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ABSTRACT

In this paper we further study the full subcategories CiM of the category of finitely generated
modules over an artin algebra introduced in [PP], consisting of the modules having an addM
resolution of length i, which remains exact under the functor Hom 4 (M, —). In particular, we
characterize tilting modules in terms of these categories and determine when the transpose of a

tilting module is a tilting module.

Introduction

Let A be an artin algebra and modA be the category of finitely generated right
A-modules. Let M be an A-module and denote by addM the full subcategory
of modA consisting of the direct sums of direct summands of M. In [PP] we
considered for an A-module M and for every n > 0 the full subcategories CM of
modA consisting of the modules X such that there is an exact sequence M, —

- — My — My — X — 0 with M; € addM, and such that the induced sequence
Homyu (M, M,,) — -+ — Homa (M, My) — Homu (M, My) — Homyu (M, X) — 0 is
exact, generalizing work of M. Auslander in [A] about the subcategory C{. The
results in [PP] refer mainly to C}¥ and CM, and the modules M with the property

that O} = CM are studied there. Examples of such modules are semisimple
modules, tilting modules, *-modules (as defined en [C]) and the transpose of tilting
modules.

In this paper we give some applications of the results in [PP]. On one side, we
prove that the transpose TrM of a tilting module M is a *-module. Using then a
result by D’Este and Happel about *-modules it follows that TrM is a tilting module
over the algebra End(pM)/P(gM,p M), where B = End(My4) and P(gM,g M) is
the set of the endomorphisms of g M which factor through a projective module. As
a consequence we obtain conditions for the transpose of a tilting module M to be a
tilting module. This is the case, for example, when M is a splitting or a separating
tilting module with no nonzero projective summands.

Tilting modules M satisfy C}¥ = CM. The converse is not true, even if we
assume that DA € C}. An example is provided by the module M direct sum
of a complete set of representatives of the isomorphism classes of indecomposable
modules over an algebra of finite representation type. However, we characterize
tilting modules in terms of the categories CM in the following way. Let B =
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End(M,). The module M is a tilting module if and only if DA € Cy™, C}'4 =
C’{M 4 and C(JfM = CIBM. We study the relation between the validity of some
properties defining a tilting module, and the conditions C’é\“ = C’{V[A and C§ M _
opM,

Finally, we consider generalized tilting modules and prove that generalized tilting
modules M of projective dimension n have the property that DA € C’,]Z/I_Al, and the
equalities CM4 = CMa and €2 = CBM hold. However, the converse does not
hold.

1. PRELIMINARIES

Throughout this paper A denotes an artin algebra, modA the category of finitely
generated right A-modules and A°P the opposite algebra of A. The word module
means finitely generated module and we will write M4 or M to indicate that the
A-module M is a right module, and 4 M to indicate that it is a left module. All
subcategories considered are full. We will denote by D: modA — modA°P the usual
duality for artin algebras. Moreover, pdM denotes the projective dimension and
idM the injective dimension of the module M. We denote by TrM the transpose
of M and by GenM (respectively, CogenM ) the subcategory of modA generated
(respectively, cogenerated) by M.

According to [HR, 3] we will say that the module M4 is a tilting module if it
satisfies the following conditions:

(T1) pd My < 1.
(T2) Extly(Ma, M4) = 0.

(T3) There exists an exact sequence 0 - A — M' — M" — 0 with M’, M" in
addM 4.

It was shown in [BB] and [HR] that if M is a tilting module and B = End(M)
then: 1) g M is a tilting module and A ~ End(p M) and 2) the functors Hom 4 (M, —)
and — ®p M induce mutually inverse equivalences between the full subcategories
T(M) = {X : Exty(M,X) = 0} and Y(M) = {Y : Tor?(Y, M) = 0} while the
functors ExtY (M, —) and TorP(—, M) induce mutually inverse equivalences be-
tween the full subcategories F(M) = {X : Homu (M, X) = 0} and X(M) = {Y :
Y ®p M = 0}.

