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Abstract. In this paper, analytical solutions are developed for the free vibration analysis of tapered 
thin-walled laminated-composite beams with closed cross-sections. The present approach is based in a 
recently developed model that incorporates in a full form the shear flexibility. The model considers 
shear flexibility due to bending as well as non-uniform torsional warping. The model is briefly 
reviewed with the aim to present the equilibrium equations and the related boundary conditions and 
constitutive equations. The lamination can be selected in order to manifest different types of elastic 
couplings. The typical laminations for a box-beam, like Circumferentially Uniform Stiffness and 
Circumferentially Asymmetric Stiffness stacking sequences, are analyzed. 
The exact values (i.e. with arbitrary precision) of frequencies are obtained by means of power series 
schemes. A parametric analysis is performed for different taper ratios, stacking sequences and 
materials. 
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1 INTRODUCTION 

Composite materials have many advantages with respect to isotropic materials that 
motivate their use in structural components. The most well known properties of composite 
materials are high strength and stiffness properties along with a low weight, good corrosion 
resistance, enhanced fatigue life and low thermal expansion properties among others 
(Barbero, 1999). Other important feature of composite materials is its very low machining 
cost in comparison with isotropic material (Jones, 1999). As a result of the increasing 
employment of composite thin-walled beams, the analysis of static and dynamic behavior is a 
task of intense research. Many research activities have been devoted toward the development 
of theoretical and computational methods for the appropriate analysis of such members. 

The first consistent study dealing with the static structural behavior of thin-walled 
composite-orthotropic members, under various loading patterns, was due to Bauld and Tzeng 
(1984), who developed, invoking Vlasov hypotheses, a beam theory to analyze fiber-
reinforced members featuring open cross-sections with symmetric laminates. Although this 
theory assumed the cross-sections to be shear undeformable and it was restricted to structural 
members constructed with non-general stacking sequences and employed only for static 
analysis, further contributions from many authors until the present time, made it possible to 
extend Vlasov models by considering shear deformability due to bending, warping effects, 
etc. and the resulting models were employed in many problems, as it is described as follows. 

Composite Thin-walled beam-models allowing for some effects of shear deformability 
were first presented, in the middle eighties (Giavotto et al. 1983 and Bauchau, 1985). In these 
works the effect of shear deformability and specially the warping torsion shear deformability 
was not taken into account or was slightly studied in a few problems of static’s and dynamics.  

The late eighties and the nineties brought a considerable amount of new models and uses. 
Some researchers (Rehfield et al. 1990; Librescu and Song, 1992; Song and Librescu, 1993; 
Na and Librescu, 2001) studied the non-conventional effects of constitutive elastic couplings 
(such as bending-bending coupling or bending-shear coupling, etc) in the mechanics of 
cantilever boxed-beams only considering the bending component of shear flexibility whereas 
the warping torsion component of shear flexibility was neglected. However in these models 
new extensions were performed, such as the accounting for the effect of thickness in shear 
and warping deformations, as well as new studies devoted to the dynamical aspects of elastic 
couplings, among others.  

By making use of the Hellinger-Reissner principle, the authors of the present paper 
introduced recently (Cortínez and Piovan, 2002) a theory of thin-walled beams with 
symmetric balanced laminates, which considers full shear flexibility. The model covered 
topics of dynamics under states of initial normal stresses, and also accounted for thickness 
shear flexibility and warping.  

Many of the aforementioned models were employed for eigenvalue calculation, among 
other uses. However, these models considered only beams with uniform cross-section. 
Although, there are some works devoted to the free vibration analysis of tapered beams with 
solid cross-section made of composite materials (Rao and Ganesan, 1995), however despite 
the importance in robotic arms and rotor-blades, there is no evidence of studies focused in the 
free vibrations of thin-walled tapered beams made of composite materials.  

In the present work, a power series methodology is employed to calculate the free 
vibration frequencies of composite thin-walled tapered beams allowing shear flexibility due to 
bending as well as due to warping torsion. Several studies are performed in box-beams with 
special lamination. The effect of taper is analyzed and its influence in the free vibration 
appropriately enhanced. 
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2 BRIEF REVIEW OF THE MODEL 

In Figure 1 a sketch of a thin-walled beam is shown. In this figure, it is possible to see the 
reference points C and B. The principal reference point C is located at the geometric center of 
the cross-section, where the axis x is parallel to the longitudinal axis of the beam, while y and 
z are the axes associated to the cross section, but not necessarily the principal ones. The point 
B is a generic point belonging to the middle line of the cross-sectional wall (see Figure 2.a); 
its co-ordinates are denoted as Y(s) and Z(s). The Figure 2.b shows the displacement 
parameters of the model. 

