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Abstract 

Analysing animal movement is essential for understanding processes such as the dynamics and spatial 

distribution of populations and has strong implications for the design and management of natural 
reserves. In tropical coastal ecosystems the movement patterns of fishes are particularly important as 

many fish species undertake diel migrations to utilize resources from different habitats. These small-

scale movement patterns play an important role in the energy transfer between habitats and connect 

coastal systems like seagrass beds and coral reefs. To identify essential habitat properties for key species 
and anticipate their behavioural responses to changing environmental conditions is therefore critical to 

successful conservation. As fish behaviour is also known to be influenced by natural cycles such as tidal 

or diel phases it is further important to distinguish the different causes of their behavioural variation in 
order to correctly evaluate how environmental change may affect population distributions across space. 

Despite the relevance of fish movements, guidance mechanisms for fish moving between habitats are 
not well understood and studies investigating possible environmental drivers of movement patterns are 

still scarce. In this study we thus aim to broaden our knowledge of potential causal mechanisms and 

spatiotemporal patterns of reef fish movements and space use. To this end, we first investigate a 

tropical reef system to identify a suitable model organism (the diurnal parrotfish Chlorurus sordidus) 
and its susceptibility to natural cycles. We then simulate its movement decision-making by linking it with 

two main functional landscape features (food availability and predation risk) in a novel approach 

combining individual-based modelling (IBM) with so-called potential field methods. Potential field 

methods are based on the analogy to physical force fields and consist of attracting and repelling 
potentials (gradients of the scalar field) and have the potential to steer an object. In our IBM a model 

fish can evaluate (via motivation-specific weighing factors) the perceived (via a perception range) risk 

and benefits of the surrounding landscape features and adapt its movement direction and speed 

accordingly taking into account its internal state (energy budget). By explicitly integrating a fish’s 
perceptional abilities into the movement decision-making process our model allows us to evaluate how 

a fish may perceive (energetic) costs and benefits of habitat features and how much impact relatively 

sophisticated behavioural rules have on predictions of overall population dynamics and viability in 
fragmented landscapes.  

Our model may further assist in determining how specific landscapes are (ecologically) connected. This 
organism-based emergent property of the landscape, also referred to as (landscape) connectivity, is 

often considered to have strong implication for MPA site selection. However, this concept is equally 

known for its ambiguities and has been used inconsistently throughout the literature. We here discuss 

possible improvements to make landscape connectivity a more comparable and quantifiable concept 
and conclude that in order to become a more unifying framework the concept has to be (i) extended to 

include passive movement and transport mechanisms, (ii) used solely according to its strict and 

organism-centred definition, and (iii) divided into three main categories (‘potential connectivity’, ‘area 

connectivity', ‘effective connectivity’) relating to different spatio-temporal scales and integration levels. 

Results of our model simulations show that individual movement patterns and the resulting spatial 

distributions of the population are more irregularly distributed among coral reef patches the more the 
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coral reef habitat becomes fragmented and reduced. The spatial configuration of the underlying 

seascape thus influences the spatial exploitation of microhabitats, which may have far-reaching 

consequences on the ecosystem level depending on the functional role of the species under 

consideration. By shaping individual space use patterns, the physical features of the environment may 
also impact encounter rates between individuals and in the long-term the overall social structure of a 

population.  

Based on our findings and its ability to provide detailed population dynamics over long time periods 

(years) and at a high spatial (1m2) and temporal resolution (up to 1 s) we believe our model can provide 

valuable insights into the spatio-temporal variability of local herbivore fish populations. Moreover, the 

integration of potential field methods into IBMs seems a promising strategy to represent the complexity 
of dynamic decision-making of animals in applied models. Also, by being easily adaptable to different 

species and habitat settings as well as extendable with additional modules the model can readily be 

adjusted to specific questions and study systems. It may therefore provide a basic framework to process 
and summarize, visualize and analyse fish movement data and predict potential consequences of 

changing habitat structures. Eventually, the gained information may help to design effective reserves 

and efficiently manage and protect reef fish populations. 
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Zusammenfassung 

Die Analyse von Bewegungsmustern bei Tieren leistet einen wesentlichen Beitrag, Prozesse wie 

räumliche Verteilungen oder Populationsdynamiken besser zu verstehen und hat zugleich großen 

Einfluss auf die Gestaltung und Bewirtschaftung von Naturschutzgebieten. In tropischen 

Küstenökosystemen kommt vor allem den Bewegungsmustern von Fischen eine besondere Bedeutung 
zu, da viele Fischarten tageszeitabhängige Wanderungen durchführen, um Ressourcen aus 

verschiedenen Habitaten zu nutzen. Diese kleinskaligen Bewegungen spielen zudem eine wichtige Rolle 

im Energietransfer zwischen den Habitaten und verbinden Küstensysteme wie Seegraswiesen und 

Korallenriffe. Für einen erfolgreichen Schutz ist es daher unerlässlich, die Anforderungen von 
Schlüsselarten an ihren Lebensraum zu bestimmen und ihre Verhaltensreaktionen auf sich ändernde 

Umweltbedingungen abzuschätzen. Da das Verhalten von Rifffischen bekanntlich auch durch natürliche 

Zyklen wie Gezeiten oder Tageszeit beeinflusst wird, ist es zudem erforderlich, die verschiedenen 

Ursachen für Verhaltensänderungen zu differenzieren, um Auswirkungen von Umweltveränderungen 
auf die räumliche Verteilung der Fischpopulationen beurteilen und einordnen zu können. 

Trotz der Relevanz von Fischbewegungsmustern sind die Mechanismen, die die Wanderungen zwischen 
verschiedenen Habitaten steuern, bisher wenig bekannt, und es existieren nur vereinzelt Studien, die 

beeinflussende Umweltfaktoren untersuchen. In dieser Studie wollen wir daher das Verständnis 

möglicher kausaler Zusammenhänge bei der Entstehung raumzeitlicher Bewegungsmuster von 
Rifffischen erweitern. Zu diesem Zweck führen wir zunächst empirische Untersuchungen in einem 

tropischen Riffsystem durch, um einen geeigneten Modellorganismus (den tagaktiven Papageifisch 

Chlorurus sordidus) zu identifizieren und eine mögliche Beeinflussung seines Bewegungsverhaltens 

durch natürliche Zyklen zu bestimmen. Im Anschluss simulieren wir den Entscheidungsprozess seiner 
Bewegungen, indem wir diesen Prozess mit zwei wesentlichen Landschaftseigenschaften 

(Nahrungsverfügbarkeit und Prädationsrisiko) in einem neuartigen Ansatz verknüpfen, der individuen-

basierte Modellierung (IBM) mit sogenannten Potentialfeldmethoden kombiniert. 

Potentialfeldmethoden basieren auf der Analogie zu physikalischen Kraftfeldern, die sich aus 
anziehenden und abstoßenden Potentialen (Gradienten des Skalarfelds) zusammensetzen und so ein 

Objekt lenken können. In unserem IBM kann ein Modellfisch das über seinen ‚perception range‘ 

wahrgenommene Risiko sowie den Nutzen der umgebenden Landschaft über motivationsspezifische 

Gewichtungsfaktoren bewerten sowie seine Bewegungsrichtung und Geschwindigkeit unter 
Berücksichtigung seines inneren (energetischen) Zustands anpassen. Indem wir das 

Wahrnehmungsvermögen eines Fisches explizit in den Entscheidungsprozess integrieren, erlaubt unser 

Modell eine Beurteilung, wie ein Fisch (energetische) Kosten und Nutzen von Habitateigenschaften 
bewertet und inwieweit vergleichsweise differenzierte Verhaltensregeln Vorhersagen allgemeiner 

Populationsdynamiken in fragmentierten Lebensräumen beeinflussen.   

Darüber hinaus kann unser Modell bei der Analyse helfen, inwiefern bestimmte Landschaften 

(ökologisch) miteinander verbunden sind. Diese organismen-basierte emergente Eigenschaft der 

Landschaft, auch als ‘(landscape) connectivity’ bezeichnet, wird oft als Kriterium bei der räumlichen 

Planung von Meeresschutzgebieten herangezogen. Da dieses Konzept jedoch in der Literatur nach wie 
vor uneindeutig definiert und verwendet wird, diskutieren wir im Rahmen dieser Arbeit ebenfalls 
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mögliche Verbesserungen, die eine leichtere Quantifizierung und Vergleichbarkeit von ‘landscape 

connectivity’ erlauben.  

Um einen standardisierten Rahmen zu bieten, sollte unserer Meinung nach das Konzept (i) um passive 

Bewegungs- und Transportmechanismen erweitert, (ii) ausschließlich gemäß seiner ursprünglichen 

organismus-zentrierten Definition verwendet und (iii) in drei Hauptkategorien (‘potential connectivity’, 

‘area connectivity', ‘effective connectivity’) unterteilt werden, dies sich auf verschiedene räumlich-
zeitliche Skalen und Integrationsebenen beziehen.  

Die Ergebnisse unserer Modellsimulationen zeigen, dass individuelle Bewegungsmuster und die daraus 
resultierenden räumlichen Verteilungen der Population umso unregelmäßiger auf Korallenriffflächen 

verteilt sind, je stärker das Korallenriff fragmentiert ist und dessen Fläche reduziert wird. Die räumliche 

Konfiguration der Meereslandschaft kann somit nicht nur die räumliche Nutzung von Mikrohabitaten 
und deren Ressourcen maßgeblich beeinflussen, sondern auch – je nach funktionaler Rolle der 

jeweiligen Arten – weitreichende Auswirkungen auf das gesamte Ökosystem haben. Durch die 

Beeinflussung der Raumnutzung auf Ebene der Individuen wirken sich die physikalischen 

Umwelteigenschaften zusätzlich auf die Häufigkeit aus, mit der sich Individuen begegnen, wodurch 
langfristig auch die soziale Struktur auf Populationsebene geprägt wird. 

Basierend auf unseren Erkenntnissen und der Fähigkeit unseres Modells, detaillierte 
Populationsdynamiken über lange Zeiträume (Jahre) und in hoher räumlicher (1m2) und zeitlicher 

Auflösung (bis zu 1 s) abbilden zu können, sind wir der Auffassung, dass unser Modell wertvolle Einblicke 

in die räumlich-zeitliche Variabilität lokaler herbivorer Fischpopulationen liefern kann. Zudem erscheint 

uns die Integration von Potentialfeldern in IBMs eine vielversprechende Strategie, um die Komplexität 
dynamischer Entscheidungsprozesse bei Tieren in angewandten Modellen darzustellen. Da unser 

Modell darüber hinaus leicht an verschiedene Arten und Habitatkonfigurationen angepasst und mit 

zusätzlichen Modulen erweitert werden kann, lässt es sich ohne weiteres auf spezifische 

Fragestellungen und lokale Systeme anwenden. Es bietet daher eine einfache Rahmenanwendung für 
die Verarbeitung, Visualisierung und Analyse von Fischbewegungsdaten und ermöglicht die Vorhersage 

möglicher Konsequenzen von Veränderungen der Habitatstruktur. Die so gewonnenen Informationen 

können schlussendlich dazu beitragen, effektive Meeresschutzgebiete zu planen und 
Rifffischpopulationen erfolgreich zu schützen.  
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1 Preface 

Movement of organisms is a key issue in ecology, especially in naturally fragmented landscapes (Turchin 

1991; Zollner et al. 1999) like tropical coastal habitats, and an important link between individual life 

history and population dynamics (Nathan et al. 2008; Morales et al. 2010; McClintock et al. 2014). Also, 
animal movement is intrinsic to all behavioural processes (Liedvogel et al. 2013) and one of the primary 

ways that mobile organisms can adapt to changing environments (Railsback et al. 1999; Smouse et al. 

2010). This makes movement at all different spatial scales relevant to most current environmental 

concerns in the marine realm like coastal development, overexploitation of natural resources or 
increasing degradation of habitats (Nathan et al. 2008). These anthropogenic activities often result in 

degradation, fragmentation and/or loss of (coastal) habitats (Kindlmann and Burel 2008; Nathan et al. 

2008) and can affect ecological systems in many different ways (Martinson and Fagan 2014). Increasing 

habitat fragmentation, for instance, is known to restrict movements of fish (Chapman and Kramer 1999; 
Eristhee and Oxenford 2001; Turgeon et al. 2010) and can possibly lead to local extinction of selected 

species. Depending on the fish`s functional role e.g. as a structuring force for benthic communities its 

loss can have severe adverse effects on ecosystem functioning (Nyström and Folke 2001; Bellwood et 
al. 2004; Welsh and Bellwood 2014). 

1.1 Why are small-scale fish movements important? 

Movement patterns of fish are diverse including ontogenetic shifts, spawning migrations, or diel feeding 

movements and occur over a wide range of spatial and temporal scales (see Green et al. (2015) for 
review). The latter are a common feature among reef fishes and mostly take place at rather small scales 

of tens of metres to a few kilometres (Helfman 1993; Green et al. 2015). They may thus not have a large 

impact on stock ranges, but they can greatly influence ecological interactions like the outcome of prey-
predator interactions (Lima and Dill 1990). Furthermore, diel movements are important vectors for 

cross-habitat energy and nutrient transfer when fish use resources from different habitat types during 

their daily routines (Nagelkerken et al. 2000, 2008; Clark et al. 2009; Hitt et al. 2011). This nutrient input 

may be particularly important in oligotrophic environments like coral reef systems and can e.g. facilitate 
coral as well as seagrass growth (Meyer et al. 1983; Peterson et al. 2013). Moreover, diel migrations are 

often predictable in space and time (Helfman 1993) and are thereby also relevant for fisheries-related 

catchability (Bartholomew et al. 2008). 

Another important aspect of diel movement patterns is their relevance for successful conservation of 

fish stocks (Curley et al. 2013). Due to their economic and ecological importance, fish are often a target 

group for conservation and nowadays, a widely recommended management tool for fisheries is the 
implementation of marine protected areas (MPAs, (Grober-Dunsmore et al. 2007)). The ability of a MPA 

to provide protection largely depends on the consistent use, both during day and night, of the protected 

area by individual fish (Chapman and Kramer 1999; Eristhee and Oxenford 2001; Beets et al. 2003; Grüss 
et al. 2011). If not planned correctly, a MPA can even be counter-productive (Hinrichsen et al. 2008). It 

is therefore critical for the effectivity of a reserve to consider diel movement patterns of the target 

species and to enclose appropriate habitats (Meyer et al. 2007; Afonso et al. 2008; Semeniuk et al. 

2011). This shift to spatially explicit management presents new challenges for ecologists as well as 
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marine resource managers (Sale and Kritzer 2008; Botsford et al. 2009) and has led to an increasing 

need to understand the nature and extend of small-scale movement patterns of mobile (juvenile and 

adult) fishes and how they may be affected by environmental conditions. 

1.2 How does the seascape influence fish movements? 

Animal movement behaviour is further notorious for its complexity and possible involvement of many 

different environmental factors. In general, movements result from interactions between the organisms 

and their environments (Johnson et al. 1992; Schick et al. 2008) and can be considered as directed 
responses to social and environmental cues (Davis et al. 2017b). Aquatic biota such as fish, for instance, 

is long known to be responsive to the physical structure and complexity of the underlying (benthic) 

seascape (Hart 1993; Chapman and Kramer 1999; McClanahan and Arthur 2001; Grober-Dunsmore et 

al. 2007; Gullström et al. 2008; Grüss et al. 2011; Fuller 2013).  

Topographic complexity can modulate interactions among individuals such as predation by influencing 

encounter rates between predators and prey, the likelihood of an attack, and the escape probability of 
prey (Lima and Dill 1990; Overholtzer-McLeod 2006; McCormick and Lönnstedt 2013; Catano et al. 

2016). Prey organisms may therefore be reluctant to leave their preferred substratum and cross large 

gaps of habitats of low structural complexity such as sand (Chapman and Kramer 2000). Some reef 
fishes, for example, have been shown to be hesitant to cross gaps in shelter of more than 20 m (Turgeon 

et al. 2010) and prefer to stay close to high complexity structures provided by the reef. This behaviour 

leads to a continuum of risky and safe areas within a prey’s environment, also referred to as the 

‘landscape of fear’ (Laundré et al. 2001, 2010), and has been demonstrated in terrestrial (Gorini et al. 
2012) as well as marine ecosystems (Wirsing et al. 2008; Madin et al. 2011; Matassa and Trussell 2011; 

Catano et al. 2016). Consequently, the habitat composition (i.e. presence and diversity of habitats) and 

configuration (i.e. area, shape and isolation of habitats) can regulate and restrict fish movement 

(Nemeth and Appeldoorn 2009) and thus affect spatio-temporal dynamics in fish populations and 
assemblages. 

Additionally, by constraining a fish’s movements the seascape may force a foraging fish to not always 
take the shortest possible path from shelter to food and vice versa (Hart 1993). As locomotion is 

metabolically costly for fish (Brett and Groves 1979; Calow 1985) the habitat structure therefore has 

implications not only on the population level but also on the level of the individual by influencing its 

energy budget. Resulting space use patterns hence represent trade-offs between energy acquisition, 
survival, and reproduction (Davis et al. 2017b). These organism-seascape linkages are likely to be of 

particular importance in coral reefs systems as typically heterogenous environments with a patchy 

distribution of different habitat types. 

1.3 What part does seascape connectivity play? 

Not only can the seascape influence animal movements, it also has the potential to exercise a species-

specific control: The same environment can be perceived and used differently across species and 
nowadays unique organism-habitat relationships have been observed across a wide range of taxa and 

spatial scales (Chittaro 2004; He et al. 2019). Hence, animal space use patterns are more likely to result 

from the interaction between movement behaviour and the characteristics of the environment in which 
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the animals are embedded, rather than being completely random or uniform in space and time (He et 

al. 2019). As a consequence, when foraging in heterogenous habitats animals may distribute themselves 

among habitat patches not solely in proportion to available resources (as predicted by the ideal free 

distribution) but also constrained by other factors and habitat characteristics like competition, risk of 
predation or availability of refuges (Tootell and Steele 2016). Depending on the species’ ecological role, 

the resulting spatial distribution can have important impacts on community structure and ecosystem 

function.  

The identification of habitats that are primarily used by a target organism and how such habitats are 

ecologically connected by the organism’s movements – also referred to as ‘landscape connectivity’ 

(Taylor et al. 1993, 2006) –  is a critical issue in ecosystem-based management (Appeldoorn et al. 2009). 
Connectivity is, for instance, considered a key determinant of meta-population dynamics (Lima and 

Zollner 1996) with strong implication for MPA site selection as it may greatly enhance reserve 

performance by promoting fish abundance (Olds et al. 2012a, 2012b). However, despite its potential 
relevance for many ecological processes as well as its frequent usage, the definition and measurement 

of connectivity remain inconsistent throughout the literature regarding scales, dimension, and scope.  

This ambiguity can largely be attributed to the fact that in spite of being originally defined for animals 

in a terrestrial context, the term ‘connectivity’ has been applied to a variety of organisms and their larval 

stages in both terrestrial and aquatic ecosystems. Furthermore, an increasing number of studies use 

‘connectivity’ with regard to gene flow or transfer of information, matter or energy between 
populations (see Kool et al. (2013) for review). Although many authors have recognized the inconsistent 

use of this concept (Tischendorf and Fahrig 2000; Moilanen and Hanski 2001; Taylor et al. 2006; Kool et 

al. 2013), limited progress has been made to unify its definition and quantitative use (but see (Calabrese 

and Fagan 2004; Bélisle 2005; Kindlmann and Burel 2008; Lindenmayer et al. 2008; Grober-Dunsmore 
et al. 2009)). A clear formulation, taking the concept to its logical conclusion but at the same time 

delimiting its application, is still missing. Moreover, some important aspects are not yet included in its 

definition (despite being applied), such as passive transportation which can be an important process for 
plant dispersal or dispersal of marine species via larval stages. Thus, for landscape connectivity as a 

decidedly useful concept for ecological theory and applied biology, to become a reliable management 

criterion, we believe a trade-off has to be made between applicability and being all-encompassing in 

scope.  

1.4 Why individual-based modelling (IBM)?  

To date, general patterns of organismal movements and migrations are well documented, but 

surprisingly little has been done yet to explicitly explore the linkages between habitat structure and 
behavioural characteristics of organisms like adult fishes (Beets et al. 2003; Holyoak et al. 2008). This is 

true for marine habitats in general and coral reefs in particular (Levin et al. 2000; Fuller 2013; Welsh 

and Bellwood 2014) and relates to empirical as well as modelling studies (Williams et al. 2010). Hence 

our understanding of the fish-seascape link among tropical coastal ecosystem and the effects of 
seascape heterogeneity on movement behaviour is still fairly limited. This is further compounded by the 

lack of advanced techniques to measure fish movements over full 24-h cycles at high spatio-temporal 

resolution (for most species still not available (Curley et al. 2013)), although modern techniques like 
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hydro-acoustic telemetry can provide valuable quantitative data on precise movement pathways of 

individual animals (see e.g. (Simpfendorfer et al. 2002; Chateau and Wantiez 2008; Heupel et al. 2010; 

Meyer et al. 2010; Hitt et al. 2011)).  

Moreover, individual movement behaviour and the resulting spatial dynamics of fish populations are 

complex (Botsford et al. 2009) making it difficult to empirically capture the full range of spatial and 

temporal variability (Reuter et al. 2005; Curley et al. 2013) or measure how environmental changes such 
as increasing habitat fragmentation may impact the physiology and viability of individual organisms 

(Nisbet et al. 2012). Added to this is a disadvantage that all empirical investigations have in common: If 

an ecological response is simply measured, it has to be re-measured when the environment changes as 

they can only provide a snapshot view of movements at a given time point (Sutherland 1998; Avgar et 
al. 2013; Davis et al. 2017b). For effective protection, however, it is not only important to be able to 

analyse observable patterns but also to anticipate what will happen to fish populations as a result of 

current or future environmental changes (Sutherland 1998; Stillman et al. 2015).  

It thus seems that empiricism alone does not offer a practical way to disentangle potential driving forces 

and simulation models may build a bridge between experimental studies and management decisions. If 
based on behavioural decisions these models can account for adaptive behaviour like phenotypic 

plasticity (Reuter et al. 2008) and thus elucidate potential consequences of habitat loss and 

fragmentation on individual movement and species distribution in space and time (Sutherland 1998; 

Semeniuk et al. 2011). Since animal movement is inherently an individual-level process (Tracey et al. 
2011) and inter-individual variation omnipresent (Semeniuk et al. 2011), individual-based models (IBMs) 

are particularly suitable to study small-scale movement behaviour in heterogenous environments.  

IBMs in general are a relatively recent category of ecological models mostly constructed with object-

oriented programming techniques (e.g. SIMULA, Smalltalk, C++, Java), although early IBM applications 

go back to the 1970s (Grimm 1999; Breckling et al. 2006). IBMs largely emerged in the context of 

computer science and were a response to the requirements to include more biological realism and 
explicit spatial representations into ecological models (Reuter et al. 2008, 2011).  

In an IBM the considered organisms are represented not only as countable entities (i.e. objects) but also 

as organisms with one or more additional features that specify the particular state of each individual 

(Breckling 2002). Thus, differences among individuals are not levelled out and the described ecosystem 

is composed of a collection of autonomous decision-making objects (bottom-up approach, (Semeniuk 
et al. 2011)). The programme structure itself is sufficiently flexible to capture organismic development 

and behaviour, environmental conditions, and the interaction of both (Reuter et al. 2011). Properties at 

the population and community levels (e.g. size, age distribution, and space use) will then emerge as a 

result of the behavioural traits and interactions (e.g., decision rules, behaviour, physiology) of all 
constituent individuals (DeAngelis and Mooij 2005), also referred to as emergent properties (Breckling 

et al. 2005). Due to this potential to represent detailed biological knowledge and small-scale 

mechanisms, IBMs tend to have a complex model structure. However, the description level of these 

models is very close to the information level of empirical results enabling the integration of observations 
directly into the model (Grimm 1999; Breckling 2002) and making interpretation of model results simple 

and straightforward. 
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Owing to this bottom-up design IBMs have therefore the ability to disintegrate populations into 

individuals and re-integrate individual events into population processes (Huse and Giske 2004; Breckling 

et al. 2006; Mumby 2006; Mumby and Hastings 2007). Thereby they allow researchers to study 

functional connections which are difficult or impossible to observe in the field, e.g. how system level 
properties arise from the behaviour of individuals or how feedbacks from the system affect the 

behaviour of individuals (Railsback and Harvey 2001; Reuter et al. 2008). The examination of cross-level 

effects of a biological system also enables the identification of ecological thresholds particularly in 

relation to habitat loss and fragmentation or may show unexpected consequences of adaptive individual 
behaviour. Hence, spatially explicit IBMs can reveal which spatial patterns facilitate or impede 

movements across a landscape (Grober-Dunsmore et al. 2009) and therefore have the potential to 

highlight causal links of the organism-landscape relationship (Nathan et al. 2008; Semeniuk et al. 2011).  

Moreover, recent studies have established the importance of explicitly considering individual 

differences in movement and space use (Spiegel et al. 2017), particularly with regard to successful 
spatial management and ecosystem-based management of fisheries (Pillans et al. 2014). IBMs further 

offer two essential advantages necessary to simulate realistic spatial distributions: Firstly, by operating 

on the lowest organisational level considered in ecology (i.e. activities of individuals) they can be readily 

linked with field observations (Breckling 2002; DeAngelis and Mooij 2003; Reuter et al. 2005; Breckling 
et al. 2006; Kubicek et al. 2015). Secondly, they can provide the required spatial resolution of the 

underlying landscape. This is vitally important in this context as natural habitats are seldom evenly 

distributed across space and time and population dynamics are generally guided by the detailed 

irregularity of a landscape rather than by its average value (DeAngelis et al. 2004).  

1.5 What do we want to achieve with our IBM? And how? 

To accurately estimate population dynamics, it is critically important to ensure that individuals in the 

model are reacting in a way that results in realistic distribution patterns. To date, model assumptions of 
movement processes often lack a great deal of realism or models do not incorporate condition-

depending movement strategies, which can yield inaccurate and costly predictions (Grüss et al. 2011). 

Thus far one of the most common methods for incorporating movement into ecological models has 

been simple or correlated random walk based on probabilistic jumps into the adjacent cell of a grid 
(Tischendorf and Fahrig 2000; Bartumeus et al. 2005; Codling et al. 2008) although the implementation 

of complex movement behaviours is beginning to occur (see (Hölker and Breckling 2005; Jopp and 

Reuter 2005; Botsford et al. 2009) with very few modelling attempts having been made in marine 
ecosystems. IBMs dealing with fish movements in coastal habitats have largely focused on larval 

dispersal (Hinckley et al. 1996; Hermann et al. 2001; Cowen 2006) and rarely include small-scale 

migration patterns of juvenile and adult fishes or more sophisticated vector-based movement rules in 

relation to landscape features (Tracey et al. 2011). 

Against this background, our aim is to examine the relationship between seascape structure and diel 

movement patterns of herbivorous parrotfishes in coral reef systems to broaden our understanding of 
the factors that influence the abundance and distribution of this functional group. Parrotfishes are of 

great ecological and economic importance in tropical coastal ecosystems (Hughes et al. 2007; Unsworth 

et al. 2007; Lokrantz et al. 2008; Bonaldo et al. 2014; Welsh and Bellwood 2014) and found on almost 
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every coral reef worldwide (Hoey and Bonaldo 2018). Furthermore, due to their ecological functions in 

coral reef systems, especially with regard to the mediation of coral-algal dynamics (Mumby et al. 2006; 

Hughes et al. 2007; Russ et al. 2015; Roff et al. 2019), they are being increasingly valued and have 

become the focus of management actions in many areas (Davis et al. 2017b).  

To allow for an exploration of causes and mechanisms of small-scale movements we deem it essential 

to model and integrate (i) individual rule-based movement behaviour with (ii) a spatially explicit 
representation of the benthic habitats under consideration of (iii) the energetic trade-offs that are 

involved in the movement decision-making process regarding costs (risk of predation and/or starvation) 

and benefits (food, survival, and/or reproduction). To this end we propose a spatially-explicit IBM that 

links the movement decision-making process of the individual fishes with two main functional aspects 
of the seascape we assume to be most relevant in this context: the habitat-dependent food availability 

(as a bottom-up control) and risk of predation (as a top-down control) due to changing topographic 

complexity. 