A tilting module M is said to be a separating (respectively, splitting) tilting
module if the torsion theory (7 (M), F(M)) splits in mod A (respectively, the torsion
theory (X(M),Y(M)) splits in modB).

For a general reference for tilting theory we refer the reader to [As]|, [R] and
[HR].

We recall that the module M is a *-module, as defined in [C], when the functor
Hom 4 (M, —) induces an equivalence of categories between GenM and CogenDp M.

2. THE TRANSPOSE OF A TILTING MODULE

In this section we use results of the subcategories CM to prove that the transpose
A(TrM4) of a tilting module M4 is a *-module and give also a necessary and
sufficient condition for 4(TrM3y) to be a tilting module.

Furthermore, we apply this result to obtain that the transpose of a splitting or a
separating tilting module without nonzero projective summands is a tilting module.
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We start by stating a theorem of D’Este and Happel [DH] which motivated this
section.

Theorem 2.1. ([DH]) Let M4 be an A-module. Then: Ma is a *-module if and
only if M is a tilting A-module, where A = A/annM 4.

It is well known that if My is a tilting module and B =End(My), then g M is
also a tilting module and ¢ : A — End(pM) defined by ¢(a)(t) = t.a, t € gM,
a € A is an isomorphism [HR, 2]. Moreover, we need the following result.

Lemma 2.2. Let My be a tilting A-module and B= End(My4). Then v induces
an isomorphism ann(TrMy) ~ P(gM,g M), where P(gM,5 M) is the set of the
endomorphisms of g M which factor through a projective module.

Proof. If M4 is a tilting module then ¢ : A — End(pM) is an isomorphism. By
[PP, 4.1] we know that 4(TrMa4) ~4 (TrpM). Then a € anns(TrMy) if and only
if a € anng(TrpM). On the other hand, a.x = ¥(a).z =Try(a)(x) = 0 for = €
TrpM. Hence a € anny (TrM4) if and only if ¢(a) € P(gM,p M).

O

We prove next that the transpose of a tilting module is a *-module, and using
D’Este and Happel’s result stated in Theorem 2.1 we prove the following theorem.

Theorem 2.3. Let M4 be a tilting A-module and B= End(M4). Then:
a) a(TrM,) is a *-module.

b) End(sa)(TrMy4) is a tilting End(pM)-module.

c)a(TrMy) is a tilting module if and only if P(gM,p M) = 0.

Proof. a) It is proven in [PP, 3.8] that a module M4 is a *-module if and only if
O} = oM and the functor Homa (M, —) is exact on Cp'4.

On the other hand, using that A ~ End(gM) and gM is a tilting module, we
get that COTTMA = ClTrMA and the functor Hom4 (TrMy, —) is exact on C’OTrMA,
from [PP, 4.11] and [PP, 4.7] respectively. It follows that 4(TrMy) is a *-module.

b) By a) we know that 4(TrM,) is a *-module. Then from Theorem 2.1 and
Lemma 2.2 we obtain that (TrM4) is a tilting A-module, where A = A/ann(TrM4)
End(BM)/P(BM,B M)

c¢) Assume that P(gM,p M) # 0. By Lemma 2.2, annyg(TrM,) # 0. Therefore
A(TrMy) is not faithful and consequently 4(TrMa4) is not a tilting module.
The converse follows directly from b). O

Lemma 2.4. Let M4 be a tilting module. Then the number of isomorphism classes
of indecomposable projective summands of M4 is equal to the number of isomor-
phism classes of indecomposable projective summands of gM .

Proof. This result follows from the Connecting Lemma [HR, 2]. In fact, if I, P are
respectively the injective envelope and the projective cover of the simple module
S, then TrDHomy (Ma, I) ~ Ext! (M4, P). Moreover, P € addM, if and only
if DHoma (M4, I) is a projective B°P-module. On the other hand, we know that
DpM =Hom (M4, DA), therefore DHom(M4,I) € addgM.

