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2Dpto. de Matemática, F.C.E. y N., Universidad Nacional de Mar del Plata,
7600 Mar del Plata, Argentina

ABSTRACT

In this paper we further study the full subcategories CM
i of the category of finitely generated

modules over an artin algebra introduced in [PP], consisting of the modules having an addM

resolution of length i, which remains exact under the functor HomA(M,−). In particular, we

characterize tilting modules in terms of these categories and determine when the transpose of a

tilting module is a tilting module.

Introduction

Let A be an artin algebra and modA be the category of finitely generated right
A-modules. Let M be an A-module and denote by addM the full subcategory
of modA consisting of the direct sums of direct summands of M . In [PP] we
considered for an A-module M and for every n ≥ 0 the full subcategories CM

n of
modA consisting of the modules X such that there is an exact sequence Mn →
· · · → M1 → M0 → X → 0 with Mi ∈ addM , and such that the induced sequence
HomA(M,Mn) → · · · → HomA(M,M1) → HomA(M,M0) → HomA(M,X) → 0 is
exact, generalizing work of M. Auslander in [A] about the subcategory CM

1 . The
results in [PP] refer mainly to CM

0 and CM
1 , and the modules M with the property

that CM
0 = CM

1 are studied there. Examples of such modules are semisimple
modules, tilting modules, *-modules (as defined en [C]) and the transpose of tilting
modules.

In this paper we give some applications of the results in [PP]. On one side, we
prove that the transpose TrM of a tilting module M is a *-module. Using then a
result by D’Este and Happel about *-modules it follows that TrM is a tilting module
over the algebra End(BM)/P (BM,B M), where B = End(MA) and P (BM,B M) is
the set of the endomorphisms of BM which factor through a projective module. As
a consequence we obtain conditions for the transpose of a tilting module M to be a
tilting module. This is the case, for example, when M is a splitting or a separating
tilting module with no nonzero projective summands.

Tilting modules M satisfy CM
0 = CM

1 . The converse is not true, even if we
assume that DA ∈ CM

0 . An example is provided by the module M direct sum
of a complete set of representatives of the isomorphism classes of indecomposable
modules over an algebra of finite representation type. However, we characterize
tilting modules in terms of the categories CM

i in the following way. Let B =
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End(MA). The module M is a tilting module if and only if DA ∈ CMA
0 , CMA

0 =
CMA

1 and CBM
0 = CBM

1 . We study the relation between the validity of some
properties defining a tilting module, and the conditions CMA

0 = CMA
1 and CBM

0 =
CBM

1 .
Finally, we consider generalized tilting modules and prove that generalized tilting

modules M of projective dimension n have the property that DA ∈ CMA
n−1, and the

equalities CMA
n−1 = CMA

n and CBM
n−1 = CBM

n hold. However, the converse does not
hold.

1. Preliminaries

Throughout this paper A denotes an artin algebra, modA the category of finitely
generated right A-modules and Aop the opposite algebra of A. The word module
means finitely generated module and we will write MA or M to indicate that the
A-module M is a right module, and AM to indicate that it is a left module. All
subcategories considered are full. We will denote by D: modA→ modAop the usual
duality for artin algebras. Moreover, pdM denotes the projective dimension and
idM the injective dimension of the module M . We denote by TrM the transpose
of M and by GenM (respectively, CogenM) the subcategory of modA generated
(respectively, cogenerated) by M .

According to [HR, 3] we will say that the module MA is a tilting module if it
satisfies the following conditions:

(T1) pd MA ≤ 1.

(T2) Ext1A(MA,MA) = 0.

(T3) There exists an exact sequence 0 → A → M ′ → M ′′ → 0 with M ′, M ′′ in
addMA.

It was shown in [BB] and [HR] that if M is a tilting module and B = End(M)
then: 1) BM is a tilting module andA ' End(BM) and 2) the functors HomA(M,−)
and − ⊗B M induce mutually inverse equivalences between the full subcategories
T (M) = {X : Ext1A(M,X) = 0} and Y(M) = {Y : TorB

1 (Y,M) = 0} while the
functors Ext1A(M,−) and TorB

1 (−,M) induce mutually inverse equivalences be-
tween the full subcategories F(M) = {X : HomA(M,X) = 0} and X (M) = {Y :
Y ⊗B M = 0}.