Conceptually we follow the framework proposed by Nathan and colleagues (2008), which provides a 

conclusive mechanistic description of the basic processes involved in individual movement (Revilla and 
Wiegand 2008). Model fishes are therefore characterized by three main components (Fig. 1): 

(1) an internal state, which is directly related to the reasons behind the individual movement 
decision (why move?) 

(2) a navigation capacity (where and when to move?), which is the individual ability to perceive and 
use movement-related information of the environment,  

(3) and a motion capacity (how to move?), which is the inherent ability to move with some 
properties modulated by the navigation capacity. 

The individual’s movement path is then generated over time by the dynamic interaction of these 
components with the fourth element, 

(4) the external factors, i.e. the surrounding environment. 

 

 

Fig. 1 The four basic elements of individual movement following Nathan et al. (2008) the internal state of an 
individual, its navigation, and motion capacity interact with the external factor(s) in question generating the 
movement path over time. 

Specifically in our model this entails the individual fish with (1) its energetic state and the need ‘to feed 

effectively yet safe and reproduce’ (Holbrook and Schmitt 1988) as the most relevant motivational 
aspects for movement, (2) its swimming activity determining its energetic costs, and (3) its perception 
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range allowing the fish respond to (4) the external factors or potential drivers ‘food availability’ and 

‘predation risk’, both traits of the underlying seascape. The dynamic interaction between the fish and 

the seascape arises from a fish`s ability to sense changes in food availability and predation risk in 

different habitats ((Werner et al. 1983; Colgan 1993) and adjust its velocity accordingly (Milinski 1993). 
A fish’s motion capacity is thus directly related to food intake and habitat changes and affect the fish`s 

energy budget (internal state) by determining the swimming costs (Ohlberger et al. 2006). Combined 

with the habitat-dependent food availability, which controls the possible energy gain, both habitat 

features ultimately decide on the fish`s growth and survival.  

To be able to capture the dominant features of small-scale diel movements of mobile (post-settlement) 

reef fishes within this framework and answer the questions of the “how, why, where and when” it is 
important to know how fish make decisions about moving across (patchy) seascapes. Movement 

generally implies many decisions like leave an area or adjust course and rate of travel (Bélisle 2005), and 

may serve one or more needs like energy gain and growth (Hughes and Dill 1990; Hughes 1998), 
predation avoidance (Milinski 1993) or reproduction. Also, these needs may vary between individuals 

due to different internal states regarding energy demand or maturity (Bélisle 2005). Thus, in nature prey 

animals, a classification that relates to the majority of all fish species, constantly make (behavioural) 

decisions to alter when, where and how they forage or reproduce reflecting the trade-offs between 
predation risk and benefits to be gained from other activities like feeding (Werner et al. 1983; Lima and 

Dill 1990; Manassa et al. 2013). When making a movement decision a fish must therefore weigh the 

importance of multiple sensory inputs, such as the presence of food, risk from predators, and 

environmental conditions (Krebs et al. 1993). The extent, to which an individual fish can sense its 
surroundings, i.e. the distance from which it can detect suitable habitat patches, is defined by its 

perceptual range and determined by its sensory abilities. The perceptual range is a consequential trait 

for animals inhabiting fragmented habitats like coastal ecosystems in order to minimize energy-costly 

searches (Lima and Zollner 1996) and functions as the interface between fish behaviour and the 
underlying seascape in our model.  

To account for relevant trade-offs in decision-making and realistically simulate landscape-related 

movement we incorporate a vector-based movement algorithm that uses artificial potential fields. 

Potential field approaches are commonly used in computer games and mobile robotics, where they 

were first introduced by (Khatib 1986) and made popular by (Arkin et al. 1987; Arkin 1989). Based on a 
physics analogy, these methods treat an (moving) agent as a charged particle acting under the influence 

of a magnetic (potential) field representing the structure of the spatial environment (Connell 1990; 

Dudek and Jenkin 2010). By assigning charges of various magnitudes to all other objects and/or locations 

in this environment (based on prior knowledge), attractive and repulsive forces are computed 
navigating an agent in a particular direction. Analogous behaviour can also be perceived in nature, when 

e.g. reef fishes avoid moving through areas of high predation risk as if “repelled” resulting in the above 

mentioned ‘landscape of fear’. Combined with their mathematical elegance and simplicity (Raja and 

Pugazhenthi 2012) this similarity makes artificial potential fields an appealing approach for the 
exploration of organismic reactions to landscape structure and its heterogeneity.  
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With our model, in which the external factor food availability acts as an attractive force, while predation 

risk is implemented as a repulsive force, we mainly address the following questions:  

(i) How do small-scale behavioural decisions affect key life history traits such as energy 

budgets, survival, and reproduction of the model species? 

(ii) How do these individual decisions influence population dynamics and the spatial 

distribution as self-organized spatial structures of model species? 

(iii) What are potential responses on the individual as well as the population level to changing 

environmental conditions like an increasing habitat fragmentation?  

(iv) How does the spatial configuration affect energetic gains and costs (e.g. growth and 

survival)? 

(v) Where are critical configurations or thresholds with respect to the life history of fish (e.g. 

different susceptibilities) and movement behaviour? 

1.6 Outline of the chapters 

The central part of the work presented here is the development of the individual-based model (IBM) 

and its exemplary application to a parrotfish species. Our model integrates the results of our field 

experiments conducted beforehand to investigate movement patterns of parrotfishes and facilitate 
model parametrization. As both model results and field observations relate to the connectedness of 

habitats in a given seascape, we further discuss the concept of ‘landscape connectivity’ as a relevant 

and increasingly popular framework in spatial ecology.  

More specifically, Chapter 2 gives an overview of the relevance of natural (i.e. lunar, diel, and tidal) 

cycles on fish assemblages and how they influence community composition in tropical coral reef 

habitats on Zanzibar, Tanzania (published paper). The obtained results help discern potential driving 
factors for small-scale fish movements and provide important information for the structure and 

development of the IBM presented in Chapter 3. 

Chapter 3 describes the IBM in detail and summarizes the findings of model simulations using different 

habitat maps (with increasingly fragmented seascapes) to identify patterns and linkages between fishes 

and their surrounding environment. It further provides insights into potential consequences of habitat 

degradation with regard to individual growth and development as well as population distribution and 
its long-term survival (manuscript in preparation). 

Chapter 4 discusses the concept of landscape connectivity, which is frequently used in both marine and 
terrestrial spatial ecology. Despite its frequent usage, it is also a much-debated framework due to its 

ambiguities and different interpretations when applied to marine or terrestrial systems. Moreover, it is 

of particular interest in the context of habitat-related fish movement behaviour as resulting space use 
patterns will strongly depend on how a species perceives certain landscape features as corridors or 

barriers, which ultimately determine the accessibility of habitat patches in the surrounding 

environment. In this chapter a potential solution to unify the framework for an application to both 

realms is presented (manuscript in submission).  

Chapter 5 provides a synopsis of the findings of Chapter 2 to 4, their relevance in the context of coral 

reef sciences and an outlook to potential future developments. 
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2 Lunar, diel, and tidal changes in fish assemblages in an East African marine 
reserve 

 

Kruse M, Taylor M, Muhando CA, Reuter H (2016). Lunar, diel, and tidal changes in fish assemblages in 
an East African marine reserve. Regional Studies in Marine Science 3: 49-57. 

The pdf-document of this publication is not displayed due to copyright reasons. The publication can be 
accessed at:  

https://www.sciencedirect.com/science/article/abs/pii/S2352485515000134;  

DOI: 10.1016/j.rsma.2015.05.001 
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3 Best places to go in a heterogenous seascape: How potential field methods 

can help to simulate trade-offs in fish movement behaviour  

(Manuscript in preparation) 

3.1 Abstract  

In nature fish are seldom evenly distributed across a heterogenous seascape like coral reef systems and 

their space use patterns will largely result from the interactions between individual movement 

behaviour and the characteristics of the environment in which the fishes are embedded. When foraging, 
herbivorous parrotfishes, for instance, are likely to be constraint by habitat characteristics like the 

availability of resources and different levels of predation risk. As parrotfish play an important role in 

structuring benthic communities, the resulting spatial distribution of the fish population can have severe 

impacts on community composition and ecosystem resilience.  

Motivated by this increasing awareness of the importance to study organisms at the individual level and 
in order to limit model biases due to over-simplified movement patterns we aim at a more realistic 

representation of fish movements and their decision-making process: By combining individual-based 

modelling (IBM) with potential field methods in a novel approach we hope to take a step forward in this 

direction. Potential fields, which are frequently used in robotics and computer gaming, represent 
environments as a field of repellent and attracting forces making them an appealing approach for the 

exploration of organismic reactions to landscape structure and its heterogeneity.  

In our model, the biotic components represented are individual parrotfishes, food availability and 

predation risk, while abiotic factors include the diel cycle as well as the underlying habitat structure of 

a coral reef system. By coupling the fish’s bioenergetics with a navigation capacity using the potential 

field we provide a mechanistic basis for better understanding and predicting how changes in the habitat 
structure and fragmentation may cause shifts in population dynamics and space utilization. 

Model results indicate that movement patterns and the resulting spatial distributions of the population 
are more irregularly distributed among coral reef patches the more the coral reef habitat becomes 

fragmented and reduced. On the individual level the process of reproduction seems most susceptible 

to changes in habitat configuration and composition. Based on our findings we believe that the 
integration of potential field methods into IBMs is a promising strategy to represent the complexity of 

dynamic decision-making of animals in applied models. 

 

Keywords: individual-based modelling, potential fields, decision-making, fish bioenergetics, diel 
movements, habitat fragmentation 
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3.2 Introduction 

Movement of organisms is a key issue in ecology, especially in naturally fragmented landscapes (Turchin 

1991; Zollner et al. 1999) like tropical coastal habitats, and an important link between individual life 
history and population dynamics (Nathan et al. 2008; Morales et al. 2010; McClintock et al. 2014). Also, 

animal movement is one of the primary ways that mobile organisms can adapt to changing 

environments (Railsback et al. 1999; Smouse et al. 2010). This makes movement at all different spatial 

scales relevant to most current environmental concerns in the marine realm like coastal development, 
overexploitation of natural resources or increasing degradation of habitats (Nathan et al. 2008). 

Animal movement behaviour is further notorious for its complexity and generally considered to consist 
of directed responses to social and environmental cues, resulting in space use patterns that represent 

trade-offs between energy gain, survival, and reproduction (Davis et al. 2017b). Also, the possible 

involvement of many different environmental factors such as predation and habitat complexity as top-

down controls or food availability as bottom-up drivers (Roff et al. 2019) complicate the analysis of 
potential driving forces and causal interconnections. Ultimately, animal distribution is often the result 

of individual compromises between (habitat-related) resource availability, predation risk, and 

competition (Tootell and Steele 2016). Understanding the relative influence of these factors, in 
particular of different habitat and landscape arrangement, has been a long-standing goal of ecologists 

(Gilby et al. 2016). 

With regard to habitat features, fish, for instance, are known to be responsive to the physical three-

dimensional structure and spatial arrangement (i.e. configuration) of the underlying seascape and the 

diversity and extent of the associated benthic habitats (Hart 1993; Chapman and Kramer 1999; 

McClanahan and Arthur 2001; Grober-Dunsmore et al. 2007; Gullström et al. 2008; Grüss et al. 2011; 
Fuller 2013). Ample evidence exists that greater complexity of reef structures correlates with higher fish 

abundances and species richness suggesting that topographic complexity is a key component of habitats 

and habitat configuration an important driver for space utilization patterns (Chittaro 2004; Welsh and 

Bellwood 2012a; Gilby et al. 2016; He et al. 2019).  

The central mechanism by which topographic complexity influences population level processes is based 

on the modulation of interactions among individuals: Encounter rates between prey and predators, the 
likelihood of an attack or the escape probability of prey are altered in dependence of the habitat 

structure, e.g. by providing more or less suitable refuges (Lima and Dill 1990; Jones and Syms 1998; 

Overholtzer-McLeod 2006; Pratchett et al. 2008; McCormick and Lönnstedt 2013; Catano et al. 2016; 
Roff et al. 2019). Prey organisms may therefore be reluctant to leave their preferred substratum and 

cross large gaps of habitats of low structural complexity such as sand (Chapman and Kramer 2000; 

Turgeon et al. 2010). This behaviour leads to a continuum of risky and safe areas within a prey’s 

environment, also referred to as the ‘landscape of fear’ (Laundré et al. 2001), which has been 
demonstrated in terrestrial (Gorini et al. 2012) as well as marine ecosystems (Wirsing et al. 2008; Madin 

et al. 2011; Matassa and Trussell 2011; Catano et al. 2016). When making movement decisions habitat 

features may thus present physical barriers while others facilitate movement and an increasing 

fragmentation may severely impact how animals use their space.  
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By regulating and restricting movement patterns of the individuals the configuration of the seascape 

shapes at the same time the global structure of fish populations, in particular with regard to their spatio-

temporal dynamics and distributions (Hart 1993; Bellwood and Hughes 2001; Nemeth and Appeldoorn 

2009). However, by constraining a fish’s movements the seascape has yet another, important effect on 
their inhabitants: depending on the degree of fragmentation the seascape may force a foraging fish to 

not always take the shortest possible path from shelter to food and vice versa (Hart 1993). As 

locomotion is metabolically costly for fish (Brett and Groves 1979; Calow 1985) these detours may have 

a severe impact on a fish’s energy budget. All these organism-seascape linkages are likely to be of 
particular importance in coral reef systems as typically heterogenous environments with a patchy 

distribution of different habitat types from highly complex reef structures to open flat sandy bottoms 

(Gil et al. 2017). 

To date, general patterns of organismal movements and migrations are well documented, but 

surprisingly little has been done yet to explicitly explore how habitat structure and behavioural 
characteristics of organisms like adult fishes are interlinked (Beets et al. 2003; Holyoak et al. 2008). This 

is true for marine habitats in general and coral reefs in particular (Levin et al. 2000; Fuller 2013; Welsh 

and Bellwood 2014) and relates to empirical as well as modelling studies (Williams et al. 2010). Due to 

its complexity, however, it is difficult to empirically capture the full range of spatial and temporal 
variability of movement behaviour (Reuter et al. 2005; Curley et al. 2013) or measure how 

environmental changes such as increasing habitat fragmentation may impact the physiology and 

viability of individual organisms (Nisbet et al. 2012). Moreover, for effective protection it is not only 

important to be able to analyse observable patterns but also to anticipate what will happen to fish 
populations as a result of current or future environmental changes (Sutherland 1998; Stillman et al. 

2015).  

It thus seems that empiricism alone does not offer a practical way to disentangle potential driving forces 

and simulation models may build a bridge between experimental studies and management decisions. If 

based on behavioural decisions these models can account for adaptive behaviour like phenotypic 
plasticity (Reuter et al. 2008) and thus elucidate potential consequences of habitat loss and 

fragmentation on individual movement and species distribution in space and time (Sutherland 1998; 

Semeniuk et al. 2011). Since animal movement is inherently an individual-level process (Tracey et al. 

2011) and inter-individual variation omnipresent (Semeniuk et al. 2011), individual-based models (IBMs) 
are particularly suitable to study small-scale movement behaviour in heterogenous environments. 

To accurately estimate population dynamics, it is critically important to ensure that individuals in the 
model are reacting in a way that results in realistic distribution patterns. To date, model assumptions of 

movement processes often lack a great deal of realism or models do not incorporate condition-

depending movement strategies, which can yield inaccurate and costly predictions (Grüss et al. 2011). 

Thus far one of the most common methods for incorporating movement into ecological models has 
been simple or correlated random walk based on probabilistic jumps into the adjacent cell of a grid 

(Tischendorf and Fahrig 2000; Bartumeus et al. 2005; Codling et al. 2008) although the implementation 

of complex movement behaviours is beginning to occur (see (Hölker and Breckling 2005; Jopp and 

Reuter 2005; Botsford et al. 2009) with very few modelling attempts having been made in marine 
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ecosystems. IBMs dealing with fish movements in coastal habitats have largely focused on larval 

dispersal (Hinckley et al. 1996; Hermann et al. 2001; Cowen 2006) and rarely include small-scale 

migration patterns of juvenile and adult fishes or more sophisticated vector-based movement rules in 

relation to landscape features (Tracey et al. 2011). 

Against this background, our aim is to examine the relationship between seascape structure and diel 

movement patterns of herbivorous parrotfishes in coral reef systems to broaden our understanding of 
the factors that influence the abundance and distribution of this functional group. Parrotfishes are of 

great ecological and economic importance in tropical coastal ecosystems (Hughes et al. 2007; Unsworth 

et al. 2007; Lokrantz et al. 2008; Bonaldo et al. 2014; Welsh and Bellwood 2014) and found on almost 

every coral reef worldwide (Hoey and Bonaldo 2018). Furthermore, due to their ecological functions in 
coral reef systems, especially with regard to the mediation of coral-algal dynamics (Mumby et al. 2006; 

Hughes et al. 2007; Russ et al. 2015; Roff et al. 2019), they are being increasingly valued and have 

become the focus of management actions in many areas (Davis et al. 2017b).  

To allow for an exploration of causes and mechanisms of small-scale movements we deem it essential 

to model and integrate (i) individual rule-based movement behaviour with (ii) a spatially explicit 
representation of the benthic habitats under consideration of (iii) the energetic trade-offs that are 

involved the movement decision-making process regarding costs (risk of predation and/or starvation) 

and benefits (food, survival, and/or reproduction). To this end we propose a spatially-explicit IBM that 

links the movement decision-making process of the individual fishes with two main functional aspects 
of the seascape we assume to be most relevant in this context: the habitat-dependent food availability 

(as a bottom-up control) and risk of predation (as a top-down control) due to changing topographic 

complexity (Christensen and Persson 1993; Colgan 1993). 

Conceptually we follow the framework proposed by (Nathan et al., 2008) and implement four basic 

components (internal state, motion capacity, navigation capacity, and external factors) to capture the 

relevant processes of a parrotfish’s movement ecology: the individual fish with (1) its energetic state 
and the need ‘to feed effectively yet safe and reproduce’ (Holbrook and Schmitt 1988) as the most 

relevant motivational aspects for movement, (2) its swimming activity, and (3) its perception range 

allowing a fish respond to (4) the external factors or potential drivers ‘food availability’ and ‘predation 
risk’, both traits of the underlying seascape (see graphical abstract). The dynamic interaction between 

the fish and the seascape arises from a fish`s ability to sense changes in food availability and predation 

risk in different habitats (Werner et al. 1983; Colgan 1993) and adjust its velocity accordingly (Milinski 

1993). A fish’s motion capacity is thus directly related to food intake and habitat changes and affect the 
fish`s energy budget (internal state) by determining the swimming costs (Ohlberger et al. 2006). 

Combined with the habitat-dependent food availability, which controls the possible energy gain, both 

habitat features ultimately decide on the fish`s growth and survival.  

To realistically simulate landscape-related movement we incorporate a vector-based movement 

algorithm that uses artificial potential fields. Potential field approaches are commonly used in computer 

games and mobile robotics, where they were first introduced by Khatib (1986) and made popular by 
Arkin and colleagues (Arkin et al. 1987; Arkin 1989). Based on a physics analogy, these methods treat 

an (moving) agent as a charged particle acting under the influence of a magnetic (potential) field 
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representing the current structure of the spatial environment (Connell 1990; Dudek and Jenkin 2010). 

In case the environmental structure changes, the potential field can easily and dynamically be updated. 

By assigning charges of various magnitudes to all other objects and/or locations in this environment 

(based on prior knowledge), attractive and repulsive forces are computed navigating an agent in a 
particular direction. Analogous behaviour can also be perceived in nature, when e.g. reef fishes avoid 

moving through areas of high predation risk as if “repelled” resulting in the above-mentioned ‘landscape 

of fear’ (Laundré et al. 2001; Catano et al. 2016). Combined with their mathematical elegance and 

simplicity (Raja and Pugazhenthi 2012) this similarity and flexibility makes artificial potential fields an 
appealing approach for the exploration of organismic reactions to landscape structure and its 

heterogeneity. In our model the external factors are implemented as attractive (food availability) and 

repulsive forces (predation risk) thereby acting as the environmental stimuli of the benthic seascape for 
a fish to move in a particular direction.  

With our model, in which the external factor food availability acts as an attractive force, while predation 
risk is implemented as a repulsive force, we mainly address the following questions: (i) How do small-

scale behavioural decisions affect key life history traits such as energy budgets, survival, and 

reproduction of the model species? (ii) How do these individual decisions influence population dynamics 

and the spatial distribution as self-organized spatial structures of model species? (iii) What are potential 
responses on the individual as well as the population level to changing environmental conditions like an 

increasing habitat fragmentation? (iv) How does the spatial configuration affect energetic gains and 

costs (e.g. growth and survival)?  

3.3 Material and Methods 

In this section we briefly describe the proposed IBM following the ODD protocol (Grimm et al. 2006, 

2010) while detailed model flows, equations and all parameters as well as model validation and  the 

results of the sensitivity analysis are summarized in Appendix A1 and A2, respectively. Our model has 
been developed using the object-oriented programming language Java (version 1.8) with the MASON 

multi-agent simulation toolkit (see https://cs.gmu.edu/~eclab/projects/mason/) and it is available at 

gitlab (https://gitlab.leibniz-zmt.de/ecomod/kitt). Subsequent data analysis of model outputs is 

performed using Python 3 with Jupyter Notebook 5.7.4. The model is designed and parametrized based 
on our own field observations of the study system and target organism (unpublished data) as well as 

the comprehensive literature data available regarding the life cycle, bioenergetics and general ecology 

of parrotfishes, in particular the Daisy parrotfish (Chlorurus sordidus (Forsskål, 1775)) as an ubiquitous 
and well-studied member of this functional group. 

3.3.1 Purpose 

Our model is designed to spatially-explicitly simulate diel movement behaviour and resulting population 

dynamics of herbivore parrotfishes in various habitat settings in order to better understand how the 

underlying seascape influences small-scale movement decisions (Fig. 2).  
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Fig. 2 Overview of basic model processes and linkages between model compartments. 
 Flow of energy 

 Flow of information 

 Conditional fluxes of energy or information 
¸ Compartment size depending on individual body length 
♀ Applies solely to female individuals 

 

Our specific goals in this study are to assess (i) how trade-offs between effectively foraging and avoiding 

risk of predation on the individual level may affect individual growth and energy budgets, as well as the 
spatial distribution of a population and its (long-term) survival and (ii) whether different habitat 

configurations with a varying degree of fragmentation may have the potential to enhance or alleviate 

any of the observed effects. To this end we simulate six different scenarios with varying spatial 

compositions and configurations of the benthic seascape (Table 1). 
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Table 1 Overview of tested scenarios with six alternative seascape settings (I-VI). Habitat types are indicated in 
blue = coral reef, yellow = sand, and white = mainland (to simulate coastlines). 

Movement strategy PERCEPTION (movement algorithm based on potential fields) 

Basic assumptions: 
• Behavioural explicit with adaptive movement decision-making, i.e. individuals are able to navigate in space 

and time and can adapt their behaviour (i.e. direction of next movement step and/or swimming speed) to 
changing environmental conditions (i.e. food availability and predation risk) 

Individuals can sense and respond to (changing) habitat features via their perception range, which serves as 
an informational window to the surrounding seascape 

I. Scenario 
Default 

II. Scenario 
Connected 

III. Scenario 
Patchy_80 

IV. Scenario 
Patchy_60 

V. Scenario 
Patchy_40 

VI. Scenario 
Patchy_20 

      
Continuous 
coral reef 
habitat of 
0.1 km2 along a 
coastline of 
0.035 km2 

Coral reef 
habitat of 
0.07 km2 
surrounded by 
sandy bottom 
patches of 
0.03 km2 along 
a coastline of 
0.035 km2 

Coral reef 
patches of 
0.056 km2 
separated by 
sandy bottom 
habitat of 
0.044 km2 along 
a coastline of 
0.035 km2 

representing a 
loss of coral reef 
habitat of 20 %  

Coral reef 
patches of 
0.042 km2 
separated by 
sandy bottom 
habitat of 
0.058 km2 along 
a coastline of 
0.035 km2 

representing a 
loss of coral reef 
habitat of 40 % 

Coral reef 
patches of 
0.028 km2 
separated by 
sandy bottom 
habitat of 
0.072 km2 along 
a coastline of 
0.035 km2 

representing a 
loss of coral reef 
habitat of 60 % 

Coral reef 
patches of 
0.014 km2 
separated by 
sandy bottom 
habitat of 
0.086 km2 along 
a coastline of 
0.035 km2 

representing a 
loss of coral reef 
habitat of 80 % 

3.3.2 Entities, state variables, and scales 

Our model encompasses two kinds of entities (see Appendix A1.1 and A1.2) and three hierarchical 

levels: the individuals of a common group of diurnal reef fishes as one entity, the population comprising 

all individual fishes, and the underlying benthic seascape as the second entity and spatial environment, 
in which the fish (inter-)acts.  

Individual fishes are parametrized to represent (post-settlement) herbivorous parrotfishes with their 
(coarse) life cycle and bioenergetics defined by relevant components and key processes following 

(Hölker and Breckling 2005). The modelled life cycle comprises all life stages from recently settled post-

larval juveniles to adult terminal phases. Larval stages are excluded because larvae are part of the 

plankton and thus subject to different mechanisms and drivers. Individual fish are characterized by 17 
state variables such as biomass (g wet weight), length (standard length in cm), age (years; age), position 

(spatial coordinates), sex (female or male) and phase (juvenile, initial phase, or terminal phase) which 

are updated according to a set of rules (behavioural repertoire). The behaviours of each individual 

include all main activities a fish exhibits during a 24 h cycle such as moving, feeding, growing, 
reproducing, and resting and are each associated with different energetic gains and costs (in kJ, as the 
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model’s ‘currency’ following (Hart 1993)). A full description of all state variables as well as execution 

flows can be found in Table A1.1 and sections A1.1.1 – A1.1.9.  

The virtual environment consists of four principal components we deem essential to represent the fish-

seascape link with its potential key drivers (i.e. risk of predation and food availability) for movement 

decision-making at the spatio-temporal scale of diel movement behaviour. As the spatial base for the 

simulation we use two overlapping 2D grids of identical size and resolution to depict (i) the seascape 
with different habitat types (HabitatMap) and (ii) the habitat-dependent food resources (FoodMap). 

The HabitatMap also holds (iii) information on the habitat-dependent predation risk 

(PredationRiskFactors) while (iv) the abiotic factor daytime (TimeOfDay) functions as the main 

controlling force for a fish’s daily activities (Helfman 1993; Bellwood 1995). Detailed descriptions, state 
variables and parameter settings for all environmental components appear in Table A1.3 and sections 

A1.2.1 – A1.2.4.  

In short, the HabitatMap is composed of at least one of two different habitat types (coral reef or sandy 

bottom; habitatType) whose distribution is based on an artificial habitat map designed to represent 

typical habitat configurations in tropical coastal environments. The six variants of this map used in our 
simulations have different habitat configurations and compositions with a decreasing amount and size 

of coral reef patches and an increasing separation by sandy bottom areas. The order of magnitude of 

the reduction rate of coral reef habitat between scenarios (-20 %) is based on reported destruction rates 

of corals, which can be as high as 69 % in one year as recently measured on the Great Barrier Reef after 
a major bleaching event (Schaffelke et al. 2016). Associated with each habitat type is a (habitat-

dependent) risk of predation, one of the two external drivers we explicitly consider in our model. Due 

to a lack of empirical values with regard to habitat-related mortality rates as well as computational 

constraints we model the risk of predation as an increment of the natural mortality rate, which changes 
in dependence of the topographic complexity of each habitat type (Pratchett et al. 2008; Welsh and 

Bellwood 2012a; McCormick and Lönnstedt 2013).  

The FoodMap holds all relevant information on food availability as the second external driving factor 

considered in our model. Food availability is implemented as an abstract calorific value for epilithic algal 

turf, which we consider to be sufficient to model relevant population dynamics. Algal turf, which is 
ubiquitous on coral reefs and one of the largest sources of primary production in these systems (Tootell 

and Steele 2016), is one of the main food sources of many parrotfishes (Polunin et al. 1995). It is also, 

however, a food source of low energetic value and parrotfish must therefore continuously feed 

throughout the day to satisfy their daily energy demands (Chen 2002). To incorporate feedback 
processes between individual fishes and the algal food resources we add a regrowth function (following 

Kelly et al. (2017)). We further assume conditions to be uniform within one grid cell regarding habitat 

type, predation risk, and food resources.  