R



So to each indecomposable projective summand P of M4 we associate the in-
decomposable projective summand 8(P) = DHomy(Ma,I) of gM. Since DA €
GenM 4 and the functor Homu(Ma, —)|gennr, is faithful, the correspondence 6 is
injective. By [HR, 2][As, 2.3] we know that each indecomposable projective module
pP is of the form D Hom 4 (Mg, I4), with I4 injective, so 6 is also surjective. [

Next, we give equivalent conditions for the transpose of a tilting module M to
be a tilting module. Let (M4)* =Hom 4 (M4, A).

Proposition 2.5. Let My be a tilting module and B= End(M_y). Then the fol-
lowing conditions are equivalent:

a) a(TrM,) is a tilting module

b) (M) =0

C) P(MA,MA) =0

d) (TrgM) g is a tilting module

e) (M) =0

f) P(p M5 M) =0

Proof. To prove that a) implies b) we assume 4(TrM,) is a tilting module. Then
the module M4 does not have projective summands and id(DTrM,4) < 1. That is
to say, TrTrM s ~ M4 and Hom s (TrTrM 4, A) = 0. Then (M4)* = 0.

Clearly b) implies ¢), and it follows directly from Theorem 2.3 that c¢) implies
d). The remaining implications follow from the previous ones using that gM is a
tilting module. (Il

As a consequence we obtain that the transpose of a separating (or splitting)
tilting module with no projective summands is a tilting module. This result can
also be obtained from the work of Hoshino [Ho,2].

Corollary 2.6. Let M4 be a splitting (or separating) tilting module without nonzero
projective summands and B= End(Ma). Then 4 (TrMa) is a tilting A-module.

Proof. By the above proposition we only need to prove that (gM)* = 0. So we
assume that this is not the case and consider a nonzero morphism f:pM — B.
Then Df : DB — DpM is also nonzero. Therefore there exist an indecomposable
injective module Iz and a nonzero morphism h : Iy — DM, and since DgM €
V(M) we conclude that Ip ¢ X (M) .

We assume first that the tilting module M4 is splitting. Then Ig € Y(M). By
[As, 2.3] we conclude that there exists an injective module 74 in modA such that
Ip ~ Homu(M,I,), and from the Connecting Lemma we obtain 0 = TrDIp ~
TrD Hom(M,I4) ~ ExtY (M, Py(Ia/r14)). So the module P, belongs to 7 (M)
and is a projective. Thus Py € addM 4, contradicting our hypothesis.

The proof when M, is separating is similar. ([

3. MODULES M4 sUCH THAT Co/4 = CM4 AND TILTING MODULES

In this section we consider an A-module M4, B = End(M4) and we show that
My is a tilting module if and only if DA € C4, €4 = ¢M4 and OpM = oM.

We start by studying the relation between the validity of some of the properties
(T1), (T2) and (T3) defining a tilting module, and the conditions C}*4 = C M4
and CPM = CcpM,
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It is well known that C)"4 = GenM, for any module M4. By [PP, 3.12], when
My is a tilting module it satisfies the condition Cj*4 = CM4. We will prove that
the validity of (T2) and (T3) implies that C}™* = CM4, and exhibit examples
showing that no other combination of two of the properties (T1), (T2) and (T3)
implies C}*4 = ¢4,

We introduce now the following notation. For a module M = My, let M+» =
N, Ker(Ext? (M, —)) and M+ = N;~o Ker(Exty (M, —)).

It is well known for a tilting module M that M-t = GenM. In the next lemma
we prove that it is enough to assume that M satisfies (T3) for the inclusion M+t C
GenM to hold.

Lemma 3.1. If M is an A-module and satisfies (T3) then M++ C GenM .

Proof. Since M satisfies (T3) then there is an exact sequence 0 — A RN V.
M" — 0 with M', M" in addM.

