 3/1 128
Residual layer 2 5 3 128
Residual layer 2 5 3 256
GlobalPool layer - - - 1
Fully connected (softmax) - - - 1

Table A.2: Description of hyperparameter. The setting is reported in the third and fourth
column, where the first entry relates to IsotopeNet and the second to ResidualNet.

Parameter Influence Task ADSQ Task LP
(Iso // Res) (Iso // Res)
A coefficient for 0.05 // 0.05 0.01 // 0.001

weight decay

weight regularization

*

0.0005 // 0.0005

0.0005 // 0.0005

n step size in

learning rate Adam algorithm

|B] number of samples used 256 // 64 256 // 64
batch size per SGD update step

E passes of SGD 300 // 100 30 // 30

number of epochs over training set

P probability to set activations | 30% // - 30% // -

dropout probability

in selected layer to zero
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