 

 
Figure 1: Sketch of a general straight thin-walled beam 

 
 

(a) (b) 

Figure 2: (a) Description of cross-section geometrical entities and (b) displacement parameters 

The beam model employed in this study was developed (Piovan, 2003) under the following 
hypotheses: (a) the cross-section contour is rigid in its own plane; (b) the warping distribution 
is assumed to be given by the Saint-Venant function for isotropic beams; (c) shell force and 
moment resultant corresponding to the circumferential stress σss and the force resultant 
corresponding to σns are neglected; (d) The radius of curvature at any point of the shell is 
neglected; (e) Twisting curvature of the shell is expressed according to the classical plate 
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theory, but bending curvature is expressed according to the first order shear deformation 
theory; (f) the stacking sequence is of circumferentially uniform stiffness (or CUS); (g) the 
shear flexibility due to in-thickness strains is neglected. Under this context, the mechanics of 
a thin-walled beam model allowing for shear flexibility due to bending and warping can be 
defined with following differential equations (Cortinez and Piovan, 2002; Piovan, 2003): 
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Where, QX is the axial force; QY and QZ are shear forces; MY and MZ are bending moments, 

B is the bimoment, TSV is the twisting moment due to pure torsion and TW is the flexural-
torsional moment, due to warping torsion. jM , j = 1,…,7 are the inertial forces.  

These differential equations are subjected to the following boundary conditions: 
 
a) Clamped-Clamped  
 

0======= xxyzzcycxc uuu θφθθ  at x = 0 and x = L (2)
 
b)  Clamped-Free 
 

0==+===== BTTMMQQQ WSVZYZYX  at x = 0 
0======= xxyzzcycxc uuu θφθθ  at x = L (3)

 
In the previous equations, uxc is the axial displacement of the centroid, uyc and uzc are 

lateral displacements of the centroid, θy and θz are the bending rotation parameters, φx is the 
twisting angle and θx is a warping intensity parameter.  

For a circumferentially uniform stiffness lamination, the aforementioned beam-stress-
resultants are related to the displacement variables by means of the following expression 
(Piovan, 2003): 
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and the inertia terms are expressed as follows 
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the stiffness coefficients in (3) and the inertia coefficients in (4) are obtained as follows: 
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where the vectors )( jg are defined as follows: 
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In the equation (6), ρ is the density and ijA , ijB  and ijD  are elastics coefficients (Piovan, 

2003), whereas ω is the whole warping function, which is composed by two terms: primary or 
contour warping (ωp) and secondary or thickness warping (ωs) defined by: 

 
),()( nss sp ωωω +=  

[ ] )( ),(     ,)()()(
0

slnnsDdsssrs s

s

s Cp =++= ∫ ωψω  
(8)

 
The function ψ(s) is the torsional shear flow with reference to a closed contour section. It 
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accounts for variable laminates along the contour and it is defined as follows: 
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r(s) and l(s) are defined as follows: 
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It is interesting to note that the CUS lamination provides a selective elastic coupling. As it 

can be seen in (3) and (4), the axial equation is coupled with the torsion and warping 
equations, on the other hand the four equations of bending are coupled among them. 

3 POWER SERIES METHODOLOGY 

In order to develop the solution, one has to describe each displacement function by means 
of power series, this requires a previous non-dimensional re-definition of the domain (i.e. 

10 ≤≤ x , with x/Lx = , Filipich et al, 2003a,b): 
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Theoretically, , however for practical purposes M is a large arbitrary integer. Now, 

the successive derivatives of the displacement functions, u
∞→M

xc for instance, can be expressed as: 
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Now the unknowns of the problem are aji, j = 1,…,7, i = 0,…,M, that is an amount of 

7(M+1) unknowns. 
It has to keep in mind that in this problem the cross-section properties vary continuously 

with x  leading to a differential system with variable coefficients, consequently one has to 
employ series products. Thus, if )(),(),( 321 xhxhxh  are analytical functions defined as: 
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and if )(),(),( 321 xhxhxh  are such that the product 213 hhh = , then 
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Finally, an integer power of the independent variable x  can be described by means a 

power series as: 
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where, δi,m and δm,i are second order Kronecker deltas. 
Substituting (11) in the differential system (1), taking into account (12)-(15), considering 

the boundary conditions (2) and performing a suitable algebraic manipulation, it is possible to 
obtain the algebraic homogeneous linear system, in the following canonical form: 
 

0BA =− 2λ , with   eL22  Ω= ρλ (16)
 
where Ω is the natural circular frequency. 

4 NUMERICAL STUDIES AND ANALYSIS 

Figure 3.a shows a tapered box beam where the height varies according to expression (17), 
and with h0 as the largest height. Figure 3.b shows the CUS lamination in the cross-section. In 
Table 1 one can see the properties of the graphite fiber reinforced epoxy AS4/3501-6 
composite material. The geometrical dimensions of the specimen are: length, L = 1.00 m; 
height, h0 = 0.100 m; width, b = 0.050 m and thickness, e = 0.003 m.  

 
xαh)xh( H+= 0  (17)

 

  
(a) (b) 

Figure 3: (a) Box Beam under study (b) CUS lamination 
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E1 = 144 GPa,     E2 = 9.68 GPa 
G12 = G13 = 4.14 GPa   G23 = 3.45 GPa 

ν12 = 0.3  ν23 = 0.5 
ρ = 1389 Kg/m3

Table 1: Properties of AS4/3506-1. 