Assume now that X € M+t Let fi,---, f, be generators of the Z(A)-module
Homa(M', X) and ¢ = (f1,-+, fu)' : (M")" — X, where (Z(A) denotes the center
of A). We will prove that ¢ is an epimorphism, so that X € Gen M.

By applying the functor Homy4(—, X) to the above sequence we get the exact
sequence:

Hom(f,X)

0 — Homa(M"”,X) — Homy(M’', X) — Homyu(A, X) — Exty(M" X)=0,

and the commutative diagram

0
. T
HomA(A7 M’ ) Hom(A,p) Hom 4 (A, X)
Hom(f,M'™) 1 THom(f,X)
Homa(M',M'™) Hom(M',¢) Homy (M, X) — 0

shows that Hom(A4, ¢) is an epimorphism. Terefore so is ¢, and X € GenM. O

We will prove that if M satisfies the conditions (T2) and (T3) then C} = CM.
The converse is not true. In fact, any simple module M satisfies C} = CM, and
(T3) does not hold for M. Moreover, such a module M can be chosen so that
neither (T1) nor (T2) hold, as it is the case when M is the simple module over the
algebra K[X]/(X?).

Proposition 3.2. Let M be an A-module. If M satisfies (T2) and (TS8) then
cM =cM.

Proof. Let X in C}* and consider an exact sequence 0 — K — M’ — X — 0 with
M’ € add M such that the induced sequence 0 — Hom 4 (M, K) — Hom4 (M, M') —
Hom 4 (M, X) — 0 is exact. In order to prove that C} = CM we only need to show
that K € C}!, by [PP, 3.5].

From the long exact sequence associated to Homa (M, —) and 0 - K — M’ —
X — 0, and using the fact that ExtY (M, M’) = 0 because M satisfies (T2), we
get that Exth (M,K) = 0, so K € M*1. On the other hand, we know from
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Lemma 3.1 that M+t C GenM = C}¥, because M satisfies (T3). We conclude
that K € CJ1. O

The next examples show that neither (T1) and (T2), nor (T1) and (T3) imply
cY =coM.

Example 3.3. Let A be the hereditary K-algebra given by the quiver:

The Auslander-Reiten quiver I' 4 is:

/ N\
PQ I2

/ N\ / N\
S3=P3 . . . SQ . . . Sl :Il

We consider the projective module M = Py & Py. Clearly M satisfies (T1) and
(T2). We observe that Sa € CM and Sy ¢ CM, so CM £ CM.

Example 3.4. The module M = P, ® P> ® 15 over the hereditary algebra of Example
3.3 has projective dimension 1, satisfies (T3) and C}M # CM.

Though, as we observed above, there are modules M4 such that C}* = CM which
do not satisfy any of the three properties of the definition of a tilting module, we
will prove that the condition C} = CM guarantees that the module g M satisfies
(T2), where B = End(M) . To prove this result we need the following lemma.

Lemma 3.5. Let M be an A-module such that C}* = CM. Then Im(Hom (M, —))
C Ker(Tor?(—,5 M)).

Proof. 1t is proven in [PP, 3.7] that Im(Hom4 (M, —)) = Ker(Tor?(—,5 M)) when
CHM = CM under the additional hypothesis that the functor Hom 4 (M, —) is exact
in C}M. Tt is not difficult to see that without this additional hypothesis the argument
used there applies to prove the desired inclusion. O

Proposition 3.6. Let M be an A-module and B =End(M). If C} = CM then
M satisfies (T2).

Proof. We consider the following natural isomorphisms:
Extl,(5M,5 M) ~ DTor? (DpM,5 M) ~ DTor? (Homa (M, DA),5 M).
By Lemma 3.5, Tor? (Hom4 (M, DA),gp M) = 0. Then Exth(zM,5 M) = 0. O

Let 5 M4 be a B-A-bimodule. We denote by F' = Hom 4 (M, —): modA — modB
and G = — ®p M: modB — modA the pair of adjoint functors determined by M.
Let ex denote the counit and py the unit of the adjunction, for X € modA and
Y € modB. We recall that F(ex)urx = idrpx and ey G(py) = idgy .

