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Abstract— Prediction of multiple subcellular localizations in proteins brings relevant information for biological
function discovery. The use of computational methods based on knowledge can be a helpful starting point for
guiding the costly experimental validation. In this work, we present a multilabel classifier framework to perform
Gene Ontology - Cellular Component prediction focused on the improvement of two design aspects: i) the protein
sequence characterization, regarding biological knowledge with experimental evidence, and ii) the error evaluation by
considering a noise model inherent in real prediction frameworks. Our proposal is validated against sets of well-known
protein sequences of four model organisms D. rerio, A. thaliana, S. cerevisiae and D. melanogaster

Keywords— Cellular Component, Prediction, Multilabel Classification.

Resumen— La predicción de múltiples localizaciones subcelulares en proteı́nas brinda información relavante para
el descubrimiento de funciones biológicas. El uso de métodos computacionales basados en el conocimiento puede ser
un buen punto de partida para conducir a las costosas validaciones experimentales. En este trabajo, presentamos un
framework de clasificación multi-etiqueta para para realizar la predicción en Gene Ontology - Componente Celular
enfocada en la mejora de dos aspectos del diseño: i) la caracterización de la secuencia proteica, relacionando el
conocimiento biológico con la evidencia experimental; y ii) la evaluación de errores al considerar un modelo de ruido
inherente a los frameworks de predicción reales. Nuestra propuesta es validada contra un conjunto de secuencias de
proteı́nas de cuatro organismos modelos D. rerio, A. thaliana, S. cerevisiae and D. melanogaster.
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I. INTRODUCTION

PRotein subcellular localization (SCL) is a key point to
enrich the evidence information of biological function

prediction for genome annotation [?]. Although the experi-
mental testing is the quintessential method, it is usually an
unaffordable burden in terms of time and money. Alternatively,
computational methods arise as a first prediction approxi-
mation to guide and focus experimental validations. Under
this baseline, machine learning classifiers can be a proper
framework, where dataset design for learning and testing
stages is a crucial point. Specifically, dataset design focus on
the sample (protein) characterization through a set of features.
Characterization strategies [?] evaluate different aspects of
the protein sequence: peptide composition, structural, physico-
chemical, sorting signal and biological knowledge, depending
on the specific biological question related to SCL prediction
to be answered.

After sequence characterization, a classification method is
chosen to generate the predictive model. Initially, classification
methods predicted just one SCL from a predefined -organism
dependent- set of labels, e.g., 22 labels for eukaryotic [?].
More recent studies [?], [?] noted that some proteins may
exist in more than one localization in a cell. Consequently,
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prediction approaches based on multi-label classification, as
iloc-Euk [?] and Fuel-mLoc [?] approaches, would be more
appropriate. One step further are Cello2go [?] and FFPred3
[?] methods, which besides predicting SCL in an organism
dependent set of labels, do so over Gene Ontology (GO)
Cellular Component (CC) terms, i.e., labels predefined in a
hierarchical structured (GO-CC) independently of considered
organisms. Briefly, Cello2go relies on BLAST for searching
homologous proteins already GO-CC annotated, providing
null results when homology with other organisms are poor,
i.e., cutoff of e-value. FFPred3 is based on the integration
of feature groups (14) which are characterized from protein
sequences with a fixed number of GO-CC terms (104). FF-
Pred’s groups are generated following characterization strate-
gies above-mentioned and the classification is done by binary
SVM-Light classifiers, i.e., SVMs with outputs fitting by
a sigmoid function. Note that the proposed characterization
accomplish near to 300 features which are reduced through
recursive feature elimination (SVM-RFE) by FFPred’s groups.
Finally, predicted GO-CC terms are those that exceed a user-
defined threshold.

In this paper, we work on this later prediction strategy:
inferring protein SCL directly over GO-CC terms, improving
two aspects of the prediction system. The first one, is related
to the characterization assuming that the boosting of biological
knowledge k -with experimental evidence- hidden in the local-
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ization signals of 8 basic SCL, should improve the prediction
recall through the robust guide of that key information in the
complete inference process. The second improvement works
on the uncertainty measures associated with the predictions.
Specifically, we take into account the noise n present in every
inference process in a similar way to Information Theory.
We consider classifiers with real-value outputs which were
achieved from an ideal binary outputs corrupted with additive
white Gaussian noise.

The proposed prediction framework, hereafter called GO-
CCkn, is designed in three step: i) selection of features
applying all characterization strategies; ii) designing of SVMs,
one for each GO-CC term prediction; and iii) building the
multilabel classifier system.