A tilting module M is said to be a separating (respectively, splitting) tilting
module if the torsion theory (T (M),F(M)) splits in modA (respectively, the torsion
theory (X (M),Y(M)) splits in modB).

For a general reference for tilting theory we refer the reader to [As], [R] and
[HR].

We recall that the module M is a *-module, as defined in [C], when the functor
HomA(M,−) induces an equivalence of categories between GenM and CogenDBM .

2. The transpose of a tilting module

In this section we use results of the subcategories CM
i to prove that the transpose

A(TrMA) of a tilting module MA is a *-module and give also a necessary and
sufficient condition for A(TrMA) to be a tilting module.

Furthermore, we apply this result to obtain that the transpose of a splitting or a
separating tilting module without nonzero projective summands is a tilting module.
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We start by stating a theorem of D’Este and Happel [DH] which motivated this
section.

Theorem 2.1. ([DH]) Let MA be an A-module. Then: MA is a *-module if and
only if MA is a tilting A-module, where A = A/annMA.

It is well known that if MA is a tilting module and B =End(MA), then BM is
also a tilting module and ψ : A → End(BM) defined by ψ(a)(t) = t.a, t ∈ BM ,
a ∈ A is an isomorphism [HR, 2]. Moreover, we need the following result.

Lemma 2.2. Let MA be a tilting A-module and B= End(MA). Then ψ induces
an isomorphism ann(TrMA) ' P (BM,B M), where P (BM,B M) is the set of the
endomorphisms of BM which factor through a projective module.

Proof. If MA is a tilting module then ψ : A → End(BM) is an isomorphism. By
[PP, 4.1] we know that A(TrMA) 'A (TrBM). Then a ∈ annA(TrMA) if and only
if a ∈ annA(TrBM). On the other hand, a.x = ψ(a).x =Trψ(a)(x) = 0 for x ∈
TrBM . Hence a ∈ annA(TrMA) if and only if ψ(a) ∈ P(BM,B M).

�

We prove next that the transpose of a tilting module is a *-module, and using
D’Este and Happel’s result stated in Theorem 2.1 we prove the following theorem.

Theorem 2.3. Let MA be a tilting A-module and B= End(MA). Then:

a) A(TrMA) is a *-module.

b) End(BM)(TrMA) is a tilting End(BM)-module.

c)A(TrMA) is a tilting module if and only if P (BM,B M) = 0.

Proof. a) It is proven in [PP, 3.8] that a module MA is a *-module if and only if
CMA

0 = CMA
1 and the functor HomA(M,−) is exact on CMA

0 .
On the other hand, using that A ' End(BM) and BM is a tilting module, we

get that CTrMA
0 = CTrMA

1 and the functor HomA(TrMA,−) is exact on CTrMA
0 ,

from [PP, 4.11] and [PP, 4.7] respectively. It follows that A(TrMA) is a *-module.

b) By a) we know that A(TrMA) is a *-module. Then from Theorem 2.1 and
Lemma 2.2 we obtain that A(TrMA) is a tiltingA-module, whereA = A/ann(TrMA) '
End(BM)/P (BM,B M).

c) Assume that P (BM,B M) 6= 0. By Lemma 2.2, annA(TrMA) 6= 0. Therefore
A(TrMA) is not faithful and consequently A(TrMA) is not a tilting module.

The converse follows directly from b). �

Lemma 2.4. Let MA be a tilting module. Then the number of isomorphism classes
of indecomposable projective summands of MA is equal to the number of isomor-
phism classes of indecomposable projective summands of BM .

Proof. This result follows from the Connecting Lemma [HR, 2]. In fact, if I, P are
respectively the injective envelope and the projective cover of the simple module
S, then TrD HomA(MA, I) ' Ext1A(MA, P ). Moreover, P ∈ addMA if and only
if DHomA(MA, I) is a projective Bop-module. On the other hand, we know that
DBM =HomA(MA, DA), therefore DHom(MA, I) ∈ addBM .
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So to each indecomposable projective summand P of MA we associate the in-
decomposable projective summand θ(P ) = D HomA(MA, I) of BM . Since DA ∈
GenMA and the functor HomA(MA,−)|GenMA

is faithful, the correspondence θ is
injective. By [HR, 2][As, 2.3] we know that each indecomposable projective module
BP is of the form D HomA(MA, IA), with IA injective, so θ is also surjective. �

Next, we give equivalent conditions for the transpose of a tilting module M to
be a tilting module. Let (MA)∗ =HomA(MA, A).

