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Abstract: In ordered Banach spaces we prove the global asymptotic stability of the unique
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1. INTRODUCTION

Let (E,| - ||) be a real Banach space ordered by a normal cone K, that is
K is a closed convex subset of E such that A\AK C K (A > 0), KN(—K) = {0},
inducing an ordering by x <y : <= y—x € K, and

Je>1 0<z<y = |zl <dyl.

Moreover we assume that K is solid, that is K has nonempty interior K°,
and we set * K y : <= y —x € K°. In this situation K° endowed with the
Thompson metric [11]

d(z,y) :==log (min{a>1: z <ay, y < az})

is a complete metric space. A function f : K° — K° is d-Lipschitz continuous
with constant [ > 0 if and only if, for all x,y € K°,

r<ayhy<ar = f(z)<dfly)Afly) <a'f(z).
We study in this paper the dynamical system
u'(t) = Au(t) + f(u(t))  (£=0),

W u(0) =z € K°,
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where A is the generator of a Cy-semigroup (7'(¢))+>0 of positive operators on
Eie.,
x>0 = T({t)z>0 foral t>0.

In particular, A is quasimonotone increasing (cf. Section 2). We are interested
in the semiflow given by mild solutions of (1), i.e., by solutions of the integral
equation

(2) wu(t)=T(t)x —i—/o T(t—s)f(u(s))ds (t € [0, tmax(x)), z € K°).

If I < 1 and the semigroup is exponentially stable, then we obtain a unique
xo € K° N D(A) such that

Az + f(xo) =0

(cf. Proposition 6 below); i.e., the dynamical system given by (1) has a unique
equilibrium xq in K°. In our main result Theorem 1 below we show that, under
these assumptions, the equilibrium zq is globally asymptotically stable in K°,
i.e., any mild solution wu(t,z) of (1) converges to zg as t — co. Moreover, we
establish an explicit estimate for d(u(t,z),xg) which shows that convergence
holds with a uniform exponential rate. Under the additional assumption that
xo is an eigenvalue of A we obtain in Theorem 2 an optimal estimate on
d(u(t,z), xo).

As an introductory example consider E = [*°(Z) endowed with the supre-
mum norm || - ||o and ordered by the normal and solid cone

K:={zel®(Z):2,>0 forallneZ}.

Then
K° = {3: €l>™(Z) : inf z, > O},
neL

and for || < 2 the function f: K° — K° defined by

f(z) = (2 + ﬁsin(log(mn,lxnﬂ)))nez

is d-Lipschitz continuous with constant % (cf. Section 4). Thus our results

yield that, for |3| < 2/+/5, all solutions of the infinite system

UL (6) =t (£) — Auin(8) + 01 (1) + 2
+ Bsin(log (un—1(t)uns1(t))) (neZ),
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with initial values in K° are exponentially decaying to the constant sequence
(1)pez in I°°(Z) as t — oo, with respect to Thompson’s metric.

Concerning our assumptions we remark that, for [ > 1, global existence for
solutions of (1) fails in general, as one can already see in the one-dimensional
case £ = R for Az = —x and f(x) = 2'. The case | = 1 is special in the sense
that it includes linear functions. For £ = R, Az = —z and f(z) = 2z in (1)
existence of equilibria in K° fails, and all solutions in K° grow exponentially.

Motivated by the analysis of generalized Riccati equations and other non-
linear matrix equations, the contraction rate of flows with respect to Thomp-
son’s metric has been investigated in [7], [10]. In particular, Gaubert and Qu
[3] studied the time-dependent case for order-preserving flows. In our case the
semiflow generated by (1) is not order-preserving in general, since f need not
to be quasimonotone increasing in the sense of Volkmann [12].

The paper is organized as follows: In the preliminary Section 2 we state
some properties of Thompson’s metric in our situation and of positive semi-
groups. Moreover, we show existence of global solutions to (1) and nonex-
pansiveness of the semiflow with respect to Thompson’s metric under the
assumption that [ < 1 and that A generates a semigroup of positive opera-
tors. In Section 3 we state and prove our main results on global asymptotic
stability. Section 4 contains some examples.