In [PP, 2.2] we proved that if eps : GFM — M is an isomorphism then CM C
ImG C C}. In the next lemma we show that if B = End(M) and ppy : DpM —
FGDgM is an isomorphism then DC?M < ImF ¢ DOFM.



Lemma 3.7. Let M be an A-module and B = End(M). Then:

i) InF ¢ DCFM = CogenDpM

i) If upgar : DM — FGDgM ‘is an isomorphism then DCPM c ImF

i) If upyar is an isomorphism, CM = CM and C’(‘fM = ClBM then M is a
*-module

Proof. i) Let Yp in ImF and X’ be in modA such that FX' = Yp. Since any
module X can be immersed in an injective module, there is an exact sequence
0— X' — (DA)", with n € N. Applying the functor F' we get the exact sequence:
0 - FX' — (FDA)". Since DgM = FDA we obtain an exact sequence 0 —
Y — (DM)™, proving that FX' =Yg € CogenDgM.

ii) Let pX € C{BM, and let pM; —p My —p X — 0 be an exact sequence such

that Hompg(sM,g M1) — Homp(gM,g My) — Homp(gM,5 X) — 0 is exact.
By applying the duality we get exact sequences 0 — DX — DMy — DM,

and 0 — DHOIHB(BM,B X) — DHOIIIB(BM,B Mo) — DHOIDB(BM,B Ml)

Since there is an isomorphism D Homp(pM,p X) ~ DpX ®p M = GDgX, natural

in pX, we get that the sequence

0— GDBX — GDBMO — GDBM1

is exact. We apply the functor F' and obtain a commutative diagram with exact
rows

0 — FGDBX — FGDBMO — FGDBMl

lNDBX lMDBMo lHDBI\/II

0 — DX — DpM, — DpM,

where pup,nm, and pp,a, are isomorphisms. So pp,x is an isomorphism and
therefore DX € ImF.

iii) Since C} = CM, the functor F' induces an equivalence of categories between
GenM and ImF, as follows from [PP, 3.1]. By hypothesis, i) and ii) we know that
DCPM = ImF = DCPM = CogenDpM. Then ImF = CogenDpM, so M is a
*-module O

Any tilting module M satisfies that C} = CM and it is well known that DA €
GenM = C}! [HR, 2]. The converse is not true. We observe then that if M is a
tilting module and B = End(M), then gM is also a tilting module, so that also
CpM = cPM. Now we prove the main result of this section.

Theorem 3.8. Let M be an A-module and B = End(M). Then the following
conditions are equivalent:

a) M is a tilting module.

b) oM =M, opM =M and DA € G

Proof. We just observed that a) implies b). So we prove that b) implies a). We use
the following characterization of tilting modules, given in [PP, 3.12]: the module
M is a tilting module if and only if C} = CM, the functor F is exact in CJ! and
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DA € C. We also recall from [PP, 3.8] that the first two properties characterize
*-modules.

Thus to prove that b) implies a) we only need to show that a module M satisfying
b) is a *-module. This amounts to prove that pup,as is an isomorphism, by Lemma
3.7, since we are assuming that C* = OM and CZM = CPM. With this purpose
we observe first that epa is an isomorphism, because DA € CM [PP, 2.2]. From
the equality 1ppa = F(epa).rpa we get that upp4 is also an isomorphism. This
proves that pp, s is an isomorphism, since FDA ~ DpM, ending the proof of the
theorem. O

4. GENERALIZED TILTING MODULES AND THE SUBCATEGORY CM

In this section we study which of the results proven in section 3 for tilting mod-
ules can be extended to generalized tilting modules, as defined in [M] and [H, 3].
In particular, we will prove that generalized tilting modules M4 of projective di-
mension n satisfy that CM4 = CMa CPM = C8M and DA € CM4, for B =
End(M4). However, the converse does not hold, so the characterization of tilting
modules given in Theorem 3.8 can not be extended to generalized tilting modules.