Proposition 2.5. Let MA be a tilting module and B= End(MA). Then the fol-
lowing conditions are equivalent:

a) A(TrMA) is a tilting module
b) (MA)∗ = 0
c) P(MA,MA) = 0
d) (TrBM)B is a tilting module
e) (BM)∗ = 0
f) P(BM,B M) = 0

Proof. To prove that a) implies b) we assume A(TrMA) is a tilting module. Then
the module MA does not have projective summands and id(DTrMA) ≤ 1. That is
to say, TrTrMA 'MA and HomA(TrTrMA, A) = 0. Then (MA)∗ = 0.

Clearly b) implies c), and it follows directly from Theorem 2.3 that c) implies
d). The remaining implications follow from the previous ones using that BM is a
tilting module. �

As a consequence we obtain that the transpose of a separating (or splitting)
tilting module with no projective summands is a tilting module. This result can
also be obtained from the work of Hoshino [Ho,2].

Corollary 2.6. Let MA be a splitting (or separating) tilting module without nonzero
projective summands and B= End(MA). Then A(TrMA) is a tilting A-module.

Proof. By the above proposition we only need to prove that (BM)∗ = 0. So we
assume that this is not the case and consider a nonzero morphism f :BM → B.
Then Df : DB → DBM is also nonzero. Therefore there exist an indecomposable
injective module IB and a nonzero morphism h : IB → DBM , and since DBM ∈
Y(M) we conclude that IB /∈ X (M) .

We assume first that the tilting module MA is splitting. Then IB ∈ Y(M). By
[As, 2.3] we conclude that there exists an injective module IA in modA such that
IB ' HomA(M, IA), and from the Connecting Lemma we obtain 0 = TrDIB '
TrD Hom(M, IA) ' Ext1A(M,P0(IA/rIA)). So the module P0 belongs to T (M)
and is a projective. Thus P0 ∈ addMA, contradicting our hypothesis.

The proof when MA is separating is similar. �

3. Modules MA such that CMA
0 = CMA

1 and tilting modules

In this section we consider an A-module MA, B = End(MA) and we show that
MA is a tilting module if and only if DA ∈ CMA

0 , CMA
0 = CMA

1 and CBM
0 = CBM

1 .
We start by studying the relation between the validity of some of the properties

(T1), (T2) and (T3) defining a tilting module, and the conditions CMA
0 = CMA

1

and CBM
0 = CBM

1 .



5

It is well known that CMA
0 = GenMA for any module MA. By [PP, 3.12], when

MA is a tilting module it satisfies the condition CMA
0 = CMA

1 . We will prove that
the validity of (T2) and (T3) implies that CMA

0 = CMA
1 , and exhibit examples

showing that no other combination of two of the properties (T1), (T2) and (T3)
implies CMA

0 = CMA
1 .

We introduce now the following notation. For a module M = MA, let M⊥n =
∩n

i=1 Ker(Exti
A(M,−)) and M⊥ = ∩i>0 Ker(Exti

A(M,−)).
It is well known for a tilting module M that M⊥1 = GenM . In the next lemma

we prove that it is enough to assume that M satisfies (T3) for the inclusion M⊥1 ⊆
GenM to hold.

Lemma 3.1. If M is an A-module and satisfies (T3) then M⊥1 ⊆ GenM .

Proof. Since M satisfies (T3) then there is an exact sequence 0 → A
f→ M ′ →

M ′′ → 0 with M ′, M ′′ in addM .
Assume now that X ∈ M⊥1 . Let f1, · · · , fn be generators of the Z(A)-module

HomA(M ′, X) and ϕ = (f1, · · · , fn)t : (M ′)n → X, where (Z(A) denotes the center
of A). We will prove that ϕ is an epimorphism, so that X ∈ Gen M .