2. PRELIMINARIES

The interrelation between the topologies generated by d and || - || on K°
are characterized by the following Proposition 1, see [5]. Let p € K° be fixed
and let || - ||, denote the Minkowski functional

|zllp = min{a>0: —ap <z < ap} (x € E).
Then || - ||, is an equivalent norm on E [2, Prop.19.9], and we write
distp(z,0K) :=inf {|lz — y[|, : y € 0K}
for the distance to the boundary of K with respect to this norm.

ProrosiTiON 1. For all z,y € K°:
(i) o —yll, < (exp(d(z,y)) — 1) exp (max{d(z, p), d(y,p)}):
(i) d(z,y) < llo — yllp/ min {dist, (2, 0K), disty(y, 9K) };
(ili) —log(disty(z,0K)) < d(z,p) .



144 G. HERZOG, P.C. KUNSTMANN

In particular, if f is d-Lipschitz continuous then f is locally Lipschitz
continuous in norm, and thus (2) has unique local solutions, i.e., initial value
problems for (1) have unique mild solutions on maximal time intervals. In
case that f is a d-contraction, we will see that (1) generates a nonexpansive
semiflow on [0, 00).

We assume from now on that A is the generator of a Cy-semigroup
(T'(t))e=0 of positive operators, i.e., T(t)(K) C K for each t > 0. Then A
is quasimonotone increasing, i.e., for all z € D(A) N K and each

qﬁGK*::{wGE*:wZOonK}

such that ¢(z) = 0 we have ¢(Azx) > 0 (cf. [1], [6]). We recall the follow-
ing result from [4], for which we give a new proof here. We also recall the

directional derivative m4 from [8], which we use for || - ||, here,
O I 1 | 2

vyl =1 ,Yy € EF),

melr,y) = lim. ! e,y € B)

and the property

<((L>+HT(t)$Hp =my[T(t)z, AT (t)x] (z € D(A)),

where (%) n denotes the right side derivative.

PrOPOSITION 2. If p € D(A) N K° and w := min{ae € R : Ap < ap}
then my[p, Ap] = w and my [z, Az] < w||z||, for all x € D(A). Moreover,
|T(t)x]l, < e“||z|, for all t > 0 and = € E, in particular T(t)p < e*'p for
all t > 0.

Proof. Replacing A by A — wl and T(t) by e “'T(t) we may assume
w = 0. Since p € K° we have p 4+ hAp € K° for small h > 0. For these
h we have

|lp+ hAp|l, =min {o € R : p+ hAp < ap}
—1
:min{aeR : Ap<ahp}:1,

which implies m4 [p, Ap] = 0. If x € D(A) and a = ||z||, then —ap < z < ap,
which implies

—aT(t)p <T@z <aT(t)p  and [Tz, < al|T@)plp-
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But then
T(t -
m+[m,Ax] — th%l_’_ H ( )'/I;HP «
_)
. T@)pllp — lIplp

< = =0.

< lim . am[p, Ap] =0
Hence

d
(5) 1Tl = s AT()] <0
dt) .
for all ¢ > 0 and « € D(A), which implies || T(t)z|, < |lz|, for all t > 0
and z € FE. 1

Here we remark that if p € D(A) N K° and —Ap € K° then w < 0 and the
semigroup is exponentially stable. On the other hand, exponential stability
of the semigroup implies that A : D(A) — E is bijective and —A~! is positive
as can be seen from

(N — A le = /OO e MT () dt (x € E)
0

for A > 0.

PROPOSITION 3. Foreacht > 0 we have T'(t)(K°) C K°. If the semigroup
is exponentially stable then we have —A~'(K°) C K°.

Proof. Choose p > 0. By strong continuity, we find § > 0 such that
T(t)p > 0 for t € [0,6]. If x > 0 we find a > 0 with p < ax which implies
T(t)p < aT(t)x for any ¢ > 0. In particular, T'(t)z > 0 for all ¢t € [0,4].
We have shown T'(t)(K°) C K° for t € [0,6]. By the semigroup property, this
holds for all ¢ > 0.