In the case of uniform cross-sectional properties along the length, it is possible to perform 
a comparison of the present approach with other methods. Thus Table 2 shows the first five 
circular frequencies of a clamped-clamped beam for different angles of fiber orientation (α), 
comparing the results obtained with power series and a finite element methodology (Piovan, 
2003). As it can be seen the comparison is quite good and the discrepancies are no longer than 
0.1%. The eigenvalues were obtained with series of M=100 terms and with models of 60 
finite elements. 

 
α Method Ω1 Ω2 Ω3 Ω4 Ω5

Series 2665 3934 4309 5455 7949 0 FEM 2665 3934 4304 5468 7956 
Series 3047 4600 5375 6836 9261 15 FEM 3048 4611 5368 6841 9278 
Series 3135 4941 6814 7408 10562 30 FEM 3136 4943 6806 7413 10574 
Series 2939 4622 6506 6776 10129 45 FEM 2940 4623 6512 6780 10135 
Series 2687 4157 5380 5962 8919 60 FEM 2688 4158 5383 5965 8925 
Series 2470 3765 4555 5325 7885 75 FEM 2470 3765 4557 5328 7890 
Series 2381 3614 4272 5084 7491 90 FEM 2383 3611 4273 5086 7500 

Table 2: Natural Frequencies of a uniform clamped-clamped beam. 

Tables 3 and 4 show the variation of the first five natural frequencies of a clamped-
clamped beam with respect to the fiber orientation angle, for slopes of αH=-0.025 and αH=-
0.050, respectively. Figures 4 and 5 depict the variation of the first and second frequencies of 
the clamped-clamped beam with respect to the fiber orientation angle, for three different 
slopes. The mode associated to the first frequency is flexural dominant in the y-direction, 
whereas the mode associated to the second frequency is flexural dominant in the z-direction. 
The bending modes in y- and z-directions are decoupled if the reinforcing fibers are oriented 
along or perpendicular to the beam axis. However, if the fibers are oriented in any other angle 
than 0° or 90° the flexural modes are coupled between them, as it can be seen from equation 
(4). Figure 6 shows the variation of the third frequency of the clamped-clamped beam with 
respect to the fiber orientation angle, for three different slopes. The mode associated to the 
third frequency is torsional dominant coupled with the axial motion, when the fiber 
orientation angle is other than 0° or 90°. For a uniform beam and the fiber orientation angle α 
= 30°, Figures 7, 8 and 9 offer examples of the modes associated to the first, second and third 
frequencies, respectively.  

 
Observing Figures 4, 5 and 6, it is interesting to note that the behavior of the first and third 

frequencies manifests a growth with the increase of the tapering, for all fiber orientation. 
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Conversely, the values of the second frequency are lower with increasing values of the taper 
ratio. 

 
 
 

α Ω1 Ω2 Ω3 Ω4 Ω5

0 2735 3755 4427 5645 7643 
15 3091 4352 5693 6951 9042 
30 3142 4575 7482 10146 12946 
45 2950 4274 6885 9601 11604 
60 2717 3876 5585 6093 8454 
75 2510 3538 4722 5463 7513 
90 2426 3404 4406 5224 7165 

Table 3: Natural Frequencies of clamped-clamped beam, for slope of αH =-0.025. 

α Ω1 Ω2 Ω3 Ω4 Ω5

0 2803 3509 4527 5841 7220 
15 3118 4007 5764 7022 8658 
30 3147 4118 7513 9476 12885 
45 2958 3837 6968 8833 11829 
60 2734 3514 5760 6214 7827 
75 2540 3239 4798 5601 7008 
90 2461 3128 4512 5365 6697 

Table 4: Natural Frequencies of clamped-clamped beam, for slope of αH =-0.050. 
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Figure 4: Variation of first frequency with the orientation angle, for a clamped-clamped beam 
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Figure 5: Variation of second frequency with the orientation angle, for a clamped-clamped beam  
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Figure 6: Variation of the third frequency with the orientation angle, for a clamped-clamped beam 
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Figure 7: Bending mode associated to the first frequency, for a clamped-clamped uniform beam 

 
Figure 8: Bending mode associated to the second frequency, for a clamped-clamped uniform beam  
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Figure 9: Torsional mode associated to the third frequency, for a clamped-clamped uniform beam 

5 CONCLUSIONS 

In this article the free vibrations of thin-walled tapered box-beams constructed with 
composite materials were analyzed. Laminates providing special elastic couplings, like 
Circumferentially Uniform Stiffness stacking sequences were employed. The effect of 
tapering in the free vibrations of composite thin walled box-beam was analyzed. The 
calculation is performed by means of a power series methodology which can give eigenvalues 
of arbitrary precision. In the calculation of eigenvalues of composite beams with tapered 
geometries or other functional variation along the domain, this methodology can offer 
advantages with respect to common finite element methodologies where the elements have 
constants properties along the their length, and a very fine mesh has to be used to get accurate 
results. 
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