By applying the functor HomA(−, X) to the above sequence we get the exact
sequence:

0 → HomA(M ′′, X) → HomA(M ′, X)
Hom(f,X)

−→ HomA(A,X) → Ext1A(M ′′, X) = 0 ,

and the commutative diagram

0
↑

HomA(A,M ′n) −−−−−−−−−−−−→
Hom(A,ϕ) HomA(A,X)

Hom(f,M ′n) ↑ ↑Hom(f,X)

HomA(M ′,M ′n) −−−−−−−−−−−→
Hom(M ′,ϕ) HomA(M ′, X) → 0

shows that Hom(A,ϕ) is an epimorphism. Terefore so is ϕ, and X ∈ GenM . �

We will prove that if M satisfies the conditions (T2) and (T3) then CM
0 = CM

1 .
The converse is not true. In fact, any simple module M satisfies CM

0 = CM
1 , and

(T3) does not hold for M . Moreover, such a module M can be chosen so that
neither (T1) nor (T2) hold, as it is the case when M is the simple module over the
algebra K[X]/(X2).

Proposition 3.2. Let M be an A-module. If M satisfies (T2) and (T3) then
CM

0 = CM
1 .

Proof. Let X in CM
0 and consider an exact sequence 0 → K →M ′ → X → 0 with

M ′ ∈ addM such that the induced sequence 0 →HomA(M,K) →HomA(M,M ′) →
HomA(M,X) → 0 is exact. In order to prove that CM

0 = CM
1 we only need to show

that K ∈ CM
0 , by [PP, 3.5].

From the long exact sequence associated to HomA(M,−) and 0 → K → M ′ →
X → 0, and using the fact that Ext1A(M,M ′) = 0 because M satisfies (T2), we
get that Ext1A(M,K) = 0, so K ∈ M⊥1 . On the other hand, we know from
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Lemma 3.1 that M⊥1 ⊆ GenM = CM
0 , because M satisfies (T3). We conclude

that K ∈ CM
0 . �

The next examples show that neither (T1) and (T2), nor (T1) and (T3) imply
CM

0 = CM
1 .

Example 3.3. Let A be the hereditary K-algebra given by the quiver:

r r r
1 2 3

α β
- -

The Auslander-Reiten quiver ΓA is:

P1 = I3
↗ ↘

P2 I2
↗ ↘ ↗ ↘

S3 = P3 . . . S2 . . . S1 = I1

We consider the projective module M = P2 ⊕ P1. Clearly M satisfies (T1) and
(T2). We observe that S2 ∈ CM

0 and S2 /∈ CM
1 , so CM

0 6= CM
1 .

Example 3.4. The module M = P1⊕P2⊕I2 over the hereditary algebra of Example
3.3 has projective dimension 1, satisfies (T3) and CM

0 6= CM
1 .

Though, as we observed above, there are modulesMA such that CM
0 = CM

1 which
do not satisfy any of the three properties of the definition of a tilting module, we
will prove that the condition CM

0 = CM
1 guarantees that the module BM satisfies

(T2), where B = End(M) . To prove this result we need the following lemma.

Lemma 3.5. Let M be an A-module such that CM
0 = CM

1 . Then Im(HomA(M,−))
⊆ Ker(TorB

1 (−,B M)).

Proof. It is proven in [PP, 3.7] that Im(HomA(M,−)) = Ker(TorB
1 (−,B M)) when

CM
0 = CM

1 under the additional hypothesis that the functor HomA(M,−) is exact
in CM

0 . It is not difficult to see that without this additional hypothesis the argument
used there applies to prove the desired inclusion. �

Proposition 3.6. Let M be an A-module and B =End(M). If CM
0 = CM

1 then
BM satisfies (T2).

Proof. We consider the following natural isomorphisms:

Ext1B(BM,B M) ' DTorB
1 (DBM,B M) ' DTorB

1 (HomA(M,DA),B M).

By Lemma 3.5, TorB
1 (HomA(M,DA),B M) = 0. Then Ext1B(BM,B M) = 0. �

Let BMA be a B-A-bimodule. We denote by F = HomA(M,−): modA→ modB
and G = −⊗B M : modB → modA the pair of adjoint functors determined by M .
Let εX denote the counit and µY the unit of the adjunction, for X ∈ modA and
Y ∈ modB. We recall that F (εX)µFX = idFX and εGY G(µY ) = idGY .