This paper is organized as follows. In Section ??, multilabel
classifier system is detailed . Section III discusses the results
on D. rerio, A. thaliana, S. cerevisiae and D. melanogaster in
CC-GO. In the last Section, conclusions are presented.

II. MATERIALS AND METHODS

The GO-CCkn method consists of three steps: i) the design
of datasets for learning and validation, i.e., the characterization
of proteins in a set of features related to cellular component
classes; ii) the design of a set of classifiers, i.e., one classifier
for each considered CC-GO class (GO-term); and iii) the
multiple classifier system for CC-GO prediction.

A. Feature Representation

The first step involves the characterization by a set of
feature descriptors for protein sequences. The characterization
may involve one or more of following issues: amino acid
composition, physicochemical properties, secondary structure,
sorting signals, and experimental localization information.
More specifically, the amount of localization signals to 8
basic SCL in the LocSigDB database [?], sorting signals (SS)
[?], [?], [?], coiled coils (CCoil) [?] and the measurement
of 457 physicochemical/secondary structure properties (PC-
SSP), 453 of the physicochemical type [?] including 20 amino
acid compositions, 400 dipeptide compositions, 33 physico-
chemical properties and 4 of the secondary structure type [?],
[?]. This characterization was divided in four characterization
processes: LocSigDB, SS, CCoil, and PC-SSP. LocSigDB is
a numerical vector; each element indicates the amount of
experimental localization signals in 8 basic SCLs (Nucleus,
Mitochondria, Secreted, Lysosome, Peroxisome, Golgi, Plas-
matic Membrane, Endoplasmaic Reticulum). CCoil, SS and
PC-SSP are real vectors, where elements indicate the sum
of coil-forming probabilities in scanning windows of 14, 21
and 28 residues, the value of signals peptides, and the value
of physicochemical/secondary structure property respectively.
Practically, protein sequence characterization methods were
implemented with R-cran.

B. SVM classifiers

The set of classifiers are designed with SVMs: one classifier
for each considered GO-CC terms. The SVMs are set with
single soft-margin radial: default constant complexity C=1 and
gamma. In order to fulfill Gaussian assumption of prediction
noise [?], real valued predictions are set to the margin of SVM

classifier outputs. Practically, SVMs were implemented with
e-1071 R package [?].

C. Multiple classifier system for GO-CCkn prediction

The complete pipeline for GO-CC prediction, shown in
Fig. ??, comprises m SVM classifiers for m GO-terms. Each
GO-term (GO − CCi) is represented by a binary classifiers
SVMi. For each query, a target protein is characterized by the
set of features (input of predictor), and a set of predicted prob-
abilities corresponding to certainties values of protein/GO-
term association are returned by classifiers. To determinate
predicted GO-terms (positive GO-terms), we consider SVMs
with a level decision higher than a cut-off. In the paper, we
consider probability value cut-off= 0.5.
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Fig. 1. Multiple classifier system for CC-GO prediction. LocSigDB:
localization signals database, SS: sorting signals, CCoil: coiled coils, PC-
SSP: physicochemical/secondary structure properties. Features represent the
group of selected characterization to our model. Level decision represents the
cut-off. In cyan, the predicted GO-CC.

D. Experimental protocol

Four models organisms, D. rerio [?], A. thaliana [?], S.
cerevisiae [?] and D. melanogaster [?] were considered.
For each of them, the annotation datasets were built from
protein sequences considering experimental and computational
analysis evidence codes1 of GO. For experimental codes are
considered: inferred from Experiment (EXP), inferred from
Direct Assay (IDA), inferred from Physical Interaction (IPI),
inferred from Mutant Phenotype (IMP), inferred from Genetic

1http://geneontology.org/page/guide-go-evidence-codes
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TABLE I
DATASETS IN THE GO-CC

Organism # GO-terms # Samples
D. rerio 52 1243
A. thaliana 144 22788
D. melanogaster 165 6176
S. cerevisiae 174 5134

Interaction (IGI), inferred from Expression Pattern (IEP).
For computational analysis, the following evidence codes are
considered: inferred from Sequence or structural Similarity
(ISS), inferred from Sequence Orthology (ISO), inferred from
Sequence Alignment (ISA), inferred from Sequence Model
(ISM). The considered GO subgraph was restricted to have
leaves (GO-term) with a minimum of 50 positively annotated
protein sequences. To assemble conveniently balanced binary
training datasets [?], positive annotated protein sequences
to individual GO-terms were complemented with negative
annotated instances using the inclusive separation policy [?]
(see Table ??).