Let the semigroup be exponentially stable and & > 0. Since —A~! is
positive, we have y := —A~ 'z > 0, and if y ¢ K° we find ¢ € K*\ {0} such
that ¢(y) = 0. But then ¢(Ay) > 0 in contradiction to Ay = —z € —K°. 1

For T' > 0 let C([0,T], E) be endowed with the maximum norm || - ||oc and
ordered by the normal and solid cone

Kr:={ueC([0,T],E) : u(t) >0 for all t € [0,T]}.
Note that (since [0,77] is compact)

Kg={ueC(0,T),E) : u(t) >0 forall t € [0,T]}.
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The Thompson metric with respect to K is denoted by dr. We will see that
d-contractivity of f yields existence of global mild solutions for (1):

ProproSITION 4. Let f : K° — K° be d-Lipschitz continuous with con-
stant | < 1 and let A be the generator of a positive semigroup. Then each
initial value problem

u'(t) = Au(t) + f(u(t)), u(0)=2>0,
has a unique mild solution on [0, 00). In particular, u(t) > 0 for each t > 0.

Proof. Fix T' > 0 and consider the integral operator S : K. — K7 defined
as

(Sv)(t) =T(t)x + /0 T(t—s)f(v(s))ds.

Let v,w € K3. We have v < exp(dr(v,w))w and w < exp(dr(v,w))v, that
is to say

v(t) < exp(dp(v,w))w(t) and w(t) < exp(dr(v,w))v(t) forall t € [0,T].

Thus

(Sv)(t) < T(t)x + /0 T(t —s)exp(ldr(v,w)) f(w(s))ds
< exp(ldr(v,w))S(w)(t) (tel0,7)),

and therefore Sv < exp(ldr(v,w))Sw; analogously Sw < exp(ldr(v,w))Sv.
Thus
dr(Sv, Sw) < ldr(v,w) (v,we K7,

and therefore S has a unique fixed point v € K7 which is a mild solution of
(1) on [0,T]. Since T' > 0 was arbitrary, the assertion follows. I

In the sequel, let u(-, z) : [0,00) — K° denote the mild solution of (1) with
initial value u(0) = = > 0.

PRrOPOSITION 5. Under the assumptions of Proposition 4, for all x,y > 0
t — d(u(t,z),u(t,y)) is monotone decreasing on [0, c0),

i.e., the semiflow of (1) is non-expansive with respect to Thompson’s metric.
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Proof. For z,y € K° and v := u(-,z), w := u(-,y) we have
t
v(t) =Tz +/ T(t—s)f(v(s))ds (t>0)),
0

W) =Ty + [ T 9iwE)ds (20,

thus

o(r) < max { exp(d(z, 1)), expida(o, ) bu(r) (7 € [0,1),

w(r) < max { exp(d(z, ), expde(v,w) }o(r) (7 € (0,2,
which implies

dy(v,w) < max {d(z,y), ldy(v,w)} (£ >0).
Since I < 1 and d(v(t), w(t)) < ds(v,w) (£ > 0) we get
A0, () < dwy)  (20),

and the assertion follows by translation of v and w. 1

3. GLOBAL ASYMPTOTIC STABILITY

ProrosITION 6. Let f : K° — K° be d-Lipschitz continuous with con-
stant | < 1 and let A be the generator of a positive semigroup which is
exponentially stable. Then there is a unique solution xy € K° N D(A) of the
equation Azg + f(xg) = 0.

Remark. Observe that existence of xy € K°N D(A) with Azg+ f(z9) =0
implies via —Axy € K° exponential stability of the semigroup (cf. Section 2),
which thus is a necessary assumption.

Proof. Proposition 3 yields —A~1(f(K°)) C K°. Since —A™!: E — E
is linear and order-preserving, the function —A~' o f : K° — K° is again
d-Lipschitz continuous with constant . Thus —A~! o f has a unique fixed
point zg in K° by Banach’s Fixed Point Theorem. Since A™1(E) = D(A), we
have zg € D(A), and the assertion follows. i
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The following is our main result on global asymptotic stability.

THEOREM 1. Let f : K° — K° be d-Lipschitz continuous with constant
I < 1 and let A be the generator of a positive semigroup which is exponentially
stable. Let xo € K° N D(A) be the unique solution of the equation Axg +
f(xg) = 0. Then for every xz € K° we have u(t,z) — xo as t — oo and

ed(x,xo) -1

d(u(t,z),r0) < ————e " (t>0),
I

where

0= —min{w eR : Axg wao} > 0,

pi=1(1- 6_5/2) +e7% € (0,1),

v:=—logu > 0.