Since the main goal of our model is to capture the movements of each fish as well as its interaction with 

the surrounding environment, the finest resolution process considered is the foraging process. The 

appropriate spatial scale has therefore to reflect the size of a patch that a parrotfish may use in one 
feeding bout as well as the typical scale comprising a fish’s choice of movement to a new food patch. 

Based on these assumptions and field observations of short-term foraging ranges of parrotfishes (Nash 
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et al. 2012; Tootell and Steele 2016) we set the spatial resolution (size of spatial grid cells) to 1 m so that 

1 pixel of both the HabitatMap and the FoodMap correspond to 1 m2. At this resolution we also believe 

it possible to represent the essential spatial details like habitat patchiness or changing spatial 

distribution of local resources, which are needed to address our research questions. With a map size of 
450 x 300 pixel the simulated landscape equals a total area of 0.135 km2 encompassing typical home 

range sizes of < 500 m2 of diurnal herbivores like parrotfishes (Welsh and Bellwood 2012b; Green et al. 

2015). Time proceeds in discrete time steps at a high resolution of 1 s to allow for the emergence of 

habitat-related movement patterns which have been suggested to only be discernible at a narrow range 
of temporal resolutions (Avgar et al. 2013). 

3.3.3 Process overview and scheduling 

Process overview. Our model considers five main processes with four of them related to a fish’s lifecycle 

(moving, growing, reproducing, and feeding) and one involving the regrowth of food sources (Fig. 3). All 
fish-related processes are executed every time step and include an evaluation system to decide which 

part of the behavioural repertoire will be performed. Thereby each fish can individually evaluate which 

behaviour is appropriate to the local surroundings and its energy demands to allow for short-term 

behavioural responses to its internal energetic state. The decision process is followed by the execution 
of the chosen behaviour and the updating of the respective state variables. All fish-related modules 

execute in the same sequence, while the fish entities themselves are processed in a randomized order. 

The regrowth of food resources occurs only once at the beginning of a 24 h cycle and both the modules 

Daytime and Predation risk do not carry out any active processes. 

 

Fig. 3 Schematic overview and execution order of main modules and model processes (in italics). Dotted black 
lines indicate which modules of a fish’s life loop are part of a certain process. Dashed grey lines and arrows 
illustrate influencing environmental factors. 

Scheduling. In our model the scheduling of a fish’s activities and processes is intended to follow a 

biologically meaningful yet computationally practical order to mimic a fish’s natural behaviour during a 
24 h cycle. In order to reflect the overriding and predictable constraint the diel cycle imposes on the 

behaviour and activity of fishes (Helfman 1993) we implement a factor called TimeOfDay 

(Appendix A1.2.4) which primarily controls a fish’s behaviour (Appendix A1.1.2). As a consequence of 

this natural controlling force, most (tropical reef) fishes are known to be either diurnal or nocturnal with 
an active phase characterized by feeding and an inactive one by cover-seeking and resting (Hobson 
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1972). The changeover behaviour between these two phases typically occurs in the intermediate 

twilight periods. Parrotfishes like C. sordidus as diurnal herbivores spend on average about 90 % of 

daylight hours foraging with abruptly starting and stopping to feed at dawn and dusk (Bellwood 1995). 

At dusk they move to boulders or rocks on the reef slope to sleep (Bellwood 1995). Thus, depending on 
TimeOfDay our diurnal model fish is set to either forage (if daytime = DAY), rest (NIGHT) or migrate from 

resting to feeding habitats (SUNRISE) or vice versa (SUNSET). 

If a model fish is scheduled as active and hungry, it will move to search for food based on a spatially 

informed movement algorithm using potential fields (see below and Appendix A1.1.3 for a full 

description). Once a fish has moved to its next position it will deplete the food resources on the current 

food cell based on its body-size dependent feeding rate (meanIngestionRate) until it has gained enough 
energy to meet its energetic demands (Appendix A1.1.9). As fish are further known to be able to increase 

their average feeding rate with increased hunger levels (Godin 1981) a model fish can adapt its feeding 

rate between a minimum (minIngestionRate) and a maximum (maxIngestionRate) (order of magnitude 
following (Polunin et al. 1995)) based on its current energy budget.  

Following the paradigm that all energy acquired by any animal through the ingestion of food is 
ultimately either used in metabolic processes, deposited as new body tissue (including reproduction), 

or lost as waste products (Willmer et al. 2005) the model uses individual energy budgets for each fish 

to describe the partitioning of the ingested energy into these components. To realistically depict 

relevant bioenergetic processes we implement five different body compartments with specific functions 
following (Hölker and Breckling 2005): (1) the gut to mimic digestion, (2) an excess storage to regulate 

the fish’s hunger state, (3) a short-term storage representing carbohydrates, (4) body fat as a medium-

term energy storage, and (5) body protein as a long-term storage. Female individuals also possess a 

reproduction compartment to account for the dynamics and energetic costs of the reproduction process 
(Hölker and Breckling 2005) including spawning, which is one of the most metabolically demanding 

activity in the lives of fishes (McBride et al. 2015). Energy requirements associated with the maturation 

of male gonads, on the other hand, are usually substantially lower (Wootton 1979; Miller and Kendall 
2009; Berg and Fleming 2017) and are therefore not considered here. 

Since the prime demand for food, before any energy storage or somatic growth can occur is to meet 
maintenance requirements (Brett and Groves 1979) our model fish first covers all energy costs due to 

its resting metabolism needed to keep it alive, followed by all energetic losses caused by its movement 

activity (Appendix A1.1.6). Any remaining energy is then used for growth (i.e. increase in biomass and 

body length) and allocated to the different body compartments following the approximate body 
composition of a parrotfish (Karakoltsidis et al. 1995). In case, however, more energy is consumed then 

assimilated the fish will eventually die due to starvation. All assumptions underlying the allocation and 

conversion of energy is detailed in Appendix A1.1.6-A1.1.9 with all related parameters listed in 

Table A1.2. 

Apart from starvation a model fish can also die due predation (Appendix A1.2.3), senescence (Appendix 

A1.1.5) or due to natural mortality (Appendix A1.1.4), which comprises any mortality-inducing factor 
other than starvation, predation or senescence, such as sickness, diseases or pollution. All types of 
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mortality are implemented to approximate a total annual mortality rate of 0.3 to 0.4 year-1 without 

fishing as mortality due to fishing is not (yet) implemented in our model.  

Depending on biomass, body length, and age individual fishes are either referred to as juveniles 

(considered as non-reproductive females), females or males. We include protogynous (female-to-male) 

sex change in our model because it is a common life history pattern in parrotfishes such as C. sordidus 

and ignoring life history variation in assessing stock dynamics has been demonstrated to lead to an 
overestimation of spawning biomass (Alonzo et al. 2008). As a protogynous hermaphrodite a model fish 

can therefore change from the juvenile life phase to the female initial phase and then to the male 

terminal phase depending on its biomass and length (Appendix A1.17). To account for reproductive 

processes female fishes in their initial phases are able to spawn once they have acquired enough energy 
resources in their reproduction storage (Appendix A1.1.8). Due to the assumption of low energy costs 

regarding the maturation of testes male individuals have no functional role in the modelled 

reproduction but still contribute to processes related to population densities and food depletion. 
Spawning can occur during each time step since parrotfishes like C. sordidus are known to spawn on a 

daily basis and throughout the year with no clear seasonal patterns (McIlwain and Taylor 2009). 

Following (Lewis 1997; Miller et al. 2001; Miller and Kendall 2009) and to ensure a stable (self-recruiting) 

model fish population over time we assumed that two juvenile individuals per female and spawning 
event (NumRecruits) settled within the population after the timespan of a post-settlement age of 120 

days had passed (following (McIlwain and Taylor 2009)). Stock-recruitment relationships are generally 

difficult to establish for coral reef fishes (Roberts 1996) due to larval dispersal over long distances and 

the high temporal variability of post-recruits immigration (Lewis 1997). It is likely, however, that 
recruitment is at least partly controlled by local reproduction (Green et al. 2015) and local populations 

of C. sordidus seem to be mainly affected by the recruitment of larvae and less by post-recruits inputs 

(Lewis 1997). We therefore consider recruitment to be determined solely by the local population and 

without any post-recruit immigration. 

Movement. As we put special emphasis on the analysis of spatial interactions and their influence on 
movement behaviour a model fish can make an informed movement decision based on perceived 

environmental conditions regarding food availability and predation risk to navigate through its 

surroundings. At each time step the actual movement step is modelled discretely using a vector-based 

walking algorithm based on the step length (defined by the current speed) and the turning angle 
(direction). As described below the direction (in degree) is computed using potential field methods and 

constrained by a maximum turning range and a spatial perception range, while the actual speed value 

(in cm s-1) is determined by the fish’s current activity and the underlying habitat type.  

To compute the direction of a fish’s next movement step we use vector field path planning based on 

artificial potential fields (Khatib 1986; Arkin et al. 1987; Arkin 1989; Connell 1990; Dudek and Jenkin 

2010). Treating the pathfinding of an ‘intelligent’ model fish as a flow field problem allows us to 
integrate the motivational basis of a fish to move: Depending on a fish’s behavioural mode (FORAGING, 

RESTING, or MIGRATING) different landscape features are considered relevant and function as 

attractive or repulsive forces, which are individually weighted and then added to compute the most 

favourable direction. Thereby a fish can adapt its behaviour to its movement goal as well as respond to 
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a changing environment. The set of environmental stimuli a diurnal fish considers during daytime (i.e. 

when in behaviourMode FORAGING) are food availability (attraction) and predation risk (repulsion). 

During dusk, however, a fish’s motivation to move changes from safely finding food to safely migrating 

to the appropriate habitat type for resting and during dawn to safely migrating to suitable feeding areas. 
Thus, instead of food density the appropriate habitat type of the benthic seascape becomes the relevant 

attractive force when a fish is MIGRATING. As soon as a fish reaches the target habitat, it will switch to 

the next scheduled behaviour mode (FORAGING or RESTING). While RESTING the sole motivation of a 

fish is to survive while resting, which is why only predation risk is considered as a relevant landscape 
feature during this behaviour mode.  

To realistically depict a fish’s response towards the above-mentioned seascape characteristics we 
incorporate a perception radius for each relevant habitat feature. This radius functions as a spatial 

range, in which a fish will react to a certain feature and include it into its movement decision. For the 

risk of predation, we set the perception range (perceptionRadiusPredation) to 10 m based on the 
knowledge that vision is of the main sensory systems involved in prey – predator interactions of coral 

reef fishes (Myrberg and Fuiman 2002) such as escape responses (Domenici 2002) and most fishes thus 

have well developed visual capabilities with a high spatial and temporal resolution that match those of 

other vertebrates (Guthrie 1986; Rosa Salva et al. 2014). Furthermore, parrotfish live in relatively 
shallow and clear-water environments around coral reefs in which an average visibility of 10 m can be 

expected (Roy and Smith 1971; Aerts and van Soest 1997). For computational reasons the inclusion of 

the dynamic habitat feature food availability in the decision-making process is limited to the next eight 

directly adjacent cells representing a perception range (perceptionRadiusFood, [m]) with a reactive 
distance of 1 m (see Appendix A1.1.3 for further details).  

The direction of the next step is further constrained by a fish’s maximum turning range (maxTurnSpeed, 
[° s-1]), which delimits the maximum angle a fish can turn at each time step at high temporal resolutions 

(1 s) to ensure the emergence of realistic changes of direction at a lower time resolution (Jopp and 

Reuter 2005). The range is parametrized based on field studies by (Davis 2016), in which movements of 
individual C. sordidus were tracked over 20 min time periods with a time resolution of 15 s. The 

recorded movement trajectories suggest convoluted foraging paths for C. sordidus with a high tortuosity 

(i.e. having many directional changes within a small area) and which result in paths with a start-finish 

distance much shorter than the total distance travelled (Fulton and Bellwood 2002).  

Moreover, fishes are not only known to be able to sense changes in predation risk or food availability in 

different habitats but also to adapt their velocity accordingly (Milinski 1993). Therefore, a model fish 
will not only adapt its movement direction according to the perceived surroundings but also increase its 

speed in riskier (i.e. topographically less complex) and/or low-food habitats 

(SANDYBOTTOM_SPEED_FACTOR) and become slower under more favourable conditions, i.e. habitats 

with high structural complexity (Nash et al. 2012, 2016; Tootell and Steele 2016) . Changes in speed can 
have a considerable impact on a fish’s energy budget because locomotion, which generally constitute a 

large proportion of an animal’s energy budget (Alexander 2005; Ohlberger et al. 2005), is metabolically 

costly for fish (Brett and Groves 1979). To integrate the level of activity of a model fish with its energetic 

state our model computes metabolic costs of swimming using a relationship between oxygen 
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consumption, fish mass and average swimming speed (Hölker and Breckling 2005) and adds these 

additional costs to a fish’s resting metabolism (Appendix A1.1.6). Details on the exact computation of 

movement steps appear in Appendix A1.1.3. 

3.3.4 Design concepts 

In this section we describe all concepts identified by the ODD protocol that apply to our IBM. Concepts 
such as Learning, Prediction, Interaction, and Collectives are not employed and therefore omitted.  

3.3.4.1 Emergence 

Population dynamics (i.e. changes in size, length-, age- and life-phase distributions) as well as its spatial 

distribution arise from the properties of the individual fishes regarding their ontogenetic development 

and somatic growth as well as their movement behaviour(s) and direct interactions with the underlying 

seascape structure. Also, traits of the individual such as mortality are not modelled explicitly but emerge 
in our model depending on a fish’s current age (mortality due to senescence), its failure to keep a 

minimum energetic level (mortality due to starvation) as well as its choice of habitat and the habitat-

related predation risk combined with the time spent on a particular habitat (mortality due to predation). 

3.3.4.2 Adaptation 

While individual fish behaviour is largely imposed via empirical rules, fish can make adaptive decisions 

with regard to their feeding rates. The more imminent the threat of starvation becomes the more food 
a fish will try to assimilate (up to a certain maximum) as fish are known to be able to increase their 

average feeding rate with increased hunger levels (Godin 1981). Furthermore, fish are able to adapt 

their direction of the next movement step to the most favourable position perceived with regard to 

predation risk and/or food availability (see above) and thus enhance their chance of survival.  

3.3.4.3 Objectives 

The foremost goal of each fish is to ensure its survival by meeting its energetic requirements. To achieve 

this objective a model fish will try to reach the (theoretical) biomass it would have gained at its current 
age under ideal conditions based on the species-specific Von Bertalanffy Growth Function, one of the 

most widely used growth curve in fisheries science (Appendix A1.1.6). 

3.3.4.4 Sensing  

Individuals can obtain information about their internal and external environment as they are assumed 

to know their own energetic and reproductive state as well as food levels and predation risks in their 

vicinity and consider this information in their decisions. Information of the surroundings, however, is 
restricted to the local environment via the fish’s perception range: A fish on one habitat patch can sense 

and correctly evaluate the resource levels as well as the associated predation risk of all potential 

destinations within its perception range. 

3.3.4.5 Stochasticity 

Stochastic events in our model include whether a fish will die due to predation or natural causes like 

diseases, which are represented as probability rates, while mortality due to starvation or old age are 
emergent properties of our model. Life phase transitions are also implemented as probabilities, and 

therefore stochastic.  
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Furthermore, our model uses stochasticity during the initialization of the population to assign each 

individual fish its initial age and its position on the habitat grid as well as to allocate the initial standing 

crop (within a pre-defined habitat-specific minimum and maximum value) to each cell of the food map 

(Appendix A1.2.2). Any new recruit that enters the simulation after a spawning event will also be placed 
randomly on the simulation grid. Also, if a fish is located at the currently most favourable position, the 

direction for the next movement step is chosen randomly using a uniform distribution on all directions 

(360°) to restrain the fish from getting stuck in local minima.  

To create intrinsic variation among individuals a random component is added to the following variables 

using a uniform distribution: (i) SPEED, (ii) the limits of the reproduction compartment, which determine 

if spawning occurs (UPPER_LIMIT) and how much energy is remaining after spawning (LOWER_LIMIT), 
(iii) the threshold determining if a fish enters the next life phase (Length_InitialPhase, 

Length_TerminalPhase) and (iv) the maximum age (MAX_AGE) a fish can reach.  

3.3.4.6 Observation 

On the level of the individual our model traces the fate of each fish in the population from birth to death 

by tracking its location and noting its velocity as well as its energetic state. On the population level the 

model logs the total abundance and biomass, the abundances and biomass grouped by life phase 
(juveniles, females, males), as well as age- and size-frequency distributions at regular pre-defined 

intervals. On the environmental level it records the number of fish visits that occur in each habitat cell 

over a predefined time period to allow for an analysis of habitat use patterns and spatial distributions 

of fishes across the simulated seascape (Table A1.3). 

To facilitate the observation of individual movement trajectories as well as to monitor the spatial 

distribution of the population at a high temporal resolution and thus address the questions our model 
is designed for, a graphical user interface (GUI) is implemented. The GUI shows the structure of the 

underlying seascape by representing the habitat type of each grid cell via pre-defined colours and 

displays all fish agents of the population and their current location as different-sized diamond shapes 
(depending on maturity state). To closely follow the movement path as well as energetic and 

ontogenetic development of a single individual it is further possible to inspect a specific fish entity by 

displaying its movement trail and the values of all relevant key life history features.  

3.3.5 Initialization 

Our model first initializes the habitat grid as the environment or ‘model world’, in which all fish entities 
spend their entire life loop: Each grid cell is assigned a habitat type based on an external input file, which 

is designed to represent a typical tropical coastal environment, and is then initialized with a random 

food value within the limits of its habitat type. The initialization of the environment is followed by the 

computation of the individual fish entities. Due to computational constraints the habitat grid is initially 
occupied with a population of 50 randomly placed individuals (InitialNum), whose initial age distribution 

is derived stochastically from (arbitrary) probabilities given for each maturity state (AgeDistribution): 

0.4 for juveniles, 0.5 for initial and 0.1 for terminal phases. All other state variables like biomass and 
body length are then computed accordingly based on the implemented formulas and assumptions 
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summarized in Appendix A1.1. A simulation starts at 8 hrs and DAYTIME as TimeOfDay, when parrotfish 

usually start feeding. 

The implementation of the AgeDistribution, the stochastic allocation of individuals to the grid and of 

initial food values to each grid cell allow for variation between simulation runs. Reproducibility of a 

particular run, however, is guaranteed by means of a seed value (Seed) which fixes its random state. All 

(default) parameter values and initial settings are listed in Table A1.4. 

3.3.6 Input data 

Our model includes one external data source (.png image file) to spatially-explicitly represent the habitat 

configuration of the underlying seascape. The image file depicts a benthic habitat map identifying 

different habitat types by means of a pre-defined colour code. The file can be replaced by any image 
file, that satisfies the required colour coding, and thus allows for representations of different local 

scenarios and habitat settings.  

3.3.7 Model validation  

Our model is parametrized, tested, and validated following a hierarchically structured validation 

approach (Reuter et al. 2011; Kubicek et al. 2015). For parametrization we mainly use information from 
three different sources: Experimental data, expert knowledge including own field observations of the 

study system and target organism (unpublished data), and calibration. Most of the parameter values 

are directly obtained from published field studies on parrotfish and reef ecosystems, while parameters 
concerning the recruitment rates and habitat-dependent predation risks are estimated based on 

available literature regarding general reproduction patterns of reef fish and overall natural mortality 

rates, respectively. We further set the values of the pathfinding weighing factors, for which presently 

no data is available, based on studies regarding the relative importance of different habitat-related 
drivers for fish movement and our expert knowledge of the study system gathered during several years 

of field research. To assist parametrization and calibration of parameter values which are highly 

uncertain (no data available or known to be difficult to estimate) or to which we suspect model outputs 

to be highly sensitive we conduct a sensitivity analysis (Reuter et al. 2011). To do this, we identify the 
most susceptible parameters of each main model process (food availability, movement, energy gain and 

loss, reproduction and survival), cover the biologically plausible range of each of these parameters by 

varying each parameter one at a time by ± 10 %, and simulate all potential combinations with three 

different seeds each (i.e. three replicates per parameter combination). We then evaluate the effects of 
changing parametrization on population metrics like total biomass, abundance and life-phase ratios as 

critical model outputs. 

To assess the validity of our model and its parameter settings, i.e. the robustness, precision and 

reliability of model results (Reuter et al. 2011) we inspect the energetic state of the individual fish 

process by process and by defined variables that can be compared to available independent data such 
as the body weight and length. These quantities contain information relative to growth, reproduction 

and survival we aim to interpret with regard to habitat-dependent movement behaviour and space use 

patterns.	On the population level we assess the (long-term) population structure that emerge from the 

interactions of the individuals with regard to abundances, biomass, age-distributions, life phase 
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composition and reproduction frequency and compare them to published field observations. Our model 

validation is further assisted by an appropriate choice of output plots monitoring population dynamics. 

By performing this consistency check of key processes and dynamics on different hierarchical levels we 

ensure that the system behaviour we intend to represent has been captured correctly and results are 

reliable within the applied conceptual system (Reuter et al. 2008). Based on this data reconciliation and 

visual inspection of model outputs with results from the literature we then choose the parameter set 
that is able to reproduce a realistic population structure for our subsequent simulation experiments. 

Details on model validation and results of our sensitivity analysis can be found in Appendix A2. 

3.3.8 Simulation experiments 

To assess whether and how individual development and population dynamics are influenced by 
individual capabilities to interact with the environment and/or habitat settings (habitat configuration 

and level of fragmentation) we conduct a series of simulation experiments: We test four different 

scenarios (Table 1) with each factor combination replicated three times. Each replicate simulation is run 

for a time limit of 30 years and a maximum population size of 175 individuals (for computational 
feasibility). The time period modelled encompasses several generations thereby allowing for 

conclusions on a population level. The evaluation of a simulation run starts from year 10 as the first year 

in which the number and life-phase ratios of model fishes is comparable to those of parrotfish 

populations observed in field studies (see Appendix A2 for details). 

3.4 Results 

3.4.1 Fish abundances, biomass, and life phase composition 

There is substantial variability in the total abundance, biomass, and life phase compositions of model 

fish populations among simulations under different scenarios (Fig. 4). While the two scenarios 
Connected (connected reef habitat of 0.07 km2) and Patchy_80 (reef habitat patches of 0.056 km2) differ 

relatively little compared to model results of the Default scenario (continuous reef habitat of 0.1 km2), 

both the scenarios Patchy_40 (reef habitat patches of 0.028 km2) and Patchy_20 (reef habitat patches 

of 0.014 km2) show a high and increasing decline in fish abundance (Patchy_40  = ~40 %, Patchy_20 = 

~90 %, Fig. 4 a ) and biomass (Patchy_40  = ~45 %, Patchy_20 = ~85 %, Fig. 4 b). Fish populations under 

the scenario Patchy_60 (reef habitat patches of 0.042 km2) initially develop similarly to the Default 

scenario but begin to decline in biomass and abundance from year 15 onwards and level off at a value 
of 85 % (abundance and biomass). 

Of all simulated scenarios the IP:TP ratio varies strongest in scenario Patchy_20 with values as high as 
4.3:1 and as low as 0.2:1 (Fig. 4 c). Populations thus change from being strongly female-dominated to 

more male-dominated during the simulation period and eventually oscillate between 3.2:1 to 1.1:1. In 

all other scenarios the IP:TP ratio is rather stable throughout the simulation period and settles at a value 

of about 1.4:1 indicating a balanced ratio between female and male model fishes with a slight tendency 
to an increased number of females. Initial-phase females, which control recruitment and thus have a 

key function in regulating model population dynamics, have a mean body length of about 16.0 cm 

(Fig. 4 d). Again, the value varies most strongly in the Patchy_40 and Patchy_20 simulations but is similar 
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across all other simulations suggesting that in these scenarios female fishes can still acquire enough 

energy to maintain their individual growth. 

 

Fig. 4 Comparison of key population characteristics of simulation runs under different scenarios: a) total 
abundance, b) total biomass c) life phase composition (IP:TP), and d) mean body length of (female) fishes in 
their initial phase (IP).  

Total abundances in the Default scenario with on average 150 ±  10 fishes (Fig. 5 a) are comparable to 
those of the scenarios Connected (150 ± 9 fishes, Fig. 5 b) and Patchy_80 (148 ± 14 fishes, Fig. 5 c), but 

approximately 15 % higher compared to Patchy_60 from year 15 onwards (125 ± 31 fishes, Fig. 5 d), 

about 2-fold higher compared to Patchy_40 (88 ± 38 fishes, Fig. 5 e), and about 9-fold higher than under 

scenario Patchy_20 (17 ± 6 fishes, Fig. 5 f). 

As mentioned above life phase compositions vary little throughout the simulation period under the 

Default scenario with on average 28 ± 6 fishes in the juvenile phase, 69 ± 7 in their (female) initial phase 
(IP), and 53 ± 10 in their (male) terminal phase (TP). Very similar compositions can be found in 

simulations under the scenario Connected (28 ± 6 juveniles, 69 ± 7 IPs, 54 ± 8 TPs) and Patchy_80 (29 ± 7 

juveniles, 68 ± 8 IPs, 52 ± 9 TPs). Ratios under the scenario Patchy_60 start to deviate from the Default 
scenario after ~15 years (23 ± 10 juveniles, 58 ± 19 IPs, 43 ± 9 TPs) with a tendency to more female 

dominated populations as fewer individuals reach their terminal phase. Proportionally even fewer male 

fishes are present in the simulations under scenario Patchy_40 (16 ± 10 juveniles, 44 ± 22 IPs, 

28 ± 10 TPs). As mentioned above under scenario Patchy_20 proportions of life phases are highly 
variable with on average 3 ± 2 juveniles, 6 ± 3 IPs, and 8 ± 3 TPs. 
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a) 

 

b) 

 

c) 

 

d) 

 

e) 

 

f) 

 

Fig. 5 Abundances and life phase composition of model fish populations at different points in time during a 
simulation under different scenarios: a) scenario Default, b) scenario Connected, c) scenario Patchy_80, d) 
scenario Patchy_60, e) scenario Patchy_40, and f) scenario Patchy_20. Bars indicate mean values (± standard 
deviation (SD)) and are subdivided into life phases (JUV = juveniles, IP = (female) initial phases, TP = (male) terminal 
phases). 

3.4.2 Mortality rates and reproduction frequencies  

Total annual mortality rates (Fig. 6 a-f) change little between scenarios (Default = 0.278 ± 0.071, 

Connected = 0.259 ± 0.065, Patchy_80 = 0.271± 0.067, Patchy_60 = 0.270 ± 0.080, Patchy_40 = 

0.272 ± 0.104), except for scenario Patchy_20 with 0.347 ± 0.248. Also, little variability can be observed 

in the relative contribution of the different types of mortality, which range on average between 0.105-
0.131 (Mnat), 0.116-0.130 (Mpred), and 0.032-0.085 (Mage). This outcome is as expected since individual 

fishes are able to sense the risk of predation in each habitat cell, include this information in their 

movement decision and thereby reduce the time spent on riskier habitats. In contrast to mortality rates, 

there is considerable variation in the reproduction frequency among the different scenarios from on 
average 20 to 24 reproduction events per year (Default = 24.0 ± 4.1, Connected = 23.7 ± 4.4, Patchy_80 

= 23.5 ±5.6, Patchy_60 = 20.7 ± 8.8,) to values as low as 2 to 12 (Patchy_40 = 11.5 ± 6.8, Patchy_20 = 

2.1 ± 1.2). This decrease can be caused by both the reduced total number of females and a decrease in 

energy gain due to the reduction of food-rich coral reef habitat. With relatively stable mortality rates 
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across scenarios and declining reproduction frequencies, which can compensate losses due to mortality, 

populations will inevitably collapse and eventually become extinct. As female fishes are mostly able to 

maintain their individual growth (with the exception of scenario Patchy_20, see above), but increasingly 

lack the energy to reproduce, the modelled systems seemingly become more and more food-limited. 
Moreover, reproduction seems to be the model process most susceptible to an increasing 

fragmentation and loss of habitat, rather than affecting population survival due to a growing risk of 

predation.  