In [PP, 2.2] we proved that if εM : GFM → M is an isomorphism then CM
1 ⊂

ImG ⊂ CM
0 . In the next lemma we show that if B = End(M) and µDM : DBM →

FGDBM is an isomorphism then DCBM
1 ⊂ ImF ⊂ DCBM

0 .
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Lemma 3.7. Let M be an A-module and B = End(M). Then:
i) ImF ⊂ DCBM

0 = CogenDBM

ii) If µDBM : DBM → FGDBM is an isomorphism then DCBM
1 ⊂ ImF

iii) If µDBM is an isomorphism, CM
0 = CM

1 and CBM
0 = CBM

1 then M is a
*-module

Proof. i) Let YB in ImF and X ′ be in modA such that FX ′ = YB . Since any
module X can be immersed in an injective module, there is an exact sequence
0 → X ′ → (DA)n, with n ∈ N . Applying the functor F we get the exact sequence:
0 → FX ′ → (FDA)n. Since DBM = FDA we obtain an exact sequence 0 →
YB → (DM)n, proving that FX ′ = YB ∈ CogenDBM .

ii) Let BX ∈ CBM
1 , and let BM1 →B M0 →B X → 0 be an exact sequence such

that HomB(BM,B M1) → HomB(BM,B M0) → HomB(BM,B X) → 0 is exact.
By applying the duality we get exact sequences 0 → DBX → DBM0 → DBM1

and 0 → D HomB(BM,B X) → DHomB(BM,B M0) → D HomB(BM,B M1).
Since there is an isomorphism D HomB(BM,B X) ' DBX⊗BM = GDBX, natural
in BX, we get that the sequence

0 → GDBX → GDBM0 → GDBM1

is exact. We apply the functor F and obtain a commutative diagram with exact
rows

0 → FGDBX → FGDBM0 → FGDBM1

↓µDBX ↓µDBM0 ↓µDBM1

0 → DBX → DBM0 → DBM1

where µDBM0 and µDBM1 are isomorphisms. So µDBX is an isomorphism and
therefore DBX ∈ ImF .

iii) Since CM
0 = CM

1 , the functor F induces an equivalence of categories between
GenM and ImF , as follows from [PP, 3.1]. By hypothesis, i) and ii) we know that
DCBM

1 = ImF = DCBM
0 = CogenDBM . Then ImF = CogenDBM , so M is a

*-module �

Any tilting module M satisfies that CM
0 = CM

1 and it is well known that DA ∈
GenM = CM

0 [HR, 2]. The converse is not true. We observe then that if M is a
tilting module and B = End(M), then BM is also a tilting module, so that also
CBM

0 = CBM
1 . Now we prove the main result of this section.

Theorem 3.8. Let M be an A-module and B = End(M). Then the following
conditions are equivalent:

a) M is a tilting module.
b) CM

0 = CM
1 , CBM

0 = CBM
1 and DA ∈ CM

0 .

Proof. We just observed that a) implies b). So we prove that b) implies a). We use
the following characterization of tilting modules, given in [PP, 3.12]: the module
M is a tilting module if and only if CM

0 = CM
1 , the functor F is exact in CM

0 and
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DA ∈ CM
0 . We also recall from [PP, 3.8] that the first two properties characterize

*-modules.
Thus to prove that b) implies a) we only need to show that a moduleM satisfying

b) is a *-module. This amounts to prove that µDBM is an isomorphism, by Lemma
3.7, since we are assuming that CM

0 = CM
1 and CBM

0 = CBM
1 . With this purpose

we observe first that εDA is an isomorphism, because DA ∈ CM
1 [PP, 2.2]. From

the equality 1FDA = F (εDA).µFDA we get that µFDA is also an isomorphism. This
proves that µDBM is an isomorphism, since FDA ' DBM , ending the proof of the
theorem. �

4. Generalized tilting modules and the subcategory CM
n

In this section we study which of the results proven in section 3 for tilting mod-
ules can be extended to generalized tilting modules, as defined in [M] and [H, 3].
In particular, we will prove that generalized tilting modules MA of projective di-
mension n satisfy that CMA

n−1 = CMA
n , CBM

n−1 = CBM
n and DA ∈ CMA

n , for B =
End(MA). However, the converse does not hold, so the characterization of tilting
modules given in Theorem 3.8 can not be extended to generalized tilting modules.

We recall that a module M ∈ modA is a generalized tilting module if it satisfies
the following conditions:

(TG1) pdM ≤ n

(TG2) Exti
A(M,M) = 0 for all i ≥ 1

(TG3) There exists an exact sequence 0 → A → M0 → M1 → · · · → Mn → 0
with Mi ∈ addM .