Remark. We recall from Proposition 2 that, with p := zg, we have in

Theorem 1

L llwo + hAwoll, — llzoll,
h—0+ h

—6 = my[zo, Ao =

Proof. Let z € K° and u(t) := u(t,z), h(t) := e®®:70) (t > (). Recall
that h is decreasing by Proposition 5 and > 1, and observe —Axzy = f(x¢) €
K°. By Proposition 2 we have T(t)zq < e %z where § > 0 here. Hence

T(t+ s)zo = T(t)T(s)z0 < T(t) (efésxo) <T()zg  (s,¢>0),
which means that ¢ — T'(¢)z is decreasing on [0, 00). From

u(t) = T(H)z + /0 T(t—s)f(u(s)ds (1> 0)

we obtain by splitting the integral as fg/Q + ftt/Q :
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u(t) < h(0)T(t)xo + /t h(s)'T(t — s)(—Axg) ds
0
t/2
< h(0)T(t)zo + h(0)! /0 T(t — s)(—Azo) ds

+ h(t/2)! /t/tz T(t — s)(—Axp) ds

= h(O)T ()0 + h(0)'(T(t/2)w0 — T(t)z0 ) + h(t/2)! (w0 — T(t/2)0)
< h(0)T(t/2)z0 + h(t/2)! (a:o - T(t/2)x0)
= h(t/2)\z0 + (h(0) = h(t/2)") T(t/2)0

< h(t/2)wo + (h(()) - h(t/2)l) e~0t/2,

and

t/2
> h(0) 71T (t)zo + h(0)~! / T(t—s)(—Axg)ds
0
+ h(t/2)7! /t T(t—s)(—Axg)ds
t/2

( 5700+ (B) (7(t/2)20 - T(t)w0) + h(tl/z)l (0 = T(t/2)0)
h(0)~1T(t/2)a0 + h(t/2)~ (xo - T(t/2)a:0)
— h(t/2)"\zo + (h(orl - h(t/2)’l) T(t/2)x0
> h(t/2) o + (h(orl - h(t/2)’l> o025

{ (t/2)" ( e—6t/2) +h(0)—1e—§t/2} %o
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We thus have shown

1— ef5t/2 efét/Q

1
h(t) < max ( h(t/2) + 7(0) > ) h(t/?)l(l — e_ét/Q) + h(o)e—ét/Q

Now let o = h(0), B = h(t/2)' < a, A= e %/2 € (0,1) and observe
L=(1-2)2+2)01—A) + A\
<X =N2+ A1 =N (/B + B/a) + N\
=((1=NB+Aa)((1=N)B "+ A1),
which means ((1—X)g~! + )\oz_l)_l < ((1 = X)B+ Aa). This yields
h(t) < h(t/2) (1 —e %) + h(0)e 2 (t>0).
Since the problem is autonomous we also have
h(s+1t) < h(s+t/2)' (1 —e ) + h(s)e /2 (5,6t >0).

We know that h is decreasing, so h(t) tends to some ¢ > 1 as t — oco. The
first inequality gives us ¢ < ¢, and [ < 1 implies ¢ = 1.

Rate of convergence: We let t = 1, s = n € Ny in the second inequality.
Then we have

h(n+1) <h(n+1/2) (1 —e™%%) + h(n)e™?  (neNy),
and
hn+1)—1< (h(n+1/2)' = 1) (1 — e %2) + (h(n) —1)e%?  (neNy).
By the mean value theorem and monotonicity of A we have
h(n+1/2) =1 <I(h(n+1/2) = 1) < I(h(n) — 1),

and thus
h(n+1) —1 < u(h(n) —1) (n € Nyp),

where p = I(1 —e™%/2) +¢79/2 < 1. This yields

hn) ~1<u*(h(0)~1)  (n€Np).



GLOBAL ASYMPTOTIC STABILITY 151

For ¢t > 0, we choose n € N such that n — 1 <t < n and obtain
h(t) =1 < h(n—1) = 1< p"H(h(0) — 1) < p' 7 (h(0) = 1),
and
d(u(t), zo) = log h(t) = log(1 + h(t) — 1) < h(t) — 1 < p!~1(R(0) — 1),
which is the claim. [

Observe that we have in the proof Azg < —dxg. In case of equality Axg =
—0xg, i.e., if 2 is an eigenvalue of A, we give another estimate which turns
out to be sharp.