 

a) 

 

b) 

 

c) 

 

d) 

 

e) 

 

f) 

 

Fig. 6 Annual mortality rates (in black) and reproduction frequency (grey dashed line) of model fishes during a 
simulation under different scenarios: a) scenario Default, b) scenario Connected, c) scenario Patchy_80, d) 
scenario Patchy_60, e) scenario Patchy_40, and f) scenario Patchy_20. Values are mean values (± standard 
deviation (SD)) of replicated simulation runs. 
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3.4.3 Individual space use and spatial distribution of the fish population  

Individual movement trajectories over a time period of 20 min differ noticeably across scenarios (Fig. 7) 

and the shape of the short-term foraging range changes in relation to the availability and distribution of 

coral reef habitat: As the coral reef habitat increases the more circular the movement becomes 

(Fig. 7 a). Consequently, the linear distance travelled increases in dependence of the area of sandy 
bottom, a fish has to cross in order to reach more favourable coral reef habitat patches (Fig. 7 b-f). In 

the examples shown in Figure 7 a) and f) the distances travelled during a 20 min time period increases 

from approximately 40 m in continuous reef habitat to 75 m in a highly fragmented reefscape, which 
corresponds to an increase of ~190 %. This behaviour is also found in nature as, when habitat 

fragmentation increases, individual fishes will have to travel over larger areas per unit time to reach 

suitable foraging sites, to maintain their energy intake rates.  

The emerging patterns of the spatial distribution of modelled fish populations is not uniform among the 

tested scenarios (with the exception of the Default scenario with only one habitat type, Fig. 8 a), but 

clearly reflect the distribution and configuration of the coral reef patches of the underlying seascape 
(outlined in light grey, Fig. 8). While the monthly space use pattern under the scenario Connected 

(Fig. 8 b) appears relatively homogenous among coral reef patches, the frequency of visits are 

concentrated among certain patches in all other scenarios. Under the scenario Patchy_60, for instance, 

some patches in the upper region are heavily frequented (Fig. 8 d) with > 8000 visits per cell, a tendency 
that is even more pronounced under scenario Patchy_40 with values of > 9500 visits per cell (Fig. 8 e). 

Interestingly, under all scenarios except Default and Connected some of the coral reef patches are hardly 

visited at all throughout the time period of one month. In general, however, space use patterns seem 

to be clearly driven by the characteristics of the underlying habitat structure. 
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a) Scenario Default	   b)	 Scenario Connected	
	

	

	

	

c) Scenario Patchy_80   d) Scenario Patchy_60 
 

 

 

 

e) Scenario Patchy_40    f) Scenario Patchy_20 
 

 

 

 
Fig. 7 Individual movement trails of a (female) model fish in its initial phase over a 20 min time period and under 
different scenarios: a) scenario Default, b) scenario Connected, c) scenario Patchy_80, d) scenario Patchy_60, 
e) scenario Patchy_40, and f) scenario Patchy_20. Blue areas = coral reef habitat, yellow = sandy bottom, white 
area = coastline. Darker shades of a colour indicate higher food availability and circular areas illustrate the fish’s 
perception radius. 
  

40 m 

75 m 
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a) 

 

b) 

 

c) 

 

d) 

 

e) 

 

f) 

 

Fig. 8 Cumulated visits of fishes to each habitat cell illustrating the monthly space use patterns on the 
population level. Shown are representative data of Month 1 at Year 20 of the simulation period. The underlying 
patches of coral reef habitat are outlined in light grey.  
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3.5 Discussion 

Our simulation experiments reveal substantial differences on both the individual and population level 

between the six scenarios tested (Default, Connected, Patchy_80, Patchy_60, Patchy_40, and 
Patchy_20), in which the underlying coral reef habitat is increasingly fragmented and successively 

reduced by a rate of 20 %. Based on annual rates of coral reef destruction, which can be as high 69 % 

(Schaffelke et al. 2016), our scenarios thus represent situations, that may occur in coral reef systems 

throughout relatively short time periods of a few years or less. While the scenarios Default, Connected, 
and Patchy_80 show similar developments, the scenarios Patchy_40 and Patchy_20 deviate strongly in 

their results with Patchy_60 exhibiting intermediate trends. In general, our findings reflect outcomes of 

empirical studies in various aspects and elucidate the potential of seascape characteristics to guide and 

constrain movement of herbivorous fishes.  

Population dynamics. The modelled fish populations respond as expected to the manipulation of 

habitat configurations and degree of fragmentation with regard to abundance, biomass and overall 
survival. Population size declines gradually among scenarios along with food-rich and safer coral reef 

habitat. A loss of reef habitat by 80 % (scenario Patchy_20) corresponds to a reduced fish abundance by 

almost 90 % compared to the scenarios Default and Connected. Apart from the loss of the coral reef 
itself, the subsequent decline in parrotfishes may have further adverse effects for the ecosystem 

functioning as parrotfishes are important bioeroders and structuring force for benthic communities 

(Bellwood 1995; Bonaldo et al. 2014; Welsh and Bellwood 2014). By keeping turf algae in a cropped 

state parrotfish provide open substrata for enhanced coral recruitment and thereby have the potential 
to mediate coral-algal dynamics (Mumby et al. 2006; Hughes et al. 2007; Russ et al. 2015; Tootell and 

Steele 2016; Roff et al. 2019). A change in these complex interrelations may further alter an ecosystem’s 

ability to respond to disturbances (Bellwood et al. 2004).  

Interestingly, the decline in model population size is mainly caused by a reduced reproduction frequency 

rather than an increase in predation mortality (except scenario Patchy_20) and/or starvation. As 

predation mortality in our model is determined by habitat complexity combined with the time spent on 
risky habitats and a fish is able to react to changing predation risk by changing its movement direction, 

it seems plausible that predation mortality does not increase significantly among scenarios. However, 

as indicated by predation mortality rates under scenario Patchy_20 increasing distances moved over 

low complexity and riskier habitats will inevitably result in an increased exposure to predation, as was 
also demonstrated in field experiments of different herbivore fishes including C. sordidus (Madin et al. 

2010, 2011).  

In general, total annual mortality rates, which change relatively little between scenarios and vary 

between averages of 28 % (scenario Default) and 35 % (scenario Patchy_20), compare very well to those 

reported by (Gust et al. 2002) with annual mortality estimates ranging from 28 % to 43 % for C. sordidus 
populations.  

The reason that model fishes do not experience mortality from starvation (as an emergent property) in 
our simulation experiments is likely to be caused by the low density of the model population, which is 

4- to 6-fold lower than observed in the field (due to computational constraints, see Appendix A2.2). 

However, model results clearly show that even though female fishes can maintain their individual 
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growth, they increasingly lack the energy reserves to be able to reproduce indicating a growing food 

limitation of the model system. As reproduction is known to be the most metabolically demanding 

activity in the lives of fishes (McBride et al. 2015) it is not surprising that reproduction proves to be the 

model process most susceptible to changes in habitat configuration and composition, and hence food 
availability. These findings are in accordance with field studies of C. sordidus made by (Tootell and Steele 

2016), in which individual energy reserves decreased with algal turf resources suggesting that resource 

availability is an important factor determining the physiological condition of this species. Moreover, a 

decreased reproductive output will not only have implications for the persistence of the local population 
but may also negatively affect neighbouring population by a reduced supply of recruits. Apart from 

having a direct influence on the number of offspring a female may produce empirical evidence exists 

that the amount of energy a female has available to invest into egg production will also affect egg quality 
and this in turn the offspring’s’ fitness (Bagenal 1969; Crespi and Semeniuk 2004; Berg and Fleming 

2017).  

Movement behaviour and space use patterns. To better understand the consequences of population 

distributions and the constraints on ecosystem functions it is important to determine how individual 

fishes use the space when foraging and what factors may influence their movement decisions and hence 

their mobility (Nash et al. 2012). In the scenarios examined linear distances travelled per unit time grow 
longer (up to 190 %) and the shape of the foraging range is more elongated the more fragmented the 

coral reef habitat becomes. These findings are in accordance with field studies of parrotfish foraging 

behaviour by (Nash et al. 2012), in which high levels of coral cover corresponded to more compact and 

circular short-term foraging ranges for two common parrotfish species, Scarus niger and S. frenatus.  

The implications of this change in foraging behaviour can be 2-fold. Firstly, the longer the distances an 

individual fish has to swim the higher are its energetic costs. Moreover, a fish will also increase its 
swimming speed when moving over unfavourable habitat (Milinski 1993), which further adds to its 

energy expenditure. With more energy spent for swimming activities, the fish has less energy left to 

invest into somatic growth and/or reproduction. Differences in surplus energy may also have 
consequences for processes such as tissue repair and maintenance or defence against predators and 

the trade-offs between movement, growth, and reproduction are often at the expense of the 

reproductive output (Goldstein et al. 2017). Thus, habitat fragmentation is most likely to strongly 

influence the energy budgets of female fishes and their spawning frequency as shown by our model 
results and discussed above.  

Secondly, with changing spatial dimension of their foraging range individual fishes will cover different 
areas during their daily routines. Hence, parrotfishes seem to be able to make small-scale changes in 

their movement behaviour in response to loss of coral reef habitat and their control of algal turf growth 

might be reduced and/or occur over different spatial ranges. This has also been observed in the field by 

(Gil et al. 2017), who showed in their investigation of herbivory in French Polynesia that the 
fragmentation of refuge habitat resulted in a reduction of the consumer’s control of food resources. 

With regard to the structuring force of herbivore organisms a change in individual space use patterns 
becomes even more relevant on the level of the population as the consequences of grazing depend in 

part on spatial abundance patterns (Mumby et al. 2006; Paddack et al. 2006). Model outputs reveal that 
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the spatial distributions of fish populations (emergent as the cumulative behaviour of the individuals 

and illustrated above as the average number of visits per cell cumulated over one month) closely reflect 

the seascape arrangement. By concentrating their foraging activity within the coral reef patches model 

fishes graze in a spatially constrained manner. Model results are thus in accordance with recent findings 
over similar spatial scales by (Madin et al. 2019): Their daytime remote video surveys demonstrated 

that herbivorous fishes spend dramatically more time closer to the shelter of reef patches than in the 

adjacent sand flat habitat. In their study no herbivores were observed beyond rather small distances of 

7.5 m and grazing intensity was hence highest close to the reef. By 15 m from the reef, no grazing by 
herbivores could be recorded. As indicated by our simulation results these field observations also 

suggest the existence of a behavioural constraint that spatially restricts herbivore foraging patterns. 

Intriguingly, our simulation experiments also show that with an increasing habitat fragmentation coral 

reef patches are less equally frequented with an intensified foraging effort on specific patches and 

others rarely visited throughout the duration of one month. This concentration of foraging effort again 
has implications for the ecosystem function provided by the parrotfishes as the grazing pressure will be 

more intensive in some patches and substantially lower in others. Furthermore, the irregular usage of 

different reef patches may also have consequences concerning the social relationships among individual 

parrotfishes as it can affect encounter rates with conspecifics and/or competitors. Thereby the 
‘effective’ distance between individuals may be much larger than their physical distance, a landcape 

property detailed in the much debated concept of ‘landscape connectivity’ (Taylor et al. 1993, 2006). 

However, as density-related processes are not yet explicitly considered in our model further simulation 

experiments and model adaptations will be necessary in the future to investigate this aspect more 
thoroughly. Nonetheless based on our findings and as stated by others (e.g. Nash et al. (2012) it appears 

advisable to incorporate behavioural flexibility when representing herbivory in time and space. The 

more accurate our estimates the more we will be able to better understand how coral cover might be 

affected on a local scale or why shifts in community compositions occur. 

Landscape of fear. Risk effects are known to alter habitat and space usage of prey organisms (Manassa 
et al. 2013; Madin et al. 2019) and can be visualized in the model of the ‘landscape of fear’ established 

by (Laundré et al. 2001). In this model the relative levels of predation risk that a prey organism 

experiences in different areas of its environment are represented as peaks and valleys (Laundré et al. 

2010). We incorporate this concept in our model using a novel approach that combines individual-based 
modelling with potential field methods: To this end, we translate the peaks and valleys of the (habitat-

related) predation risk into a potential field map in which a growing risk of predation is represented as 

increasingly repellent areas. As ample evidence exists that predation risk correlates with habitat types 

and characteristics such as topographic complexity (Lima and Dill 1990; Jones and Syms 1998; Chapman 
and Kramer 2000; Overholtzer-McLeod 2006; Pratchett et al. 2008; Turgeon et al. 2010; McCormick and 

Lönnstedt 2013; Catano et al. 2016; Roff et al. 2019), we correlate the habitat structure with the 

perceived risk of predation. This information is then used by the individual fishes and included in the 

decision-making process for the direction of the next movement step. In our simulation experiments 
individual fishes react to an elevated predation risk by avoiding risky areas and/or by less tortuous 

movement paths to minimize the time spent on riskier habitats. Our results thus support empirical 
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studies showing that spatial areas of high risks are less likely to be grazed and areas of lower risks are at 

elevated risk of disproportional high grazing intensity (Madin et al. 2010). As suggested by (Laundré et 

al. 2001) behavioural responses to different levels of predation risk may therefore have more far-

reaching consequences for the systems under consideration than the actual killing of individuals by the 
predators. However, evidence also exists that while the loss or fragmentation of refuge habitat reduces 

consumer control of resources, greater resource densities may counteract this effect by altering 

landscapes of fear of consumer species (Gil et al. 2017). To be able to evaluate potentially counteracting 

effects due to resource availability by our model, it will be necessary to include further habitat types 
with diverging properties as food density and predation risk change in the same direction in the two 

implemented habitat types CORALREEF and SANDYBOTTOM. 

3.6 Conclusions 

Although what a fish perceives is undoubtedly complex, in this study we focus on (habitat-dependent) 

food availability and predation risk as the main drivers for individual movement decisions to better 

understand the driving influence of the underlying seascape. Both habitat components are known to 

play a fundamental and important role in shaping the spatial distribution of fish populations. Model 
results indicate that individual space use patterns and the resulting spatial distributions of the 

population are more irregularly distributed among coral reef patches the more the coral reef habitat 

becomes fragmented and reduced. This heterogeneity can have strong implications for the delivered 
ecosystem functioning, e.g. by concentrating or diluting the grazing effort. Our results also highlight the 

importance of incorporating individual foraging-path patterns and the spatial exploitation of 

microhabitats into marine spatial planning: Since the ability of marine reserves to provide protection 

largely depends on the consistent use of the protected area by the individual fishes (Kramer & Chapman 
1999) conservation strategists and managers need to identify core areas and essential habitats. They 

may also benefit from information about the consequences of changing landscape structures on 

movement behaviour to maintain effective reserves.  

By providing population dynamics over long time periods (years) and at a high spatial (1m2) and 

temporal resolution (up to 1 s) combined with the potential to simulate future scenarios we believe our 

model can provide valuable insights into the spatio-temporal variability of local herbivore populations. 
Our model further incorporates individual differences in movement behaviour and may thereby assist 

in understanding the interactions of individual properties and the properties of the environment. 

Moreover, by combining individual-based modelling with potential field methods our model integrates 
a more realistic and dynamic decision-making process, in which each fish weighs different rewards and 

risks of the environment. We thus hope that our findings can add to the disentanglement of the complex 

mechanisms that characterize the movement decision making processes in herbivorous fishes and that 

the gained information may eventually help to efficiently manage reef fish populations.   
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3.A Appendix 
3.A1 Model description  
 (DW = dry weight, WW = wet weight, BL = body length, SL = standard length, TL = total length)  

Our model is designed to spatially-explicitly simulate diel movement behaviour of reef fishes in a 
heterogenous seascape. It is composed of two main entities: the agent fish (A1.1) and its surrounding 
environment (A1.2), in which a fish agent spends its entire life loop. At present, the model implements 
two contrasting movement strategies (PERCEPTION and RANDOM), which the user can select prior to 
each simulation run to analyse mechanisms of spatial behaviour and its potential consequences in 
different habitat settings. The RANDOM mode simulates movement as a purely stochastic process and 
a model fish will travel without drifting in any particular direction or knowledge of its surroundings and 
has therefore no capabilities to respond to any environmental stimuli. As random walk is one of the most 
basic and minimalistic ways to depict individual movements (Lima and Zollner 1996) and a common 
method to model animal movement in the fields of biology (Codling et al. 2008) this move mode may 
serve to highlight differences between different modelling strategies of fish movement behaviours. In 
the present study, however, we focus on the move mode PERCEPTION and only include the description 
of the mode RANDOM for the sake of completeness of the model description. The user can further adapt 
the model to a range of reef fish species of different functional groups by specifying key life history 
features such as activity patterns or feeding guilds via the species definition parameters (Table A1.3). 
Combined with the possibility to use custom habitat maps we hope our generic application will be useful 
to analyse and evaluate various local scenarios and habitat configurations.  

The simulations tested and analysed in the present study are exemplified for parrotfishes as diurnal 
herbivores (used as default values in our model), a functional group of great ecological and economic 
importance in coastal ecosystems like coral reefs (Hughes et al. 2007; Lokrantz et al. 2008; Welsh and 
Bellwood 2014) and seagrass beds (Unsworth et al. 2007). Specific parameter values are derived from 
own observations (unpublished data) as well as comprehensive literature data available from empirical 
studies mainly of the Daisy parrotfish (Chlorurus sordidus), a ubiquitous and well-studied member of 
this functional group.  

During a simulation run the model keeps track of the location and fate of each individual in the 
population (from recently settled post-larval juveniles to adult terminal phases) and notes its velocity 
and energetic state. On the population level it logs the abundances and biomass of juveniles, initial 
phases, and terminal phases, as well as age- and size-frequency distributions at regular pre-defined 
intervals (Table A1.3). On the level of the environment the model records the number of fish visits that 
occur in each habitat cell over a pre-defined time period to allow for an analysis of habitat use patterns.  

3.A1.1 Fish entity 

3.A1.1.1 State variables and behavioural repertoire 
To allow for an analysis of individual development as well as population characteristics over time, each 
model fish is characterised by 17 state variables (Table A1.1). The behavioural repertoire of a model fish 
comprises four main lifecycle-related activities: Moving (energetic costs of activity), feeding (digestion 
and energetic gain based on food intake), growing (updating of energy budget based on energy gained 
and spent, somatic growth), and reproducing (energetic costs of reproduction and creation of offspring). 
All activities and related processes of a fish’s life loop are executed in different modules (hereafter: 
systems, Fig. A1.1) described below and state variables are updated every time step unless stated 
otherwise.  
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Table A1.1 State variables and corresponding values or units for the entity fish 
State variable Unit or value Description 

position (x, y)  Spatial coordinates, which are used in combination with velocity 
to depict individual movement trajectories 

velocity [m s -1] Composed of two vectors, velocity.x and velocity.y 

age [years] To follow individual development as well as age distributions of 
the fish population  

length [SL in cm] 
Calculated based on biomass; to allow for length-based change 
of sex and/or life phase and analysis of size-frequency 
distributions on the population level  

biomass [g WW] 
Calculated based on energy values of body compartments to 
determine energy demand and to analyse ontogenetic 
development (individual level) as well as population dynamics 

gut [kJ] 

Body compartments to model the fish’s bioenergetics 
 

shortterm [kJ] 
protein [kJ] 
fat [kJ] 
repro storage [kJ] 
excess [kJ] 

behaviourMode FORAGING, RESTING or 
MIGRATING Determines which actions a fish executes; depends on diel cycle 

sexChangeMode PROTOGYNOUS To account for reproductive strategies of parrotfishes  

sex  FEMALE or MALE Based on a fish´s length and used in combination with phase to 
regulate reproduction-related processes 

phase juvenile, initialPhase or 
terminalPhase 

Determined by sex and sexChangeMode; used to account for a 
fish’s ontogenetic development to regulate reproduction; for 
simplicity juveniles are considered as non-reproductive females   

feedingGuild HERBIVORE Determines food source and food-related assimilation 
efficiencies  

isHungry yes or no Hunger state (Boolean value) which depends on a fish’s current 
energy level and gut fullness to regulate feeding activity 

 

 

 

 

Fig. A1.1 Simplified overview of model systems and execution flow of a fish´s life loop. Influencing or interacting 
environmental components are indicated by dashed lines.  
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3.A1.1.2 Behaviour system  
Determined by the abiotic factor daytime (TimeOfDay, A1.2.4) the diurnal model fish is either foraging 
(DAY), resting (NIGHT) or migrating from resting to feeding areas (SUNRISE) or vice versa (SUNSET). 
Additionally, the fish´s hunger state (isHungry) is set depending on its current energy level and biomass 
(Fig. A1.2). 

 

Fig. A1.2 Model flow of the Behaviour system and influencing environmental factors (dashed line). 

3.A1.1.3 Move system  
The three different behaviour modes (FORAGING, RESTING, and MIGRATING) are each associated with 
a different speed factor: Based on experimental studies with parrotfishes (Korsmeyer et al. 2002; Rice 
and Westneat 2005) the average foraging speed (SPEED_FACTOR_FORAGING) is set to 1.5 [BL s-1] while 
the migration speed (SPEED_FACTOR_MIGRATING) is defined as 2.0 [BL s-1] and speed at resting 
(SPEED_FACTOR_RESTING) as 0 [BL s-1]. Parrotfishes sleep in caves or under boulders (Ogden and 
Buckman 1973) and are thus stationary when resting. The resulting speed value [cm s-1], i.e. step length 
for the current time step, determines the energy costs the fish spent moving (net costs of swimming 
[kJ], A1.1.6). To mimic natural variation among individuals a random component (SPEED_DEVIATION of 
± 10 % following (Korsmeyer et al. 2002)) is added to the selected speed value using a uniform 
distribution. We implement a uniform instead of a normal distribution to delimit both the extent of the 
speed variation and computational costs. The actual movement step is modelled discretely using vector-
based walking algorithms based on the step length defined by the current speed value and the turning 
angle (direction) determined by the pre-selected move mode (moveMode, either RANDOM or 
PERCEPTION, Fig. A1.3).  

For both movement strategies the direction of the next step is calculated within the fish’s maximum 
turning range (maxTurnSpeed [° s-1]), which delimits the maximum angle a fish can turn at each time 
step at high temporal resolutions (1 s). Thereby we ensure the emergence of realistic changes of 
direction at a lower (minutely) time resolution (Jopp and Reuter 2005). The maximum turn range is 
parametrized based on field studies by (Davis 2016), in which movements of individual C. sordidus were 
tracked over 20 min time periods with a time resolution of 15 s. To reproduce the observed movement 
patterns at a 15 s time resolution we set the maxTurnSpeed to 6 [° s-1]. 
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Fig. A1.3 Model flow of the Move system. 

When applying the move mode RANDOM, the next direction is chosen randomly within this range based 
on a simple random walk algorithm and using a uniform distribution. Since individuals cannot interact 
with their environment, the three behaviour modes FORAGING, MIGRATING, and RESTING only differ in 
their corresponding speed factors determining the step length of each movement step. The resulting 
movement trajectories of fish traveling at random therefore follow a simple isotropic (unbiased) random 
walk model (Codling et al. 2008) meaning that a fish is equally likely to move in each possible direction 
and directions are uncorrelated (i.e. the direction taken at a given time is independent of the direction 
at all preceding times).  

To compute the movement direction of a fish that can perceive and navigate through its surroundings 
(moveMode PERCEPTION) we use vector field path planning based on artificial potential fields (Khatib 
1986; Arkin et al. 1987; Arkin 1989; Connell 1990; Dudek and Jenkin 2010). The attractive and repulsive 
forces in our model are the level of food availability and the level of predation risk, respectively. By 
treating the pathfinding of “intelligent” model fishes as a flow field problem the calculation of the 
direction for the next movement step is composed of three basic steps following (Hagelbäck 2012): (1) 
Depending on the fish’s behavioural mode different potential subfields of relevant landscape features 
are generated and normalized. (2) These subfields are individually weighted and then added to integrate 
the motivational basis of a fish to move. (3) Based on the gradients of the summed potentials, a vector-
based flow field is computed indicating the direction to the most attracting position (given the current 
motivation) in the fish´s near surroundings. In case the calculated direction vector is neutral (zero 
vector), i.e. the fish is located at the currently most favourable position, the direction for the next 
movement step is chosen randomly using a uniform distribution on all directions (360°). Thereby a fish 
is restrained from getting stuck in local minima, a known drawback of artificial potential field methods 
(Raja and Pugazhenthi 2012).  
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To calculate the most favourable direction of movement when FORAGING, first, two potential subfields 
are generated based on food availability (foodPotentialMap, see A.2.2 for details on food availability) 
and predation risk (riskPotentialMap, see A.2.3 for details on predation risk). The (dynamic) foodGrid 
subfield is generated by assigning each grid cell a normalized positive (attractive) value between 0 and 
1 mirroring the actual food density value of the food grid, while the (static) riskGrid subfield consists of 
normalized negative (repulsive) values between -1 and 0 displaying the habitat-dependent level of 
predation risk. Due to the static nature of the latter calculating the riskPotentialMap is a relatively simple 
process, which is executed once per simulation run when the first individual of a fish species to which 
the riskPotentialMap is assigned, enters the simulation. In contrast, the foodPotentialMap is updated 
globally at every time step based on changing food densities due to foraging activities of the fish and 
regrowth of food resources. To further incorporate the perception range of an individual fish as an 
informational window to its environment (‘look-a-head’), we use a blurring filter (Gaussian blur kernel) 
on the riskPotentialMap, in which each grid cell in the resulting risk map has a value equal to the average 
value of its neighbouring cells weighted by their distance in the input map. The number of neighbouring 
cells considered is defined by the perceptionRadiusPredation, which we set to 10 m. For computational 
reasons the inclusion of the dynamic habitat feature food availability in the decision-making process is 
limited to the next eight directly adjacent cells representing a perception range (perceptionRadiusFood) 
with a reactive distance of 1 m (as part of step 3).  

In the second step, the two subfields (foodPotentialMap and riskPotentialMap) are weighted by their 
field-specific weighing factor (PathfindingWeights.FOOD and PathfindingWeights.RISK) and added to 
form the aggregated potential field (1). We do not know how coral reef fishes assess the trade-off 
between foraging and avoiding predation, but it has been suggested that food availability may be more 
important than the risk of predation in structuring diel space use patterns of larger juveniles and adult 
parrotfishes like C. sordidus and other herbivorous species (Welsh et al. 2013; Gil et al. 2017). We 
therefore make the simplifying assumption that in the movement decision-making process food 
availability is weighed twice as much as the risk of predation (weightFood = 2, weightRisk = 1). 

(1) 𝑝"#"$%(𝑥, 𝑦) = ∑ 𝑤./
.01 𝑝.(𝑥, 𝑦)  

where n is the number of subfields affecting position (x, y) and wi is the weight for subfield i 
(Hagelbäck 2012)  

Thirdly and lastly, the vector-based flow field designating the direction of movement for each grid cell 
as a two-dimensional normalized vector is generated based on the gradients of the summed potentials. 
As a fish is set to evaluate the aggregated potential in all positions within a 1 m2 range of its own position, 
unit vectors for all directions (east (E), south (S), west (W), north (N) including southeast (SE), southwest 
(SW), northwest (NW), and northeast (NE)) pointing to the respective neighbouring cell (2), are 
multiplied with the potential of the indicated cell. All eight vectors are then added resulting in the final 
unit direction vector for the next movement step (sum2222222⃗ , (3)). 

(2) 𝐸2⃗ = (1, 0), 𝑆 = (0, 1), 𝑊222⃗ = (−1, 0), 𝑁22⃗ = (0,−1), 
		

𝑆𝐸22222⃗ = <1 √2⁄ , 1 √2⁄ @, 𝑆𝑊222222⃗ = <−1 √2⁄ , 1 √2⁄ @, 𝑁𝑊2222222⃗ = <−1 √2⁄ ,−1 √2⁄ @, 𝑁𝐸222222⃗ = <1 √2⁄ ,−1 √2⁄ @ 

(3) sum22222222⃗ = D𝐸2⃗ ∗ 𝑝"#"$%(𝑥 + 1, 𝑦) + 𝑆 ∗ 𝑝"#"$%(𝑥, 𝑦 + 1) +𝑊222⃗ ∗ 𝑝"#"$%(𝑥 − 1, 𝑦) + 𝑁22⃗ ∗ 𝑝"#"$%(𝑥, 𝑦 −

1) 	+ 𝑆𝐸22222⃗ ∗ 𝑝"#"$%(𝑥 + 1, 𝑦 + 1) + 𝑆𝑊222222⃗ ∗ 𝑝"#"$%(𝑥 − 1, 𝑦 + 1) + 𝑁𝑊2222222⃗ ∗ 𝑝"#"$%(𝑥 − 1, 𝑦 − 1) + 𝑆𝐸22222⃗ ∗

𝑝"#"$%(𝑥 + 1, 𝑦 − 1)G 
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The computation of the most favourable direction when the fish is MIGRATING (during twilight periods) 
or RESTING (at night) is based on the same calculation described above with the following differences: 
When MIGRATING, instead of considering food density levels, the second subfield is generated based on 
the habitat type of the benthic seascape (toForagePotentialMap, toRestPotentialMap). The potential of 
the target habitat(s) defined by the parameters foragingHabitat and restingHabitat, respectively, is set 
to 1 as the most attractive locations. Has the fish reached its target habitat, it switches to the next 
scheduled behaviour mode (FORAGING or RESTING), again depending on its activity pattern and time of 
day. If a fish is set to RESTING, it solely considers predation risk as a relevant landscape feature.  

