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ABSTRACT 

 

NUMERICAL MODELING AND EXPERIMENTAL EVALUATION OF 

SHRINKAGE OF CONCRETES INCORPORATING FLY ASH AND SILICA 

FUME 

ARBILI, Mohamed Moafak Aziz 

M.Sc. in Civil Engineering  

Supervisor: Assist. Prof. Dr. Kasım MERMERDAġ 

December 2014, 108 pages 

Shrinkage is generally considered as an important hardened concrete property. 

During the drying process, free and absorbed water is lost from the concrete. When 

the drying shrinkage is restrained, cracks can occur, depending on the internal 

stresses in the concrete. The ingress of deleterious materials through these cracks 

can cause decrease in the compressive strength and the durability of concrete. In the 

first stage of the study, prediction models through gene expression programming 

(GEP) and neural network (NN) were derived. The data set used for training and 

testing covers the experimental data presented in the literature. In the second stage 

of the study presented herein, the findings of an experimental study on drying 

shrinkage behavior of concretes incorporated with silica fume (SF) and fly ash (FA) 

were reported. Free shrinkage strain measurements as well as corresponding weight 

loss were measured over 40 days of drying. The obtained experimental results were 

also used for the validation of the proposed prediction models. The highest amount 

of mineral admixture resulted in high shrinkage strain development. Moreover, the 

proposed NN model also accurately predicted the values obtained from experimental 

study. The errors obtained from GEP model were very high, especially for SF 

incorporated concrete  

Keywords: Shrinkage, modeling, Prediction, Experimental validation, Mineral 

admixtures  
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ÖZET 

UÇUCU KÜL VE SİLİS DUMANI İÇEREN BETONLARİN RÖTESİNİN 

SAYISAL MODELLENMESİ VE DENEYSEL İNCELEMESİ 

 

ARBILI, Mohamed Moafak Aziz 

Yüksek Lisans Tezi, ĠnĢaat Mühendisliği Bölümü 

Tez Yöneticisi: Yrd.Doç.Dr. Kasım MermerdaĢ 

December 2014, 108 sayfa 

Rötre genellikle sertleĢmiĢ betonun önemli bir özelliği olarak ele alınır. Kuruma 

sürecinde boĢluk yapısında bulunan serbest ve emilmiĢ su kaybedilir. Betonun 

rötresi kısıtlandığı zaman betonda olĢan gerilmelere bağlı olarak çatlak oluĢumu 

gözlenir. Bu çatlaklardan zararlı maddelerin geçmesiyle betonun dayanım ve 

dayanıklılıgında azalma olur. Bu çalıĢman ilk aĢamasinda genetik programlama ve 

yapay sinir ağları yöntemleri kullanılarak rötre tahmin modelleri geliĢtirilmiĢtir. 

Modellerin eğitimi ve test edilmesi için literatürden veri toplanmıĢtır. ÇalıĢmanın 

ikinci aĢamasında ise uçucu kül ve silis dumanı içeren betonlar hazırlanarak kırk 

günlük kuruma sürecinde rötreleri ölçülmüĢtür. En yüksek rötre değerleri en çok 

mineral katkı içeren betonlarda gözlenmiĢtir. Bunların yanı sıra deneysel çalıĢmada 

elde edilen sonuçlar tahmin modellerinin verdikleriyle karĢılaĢtırılmıĢlardır. YSA ile 

elde edilen değerlerin GP ile elde edilenlere göre gerçeğe daha yakın oldukları 

görülmüĢtür. 

 

Anahtar kelimeler: Rötre, Modelleme, Tahmin deneysel doğrulama, Mineral 

katkılar 
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CHAPTER 1 

INTRODUCTION 

1. General  

Concrete is the most widely used construction material all over the world. However, 

shrinkage is of concern when it relates to durability of concrete structure. Excessive 

shrinkage may cause concrete cracking, even structural failure. Thus, cracking may 

lead to increased corrosion rate of steel reinforcement in concrete structure, (Tia M. 

et al., 2005). In the view of global sustainable development. Therefore, researchers 

start to make use of blending of two or three SCMs to optimize durability and cost 

for the benefit of engineers, owners, contractors and material suppliers. The 

industrial by-products used as SCMs, such as fly ash and silica fume, have become 

more efficient admixtures to diminish the shrinkage effects and increase the 

durability of concrete, and usage of SCMs could substantially reduce the final cost 

of concrete mixtures since these materials are quite heaper in comparison to Portland 

cement. (Yang et al., 2007; Wang and Li, 2007).  

The problems encountered in the field of engineering are generally unstructured and 

imprecise influenced by intuitions and past experiences of a designer. (Chandwani et 

al., 2013). Complexity to mathematically model real world problems has compelled 

the human civilization to search for nature inspired computing tools. The evolution 

of such computing tools revolves around the information processing characteristics 

of biological systems. In contrast to conventional computing, these tools are rather 

“soft” as they lack the exactness and therefore placed under the umbrella of a 

multidisciplinary field called soft computing. Soft Computing is an emerging 

collection of methodologies, which aim to exploit tolerance for imprecision, 

uncertainty and partial truth to achieve robustness, tractability and total low cost 

(Chaturvedi, 2008).  

Soft Computing tools exploit the reasoning, intuition, consciousness, wisdom and 

adaptability to changing environments possessed by human beings for developing 
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computing paradigms like Fuzzy Logic (FL), Neural Networks (NN) and Genetic 

Algorithms (GA). The integration of these techniques into the computing 

environment has given impetus to the development of intelligent and wiser machines 

possessing logical and intuitive information processing capabilities equivalent to 

human beings.  These techniques whether complementing each other or working on 

their own, are able to model complex or unknown relationships which are either 

nonlinear or noisy. Soft computing techniques have a self-adapting characteristic 

paving a way for development of automated design systems. A synergistic 

partnership exploiting the strengths of these individual techniques can be harnessed 

for developing hybrid-computing tools (Chaturvedi, 2013). 

Civil engineers have very well accepted soft computing tools such as fuzzy 

computing, neuro-computing, evolutionary computing, and probabilistic computing. 

This special session is a perfect platform to discuss the various soft computing 

applications in civil engineering domain. 

 For example, some applications of soft computing are invited in the following fields 

on  

 Structural Engineering: Vanluchene and Sun (1990) presented an 

introduction to neural network by using back-propagation algorithm to solve 

three different structural engineering problems related to pattern recognition, 

decision making and problems that have numerically complex solutions.  

 Concrete Strength Modeling: in the study of Ozcan et al (2009), compressive 

strength prediction was done by using ANN and Fuzzy logic.  

 Geotechnical Engineering: Shahin et al. (2002) used neural networks for 

predicting settlement of shallow foundations on cohesion less soils. The 

predictive ability of ANN is compared with three of the most commonly 

used traditional methods.  

 Water Resources: Tokar and Johnson (1999) used ANN to forecast daily 

runoff as a function of daily precipitation, temperature and snowmelt.  

 Earthquake Engineering: Lee and Han (2002) developed efficient neural 

network models for generation of artificial earthquakes and response spectra. 

 



3 
 

1.2 The aim of the study 

The main objective of the thesis is to investigate can be listed as follows: 

 In order to handle complex nonlinear relationships between various inputs 

and outputs, soft computing techniques are used,to derive mathematical 

models obtained from neural network and genetic programming. For this, 

experimental data were utilized from the available test results presented in 

the previous studies. The prediction parameters were selected from mixture 

constituents of concrete and drying period. 

 Second stage of the thesis is to evaluate the model by experimental 

validation. 

The purpose of this thesis is to perform a comprehensive study of how 

supplementary cementitious materials (SCMs), fly ash (FA), and silica fume (SF), 

can be used to improve the performance of concrete mixtures. In this thesis, SF and 

FA were used as a replacement for Portland cement (PC), ranging from 0% to 15% 

by weight, to evaluate its efficiency upon the concrete properties. For this purpose, 

four different concrete mixtures with w/b ratio of 0.45 were designed. The focus of 

the study is to evaluate the effectiveness of FA and SF on strength and durability 

properties of the concretes, which are subjected to different curing regimes. Drying 

shrinkage and weight loss due to the corresponding drying were also monitored. 

Furthermore, in order to examine the main effect of FA and SF on the performance 

properties of the concretes. Based on the test results, the effects of replacement level 

of FA, SF, w/b ratio, age, and curing procedure upon strength and particularly 

durability properties of the concrete were discussed. 

1.3 Thesis organization 

The thesis is divided into five chapters. Chapter 1 provides an introduction, 

background, thesis objectives and thesis organization, Chapter 2 gives a brief 

literature review of the concrete drying shrinkage phenomenon, factors affecting 

concrete drying shrinkage. The review aims to provide background and general 

information about concrete shrinkage behaviors, Chapter 3 provides analytical 

modeling, models based on soft-computing techniques and proposed models, 
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Chapter 4 covers the experimental program conducted throughout this study. 

Properties of cement, aggregates, mineral and chemical admixtures used in the 

concrete production as well as the tests on hardened properties of concrete are 

included. Chapter 5 summarizes the major findings of the study, reference and 

appendix 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

This chapter provides a review of past researches in the field of concrete. There are 

several published papers that investigated the shrinkage, types of shrinkage, 

mechanism of shrinkage, shrinkage-reducing admixtures. Moreover, the chapter also 

includes utilization of artificial intelligence in civil engineering applications, and 

using binary and ternary blend cement system. 

2.2 Shrinkage 

Water movement and moisture losses within the concrete mixtures are the major 

factors causing shrinkage. Chemical reactions induce water movements within the 

concrete elements leading to chemical and autogenous shrinkage, although water 

movement outside the concrete elements, which are water losses, causes drying 

shrinkage (Mehta and Monterio, 2006). Tazawa et al. (1999) defined concrete 

shrinkage as a reduction in volume through time, and is mainly due to water 

movement within a concrete's porous structure and to chemical reactions. The 

emptying of pores due to water movement generates tensile stresses that pull the 

cement paste closer causing shrinkage, while chemical reactions generate products 

whose volume is less than the volume of the initial ingredients.  

Shrinkage is divided into two phases; the early age shrinkage, which occurs in the 

first 24 hours and the long-term shrinkage, which occurs after 24 hours (Holt, 2001). 

This division was put toward to distinguish between the driving mechanisms for 

each phase (Holt, 2001). For a concrete mixture with water-to-cement ratio greater 

than 0.42, the shrinkage at early age is mainly due to the chemical hydration 

reactions, while the long term shrinkage is attributed to water exchange and 

evaporation. Traditionally, the early age shrinkage was not a concern since its



6 
 

magnitude was considered to be negligible in comparison to the long term drying 

shrinkage (Holt, 2001). The shrinkage types are mapped in Figure 2.1 

 

Figure 2.1 Diagram of shrinkage stages and types (Holt, 2001) 

In the literature review, shrinkage has been divided into six types reflecting the 

different mechanisms. They are plastic shrinkage, dry shrinkage, carbonation 

shrinkage, thermal shrinkage, chemical shrinkage and autogenous shrinkage. 

2.2.1 Plastic Shrinkage  

Plastic shrinkage is idiom for freshly poured concrete. Plastic shrinkage occurs when 

water is allowed to evaporate from the fresh concrete surface. Environmental 

considerations including solar effects, wind speed, high temperature and low relative 

humidity drastically influence the potential of plastic shrinkage cracking (Schaels 

and Hover, 1988). In general, plastic shrinkage cracking can be averted by limiting 

early-age evaporation through the use of plastic sheeting, mono-molecular films, 

water fogging, or wind breaks in conjunction with properly designed concrete 

mixtures.  

In the Figure 2.2 demonstrated the process of plastic shrinkage cracking in initiation 

and final state. 

 

http://www.wordhippo.com/what-is/another-word-for/idiom.html
http://www.wordhippo.com/what-is/another-word-for/in_general.html
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Figure 2.2 Process of plastic shrinkage cracking (initiation and final state). 

(Newman and Choo, 2003) 

2.2.2 Drying Shrinkage 

Drying shrinkage is due to the loss of the water from the concrete pores. As the 

water evaporates to the outside, concrete shrinks. Drying shrinkage is similar to the 

autogenous shrinkage where both occur due to loss of water. For drying shrinkage, 

the water is transferred to the outside, whereas for autogenous shrinkage the water is 

transferred within the pore structure. 

When the concrete is in contact with the exterior environment and in conditions of 

low humidity or high temperature, water begins to evaporate from the exposed 

surface. During the first stages of drying shrinkage, the free water exits from the 

concrete mass to the surface as a bleed water (Holt, 2001). 
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Figure 2.3 shows that as the water evaporation proceeds, the surface tension 

responsible for the drying shrinkage increases 

 

 

Figure 2.3 Drying shrinkage mechanism according to Power's theory – Stresses 

pushing water meniscus down between two cement particles (Radocea, 1992) 

Other internal factors affecting the drying shrinkage are mineral admixtures, namely 

silica fume, ground granulated blast furnace slag, GGBFS, and fly ash (Omar et al. 

2008). Silica fume and GGBFS, when added within certain proportion, play a major 

role in reducing the drying shrinkage due to the additional pozzolanic reactions that 

lead to stronger concrete pore structure and elevated resistance to deformations (Li 

and Yao, 2001). The use of fly ash in a mixture reduces the water requirement, 

therefore reduces drying shrinkage (Tangtermsirikul, 1995) 

Guneyisi et al (2012) investigated the effectiveness of metakaolin (MK) and silica 

fume (SF) on the mechanical properties, shrinkage, and permeability related to 

durability of high performance concretes. Shrinkage behavior of the concretes with 

and without mineral admixtures were dealt through measurements of free shrinkage 

strains and weight loss of the specimens due to drying. In addition, test results 
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revealed that replacement level of MK and SF had significant effects on the 

mechanical and especially durability characteristics of high performance concretes. 

2.2.3 Carbonation Shrinkage  

Carbonation occurs be caused by a reaction that occurs between hydrated cement 

and carbon dioxide in the atmosphere which causes the concrete to shrink. 

Carbonation shrinkage occurs along the surface of concrete and as such, it is usually 

not a main cause for concern in structural concrete  

2.2.4 Thermal Shrinkage 

Solid materials such as concrete undergo contraction on cooling and expansion on 

heating. The rate of strain associated with these temperature changes are related to 

the rate of temperature changes and to the materials properties such as the 

coefficient of thermal expansion. These volume changes due to temperature changes 

are referred to as thermal shrinkage or swelling. Thermal shrinkage is a concern with 

the concrete at early age when the tensile strength is low and in massive concrete 

structure where the heat of hydration produced is very high (Khairallah, 2009). 

2.2.5 Chemical Shrinkage 

Chemical shrinkage is defined as "the phenomenon in which the absolute volume of 

hydration products is less than the total volume of unhydrated cement and water 

before hydration." (Tazawa et al., 1999). This type of shrinkage is due mainly to 

chemical reactions in the concrete. At the early stage, when the concrete is still 

plastic, in the liquid phase, the chemical shrinkage results in overall reduction of the 

specimen volume. The stage where the concrete begins to be stiffer, chemical 

shrinkage tends to create pores within the mix structure (Lura et al, 2003). 

2.2.6 Autogenous Shrinkage 

The Japan Concrete Institute, JCI, (Tazawa et al. 1999) has defined autogenous 

shrinkage as "the macroscopic volume reduction of cementitious materials when 

cement hydrates after initial setting. Autogenous shrinkage does not include the 

volume change due to loss or ingress of substances, temperature variation, 

application of an external force and restraint". As long as, the autogenous shrinkage 

is a volume reduction of the concrete with no moisture transfer with the outer 
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environment. The autogenous shrinkage is a concern where concrete has a water-to-

cement ratio less than 0.42 (Holt, 2001). According to Justnes et al. (1996), 

autogenous shrinkage has been given many labels such as bulk shrinkage, Le 

Chatelier shrinkage, indigenous shrinkage, self-desiccation shrinkage, and 

autogenous volume change. 

The effects of mineral admixtures and water-to-cement ratio, w/c on autogenous 

shrinkage very important. Zhang et al. (2003) presented an experimental study on 

the autogenous shrinkage of Portland cement concrete (OPC) and concrete 

incorporating silica fume (SF). The water-to cementitious materials (w/c) ratio of the 

concrete studied was in the range of 0.26 to 0.35 and the SF content was in the range 

of 0% to 10% by weight of cement, the results confirmed that the autogenous 

shrinkage increased with decreasing w/c ratio, and with increasing SF content. The 

results confirmed that the autogenous shrinkage increased with decreasing w/c ratio, 

and with increasing SF content. The results showed that the autogenous shrinkage 

strains of the concrete with low w/c ratio and SF developed rapidly even at early 

ages. The results singled that most of the total shrinkage of the concrete specimens 

with very low w/c ratio and SF exposed to 65% relative humidity after an initial 

moist curing of 7 days did not seem to be due to the drying shrinkage but due to the 

autogenous shrinkage 

Maruyama and Teramoto (2013) presented the temperature dependence of 

autogenous shrinkage of cement pastes made with silica fume premixed cement with 

a water–binder ratio of 0.15 extensively. The result showed development of 

autogenous shrinkage different behaviors before and after the inflection point, and 

dependence on the temperature after mixing and subsequent temperature histories. 