We recall that a module M € modA is a generalized tilting module if it satisfies
the following conditions:

(TG1) pdM <n
(TG2) Exty (M, M) =0 for all i > 1

(TG3) There exists an exact sequence 0 — A — My — My — --- — M, — 0
with M; € addM.

By [M, 1.16] and [H, 3] we know that if M is a generalized tilting A-module
and B = End(M4) then pM is a generalized tilting B°P-module. We prove some
relations between the validity of some of the properties defining a generalized tilting
module, the subcategories CM and M+i. We denote F' = Homy (M, —).

Proposition 4.1. Let M be an A-module and n, s € N. Then:

a) If M satisfies (TG2), X € CM, and 0 — Ky — Ms_y — ... — My —
X — 0 is an exact sequence with M; € addM and such that the induced sequence
0— FK,_ 1 — FMy,_1 — .. - FMy — FX — 0 is exact then Ks_1 € M+s =
N5_, KerExty (M, —).

b) If M satisfies (TGS3) for n then M+ C C}.

c¢) If M satisfies (TG2) and (TG3) for n then CM | = CM.

d) If M satisfies (TG2) and (TG3) for n then M+ C (;5,CM.

e) If M satisfies (TG1) and (TG2), then CM | C M+, where pdM = n

f) If M is a generalized tilting A-module, and pdM = n then M+ = CM | =CM.

Proof. We start by proving b). Assume M satisfies (TG3) for n. Then there exists
an exact sequence 0 - A — My — My — --- — M, — 0 with M, € addM.
We denote K; = Ker(M; — Mjy4q) for 1 < j < n—1. We get the exact
sequences:
0—-A— My— K; —0,
0—=K;j—=M; —-Kj;1—0, for1<j<n—-2
0—-K,_1—>M,_1 — M, —0.
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Let X € M*». By applying the functor Hom4(—, X) to these sequences we
obtain the exact sequence:

0 — Homa (K1, X) — Homa (Mg, X) — Homyu (4, X) — Ext! (K, X) — 0
and the isomorphisms Ext (Kj, X) ~ Ext’,™(K;;1,X) for 1 < j < n —2 and
Extly(K,_1,X)=0for1<i<n-1.

In particular Ext’; '(K,_1,X) = 0. Then Extl(K;,X) ~ Ext% (K, X) ~

-~ Exty ' (K,_1,X) = 0. Therefore 0 — Hom (K, X) — Homa (M, X) —
Homa(A4,X) — 0 is exact. We deduce as in the proof of Lemma 3.1 that there
exists an epimorphism M’ — X — 0. Then X € GenM = C}/, proving b)

In order to prove the remaining items we consider M satisfying (TG2), X € CM,
and an exact sequence 0 — K, 1 — Mys_1 — ... = My — X — 0, whith M; €
addM and such that the induced sequence 0 — FK,_ 1 — FM;_ 1 — ... —» FMy —
FX — 0is exact. Then
i) Ext’,* (M, Ks_1) ~ Ext’,(M, X) for all j > 1 and
i) Ext’, (M, K, 1) =0, for 1 <j <s.

In fact, let 0 - K9 — My — X — 0 be exact. Then 0 — FKy — FMy —
FX — 0 is also exact, and Ko € CM,. The long exact sequence associated to 0 —
Ko — My — X — 0 yields Ext! (M, Ko) = 0 and Ext’,"" (M, K,) ~ Ext?,(M, X)
for all j > 1, and i) and ii) follow then by induction on s.

Now, the equalities in ii) mean precisely that that K, ; € ML+, proving a). If
we also assume that (TG3) holds for n, then from a) and b) we get that K,,_1 €
Mt C CM . Thus M € CM | proving c).