THEOREM 2. Let f : K° — K° be d-Lipschitz continuous with constant
I < 1 and let A be the generator of a positive semigroup which is exponen-
tially stable. Let xo € K° N D(A) be the unique solution of the equation
Azg + f(z9) = 0 and assume Axg = —dxg. Then, for all x € K° andt >0

d(u(t, z), z0) < 1 1 o <1 + (e1-Dd@0) _ 1)675(171)15) _

Remark. For each a > 0 the function ¢ — log (1 + ae_5(1_l)t) is strictly
decreasing to 0 as t — oo and

log (1 + ae*‘s(lfl)t) < ae~ 0010t (t>0).

Thus, also Theorem 2 gives an exponential decay estimate with respect to
d for global asymptotic stability of the equilibrium z( of (1). We shall see in
the proof that the estimate is optimal.

Proof of Theorem 2. Let again u := u(-,x) and h(t) := exp(d(u(t), zo))
(t > 0). We start the estimates as in the proof of Theorem 1. For ¢t > 0 we
have

u(t) < h(0)T'(t)xo + /t h(s)'T(t — s)(—Axg) ds

0
t
= <h(0)e_6t +0 [ et (s) ds> xo
0
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and
u(t) > h(0) 1T (t)zo + /Ot h(s)7'T(t — s)(—Axo) ds
= <h(0)—1e—5t +4 / t e =) (p(s)) ™ ds> 0
0
Thus

We next prove for any ¢ > 0:

—~

e_éti te—6(t—8)# s o o0t te—é(t—s) N ds
( 1(0) +/0 (h(s)) d) = h(0)+/0 (h(s))"ds.

This inequality is equivalent to

(h(O) +5/0te55(h(s))lds) (h(lo) +5/Ot s (hé))l ds> > o2t

According to the Cauchy-Schwarz inequality we have

1= 5/0t e ds = </Ot Ve /2 (h(s)) 2/ 6e25/2 (h(sl))l/Q ds)

< (5 /0 teés(h(s))lds> v <5 /0 g (hé»l ds> "

Thus, from Vab +1 < va+ c\/b+1/c (a,b,c > 0) we obtain

ot < (5 /O te%(h(s))lds)l/2 (5 /0 g 0 (i))l ds> Y

t 1/2 1 t 1 1/2
< (h(O) +0 [ €(h(s)) ds) < +9 easil ds) .
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Summing up, we now have
¢
AUDT0) _ (1) < e R(0) + 5 / =) (h(s)ds  (t>0).
0
For T > 0 consider C([0,T],R) ordered by the cone

K, :={¢eC([0,T],R) : £&(t) >0 for all t € [0,T]},

with corresponding Thompson metric d,, and S : K7 — K defined by

(S€)(t) = ¢~*h(0) + 6 / e~00-9)(£(5))! ds

As in the proof of Proposition 4 we have d,.(S¢, Sn) < Id.(&,n) (§,n € K}),
and moreover S is monotone increasing. Thus, there is a unique fixed point
& of S, and h(t) < (Sh)(t) (t € [0,T)) implies h(t) < &(t) (t € [0,T]). Since
T > 0 was arbitrary, this proves that

h(t) <&(t)  (£=0),
with & : [0,00) — (0, 00) the solution of the initial value problem
(3) &(t) = 6(6o(®)' — o&(t),  &(0) = A(0).
A simple calculation shows
o(t) = (1 +e 20Dt (o) — 1)
Thus

d(u(t), o) = log(h(t)) < log(&n(t))

1 —o(l— - x,T
= log (1+e S(1-Dt (o(1-Dd(e, 0)_1)) (t>0).

Remark. As can be seen from the proof, the inequality in Theorem 2 is
best possible since the equation (3) is of the form (1) where Az = —dx and
f(z) = d2! is a d-contraction with constant [.
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4. EXAMPLES

The following lemma gives a simple sufficient condition for a function
f:(0,00) — (0,00) to be a d-contraction.

LEMMA 1. Let f : (0,00) — (0,00) be a C!-function such that

o E @)
FE @)

Then f is d-Lipschitz with constant .

< 0.

Proof. First note that d(x,y) = |log(y/x)| = |logy — log z| for z,y > 0.
We thus have to show

|log f(y) —log f(x)| <I|logy —logz|  (z,y>0).