2.2.7 Mechanism of shrinkage 

In a drying environment where a relative humidity gradient exists between the 

concrete and surrounding air, moisture (free water) is initially lost from the larger 

capillaries and little or no change in volume or shrinkage occurs. However, this 

creates an internal humidity gradient so that to maintain hygral equilibrium adsorbed 

water is transferred from the gel pores and, in turn, interlayer water, may be 

transferred to the larger capillaries. (Newman and Choo, 2003) 
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The process results in a reduction in volume of the C–S–H caused by induced 

balancing compression in the C–S–H solid skeleton by the capillary tension set up 

by the increasing curvature of the capillary menisci. This is known as the capillary 

tension theory. At lower relative humidity, the change in surface energy of the C–S–

H as firmly held adsorbed water molecules are removed is thought to be responsible 

for the reduction in volume or shrinkage. Another theory is that of disjoining 

pressure, which occurs in areas of hindered adsorption (interlayer water); removal of 

this water causes a reduction in pressure and, hence, a reduction in volume 

(Newman and Choo, 2003). 

The foregoing theories apply to reversible behavior and shrinkage is not fully 

reversible, probably because aditional bonds are formed during the process of 

drying. Moreover, carbonation shrinkage can occur, which prevents ingress of water 

on re-wetting (Newman and Choo, 2003). 

It was concerned with drying shrinkage, namely, shrinkage resulting from the loss of 

water from the concrete to the outside environment. It should be mentioned that 

plastic shrinkage occurs before setting and can be prevented by eliminating 

evaporation after casting the concrete. Like drying shrinkage, autogenous shrinkage 

occurs after setting. It is determined in sealed concrete and is caused by the internal 

consumption of water by hydration of cement, the products of which occupy less 

volume than the sum of the original water and unhydrated cement. In normal 

strength concrete, autogenous shrinkage is small (<100 × 10–6) and is included with 

drying shrinkage. On the other hand, in high performance or high strength concrete 

made with a low water/cementitious materials ratio, autogenous shrinkage can 

exceed drying shrinkage. Design guidelines do not provide methods of estimating 

autogenous shrinkage (Newman and Choo, 2003). 

2.2.8 Shrinkage-reducing admixtures 

Shrinkage-reducing admixtures can significantly reduce both the early and long-

term drying shrinkage of hardened concrete. This is achieved by treating the „cause‟ 

of drying shrinkage within the capillaries and pores of the cement paste, as water is 

lost. This type of admixture should not be confused with shrinkage-compensating 

materials which are normally added at above 5% on cement and function by creating 
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an expansive reaction within the cement paste to treat the „effects‟ of drying 

shrinkage. 

Shrinkage-reducing admixtures are mainly based on glycol ether derivatives. These 

organic liquids are totally different from most other admixtures, which are water-

based solutions. Shrinkage reducing admixtures are normally 100% active liquids 

and are water-soluble (Newman and Choo, 2003). 

They have a characteristic odour and a specific gravity of less than 1.00. The dosage 

is largely independent of the cement content of the concrete and is typically in the 

range 5–7 liters/m3 (Newman and Choo, 2003). 

When excess water begins to evaporate from the concrete‟s surface after placing, 

compacting, finishing and curing, an air/water interface or „meniscus‟ is set up 

within the capillaries of the cement paste. Because water has a very high surface 

tension, this causes a stress to be exerted on the internal walls of the capillaries 

where the meniscus has formed. This stress is in the form of an inward-pulling force 

that tends to close up the capillary. Thus the volume of the capillary is reduced, 

leading to shrinkage of the cement paste around the aggregates and an overall 

reduction in volume of the concrete. 

The shrinkage-reducing admixtures operate by interfering with the surface chemistry 

of the air/water interface within the capillary, reducing surface tension effects and 

consequently reducing the shrinkage as water evaporates from within the concrete. 

They may also change the microstructure of the hydrated cement in a way that 

increases the mechanical stability of the capillaries. 

2.3 Artificial Intelligence 

Artificial intelligence is the getting of computers to do things that seem to be 

intelligent. The hope is that more intelligent computers can be more helpful to us 

better able to respond to our needs and wants, and more clever about satisfying 

them. Nevertheless, "intelligence" is a vague word. Therefore, artificial intelligence 

is not a well-defined field. One thing it often means is advanced software 

engineering, sophisticated software techniques for hard problems that cannot be 

solved in any easy way. Another thing it often means is nonnumeric ways of solving 
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problems, since people cannot handle numbers well. Nonnumeric ways are often 

"common sense" ways, not necessarily the best ones. Therefore, artificial-

intelligence programs like people--are usually not perfect, and even make mistakes. 

(Rowe, 1988) 

According to (Rowe, 1988) Artificial intelligence includes: 

 Getting computers to communicate with us in human languages like English, 

either by printing on a computer terminal, understanding things we type on a 

computer terminal, generating speech, or understanding our speech (natural 

language); 

 Getting computers to remember complicated interrelated facts, and draw 

conclusions from them (inference); 

 Getting computers to plan sequences of actions to accomplish goals 

(planning); 

 Getting computers to offer us advice based on complicated rules for various 

situations (expert systems); 

 Getting computers to look through cameras and see what's there (vision); 

 Getting computers to move themselves and objects around in the real world 

(robotics). 

Artificial intelligence is a branch of computer science, involved in the research, 

design, and application of intelligent computer. Traditional methods for modeling 

and optimizing complex structure systems require huge amounts of computing 

resources, and artificial-intelligence-based solutions can often provide valuable 

alternatives for efficiently solving problems in the civil engineering (Lu et al., 

2012). 

The aim of the study of Artificial Intelligence is no longer to create a robot as 

intelligent as a human, but rather to use algorithms, heuristics, and methodologies 

based on the ways in which the human brain solves problems (Coppin, 2004). 

In the study by Sgambi (2008) demonstrated the A.I. are divided in two fields:  

 The first, called Strong Artificial Intelligence, sustained by functionalists, 

retain that a computer correctly programmed can be capable of pure 
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intelligence, non-distinguished in any significant way from human 

intelligence. The basic idea of such theory springs from the concept 

expressed by English empiric philosopher Thomas Hobbes, whom affirmed 

that reasoning is nothing else but a calculation: Hence, the human mind 

should be the result of complexes calculations performed by the brains.  

 The second, so called Weak Artificial Intelligence, sustain that a computer 

couldn‟t ever be capable to equal human mind, but can only level up to 

simulate some human cognitive processes but never reproducing then in their 

total complexity 

2.3.1 Origin  

Philosophers in the past (going back to Plato in 400 B.C.) made possible the very 

concept of artificial intelligence, considering the idea of the mind as somehow a 

machine that operates on the knowledge codificated by some internal language 

processes. Nevertheless only with the genesis of computers in the beginning of the 

fifties, transformed the wise philosophic reflections in a articulated theory and 

experimental discipline (Sgambi, 2008). 

In 1950, in an article a clue is given about how to create a program to abilitate a 

computer in order to function in an intelligent manner (Sgambi, 2008). 

In 1956, John McCarthy first used the term artificial intelligence at a conference in 

Dartmouth College, in Hanover, New Hampshire. In 1957, Newell and Simon 

invented the idea of the GPS, whose purpose was, as the name suggests, solving 

almost any logical problem. The program used a methodology known as means ends 

analysis, which is based on the idea of determining what needs to be done and then 

working out a way to do it. This works well enough for simple problems, but AI 

researchers soon realized that this kind of method could not be applied in such a 

general way the GPS could solve some fairly specific problems for which it was 

ideally suited, but its name was really a misnomer.  

In 1958, McCarthy invented the LISP programming language, which is still widely 

used today in Artificial Intelligence research (Coppin, 2004). 
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2.3.2 Current studies 

Recently many authors suggested various definitions that can be collected in the 

following four categories (Russel, 1995): 

 Systems that think like human beings (Haugeland, 1985). 

 Systems that operate like human beings (Rich, 1991). 

 Systems that rationally think (Charniak, 1985). 

 Systems that rationally perform (Luger, 1993). 

 

The AI as currently is being studied; focus on the individuation of models (proper 

description of a problem to solve) and algorithms (effective procedure to solve the 

model). Each one of the two aspects (modelization or algorithm) has major or minor 

importance and variation along a wide spectrum. The activities and capacities of I.A. 

comprehend: 

 Automatic learning (machine learning). 

 The representation of knowledge and automatic reasoning in the same level 

to the human mind. 

 Planning. 

 The collaboration between intelligent agents, in software as hardware 

(robot). 

 The elaboration of natural language (Natural Language Processing). 

 The simulation of the vision and interpretation of images, as in OCR case. 

At this time, there was a great deal of optimism about Artificial Intelligence. 

Predictions that with hindsight appear rash were widespread. Many commentators 

were predicting that it would be only a few years before computers could be 

designed that would be at least as intelligent as real human beings and able to 

perform such tasks as beating the world champion at chess, translating from Russian 

into English, and navigating a car through a busy street. Some success has been 

made in the past 50 years with these problems and other similar ones, but no one has 

yet designed a computer that anyone would describe reasonably as being intelligent.  
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2.4 Soft computing techniques 

Soft computing is a collection of methodologies that aim to exploit the tolerance for 

imprecision and uncertainty to achieve tractability, robustness, and low solution 

cost. Its principal constituents are fizzy logic, neurocomputing, and probabilistic 

reasoning. 

Soft computing is likely to play an increasingly important role in many application 

areas, including sof2ware engineering. The role model for soft computing is the 

human mind (Zade, 1994). 

According to Konar (2000) Soft computing an emerging approach to computing, 

which parallels the remarkable ability of the human mind to reason and learn in an 

environment of uncertainty and imprecision. It, in general, is a collection of 

computing tools and techniques, shared by closely related disciplines that include 

fuzzy logic, artificial neural nets, genetic algorithms, belief calculus, and some 

aspects of machine learning like inductive logic programming. These tools are used 

independently as well as jointly depending on the type of the domain of applications. 

The scope of the first three tools in the broad spectrum of AI is outlined below.  

2.4.1 Artificial neural network 

artificial neural networks (ANNs) technology, a family of massively parallel 

architectures that solve difficult problems via the cooperation of highly 

interconnected but simple computing elements (or artificial neurons), is being used 

to solve a wide variety of problems in civil engineering applications (Ozcan et al., 

2009).  

„„The basic strategy for developing ANNs systems based models for material 

behavior is to train (ANNs) systems on the results of a series of experiments using 

the material in question. If the experimental results contain the relevant information 

about the material behavior, then the trained ANNs systems will contain sufficient 

information on the material‟s behavior to qualify as a material model. Such trained 

ANN systems not only would be able to reproduce the experimental results, but they 

would be able to approximate the results in other experiments trough their 

generalization capability” (Topcu and Sarıdemir, 2008). 
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Their network topology and learning or training algorithms commonly classify 

ANNs. For example, a multilayer feed forward neural network with back 

propagation indicates the architecture and learning algorithm of the neural network 

Figure 2.4 (Özbay, 2007). 

 

Figure 2.4 Multilayered artificial neural network (Özbay, 2007) 

2.4.2 Genetic programming 

GP creates computer programs to solve a problem by simulating the biological 

evolution of living organisms (Koza, 1992). The genetic operators of genetic 

algorithm (GA) and GP are almost the same. The difference between GA and GP is 

that the former gives the solution as a string of numbers, while the solution 

generated by the latter is computer programs represented as tree structures.  

2.4.3 Fuzzy logic  

Fuzzy logic is the method of common sense decision support approach based on 

natural language (gulley, 1995). Fuzzy logic is raised from the concepts of fuzzy 

sets, which are the sets without clearly defined boundaries. It should be noted that 

there is a real distinction between fuzzy set theory (FST) and probability theory (PT) 

because they are based on models of different semantic concepts. (Zarandi et al., 

2008) 
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Fuzzy logic concept provides a natural way of dealing with problems in which the 

source of imprecision is valid rather than the presence of random variables. The key 

elements in human thinking are not numbers but levels of fuzzy sets through 

linguistic words. In consequence, linguistic variables are introduced as parameter 

descriptions in a natural and logical linguistic statements or propositions (Abbas et 

al., 2013). 

Zarandi et al. (2008) develop fuzzy polynomial neural networks FPNN to predict the 

compressive strength of concrete. The results show that FPNN-Type1 has strong 

potential as a feasible tool for prediction of the compressive strength of concrete 

mix-design. 

Pedrycz and Aliev (2009) demonstrated  how the logic blueprint of the networks is 

supported by the use of various constructs of fuzzy sets including logic operators, 

logic neurons, referential operators and fuzzy relational constructs, through 

concentrating on the fundamentals and essential development issues of logic-driven 

constructs of fuzzy neural networks. These networks, referred to as logic-oriented 

neural networks, constitute an interesting conceptual and computational framework 

that greatly benefits from the establishment of highly synergistic links between the 

technology of fuzzy sets and neural networks. This proposal concluded two major 

advantages. First, the transparency of neural architectures becomes highly relevant 

when dealing with the mechanisms of efficient learning. Second, the network can be 

easily interpreted and thus it directly translates into a series of truth- quantifiable 

logic expressions formed over a collection of information granules, regarding that 

the training had completed. 

Guler et al. (2012) presented a fuzzy approach for modelling of high strength 

concrete under uniaxial loading. The fuzzy logic approach, which was applied to test 

data of concrete cylinder test, was available in previous studies. In his paper, the 

stress–strain behavior of high strength concrete was subjected to axial load which 

was obtained by using the fuzzy logic model. It was shown that the current model 

could predict the stress–strain behavior of concrete accurately by taking into account 

the parameters of the problem. The outcomes were compared with the analytical 

models given in various studies concerning cylinder tests. The new approach 
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showed that there is no need to obtain different expressions for ascending and 

descending branches of the stress–strain behavior.  

Nedushan (2012) proposed an adaptive network-based fuzzy inference system 

(ANFIS) model and three optimized nonlinear regression models to predict the 

elastic modulus of normal and high strength concrete. The optimal values of 

parameters for nonlinear regression models were determined with differential 

evolution (DE) algorithm. The elastic modulus predicted by ANFIS and nonlinear 

regression models were compared with the experimental data and those from other 

empirical models. Results showed that the ANFIS model outperforms the nonlinear 

regression models and most of other predictive models proposed in the previous 

studies and therefore could be used as a reliable model for prediction of elastic 

modulus of normal and high strength concrete. 

Silva and Stemberk (2012) developed an experimental based on fuzzy logic model 

to predicting self-compacting concrete shrinkage. The fuzzy logic model decision-

making was optimized despite an evolutionary computing method, to improve 

computational effectiveness. The obtained results were compared to the B3 

shrinkage prediction model and statistical analysis, indicating the reliability of the 

proposed model, are presented. The optimized group of fuzzy sets led to a proper 

prediction of the shrinkage curves with a reduced number of rules, making the 

modelling process more effective. 

2.5 Utilizations of artificial intelligence on civil engineering applications 

Artificial intelligence is a science on the research and application of the law of the 

activities of human intelligence. Nowadays, this technology is applied in many 

fields such as expert system, knowledge base system, intelligent database system, 

and intelligent robot system. Expert system is the earliest and most extensive, the 

most active and most fruitful area, which was named as “the knowledge 

management and decision-making technology of the 21 century.” In the field of civil 

engineering, many problems, especially in engineering design, construction 

management, and program decision-making, were influenced by many uncertainties 

which could be solved not only in need of mathematics, physics, and mechanics 

calculations but also depend on the experience of practitioners. This knowledge and 

experience are illogically incomplete and imprecise, and they cannot be handled by 
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traditional procedures. However, artificial intelligence has its own superiority. It can 

solve complex problems to the levels of experts by means of imitate experts. 

Overall, artificial intelligence has a broad application prospects in the practice of 

civil engineering (Lu et al., 2012). 