Based on the direction given as a unit vector (sum2222222⃗ ) calculated by either one of the two movement 
algorithms (RANDOM or PERCEPTION) and the behaviour-mode-dependent step length (i.e. the speed 
value as the vector length) the new velocity of a fish is calculated by multiplying the two (4).  

(4) 𝑣𝑒𝑙𝑜𝑐𝚤𝑡𝑦22222222222222222⃗ = sum22222222⃗ ∗ 𝑠𝑝𝑒𝑒𝑑 

Fishes are further known to be able to sense changes in food availability or predation risk in different 
habitats and adapt their velocity accordingly (Milinski 1993). In unfavourable habitat patches, for 
instance, a fish will move faster, i.e. steps will be longer, resulting in higher swimming costs. To reflect 
this linkage between habitat and individual energy budgets in our model, a fish in the move mode 
PERCEPTION will increase its speed (i.e. vector length) on low-complexity and low-food habitats like 
sandy bottoms by 50 % (SANDYBOTTOM_SPEED_FACTOR = 1.5) following (Tootell and Steele 2016). Fish 
in the move mode RANDOM, on the other hand, are not able to perceive their surroundings and 
therefore cannot adapt their speed in response to landscape features. 

3.A1.1.4 Mortality system 
To account for loss of fish in the population through death we distinguish four different types of natural 
mortality in our model: mortality due to (i) senescence (Mage), (ii) starvation (Mstarve), (iii) predation 
(Mpred), and (iv) any other natural mortality-inducing factors such as sickness, diseases or pollution (Mnat). 
Mortality due to fishing is not (yet) implemented in our model. Both, Mage and Mstarve are emergent 
properties of the Age system (A1.1.5) and the Consume system (A1.1.6), respectively, while Mpred and 
Mnat are represented as annual probability rates. Although mortality rates in coral reef fish are known to 
decline exponentially with increasing body size, rates tend to be rather low and change little with 
increased size once a certain size threshold of about 4.3 cm TL is reached (Goatley and Bellwood 2016). 
As our model solely considers post-settlement individuals with a body length of at least 8 cm SL we 
assume all three types of morality to be independent of body size. We further calibrate the model so 
that all mortalities considered approximate a total annual mortality rate (Mtotal, (5)) of 0.3 to 0.4 year-1 
(Bozec et al. 2016).  

(5) 𝑀"#"$% = 𝑀$RS +𝑀𝑠𝑡𝑎𝑟𝑣𝑒 + 𝑀VWSX + 𝑀/$" 

The mortality system comprising Mpred and Mnat is applied every time step to each individual fish 
(Fig. A1.4) once it has reached its new position on the simulation grid. A fish survives predation if – based 
on the risk of predation (A1.2.3) – the next generated, uniformly distributed Boolean value evaluates to 
FALSE (i.e., the fish is not preyed upon). Similarly, the fish does not experience mortality from any other 
natural cause (Mnat), if the Boolean value based on the annual natural mortality rate (0.11 year-1) 
evaluates to FALSE as well.  
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Fig. A1.4 Model flow of the Mortality system and influencing environmental factors (dashed line). 

3.A1.1.5 Age system 
In case of survival the fish´s age is updated and evaluated whether its new age exceeds the maximum 
age (maxAgeAverage of 9.0 years with a MAX_AGE_DEVIATION of ± 10.0 % following (McIlwain and 
Taylor 2009)). If not, the model fish continues its life loop and its bioenergetic systems are updated 
(consisting of the systems Consume, Growth, Reproduction, and Feed, Fig. A1.5). 

 

 

Fig. A1.5 Model flow of the Age system. 
 

3.A1.1.6 Consume system  
As mentioned above a fish´s bioenergetics are modelled by implementing different body compartments 
with specific functions (following (Hölker and Breckling 2005)): the gut to mimic digestion, an excess 
storage to regulate the fish’s hunger state, a short-term storage representing carbohydrates, body fat as 
a medium-term energy storage, and body protein as a long-term storage. Female individuals also possess 
a reproduction compartment to account for the dynamics of the reproduction process (Hölker and 
Breckling 2005) and the high energy demand for ovarian growth (A1.1.8). Energy costs associated with 
the maturation of testes can often be considered as negligible compared with the costs of ovarian 
maturation (Wootton 1979; Miller and Kendall 2009; Berg and Fleming 2017) and even though this may 
vary from species to species, we assume male individuals to have neglectable reproduction costs.  

Body compartments are filled or depleted in the Consume system (Fig. A1.6), except for the gut, which 
is filled in the Feed system (A1.1.9) when the fish is hungry and foraging. Compartments are limited by 
a maximum and/or minimum capacity (Table A1.2), which, with the exception of the protein 
compartment, depend on the fish’s current biomass (biomass [g WW]) or its size-dependent resting 
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metabolic rate (i.e. metabolic rate of a resting but non-fasting individual at zero speed). To ensure a 
realistic growth pattern, the protein compartment is limited not based on the state variable biomass but 
on the theoretical biomass (expectedBiomass [g WW]) a fish would have reached at the current age 
under ideal conditions based on the species-specific Von Bertalanffy Growth Function (6) and the 
allometric length-weight conversion (to convert length to biomass) (7).  

(6) Von Bertalanffy Growth Function for C. sordidus to calculate the expected length (Lt) of a fish 
at a given age (t):	𝐿"[𝑆𝐿	𝑖𝑛	𝑐𝑚] = 39.1[𝑆𝐿	𝑖𝑛	𝑐𝑚] ∗ (1 − 𝑒<b1.cd∗("ec.fd)@) (El-Sayed Ali et al. 
2011) 

(7) Length-weight relationship for C. sordidus to calculate the expected biomass of a fish at a given 
length (L): 𝐵𝑖𝑜𝑚𝑎𝑠𝑠	[𝑔	𝑊𝑊] = 0.0309 ∗ (𝐿[𝑆𝐿	𝑖𝑛	𝑐𝑚])f.ijd  (El-Sayed Ali et al. 2011) 

The fish is set to starve if its biomass was less than 60 % of the expected biomass (Letcher et al. 2011), 
e.g. due to scarce food resources, and it would stop growing when reaching a weight close to 120 % of 
the expected biomass.  

Whether the compartments are filled or depleted was determined by the fish´s energy budget (energetic 
costs and gains) for the current time step. The fish’s overall energy costs (totalEnergyCost [kJ]) are 
composed of the resting metabolism (costRestingMetabolism [kJ]), which is calculated based on the size-
dependent resting metabolic rate (following Winberg (1960)), (8) plus the net swimming costs 
(netCostSwimming [kJ]), i.e. the energy amount the fish uses for its activities defined by its behaviour 
mode (see above) calculated following (Korsmeyer et al. 2002) (9). We use an oxicaloric value of 
14.2 J mg O2

-1 (Ohlberger et al. 2006) to convert oxygen consumption rates into energy units as the 
model’s `currency´. 

(8) 𝑐𝑜𝑠𝑡𝑅𝑒𝑠𝑡𝑖𝑛𝑔𝑀𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑠𝑚	[𝑚𝑙	𝑂f	ℎbc] = 0.307 ∗ (𝑏𝑖𝑜𝑚𝑎𝑠𝑠	[𝑔	𝑊𝑊])1.pc 

			Conversion	to	[kJ	hbc]:	𝑐𝑜𝑠𝑡𝑅𝑒𝑠𝑡𝑖𝑛𝑔𝑀𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑠𝑚	[𝑚𝑙	𝑂f	ℎbc] ∗ 1.429	[𝑚𝑔	𝑚𝑙	𝑂f] 	∗ 0.0142	[𝑘𝐽	𝑚𝑔	𝑂fbc] 

(9) 𝑛𝑒𝑡𝐶𝑜𝑠𝑡𝑆𝑤𝑖𝑚𝑚𝑖𝑛𝑔	[𝑚𝑔	𝑂f	ℎbc] = (−1.193) + log	(𝑠𝑝𝑒𝑒𝑑[𝑐𝑚	𝑠bc]) 
Conversion	to	[kJ	hbc]:	𝑛𝑒𝑡𝐶𝑜𝑠𝑡𝑆𝑤𝑖𝑚𝑚𝑖𝑛𝑔	[𝑚𝑔	𝑂f	ℎbc] ∗ 0.0142	[𝑘𝐽	𝑚𝑔	𝑂fbc] 

(10) 𝑡𝑜𝑡𝑎𝑙𝐸𝑛𝑒𝑟𝑔𝑦𝐶𝑜𝑠𝑡	[𝑘𝐽] = 𝑐𝑜𝑠𝑡𝑅𝑒𝑠𝑡𝑖𝑛𝑔𝑀𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑠𝑚	[𝑘𝐽] + 𝑛𝑒𝑡𝐶𝑜𝑠𝑡𝑆𝑤𝑖𝑚𝑚𝑖𝑛𝑔	[𝑘𝐽] 

Subsequently, the consumed energy (10) is subtracted from the energy surplus a fish has available due 
to its feeding activity (A1.1.9) from previous time steps. The surplus consists of the net energy available 
from the gut after digestion and all energy stored in the fish´s excess storage. In case any energy remains 
after subtraction of the costs, it is subsequently added to the short-term storage (until its upper limit is 
reached), and then in different proportions to the fat (GROWTH_FRACTION_FAT of 1.0 %) and protein 
storage (GROWTH_FRACTION_PROTEIN of 99.0 %) following (Karakoltsidis et al. 1995). If the fish is a 
reproductive female (phase: initalPhase) energy is also proportionally allocated to the reproduction 
compartment (GROWTH_FRACTION_FAT of 0.1 %, GROWTH_FRACTION_PROTEIN of 89.9 %, 
GROWTH_FRACTION_REPRO of 10.0 % (following (Diana 1983; Wootton 1985)) with less energy 
available for somatic growth and less energy stored as body fat (Calow 1985; De Troch et al. 2013). If all 
of compartments are filled to their upper limits, any remaining energy is added to the excess storage. If 
the latter reaches the desired amount (desiredExcessRmr, Table A1.2), the fish is set to be satisfied 
(isHungry: no) and it stops feeding (A1.1.9) until the energy level in the excess storage drops below the 
desired value again.  

If, however, the available energy is not sufficient to cover all energetic demands, the lacking amount is 
taken from the short-term storage. In case the amount of energy consumed can still not be covered, e.g. 
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due to food scarcity, the energy deficit is compensated by successively re-metabolizing energy from body 
resources, first from the fat, then from the protein storage, each associated with a compartment-specific 
loss factor (Table A1.2). If both compartments are depleted (i.e. reaching their lower limits), the fish 
would die of starvation.  

 

 

 

Fig. A1.6 Model flow of the Consume system. 
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Table A1.2 Applied limits of a model fish’s body compartments (GUT, SHORTTERM, EXCESS, FAT, PROTEIN, 
REPRODUCTION) including conversion factors (biomass [g WW] to energy [kJ]). 

Limit CONTSTANT or variable name Value [unit] Description 
GUT 

Upper limit UPPER_LIMIT_GUT_MG_DW_
FOOD_PER_G_WW_BIOMASS 

17.0  
[mg (DW food)*  
g (WW fish)-1] 

(Polunin et al. 1995) 

SHORT-TERM 

Upper limit shorttermUpperLimitRmr 6.0 [h] This storage can hold the energy equivalent 
of up to 6 h of a fish´s resting metabolic rate  

EXCESS 

Upper limit desiredExcessRmr 3.0 [h] 

This storage can hold the energy equivalent 
of up to 3 h of a fish´s resting metabolic 
rate. If a fish has reached this desired value, 
its hunger state is set to be not hungry 

FAT 

Upper limit UPPER_LIMIT_BIOMASS_ 
FRACTION 1.5 [% of biomass] Following the body composition of a 

parrotfish (Karakoltsidis et al. 1995) 

Lower limit LOWER_LIMIT_BIOMASS_ 
FRACTION 0.5 [% of biomass] Following the body composition of a 

parrotfish (Karakoltsidis et al. 1995) 

Growth 
fraction GROWTH_FRACTION_FAT 1.0 (0.1)* 

[% of biomass] 

Fraction of surplus energy stored fat 
compartment (following (Karakoltsidis et 
al. 1995)); *reproductive females 

Loss factor  LOSS_FACTOR 87.0 [%] 
Loss factor for exchanging energy with this 
storage type, i.e. synthesising or re-
metabolizing (Brett and Groves 1979) 

Conversion 
factor KJ_PER_GRAM_FAT_VALUE 39.5 [kJ g-1] Metabolizable energy from body fat (Brett 

and Groves 1979)  
PROTEIN 

Upper limit UPPER_LIMIT_EXP_BIOMASS_ 
FRACTION  

120.0 [% of 
expectedBiomass] 1.2 * expected biomass1  

Lower limit LOWER_LIMIT_EXP_BIOMASS
_FRACTION 

60.0 [% of 
expectedBiomass] 

0.6 * expected biomass1, i.e. starvation 
following (Letcher et al. 2011) 

Growth 
fraction 

GROWTH_FRACTION_ 
PROTEIN 

99.0 (89.9)*  
[% of biomass] 

Fraction of surplus energy stored in the 
protein compartment (Karakoltsidis et al. 
1995); *reproductive females 

Loss factor  LOSS_FACTOR  90.0 [%] 
Loss factor for exchanging energy with this 
storage, i.e. synthesising or re-metabolizing 
(Brett and Groves 1979)  

Conversion 
factor  

KJ_PER_GRAM_PROTEIN_ 
VALUE  4.0 [kJ g-1] 

Metabolizable energy from body protein 
(including moisture content) (following 
(Brett and Groves 1979) 

REPRODUCTION 

Upper limit UPPER_LIMIT_BIOMASS_ 
FRACTION 

25.0  
[% of biomass] Following (Wootton 1985) 

Lower limit LOWER_LIMIT_BIOMASS_ 
FRACTION 

10.0 [ 
% of biomass] Following(Wootton 1985) 

Growth 
fraction 

GROWTH_FRACTION_REPRO_ 
REPRODUCTIVE 10.0 [%] 

Fraction of surplus energy stored in the 
reproduction storage (applies to 
reproductive fishes only) 
(Diana 1983; Wootton 1985) 

1 expected biomass refers to the biomass a fish would have reached under ideal growth conditions following the species-specific 
Von Bertalanffy Growth Function: Lt [SL in cm] = 39.1 [SL in cm]*(1-e(-0.15*(t+1.25))) and length-weight relationship: biomass 
[g WW] = 0.0309*(length [SL in cm])2.935 (El-Sayed Ali et al. 2011). 
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3.A1.1.7 Growth system  
The energy sum of the short-term, fat, protein, and excess storage (converted into mass) represents the 
fish’s biomass (11).  

(11)  𝐵𝑖𝑜𝑚𝑎𝑠𝑠	[𝑔	𝑊𝑊] = ∑𝑏𝑜𝑑𝑦	𝑐𝑜𝑚𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡	[𝑘𝐽] ∗ 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛	𝑓𝑎𝑐𝑡𝑜𝑟	[𝑔	𝑘𝐽bc] 

The energy amounts in the short-term and excess storage are converted into mass using the same 
conversion factor as for protein (Table A1.2) while the gut and reproduction storage are not considered 
for somatic growth. The state variable biomass as well as the biomass-dependent restingMetabolicRate 
are updated in each time step and a fish would grow in length when the updated biomass value is 
greatest out of all previously calculated biomass values for this fish (Fig. A1.7). If the updated biomass 
also exceeded the previously calculated expected biomass the state variable expectedBiomass is 
updated as well.  

A fish would not grow in length, if no energy is added to the fish’s fat and protein compartments and the 
energy level in short-term storage remains below its upper limit. In case the energy amount in the short-
term storage has dropped below its lower limit and the fish has to use energy from its fat and/or protein 
compartment to satisfy its energy demands, the fish would lose the amount of its biomass equivalent to 
the lacking energy while its length remains unchanged (growth in body length is generally considered to 
be unidirectional for vertebrates).  

Has the fish indeed grown in body length, which is updated on a weekly basis, it might enter the next 
life phase (phase: JUVENILE, INTIAL or TERMINAL) and/or change its sex (sex: FEMALE or MALE) 
depending on the corresponding length-based thresholds (Table A1.4). The exact mechanisms that 
triggers sex changes in parrotfishes are still largely unknown, but life phase transitions based on body 
size has been suggested as a plausible process (Pavlowich et al. 2018). We therefore model transitions 
using a logistic function (following (Pavlowich et al. 2018)) where the probability of transitioning into the 
next life phase (ptrans) increases with body size (12) and which is applied bi-monthly to ensure the 
emergence of realistic patterns of phase changes on the population level. 

(12)  𝜌"W$/� =
c

ce	S�(������	[��]�	���������	[��])  

As most parrotfishes are protogynous hermaphrodites a model fish is set to mature from juvenile into 
the female initial phase when it becomes larger than 10.0 cm (initialPhaseStartLength) and later to the 
male terminal phase when exceeding a length of 15.5 cm (terminalPhaseStartLength) following 
(McIlwain and Taylor 2009). For computational reasons and due to their relatively low abundance, 
primary males (individuals that are already male in their initial phase) are not considered in the model.  



3 Modelling fish movements 
   

55 

 

Fig. A1.7 Model flow of the Growth system. 

3.A1.1.8 Reproduction system 
As soon as the fish becomes a FEMALE in its initial phase, it starts filling its reproduction compartment 
according to the rules implemented in the Consume system (A1.1.6 above). Once the reproduction 
compartment reaches 25.0 ± 2.5 % (using a uniform distribution) of the fish’s current total biomass, the 
fish has gathered enough energy supplies to reproduce (Wootton 1979). When reproducing, the 
reproduction compartment is set back to an energy level of 10.0 ± 1.0 % (again using a uniform 
distribution) of the fish’s biomass (Wootton 1979) to compensate for the energetic costs of spawning 
(Fig. A1.8). In contrast to female model fishes, male individuals have no functional role in the modelled 
reproduction process but still contribute to processes related to population densities and food 
depletion. 

Following (Lewis 1997; Miller et al. 2001; Miller and Kendall 2009) and to ensure a stable (self-recruiting) 
model fish population over time we assume that two individuals per female and spawning event 
(numOffspring) will survive the larval stage (which is not part of our model) and settle within the 
population after 120 days (postSettlementAge following (McIlwain and Taylor 2009)). To allow for the 
investigation of the dynamics of externally influenced populations, however, our model also permits the 
simulation of an ‘open’ population (populationClosed = FALSE) and by specifying a constant monthly 
recruitment rate (monthlyNumRecruitsOpen). In both cases each fish recruit is initialized with a biomass 
(initialBiomass), which is calculated from the Von Bertalanffy Growth Function (6) at the post-settlement 
age and allocated to the different body compartments following the approximate body composition of 
a parrotfish (Karakoltsidis et al. 1995). When these new individuals enter the simulated population, they 
are placed randomly on the simulation grid. 
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Fig. A1.8 Model flow of the Reproduction system. 

3.A1.1.9 Feed system 
A model fish in the behaviour mode FORAGING is scheduled to execute `feeding´ as the last activity in a 
given time step while a fish in a different behaviour mode (MIGRATING or RESTING) would skip this 
activity (Fig. A1.9). A FORAGING fish consumes food (foodToIngest [g DW food]) based on a biomass-
dependent mean ingestion rate (13) or in case not enough food is found on the current food cell all the 
food that is available (availableFood, [g DW food], A1.2.2). However, as fish are known to be able to 
increase their average feeding rate with increased hunger levels (Godin 1981), a model fish can adapt 
its feeding rate up to a maximum of 0.4*food [g DW ]*(fish biomass [g WW])-1 day-1 (maxIngestionRate) 
if the energetic difference of its current to its expected biomass (desiredFoodAmount [g DW food]) 
exceeds the energy amount that would be gained based on the mean ingestion rate (ingestionAmount). 
If, on the other hand, a fish has reached an energetic level, that exceeds its expected biomass, it will 
reduce its feeding rate down to a minimum of 0.1*food [g DW]*(fish biomass [g WW])-1 day-1 
(minIngestionRate). 

(13) 𝑚𝑒𝑎𝑛𝐼𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛𝑅𝑎𝑡𝑒 = 1.fj�∗�##X	[R	��]
�.��	�.#�$��	[R	��]∗X$�

  (Polunin et al. 1995) 

The ingested food is then converted to an energy value (energyToIngest [kJ]) (14) based on the energy 
content of sparse epilithic turf algae (energyContentFood, 4.0 kJ g DW food-1 following (Bruggemann 
1995)), the main food source of C. sordidus (Polunin et al. 1995). 

(14)  𝑒𝑛𝑒𝑟𝑔𝑦𝑇𝑜𝐼𝑛𝑔𝑒𝑠𝑡	[𝑘𝐽] = �##X�#�/RS�"	[R	��]
S/SWR��#/"S/" ##X	[¡¢	(R	��	�##X)�£]

 

A fish feeds until it is satisfied (isHungry: no), i.e. it has either reached the maximum capacity of its gut 
or acquired enough energy to fill all its body compartments to their respective limits (Dill 1983) and has 
additionally stored the energy equivalent needed for 3 hours of RESTING in its excess storage (A1.1.6 
above). Thereby it is ensured that a well-fed fish has an energy surplus for a certain amount of time to 
execute non-feeding activities (RESTING and/or MIGRATING) without necessarily loosing biomass.  
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To account for digestive processes the energy ingested in the current time step is transferred as one 
portion to the gut storage, which is modelled as a queue to mimic food transit. Any added energy portion 
is not available for the fish’s metabolism until a transit duration (HERBIVORE_GUT_TRANSIT_DURATION) 
of 54 min (Polunin et al. 1995). We further assume an assimilation efficiency 
(HERBIVORE_ASSIMILATION_EFFICIENCY) of 26 % due to energy losses caused by egestion, excretion, 
and specific dynamic actions (following (Bruggemann et al. 1994)). The resulting net energy 
(netEnergyIngested [kJ], (15)) is then available to meet the fish’s energy requirements in the following 
time steps. 

(15)  𝑛𝑒𝑡𝐸𝑛𝑒𝑟𝑔𝑦𝐼𝑛𝑔𝑒𝑠𝑡𝑒𝑑	[𝑘𝐽] = 𝐻𝐸𝑅𝐵𝐼𝑉𝑂𝑅𝐸_𝐴𝑆𝑆𝐼𝑀𝐼𝐿𝐴𝑇𝐼𝑂𝑁_𝐸𝐹𝐹𝐼𝐶𝐼𝐸𝑁𝐶𝑌 ∗ 𝑒𝑛𝑒𝑟𝑔𝑦𝐼𝑛𝑡𝑎𝑘𝑒	[𝑘𝐽] 

 

Fig. A1.9 Model flow of the Feed system and influencing environmental factors (dashed line). 

3.A1.2 Environment entity 
The virtual environment simulated in our model is represented by four main components: Two spatial 
grids of identical sizes (450 x 300 pixel) and resolutions (1 pixel corresponds to 1 m2) depicting (i) the 
seascape with different habitat types (HabitatMap, A1.2.1) and (ii) the habitat-dependent food 
resources (FoodMap A1.2.2), (iii) information on the habitat-dependent predation risk for the modelled 
fish (PredationRiskFactors, A1.2.3), and (iv) the abiotic factor daytime (TimeOfDay, A1.2.4). The 
simulated area equals a total area of 0.135 km2 and we assume conditions to be uniform within one grid 
cell regarding habitat type, food resources, and predation risk. All state variables for this entity appear 
in Table A1.3.  
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Table A1.3 State variables and corresponding values or units for the entity environment. 
State 

variable Unit or value Description 

daytime SUNRISE, DAY, SUNSET or  
NIGHT 

Relevant phases of a 24 h cycle to determine behaviourMode of a 
fish; durations are approximated for tropical regions: SUNRISE 
(6:01-7:00 h), DAY (7:01-18:00 h), SUNSET (18:01-19:00 h), and 
NIGHT (19:01-6:00 h) 

habitat CORALREEF, 
SANDYBOTTOM  Relevant habitat types typically found in tropical coral reef systems 

food 
availability [g DW] Amount of food available for the fish to consume in current time 

step 
predation 
risk PredationRiskFactor*Mnat 

Modelled as an increment of the natural mortality (Mnat) depending 
on habitat complexity 

 

3.A1.2.1 Seascape (HabitatMap) 
The habitat grid is based on an artificial seascape map (external image file), which is composed of at 
least one of two distinct habitat types typically found in any tropical coral reef system (CORALREEF and 
SANDYBOTTOM) as well as a type called MAINLAND to simulate coastlines. In the present study the 
habitat maps used in the different scenarios consist of (i) 0.1 km2 CORALREEF plus 0.035 km2 MAINLAND, 
(ii) 0.07 km2 CORALREEF and 0.03 km2 SANDYBOTTOM plus 0.035 km2 MAINLAND, (iii) 0.056 km2 
CORALREEF and 0.044 km2 SANDYBOTTOM plus 0.035 km2 MAINLAND, and (iv) 0.042 km2 CORALREEF 
and 0.058 km2 SANDYBOTTOM plus 0.035 km2 MAINLAND and (v) 0.028 km2 CORALREEF and 0.072 km2 
SANDYBOTTOM plus 0.035 km2 MAINLAND. For computational reasons a model fish in the move mode 
RANDOM is simply set back to its former position when attempting to move onto MAINLAND, while a 
fish in the move mode PERCEPTION would automatically avoid mainland borders due to the forces of 
the potential fields (i.e. predationRisk.MAINLAND is set to 1 as the highest possible value for repulsion). 
Independent of the move mode all individuals are reflected at the margins of the simulation grid by 
inverting the respective velocity component (i.e. on vertical borders velocity.x and on horizontal ones 
velocity.y). To allow for an analysis of effects due to changing habitat structures as well as an adaptation 
of the model to different study locations the benthic map is made exchangeable.  

3.A1.2.2 Food availability (FoodMap) 
The biotic factor ‘food availability’ is estimated following (Kelly et al. 2017) and implemented as a grid-
based, habitat-dependent amount of epilithic algal turf per unit surface area (i.e. grid cell representing 
1 m2).  Depending on the underlying habitat type each food grid cell is initialized with a food value 
(foodDensity [g algal DW m-2]), which is set randomly between habitat-dependent minimum and 
maximum values for every grid cell (CORALREEF = 15.0 – 45.0 and SANDYBOTTOM = 1.0 – 5.0 
[g algal DW m-2] following (Purcell and Bellwood 2001)). The minimum value for algal mass density is 
implemented to avoid total (unnatural) depletion of food resources and ensure a realistic regrowth of 
algal cover. Based on a fish’s current position on the food grid and the pre-defined perception radius 
food (perceptionRadiusFood [m], Table A1.4), the ingestible amount of food 
(availableFood [g algal DW m-2]) is calculated at each time step using a radial neighbourhood (16) and 
made available for the fish, if the fish is FORAGING and hungry. The amount of food on each accessible 
food grid cell is divided by a distance-factor to decrease the available amount with increasing distance 
to the fish. 

(16)  𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝐹𝑜𝑜𝑑	[𝑔		𝑎𝑙𝑔𝑎𝑙	𝐷𝑊] = 	∑$«$.%$�%S	�##X	#/	$¬¬S��.�%S	RW.X	¬S%%�	­R	$%R$%	��	��®¯
ce(X.�"$/¬S	"#	$	�.��°�	V#�.".#/	[�])®
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The algal mass density of the current and neighbouring food cells is then depleted according to the 
amount actually ingested by the fish (foodToIngest, see above). To incorporate feedback processes 
between individual fishes and food resources, algal turfs in each grid cell regrow on a daily basis (i.e. 
every first time step of a 24 h cycle) by adding 1 % of the algal standing crop to the current food value 
(Tootell and Steele 2016; Kelly et al. 2017). 