To prove d) we assume, moreover, that X € M<. Then from i) we obtain
that Ext’,"*(M, K, ;) = 0 for all j > 1. Using that K, ; € M~ it follows that
K,_1 € M*. On the other hand, since M+ C C}, by b), we get that K,_; € C}
and therefore X € CM | ending the proof of d).

e) Let X € Cj,—1, and assume that the above considered module M satisfying (TG2)
satisfies also (TG1) and has projective dimension n. Then Ext’, " (M, K, 1) =0
for all j > 1 and from i) we get that X is in ML, as desired.

Finally, we observe that f) follows directly from c), d) and e). O

Theorem 4.2. Let M be a generalized tilting A-module, with pdM = n and B =
End(M,). Then CMA = CcMa ¢BM — 0BM 4nd DA € CMa

n—1

Proof. From Proposition 4.1 f) and the fact that both M4 and g M are generalized
tilting modules we have that CM4 = CMa and C2M = 0 M,

Since DA is an injective module we know that Ext% (M, DA) = 0, for all i > 1.
Then DA € M%. By f), CMa = M+, so DA € CMa, O

The converse of the theorem is not true as we illustrate in the following example.

Example 4.3. Let A be the K -algebra given by the quiver

e
2 1
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The Auslander-Reiten quiver I' s is
S I
AN / N
P S1

e N /
Sy =Py I

Let M = I, ® I. Then pdM = oo, DA € CM = CM and CPM = cp™M.

In the previous example we saw that the conditions 24 = CMa oM — csM
and DA € CM4 do not guarantee that M is a generalized tilting module. We will
prove that when DA € CM4 and CM4 = CM4 the module g M satisfies (TG2).

We start with the following proposition.

Proposition 4.4. Let M be an A-module and n > 2. If X € CM4 then

TOI'?(FX,M) :0’ fori:]_v.“’n_]_'

Proof. This result is proven in [PP, 3.7] under the additional hypothesis that C}f =
CM | and the proof there can be easily addapted to the present situation, as we show
next.

If X € CM4 then there exists an exact sequence M,, — --- — My — X — 0 with
M; € addM, and such that the induced sequence FM,, — --- — FMy — FX — 0
is exact. Denote K; = Ker(M; — M;_1) and Ky = Ker(My — X). We get the
exact sequences
(1) 0 - FKy —» FMy — FX — 0
2)0—-FK; - FM; - FK; 1 —0,for1<j<n

We apply the functor G = — ® g M to the sequence (1) and consider the com-
mutative diagram with exact rows

TorB(FMy,M) — TorP(FX,M) — GFKy — GFMy — GFX — 0
lEKO lb‘Mo 1&x
0 — Ko — My — X — 0

where e, e, and ex are isomorphisms by [PP, 2.2] (Ko € CM because n > 2) .
Since F'M is B-projective, then Tor? (F My, M) = 0. We obtain Tor? (FX, M) =0
and Tor? (FKy, M) ~ Tor? | (FX,M) = 0 for i > 1. The result follows then by
induction, using that Ky € C24.

t

The previous result holds for all ¢ > 1 under the additional hypothesis that
CMa — OMa n > 1, as we state next.

Corollary 4.5. Let M be an A-module andn > 1. If X € CMa and CM4 = CMa
then Tor?(FX,p M) =0 for all i > 1.

Proof. If CM4 = CMa | then CM4 = CMa for all m > n > 1. The result follows
then from Proposition 4.4.
O

Corollary 4.6. Let M be an A-module andn > 1. If DA € CMa and CM4 = CMa
then Exty(pM,p M) =0 for all i > 1 (pM satisfies (TG2)).
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Proof. Since DA € CM4 and CM4 = CMa | we know by the above corollary that
TorP(FDA, M) = 0 for alli > 1. Then Tor? (DM,5 M) = 0 because FDA = DM.
The corollary follows from the isomorphism Ext% (M, M) ~Tor2 (DM, M).

O
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