2.5.1 Use of Neural networks for concrete properties  

Karthikeyan et al. (2007) used Artificial Neural Network (ANN) model for 

predicting creep and shrinkage. While concrete undergoes time-dependent 

deformations that must be considered in the design of reinforced/ prestressed high 

performance concrete (HPC) bridge girders. They researches experiments on the 

creep and shrinkage properties of a HPC mix were conducted for 500 days. The 

results indicated from research were compared to different models to determine 

which model was the better one. The CEB-90 model was found better in prediction 

time-dependent strains and deformations for the above HPC mix. In addition, the 

experimental database was used along with the CEB-90 model database to train the 

neural network because in a far zone, some deviation was observed. The developed 

Artificial Neural Network (ANN) model will serve as a more rational as well as 

computationally efficient model in predicating creep coefficient and shrinkage 

strain. 

Sarıdemir (2009) developed models in artificial neural networks (ANN) for 

predicting compressive strength of concretes containing metakaolin and silica fume. 

The data used in the multilayer feed forward neural networks models are arranged in 

a format of eight input parameters that cover the age of specimen, cement, 

metakaolin (MK), silica fume (SF), water, sand, aggregate and superplasticizer. 

According to these input parameters, the compressive strength values of concretes 

containing metakaolin and silica fume were predicted. The training and testing 

results in the neural network models showed that neural networks have a stronger 

possibility for predicting 1, 3, 7, 28, 56, 90 and 180 days compressive strength 

values of concretes containing metakaolin and silica fume.  

A study carried out by Baykasoglu et al. (2009) utilized soft computing approaches 

for Prediction and multi-objective optimization of high-strength concrete 

parameters, they study presented multi-objective optimization (MOO) of high-

strength concretes (HSCs). One of the main problems in the optimization of HSCs is 
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to obtain mathematical equations that represents concrete characteristic in terms of 

its constitutions. During the study, two-step approach used to find effective solutions 

and mathematical equations. Step one consist predation of HSCs parameters by 

using regression analysis, neural networks and Gene Expression Programming 

(GEP). In second step, the equations developed in the first step were used. The out-

come of MOO model is solved by using a Genetic Algorithm (GA).  

According to Ozcan (2009) utilized an artificial neural network (ANN) and fuzzy 

logic (FL) study were developed to predict the compressive strength of silica fume 

concrete. A data set of a laboratory work, in which 48 concretes were produced, was 

used in the ANNs and FL study. The concrete mixture parameters were four 

different water–cement ratios, three different cement dosages and three partial silica 

fume replacement levels. Compressive strength of moist cured specimens was 

measured at five different ages. The achieved results with the experimental methods 

were compared with ANN and FL results. The results indicated that ANN and FL 

can be alternative approaches for the predicting of compressive strength of silica 

fume concrete.  

Cevik et al. (2009) presented the application of soft computing techniques for 

strength prediction of heat treated extruded aluminum alloy columns failing by 

flexural buckling, using Neural networks (NN) and genetic programming (GP) as 

soft computing techniques, and gene expression programming (GEP) which is an 

extension to GP. The training and test sets for soft computing models were obtained 

from experimental results are available in literature. An algorithm is also developed 

for the optimal NN model selection process. The proposed NN and GEP models 

were presented in explicit form to be used in practical applications. The accuracy of 

the proposed soft computing models were compared with existing codes and were 

found to be more accurate.  

Deng and Wang (2010) conducted a study about probabilistic neural networks 

(PNN) to predict shrinkage of thermal insulation mortar. Probabilistic results were 

obtained from the PNN model with the aid of Parzen non-parametric estimator of 

the probability density functions (PDF). Five variables, water-cementitious materials 

ratio, content of cement, fly ash, aggregate and plasticizer, were employed for input 

variables, while a category of 56-d shrinkage of mortar was used for the output 
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variable. A total of 192 groups of experimental data from 64 mixtures designed 

using JMP7.0 software were collected, of which 120 groups of data were used for 

training the model and the other 72 groups of data for testing. They concluded that 

the PNN model with an optimal smoothing parameter determined by the curves of 

the mean square error (MSE) and the number of unrecognized probability densities 

(UPDs) exhibited a promising capability of predicting shrinkage of mortar.  

Tsai and Lin (2011) proposed a modular neural network MNN that is designed to 

accomplish both artificial intelligent prediction and programming. Each modular 

element adopted a high-order neural network to create a formula that considers both 

weights and exponents, while MNN represented practical problems in mathematical 

terms using modular functions, weight coefficients and exponents. Genetic 

algorithms was used to optimize MNN parameters and designed a target function to 

avoid over-fitting. Input parameters were identified and modular function influences 

were addressed in manner that significantly improved previous practices. A 

reference study on high strength concrete was adopted to compare the effectiveness 

of results, which had been previously studied using a genetic programming (GP) 

approach. On the other hand MNN calculations were more accurate than GP, used 

more concise programmed formulas, and allowed the potential to conduct parameter 

studies. The proposal “MNN” concluded that using artificial neural networks is a 

valid alternative approach to prediction and programming. 

Uysal and Tanyildizi (2012) utilized artificial neural network model for compressive 

strength of self-compacting concretes (SCCs) containing mineral additives and 

polypropylene (PP) fiber exposed to elevated temperature were devised. Tests were 

conducted to determine loss in compressive strength. The results showed that a 

severe strength loss was observed for all of the concretes after exposure to 600 C, 

especially the concretes that containing polypropylene fibers though they reduce and 

eliminate the risk of the explosive spalling. Additionally, according to the 

experimental results, an artificial neural network (ANN) model-based explicit 

formulation was proposed to predict the loss in compressive strength of SCC, which 

is expressed in terms of amount of cement, amount of mineral additives, amount of 

aggregates, heating degree and with or without PP fibers. Besides, it was found that 

the empirical model developed by using ANN seemed to have had a high prediction 
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capability of the loss in compressive strength after had been exposed to elevated 

temperature.  

Figs. 2.5–2.10 present the measured compressive strengths versus predicted 

compressive strengths by ANN model with R
2
 coefficients. Figs. 6 show that the 

best algorithm for compressive strength of SCC exposed to high temperature is the 

BFGS quasi-Newton back propagation algorithm with R
2
 of 0.9757 (Uysal and 

Tanyildizi; 2012). 

 

 

Figure 2.5 Linear relationship between measured and predicted compressive 

strengths (the Levenberg–Marquardt backpropagation algorithm). (Uysal and 

Tanyildizi, 2012) 
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Figure 2.6 Linear relationship between measured and predicted compressive 

strengths (the BFGS quasi-Newton backpropagation algorithm). (Uysal and 

Tanyildizi, 2012) 

 

 

Figure 2.7 Linear relationship between measured and predicted compressive 

strengths (the Powell–Beale conjugate gradient backpropagation algorithm). (Uysal 

and Tanyildizi, 2012) 
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Figure 2.8 Linear relationship between measured and predicted compressive 

strengths (the Fletcher–Powell conjugate gradient backpropagation algorithm). 

(Uysal and Tanyildizi, 2012) 

 

 

Figure 2.9 Linear relationship between measured and predicted compressive 

strengths (the Polak–Ribiere conjugate gradient backpropagation algorithm). (Uysal 

and Tanyildizi, 2012) 
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Figure 2.10 Linear relationship between measured and predicted compressive 

strengths (the one-step secant backpropagation algorithm). (Uysal and Tanyildizi, 

2012) 

Nazari and Torgal (2013) developed six different models based on artificial neural 

networks to predict the compressive strength of different types of geopolymers. The 

differences between the models were in the number of neurons in hidden layers and 

in the method of finalizing the models; a compressive strength of geopolymers was 

obtained for each variable input. Furthermore, validated and tested network showed 

a strong potential for predicting the compressive strength of geopolymers with a 

reasonable performance in the considered range.  

Dantas et al. (2013) applied Artificial Neural Networks (ANNs) models, which were 

developed for predicting the compressive strength of 3, 7, 28 and 91 days, of 

concretes containing Construction and Demolition Waste (CDW). The experimental 

results used to construct the models were gathered from literature .They used data in 

two phases, the training and testing phases, The results of (ANNs) models indicated 

in both, the training and testing phases strongly showed the potential use of ANN to 

predict 3, 7, 28 and 91 days compressive strength of concretes containing CDW.  

Bal and Bodin (2013) utilized Artificial Neural Network (ANN) to predict 

effectively dimensional variations due to drying shrinkage. They depend on a very 

large database of experimental result to develop models for predicting shrinkage. 
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They used different parameters of concrete preservation and making, which affect 

drying shrinkage of concrete. To validate these models, they were compared with 

parametric models as: B3, ACI 209, CEB and GL2000, it was clear that ANN 

approach described correctly the evolution with time of drying shrinkage. In 

addition, a parametric study was also conducted to quantify the degree of influence 

of some the different parameters used in the developed neural network model.  

The most basic system presents three layers, the first layer with input neurons 

sending via synapses data to the second layer of neurons, and then via other 

synapses to the third layer of output neurons. The architecture of this network is 

presented in Fig. 2.11 

 

Figure 2.11 Selected architecture for prediction of drying shrinkage. (Bal and Bodin, 

2013) 

2.5.2 Use of Genetic programming on concrete properties 

In a study by Kose and Kayadelen (2010) of the efficiency of neuro-fuzzy inference 

system (ANFIS) and genetic expression programming (GEP) in predicting the 

transfer length of prestressing strands in prestressed concrete beams was 
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investigated. Many suggested models for the transfer length of prestressing strands 

usually consider one or two parameters and do not provide consistent accurate 

prediction. Six basic parameters were selected as inputs. Results showed that the 

ANFIS and GEP models were capable of accurately predicting the transfer lengths 

used in the training and testing phase of the study, and the GEP model indicate 

better prediction compared to ANFIS model. 

Castelli et al (2013) proposed intelligent system based on Genetic Programming for 

the prediction of high-performance concrete strength called “Geometric Semantic 

Genetic Programming”, it was based on recently defined geometric semantic genetic 

operators for Genetic Programming. .The experimental results showed the suitability 

of the suggested system for the prediction of concrete strength. What is worth stating 

that, the suggested method outperformed the standard Genetic Programming and 

returns results were significantly better to the ones produced by other well-known 

machine learning techniques.   

Sarıdemir (2014) utilized genetic programming for predicting the compressive 

strength values. The training, testing and validation set results of the explicit 

formulations obtained by the genetic programming models showed that artificial 

intelligent methods have strong potential and can be applied for the prediction of the 

compressive strength of concrete containing fly ash with different specimen size and 

shape. 

The flowchart of a gene expression algorithm is shown in Fig. 2.12 (Sarıdemir, 

2014) 
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Figure 2.12 The flowchart of a gene expression algorithm. (Sarıdemir, 2014) 

 

The expression tree ETs of the GEP-I for predicting the fc concrete containing fly 

ash FA at different proportions are given in Fig.2.13 (Sarıdemir, 2014) 
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Figure 2.13 Expression tree of GEP-I model. (Sarıdemir, 2014) 

 

The linear least square fit line and the R
2
 values are shown in this figure for the 

training, testing and validation sets of the models. As can be clearly seen in Fig.2.14 

(Sarıdemir, 2014) 
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Figure 2.14 Comparison of the experimental results of fc with GEP-I. (Saridemir, 

2014) 

2.6 Binary and Ternary blending systems of mineral admixture  

Using mineral admixtures as cement replacement substance in concrete has a 

tendency to increase by the future in order to provide greater sustainability in 

construction industry (Guneyisi et al., 2012). In binary blend, cement system, 

ordinary Portland cement OPC is partially replaced with only a single type of 

mineral admixture, and in ternary blend cement system, OPC is partially replaced 

with double type of mineral admixture. The advantages of using cement additions in 

concrete are, mainly, the improved concrete properties in fresh and hardened states, 

and economical and ecological benefits. The achievement of these advantages 

becomes more important for high strength concrete HSC proportioning since HSC 

requires high amounts of cementitious materials. However, the selection of additions 

needs more attention due to their different (Erdem and Kırca, 2008). 

Previous literature focuses on investigating how binary systems effect on properties 

concrete compressive strength, drying shrinkage.  
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Thomas et al. (1999) reported the results from laboratory studies on the durability of 

concrete that contains ternary blends of Portland cement, silica fume, and a wide 

range of fly ashes. Concrete made with these proportions generally show excellent 

fresh and hardened properties since the combination of silica fume and fly ash is 

somewhat synergistic. For example, fly ash appears to compensate for some of the 

workability problems often associated with the use of higher levels of silica fume, 

whereas the silica fume appears to compensate for the relatively low early strength 

of fly ash concrete. The result testing showed that concrete produced with ternary 

cementitious blends had a very high resistance to the penetration of chloride ions. 

Additionally, these data indicated that the diffusivity of the concrete that contains 

ternary blends continues to decrease with age. 

Bouzoubaa et al. (2002) developed ternary blends with optimum amounts of fly ash 

and silica fume to be used in high-performance concrete. Two sets of air-entrained 

concrete mixtures were investigated during the study: first set included concretes 

with a total cementitious materials content (CM) of 350 kg/m3, and a water-to-

cementitious materials ratio (W/CM) of 0.40, and second set 2 included concretes 

with a total CM of 450 kg/m3 and a W/CM of 0.34. In each set, one silica fume and 

three fly ashes were used; these consisted of two ASTM Class F and one ASTM 

Class C fly ashes. Properties of the fresh and hardened concrete such as slump, air 

content, bleeding, setting time, autogenous temperature rise, plastic shrinkage, 

compressive strength, drying shrinkage and the resistance to chloride-ion penetration 

were determined. The study concluded that the combined use of fly ash and silica 

fume in concrete were more advantageous in terms of the following parameters: the 

dosage of superplasticizer, plastic shrinkage, chloride-ion penetrability and the 

drying shrinkage.  

Erdem and Kırca (2008) produced 80 high strength concrete, containing several 

types and amounts of supplements. Silica fume content in binary blends that give the 

highest strengths were decided for different binder contents. This was followed by a 

third binder (Class F or Class C fly ash or ground granulated blast furnace slag) 

introduction to the concrete, that already had contained Portland cement and silica 

fume in the amounts found in the first stage. Results indicated that ternary blends 

almost always made it possible to obtain higher strengths than Portland cement + 
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silica fume binary mixtures, only if the replacement level by the supplements was 

chosen properly. In addition, the performance of slag in the ternary blends was 

better than Class F fly ash but worse than Class C fly ash. As shown in Fig.2.15, for 

PC + SF + FA/C mixtures with 600 kg/m3 binder, the highest strength at 3 days 

occurred at 20% but the highest strength at 7 and 28 days was observed at 30% 

replacement level. Similarly, in the case of 650 kg/m3 and PC + SF + S mixtures, 

the optimum replacement level was 20% at 3 days while it was 40% at 7 and 28 

days.  

 

Figure 2.15 Compressive strength of PC + SF + FA/C concretes having 600 kg/m3 

binder content. (Erdem and Kırca, 2008) 

Guneyisi et al. (2010) investigated compressive strength and particularly drying 

shrinkage properties of self-compacting concretes containing binary, ternary, and 

quaternary blends of Portland cement, fly ash (FA), ground granulated blast furnace 

slag (GGBFS), silica fume (SF), and metakaolin (MK). Therefore, a total of 65 self-

compacting concrete (SCC) mixtures were prepared at two different water to binder 

ratios. The result showed that drying shrinkage decrease with the use of FA, 

GGBFS, and MK while incorporation of SF increased the drying shrinkage.as show 

with figures: 2.16-2.21   
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Figure 2.16 Binary effect of mineral admixtures on the free shrinkage of SCCs at 

w/b ratio of 0.32 (Guneyisi et al., 2010) 

 

Figure 2.17 Ternary effects of mineral admixtures (PC + FA + SF; PC + GGBFS + 

SF; PC + FA + GGBFS) on the free shrinkage of SCCs at w/b ratio of 0.32. 

(Guneyisi et al., 2010) 
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Figure 2.18 Ternary effects of mineral admixtures (PC + FA + MK; PC + GGBFS + 

MK; PC + SF + MK) on the free shrinkage of SCCs at w/b ratio of 0.32. (Guneyisi 

et al., 2010) 

 

Figure 2.19 Quaternary effects of mineral admixtures on the free shrinkage of SCCs 

at w/b ratio of 0.32. (Guneyisi et al., 2010) 

 



36 
 

 

Figure 2.20 Binary effects of mineral admixtures on the free shrinkage of SCCs at 

w/b ratio of 0.44. (Guneyisi et al., 2010) 

 

Figure 2.21 Ternary effects of mineral admixtures on the free shrinkage of SCCs at 

w/b ratio of 0.44. Guneyisi et al., 2010) 
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In the study Wang et al. (2011), discussed the behavior drying shrinkage of mortar 

mixtures made with various ternary blends, while considering ternary blends 

consisting of different combinations of Portland or blended cement, slag, fly ash and 

silica fume. Free shrinkage of the bars was assessed at 56 days of age after 28 days 

of drying. A response surface analysis was done to examine the effects of blend 

proportions on shrinkage behavior of the mortars. The results indicated that among 

the three supplementary cementitious materials in the ternary blends studied, slag 

showed a dominant effect on increasing mortar shrinkage. Contribution of class C 

fly ash to the shrinkage was slightly less than that of slag. Increasing silica fume 

content slightly increased free shrinkage, and similarly an increase in class F fly ash 

content slightly increased free shrinkage. There was a close correlation between the 

measured shrinkage strain and the strain predicted from the shrinkage model 

developed from the response surface analysis.   