3.A1.2.3 Predation risk 
Due to a lack of empirical values regarding habitat-related mortality rates and computational constraints 
we implement the habitat-dependent risk of predation (Mpred) as an increment of the natural mortality 
rate (Mnat, (17)). Furthermore, Mpred will increase in habitats with lower structural complexity such as 
sandy bottoms, since topographic complexity is known to moderate biotic factors like predation 
(Pratchett et al. 2008; Welsh and Bellwood 2012a). Though unknown for most reef fishes Mpred is often 
assumed to be considerable (Gust et al. 2002; Khan et al. 2016) and we thus assume the predation risk 
of sandy bottoms as riskier habitats to increase by ~35 %, i.e. we set the predation risk to equal 1.5 x Mnat 
(PredationRiskFactors. SANDYBOTTOM), while we suppose the risk of predation to equal 1.1 x Mnat 

(PredationRiskFactors.CORALREEF) in coral reef habitat, which have a high structural complexity and 
thus provide better refuge from predation (Pratchett et al. 2008).  

(17)  𝑀VWSX = 𝑃𝑟𝑒𝑑𝑎𝑡𝑖𝑜𝑛𝑅𝑖𝑠𝑘𝐹𝑎𝑐𝑡𝑜𝑟𝑠. 𝐻𝐴𝐵𝐼𝑇𝐴𝑇𝑇𝑌𝑃𝐸 ∗ 𝑀/$" 

3.A1.2.4 Daytime (TimeOfDay) 
Currently, abiotic factors implemented in the model are restricted to the factor daytime (TimeOfDay). 
As the main controlling force of a fish’s activity (i.e. behaviourMode: FORAGING, RESTING; MIGRATING, 
(Helfman 1993; Bellwood 1995)), TimeOfDay consist of four distinct phases representing a 24 h cycle: 
SUNRISE, DAY, SUNSET, and NIGHT (Table A1.3). Each phase was associated with a start- and end-time 
and durations were approximated for tropical regions following (Helfman 1993): SUNRISE (6:01-7:00 h), 
DAY (7:01-18:00 h), SUNSET (18:01-19:00 h), and NIGHT (19:01-6:00 h).  

3.A1.3 Initialization values  
In this study all simulations are initialized using the parameter settings listed in Table A1.4 with each 
factor combination replicated three times. Each replicate simulation is initialized with 50 individual 
fishes run for a time limit of 30 years and a maximum population size of 175 individuals (for 
computational feasibility). 

Table A1.4 Initial parameter values for simulation runs. 
Parameter name Default value 

[Unit] 
Description 

Default parameter settings entity for ‘environment’ 
AlgalGrowthRate 0.001 [d-1] Proportional increase of algal turf per time unit 

MapImagePath ‘resources/ 
filename.png’ 

Path to habitat map image file. Any appropriate map file (i.e. 
habitat types represented by pre-defined colour values) can 
be loaded with the map size (in pixel) setting the extension 
of the simulation world 

MapScale 1 
Used for conversions between the continuously modelled 
simulation world and the discretely modelled map space 
(value of 1 means 1 pixel corresponds to 1 m)  

MaxAgentCount 175 [individuals] Maximum number of fishes that can be ‘alive’ 
simultaneously; limited due to computational constraints 

OutputAgeInterval  1 [day] Time interval for writing age data to file 
OutputLengthInterval  1 [day] Time interval for writing length data to file 
OutputPopulationInterval 1 [day] Time interval for writing population data to file 
OutputLifecyclingInterval 1 [day] Time interval for writing life cycling related data to file 
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OutputStayDurationsInterval 1 [month] Time interval for writing stay durations data to file. Larger 
interval chosen due to large amount of data. 

Seed  23 (long) 
Any value of datatype long. Fixes random state to ensure 
reproducibility of simulations: in runs with identical seeds 
the same sequence of pseudorandom numbers is generated  

Default parameter settings for fish entity ‘fish’ (a diurnal herbivore parrotfish) 
General parameters 
Name PARROTFISH Identifier of modelled fish group(s) 

InitalNum 50 [individuals] 

Due to computational limitations we chose a relatively small 
initial number, that was still within the range reported for 
typical densities of parrotfish populations (Choat et al. 
2012). The initial age- and gender-distribution was set to 
resemble a typical parrotfish population (probability for 
juvenile phase = 0.4, initial phase=0.5, terminal phase = 0.1 
following (McIlwain and Taylor 2009)). 

ActivityPattern DIURNAL 

Either DIURNAL or NOCTURNAL  
DIURNAL sets resting time = NIGHT, foraging time = DAY, 
migrating to feeding areas = SUNRISE, migrating to sleeping 
area = SUNSET; NOCTURNAL sets resting time = DAY, 
foraging time = NIGHT, migrating to feeding areas: SUNSET, 
migrating to sleeping area = SUNRISE 

FeedingGuild HERBIVORE  

Functional group according to feeding habits of modelled 
fishes (options: HERBIVORE, PISCIVORE (including 
invertebrate feeders), OMNIVORE, PLANKTIVORE, 
DETRIVORE). The feedingGuild sets the value of the 
AssimilationEfficiency. 

AssimilationEfficiency 0.26  

Percentage of the digested energy, that the fish can use for 
its metabolism and growth (net energy). Comprises the 
energetic losses due to assimilation, digestion, excretion, 
and specific dynamic actions (SDA) and depends on the 
feedingGuild: 0.26 for HERBIVORE (Bruggemann et al. 1994) 
and 0.59 for all others (Brett and Groves 1979)). 

PreferredHabitats. 
FORAGING  CORALREEF 

Main foraging habitat(s) of modelled fish group. Used as 
target habitat type when fish moves from resting to feeding 
habitat(s) (behaviourMode MIGRATION) 

PreferredHabitats.RESTING CORALREEF 
Main resting habitat(s) of modelled fish group. Used as 
target habitat type when fish moves from feeding to resting 
habitat(s) (behaviourMode MIGRATION) 

NaturalMortalityRisk 0.11 [year-1] Order of magnitude following (Bozec et al. 2016) assuming 
a total mortality rate of 0.3 to 0.4 year-1 

PredationRiskFactors. 
CORALREEF 1.1 Predation risk factors used to calculate the risk of predation 

in the respective habitat type as an increment of the natural 
mortality rate (NaturalMortalityRisk) PredationRiskFactors. 

SANDYBOTTOM 1.5 

Movement-related parameters 

MoveMode PERCEPTION Movement strategy for current simulation runs, either 
PERCEPTION or RANDOM with PERCEPTION set as default  

perceptionRadiusPredation 10 [m] Radius in which a fish perceives its surroundings and reacts 
regarding risk of predation, if in move mode PERCEPTION 

maxTurnSpeed 6.0 [° s-1] Maximum turning angle of a fish (following (Jopp and Reuter 
2005; Davis 2016)) 

SpeedFactors.FORAGING 1.5 [BL s-1] Average swimming speed of fish when in behaviourMode 
FORAGING (Korsmeyer et al. 2002; Rice and Westneat 2005) 

SpeedFactors.MIGRATING 2.0 [BL s-1] Average swimming speed of fish when in behaviourMode 
MIGRATING (Korsmeyer et al. 2002) 

SpeedFactors.RESTING 0 [BL s-1] Parrotfish sleep in holes, caves or under boulders and are 
thus stationary when RESTING (Ogden and Buckman 1973) 
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SANDYBOTTOM_SPEED_ 
FACTOR 1.5 Speed increment on less complex and thus riskier sandy-

bottom habitats  

PathfindingWeights.FOOD 2 
Weighing factor for the potential subfield 
foodPotentialMap, if in moveMode PERCEPTION and 
behaviourMode FORAGING  

PathfindingWeights.RISK 1 Weighing factor for the potential subfield riskPotentialMap, 
if in moveMode PERCEPTION  

PathfindingWeights. 
BOUNDARY 1 Weighing factor for the potential subfield 

boundaryPotentialMap, if in moveMode PERCEPTION 
PathfindingWeights. 
BOUNDARY 1 Weighing factor for the potential subfield 

boundaryPotentialMap, if in moveMode PERCEPTION 
PathfindingWeights.TO_ 
FORAGE 1 Weighing factor for the potential subfield 

toForagePotentialMap, if in moveMode PERCEPTION 

PathfindingWeights.TO_REST 1 Weighing factor for the potential subfield 
toRestPotentialMap, if in moveMode PERCEPTION 

Foraging-related parameters 

perceptionRadiusFood 1 [m] 
Radius on food grid in which a fish can perceive and assess 
food availability, if in move mode PERCEPTION; Used to 
calculate amount of available food 

energyContentFood 4.0 [kJ  
(g DW food)-1] 

Energy content of food resources (algal turf) following 
(Bruggemann 1995) 

minIngestionRate 0.1 [g DW food * 
(g WW fish)-1 d-1] 

Minimum amount of food a hungry and foraging model fish 
can consume daily 

meanIngestionRate 
0.236 [g DW 
food*(g WW 
fish)-1 h-1] 

Average amount of food a hungry and foraging model fish 
can consume daily (Polunin et al. 1995) 

maxIngestionRate 0.5 [g DW food * 
(g WW fish)-1 d-1] 

Maximum amount of food a hungry and foraging model 
fish can consume daily 

gutTransitDuration 54 [min] Time span needed for food digestion (Polunin et al. 1995) 
Growth-related parameters 

LengthMassCoeff 0.0309 Coefficient (intercept) a of the weight-length relationship:  
W (in g WW) = a*(L [SL in cm])b (El-Sayed Ali et al. 2011) 

LengthMassExponent 2.935 Parameter (exponent) b of the weight-length relationship:  
W (in g WW) = a*(L [SL in cm])b (El-Sayed Ali et al. 2011) 

VBGF_AsymptoticLength 39.10 [SL in cm] Asymptotic average length (L∞) of the Von Bertalanffy 
Growth Function (VBGF) (El-Sayed Ali et al. 2011) 

VBGF_GrowthCoeff 0.15 Brody growth rate coefficient (K) of the Von Bertalanffy 
Growth Function (VBGF) (El-Sayed Ali et al. 2011) 

VBGF_ZeroSizeAge -1.25 [years] Time (t0) when average length is zero of the Von Bertalanffy 
Growth Function (VBGF) (El-Sayed Ali et al. 2011) 

PostsettlementAge 120 [days] (McIlwain and Taylor 2009) 
MaxAge 9 [years] (McIlwain and Taylor 2009) 
Reproduction-related parameters 

SexChangeMode PROTOGYNOUS  
At present only option PROTOGYNOUS (sex change from 
female as initial phase to male as terminal phase) is fully 
implemented 

Length_InitalPhase 10.5 [cm] 
Standard length at which fish may change its life phase from 
JUVENILE (non-reproductive) to its (reproductive) initial 
phase (IP) (McIlwain and Taylor 2009) 

Length_TerminalPhase 15.5 [cm] 
Standard length at which fish may change its phase from its 
initial phase (IP) to its terminal phase (TP) f (McIlwain and 
Taylor 2009) 

NumRecruits 2 
Number of recruits (per spawning event) that are assumed 
to survive the larval stage; order of magnitude following 
(Miller et al. 2001; Miller and Kendall 2009) 
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3.A2 Sensitivity analysis and model validation  

3.A2.1 Sensitivity analysis 
To identify model parameters with the strongest influence on model outputs we perform a sensitivity 
analysis on eight model parameters (Table A2.1). These parameters are selected because they cover all 
main model processes (food availability, movement, energy gain and loss, survival), are uncertain and/or 
have proven during model development to be potentially influential. All parameters are systematically 
varied one at a time over three levels in a predefined range (a central value used for model calibration 
± 10 %) and replicated three times, while all other parameters are kept constant. We assume a variation 
range of 10 % to be sufficient as most of the applied parameters are near to the represented biological 
processes and/or empirical data, which generally leads to a narrow and clearly definable range of 
plausible values (Reuter et al. 2011). All replicates are initialized with 50 individuals (40 % juveniles (JUV), 
60 % initial-phase females (IP), and 10 % terminal-phase males (TP)) and population dynamics simulated 
for a time period of 25 years.  

To evaluate model sensitivity, we examine the effects of changing parametrization on critical model 
outputs belonging to two hierarchical levels: 1) total abundance, 2) total biomass, 3) IP to TP life-phase 
ratios and reproduction frequency to assess changes in population dynamics and 4) mean body length 
of initial-phase females to follow individual development. The larger the deviation caused by the 
changed parameter value the more sensitive the model is with regard to this parameter (Reuter et al. 
2011). Any parameter, that causes large effects on overall results by small variation of values, should 
receive high attention during parameterization in order to minimize uncertainty (Kubicek et al. 2012).  

Table A2.1 Range of parameter values used to conduct the sensitivity analysis. A detailed description of all model 
parameters can be found in A1. 

Parameter name Lower 
extreme 
(-10%) 

Default 
value 

Upper 
extreme 
(+10%) 

[Unit] 

Food resources 
AlgalGrowthRate 0.0009 0.001 0.0011 [d-1] 
EnergyContentFood 3.6 4.0 4.4 [kJ (g DW food] -1] 

Energy budget 
MaxIngestionRate 0.45 0.5 0.55 [g DW food (g WW fish)-1 

h-1] 
UpperLimit (excess storage) 2.7 3.0 3.3 [h] 
SpeedFactors.FORAGING 1.35 1.5 1.65 [BL s-1] 

Movement 
PerceptionRadiusPredation 9 10 11 [m] 
MaxTurnSpeed 5.4 6.0 6.6 [° s-1] 

Population survival 
PredationRiskFactors.CORALREEF 0.99 1.10 1.21 Not applicable 

Simulations with default parametrization. After approximately 8 years simulation time, outputs of our 
model with default parametrization show stable populations with a total abundance of ~ 150 individuals 
and a total biomass of ~ 30 kg for the simulated coral reef area of 0.1 km2. The life phase composition 
(IP:TP ratio) varies during the simulation time of 25 years between values of about 1.3:1 and 1.4:1 
indicating a balanced ratio between female and male model fishes with a slight tendency to an increased 
number of females. Initial-phase females, which control recruitment in our model and thus have a key 
function in regulating population dynamics, have a mean body length of about 15 cm. Spawning events 
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(reproduction of a female model fish and creation of 2 juvenile recruits) occur on average 20-30 times 
per year.  

Results of the sensitivity analysis (Fig. A2.1-A2.4) show that PredationRiskFactors.CORALREEF, 
MaxIngestionRate, and SpeedFactors.FORAGING are the most influential model parameters with regard 
to the population characteristics abundance and biomass as well as yearly reproduction frequency, while 
life phase compositions and on the individual level the mean body length (IP) remain rather stable for 
all tested combinations. Individual growth patterns and maturation processes seem thus less sensitive 
to changes in the tested parameter values than reproduction, overall survival, and hence population 
growth. 

Food resources (AlgalGrowthRate and EnergyContentFood). Increasing the energy content of the food 
resource (algal turf) and its growth rate by 10 % result in abundance and biomass values similar to those 
obtained with the default parameterization (Fig. A2.1 a & b). In contrast, a decrease by 10 %, in 
particular of the parameter AlgalGrowthRate lead to a reduced population size and biomass over the 
first 15 years of the simulation, which, however, eventually reach values comparable to those of the 
other tested parameter combinations. The slower increase in abundance and biomass is mainly caused 
by fewer females acquiring enough energy to spawn (Fig. A2.1 c) while gaining sufficient energy to 
maintain their individual growth (Fig. A2.1 d). The growth phase of the population thus seems 
particularly affected by the change in resource-related parameter values. As algal turf production is 
known for its potential to strongly influence fish biomass implying that algal turf is a limited resource 
for C. sordidus (Tootell and Steele 2016) model results are consistent with field observations. Moreover, 
the existing data on turf biomass and production rates provide a reliable basis for model parametrization 
of food resource properties. Variations of both parameters AlgalGrowthRate and EnergyContentFood 
show similar tendencies, which is to be expected as they influence the same model processes (energy 
gain from food resources). 

Individual energy budgets (MaxIngestionRate, UpperLimit (excess storage), and 
SpeedFactors.FORAGING). Compared to all other sensitivity analyses variation in the storage capacity 
(UpperLimit) of the excess compartment results in the least change of all considered metrices (Fig. A2.2). 
This indicates that model fishes are able to satisfy their energetic needs without exploiting the 
compartment’s full capacity. In contrast, varying MaxIngestionRate has a strong influence particularly 
on population biomass throughout the entire simulation period (Fig. A2.2 b), while abundances 
converge towards values obtained with the default parametrization after ~15 years (Fig. A2.2 a). 
Surprisingly, changes in the SpeedFactors.FORAGING follow a very similar pattern, even though 
MaxIngestionRate influences the energetic gain of each fish at each time step while 
SpeedFactors.FORAGING controls its energetic costs. The parametrization of food intake and energy 
cost properties thus seems critical to model outcomes and has to be done with great care. However, 
good empirical estimates of ingestion rates exist for C. sordidus (Polunin et al. 1995) and we therefore 
consider the implement default values as reliable.  

Individual movement behaviour (MaxTurnSpeed and PerceptionRadiusPredation). Changes in the 
movement-related parameters maxTurnSpeed and perceptionRadiusPredation lead to relatively small 
changes in overall model outcomes (Fig. A2.3). Similar to the results with changed values for food 
resources, total abundance (Fig. A2.3 a) and biomass (Fig. A2.3 b) increase more slowly in the beginning 
of the simulations but with less pronounced deviations from runs with default parametrization. After 
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~ 13 years simulation time all considered metrices for both maxTurnSpeed and 
perceptionRadiusPredation are comparable to the ones with default settings.  

Population survival (PredationRiskFactors.CORALREEF). Increasing the parameter 
PredationRiskFactors.CORALREEF causes the highest alteration in model outcomes in particular with 
regard to abundance (Fig. A2.4 a), biomass (Fig. A2.4 b), and frequency of reproduction events 
(Fig. A2.4 c). In contrast, results of simulations with a decreased predation-based mortality are similar 
(with a slight increase) to those with default parametrization. Model outcomes thus differ as expected 
in dependence of changes in the mortality regime as mortality is a key demographic factor in fish 
population dynamics (Khan et al. 2016), which directly controls fish abundance. With the recruitment 
rate, which has a compensating effect on losses due to mortality, kept constant, fish abundance and 
biomass inevitably vary according to changes in mortality rates. Furthermore, increasing losses of adult 
fishes due to higher mortality rates will reduce local reproductive outputs (Khan et al. 2016) and is 
correctly reflected in our model by the changes in annual frequency of reproduction events (Fig. A2.4 c). 
Indicated by our analysis predation-based mortality rate is therefore a critical parameter for the 
outcomes of our model and has to be determined carefully.  

 

 

Fig. A2.1 Results of the sensitivity analysis on the parameters AlgalGrowthRate and EnergyContentFood. Model 
outputs are compared to simulations with default parametrization (black) with regard to a) total abundance, b) 
total biomass c) life phase composition (IP:TP) and annual reproduction frequency, and d) mean body length of 
(female) initial-phase fishes. 
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Fig. A2.2 Results of the sensitivity analysis on the parameters MeanIngestionRate, UpperLimit (excess storage), 
and SpeedFactors.FORAGING. Model outputs are compared to simulations with default parametrization (black) 
with regard to a) total abundance, b) total biomass c) life phase composition (IP:TP) and annual reproduction 
frequency, and d) mean body length of (female) initial-phase fishes. 
 
 

 

 

Fig. A2.3 Results of the sensitivity analysis on the parameters maxTurnSpeed and PerceptionRadiusPredation. 
Model outputs are compared to simulations with default parametrization (black) with regard to a) total 
abundance, b) total biomass c) life phase composition (IP:TP) and annual reproduction frequency, and d) mean 
body length of (female) initial-phase fishes. 
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Fig. A2.4 Results of the sensitivity analysis on the model parameter predationRiskFactors.CORALREEF. Model 
outputs are compared to simulations with default parametrization (black) with regard to a) total abundance, b) 
total biomass c) life phase composition (IP:TP) and annual reproduction frequency, and d) mean body length of 
(female) initial-phase fishes. 
 

3.A2.2 Model validation 
To test whether our model is able to reproduce movement behaviour and population dynamics of 
parrotfishes observed in the field and thus evaluate model validity we inspect the energetic state of the 
individual fish process by process and by defined key variables that can be compared to available 
independent data such as body weight or body length (Fig. A2.5). The individual level is very close to the 
implemented model processes and the listed quantities contain information relative to growth, 
reproduction and survival we aim to interpret with regard to habitat-dependent movement behaviour 
and space use patterns. Furthermore, we compare individual movement trajectories as one of the key 
characteristics simulated by our model with published pathways of individual C. sordidus obtained by 
active tracking (Fig. A2.6). On the population level we assess the (long-term) population structure that 
emerge from self-organization processes and interactions of the individuals with regard to abundances, 
biomass, age-frequency distributions, life phase compositions and reproduction frequency (Fig. A2.7) 
and compare them to published field observations.  

By inspecting different integration levels rather than comparing model results with specific data sets 
using a standard statistical approach, we follow the hierarchically structured validation approach, which 
is often a more meaningful means for IBMs representing complex ecological situation (Reuter et al. 2011; 
Kubicek et al. 2015). By ensuring a correct representation of key processes on lower hierarchical levels 
we also increase the probability that the system is represented correctly and results are reliable within 
the specified conditions and the implemented conceptual system (Reuter et al. 2011; Kubicek et al. 
2012). Results of our simulations with the final (default) parametrization (Fig. A2.5-A2.7) indicate that 
our model is able to reproduce patterns concerning individual growth and habitat use as well as long-
term population dynamics relatively well.  
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Individual level (mean ages, mean TP lengths, and movement trajectories). To ensure accuracy and 
consistency of individual life cycles we examine mean ages and mean body lengths at specific maturity 
states reflecting the fishes’ energy budget, their individual growth and maturation. With approximately 
three years mean ages of model fishes (Fig. A2.5 a) are comparable to data published for C. sordidus 
populations across the continental shelf of the Great Barrier Reef of (Gust et al. 2002). In this study, 
reported mean ages of C. sordidus varied between ~1.7 and ~3.0 years. The lower variation of mean 
ages in the observed populations is presumably due to the stated underrepresentation of juvenile 
parrotfishes and young initial phases (< 10 cm body length), which are included in our model population. 
Mean body lengths of male terminal-phase model fishes ((Fig. A2.5 b) with approximately 25 cm are also 
in the range of values observed in the field by (Gust 2004) and (McIlwain and Taylor 2009). In these 
surveys, measured lengths for C. sordidus TP males were on average 20 to 25 cm and 23 to 25 cm, 
respectively. As age and body length at a certain life phase depend on factors such as overall energy gain 
and expenditure as well rules like the energy allocation to the different body compartments these 
outcomes confirm that our model simulates individual growth and maturation processes reasonably 
well. 
 
a) 

 

b) 

 

Fig. A2.5 a) Mean ages of all model fishes and b) mean body lengths of fishes in the terminal phase over a 
simulated time period of 25 years. 

Guided by the implemented rules for movement behaviour, individual movement trajectories simulated 
over a time period of 20 min (Fig. A2.6) result in convoluted pathways with a high tortuosity and 
relatively small space use patterns. With a length of ~ 10 to 20 m the start-finish distances are 
considerably shorter than the total distances travelled and are in accordance with the range and shape 
of movement patterns recorded over the same time period for individual C. sordidus in the Northern 
Pacific Ocean by Davis (2016). In this investigation, the author conducted 20 min tracking trials and 
reported core utilization areas with a diameter of approximately 20 m. Similar short-term movement 
ranges have also been observed for other common parrotfish species (Scarus niger and Scarus frenatus) 
on the Great Barrier Reef with mean ranges of 5 to 34 m2 and 4 to 35m2, respectively (Nash et al. 2012).  
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 a)

 

b) 

 

c) 

 

Fig. A2.6 Exemplary movement trajectories (20 min) of a) a juvenile model fish, b) a model fish in its (female) 
initial phase, and c) a model fish in its (male) terminal phase. Blue areas = coral reef habitat with darker shades 
indicating higher food availability, white area (in Fig. b) = coastline, and circular areas illustrate perception 
radius of each individual. 

Population level (mean abundance and biomass, age-frequency distribution and life phase 
composition). To assess if individual interactions produce plausible population dynamics, which in IBMs 
emerge as self-organized processes, we investigate total abundance and biomass at 3 different points in 
the simulation period of 25 years (at year 10, 15, and 20) to allow for a comparison with empirical data. 
Both abundance and biomass show little difference in overall values as well as in values separated by 
life phase (juveniles, IP and TP adults) indicating stable population and life phase compositions 
(Fig. A2.7 a & b). Due to computational constraints population size was limited to 50 individuals at the 
start of each simulation resulting in abundances of about 150 individuals and a biomass of ~ 30 kg after 
~ 8 years and a simulated area of coral reef habitat of 0.1 km2. Compared to population densities 
measured by (Gust 2004) of about 500 to > 1000 individuals per 0.1 km2 our model underestimates 
abundances by a factor of 4 to 6, which has to be taken into account when evaluating density-dependent 
effects such as use of food resources. As a consequence, also modelled biomass per unit area is lower 
than values observed in the field of ~200 kg per 0.1 km2 (Friedlander and DeMartini 2002), but with a 
factor of ~6 in proportion to the modelled abundances.  