Writing log f(z) = log ( f(elos Z)) this follows from the mean value theorem
applied to g(t) :=log (f(e')), since ¢'(t) = €' f'(e")/ f(e"). N

As the example f(z) = z! shows, the estimate in Lemma 1 is sharp.

ExaMpPLES 1. (i) Consider f(x) = log(8+ x) with § > 1. Then we have
for x > 0 by the mean value theorem

zf'(z) x
f@) — (B+w)log(B + )
< T < 1
~ (B+x)log(B+x) — BlogB T 1+logf

By Lemma 1, f is a d-contraction on (0,00) with constant | = m < 1.
(ii) Consider f(z) = arctan(f + =) where § > 0. Then we have for z > 0
by the mean value theorem

xf'(x) _ x
f) 1+ (8+2)?) arctan(B + )
= (1+ (B + x)?)arctan(B8 + z) — (1 + §2) arctan 8
1

< .
~— 14 2Barctan
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By Lemma 1, f is a d-contraction on (0, co) with constant [ = m <1
(iii) Consider f(z) = 2 + Bsin(logx) with |3| < v/2. Then we have for

x>0
olf/ (@) _ |Beostloga)| _ |BIVI—
f(z) 2 + Bsin(log x) 24+ py
where y = sin(logz) € [—1,1]. A simple calculation shows that this is
< JLL—,BQ with equality for y = —g. By Lemma 1, f is a d-contraction
on (0,00) with constant [ = LI

\4-p2

We give an application of Theorem 1.

ExAMPLE 2. Consider the problem

1/4
du(t, s) = 0%ult, s) + 2sdsul(t, s) + ( u(t, s) > |
u(0,5) = uo(s),
dsu(t,1) = —u(t, 1),
asu(ta _]-) = U(t7 —]_) ,

with s € [-1,1] and ¢ > 0. We take E := C([—1,1],R) ordered by the normal
and solid cone

K:={z€FE :x(s)>0 forall s € [-1,1]}.

Clearly, z — f(z)(s) := (;Eﬂ))l/él (s € [-1,1]) is d-Lipschitz with constant
[ =1/2. We define

D(A) = {z € C*([-1,1],R) : 2/(1) = —z(1), 2/(-1) = 2(-1)}

and Az := 2" + 2sz’ for x € D(A). Then A is a second order elliptic operator
with real coefficients and Robin boundary conditions and thus generates a
positive Cy-semigroup in E (cf., e.g., [9]). Letting

w(s) == e /08 e” do (s € [-1,1])

w(—s) = —w(s) and w'(s) + 2sw(s) +1=0 on [—1,1],
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and ¢ := w(—1) = [ "1do € [e},1]. Thus

0
zo(s) :=w(-1)+ /51 w(o)do (s e [-1,1])

defines a function xg € K° N D(A), satisfying
z((s) + 2szh(s) +1=0 and zo(—s) = xo(s) on [—1,1].

We conclude that xg € K° N D(A) satisfies Azg + f(z9) = 0. By the remark
following Proposition 6 the semigroup generated by A is exponentially stable.
Thus Theorem 1 is applicable. By

1 1

Arg=—-1=—-.¢c< ——x0, min zo(s) = ¢,
c c [s|<1
we obtain
ed(z,mo) -1
d(u(t,z),z0) < ————e 7" (t>0, 2>0),
1

§=cle(le, p=(1-eC))/24e 12 The numerical values are
0 ~ 1.85846, u ~ 0.69743, v ~ 0.36036. We also see that Theorem 2 cannot
be applied.

For an application of Theorem 2 we recall the example from the introduc-
tion.

EXAMPLE 3. Consider again E = [*°(Z) endowed with the supremum
norm || - ||c and ordered by the normal and solid cone

K:={2el®(Z):2,>0 forallneZ}.
For |5| < %, let f: K° — K° be defined by

f(z) = (2 + B sin (log(mn_lxn+1)))nez

and A : E — E be defined by A(z,) := (vp+1 — 4%y + Tn—1)nez. Then A
is quasimonotone increasing and generates a semigroup of positive operators.
Letting p := (1)pez we have Ap = —2p = —f(p), and § = —2. For || = \/%,
the function f is a d-contraction with constant [ = 1/2. By Theorem 2 we
have the estimate

d(u(t,z),p) < 2log (1 + (ed(m’p)/2 —1)e™)

< 2(ed@P)/2 1) et (t>0,2>0).
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