Wongkeo et al. (2011) investigated the use of fly ash and silica fume as a cement 

replacement in binary and ternary blended cements on compressive strength and 

physical properties of mortar. The results showed that the compressive strength of 

binary blended cement mortar with FA tends to decreased with increased FA 

replacement and showed compressive strength lower than PC control. However, 

compressive strength of binary blended cement mortar with SF was improved and 

showed compressive strength higher than that of PC control. On the other hand, the 

compressive strength of ternary blended cement mortar was higher than binary 

blended cement at the same level replacement and it increased with increased SF 

replacement.  

According to Farzadnia et al. (2011) reviewed the incorporation of mineral 

admixtures in binary, ternary and quaternary blended mortars in concrete, each 

mineral such as silica fume, fly ash, rice husk ash, metakaolin, blast furnace slag, 

palm oil fuel ash, etc. could be improve the performance of concrete. While each 

mineral has one or two useful characteristics in binder blends, incorporations of two 

or three supplementary cementitious materials had been explored by different 

experts, and different properties such as early age or late hardening, compressive 

strength, tensile strength, dry shrinkage, creep, etc.  
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Guneyisi et al. (2012) investigated the effectiveness of metakaolin (MK) and silica 

fume (SF) on the mechanical properties, shrinkage, and permeability related to 

durability of high performance concretes. Shrinkage behavior of the concretes with 

and without mineral admixtures were dealt through measurements of free shrinkage 

strains and weight loss of the specimens due to drying. Moreover, crack formation 

and propagation of the restrained specimens were observed to better understanding 

the effect of MK or SF incorporation on the restrained shrinkage properties. The 

results revealed that replacement level of MK and SF had significant effects on the 

mechanical and especially durability characteristics of high performance concretes. 

The Effect mineral admixtures on the compressive strength and are presented in Figs 

2.22 - 2.23. 

 

Figure 2.22 Effect of silica fume and metakaolin on compressive strength 

development of concretes (Guneyisi et al., 2012) 
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Figure 2.23 Effect of silica fume and metakaolin on drying shrinkage of concretes 

having a w/cm ratio of 0.35. (Guneyisi et al., 2012) 

Mala et al. (2013) proposed a new approach to find the efficiency factor of SF and 

FA individually in ternary blend cement system, based on principle of modified 

Bolomey‟s equation for predicting compressive strength of concrete using binary 

blend cement system. The results indicated that, as the total replacement level of 

OPC in concrete using ternary blend of OPC + FA + SF increased, the strength with 

respect to control mix increased up to certain replacement level and thereafter 

decreased. If the cement content of control mixes at each w/b ratio kept constant, 

then as w/b ratio decreased, higher percentage of OPC could be replaced with FA + 

SF to get 28 days strength comparable to the control mix.  Efficiency factor for SF 

and FA were always higher in ternary blend cement system than their respective 

binary blend cement system. Split tensile strength of concrete using binary and 

ternary cement system were higher than OPC for a given compressive strength level. 

The Effect mineral admixtures on the compressive strength and are presented in 

Figs. 2.24 - 2.26 
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Figure 2.24 (28) days compressive strength of binary and ternary mixes at w/b = 0.3. 

(Mala et al., 2013) 

 

Figure 2.25 (28) days compressive strength of binary and ternary mixes at w/b = 0.4. 

. (Mala et al., 2013) 
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Figure 2.26 (28) days compressive strength of binary and ternary mixes at w/b = 

0.45. (Mala et al., 2013)  

Meddah et al. (2014) studied on Possibility use of binary and composite limestone 

cements in concrete production, performance properties of 50 concrete mixes 

designed with binary, ternary and quaternary cementitious systems, including the 

use of various proportions of slag (S), fly ash (FA), limestone (LS), silica fume (SF) 

and metakaolin (MK) as a partial replacement by weight of PC. It has been observed 

that the use of composite cements improves concrete workability and reduces the 

amount of superplasticizer required to reach the same slump value compared with 

LS and PC cements. The strength results indicate that LS could lead to significant 

strength loss compared with PC and composite cement concretes. The results 

showed that the mechanical and durability performance of both binary and 

composite cement concretes are strongly linked to the chemical composition, 

fineness, particle size distribution and potential reactivity of the cementing materials 

used. 
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Figure 2.27 Drying shrinkage of Portland and blended cement concretes 

investigated. (Meddah et al., 2014) 
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CHAPTER 3 

ANALYTICAL MODELS 

3. Introduction  

Analytical models are constructed and used by capacity planners to predict 

computing resource requirements related to workload behavior, content, and volume 

changes, and to measure effects of hardware and software changes. Developing the 

analytical model provides the capacity planner with an opportunity to study and 

understand the various behavior patterns of work and hardware that currently exist. 

Certain factors must be taken into consideration to avoid common errors in model 

construction, analysis, and predictions. 

In most instances, the capacity planner constructs the model using activity 

measurement information generated and collected during one or more time intervals.  

It is critical that an interval or series of intervals be used that contain significant 

volumes of business-critical activity. Units of work are then characterized by type 

and grouped into workloads. The capacity analyst can then translate future business 

requirements into measurable units of computing resource consumption, and 

calculate capacity and performance projections for workloads 

3.1 Models based on soft-computing techniques 

3.1.1 Generality 

(Zadeh, 1994) defines soft computing as a collection of methodologies that aim to 

exploit the tolerance for imprecision and uncertainty to achieve tractability, 

robustness, and low solution cost. Its main components are fuzzy logic, 

neurocomputing, and probabilistic reasoning. Soft computing is likely to play an 

important role in wide variety of fields of application. The key model for soft 

computing is the human mind. The fuzzy logic, genetic algorithm, genetic 
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programming, and neural network can be accepted as the main techniques of soft 

computing. In the following neural network and genetic programming methods were 

alternatively used to derive two different prediction formulation of available rotation 

capacity of cold-formed RHS-SHS steel beams.  

3.1.2 Gene expression programming (GEP) 

Genetic programming (GP), proposed by (Koza, 1992) is essentially an application 

of genetic algorithms to computer programs. GP has been applied successfully to 

solve discrete, non-differentiable, combinatory, and general nonlinear engineering 

optimization problems (Goldberg, 1989). It is an evolutionary algorithm based the 

methodology inspired by biological evolution to find computer that performs a task 

defined by a user. Therefore, it is a machine learning technique used to construct a 

population of computer programs according to a fitness landscape determined by a 

program's ability to perform a given computational task. Similar to genetic algorithm 

(GA), the GP needs only the problem to be defined. Then, the program searches for 

a solution in a problem-independent manner (Koza, 1992). 

Ferreira (2001) introduced Gene expression programming (GEP) and it can be 

considered as a natural development of genetic algorithms and genetic 

programming. GEP evolves computer programs of different sizes and shapes 

encoded in linear chromosomes of fixed-length. GEP algorithm begins with the 

random generation of the fixed-length chromosomes of each individual for the initial 

population. Then, the chromosomes are expressed and the fitness of each individual 

is evaluated based on the quality of the solution it represents. 

The GEP may not take all of the input parameters for constructing the model. 

Because of the computational iterations, if a parameter has a negligible effect, it will 

not be included in the model derived. 

To clarify the GEP basis it is convenient to draft the fundamentals of GP. The GP 

reproduces computer programs to solve problems by executing the following steps 

[8] (as described in Fig. 3.2): 

(1) Generate an initial population of random compositions of the functions and 

terminals of the problem (computer programs). 
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(2)  Execute each program in the population and assign it a fitness value 

according to how well it solves the problem. 

(3) Create a new population of computer programs: 

(i) Copy the best existing programs, 

(ii) Create new computer programs by mutation, 

(iii) Create new computer programs by crossover. 

Differently from GP, the significant improvement of GEP is that it makes it possible 

to infer exactly the phenotype given the sequence of a gene, and vice versa, which is 

termed as Karva language. For example, a diagram can represent the following 

algebraic expression (Eq. 3.1), which is the expression tree as follows (Figure 3.1). 

1

112

3

lnsin
d

ccd

d
Y 


                                                                           (3.1) 

 

Figure 3.1 A sample sub-expression tree for a mathematical operation (MermerdaĢ, 

2013). 
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Figure 3.2 Flowchart for the genetic programming paradigm (Zhao and Hancock, 

2001) 

 

3.1.3 Neural networks (NN) 

An artificial neural network (NN) is an information-processing paradigm that is 

inspired by the way biological nervous systems, such as the brain, process 

information. The key element of this paradigm is the novel structure of the 

information processing system. It is composed of a large number of highly 

interconnected processing elements (neurons) working in unison to solve specific 
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problems. NNs, like people, learn by example. An NN is conf igured for a specific 

application, such as pattern recognition or data classification, through a learning 

process. Learning in biological systems involves adjustments to the synaptic 

connections that exist between the neurons. 

The training of NNs by back propagation have three stages (Schalkoff, 1997): (i) the 

feed forward of the input training pattern, (ii) the calculation and back propagation 

of the associated error, and (iii) the adjustment of the weights. This process can be 

used with a number of different optimization strategies. The error between the 

output of the network and the target value is propagated backward during the 

backward pass and used to update the weights of the previous layers as shown in 

Fig.3.3 
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Start 

Select the first NN algorithm 

Train and test the NN with the first input  variable 

Reference=Test result of NN with the first input variable 

i=1 

Add one exogenous variable into the NN 

Train and test the new NN 

If test result 

>= Reference 

No Yes 

Variable does not stay in 

the model 

Variable stays in the 

model 

Reference=Test result of NN  

i=i+1 

If i >= no. of 

variables available 
No 

Train and test the NN with all the available variables 

Choose another NN algorithm or architecture parameter 

Identify the overall best model 

End 

 

Figure 3.3. Forward strategy for selecting NN architecture and model (Susac, et al., 

2005) 

In this study, neural network fitting tool (nftool) provided as a soft-computing tool 

in MatlabV.R2012a was utilized to perform neural network modeling. In fitting 

problems, a neural network may be used to map between a data set of numeric 
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inputs and a set of numeric targets. The nftool helps create and train a network, and 

evaluate its performance using mean square error and regression analysis.  

A two-layer feed-forward network with sigmoid hidden neurons and linear output 

neurons can fit multi-dimensional mapping problems arbitrarily well, given 

consistent data and enough neurons in its hidden layer. The network was trained 

with Levenberg-Marquardt back propagation algorithm.  

An artificial neuron consists of three main components namely weights, bias, and an 

activation function. Each neuron receives inputs I1, I2, . . . , In attached with a weight 

wi which shows the connection strength for that input for each connection. Each 

input is then multiplied by the corresponding weight of the neuron connection. A 

bias can be defined as a type of connection weight with a constant nonzero value 

added to the summation of weighted inputs, as given in Eq. 3.2. Generalized 

algebraic matrix operation was also given in Eq. 3.3. To clarify the mathematical 

operations in an artificial neuron.
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Since nftool uses the normalized values in the range of [-1, 1], the input parameters 

were normalized by means of Eq. 3.4 in order to get the prediction results after 

execution of the training process of the NN. Moreover, the obtained results are also 

in the normalized form. Therefore, considering the Eq. 3.4 and the normalization 

coefficients a and b for outputs, de-normalization process is applied and the results 

are monitored. 

banormalized  
                                                                                                         (3.4) 
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Where β is the actual input parameter or output values given in Table 2 and Table 6, 

respectively. βnormalized  is the normalized value of input parameters or outputs 

ranging between [-1, 1]. a and b are normalization coefficients given in the 

following equations (Eqs. 3.5-3.6). 

minmax

2

 
a

                                                                                                               (3.5) 

minmax

minmax








b

                                                                                                            (3.6) 

Where βmax and βmin are the maximum and minimum actual values of either inputs or 

outputs.  

3.2 Description of the database used for derivation of the models 

The proposed formulations of S for Shrinkage were derived using a set of 586 

experimental data available in the technical literature [Zhang et al. (2003), Wongkeo 

et al. (2012), Yoo et al. (2012), Khatib et al. (2008) and (Khatri and Sirivivatnanon, 

1995)] for training and testing the proposed models. 

Table 3.1 summarizes the selected experimental data. In detail, the generated models 

for shrinkage following input parameters: w/b (water/binder), SF (silica fume) 

content in kg/m
3
, FA (fly ash) content in kg/m

3
, C (cement) content in kg/m

3
, 

aggregate/binder ratio, fc (compressive strength) in MPa, type of shrinkage for 

drying shrinkage 1, for Autogenous shrinkage 0, and dry time in days. 

All data samples were put in an order to establish a consistent sequence of the inputs 

to be used for derivation of the models as shown in table 1,2,3,4 and 5 Appendix A. 

Thus, generally, eight inputs parameters were utilized for development of prediction 

models. The data set was randomly divided into two parts to obtain training and 

testing databases.  

The GeneXproTools.4.0 and MatlabV.R2012a software‟s were used for derivation 

of the GEP and NN based mathematical models, respectively. 
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For clarity, sake, in the next Sections, where it is discussed the comparison between 

the experimental and predicted rotation capacity, the effectiveness of the correlation 

is evaluated by means of the correlation coefficient “R” (Eq. 3.7), which describes 

the fit of the models' output variable approximation curve to the actual test data 

output variable curve. Higher r coefficients indicate a model with better output 

approximation capability. 
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                                                                    (3.7) 

where m
’
 and p

’
 are mean values of measured (mi) and predicted (pi) values, 

respectively 
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Table 3.1 Summary of experimental database 

 

 

data source 

(586) 

Input Output 

X1 X2 X3 X4 X5 X6 X7 X8 Y 

w/b SF FA cement Agg/b. 
fc Mpc 

@28 days 

Type 

Shrinkage 

Dry 

Time 
Shrinkage 

Zhang et al 

(2003) 
0.27-0.35 0-50 0 446-498 3.38-3.70 57.33-86.94 0-1 1-98 34-282 

Wongkeo et al 

(2012) 
0.49 0-42 0-269 269-538 2.64-2.75 29.05-69.05 1 7-91 93-1100 

Yoo et al 

(2012) 
0.30 0-88 0-175 408-583 2.68-2.57 54.8-69.8 0 1-49 39-400 

Khatib et al 

(2008) 
0.36 0 0-400 100-500 3.25-3.5 11-72.58 1 2-56 5-432 

Khatri and  

Sirivivatnanon 

(1995) 

0.34-0.36 0-46 0-100 282-425 4.15-4.30 65-94.99 1 7-400 267-895 

5
2
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3.3 Proposed Models  

3.3.1 Proposed GEP model 

The prediction model derived from GEP is presented in Eq. 3.8. The GEP 

parameters used for derivation of the mathematical models are given in Table 3.2. 

As it can be seen from Table 3.2, in order to provide an accurate model, various 

mathematical operations were used. 

S =S1+ S2+ S3+ S4+ S5+ S6+ S7+ S8+ S9+ S10                                                                 (3.8) 

Where S1,S2 S3……… S10 are sub expressions 

 3
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Table 3.2. GEP parameters used for proposed models. 

 

Parameters S for shrinkage 

P1 Function Set 
+, -, *, /, √, ^, ln, exp, sin, tan, inverse, 

Pow 

P2 Number of generation 99521 

P3 Choromosomes 30 

P4 Head size 10 

P5 Linking function Addition 

P6 Number of genes 10 

P7 Mutation rate 0.044 

P8 Inversion rate 0.1 

P9 
One-point recombination 

rate 
0.3 

P10 
Two-point recombination 

rate 
0.3 

P11 Gene recombination rate 0.1 

P12 Gene transposition rate 0.1 

 

The models developed by the software in its native language can be automatically 

parsed into visually appealing expression trees, permitting a quicker and more 

complete comprehension of their mathematical/logical intricacies. Figure 3.4 

demonstrates the expression tree for the terms used in the formulation of the GEP 

model.  
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(a) 
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(b) 

Figure 3.4. Expression tree of GEP model for shrinkage: Where d0 = w/b 

(water/binder); d1 = SF (silica fume); d2 = FA (fly ash); d3= C (cement); d4 = 

(aggregate/binder); d5= fc (compressive strength); d6 = (type of shrinkage); d7= 

(dry time), c0, c1, c2, c3 are constants/ 

 

 

The performance of the proposed GEP prediction model in Eq. 3.8 is graphically 

demonstrated in Fig. 3.5 for training and in Fig 3.6 for testing data sets. It seems that 

there is a far trend in the variation of the data between predicted and experimental 
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data. Correlation coefficients equal to 0.863 and 0.789 were calculated for training 

and testing databases, respectively, thus indicating not strong correlation between 

actual and predicted values. Moreover, close values of the correlation coefficients 

may be considered as an evidence for the consistency and good fitness of the 

proposed model. 