Modelled age-frequency distributions are very similar at all three points in time (Fig. A2.7 c-e) and show 
a clear pattern of exponential decline in frequency with an age beyond three years. The year class 0 
comprises mainly juvenile fishes (> 95 %) while females (IP) dominate the following three year classes 
(about 75 % in year class 1, > 98 % in year class 2 and 90 % in year class 3). Beyond an age of five years, 
year classes only contain male fishes (TP). These patterns are in accordance with age-frequency 
distributions observed for C. sordidus populations in Guam by (McIlwain and Taylor 2009) and at the 
Northern Great Barrier Reef by (Gust 2004). In these studies juveniles were observed mainly in age 
classes 0 and 1, while females were most abundant in the age classes 2 to 4 and males dominated the 
older age classes. Both studies, however, also report older, if few females (> 6 years), which are absent 
in our model. Modelled life phase composition, on the other hand, is again comparable to Ip to TP ratios 
published by (Gust, 2004) in the same study, which varied between sites from 4.75:1 and 1.48:1.  
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a) 

 

b) 

 

c) 

  

d) 

 

e) 

  

  

Fig. A2.7 a) Abundances, b) biomass and c)-e) life phase composition of model fish population at different 
points in time during a simulation with default parametrization. Bars are subdivided into life phases (JUV = 
juveniles, IP = (female) initial phases, TP = (male) terminal phases). 
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Abstract  17 

Context 18 

Since its formulation more than two decades ago, (landscape) connectivity has become a frequently 19 

utilized concept in spatial ecology and conservation planning across terrestrial and marine 20 

ecosystems. However, despite its relevance for many ecological processes, its definition and 21 

measurement remain inconsistent throughout the literature regarding scales, dimension, and 22 

scope.  23 

Objectives 24 

We introduce a unifying framework as a step forward in overcoming the current ambiguities and 25 

shortcomings of connectivity as a concept. Importantly, our framework extends the original 26 

definition to encompass passive as well as active movement making the concept applicable to both 27 

the terrestrial and marine realm for a broad range of organisms and life stages.  28 

Methods 29 

We have conducted an extensive literature research covering the period from the establishment of 30 

landscape connectivity as a concept in 1993 until now to evaluate its definitions, categories and 31 

application in the different realms. 32 

Results 33 

Our review confirms the ambiguous usage of the landscape connectivity concept but also reveals 34 

large differences in its application between terrestrial and marine ecology regarding scale and focus 35 

of connectivity studies. Based on our findings, we suggest to use the concept strictly organism-36 

centred, to include active and passive movement as well as appropriate temporal and spatial scales. 37 

We further denote three categories of connectivity: ‘potential’, ‘area', and ‘effective’ connectivity 38 

referring to different spatial-temporal scales and integration levels. 39 

Conclusions 40 

With our contribution, we hope to encourage a more consistent use of ‘landscape connectivity’ 41 

making it a more comparable and quantifiable concept.  42 

Keywords: marine; terrestrial; dispersal, passive transport; life-history; 43 

44 



4 Landscape connectivity 
    

   

 72 

 

 

 

 

1 Introduction 45 

Landscape connectivity is “the degree to which the landscape facilitates or impedes movement 46 

among resource patches” (Taylor et al. 1993) 47 

Movement and dispersal of organisms has long been recognised as a key process in ecology and 48 

conservation biology (Turchin 1991; Lima and Zollner 1996; Nathan et al. 2008) and is becoming 49 

even more important in view of the advancing human-induced deterioration of the environment. 50 

Anthropogenic activities often result in drastic changes of the landscape including increasing 51 

fragmentation and/or loss of natural habitats, which are among the primary causes of global 52 

biodiversity decline (Kindlmann and Burel 2008; Haddad et al. 2015). By dispersing, motile 53 

organisms can adjust to these changing environments, making movement at all spatial scales 54 

relevant to most current environmental concerns in both the terrestrial and the marine realm 55 

(Nathan et al. 2008). 56 

To incorporate movement as a critical component for the analysis of (animal) population’s survival 57 

into a framework of landscape processes, Taylor et al. (1993) developed the concept of ‘landscape 58 

connectivity’. They defined connectivity as one of three measures of landscape structure as “the 59 

degree to which the landscape facilitates or impedes the movement among resource patches” 60 

opposed to landscape physiognomy (distance between patches) and landscape composition 61 

(distribution of patches, Taylor et al. 1993). Hence, landscape physiognomy and composition are 62 

related to the spatial distribution of resource patches, while connectivity encompasses the 63 

organismic response to the (given) landscape structure (Taylor et al. 2006). 64 

Ecologists and resource managers agree on the relevance of connectivity as a key element for many 65 

ecological processes, and after more than two decades it is an ever more frequently utilized 66 

concept in spatial ecology and a frequently proposed management criterion in conservation 67 

planning (Olds et al. 2012; Kool et al. 2013; Helfenstein et al. 2014; Green et al. 2015). Despite being 68 

originally defined for animals in a terrestrial context, it has been applied to a variety of organisms in 69 

both terrestrial and aquatic ecosystems ranging from plants (e.g. Murphy and Lovett-Doust 2004; 70 

Brudvig et al. 2009; Rico et al. 2012), vertebrates such as birds (e.g. Amos et al. 2014; Bellisario et 71 

al. 2014), amphibians (e.g. Stevens et al. 2005), mammals (e.g. Mueller et al. 2011; Riordan et al. 72 

2016), and fishes (e.g. Unsworth et al. 2008; Berkström et al. 2012) to invertebrates like insects (e.g. 73 

Brückmann et al. 2010; Kennedy et al. 2013) or larval stages of various organisms (e.g. Cowen et al. 74 

2006; Planes et al. 2009; Green et al. 2015). Furthermore, an increasing number of studies use the 75 
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term ‘connectivity’ with regard to gene flow or transfer of information, matter or energy between 76 

populations (see Kool et al. 2013 for review).  77 

However simple and straight-forward it may appear at first sight, ‘landscape connectivity’ is a 78 

complex and much debated concept which has been the source of many ambiguities – concerning 79 

its definition as well as its measurement (Moilanen and Nieminen 2002; Calabrese and Fagan 2004; 80 

Taylor et al. 2006; Kindlmann and Burel 2008; Kool et al. 2013). Functional, population, or ecological 81 

connectivity (see text box 1), to name but a few, are often defined overlapping – if at all – or used 82 

interchangeably without any consensus having been reached yet (e.g. Tischendorf and Fahrig 2000; 83 

Calabrese and Fagan 2004; Kindlmann and Burel 2008; Kool et al. 2013). Furthermore, the 84 

appropriate spatial scale for the various connectivity terms is another unresolved issue ranging 85 

from a landscape-scale property in landscape ecology (e.g. Tischendorf and Fahrig 2000) to a 86 

habitat patch-scale attribute in meta-population ecology (e.g. Moilanen and Hanski (2001), but see 87 

Kadoya (2009) for review). Thus, depending on its usage and the scale considered, connectivity can 88 

be interpreted in many different ways under different circumstances, making the concept difficult 89 

to apply and results almost impossible to compare, which aggravates a common understanding 90 

(Olds et al. 2012).  91 

Although many authors recognized the inconsistent use of this concept (Tischendorf and Fahrig 92 

2000; Moilanen and Hanski 2001; Taylor et al. 2006; Kool et al. 2013), limited progress has been 93 

made to unify its definition and quantitative use (but see Calabrese and Fagan 2004; Bélisle 2005; 94 

Kindlmann and Burel 2008; Lindenmayer et al. 2008; Grober-Dunsmore et al. 2009). A clear 95 

formulation, taking the concept to its logical conclusion but at the same time delimiting its 96 

application, is still missing. Moreover, some important aspects are not yet included in its definition 97 

(despite being applied), such as passive transportation which can be an important process for plant 98 

dispersal or dispersal of marine species via larval stages. Landscape connectivity is decidedly a very 99 

useful concept for ecological theory as well as applied biology, but we are convinced that a trade-100 

off has to be made between applicability and being all-encompassing in scope to achieve 101 

meaningful and comparable results. 102 

We further agree with Taylor et al. (2006) that connectivity itself should not be considered as 103 

inherently good or bad: through its effects it may influence population persistence in both ways, 104 

positively as well as negatively, depending on the given situation and species considered. Rather, it 105 

is important to better understand how connectivity alters as a consequence of changes in the 106 
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landscape structure and for which species under what conditions connectivity is relevant (Taylor et 107 

al. 2006). This is of particular importance with regard to the increasing habitat fragmentation which 108 

interacts strongly with other components of global environmental change such as species invasions 109 

(Vilà and Ibáñez 2011), intensification of land-use and climate change (Didham 2010). 110 

To become a reliable and meaningfully applied management criterion, more consistency in its 111 

definition and above all measurement is needed (Hodgson et al. 2009), as conservation managers 112 

are more likely to be interested in easy-to-use connectivity metrics (Kadoya 2009). Until now, the 113 

choice of how to define and assess connectivity is often arbitrary and prone to uncertainty of 114 

human decision-making (Kool et al. 2013). To unify the conceptual framework in the ecological 115 

context, it requires (i) a species-centred approach, as well as information on (ii) how the organisms 116 

of interest interact with the landscape and (iii) how those interactions differ as a function of scale-117 

dependent influences (Taylor et al. 2006; Kool et al. 2013). We thus again share the opinion of 118 

Taylor et al. (2006) that, although complicating its assessment, landscape connectivity cannot be 119 

captured “simply by an index of landscape pattern but must be determined based on the 120 

organisms’ perception of, and interaction with the structure and heterogeneity of the landscape”.  121 

In this article, we recommend using connectivity as a strictly organism-centred concept as it results 122 

from the interactions between the landscape and the organism making connectivity a species-123 

specific property for any given landscape and time considered. We further propose an important 124 

step towards a more general framework that (i) extends the definition of landscape connectivity to 125 

encompass passive as well as active movement making the concept thereby (ii) applicable to both 126 

the terrestrial and marine realm for a broad range of organisms, that (iii) includes appropriate 127 

temporal as well as spatial scales, (iv) simplifies it into an accessible and applicable form, and (v) 128 

makes it a quantitative approach. We are convinced this will contribute to a more consistent use of 129 

‘landscape connectivity’, making it a more comparable and quantifiable concept. 130 

2 The ambiguity of the landscape connectivity context 131 

Landscapes are complex spatial structures essentially characterized by the heterogeneity of their 132 

elements (Wiens 1995) and in which different types of habitats are patchily distributed. In this 133 

article, we refer to habitat in its functional meaning, i.e. as “the suite of resources (food, shelter) 134 

and environmental conditions (abiotic and biotic) that determine the presence, survival and 135 

reproduction of a population” (Gaillard et al. 2010). Thus, habitat is a species-specific property of 136 

the landscape and frequently, individuals of a species will have to move among suitable habitat 137 
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patches across a matrix of unsuitable patches to reproduce and obtain food and other resources 138 

(Schooley and Wiens 2003). 139 

Movement between habitat fragments in a heterogeneous landscape is commonly accepted as a 140 

key process driving population dynamics and also facilitating (re)colonization of empty habitats 141 

(Lima and Zollner 1996). Movement behaviour is a species-specific property, and in turn, is 142 

influenced by the biophysical nature of the landscape (Taylor et al. 1993), i.e. the composition and 143 

configuration of habitat patches within a given area, thereby – in combination with (e.g. trophic) 144 

interaction processes – generating patterns like the spatial distribution of a population at the patch- 145 

and landscape-scale (Bélisle 2005). The recognition of movement behaviour as a link between 146 

process and pattern in landscape ecology has led to the formulation of the concept of ‘landscape 147 

connectivity’ to capture the organismic response to physical landscape features as an explicit 148 

component of landscape structure (Bélisle 2005).  149 

Landscape connectivity in its original meaning (Taylor et al. 1993) is described as a dynamic 150 

emergent property of species-landscape interactions (Taylor et al. 2006; Baguette et al. 2013), 151 

which implies two dimensions: the landscape and the organism (Kindlmann and Burel 2008). 152 

Consequently, different landscapes may have different degrees of connectivity for the same species 153 

and the same landscape may have different degrees for different species or even for the same 154 

species at different times (Tischendorf and Fahrig 2000; Calabrese and Fagan 2004; Kindlmann and 155 

Burel 2008). The functioning of an ecosystem is therefore not independent from its spatial context 156 

in the landscape, and connected systems may behave differently depending on the degree of 157 

isolation (Mumby and Hastings 2008). This implies that connectivity is specific for a given situation, 158 

and the transferability of results has to be tested against underlying causal factors.  159 

A closer look at the connectivity definition reveals that, even though landscape patches can be 160 

connected to one another by a variety of physical, chemical, and biological processes, not all of 161 

them are inherent parts of the connectivity concept. Due to its intuitive nature and generality, 162 

however, many authors equate very different kinds of (patch-)connecting processes with 163 

connectivity (see text box 1 for an overview of common definitions). As a result, numerous 164 

conceptual and operational definitions exist with no unifying framework having emerged yet (Kool 165 

et al. 2013). Tischendorf and Fahrig (2000), for example, recommend using connectivity in its 166 

original meaning defined by Taylor et al. (1993), while Kindlmann and Burel (2008) suggest 167 

distinguishing between landscape connectivity (connectivity as a landscape-scale property) and 168 
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patch connectivity (connectivity as a patch-scale property). Lindenmayer et al. (2008), on the other 169 

hand, propose a distinction between landscape connectivity (i.e. physical connectedness of patches 170 

of a particular land cover type as perceived by humans), habitat connectivity (i.e. connectedness of 171 

habitat patches for a given taxon) and ecological connectivity (i.e. connectedness of ecological 172 

processes at multiple spatial scales). 173 

Deviating from its original meaning in the terrestrial context, connectivity in marine studies is often 174 

related to the dispersal of organisms and their propagules and commonly defined as the extent to 175 

which populations are linked by exchange of larvae, recruits, juveniles or adults (e.g. Palumbi 2003; 176 

Sale et al. 2005; Grober-Dunsmore et al. 2009). The different components of connectivity discussed 177 

in these studies are very diverse, relate to different integration levels, and their meanings may vary 178 

from one author to the other.  179 

Furthermore, ‘connectivity’ is not only used as a functional concept, but also in a structural way 180 

(see text box 2). In contrast to ‘functional’ connectivity, ‘structural’ connectivity is denoted as being 181 

independent of any behavioural attributes of the organisms considered (Taylor et al. 2006). Instead, 182 

it is based entirely on the landscape structure and often equated with spatial contagion or 183 

contiguity of the habitat (Tischendorf and Fahrig 2000; Kindlmann and Burel 2008). Hence, if the 184 

physical ‘connectedness’ between habitat patches increases so does the ‘structural’ connectivity, 185 

whereas ‘functional’ connectivity increases when changes in the landscape structure enhance the 186 

movement of organisms through that landscape (Taylor et al. 2006). Habitat patches therefore do 187 

not need to be structurally connected to provide functional connectivity and vice versa (Taylor et al. 188 

2006).  189 

Due to the diverging definitions (text box 1) measuring connectivity is not straightforward, and one 190 

can find at least as many metrics as there are definitions in the literature (Calabrese and Fagan 191 

2004; Kindlmann and Burel 2008). The original measure for a given organism is based on the 192 

probability of movement between all points or resource patches in a landscape (Taylor et al. 1993). 193 

Beyond this, there are many more metrics available ranging from simple measures such as nearest-194 

neighbour-distances to more complex ones based on genetic analyses (see Kool et al. 2013 for a 195 

comprehensive metrics summary). These measures all vary in the type of data they require and the 196 

level of detail they provide (Calabrese and Fagan 2004). Hence, the same landscape may have 197 

different connectivity values when different metrics are applied (Kindlmann and Burel 2008).  198 

 199 
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3 Deficiencies of the current use of landscape connectivity 200 

The concept of landscape connectivity has been largely defined from a landscape point of view 201 

focusing on the terrestrial domain with the perspective of individual organisms moving between an 202 

assemblage of suitable habitat patches with definable neighbourhood properties. The low number 203 

of publications, that could initially be found for marine applications clearly denotes the terrestrial 204 

origin (Fig. 1). The concept emerged and thrived in the context of an increasing understanding of 205 

the importance of spatial processes for population development and conservation. It thus has 206 

become an essential requisite to understand the spatial heterogeneity and temporal variability of 207 

populations, and the concept of landscape connectivity can well be used to foster specific 208 

conservation measures (Lindenmayer et al. 2008; Haddad et al. 2015; Worboys et al. 2016).  209 

From this starting point, the concept has been applied to many different situations, with an 210 

increasing ambiguity in its use (see part 2), but without being adequately adapted to incorporate its 211 

application to other than terrestrial systems. Consequently, a variety of processes are missing in the 212 

current concept such as passive transportation or different life-history situations including temporal 213 

aspects of connectivity. Despite a high number of studies in the marine realm having a 214 

‘connectivity’ label, the marine realm has only been marginally touched (e.g. Grober-Dunsmore et 215 

al. 2009; Turgeon et al. 2010; Baguette et al. 2013). In marine systems, the concept of ‘population 216 

connectivity’ plays a more prominent role (e.g. Kool et al. 2013; Treml et al. 2015, Fig. 1). Therefore, 217 

we deem a conceptual extension including the mentioned processes to be highly desirable. In the 218 

following we explicate these neglected processes and argue why they should be incorporated in a 219 

general concept of (landscape) connectivity.  220 

 221 
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Fig. 1 Use of different connectivity concepts in the terrestrial and marine realm. The search was 223 

conducted on Web of Science with keywords ‘”landscape connectivity”’, ‘(“landscape connectivity”) 224 

or (“habitat connectivity”)’, and ‘(“landscape connectivity”) or (“habitat connectivity”) or 225 

(“population connectivity”)’ and respectively with the supplement ‘and marine’ for the given 226 

periods.  227 
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3.1 Neglected processes: Passive transport and different life stages 228 

Most definitions of connectivity focus either exclusively on actively moving animals, ignoring 229 

passive movement of early life- or otherwise dispersal stages, or emphasise the so-called structural 230 

connectivity, which solely relies on the physical landscape structure neglecting the organismic 231 

component (Tischendorf and Fahrig 2000; Kindlmann and Burel 2008). This considerably limits the 232 

scope of the concept as these definitions exclude relevant processes and organism groups. Passive 233 

transportation as opposed to active movement is equally relevant for connecting different land- or 234 

seascape elements. For a wide range of taxa propagules or organisms in larval stages are 235 

transported passively, contributing significantly to colonisation processes or interconnections of 236 

dispersed populations (Jones et al. 2009). 237 

In aquatic systems, passive dispersal triggered by water currents or streams is essential for 238 

exchange processes between habitats. Very many life forms, even if sessile in the adult stage such 239 

as corals, have planktonic propagules which are initially highly dependent on water currents for 240 

dispersal. With increasing age and size, a gradual change from passive transport to more active 241 

dispersal movements may take place, but the extent to which active movement potentially 242 

influences dispersal or selection of settling grounds is debated for the different species (Rocha et al. 243 

2002; Bird et al. 2007; Almany et al. 2007). In this context, the pelagic larval duration (PLD) plays an 244 

important role in the discussion on the dispersal abilities as it potentially determines the distance a 245 

larva can cover (Duda and Palumbi 1999; Faurby and Barber 2012). The complex interactions 246 

between variable water currents and life-history patterns determining larval dispersal and 247 

subsequent settlement on one hand and species migrations on the other hand play a central role in 248 

the analyses of the interconnectedness of marine populations and are being discussed as 249 

fundamental for the design of effective marine protected areas (MPAs) or protected area-networks 250 

(PAN) and the successful management of marine resources (Worboys et al. 2016; Williamson et al. 251 

2016). 252 

The dispersal of plant seeds is another distinctive example, where passive transport plays a 253 

prominent role. In order to assess plant connectivity, it is important to consider which parts of a 254 

given land-/seascape are reachable for plants, i.e. their seeds, and we see no valid reason to 255 

exclude this big group of organisms or mode of dispersal. Initially, plants may have been 256 

disregarded due to their partial subordination of physical landscape structures to form ‘habitat 257 

patches’ for which faunal dispersal is defined. However, in the context of recolonization processes 258 
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and conservation planning plant dispersal needs to be considered (Kirchner et al. 2003; Minor and 259 

Gardner 2011). Auffret et al. (2017) strongly advocate the concept of plant functional connectivity 260 

thereby considering propagules as well as pollen and with the addition that the dispersed unit must 261 

contribute actively (effectively) to the target population by reproducing. In contrast to faunal 262 

dispersal, plant settlement depends more on physical and pedological environmental factors and 263 

their analysis becomes more important than biotic landscape features when investigating plant 264 

connectivity.  265 

Furthermore, an inclusion of passive dispersal facilitates the integration with other concepts in 266 

ecology such as succession or recolonization processes after disturbances. Succession (primary as 267 

well as secondary) relies on the availability of propagules as well as the surrounding species pool, 268 

and their dispersal properties determine the succession processes and community assembly. For 269 

example, the destruction of mangroves due to the Tsunami on the Nicobar Island in 2004 has led to 270 

a new species composition determined by transport processes (Nehru and Balasubramanian 2011).  271 

Passive movement requires a vector, which in the marine realm is mostly present as water currents, 272 

whereas in the terrestrial environment it includes multiple vectors such as wind- (anemochory) or 273 

animal- (zoochory) mediated (seed) dispersal. For example, aquatic plants are frequently 274 

transported by waterfowl, burs cling to the fur of an animal, or seeds only germinate after an 275 

intestinal transit (Robledo-Arnuncio et al. 2014) which may also imply a considerable transport 276 

distance. Interestingly, zoochory touches a further dimension of connectivity: Apart from the target 277 

organism, the availability and dispersal of the organisms needed for the transport processes may 278 

have to be considered as well as the extent to which they connect habitats suitable for the target 279 

species. Additional processes exist, for which it is difficult to decide to what extent they are driven 280 

by active movement or passive transport, e.g. the ballooning of spiders (Bonte et al. 2004). 281 

When analysing how land- or seascapes contribute to the connectedness of populations we also 282 

need to consider varying dispersal abilities, which may change with different life stages 283 

(ontogenetic movements) – a process that has often been neglected in the context of landscape 284 

connectivity. In the marine realm, for instance, early life stages of many organisms are dispersed by 285 

passive current-mediated drift, thus being highly mobile with the larvae contributing substantially 286 

to the gene flow between local populations and the colonisation of suitable environments (see part 287 

3.2). In later stages, the movement range may considerably change and movements between 288 

adjacent habitats might become more important when (sub-)adults utilise resources of different 289 
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habitat types. A common example for exchange processes linking neighbouring but distinct habitats 290 

are the nursery grounds for many coral reef fishes within mangrove forests (Nagelkerken et al. 291 

2001; Olds et al. 2012). Adult fish are also known to leave their relatively narrow home ranges for 292 

reproduction and migrate to distant spawning grounds (Dingle 1996). The same applies to marine 293 

invertebrates like mud crabs (Scylla spp.) which migrate offshore for spawning (Alberts-Hubatsch et 294 

al. 2016), while the larvae return to coastal areas (nursery grounds) within mangroves and seagrass 295 

beds. Worboys et al. (2016) demonstrated the importance of life-history dependent migration for 296 

marine connectivity processes with the example of the Red Emperor (Lutjanus sebae) which 297 

subsequently uses a wide range of habitats including inshore estuaries, coral reefs and deep-water 298 

seagrass communities. Ontogenetic movements can therefore constitute a significant part of the 299 

exchange processes in marine environments. Generally, in the marine realm, early life stages 300 

contribute substantially to the gene flow between local populations and the colonisation of suitable 301 

environments due to the high mobility of the larvae (see part 3.2), whereas in terrestrial 302 

environments other mechanisms like wind- or animal-mediated dispersal may become more 303 

relevant.  304 

3.2 The marine environment, a neglected realm 305 

Another essential aspect not included in the original connectivity concept is the marine realm, 306 

despite recent years having seen an increasing number of studies with the keyword ‘connectivity’, 307 

especially for coastal and marine habitats (Fig. 1). ln marine studies, connectivity often focuses on 308 

the dispersal of organisms which leads to larvae-linked populations (e.g. Jones et al. 2009). The 309 

typical fields of application in both coastal marine habitats and the open ocean encompass, for 310 

instance, the exchange processes between coral reefs via planktonic larval dispersal (Galindo et al. 311 

2006), between fish populations either by active movement (Turgeon et al. 2010) or passive 312 

transport of larvae (Cowen et al. 2006).  313 

Strikingly, while in terrestrial studies the organismic component is more likely to be neglected (see 314 

text box 1, structural connectivity), it is the landscape dimension that is often not explicitly 315 

addressed in marine studies (see text box 2) or limited to the consideration of water currents (Sale 316 

et al. 2010; Kininmonth et al. 2011; Kool et al. 2013; Manel and Holderegger 2013). Moreover, it 317 

still remains unresolved how meaningfully terrestrial landscape metrics and statistical techniques 318 

can be applied to marine species and seascapes (Wedding et al. 2011), although most of the here 319 

reviewed studies assumed that the approaches are equally applicable to marine ecosystems. 320 
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Nonetheless, when discussing concepts of connectivity, we have to bear in mind, that terrestrial 321 

and marine habitats are fundamentally different, mainly as a result of the disparate characteristics 322 

of their basal medium, air and water, respectively. As organisms adapted to the medium's physical 323 

and chemical properties in the course of evolution, pronounced differences in life-forms, life 324 

history, community composition and trophic structure have emerged (May and Godfrey 1994). In 325 

contrast to terrestrial environments, where long distance dispersal is often mediated by network 326 

elements such as corridors and stepping stone habitats (Saura et al. 2014), in marine systems water 327 

currents facilitate or determine the direction and extent of displacement of passively drifting 328 

organisms with several important consequences. Current-based dispersal is asymmetric (Dibacco et 329 

al. 2006) favouring the current’s downstream direction. Movement against the predominant water 330 

current would have to be achieved by active movement of (adult) organisms, other transport 331 

processes or by potential short term (seasonal) changes of current directions. The extent of 332 

displacement due to this passive current-mediated dispersal is assumed to be at least a factor 10 333 

higher than in terrestrial systems (Lett and Kaplan 2010), and marine populations are thus 334 

supposed to be more open than terrestrial ones (Cowen et al. 2006). These divergences from 335 

terrestrial habitats are particularly relevant for the successful planning and management of marine 336 

reserves and thus, characteristic life-history development, predominant passive dispersal, and its 337 

extent as well as divergent human impacts should be taken into account (Carr et al. 2003).  338 

Furthermore, for the analysis of habitat boundaries as preferred locations for many marine 339 

organisms such as fish, a further dimension has to be added when investigating connectivity in 340 

marine environments. In terrestrial areas, different habitats are often easy to identify based on 341 

simple observations, aerial photography or satellite images because habitats are related to basic 342 

plant communities or easily detectable physical landscape features. For shallow coastal waters, 343 

where benthos processes are dominant, the situation is very similar, and e.g. reefs, sea grass beds, 344 

salt marshes or mangrove forests can be distinguished analogously to terrestrial habitats up to 345 

certain water depths (Kabiri et al. 2013). However, in deeper waters the distinction gets more 346 

ambiguous due to the general difficulties in observing marine systems. Additionally, in deeper areas 347 

and pelagic waters areas of species occurrence are mainly determined by the physical and/or 348 

chemical properties of the water body which vary depending on water movement (currents, 349 

upwelling) as well as biological and chemical processes. Here, stratification becomes decisive for 350 

defining clear boundaries between water masses that have distinct properties with respect to 351 
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physical (temperature, light) and chemical (e.g. O2-saturation, pH, ammonium, CO2) characteristics 352 

relevant for organismic occurrence. 353 

A definition of connectivity which encompasses both the marine and the terrestrial realm has to 354 

take the above-mentioned differences into account and has to include active as well as passive 355 

movement of organisms, changes during ontogenetic development and a broader definition of the 356 

term habitat. 357 

4 Delimiting a new concept of land-/seascape connectivity 358 

To develop an overarching approach and thus improve comparability of connectivity studies, it is 359 

compelling to define, and measure connectivity based on the original definition by Taylor et al. 360 

(1993) but also to encompass the specifications of marine and terrestrial ecosystems as well as the 361 

new developments in its usage. This approach should be clearly organism-centred as the concept is 362 

inherently premised on the interactions between an organism and the landscape it inhabits. Within 363 

this framework land- or seascape connectivity cannot exist independent of any behavioural 364 

attributes of the target organisms. In nature, the same environment is used differently by 365 

organisms with different traits, e.g. with respect to size, motility, potential to survive in hostile 366 

environments, sensoric capabilities, or larval survival times in marine environments, which 367 

inevitably results in different connectivity values. Thus, land-/seascapes have to be viewed through 368 

the eyes of the respective species, i.e. independent from a standardized anthropogenic 369 

consideration of the correct scale or patch size to measure ‘connectivity’ as a landscape feature.  370 

Connectivity as a function of the organism-landscape interaction manifests itself on different spatial 371 

and temporal scales, depending on organism size (Gaillard et al. 2010) but also on different life-372 

histories (Worboys et al. 2016) and movement behaviours (Börger et al. 2008). Connectivity is an 373 

inherently spatial concept with the spatial scale at least implicitly considered via the organismic 374 

activity range and movement between habitats. Also, these exchange processes have a relevant 375 

temporal dimension, when measuring e.g. exchange rates between habitats or gene flows between 376 

populations. We believe the temporal dimension, frequently neglected so far, has to be explicitly 377 

defined whenever using any measurements or indices related to connectivity in order to obtain 378 

unambiguous results. Similar to the spatial scale, also the temporal range depends on the organism 379 

of interest (Tischendorf and Fahrig 2000; Grober-Dunsmore et al. 2009): smaller organism, e.g. 380 

small rodents, can reach fecundity within several weeks and may reproduce several times a year, 381 

whereas large vertebrates, such as deer, have much longer generation times and may only reach 382 
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activity range and movement between habitats. Also, these exchange processes have a relevant 375 

temporal dimension, when measuring e.g. exchange rates between habitats or gene flows between 376 

populations. We believe the temporal dimension, frequently neglected so far, has to be explicitly 377 

defined whenever using any measurements or indices related to connectivity in order to obtain 378 

unambiguous results. Similar to the spatial scale, also the temporal range depends on the organism 379 

of interest (Tischendorf and Fahrig 2000; Grober-Dunsmore et al. 2009): smaller organism, e.g. 380 

small rodents, can reach fecundity within several weeks and may reproduce several times a year, 381 

whereas large vertebrates, such as deer, have much longer generation times and may only reach 382 
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fecundity after several years. This certainly influences the number of individuals or propagules 383 

relevant for connecting habitats. We therefore suggest using generation time as a delimiting 384 

criterion thereby directly addressing the species-specific spatio-temporal scale on the integration 385 

level of individuals (Allen and Hoekstra 1992). 386 

Central questions that should always be answered in a study investigating connectivity is: What 387 

exactly does it mean when stating high or low connectivity between areas, which metrics are most 388 

informative and what are the implications? Does high connectivity, for example, imply that there is 389 

a high potential for an organism to get from habitat A to habitat B and/or vice versa or are there 390 

continuously high exchange rates of individuals between landscapes patches? Or should high (low) 391 

connectivity refer to high (low) genetic similarity between two populations? It thus deems 392 

necessary to not only distinguish between different forms of connectivity but also to explicitly state 393 

the underlying criteria. To allow for a comparison between studies it is important to know (i) to 394 

what the measured connectivity relates, e.g. to individuals or genes, (ii) whether it is a function of 395 

populations or habitat characteristics, and (iii) at what spatial and temporal scale it is defined. Only 396 

if we explicitly state this information when investigating and measuring connectivity, it will become 397 

possible to compare its values across species and landscapes. Based on the outlined criteria, we 398 

propose to subdivide connectivity into three categories: ‘potential connectivity’, ‘area connectivity’, 399 

and ‘effective connectivity’ (Fig. 2, Table 1) each related to different spatial and temporal scales.  400 

 401 

Fig 2: Connectivity categories with different relevant times scales: a) less than one generation (level 402 

of the individual), b) ~ 1 generation (level of the individual) c) > 1 generation (population level). 403 
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Tab. 1 Overview of suggested categories of land-/seascape connectivity and their main 404 
characteristics. 405 

Term 

 
Main characteristics Temporal 

range  

(generations) 

Focus  

of indices 
Measurements, methods and 

models (examples) 

Potential 
connectivity 

Theoretical consideration of 
potential movement of a 
given organism in a specific 
landscape. 
Requires knowledge on the 
movement ability of the 
target organism, e.g. scale of 
movement, implications of 
different landscape elements 
to facilitate or inhibit 
dispersal as well as 
information on the land-
/seascape at a relevant scale. 