By [M, 1.16] and [H, 3] we know that if M is a generalized tilting A-module
and B = End(MA) then BM is a generalized tilting Bop-module. We prove some
relations between the validity of some of the properties defining a generalized tilting
module, the subcategories CM

i and M⊥i . We denote F = HomA(M,−).

Proposition 4.1. Let M be an A-module and n, s ∈ N. Then:
a) If M satisfies (TG2), X ∈ CM

s−1 and 0 → Ks−1 → Ms−1 → ... → M0 →
X → 0 is an exact sequence with Mi ∈ addM and such that the induced sequence
0 → FKs−1 → FMs−1 → ... → FM0 → FX → 0 is exact then Ks−1 ∈ M⊥s =
∩s

i=1KerExti
A(M,−).

b) If M satisfies (TG3) for n then M⊥n ⊂ CM
0 .

c) If M satisfies (TG2) and (TG3) for n then CM
n−1 = CM

n .
d) If M satisfies (TG2) and (TG3) for n then M⊥ ⊂

⋂
i≥0 C

M
i .

e) If M satisfies (TG1) and (TG2), then CM
n−1 ⊂M⊥, where pdM = n

f) If M is a generalized tilting A-module, and pdM = n then M⊥ = CM
n−1 = CM

n .

Proof. We start by proving b). Assume M satisfies (TG3) for n. Then there exists
an exact sequence 0 → A→M0 →M1 → · · · →Mn → 0 with Mi ∈ addM .

We denote Kj = Ker(Mj → Mj+1) for 1 ≤ j ≤ n − 1. We get the exact
sequences:

0 → A→M0 → K1 → 0,

0 → Kj →Mj → Kj+1 → 0, for 1 ≤ j ≤ n− 2

0 → Kn−1 →Mn−1 →Mn → 0.
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Let X ∈ M⊥n . By applying the functor HomA(−, X) to these sequences we
obtain the exact sequence:

0 → HomA(K1, X) → HomA(M0, X) → HomA(A,X) → Ext1(K1, X) → 0
and the isomorphisms Exti

A(Kj , X) ' Exti+1
A (Kj+1, X) for 1 ≤ j ≤ n − 2 and

Exti
A(Kn−1, X) = 0 for 1 ≤ i ≤ n− 1 .

In particular Extn−1
A (Kn−1, X) = 0. Then Ext1A(K1, X) ' Ext2A(K2, X) '

· · · ' Extn−1
A (Kn−1, X) = 0. Therefore 0 → HomA(K1, X) → HomA(M0, X) →

HomA(A,X) → 0 is exact. We deduce as in the proof of Lemma 3.1 that there
exists an epimorphism M ′ → X → 0. Then X ∈ GenM = CM

0 , proving b)
In order to prove the remaining items we consider M satisfying (TG2), X ∈ CM

s−1

and an exact sequence 0 → Ks−1 → Ms−1 → ... → M0 → X → 0, whith Mi ∈
addM and such that the induced sequence 0 → FKs−1 → FMs−1 → ...→ FM0 →
FX → 0 is exact. Then
i) Extj+s

A (M,Ks−1) ' Extj
A(M,X) for all j ≥ 1 and

ii) Extj
A(M,Ks−1) = 0, for 1 ≤ j ≤ s.

In fact, let 0 → K0 → M0 → X → 0 be exact. Then 0 → FK0 → FM0 →
FX → 0 is also exact, and K0 ∈ CM

s−2. The long exact sequence associated to 0 →
K0 → M0 → X → 0 yields Ext1A(M,K0) = 0 and Extj+1

A (M,K0) ' Extj
A(M,X)

for all j ≥ 1, and i) and ii) follow then by induction on s.
Now, the equalities in ii) mean precisely that that Ks−1 ∈ M⊥s , proving a). If

we also assume that (TG3) holds for n, then from a) and b) we get that Kn−1 ∈
M⊥n ⊆ CM

0 . Thus M ∈ CM
n , proving c).

To prove d) we assume, moreover, that X ∈ M⊥. Then from i) we obtain
that Extj+s

A (M,Ks−1) = 0 for all j ≥ 1. Using that Ks−1 ∈ M⊥s it follows that
Ks−1 ∈M⊥. On the other hand, since M⊥ ⊆ CM

0 , by b), we get that Ks−1 ∈ CM
0

and therefore X ∈ CM
s , ending the proof of d).

e) LetX ∈ Cn−1, and assume that the above considered moduleM satisfying (TG2)
satisfies also (TG1) and has projective dimension n. Then Extj+n

A (M,Kn−1) = 0
for all j ≥ 1 and from i) we get that X is in M⊥, as desired.