 

Figure 3.5 Predicted shrinkage values from GEP vs. experimental data for training 
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Figure 3.6 Predicted shrinkage values from GEP vs. experimental data for testing 

3.3.2 Proposed NN model 

A NN architecture, as shown in Fig. 3.7, was adopted to develop the NN model. 

That means there are eight nodes in the input layer, corresponding to eight factors 

from I1 to I8, 20 nodes in the hidden layer, and one in the output layer corresponding 

to the shrinkage. It should be noted that all numeric variables were normalized to a 

range of [-1, 1] before being introduced to the NN. Therefore, one must enter the 

normalized values in the mathematical operations given for NN model. 

Normalization of the data is achieved according to the mathematical operations 

given in Eqs. 3.4-3.6 It should also be noted that the final result obtained from Eq. 

3.9 is also in the normalized form, which needs to be de-normalized according to 

Eq. 3.4 and normalization coefficients given in Table 3.3. 
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Figure 3.7 Architecture of neural network 
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                                                             (3.9) 

Where Biasoutput layer= 7249.1 and f(x) (Hyperbolic tangent) is the activation 

function given in Eq. 3.10, LWk is layer weight matrix Uk numerical value of 

neurons  

Calculation of U is shown in Eq. 3.11 LWk  matrix is also given in Eq 3.12  
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xf                                                                                                (3.10) 
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Table 3.3 Normalization coefficients 

 

 

 

Normalization 

parameter 

w/b 

ratio 
SF FA C 

Agg/b 

 

fc* (Mpa) 

@28 days 

Type of 

Shrinkage 

Dry time 

(days) 

Shrinkage 

strain 

βmax 0.49 88 400 583 4.468 112.80 1 400 1100 

βmin 0.27 0 0 100 2.57 11 0 1 5.4 

a 9.296699 0.022727 0.005 0.004141 1.060519 0.019646 2 0.005012531 0.001827 

b -3.51011 -1 -1 -1.41408 -3.72861 -1.21611 -1 -1.005012531 -1.00987 

6
1
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The obtained results from the NN model are also plotted in Fig. 3.8 yielding 0.993 

and 0.954 correlation coefficients for training and testing data sets, respectively, the 

estimated results have close tendency to the experimental values.  

 

Figure 3.8 Predicted shrinkage values from NN vs. experimental data for training 

 

Figure 3.9 Predicted shrinkage values from NN vs. experimental data for testing 
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3.4 Comparison of the proposed models  

In order to compare the prediction of the proposed models with experimental 

shrinkage, the figures 3.10-3.14 were plotted. Figure 3.10 includes the experimental 

and predicted autogenous shrinkage values, while the other figures contain drying 

shrinkage values.  

Observing figure 3.10 it can be seen that prediction performance of GEP for 

autogenous shrinkage values between 0-100 microstrain is totally misleading. The 

GEP model yielded both invalid (0 microstrain) and extremely overestimated values. 

However, NN model performed well in this interval. Moreover, for the higher 

autogenous shrinkage values (< 100 microstrain), NN model demonstrated almost 

prefect estimation performance while GEP model mostly gave underestimated 

results. 

 

Figure 3.10 Comparison of experimental autogenous shrinkage values with those 

predicted by NN and GEP  

 

For drying shrinkage values, GEP model had overestimated results between 

experimental values of 0-300 microstrain. However, as the experimental drying 
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shrinkage values increased the tendency of GEP estimation decreased. Especially for 

the drying shrinkage values of 900-1200 microstrain all of the GEP values were 

below the exprimental findings. On the other hand, NN model achived more prese 

and accurated prediction performance in all of the intervals. 

 

Figure 3.11 Comparison of experimental drying shrinkage values between 0-300 

microstrain with those predicted by NN and GEP 

 

Figure 3.12 Comparison of experimental drying shrinkage values between 300-600 

microstrain with those predicted by NN and GEP 
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Figure 3.13 Comparison of experimental drying shrinkage values between 600-900 

microstrain with those predicted by NN and GEP 

 

Figure 3.14 Comparison of experimental drying shrinkage values between 900-1200 

microstrain with those predicted by NN and GEP
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CHAPTER 4 

EXPERIMENTAL VALIDATION OF THE MODELS 

4.1 Details of experimental study 

4.1.1 Introduction  

In this stage, experiments are designed to characterize the compressive strength, and 

drying shrinkage properties of four mixes containing mineral admixtures. The 

hardened concretes tested for the compressive strength, Shrinkage accompanied by 

the water loss also monitored for a drying period of 40 days. The materials and 

procedures used for these experiments discussed in this chapter.  

4.1.2 Materials 

The details of materials used in this research are given below. The concrete 

production was done to test the shrinkage behaviour of concrete.  

4.1.2.1 Cement 

CEM I 42.5 R type Portland cement having specific gravity of 3.14 and Blaine 

fineness of 327 m
2
/kg was utilized for preparing the concrete specimens used in 

determination of compressive strength and dry shrinkage. The chemical composition 

of the cement shown in Table 4.1 

Table 4.1 Chemical composition of the cement 

Chemical composition of the cement (%) 

CaO SiO2 Al2O3 Fe2O3 MgO SO3 K2O Na2O LOI 

62.58 20.25 5.31 4.04 2.82 2.73 0.92 0.22 2.98 
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4.1.2.2 Fly ash 

The fly ash (FA) used in this research was a class F type according to ASTM C 618 

(2002) and obtained from Yumurtalik-Sugozu thermal power plant in the form of 

Commercial grade. It had a specific gravity of 2.25 and the Blaine fineness of 287 

/kg. The chemical analysis of FA shown in Table 4.2  

Table 4.2 Chemical composition of the fly ash 

Chemical composition of the fly ash (%) 

CaO SiO2 Al2O3 Fe2O3 MgO SO3 K2O Na2O LOI 

4.24 56.2 20.17 6.69 1.92 0.49 1.89 0.58 1.78 

 

4.1.2.3 Silica fume  

A commercial grade silica fume (SF) obtained from Norway was utilized in this 

study. It had a specific gravity of 2.2 and the specific surface area (Nitrogen BET 

Surface Area) of 21080 /kg. In Table 4.3, both the chemical analysis and physical 

properties of SF provided. 

Table 4.3 Chemical composition of the silica fume 

Chemical composition of the silica fume (%) 

CaO SiO2 Al2O3 Fe2O3 MgO SO3 K2O Na2O LOI 

0.45 90.36 0.71 1.31 - 0.41 1.52 0.45 3.11 

 

4.1.2.4 Aggregates. 

Fine aggregate and coarse aggregates used for production of concrete is the mixture 

of crushed stone with specific gravities of 2.65, 2.66 respectively.  In addition, the 

grading of the aggregates was kept constant for concrete production. Fig 4.1 

demonstrates the gradation curves of the each aggregate and aggregate mix in 

comparison to reference curves (A16, B16, and C16). Moreover, fuller‟s parabola 

was also considered for grading. Fuller‟s parabola expressed by Eq. 3.1.  



68 
 

max

100
d

d
dp i

i                                                                                                (4.1) 

Where 

idp  is percent passing from sieve size of “i” 

di is sieve size 

dmax is the maximum aggregate size (16 mm for this study) 

Figure 4.1. Gradation curves of aggregates 

 

The particle size gradation obtained through the sieve analysis and physical 

properties of the fine and coarse aggregates are presented in Table 4.4 
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Table 4.4 Sieve analysis and physical properties of aggregate. 

 

Sieve Analysis 

Sieve size (mm) Passing % 

Crushed limestone  Crushed sand  

16 100 100 

8 64.36 100 

4 3.01 94.58 

2 0.78 59.91 

1 0.78 41.74 

0.5 0.78 27.11 

0.25 0.78 19.07 

Pan 0 0 

Spec. Grav. 2.65 2.65 

4.1.2.5 Superplasticizer 

A sulphonated naphthalene formaldehyde superplasticizer (SP) with a specific 

gravity of 1.19 was used in all mixtures. The properties of superplasticizer are given 

in Table 4.5 as reported by the local supplier. 
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Table 4.5 Properties of superplasticizer 

 

4.1.3 Mix proportions 

As shown in Table 4.6 the four concrete mixes were designed 

 

Table 4.6 Designation and composition properties of mixes 

No. Mix Designation Cement (CEM I 42.5 R type ) Fly Ash Silica fume 

1 Plain F0S0 100 % 0 % 0 % 

2 Binary F10S0 90 % 10% 0 % 

3 Binary F0S15 85 % 0 % 15% 

4 Ternary F15S10 75 % 15% 10% 

The letter “FA” and “SF” were used to indicate replacement levels of fly ash and 

silica fume, respectively. The mixtures were designed at 0.45 water/binder ratios 

(w/b). In codification of concretes. The w/b ratio was 0.45 and the total cementitious 

materials content was 400 kg/m
3
. In the production of the concretes. 

The mixture S0F0 in Table 4.7 was designated as the control mixture which 

included only ordinary Portland cement as the binder while the remaining mixtures 

incorporated binary (PC+FA, PC+SF) ternary (PC+FA+ SF) cementitious blends in 

Properties Superplasticizer 

Name Daracem 200 

Color tone  Dark brown  

State  Liquid 

Specific gravity  1.19 

Chemical description  sulphonated naphthalene formaldehyde 

Recommended dosage  % 1-2 (% binder content)  
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which a proportion of portland cement was replaced with the mineral admixtures. 

The replacement ratios for both FA and SF were 10 and 15% by weight of the total 

binder. When preparing binary and ternary mixtures, FA and SF were replaced by 

cement according to the specified replacement.  

 

Table 4.7 Mix proportions for concrete (kg/m
3
) 

Mix  Description SF0FA0 SF0FA10 SF15FA0 SF15FA10 

Cement 400 360 340 300 

FA 0 40 0 40 

SF 0 0 60 60 

Water 180 180 180 180 

Fine Aggregate 970.8 962.9 957.3 949.8 

Coarse aggregate 

(Medium only) 
812.7 806.0 801.3 795.1 

Superplasticiser 4.4 3.2 8.0 6.4 

Fresh unit weight 

(kg/ ) 
2367.9 2352.1 2346.7 2331.3 

 

4.1.4 Specimen Preparation and Curing 

All concretes were mixed in accordance with ASTM C192 standard in a power 

driven rotating pan mixer with a 50 l capacity. All samples were poured into the 

steel moulds in two layers, each of which being vibrated for a couple of seconds. 

After casting the moulded specimens were protected with a plastic sheet and left in 

the casting room for 24 hr. Thereafter, the samples of compressive strength were 

demolded and cured in water until the testing ages. 
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4.1.4 Test methods 

4.1.4.1 Compressive strength 

For compressive strength measurement of concretes, 150x150x150 mm cubes was 

tested according to ASTM C39 (2012) by means of a 3000 kN capacity testing 

machine. The test was performed on the test specimens at the ages 28 days to 

monitor the compressive strength development. The compressive strength was 

computed from average of three specimens at each testing age. 

4.1.4.2 Drying shrinkage and weight loss 

Free shrinkage test specimens having a dimension of 70x70x280 mm for each 

mixture were cured for 24 h at 20 
o
C and 100% relative humidity and then were 

demoulded. After that, the specimens were exposed to drying in a humidity cabinet 

at 23 ± 2 
o
C and 50 ± 5% relative humidity, as per ASTM C157 for about 40 days. 

The length change was measured by means of a dial gage extensometer with a 200 

mm gage length. The shape of the shrinkage specimens as well as the location of the 

reference pins are shown in Fig. 3.16. Measurements were carried out every 24 h for 

the first 3 weeks and then 3 times a week. At the same time, weight loss 

measurements were also performed on the same specimens. Variations in the free 

shrinkage strain and the weight loss were monitored during the 41-day drying period 

(at 23 ± 2 
o
C and 50 ± 5% relative humidity) and the average of three prism 

specimens were used for each property. 

 

Figure 4.1 Free shrinkage specimens 
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4.2 Discussion of results 

Free shrinkage strain developments of the concretes are depicted in Fig. 4.2; it can 

be observed that Mix containing SF15FA10 showed higher shrinkage than the other 

mixtures. The highest shrinkage in SF15FA10 mix in the age of 40 days is found 

515 microstrain. The lowest shrinkage in SF0FA10 mix at the age 40 days is found 

to be lower than those in control mixture.  

 

Figure 4.2 Shrinkage of concretes over 40 days of drying period 

 

Weight losses of the concretes for 40 days of drying period are illustrated in Fig. 4.3. 

The maximum weight loss of 3.15 % was observed in SF15FA10 concrete while the 

minimum was observed at control concrete as 2.2.  
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Figure 4.3 Weight loss of concrete  

 

Fig. 4.4 shows the compressive strength values of concrete, the maximum value 

observed in FA0SF15 the figure indicated that there was an increase in compressive 

strength with the increase in SF content. While added FA to concrete mixes, 

compressive strength systematically decreases.  

 

 

Figure 4.4 Compressive strength of concrete 
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Figure 4.5 shows the tendencies of the shrinkage values obtained from experimental 

study and proposed prediction models.  

 

Figure 4.5 Comparison between proposed model and experimental drying shrinkage 

values  

Although both of the models showed similar trends to that of experimental study, the 

best performance seemed to be obtained for SF0FA10 concrete. However, for 

SF15FA0 concrete GEP indicated a diverging trend. Similarly for SF15FA10 

concrete group, GEP indicated clearly hier predication performance. Nevertheless, 

NN model illustrated almost prefect estimation capability for all four types of 

concrete  
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CHAPTER 5 

CONCLUSIONS 

Based on the mathematical modeling and experimental results reported in this thesis, 

the following conclusions can be drawn: 

 Numerical modeling of shrinkage of concrete containing mineral 

admixtures was conducted using neural network (NN) and gene 

expression programming (GEP). To this aim, available experimental data 

presented in the existing literature were used to derive those models. In 

order to evaluate their efficiency and advantages, the performance of the 

proposed models was compared to that provided by the collected data in 

the previous studies. 

 The prediction model for shrinkage estimation of the concretes produced 

with fly ash and silica fume can efficiently be constructed using NN. The 

constructed NN model showed a good performance on both training and 

testing data sets.  

 A comparison with the existing analytical modeling for the collected data 

referred that the NN models provide better prediction results than the 

GEP model. The errors obtained from GEP model were very high 

especially for SF incorporated concrete  

 The accuracy of the proposed models is found to be good enough to be 

utilized for prediction purposes. 

 Experimental study indicated that utilization of mineral admixtures 

affected the shrinkage behaviors of concretes significantly. The highest 

shrinkage strain development was observed for SF15FA10 concrete. 

However, SF0FA10 concrete demonstrated the lowest trend. It could be 

due to the fact that FA has low pozzolanic reactivity, and hence 

autogenous shrinkage at early ages is low. Control concrete (0% FA, 0% 

SF) and SF15FA0 concrete indicated almost similar behaviour in 

shrinkage strain development. 
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 The .highest compressive strength value at the end of 28 days of curing 

was observed for FA0SF15 concrete. The improvement of concrete was 

due to high pozzolanic reaction of SF and its micro filling effect. 