0 – < 1 Distance calculations 
in relation to 
organismic dispersal 
properties and 
landscape features.  
 

• Expert knowledge on 
connectivity estimates 
• Simple dispersal models and 
dispersal kernels including 
reactions to landscape 
• Individual-based models 
addressing species behaviour to 
landscape elements and 
movement abilities 
• Lagrangian approaches 
considering organismic properties 
and land-/seascape structure 

Area 
connectivity 

Focuses on the actual 
exchange of organisms 
between suitable habitat 
patches. A priori information 
on organismic reactions to 
landscape at a relevant scale 
necessary. 

~ 1 Exchange rates (of 
individuals) between 
habitats (ideally as 
part of population to 
estimate relevance 
for connectivity) 

• Different forms of telemetry 
and tagging (acoustic telemetry, 
satellite tags, mark-recapture 
studies) to track individuals 
• Gut content analysis to 
investigate feeding migrations 
• Isotope analysis of growth 
structures (e.g. otoliths, 
statoliths) to determine 
ontogenetic movements 

Effective 
connectivity 

Summarizes cumulative long-
term effects of organismic 
exchange between 
populations at different 
locations and its contribution 
to genetic population 
structure. However, does not 
give information population 
still exchange 

>> 1 Genetic 
similarity/distance of 
populations 

Molecular and genetic analysis of 
population structure and gene flow 
using e.g. mitochondrial DNA or 
microsatellite analyses. 
 

4.1 Potential connectivity 406 

This type of connectivity focuses on the land-/seascape structure in relation to the movement 407 

ability and movement behaviour of a species. It considers which habitats could theoretically be 408 

reached by organisms if they were placed at any location in the land- or seascape investigated. This 409 

category is closest to the former structural connectivity (Tischendorf and Fahrig 2000; Kindlmann 410 

and Burel 2008) but explicitly refers to the motility of the target organism. It incorporates 411 

knowledge on the relevant scale of organismic movement which may range from a few centimetres 412 

to many kilometres. Thus, analysing ‘potential connectivity’ requires information on how far the 413 

organism can move depending on its life stage as well as on how it would react to different land-414 
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/seascape elements (stepping stones, barriers, currents). The timescale may not be explicitly 415 

considered but will typically range within one generation as longer time frames would require 416 

including colonisation success and population processes. Relevant metrics will refer to landscape 417 

properties (habitat patch distances, barriers effects, stepping stones, dispersal corridors) and relate 418 

them to the potential dispersal of the target organism, making the resulting values comparable 419 

between different species in the same landscape. 420 

Studies, that investigate ‘potential connectivity’ are, for example, those using dispersal models like 421 

Lagrangian approaches (Smouse et al. 2010). In marine systems these approaches are mainly used 422 

to analyse larval drift (related to currents, larval development time) and may include behavioural 423 

properties of the larva such as selecting currents (via vertical movement) or settlement areas 424 

(based on the sensoric perception of environmental cues, Cowen and Sponaugle 2009). To 425 

investigate the (larval) exchange of corals between Hawaiian reefs, Wren et al. (2016), for instance, 426 

applied a Lagrangian particle transport model coupled with information on water currents.  In the 427 

terrestrial realm, example studies of ‘potential connectivity’ are those of Jopp and Reuter (2005) 428 

who applied an individual-based model to Carabid data to analyse different dispersal kernels for 429 

long-distance dispersal and functioning of corridors and stepping stones, or Katul et al. (2005) who 430 

used 3-D dispersal kernels to describe seed dispersal of forest trees. Saura and Pascual-Hortal 431 

(2007) used graph theory to explicitly estimate the movement probability of organisms to integrate 432 

connectivity in landscape (conservation) planning. Furthermore, least-cost path including the length 433 

cost as well as potential ecological cost of connectivity are frequently applied methods to analyze 434 

potential connectivity between different landscape elements (e.g. Etherington and Holland 2013). 435 

4.2 Area connectivity 436 

‘Area connectivity’ addresses the actual exchange of organisms between suitable habitat patches, 437 

i.e. the realised transport or movement of individuals between different resource or habitat 438 

patches or the arrival of an individual in a new habitat patch (following (Auffret et al. 2017), which 439 

could (i) either potentially sustain a population or (ii) parts of it to facilitate reproduction, or (iii) 440 

which are regularly frequented by the target organism (feeding or reproductive migrations). Thus, 441 

‘area connectivity’ depends on the measurement of species-specific empirical data regarding 442 

movements of individuals between different landscape elements in relation to the (physical) 443 

arrangement of these elements. Individual movement data can be collected using a variety of 444 

approaches including telemetry and tagging devices to follow individual movements (Heupel et al. 445 
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2006; Hübneṙ et al. 2015; Hooten et al. 2017), marking individuals to re-capture them later at 446 

different locations (Marques et al. 2013) or presence-absence studies (Royle and Nichols 2003). 447 

Previously utilized habitats may be identified via isotope studies through their chemical signatures 448 

allowing for reconstruction of life-history-related movements (Rubenstein and Hobson 2004; 449 

Thorrold et al. 2007).  450 

‘Area connectivity’ is thus based on the level of the individual organism with the distance a single 451 

individual can cover in its lifetime as the appropriate spatial scale and a temporal scale of one 452 

generation time. The measured exchange rates for a given landscape will depend on several factors 453 

such as population size and density whereas the importance of this exchange will be determined by 454 

the fraction of a population which is moving, the frequency of movement events and the traits 455 

influencing potential colonisation processes. Interesting examples for this category of connectivity 456 

are the studies by Turgeon et al. (2010) who recorded and analysed fish movements to retrieve 457 

behavioural responses to different habitats and their barrier function, or by Espinoza et al. (2015) 458 

who investigated the efficacy of a marine reserve for reef sharks, using acoustic telemetry.  459 

4.3 Effective connectivity 460 

‘Effective connectivity’ summarises the cumulative results of exchange processes between 461 

populations at different locations. It therefore comprises what is often termed ‘population 462 

connectivity’ in marine studies, and to our understanding it encompasses all processes which 463 

contribute to a population exchange on a time scale longer than that of a single generation. For 464 

large time scales, this will be identical to ‘population connectivity’ (Cowen et al. 2002; Saenz-465 

Agudelo et al. 2011). To analyse and understand how barriers or other landscape variables affect 466 

gene flow between populations, different methodologies exist with the most commonly used being 467 

molecular markers such as microsatellites (Storfer et al. 2010; Manel and Holderegger 2013) or next 468 

generation sequencing technologies (Schwartz et al. 2010). These methodologies allow for 469 

parentage analysis (one generation) or analysis of genetic similarity (multiple generations, Kool et 470 

al. 2013) and can be a powerful tool, e.g. for measuring larval connections between marine 471 

populations (Galindo et al. 2006). 472 

Connectivity studies using microsatellites are common in both the marine and the terrestrial realm, 473 

e.g. for DNA parentage analysis to estimate the connectivity of clownfish populations within a 474 

network of MPAs (Planes et al. 2009), for the analysis of population structure and connectivity of an 475 

African surgeon fish (Otwoma et al. 2017), or to investigate how  biological corridors determine 476 
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gene flow and population structure of bat populations (Cleary et al. 2017). Different model 477 

application can contribute to the analysis of dispersal across generations. Saura et al. (2014), for 478 

example, describe the large-scale range expansion of a forest bird species under consideration of 479 

stepping stones using a network dispersal model.  480 

However, while having the ability to reveal connectivity patterns over long time periods on a 481 

population level, genetic data do not provide information whether populations are still connected 482 

at the time of investigation. For conservation management, it might thus become necessary to 483 

additionally consider e.g. ‘area connectivity’ to enable managers to assess the current status of a 484 

system and make informed management decision. Yet, genetic data allow for analysing large scale 485 

patterns of population structure, and a reliable estimate of (past) gene flow can provide the 486 

ultimate measurement of landscape connectivity (Baguette et al. 2013).  487 

5 Conclusions 488 

As an ecological concept, land-/seascape connectivity is inherently organism-centred, and it cannot 489 

exist independently of any behavioural attributes of the studied organisms. However, to become a 490 

unifying framework for terrestrial and marine ecology, the definition of connectivity has to be 491 

extended to include passive movement and transport mechanisms which constitute a large part of 492 

'connectivity' in the marine realm and often involves early life stages. Furthermore, we encourage 493 

using connectivity solely according to its strict definition to achieve unambiguous and comparable 494 

results and make it a meaningful concept for ecological theory as well as for applied sciences like 495 

conservation planning and reserve management. To derive common indices applicable to different 496 

situations we further deem it necessary to state all relevant criteria used in any connectivity study. 497 

Here, we distinguish three main categories of connectivity: ‘potential connectivity’, ‘area 498 

connectivity', and ‘effective connectivity’, which relate to different spatio-temporal scales and 499 

integration levels. We propose to apply these categories depending on the temporal scale of the 500 

investigation (in relation to generation time), and whether it is intended to assess individual 501 

movement or population structure. Following these categories facilitates that both aspects, the 502 

landscape and the organismic response, are integrated and related to relevant spatial and temporal 503 

scales, enabling both comparison among studies and an informed decision-making for managers 504 

considering connectivity in conservation. 505 

506 
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Text box 1 Partially overlapping and/or conflicting definitions of ‘connectivity’ 507 

• Ecological connectivity: Interactions among ecosystems by movement of animals, and by 508 

exchange of nutrients and organic matter or as ‘ecosystem connectivity’ with regard to 509 

ontogenetic or larvae dispersal (Mumby and Hastings 2008). 510 

• Functional connectivity: The degree to which the landscape facilitates or impedes movement 511 

among patches (Taylor et al. 1993) considering the organisms’ behavioural responses to 512 

individual landscape elements (Tischendorf and Fahrig 2000; Taylor et al. 2006), the spatial 513 

configuration of the entire landscape (Kindlmann and Burel 2008), and the landscape matrix 514 

(Baguette et al. 2013). It additionally may involve benefits associated with habitat features 515 

(Turgeon et al. 2010) while ‘plant functional connectivity’ relates to the effective dispersal of 516 

propagules or pollen among habitat patches in a landscape (Auffret et al. 2017) based on the 517 

successful establishment of individuals. 518 

• Genetic or evolutionary connectivity: The exchange of organisms and genes (Grober-Dunsmore 519 

and Keller 2008) or the degree to which gene flow affects evolutionary processes within 520 

populations (Saenz-Agudelo et al. 2011) or the amount of gene flow occurring among 521 

populations over a timescale of several generations determining the extend of genetic 522 

differences (Sale et al. 2010). 523 

• Habitat connectivity: Focuses on the habitat structure in landscapes and describes the extent of 524 

the exchange of individuals between habitat types (Dorenbosch et al. 2005) or ‘connectedness’ 525 

of habitat patches for a given taxon (Lindenmayer et al. 2008) or as ‘(biological) inter-habitat 526 

connectivity’ related to the migration of fauna between habitats, at different stages of their life 527 

cycle and/or following diel and tidal cycles (Unsworth et al. 2008). 528 

• (Landscape) connectivity: This often refers to the original definition by (Taylor et al. 1993) 529 

specified as ‘the degree to which the landscape facilitates or impedes movement among 530 

resource patches’; partially supplemented with more elements referring to genes, species or 531 

other ecological flows among habitats (Blazquez-Cabrera et al. 2014), highlighting specific 532 

processes such as spread of plant diseases amongst host patches (Papaïx et al. 2014) or the 533 

extent to which populations in different parts of a species’ range are linked by exchange of 534 

larvae, recruits, juveniles, or adults ((Palumbi 2003) in the context of marine reserves). It can 535 

encapsulate the combined effects of landscape structure and the species’ use (Tischendorf and 536 
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Fahrig 2000; Cowen et al. 2002) or the flux of items between location types including nutrients, 537 

sediments, pollutants and individual dispersing organisms (Sale et al. 2010). 538 

• Larval connectivity: Linkages of populations via larval dispersal (Botsford et al. 2009) or between 539 

a reproductive source and recruitment of larvae (Steneck et al. 2009). Often based on 540 

‘oceanographic connectivity’, which encompasses the general flow of materials (Grober-541 

Dunsmore and Keller 2008). 542 

• Population connectivity: Mostly used in the marine context and denoting the exchange of 543 

individuals among geographically separated sub-populations that comprise a metapopulation 544 

(Cowen et al. 2002) or the exchange between local groups (Grober-Dunsmore and Keller 2008) 545 

and with evolutionary (genetic) consequences ((Sale et al. 2010) as ‘demographic connectivity’). 546 

• Structural connectivity: Based entirely on landscape structure with no direct link to any 547 

behavioural attributes of organisms (Kindlmann and Burel 2008), the ‘physical relationships’ 548 

between habitat patches, i.e. physical distances (Unsworth et al. 2008; Baguette et al. 2013). 549 

 550 

Text box 2 Common (overarching) classifications of (landscape) connectivity  551 

Initially, (landscape) connectivity was formulated as a (single) species-centred approach and 552 

defined as an emergent property of species-landscape interaction (Taylor et al. 1993, 2006) without 553 

being divided into subcategories. Over time, however, different classifications were proposed in the 554 

literature to make the approach more applicable for a wide range of situations): 555 

• Structural vs functional connectivity: Here, structural connectivity solely considers the physical 556 

relationship (e.g. distance) among habitat patches independent of organismal attributes 557 

(contiguity of habitat), while functional connectivity encompasses the organismic response to 558 

individual landscape elements as intended by the original concept, (e.g. Tischendorf and Fahrig 559 

2000; Taylor et al. 2006; Kindlmann and Burel 2008; Kadoya 2009). 560 

• Structural vs potential vs actual connectivity: Structural connectivity (as above) relates to the 561 

physical structure of the environment, whereas potential connectivity considers indirect 562 

information on movement/dispersal of the target species) and actual connectivity quantifies the 563 

movement of individuals through the land-/seascape (Calabrese and Fagan 2004; Grober-564 

Dunsmore et al. 2009). 565 
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• Habitat vs landscape vs ecological connectivity: (Lindenmayer and Fischer 2007) made a 566 

distinction between a) habitat connectivity as the connectedness of habitat patches for a given 567 

taxon, b) landscape connectivity as the physical connectedness of patches of a particular land 568 

cover type as perceived by humans (because landscape is seen as a human concept), and c) 569 

ecological connectivity as the connectedness of ecological processes at multiple spatial scales. 570 

• Biological vs geo-physical connectivity: Linkage of different realms allowing for movement of 571 

species vs for transfer of energy and matter (Beger et al. 2010). In the context of conservation 572 

and exchange processes between the terrestrial, marine, and freshwater realms these were 573 

categorised as narrow (e.g. riparian strips), broad (e.g. estuaries) interfaces or constraint 574 

(limited by corridors) or diffuse relating to e.g. feeding or reproductive migrations. 575 

• Genetic vs demographic vs oceanographic connectivity: Following (Grober-Dunsmore and Keller 576 

2008) connectivity encompasses the exchange of materials and can be subdivided into genetic 577 

connectivity as the exchange of organisms and genes, demographic connectivity as the 578 

exchange of individuals among local groups, and oceanographic connectivity as the flow of 579 

materials and circulation patterns and variability that underpin all these exchanges. 580 

581 
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5 Synopsis 

Nowadays it is common knowledge that coral reef systems are precious and unique ecosystems 
characterized by a spectacular biodiversity. They also provide many different ecosystem services 

including protection against waves and coastal erosion, tourism, and fisheries which provide food and 

livelihoods for millions of people (see (Harvey et al. 2018) for review). At the same time coral reefs have 

proven to be particularly vulnerable to the adverse effects attributed to climate change like increasing 
ocean warming and acidification (e.g. (Bellwood et al. 2004; Hughes et al. 2007; Harvey et al. 2018)). 

They are further endangered by anthropogenic activities such as coastal development, pollution, and 

overexploitation leading to estimates that the world’s coral reefs will not survive the century and by 

2050 more than 90 % may have died (Harvey et al. 2018; Hoegh-Guldberg et al. 2018). 

To maximize coral reef resilience under climate change and counteract its ongoing degradation, marine 

spatial planning and the implementation of marine protected areas (MPAs) are increasingly gaining 
importance (Grober-Dunsmore et al. 2007; Sale and Kritzer 2008; Botsford et al. 2009; Harvey et al. 

2018). In this context reef fish and herbivorous species in particular, are often a target group for 

conservation because of their economic and ecological relevance (Davis et al. 2017b). Moreover, stocks 
of herbivore fishes are already critically depleted by anthropogenic activities which may result in major 

disruptions of reef ecosystem processes in the future (Bellwood et al. 2004). 

Diurnal herbivores like parrotfishes generally constitute a large part of tropical reef fish populations 

regarding abundance as well as biomass and are thus important for biomass turnover and energy 

transfer between trophic levels (Nagelkerken et al. 2000, 2008; Clark et al. 2009; Hitt et al. 2011). 

Furthermore, they are important bioeroders and producers of sand in coral reef systems (Bellwood 
1995) and keep algal turf and macroalgae at a low cropped state by scrapping them off rock and dead 

coral. Herbivorous fish can thereby improve coral growth and reef resilience and are hence considered 

to play a key role in controlling coral-algae phase shifts (Lokrantz et al. 2008; Mumby 2009; Olds et al. 

2012a).  

Parrotfishes like many coral reef fishes undertake diel migrations to utilize resources from different 

habitats (e.g. (Meyer et al. 2010)). These mostly take place at small scales (Helfman 1993; Green et al. 
2015) and have the potential to influence ecological interactions like predation (Lima and Dill 1990) or 

nutrient transfer between different habitats (Nagelkerken et al. 2000, 2008; Clark et al. 2009; Hitt et al. 

2011). To provide effective protection it is therefore critical to consider diel movement patterns of the 

target species and to enclose habitats that are consistently used both during day and night by individual 
fish when designing an MPA (Chapman and Kramer 1999; Eristhee and Oxenford 2001; Beets et al. 2003; 

Meyer et al. 2007; Afonso et al. 2008; Grüss et al. 2011; Semeniuk et al. 2011; Davis et al. 2017b). 

Currently, however, only about one third of MPAs meet their management goals due to significant gaps 

in the ecological science of marine reserves (Sale et al. 2005), particularly in terms of how habitats are 

ecologically connected by animal movements. Thus, it remains essential to quantify space use patterns 
of mobile (juvenile and adult) fishes and to understand how they may be affected by changing 

environmental conditions. 
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Animal movement behaviour is notoriously complex due to the potential involvement of many different 

factors and the individual ability to evaluate rewards and risks, weigh this information and process it to 

a movement decision (Manassa et al. 2013; DeAngelis and Diaz 2019). As numerous studies have shown 

space utilization patterns of reef fish, for instance, are driven by the underlying seascape and its three-
dimensional structure and that greater complexity correlates with higher fish abundances and species 

richness (Pratchett et al. 2008). The influencing mechanism is attributed to the fact that an increased 

structural complexity can moderate competitive interactions and predation intensity, e.g. by providing 

more or less suitable refuges (Lima and Dill 1990; Christensen and Persson 1993; Jones and Syms 1998; 
Overholtzer-McLeod 2006; Pratchett et al. 2008; McCormick and Lönnstedt 2013; Catano et al. 2016; 

Roff et al. 2019).  

Foraging patterns of prey organisms like herbivorous fishes are thus shaped and constrained by the 

habitat configuration and the perceived ‘landscape of fear’ (Laundré et al. 2010; Catano et al. 2016; 

Madin et al. 2019), which is a species-specific landscape characteristic. Nowadays unique organism-
habitat relationships have been observed across a wide range of taxa and spatial scales (Chittaro 2004; 

He et al. 2019) and are often discussed in the context of ‘landscape connectivity’ (Taylor et al. 1993, 

2006). In heterogenous environments fish populations are therefore not evenly distributed across 

habitats (He et al. 2019), which – depending on the ecological role of the species – can have important 
impacts on community structure and ecosystem function. 

Another group of potential key determinants in shaping the spatial distribution of fishes and which are 
often neglected in empirical studies (see Bijoux et al. (2013) for review) are natural cycles like lunar, diel 

or tidal phases. These cycles induce different behavioural patterns in the fishes’ diel activities, e.g. 

foraging movements (Hobson 1973; Ogden and Quinn 1984; Robblee and Zieman 1984; Helfman 1986), 

causing predictable fluctuations over short timescales in fish communities and their composition. To 
correctly evaluate how environmental change affects population distributions across space and 

successfully design conservation and management strategies it thus seems essential to be able to 

distinguish the different causes of their behavioural variation. 

5.1 Major findings and advancements for coral reef science 

Motivated by this need to better understand drivers behind movement patterns of herbivorous reef 

fishes and disentangle which are critical properties of their environment we dare a modelling attempt 

of small-scale fish movement behaviour incorporating dynamic decision making by using potential field 
methods. We thereby provide an application that incorporates a new way of representing how real 

individuals may decide on actions as well as current knowledge on the ecology of parrotfishes. 

Our own assessment of the natural variation in reef fish assemblages caused by the lunar, tidal and/or 

diel cycle at Chumbe Island, Tanzania (Chapter 2)  

(i) confirmed and emphasized the importance of incorporating natural cycles when studying 

fish movement behaviour in coral reef systems to correctly evaluate changes in behaviour 

and the relevance of habitats, 

(ii) identified C. sordidus as a mobile link between different habitat types over short time 

periods, 
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(iii) indicating this parrotfish species as a suitable model organism for the study of habitat-

related movement behaviour. 

To realistically represent individual fishes and their behavioural mechanisms in a model system it is 

however further compulsory to have detailed information on a species’ life history and related 

parameters such as growth rates or energy consumption (Bartholomew et al. 2008; Grüss et al. 2011). 

Fortunately, C. sordidus is a ubiquitous parrotfish species and both of ecological importance and well-
described in the literature making the relevant information and comprehensive data readily available. 

As one of the main purposes of our modelling study is to simulate realistic spatial distributions, that 
emerge from individual movement behaviour we have chosen to use an individual-based model as it 

can readily be linked with observations (Breckling 2002; DeAngelis and Mooij 2003; Reuter et al. 2005; 

Breckling et al. 2006; Kubicek et al. 2015). This approach also allows for the simulation of a large number 
of individuals over long time periods in realistic environments (DeAngelis and Diaz 2019), which we 

deem essential to investigate how the increasing change of environmental conditions and habitat 

discontinuity may affect fish mobility and population persistence. Moreover, it enables us to link the 

energetic state of each individual with its movement decision-making process (Nathan et al. 2008; 
DeAngelis and Diaz 2019) and thereby explicitly integrates one of the (arguably) most neglected factors 

in conservation management: a more mechanistic understanding of the energetic requirements of an 

organism and how they influence population dynamics (Tomlinson et al. 2014). The actual decision-

making process is further embedded in a system of potential fields representing food availability as an 
attractive force and/or predation risk as a repellent force to integrate the motivational basis for a fish 

to move. To our knowledge, our IBM is the first ecological model, that makes use of potential field 

methods in a new and innovative approach to represent movement behaviour in animals.  

The results of our simulation experiments (Chapter 3) suggest that  

(i) individual movement decisions over small spatio-temporal scales have the potential to 

affect individual energy budgets with reproduction being the most susceptible key life 

history trait, 

(ii) these individual decisions further shape the distribution of the population across space, 

which becomes increasingly irregular with a growing fragmentation of the habitat structure, 

(iii) the spatial configuration of the underlying seascape thus influences the spatial exploitation 

of microhabitats by a dilution of the foraging effort in some reef patches which at the same 

time leads to a concentration in others. 

(iv) by guiding individual movement decisions, the physical features of the environment may 

also impact encounter rates between individuals and in the long-term the overall social 
structure of a population.  

Our findings hence agree with the notion that animals move through a landscape driven by trade-offs 
between risk taking and the need to gain energy and make movements across or around physiologically 

challenging environmental barriers (see e.g. (Tomlinson et al. 2014). Which habitat features or 

configurations act as barriers or corridors, however, may largely be species-specific as different species 
are likely to vary in their life history characteristics, foraging strategies and/or habitat requirements 
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(Meyer et al. 2010). To save as many species as possible from extinction the preservation of enough 

habitat that is accessible for the organism in question, may play a particular role. In this context it 

appears valuable to improve our general understanding of how land- or seascapes are ecologically 

connected, a landscape property also referred to as ‘landscape connectivity’ and often mentioned as a 
key component for the overall effectiveness of MPAs. However, even though it is frequently used this 

concept remains ambiguous both in its definition and its usage. To make it a more quantifiable and 

comparable framework we suggest (Chapter 4) that the concept has to be  

(i) extended to include passive movement and transport mechanisms and thereby allow for an 

application to a broad range of organisms and life stages in terrestrial as well as marine 

ecosystems  

(ii) used solely according to its strict and organism-centred definition, and  

(iii) divided into three main categories (‘potential connectivity’, ‘area connectivity', ‘effective 

connectivity’) referring to different spatio-temporal scales and integration levels. 

5.2 Future developments and outlook  

Due to its structure and modular composition our model offers several interesting perspectives for 

further developments. We believe the following to be of primary interest:  

• Density dependence. Field studies of parrotfish populations (Gust et al. 2002; Nash et al. 2012; 

Tootell and Steele 2016; Davis et al. 2017a) indicate that short-term mobility, individual growth 
patterns as well as fish biomass and energy reserves are density dependent and that reduced 

resource levels and/or greater scarid densities lead to a reduced growth. Although our model 

indirectly accounts for density-dependent processes via changing levels of food availability, it 

seems desirable to extend the abilities of a model fish to be able to explicitly evaluate densities 
of conspecifics or competitors when moving across habitat patches.  

• Extension of the movement decision-making system (potential fields). Individual differences 
in size, sex, body condition, and hunger levels have been hypothesized to influence the 

individual perception of risk (Milinski 1993; Manassa et al. 2013). Hunger levels, for instance, 

can change the compromise between feeding and antipredator behaviour and a starving fish 

might take greater risks (Lima and Dill 1990; Hart 1993; Milinski 1993; Bélisle 2005). By 
implementing a weighing factor for each external factor considered in an individual movement 

decision our model explicitly allows for the reflection of these trade-offs: Given sufficient 

computational capacity an individual fish can be enabled to dynamically adjusting the weighing 
factor for predation risk depending on its energetic state rather than using a static value.  

• Learning and memory. Studies of prey organisms have demonstrated that prey animals have 
the ability to learn and can e.g. respond to differing levels of predation risk by adjusting their 

behaviour even at a loss of feeding opportunities (Laundré et al. 2010). Learning, which is a 

product of individual experience involving memory of past events (DeAngelis and Mooij 2005), 

may alter e.g. feeding strategies by learning good food items and good how-to feed, assessing 
changing quality of food patches or remembering topographic features to be able to return to 

suitable food patches. The integration of learning and memory into our model may potentially 
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be facilitated by the recent advancements made in the field of neural networks and machine 

learning and seems an exciting extension of our model.  

Also, the inclusion of other abiotic components such as depth or tidal cycles, which can exert strong 

influences on the movement behaviour of mobile fishes (Helfman 1993), may be of interest depending 

on the research question and the system under study.  

The possibilities to extend our model are hence manifold and we hope that by being adaptable to a wide 

range of reef fish species (via the life-history related parameters) and habitat configurations (via custom 

habitat maps) our model will be useful to analyse and evaluate various local settings and scenarios. By 
publishing it free and open source our application will further be available for everyone to use. We also 

believe that the integration of potential field methods into IBMs is a promising strategy to represent the 

complexity of dynamic decision-making of animals in applied models. Its great potential lies in its 
straight-forward adjustment to include different behaviours including more complex ones like 

topographic memory, which however constitutes a new field of application. 
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