Finally, we observe that f) follows directly from c), d) and e). �

Theorem 4.2. Let M be a generalized tilting A-module, with pdM = n and B =
End(MA). Then CMA

n−1 = CMA
n , CBM

n−1 = CBM
n and DA ∈ CMA

n

Proof. From Proposition 4.1 f) and the fact that both MA and BM are generalized
tilting modules we have that CMA

n−1 = CMA
n and CBM

n−1 = CBM
n .

Since DA is an injective module we know that Exti
A(M,DA) = 0, for all i ≥ 1.

Then DA ∈M⊥
A . By f), CMA

n = M⊥
A , so DA ∈ CMA

n . �

The converse of the theorem is not true as we illustrate in the following example.

Example 4.3. Let A be the K-algebra given by the quiver

��
��
M

r r�
β

α

2 1
with α2 = 0, and βα = 0
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The Auslander-Reiten quiver ΓA is

S1 I2
↘ ↗ ↘

P1 S1

↗ ↘ ↗
S2 = P2 I1

Let M = I1 ⊕ I2. Then pdM = ∞, DA ∈ CM
1 = CM

2 and CBM
1 = CBM

2 .

In the previous example we saw that the conditions CMA
n−1 = CMA

n , CBM
n−1 = CBM

n

and DA ∈ CMA
n do not guarantee that M is a generalized tilting module. We will

prove that when DA ∈ CMA
n and CMA

n−1 = CMA
n the module BM satisfies (TG2).

We start with the following proposition.

Proposition 4.4. Let M be an A-module and n ≥ 2. If X ∈ CMA
n then

TorB
i (FX,M) = 0, for i = 1, ..., n− 1.

Proof. This result is proven in [PP, 3.7] under the additional hypothesis that CM
0 =

CM
1 , and the proof there can be easily addapted to the present situation, as we show

next.
If X ∈ CMA

n then there exists an exact sequence Mn → · · · →M0 → X → 0 with
Mi ∈ addM , and such that the induced sequence FMn → · · · → FM0 → FX → 0
is exact. Denote Kj = Ker(Mj → Mj−1) and K0 = Ker(M0 → X). We get the
exact sequences
(1) 0 → FK0 → FM0 → FX → 0
(2) 0 → FKj → FMj → FKj−1 → 0, for 1 ≤ j ≤ n

We apply the functor G = − ⊗B M to the sequence (1) and consider the com-
mutative diagram with exact rows

TorB
1 (FM0, M) → TorB

1 (FX, M) → GFK0 → GFM0 → GFX → 0
↓εK0 ↓εM0 ↓εX

0 −→ K0 −→ M0 −→ X → 0

where εK0 , εM0 and εX are isomorphisms by [PP, 2.2] (K0 ∈ CM
1 because n ≥ 2) .

Since FM0 is B-projective, then TorB
i (FM0,M) = 0. We obtain TorB

1 (FX,M) = 0
and TorB

i (FK0,M) ' TorB
i+1(FX,M) = 0 for i ≥ 1. The result follows then by

induction, using that K0 ∈ CMA
n−1.

�

The previous result holds for all i ≥ 1 under the additional hypothesis that
CMA

n−1 = CMA
n , n ≥ 1, as we state next.

Corollary 4.5. Let M be an A-module and n ≥ 1. If X ∈ CMA
n and CMA

n−1 = CMA
n

then TorB
i (FX,B M) = 0 for all i ≥ 1.

Proof. If CMA
n−1 = CMA

n , then CMA
n−1 = CMA

m for all m ≥ n ≥ 1. The result follows
then from Proposition 4.4.

�

Corollary 4.6. Let M be an A-module and n ≥ 1. If DA ∈ CMA
n and CMA

n−1 = CMA
n

then Exti
B(BM,B M) = 0 for all i ≥ 1 (BM satisfies (TG2)).
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Proof. Since DA ∈ CMA
n and CMA

n−1 = CMA
n , we know by the above corollary that

TorB
i (FDA,M) = 0 for all i ≥ 1. Then TorB

i (DM,B M) = 0 because FDA = DM .
The corollary follows from the isomorphism Exti

B(M,M) 'TorB
i (DM,M).

�
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