 The comparison of the shrinkage value obtained from the proposed 

models with the observed experimental results of this thesis proved that 

NN model can reliably be utilized for prediction purpose. However, GEP 

model yielded overestimated result for all four types of concrete  
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APPENDIX 

Appendix A 

Input and output databases 

Table A.1 database from Zhang et al 

D
a

ta
 S

o
u

rc
e
 

N
u

m
b

er
 

INPUT OUTPUT 

X1 X2 X3 X4 X5 X6 X7 X8 Y 

w/b SF    

(Kg/m3) 

FA    

(Kg/m3) 

cement  

(kg/m3) 

Aggregate/ 

Binder 

fc Mpa 

(28Day) 

150 

x150  

Auto : 0           

dry or 

free :1 

Dry 

Time 

(DAYS) 

Shrinkage 

Z
h

a
n

g
 e

t 
a

l 
(2

0
0
3

) 
 

1 0.27 0 0 496 3.70 77.94 0 1 37 

2 0.27 0 0 496 3.70 77.94 0 7 100 

3 0.27 0 0 496 3.70 77.94 0 14 129 

4 0.27 0 0 496 3.70 77.94 0 21 139 

5 0.27 0 0 496 3.70 77.94 0 28 148 

6 0.27 0 0 496 3.70 77.94 0 35 157 

7 0.27 0 0 496 3.70 77.94 0 42 163 

8 0.27 0 0 496 3.70 77.94 0 49 168 

9 0.27 0 0 496 3.70 77.94 0 56 173 

10 0.27 0 0 496 3.70 77.94 0 63 177 

11 0.27 0 0 496 3.70 77.94 0 70 181 

12 0.27 0 0 496 3.70 77.94 0 77 186 

13 0.27 0 0 496 3.70 77.94 0 84 190 

14 0.27 0 0 496 3.70 77.94 0 91 195 

15 0.27 0 0 496 3.70 77.94 0 98 197 

16 0.27 25 0 471 3.64 82.08 0 1 79 

17 0.27 25 0 471 3.64 82.08 0 7 170 

18 0.27 25 0 471 3.64 82.08 0 14 195 

19 0.27 25 0 471 3.64 82.08 0 21 207 

20 0.27 25 0 471 3.64 82.08 0 28 216 

21 0.27 25 0 471 3.64 82.08 0 35 224 

22 0.27 25 0 471 3.64 82.08 0 42 229 

23 0.27 25 0 471 3.64 82.08 0 49 231 

24 0.27 25 0 471 3.64 82.08 0 56 238 

25 0.27 25 0 471 3.64 82.08 0 63 243 

26 0.27 25 0 471 3.64 82.08 0 70 246 

27 0.27 25 0 471 3.64 82.08 0 77 252 
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Table A.1 (continued) 

D
a

ta
 S

o
u

rc
e 

N
u

m
b

er
 

INPUT OUTPUT 

X1 X2 X3 X4 X5 X6 X7 X8 Y 

w/b SF    

(Kg/m3) 

FA    

(Kg/m3) 

cement  

(kg/m3) 

Aggregate/ 

Binder 

fc Mpa 

(28Day) 

150 

x150  

Auto : 0           

dry or 

free :1 

Dry 

Time 

(DAYS) 

Shrinkage 

Z
h

a
n

g
 e

t 
a

l 
(2

0
0
3

) 

28 0.27 25 0 471 3.64 82.08 0 84 255 

29 0.27 25 0 471 3.64 82.08 0 91 262 

30 0.27 25 0 471 3.64 82.08 0 98 265 

31 0.27 50 0 446 3.62 86.94 0 1 79 

32 0.27 50 0 446 3.62 86.94 0 7 172 

33 0.27 50 0 446 3.62 86.94 0 14 220 

34 0.27 50 0 446 3.62 86.94 0 21 241 

35 0.27 50 0 446 3.62 86.94 0 28 253 

36 0.27 50 0 446 3.62 86.94 0 35 260 

37 0.27 50 0 446 3.62 86.94 0 42 263 

38 0.27 50 0 446 3.62 86.94 0 49 264 

39 0.27 50 0 446 3.62 86.94 0 56 268 

40 0.27 50 0 446 3.62 86.94 0 63 269 

41 0.27 50 0 446 3.62 86.94 0 70 270 

42 0.27 50 0 446 3.62 86.94 0 77 272 

43 0.27 50 0 446 3.62 86.94 0 84 274 

44 0.27 50 0 446 3.62 86.94 0 91 280 

45 0.27 50 0 446 3.62 86.94 0 98 282 

46 0.3 0 0 497 3.60 63.09 0 1 38 

47 0.3 0 0 497 3.60 63.09 0 7 88 

48 0.3 0 0 497 3.60 63.09 0 14 116 

49 0.3 0 0 497 3.60 63.09 0 21 124 

50 0.3 0 0 497 3.60 63.09 0 28 135 

51 0.3 0 0 497 3.60 63.09 0 35 140 

52 0.3 0 0 497 3.60 63.09 0 42 145 

53 0.3 0 0 497 3.60 63.09 0 49 150 

54 0.3 0 0 497 3.60 63.09 0 56 154 

55 0.3 0 0 497 3.60 63.09 0 63 158 

56 0.3 0 0 497 3.60 63.09 0 70 164 

57 0.3 0 0 497 3.60 63.09 0 77 167 

58 0.3 0 0 497 3.60 63.09 0 84 171 

59 0.3 0 0 497 3.60 63.09 0 91 177 

60 0.3 0 0 497 3.60 63.09 0 98 181 
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Table A.1 (continued) 

D
a

ta
 S

o
u

rc
e 

N
u

m
b

er
 

INPUT OUTPUT 

X1 X2 X3 X4 X5 X6 X7 X8 Y 

w/b SF    

(Kg/m3) 

FA    

(Kg/m3) 

cement  

(kg/m3) 

Aggregate/ 

Binder 

fc Mpa 

(28Day) 

150 

x150  

Auto : 0           

dry or 

free :1 

Dry 

Time 

(DAYS) 

Shrinkage 

Z
h

a
n

g
 e

t 
a

l 
(2

0
0
3

) 

61 0.3 25 0 472 3.54 75.33 0 1 57 

62 0.3 25 0 472 3.54 75.33 0 7 148 

63 0.3 25 0 472 3.54 75.33 0 14 173 

64 0.3 25 0 472 3.54 75.33 0 21 184 

65 0.3 25 0 472 3.54 75.33 0 28 191 

66 0.3 25 0 472 3.54 75.33 0 35 195 

67 0.3 25 0 472 3.54 75.33 0 42 200 

68 0.3 25 0 472 3.54 75.33 0 49 202 

69 0.3 25 0 472 3.54 75.33 0 56 204 

70 0.3 25 0 472 3.54 75.33 0 63 207 

71 0.3 25 0 472 3.54 75.33 0 70 209 

72 0.3 25 0 472 3.54 75.33 0 77 211 

73 0.3 25 0 472 3.54 75.33 0 84 212 

74 0.3 25 0 472 3.54 75.33 0 91 213 

75 0.3 25 0 472 3.54 75.33 0 98 217 

76 0.3 50 0 447 3.52 81.99 0 1 55 

77 0.3 50 0 447 3.52 81.99 0 7 158 

78 0.3 50 0 447 3.52 81.99 0 14 211 

79 0.3 50 0 447 3.52 81.99 0 21 236 

80 0.3 50 0 447 3.52 81.99 0 28 252 

81 0.3 50 0 447 3.52 81.99 0 35 258 

82 0.3 50 0 447 3.52 81.99 0 42 262 

83 0.3 50 0 447 3.52 81.99 0 49 263 

84 0.3 50 0 447 3.52 81.99 0 56 264 

85 0.3 50 0 447 3.52 81.99 0 63 266 

86 0.3 50 0 447 3.52 81.99 0 70 267 

87 0.3 50 0 447 3.52 81.99 0 77 269 

88 0.3 50 0 447 3.52 81.99 0 84 270 

89 0.3 50 0 447 3.52 81.99 0 91 272 

90 0.3 50 0 447 3.52 81.99 0 98 274 

91 0.35 0 0 498 3.50 57.33 0 14 40 

92 0.35 0 0 498 3.50 57.33 0 21 40 

93 0.35 0 0 498 3.50 57.33 0 28 40 
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Table A.1 (continued) 

D
a

ta
 S

o
u

rc
e 

N
u

m
b

er
 

INPUT OUTPUT 

X1 X2 X3 X4 X5 X6 X7 X8 Y 

w/b SF    

(Kg/m3) 

FA    

(Kg/m3) 

cement  

(kg/m3) 

Aggregate/ 

Binder 

fc Mpa 

(28Day) 

150 

x150  

Auto : 0           

dry or 

free :1 

Dry 

Time 

(DAYS) 

Shrinkage 

Z
h

a
n

g
 e

t 
a

l 
(2

0
0
3

) 

94 0.35 0 0 498 3.50 57.33 0 35 40 

95 0.35 0 0 498 3.50 57.33 0 42 40 

96 0.35 0 0 498 3.50 57.33 0 49 40 

97 0.35 0 0 498 3.50 57.33 0 56 40 

98 0.35 0 0 498 3.50 57.33 0 63 40 

99 0.35 0 0 498 3.50 57.33 0 70 40 

100 0.35 0 0 498 3.50 57.33 0 77 40 

101 0.35 0 0 498 3.50 57.33 0 84 40 

102 0.35 0 0 498 3.50 57.33 0 91 40 

103 0.35 0 0 498 3.50 57.33 0 98 40 

104 0.35 25 0 473 3.40 63.27 0 1 37 

105 0.35 25 0 473 3.40 63.27 0 7 100 

106 0.35 25 0 473 3.40 63.27 0 14 127 

107 0.35 25 0 473 3.40 63.27 0 21 140 

108 0.35 25 0 473 3.40 63.27 0 28 151 

109 0.35 25 0 473 3.40 63.27 0 35 160 

110 0.35 25 0 473 3.40 63.27 0 42 168 

111 0.35 25 0 473 3.40 63.27 0 49 174 

112 0.35 25 0 473 3.40 63.27 0 56 180 

113 0.35 25 0 473 3.40 63.27 0 63 183 

114 0.35 25 0 473 3.40 63.27 0 70 192 

115 0.35 25 0 473 3.40 63.27 0 77 200 

116 0.35 25 0 473 3.40 63.27 0 84 205 

117 0.35 25 0 473 3.40 63.27 0 91 210 

118 0.35 25 0 473 3.40 63.27 0 98 216 

119 0.35 50 0 447 3.38 67.68 0 1 32 

120 0.35 50 0 447 3.38 67.68 0 7 114 

121 0.35 50 0 447 3.38 67.68 0 14 159 

122 0.35 50 0 447 3.38 67.68 0 21 180 

123 0.35 50 0 447 3.38 67.68 0 28 196 

124 0.35 50 0 447 3.38 67.68 0 35 206 

125 0.35 50 0 447 3.38 67.68 0 42 212 

126 0.35 50 0 447 3.38 67.68 0 49 216 
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Table A.1 (continued) 

D
a

ta
 S

o
u

rc
e 

N
u

m
b

er
 

INPUT OUTPUT 

X1 X2 X3 X4 X5 X6 X7 X8 Y 

w/b SF    

(Kg/m3) 

FA    

(Kg/m3) 

cement  

(kg/m3) 

Aggregate/ 

Binder 

fc Mpa 

(28Day) 

150 

x150  

Auto :0           

dry or 

free :1 

Dry 

Time 

(DAYS) 

Shrinkage 

Z
h

a
n

g
 e

t 
a

l 
(2

0
0
3

) 

127 0.35 50 0 447 3.38 67.68 0 56 221 

128 0.35 50 0 447 3.38 67.68 0 63 227 

129 0.35 50 0 447 3.38 67.68 0 70 233 

130 0.35 50 0 447 3.38 67.68 0 77 237 

131 0.35 50 0 447 3.38 67.68 0 84 241 

132 0.35 50 0 447 3.38 67.68 0 91 246 

133 0.35 50 0 447 3.38 67.68 0 98 250 

134 0.27 0 0 496 3.70 77.94 1 14 100 

135 0.27 0 0 496 3.70 77.94 1 21 144 

136 0.27 0 0 496 3.70 77.94 1 28 174 

137 0.27 0 0 496 3.70 77.94 1 35 184 

138 0.27 0 0 496 3.70 77.94 1 42 215 

139 0.27 0 0 496 3.70 77.94 1 49 226 

140 0.27 0 0 496 3.70 77.94 1 56 242 

141 0.27 0 0 496 3.70 77.94 1 63 242 

142 0.27 0 0 496 3.70 77.94 1 70 258 

143 0.27 0 0 496 3.70 77.94 1 77 266 

144 0.27 0 0 496 3.70 77.94 1 84 269 

145 0.27 0 0 496 3.70 77.94 1 91 276 

146 0.27 0 0 496 3.70 77.94 1 98 281 

147 0.27 25 0 471 3.64 82.08 1 14 109 

148 0.27 25 0 471 3.64 82.08 1 21 145 

149 0.27 25 0 471 3.64 82.08 1 28 156 

150 0.27 25 0 471 3.64 82.08 1 35 163 

151 0.27 25 0 471 3.64 82.08 1 42 200 

152 0.27 25 0 471 3.64 82.08 1 49 209 

153 0.27 25 0 471 3.64 82.08 1 56 219 

154 0.27 25 0 471 3.64 82.08 1 63 238 

155 0.27 25 0 471 3.64 82.08 1 70 238 

156 0.27 25 0 471 3.64 82.08 1 77 259 

157 0.27 25 0 471 3.64 82.08 1 84 260 

158 0.27 25 0 471 3.64 82.08 1 91 277 

159 0.27 25 0 471 3.64 82.08 1 98 277 
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Table A.1 (continued) 

D
a

ta
 S

o
u

rc
e 

N
u

m
b

er
 

INPUT OUTPUT 

X1 X2 X3 X4 X5 X6 X7 X8 Y 

w/b SF    

(Kg/m3) 

FA    

(Kg/m3) 

cement  

(kg/m3) 

Aggregate/ 

Binder 

fc Mpa 

(28Day) 

150 x150  

Auto :0           

dry or 

free :1 

Dry 

Time 

(DAYS) 

Shrinkage 

Z
h

a
n

g
 e

t 
a

l 
(2

0
0
3

) 

160 0.27 50 0 446 3.62 86.94 1 14 136 

161 0.27 50 0 446 3.62 86.94 1 21 177 

162 0.27 50 0 446 3.62 86.94 1 28 192 

163 0.27 50 0 446 3.62 86.94 1 35 231 

164 0.27 50 0 446 3.62 86.94 1 42 236 

165 0.27 50 0 446 3.62 86.94 1 49 243 

166 0.27 50 0 446 3.62 86.94 1 56 251 

167 0.27 50 0 446 3.62 86.94 1 63 251 

168 0.27 50 0 446 3.62 86.94 1 70 277 

169 0.27 50 0 446 3.62 86.94 1 77 277 

170 0.27 50 0 446 3.62 86.94 1 84 292 

171 0.27 50 0 446 3.62 86.94 1 91 295 

172 0.27 50 0 446 3.62 86.94 1 98 300 

173 0.3 0 0 497 3.60 63.09 1 14 110 

174 0.3 0 0 497 3.60 63.09 1 21 174 

175 0.3 0 0 497 3.60 63.09 1 28 197 

176 0.3 0 0 497 3.60 63.09 1 35 219 

177 0.3 0 0 497 3.60 63.09 1 42 231 

178 0.3 0 0 497 3.60 63.09 1 49 252 

179 0.3 0 0 497 3.60 63.09 1 56 274 

180 0.3 0 0 497 3.60 63.09 1 63 274 

181 0.3 0 0 497 3.60 63.09 1 70 292 

182 0.3 0 0 497 3.60 63.09 1 77 292 

183 0.3 0 0 497 3.60 63.09 1 84 300 

184 0.3 0 0 497 3.60 63.09 1 91 306 

185 0.3 0 0 497 3.60 63.09 1 98 306 

186 0.3 25 0 472 3.54 75.33 1 14 109 

187 0.3 25 0 472 3.54 75.33 1 21 168 

188 0.3 25 0 472 3.54 75.33 1 28 168 

189 0.3 25 0 472 3.54 75.33 1 35 184 

190 0.3 25 0 472 3.54 75.33 1 42 200 

191 0.3 25 0 472 3.54 75.33 1 49 217 

192 0.3 25 0 472 3.54 75.33 1 56 217 
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Table A.1 (continued) 

D
a

ta
 S

o
u

rc
e 

N
u

m
b

er
 

INPUT OUTPUT 

X1 X2 X3 X4 X5 X6 X7 X8 Y 

w/b SF    

(Kg/m3) 

FA    

(Kg/m3) 

cement  

(kg/m3) 

Aggregate/ 

Binder 

fc Mpa 

(28Day) 

150 

x150  

Auto : 0           

dry or 

free :1 

Dry 

Time 

(DAYS) 

Shrinkage 

Z
h

a
n

g
 e

t 
a

l 
(2

0
0
3

) 