In order to evaluate which sets of features behaves better
for GO-CCkn prediction, we evaluated the performance char-
acterization groups individually and jointly in D. rerio.

The evaluation of the predictive performance of our ap-
proach was made with 5-fold cross-validation test. The values
of recall, precision and F1 were calculated for the classifier.

precision =
TP

TP + FP
(1)

recall =
TP

TP + FN
(2)

F1 = 2× precision× recall

precision+ recall
(3)

Where TP indicates the total numbers of true positives, FP
indicates the total numbers of false positives and FN indicates
the total numbers of false negatives.

III. RESULTS AND DISCUSSION

A. Comparing different group features

To select the set of features that improve the predictions, we
compare precision/recall measures. able ?? shows the results
of applying the four characterizations with the model organism
D. rerio to SVM classifiers. The results show that four group
of features together have the best performance. PC-SSP and
SS may be associated with precision due to the information
determining the subcellular localization site of a protein is
encoded in its amino acid sequence and share similarity across
certain physicochemical properties and sorting signals [?], [?].
On the other hand, LogSigDB may be associated with recall
due to enclose the biological knowledge with experimental
validation is related with specific functions [?]. So, their
inclusion entails similar (or slight less) precision levels but
with much higher recall levels, i.e., the system has less noise.

TABLE II
AVERAGE PRECISION (P), RECALL (R) OF THE OUR APPROACH IN THE

GO-CC. THE SELECTED ORGANISM MODEL IS D. rerio.
CHARACTERIZATIONS ARE LOCSIGDB DATABASE, SS: SORTING

SIGNALS, CCOIL: COILED COILS AND PC-SSP:
PHYSICOCHEMICAL/SECONDARY STRUCTURE PROPERTIES.

Characterization P R
LocSigDB 0.32 0.58
SS 0.36 0.69
CCoil 0.28 0.39
PC-SSP 0.41 0.67
SS + CCoil 0.37 0.67
SS + CCoil + LocSigDB 0.38 0.64
SS + PC-SSP 0.41 0.73
SS + CCoil + LocSigDB + PC-SSP 0.41 0.75

B. Prediction performances of GO-CCkn

Our method is evaluated with feature descriptors selected in
the previous stage, reporting the average measure of precision,
recall and F1 for four model organisms. The results are shown
in Table ??.

TABLE III
AVERAGE PRECISION (P), AVERAGE RECALL (R) AND AVERAGE F1 SCORE

OF THE EACH METHOD IN THE GO-CC IS SHOWN.

Organism P R F1
D. rerio 0.41 0.75 0.51
A. thaliana 0.35 0.79 0.39
D. melanogaster 0.45 0.72 0.52
S. cerevisiae 0.32 0.82 0.42

C. Comparison with other methods

Table ?? compares the performance of GO-CCkn method
against Cello2go and FFPred3. The results show that our
approach achieve higher recall and F1 values than Cello2go
and FFPred3. On the other hand, Cello2go has the highest
precision due to it is working with a model organism. Note
that Well-known methods based on homology provide good
results in model organism such as D. rerio. However, their per-
formance falls when predictions are far from model organisms
[?], e. g., S. lycopersicum (Solyc06g076520). These results
motivate us to develop alternative computational methods to
homology-based ones, i.e., methods based on machine learning
techniques to infer a consistent ontological structure (GO).

TABLE IV
AVERAGE PRECISION (P), AVERAGE RECALL (R) AND AVERAGE F1 SCORE

OF THE EACH METHOD IN THE GO-CC IS SHOWN. THE SELECTED
ORGANISM MODEL IS D. rerio.

Method P R F1
GO-CCkn 0.41 0.75 0.51
FFPred3 0.40 0.29 0.32
Cello2go 0.64 0.28 0.37

IV. CONCLUSION

The computational methods based on machine learning
strategy improve their performance when features associated
with physicochemical issues and secondary structure proper-
ties, which are both associated with subcellular localization. In
addition, the inclusion of experimentally validated biological
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knowledge boost the recall of predictors, i.e., the model is
more exhaustive. GO-CCkn can predict any protein sequence
that exceeds 10 amino acids.

As further work, an interesting point is to study the consis-
tency checking strategies related to the hierarchical structure
of Gene Ontology.
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a tenured professor in the Electronic Engineering
career.

Javier Murillo has a Bachelor’s Degree in Com-
puter Science and PhD in Computer Science. His
areas of interest are fuzzy measures, information
integration and aggregation operators. He is a re-
searcher at the Cifasis-UNR Institute, integrating
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