193 0.3 25 0 472 3.54 75.33 1 63 236 

194 0.3 25 0 472 3.54 75.33 1 70 236 

195 0.3 25 0 472 3.54 75.33 1 77 258 

196 0.3 25 0 472 3.54 75.33 1 84 258 

197 0.3 25 0 472 3.54 75.33 1 91 288 

198 0.3 25 0 472 3.54 75.33 1 98 288 

199 0.3 50 0 447 3.52 81.99 1 14 143 

200 0.3 50 0 447 3.52 81.99 1 21 216 

201 0.3 50 0 447 3.52 81.99 1 28 237 

202 0.3 50 0 447 3.52 81.99 1 35 256 

203 0.3 50 0 447 3.52 81.99 1 42 272 

204 0.3 50 0 447 3.52 81.99 1 49 286 

205 0.3 50 0 447 3.52 81.99 1 56 277 

206 0.3 50 0 447 3.52 81.99 1 63 295 

207 0.3 50 0 447 3.52 81.99 1 70 295 

208 0.3 50 0 447 3.52 81.99 1 77 330 

209 0.3 50 0 447 3.52 81.99 1 84 330 

210 0.3 50 0 447 3.52 81.99 1 91 346 

211 0.3 50 0 447 3.52 81.99 1 98 349 

212 0.35 0 0 498 3.50 57.33 1 14 158 

213 0.35 0 0 498 3.50 57.33 1 21 216 

214 0.35 0 0 498 3.50 57.33 1 28 256 

215 0.35 0 0 498 3.50 57.33 1 35 281 

216 0.35 0 0 498 3.50 57.33 1 42 294 

217 0.35 0 0 498 3.50 57.33 1 49 326 

218 0.35 0 0 498 3.50 57.33 1 56 335 

219 0.35 0 0 498 3.50 57.33 1 63 348 

220 0.35 0 0 498 3.50 57.33 1 70 355 

221 0.35 0 0 498 3.50 57.33 1 77 365 

222 0.35 0 0 498 3.50 57.33 1 84 366 

223 0.35 0 0 498 3.50 57.33 1 91 377 

224 0.35 0 0 498 3.50 57.33 1 98 390 

225 0.35 25 0 473 3.40 63.27 1 14 128 
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Table A.1 (continued) 

D
a

ta
 S

o
u

rc
e 

N
u

m
b

er
 

INPUT OUTPUT 

X1 X2 X3 X4 X5 X6 X7 X8 Y 

w/b SF    

(Kg/m3) 

FA    

(Kg/m3) 

cement  

(kg/m3) 

Aggregate/ 

Binder 

fc Mpa 

(28Day) 

150 

x150  

Auto : 0           

dry or 

free :1 

Dry 

Time 

(DAYS) 

Shrinkage 

Z
h

a
n

g
 e

t 
a

l 
(2

0
0
3

) 

226 0.35 25 0 473 3.40 63.27 1 21 188 

227 0.35 25 0 473 3.40 63.27 1 28 208 

228 0.35 25 0 473 3.40 63.27 1 35 242 

229 0.35 25 0 473 3.40 63.27 1 42 272 

230 0.35 25 0 473 3.40 63.27 1 49 288 

231 0.35 25 0 473 3.40 63.27 1 56 288 

232 0.35 25 0 473 3.40 63.27 1 63 294 

233 0.35 25 0 473 3.40 63.27 1 70 294 

234 0.35 25 0 473 3.40 63.27 1 77 322 

235 0.35 25 0 473 3.40 63.27 1 84 325 

236 0.35 25 0 473 3.40 63.27 1 91 330 

237 0.35 25 0 473 3.40 63.27 1 98 344 

238 0.35 50 0 447 3.38 67.68 1 14 136 

239 0.35 50 0 447 3.38 67.68 1 21 195 

240 0.35 50 0 447 3.38 67.68 1 28 222 

241 0.35 50 0 447 3.38 67.68 1 35 243 

242 0.35 50 0 447 3.38 67.68 1 42 261 

243 0.35 50 0 447 3.38 67.68 1 49 272 

244 0.35 50 0 447 3.38 67.68 1 56 272 

245 0.35 50 0 447 3.38 67.68 1 63 285 

246 0.35 50 0 447 3.38 67.68 1 70 285 

247 0.35 50 0 447 3.38 67.68 1 77 310 

248 0.35 50 0 447 3.38 67.68 1 84 300 

249 0.35 50 0 447 3.38 67.68 1 91 328 

250 0.35 50 0 447 3.38 67.68 1 98 344 
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Table A.2 database from Wongkeo et al 

D
a

ta
 S

o
u

rc
e 

N
u

m
b

er
 

INPUT OUTPUT 

X1 X2 X3 X4 X5 X6 X7 X8 Y 

w/b SF    

(Kg/m3) 

FA    

(Kg/m3) 

cement  

(kg/m3) 

Aggregate/ 

Binder 

fc Mpa 

(28Day) 

150 

x150  

Auto : 0 

dry or 

free :1 

Dry 

Time 

DAYS 

Shrinkage 

W
o

n
g
k

eo
 e

t 
a
l 

(2
0

1
2

) 

1 0.49 0 0 538 2.75 50.45 1 7 167 

2 0.49 0 0 538 2.75 50.45 1 14 187 

3 0.49 0 0 538 2.75 50.45 1 21 200 

4 0.49 0 0 538 2.75 50.45 1 28 212 

5 0.49 0 0 538 2.75 50.45 1 35 218 

6 0.49 0 0 538 2.75 50.45 1 42 217 

7 0.49 0 0 538 2.75 50.45 1 49 212 

8 0.49 0 0 538 2.75 50.45 1 56 217 

9 0.49 0 0 538 2.75 50.45 1 63 231 

10 0.49 0 0 538 2.75 50.45 1 70 240 

11 0.49 0 0 538 2.75 50.45 1 77 250 

12 0.49 0 0 538 2.75 50.45 1 84 261 

13 0.49 0 0 538 2.75 50.45 1 91 265 

14 0.49 0 269 269 2.64 29.05 1 7 93 

15 0.49 0 269 269 2.64 29.05 1 14 106 

16 0.49 0 269 269 2.64 29.05 1 21 118 

17 0.49 0 269 269 2.64 29.05 1 28 128 

18 0.49 0 269 269 2.64 29.05 1 35 136 

19 0.49 0 269 269 2.64 29.05 1 42 127 

20 0.49 0 269 269 2.64 29.05 1 49 112 

21 0.49 0 269 269 2.64 29.05 1 56 122 

22 0.49 0 269 269 2.64 29.05 1 63 130 

23 0.49 0 269 269 2.64 29.05 1 70 137 

24 0.49 0 269 269 2.64 29.05 1 77 142 

25 0.49 0 269 269 2.64 29.05 1 84 148 

26 0.49 0 269 269 2.64 29.05 1 91 153 

27 0.49 27 242 269 2.64 37.25 1 7 131 

28 0.49 27 242 269 2.64 37.25 1 14 143 

29 0.49 27 242 269 2.64 37.25 1 21 155 

30 0.49 27 242 269 2.64 37.25 1 28 164 

31 0.49 27 242 269 2.64 37.25 1 35 173 

32 0.49 27 242 269 2.64 37.25 1 42 165 

33 0.49 27 242 269 2.64 37.25 1 49 155 
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Table A.2 (continued) 

D
a

ta
 S

o
u

rc
e 

N
u

m
b

er
 

INPUT OUTPUT 

X1 X2 X3 X4 X5 X6 X7 X8 Y 

w/b SF    

(Kg/m3) 

FA    

(Kg/m3) 

cement  

(kg/m3) 

Aggregate 

/ 

Binder 

fc Mpa 

(28Day) 

150 

x150  

Auto : 0           

dry or 

free :1 

Dry 

Time 

DAYS 

Shrinkage 

W
o

n
g
k

eo
 e

t 
a
l 

(2
0

1
2

) 

34 0.49 27 242 269 2.64 37.25 1 56 169 

35 0.49 27 242 269 2.64 37.25 1 63 173 

36 0.49 27 242 269 2.64 37.25 1 70 181 

37 0.49 27 242 269 2.64 37.25 1 77 190 

38 0.49 27 242 269 2.64 37.25 1 84 200 

39 0.49 27 242 269 2.64 37.25 1 91 208 

40 0.49 54 215 269 2.64 44.05 1 7 150 

41 0.49 54 215 269 2.64 44.05 1 14 162 

42 0.49 54 215 269 2.64 44.05 1 21 173 

43 0.49 54 215 269 2.64 44.05 1 28 184 

44 0.49 54 215 269 2.64 44.05 1 35 192 

45 0.49 54 215 269 2.64 44.05 1 42 186 

46 0.49 54 215 269 2.64 44.05 1 49 173 

47 0.49 54 215 269 2.64 44.05 1 56 184 

48 0.49 54 215 269 2.64 44.05 1 63 192 

49 0.49 54 215 269 2.64 44.05 1 70 205 

50 0.49 54 215 269 2.64 44.05 1 77 214 

51 0.49 54 215 269 2.64 44.05 1 84 221 

52 0.49 54 215 269 2.64 44.05 1 91 231 

53 0.49 0 0 538 2.75 56.84 1 7 597 

54 0.49 0 0 538 2.75 56.84 1 14 661 

55 0.49 0 0 538 2.75 56.84 1 21 683 

56 0.49 0 0 538 2.75 56.84 1 28 714 

57 0.49 0 0 538 2.75 56.84 1 35 701 

58 0.49 0 0 538 2.75 56.84 1 42 702 

59 0.49 0 0 538 2.75 56.84 1 49 782 

60 0.49 0 0 538 2.75 56.84 1 56 838 

61 0.49 0 0 538 2.75 56.84 1 63 861 

62 0.49 0 0 538 2.75 56.84 1 70 883 

63 0.49 0 0 538 2.75 56.84 1 77 906 

64 0.49 0 0 538 2.75 56.84 1 84 944 

65 0.49 0 0 538 2.75 56.84 1 91 974 

66 0.49 0 269 269 2.64 35.13 1 7 507 
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Table A.2 (continued) 

D
a

ta
 S

o
u

rc
e 

N
u

m
b

er
 

INPUT OUTPUT 

X1 X2 X3 X4 X5 X6 X7 X8 Y 

w/b SF    

(Kg/m3) 

FA    

(Kg/m3) 

cement  

(kg/m3) 

Aggregate/ 

Binder 

fc Mpa 

(28Day) 

150 

x150  

Auto : 0           

dry or 

free :1 

Dry 

Time 

DAYS 

Shrinkage 

W
o

n
g
k

eo
 e

t 
a
l 

(2
0

1
2

) 

67 0.49 0 269 269 2.64 35.13 1 14 536 

68 0.49 0 269 269 2.64 35.13 1 21 565 

69 0.49 0 269 269 2.64 35.13 1 28 582 

70 0.49 0 269 269 2.64 35.13 1 35 573 

71 0.49 0 269 269 2.64 35.13 1 42 612 

72 0.49 0 269 269 2.64 35.13 1 49 670 

73 0.49 0 269 269 2.64 35.13 1 56 714 

74 0.49 0 269 269 2.64 35.13 1 63 721 

75 0.49 0 269 269 2.64 35.13 1 70 763 

76 0.49 0 269 269 2.64 35.13 1 77 797 

77 0.49 0 269 269 2.64 35.13 1 84 830 

78 0.49 0 269 269 2.64 35.13 1 91 839 

79 0.49 27 242 269 2.64 48.55 1 7 676 

80 0.49 27 242 269 2.64 48.55 1 14 729 

81 0.49 27 242 269 2.64 48.55 1 21 751 

82 0.49 27 242 269 2.64 48.55 1 28 778 

83 0.49 27 242 269 2.64 48.55 1 35 744 

84 0.49 27 242 269 2.64 48.55 1 42 736 

85 0.49 27 242 269 2.64 48.55 1 49 779 

86 0.49 27 242 269 2.64 48.55 1 56 861 

87 0.49 27 242 269 2.64 48.55 1 63 886 

88 0.49 27 242 269 2.64 48.55 1 70 914 

89 0.49 27 242 269 2.64 48.55 1 77 936 

90 0.49 27 242 269 2.64 48.55 1 84 963 

91 0.49 27 242 269 2.64 48.55 1 91 968 

92 0.49 54 215 269 2.64 57.98 1 7 691 

93 0.49 54 215 269 2.64 57.98 1 14 759 

94 0.49 54 215 269 2.64 57.98 1 21 767 

95 0.49 54 215 269 2.64 57.98 1 28 861 

96 0.49 54 215 269 2.64 57.98 1 35 800 

97 0.49 54 215 269 2.64 57.98 1 42 800 

98 0.49 54 215 269 2.64 57.98 1 49 845 

99 0.49 54 215 269 2.64 57.98 1 56 895 
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Table A.2 (continued) 

D
a

ta
 S

o
u

rc
e 

N
u

m
b

er
 

INPUT OUTPUT 

X1 X2 X3 X4 X5 X6 X7 X8 Y 

w/b SF    

(Kg/m3) 

FA    

(Kg/m3) 

cement  

(kg/m3) 

Aggregate/ 

Binder 

fc Mpa 

(28Day) 

150 

x150  

Auto :0  

dry or 

free :1 

Dry 

Time 

DAYS 

Shrinkage 

W
o

n
g
k

eo
 e

t 
a
l 

(2
0

1
2

) 

100 0.49 54 215 269 2.64 57.98 1 63 914 

101 0.49 54 215 269 2.64 57.98 1 70 959 

102 0.49 54 215 269 2.64 57.98 1 77 989 

103 0.49 54 215 269 2.64 57.98 1 84 1027 

104 0.49 54 215 269 2.64 57.98 1 91 1035 

105 0.49 0 0 538 2.75 58.13 1 7 695 

106 0.49 0 0 538 2.75 58.13 1 14 814 

107 0.49 0 0 538 2.75 58.13 1 21 918 

108 0.49 0 0 538 2.75 58.13 1 28 936 

109 0.49 0 0 538 2.75 58.13 1 35 973 

110 0.49 0 0 538 2.75 58.13 1 42 964 

111 0.49 0 0 538 2.75 58.13 1 49 955 

112 0.49 0 0 538 2.75 58.13 1 56 968 

113 0.49 0 0 538 2.75 58.13 1 63 986 

114 0.49 0 0 538 2.75 58.13 1 70 998 

115 0.49 0 0 538 2.75 58.13 1 77 1018 

116 0.49 0 0 538 2.75 58.13 1 84 1041 

117 0.49 0 0 538 2.75 58.13 1 91 1059 

118 0.49 0 269 269 2.64 37.5 1 7 523 

119 0.49 0 269 269 2.64 37.5 1 14 586 

120 0.49 0 269 269 2.64 37.5 1 21 655 

121 0.49 0 269 269 2.64 37.5 1 28 691 

122 0.49 0 269 269 2.64 37.5 1 35 718 

123 0.49 0 269 269 2.64 37.5 1 42 706 

124 0.49 0 269 269 2.64 37.5 1 49 700 

125 0.49 0 269 269 2.64 37.5 1 56 718 

126 0.49 0 269 269 2.64 37.5 1 63 727 

127 0.49 0 269 269 2.64 37.5 1 70 746 

128 0.49 0 269 269 2.64 37.5 1 77 777 

129 0.49 0 269 269 2.64 37.5 1 84 818 

130 0.49 0 269 269 2.64 37.5 1 91 826 

131 0.49 27 242 269 2.64 55.63 1 7 641 

132 0.49 27 242 269 2.64 55.63 1 14 695 
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Table A.2 (continued) 

D
a

ta
 S

o
u

rc
e 

N
u

m
b

er
 

INPUT OUTPUT 

X1 X2 X3 X4 X5 X6 X7 X8 Y 

w/b SF    

(Kg/m3) 

FA    

(Kg/m3) 

cement  

(kg/m3) 

Aggregate/ 

Binder 

fc Mpa 

(28Day) 

150 

x150  

Auto :0           

dry or 

free :1 

Dry 

Time 

DAYS 

Shrinkage 

W
o

n
g
k

eo
 e

t 
a
l 

(2
0

1
2

) 

133 0.49 27 242 269 2.64 55.63 1 21 732 

134 0.49 27 242 269 2.64 55.63 1 28 795 

135 0.49 27 242 269 2.64 55.63 1 35 832 

136 0.49 27 242 269 2.64 55.63 1 42 818 

137 0.49 27 242 269 2.64 55.63 1 49 805 

138 0.49 27 242 269 2.64 55.63 1 56 814 

139 0.49 27 242 269 2.64 55.63 1 63 832 

140 0.49 27 242 269 2.64 55.63 1 70 837 

141 0.49 27 242 269 2.64 55.63 1 77 882 

142 0.49 27 242 269 2.64 55.63 1 84 891 

143 0.49 27 242 269 2.64 55.63 1 91 909 

144 0.49 54 215 269 2.64 60 1 7 836 

145 0.49 54 215 269 2.64 60 1 14 950 

146 0.49 54 215 269 2.64 60 1 21 986 

147 0.49 54 215 269 2.64 60 1 28 1000 

148 0.49 54 215 269 2.64 60 1 35 1036 

149 0.49 54 215 269 2.64 60 1 42 1027 

150 0.49 54 215 269 2.64 60 1 49 1009 

151 0.49 54 215 269 2.64 60 1 56 1027 

152 0.49 54 215 269 2.64 60 1 63 1041 

153 0.49 54 215 269 2.64 60 1 70 1050 

154 0.49 54 215 269 2.64 60 1 77 1068 

155 0.49 54 215 269 2.64 60 1 84 1082 

156 0.49 54 215 269 2.64 60 1 91 1100 

157 0.49 0 0 538 2.75 65.95 1 7 500 

158 0.49 0 0 538 2.75 65.95 1 14 564 

159 0.49 0 0 538 2.75 65.95 1 21 615 

160 0.49 0 0 538 2.75 65.95 1 28 653 

161 0.49 0 0 538 2.75 65.95 1 35 664 

162 0.49 0 0 538 2.75 65.95 1 42 662 

163 0.49 0 0 538 2.75 65.95 1 49 655 

164 0.49 0 0 538 2.75 65.95 1 56 645 

165 0.49 0 0 538 2.75 65.95 1 63 645 
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Table A.2 (continued) 

D
a

ta
 S

o
u

rc
e 

N
u

m
b

er
 

INPUT OUTPUT 

X1 X2 X3 X4 X5 X6 X7 X8 Y 

w/b SF    

(Kg/m3) 

FA    

(Kg/m3) 

cement  

(kg/m3) 

Aggregate/ 

Binder 

fc Mpa 

(28Day) 

150 

x150  

 Auto : 

0           

dry or 

free :1 

Dry 

Time 

DAYS 

Shrinkage 

W
o

n
g
k

eo
 e

t 
a
l 

(2
0

1
2

) 

166 0.49 0 0 538 2.75 65.95 1 70 664 

167 0.49 0 0 538 2.75 65.95 1 77 679 

168 0.49 0 0 538 2.75 65.95 1 84 692 

169 0.49 0 0 538 2.75 65.95 1 91 711 

170 0.49 0 269 269 2.64 48.57 1 7 305 

171 0.49 0 269 269 2.64 48.57 1 14 400 

172 0.49 0 269 269 2.64 48.57 1 21 498 

173 0.49 0 269 269 2.64 48.57 1 28 547 

174 0.49 0 269 269 2.64 48.57 1 35 590 

175 0.49 0 269 269 2.64 48.57 1 42 583 

176 0.49 0 269 269 2.64 48.57 1 49 578 

177 0.49 0 269 269 2.64 48.57 1 56 574 

178 0.49 0 269 269 2.64 48.57 1 63 583 

179 0.49 0 269 269 2.64 48.57 1 70 595 

180 0.49 0 269 269 2.64 48.57 1 77 615 

181 0.49 0 269 269 2.64 48.57 1 84 639 

182 0.49 0 269 269 2.64 48.57 1 91 668 

183 0.49 27 242 269 2.64 61.43 1 7 280 

184 0.49 27 242 269 2.64 61.43 1 14 358 

185 0.49 27 242 269 2.64 61.43 1 21 453 

186 0.49 27 242 269 2.64 61.43 1 28 520 

187 0.49 27 242 269 2.64 61.43 1 35 558 

188 0.49 27 242 269 2.64 61.43 1 42 550 

189 0.49 27 242 269 2.64 61.43 1 49 538 

190 0.49 27 242 269 2.64 61.43 1 56 543 

191 0.49 27 242 269 2.64 61.43 1 63 558 

192 0.49 27 242 269 2.64 61.43 1 70 568 

193 0.49 27 242 269 2.64 61.43 1 77 585 

194 0.49 27 242 269 2.64 61.43 1 84 608 

195 0.49 27 242 269 2.64 61.43 1 91 635 

196 0.49 54 215 269 2.64 69.05 1 7 250 

197 0.49 54 215 269 2.64 69.05 1 14 310 

198 0.49 54 215 269 2.64 69.05 1 21 365 
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Table A.2 (continued) 

D
a

ta
 S

o
u

rc
e 

N
u

m
b

er
 

INPUT OUTPUT 

X1 X2 X3 X4 X5 X6 X7 X8 Y 

w/b SF    

(Kg/m3) 

FA    

(Kg/m3) 

cement  

(kg/m3) 

Aggregate/ 

Binder 

fc Mpa 

(28Day) 

150 

x150  

Auto :0           

dry or 

free :1 

Dry 

Time 

DAYS 

Shrinkage 

W
o

n
g
k

eo
 e

t 
a
l 

(2
0

1
2

) 

199 0.49 54 215 269 2.64 69.05 1 28 475 

200 0.49 54 215 269 2.64 69.05 1 35 520 

201 0.49 54 215 269 2.64 69.05 1 42 523 

202 0.49 54 215 269 2.64 69.05 1 49 513 

203 0.49 54 215 269 2.64 69.05 1 56 515 

204 0.49 54 215 269 2.64 69.05 1 63 525 

205 0.49 54 215 269 2.64 69.05 1 70 537 

206 0.49 54 215 269 2.64 69.05 1 77 555 

207 0.49 54 215 269 2.64 69.05 1 84 575 

208 0.49 54 215 269 2.64 69.05 1 91 590 
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Table A.3 database from Yoo et al 

D
a

ta
 S

o
u

rc
e 

N
u

m
b

er
 

INPUT OUTPUT 

X1 X2 X3 X4 X5 X6 X7 X8 Y 

w/b SF    

(Kg/m3) 

FA    

(Kg/m3) 

cement  

(kg/m3) 

Aggregate/ 

Binder 

fc Mpa 

(28Day) 

150 

x150  

Auto :0         

dry or 

free :1 

Dry 

Time 

DAYS 

Shrinkage 

Y
o

o
 e

t 
a

l 
(2

0
1
2

) 

1 0.30 0 0 583 2.68 58.32 0 1 41 

2 0.30 0 0 583 2.68 58.32 0 3 128 

3 0.30 0 0 583 2.68 58.32 0 7 217 

4 0.30 0 0 583 2.68 58.32 0 14 253 

5 0.30 0 0 583 2.68 58.32 0 21 287 

6 0.30 0 0 583 2.68 58.32 0 28 311 

7 0.30 0 0 583 2.68 58.32 0 49 348 

8 0.30 0 88 496 2.62 55.9 0 1 44 

9 0.30 0 88 496 2.62 55.9 0 2 128 

10 0.30 0 88 496 2.62 55.9 0 3 164 

11 0.30 0 88 496 2.62 55.9 0 7 189 

12 0.30 0 88 496 2.62 55.9 0 14 218 

13 0.30 0 88 496 2.62 55.9 0 21 255 

14 0.30 0 88 496 2.62 55.9 0 28 275 

15 0.30 0 88 496 2.62 55.9 0 49 319 

16 0.30 0 175 408 2.57 54.8 0 1 50 

17 0.30 0 175 408 2.57 54.8 0 3 136 

18 0.30 0 175 408 2.57 54.8 0 7 169 

19 0.30 0 175 408 2.57 54.8 0 14 191 

20 0.30 0 175 408 2.57 54.8 0 21 200 

21 0.30 0 175 408 2.57 54.8 0 28 239 

22 0.30 0 175 408 2.57 54.8 0 49 237 

23 0.30 44 0 540 2.65 66 0 1 39 

24 0.30 44 0 540 2.65 66 0 2 111 

25 0.30 44 0 540 2.65 66 0 3 175 

26 0.30 44 0 540 2.65 66 0 7 239 

27 0.30 44 0 540 2.65 66 0 14 264 

28 0.30 44 0 540 2.65 66 0 21 298 

29 0.30 44 0 540 2.65 66 0 28 325 

30 0.30 44 0 540 2.65 66 0 49 375 

31 0.30 88 0 496 2.62 69.2 0 1 50 

32 0.30 88 0 496 2.62 69.2 0 2 139 

33 0.30 88 0 496 2.62 69.2 0 3 199 



102 
 

Table A.3 (continued) 

D
a

ta
 S

o
u

rc
e 

N
u

m
b

er
 

INPUT OUTPUT 

X1 X2 X3 X4 X5 X6 X7 X8 Y 

w/b SF    

(Kg/m3) 

FA    

(Kg/m3) 

cement  

(kg/m3) 

Aggregate/ 

Binder 

fc Mpa 

(28Day) 

150 

x150  

 Auto : 

0           

dry or 

free :1 

Dry 

Time 

DAYS 

Shrinkage 

Y
o

o
 e

t 
a

l 
(2

0
1
2

) 

34 0.30 88 0 496 2.62 69.2 0 7 253 

35 0.30 88 0 496 2.62 69.2 0 14 287 

36 0.30 88 0 496 2.62 69.2 0 21 312 

37 0.30 88 0 496 2.62 69.2 0 28 350 

38 0.30 88 0 496 2.62 69.2 0 49 400 

39 0.30 29 58 496 2.63 67.4 0 1 61 

40 0.30 29 58 496 2.63 67.4 0 2 119 

41 0.30 29 58 496 2.63 67.4 0 3 145 

42 0.30 29 58 496 2.63 67.4 0 7 183 

43 0.30 29 58 496 2.63 67.4 0 14 212 

44 0.30 29 58 496 2.63 67.4 0 21 236 

45 0.30 29 58 496 2.63 67.4 0 28 262 

46 0.30 29 58 496 2.63 67.4 0 49 289 

47 0.30 58 117 408 2.57 69.8 0 1 42 

48 0.30 58 117 408 2.57 69.8 0 2 130 

49 0.30 58 117 408 2.57 69.8 0 3 166 

50 0.30 58 117 408 2.57 69.8 0 7 194 

51 0.30 58 117 408 2.57 69.8 0 14 230 

52 0.30 58 117 408 2.57 69.8 0 21 261 

53 0.30 58 117 408 2.57 69.8 0 28 283 

54 0.30 58 117 408 2.57 69.8 0 49 319 
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Table A.4 database from Khatib et al 

D
a

ta
 S

o
u

rc
e 

N
u

m
b

er
 

INPUT OUTPUT 

X1 X2 X3 X4 X5 X6 X7 X8 Y 

w/b SF    

(Kg/m3) 

FA    

(Kg/m3) 

cement  

(kg/m3) 

Aggregate/ 

Binder 

fc Mpa 

(28Day) 

150 

x150  

Auto :0           

dry or 

free :1 

Dry 

Time 

DAYS 

Shrinkage 

K
h

a
ti

b
 e

t 
a

l 
(2

0
0

8
) 

1 0.36 0 0 500 3.50 72.58 1 2 122 

2 0.36 0 0 500 3.50 72.58 1 3 161 

3 0.36 0 0 500 3.50 72.58 1 6 253 

4 0.36 0 0 500 3.50 72.58 1 15 324 

5 0.36 0 0 500 3.50 72.58 1 34 438 

6 0.36 0 0 500 3.50 72.58 1 40 443 

7 0.36 0 0 500 3.50 72.58 1 48 439 

8 0.36 0 0 500 3.50 72.58 1 56 432 

9 0.36 0 100 400 3.44 54.31 1 2 38 

10 0.36 0 100 400 3.44 54.31 1 3 80 

11 0.36 0 100 400 3.44 54.31 1 7 150 

12 0.36 0 100 400 3.44 54.31 1 9 161 

13 0.36 0 100 400 3.44 54.31 1 29 341 

14 0.36 0 100 400 3.44 54.31 1 34 357 

15 0.36 0 100 400 3.44 54.31 1 42 355 

16 0.36 0 100 400 3.44 54.31 1 56 364 

17 0.36 0 200 300 3.38 56.89 1 5 80 

18 0.36 0 200 300 3.38 56.89 1 7 96 

19 0.36 0 200 300 3.38 56.89 1 28 241 

20 0.36 0 200 300 3.38 56.89 1 34 254 

21 0.36 0 200 300 3.38 56.89 1 47 274 

22 0.36 0 200 300 3.38 56.89 1 56 264 

23 0.36 0 300 200 3.32 32.58 1 2 28 

24 0.36 0 300 200 3.32 32.58 1 3 55 

25 0.36 0 300 200 3.32 32.58 1 4 80 

26 0.36 0 300 200 3.32 32.58 1 7 122 

27 0.36 0 300 200 3.32 32.58 1 10 141 

28 0.36 0 300 200 3.32 32.58 1 15 143 

29 0.36 0 300 200 3.32 32.58 1 23 158 

30 0.36 0 300 200 3.32 32.58 1 30 173 

31 0.36 0 300 200 3.32 32.58 1 38 182 

32 0.36 0 300 200 3.32 32.58 1 50 196 

33 0.36 0 300 200 3.32 32.58 1 56 205 
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Table A.4 (continued) 

D
a

ta
 S

o
u

rc
e 

N
u

m
b

er
 

INPUT OUTPUT 

X1 X2 X3 X4 X5 X6 X7 X8 Y 

w/b SF    

(Kg/m3) 

FA    

(Kg/m3) 

cement  

(kg/m3) 

Aggregate/ 

Binder 

fc Mpa 

(28Day) 

150 

x150  

 Auto : 

0           

dry or 

free :1 

Dry 

Time 

DAYS 

Shrinkage 

K
h

a
ti

b
 e

t 
a

l 
(2

0
0

8
) 

34 0.36 0 400 100 3.25 11 1 2 5 

35 0.36 0 400 100 3.25 11 1 5 57 

36 0.36 0 400 100 3.25 11 1 7 85 

37 0.36 0 400 100 3.25 11 1 12 108 

38 0.36 0 400 100 3.25 11 1 15 114 

39 0.36 0 400 100 3.25 11 1 27 142 

40 0.36 0 400 100 3.25 11 1 35 150 

41 0.36 0 400 100 3.25 11 1 47 161 

42 0.36 0 400 100 3.25 11 1 56 161 
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Table A.5 database from Khatri and Sirivivatnanon 

D
a

ta
 S

o
u

rc
e 

N
u

m
b

er
 

INPUT OUTPUT 

X1 X2 X3 X4 X5 X6 X7 X8 Y 

w/b SF    

(Kg/m3) 

FA    

(Kg/m3) 

cement  

(kg/m3) 

Aggregate/ 

Binder 

fc Mpa 

(28Day) 

150 

x150  

Auto : 0           

dry or 

free :1 

Dry 

Time 

DAYS 

Shrinkage 

K
h

a
tr

i 
a

n
d

 S
ir

iv
iv

a
tn

a
n

o
n

 (
1

9
9
5

) 

1 0.35 0 0 425 4.30 77.19 1 7 267 

2 0.35 0 0 425 4.30 77.19 1 14 375 

3 0.35 0 0 425 4.30 77.19 1 21 475 

4 0.35 0 0 425 4.30 77.19 1 30 517 

5 0.35 0 0 425 4.30 77.19 1 57 650 

6 0.35 0 0 425 4.30 77.19 1 93 708 

7 0.35 0 0 425 4.30 77.19 1 183 775 

8 0.35 0 0 425 4.30 77.19 1 400 825 

9 0.34 45 0 384 4.27 112.80 1 7 333 

10 0.34 45 0 384 4.27 112.80 1 14 433 

11 0.34 45 0 384 4.27 112.80 1 21 483 

12 0.34 45 0 384 4.27 112.80 1 30 517 

13 0.34 45 0 384 4.27 112.80 1 57 575 

14 0.34 45 0 384 4.27 112.80 1 93 633 

15 0.34 45 0 384 4.27 112.80 1 183 692 

16 0.34 45 0 384 4.27 112.80 1 400 742 

17 0.34 45 65 320 4.20 91.02 1 7 331 

18 0.34 45 65 320 4.20 91.02 1 14 429 

19 0.34 45 65 320 4.20 91.02 1 21 487 

20 0.34 45 65 320 4.20 91.02 1 30 516 

21 0.34 45 65 320 4.20 91.02 1 57 574 

22 0.34 45 65 320 4.20 91.02 1 93 629 

23 0.34 45 65 320 4.20 91.02 1 183 695 

24 0.34 45 65 320 4.20 91.02 1 400 745 

25 0.36 46 106 282 4.15 89.63 1 7 411 

26 0.36 46 106 282 4.15 89.63 1 14 560 

27 0.36 46 106 282 4.15 89.63 1 21 615 

28 0.36 46 106 282 4.15 89.63 1 30 636 

29 0.36 46 106 282 4.15 89.63 1 57 716 

30 0.36 46 106 282 4.15 89.63 1 93 767 

31 0.36 46 106 282 4.15 89.63 1 183 829 

32 0.36 46 106 282 4.15 89.63 1 400 895 
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Appendix B 

 

Photographic views 
 

 

Figure B 1 Photographic view during concrete production  

 

 

Figure B 2 Photographic view of molded specimens  
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Figure B 3 Photographic view of demoulded specimens  

 

 

Figure B 4 Photographic view of shrinkage specimens and curing room (controlled 

temperature and humidity) 
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Figure B 5 Photographic view of shrinkage reading by dial comparator  

 

 

Figure B 6 Photographic view of compressive strength testing 


