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Abstract : In ordered Banach spaces we prove the global asymptotic stability of the unique
strictly positive equilibrium of the semilinear equation u′ = Au+ f(u), if A is the generator
of a positive and exponentially stable C0-semigroup and f is a contraction with respect
to Thompson’s metric. The given estimates show that convergence holds with a uniform
exponential rate.
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1. Introduction

Let (E, ∥ · ∥) be a real Banach space ordered by a normal cone K, that is
K is a closed convex subset of E such that λK ⊆ K (λ ≥ 0), K∩(−K) = {0},
inducing an ordering by x ≤ y : ⇐⇒ y − x ∈ K, and

∃ c ≥ 1 : 0 ≤ x ≤ y ⇒ ∥x∥ ≤ c∥y∥ .

Moreover we assume that K is solid, that is K has nonempty interior K◦,
and we set x ≪ y : ⇐⇒ y − x ∈ K◦. In this situation K◦ endowed with the
Thompson metric [11]

d(x, y) := log
(
min{α ≥ 1 : x ≤ αy , y ≤ αx}

)
is a complete metric space. A function f : K◦ → K◦ is d-Lipschitz continuous
with constant l ≥ 0 if and only if, for all x, y ∈ K◦,

x ≤ αy ∧ y ≤ αx ⇒ f(x) ≤ αlf(y) ∧ f(y) ≤ αlf(x) .

We study in this paper the dynamical system

u′(t) = Au(t) + f(u(t)) (t ≥ 0) ,

u(0) = x ∈ K◦ ,
(1)
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where A is the generator of a C0-semigroup (T (t))t≥0 of positive operators on
E, i.e.,

x ≥ 0 ⇒ T (t)x ≥ 0 for all t ≥ 0 .

In particular, A is quasimonotone increasing (cf. Section 2). We are interested
in the semiflow given by mild solutions of (1), i.e., by solutions of the integral
equation

(2) u(t) = T (t)x+

∫ t

0
T (t− s)f(u(s)) ds

(
t ∈ [0, tmax(x)) , x ∈ K◦) .

If l < 1 and the semigroup is exponentially stable, then we obtain a unique
x0 ∈ K◦ ∩D(A) such that

Ax0 + f(x0) = 0

(cf. Proposition 6 below); i.e., the dynamical system given by (1) has a unique
equilibrium x0 inK

◦. In our main result Theorem 1 below we show that, under
these assumptions, the equilibrium x0 is globally asymptotically stable in K◦,
i.e., any mild solution u(t, x) of (1) converges to x0 as t → ∞. Moreover, we
establish an explicit estimate for d(u(t, x), x0) which shows that convergence
holds with a uniform exponential rate. Under the additional assumption that
x0 is an eigenvalue of A we obtain in Theorem 2 an optimal estimate on
d(u(t, x), x0).

As an introductory example consider E = l∞(Z) endowed with the supre-
mum norm ∥ · ∥∞ and ordered by the normal and solid cone

K :=
{
x ∈ l∞(Z) : xn ≥ 0 for all n ∈ Z

}
.

Then
K◦ =

{
x ∈ l∞(Z) : inf

n∈Z
xn > 0

}
,

and for |β| < 2 the function f : K◦ → K◦ defined by

f(x) =
(
2 + β sin

(
log(xn−1xn+1)

))
n∈Z

is d-Lipschitz continuous with constant 2|β|√
4−β2

(cf. Section 4). Thus our results

yield that, for |β| < 2/
√
5, all solutions of the infinite system

u′n(t) = un+1(t)− 4un(t) + un−1(t) + 2

+ β sin
(
log
(
un−1(t)un+1(t)

))
(n ∈ Z) ,
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with initial values in K◦ are exponentially decaying to the constant sequence
(1)n∈Z in l∞(Z) as t→ ∞, with respect to Thompson’s metric.

Concerning our assumptions we remark that, for l > 1, global existence for
solutions of (1) fails in general, as one can already see in the one-dimensional
case E = R for Ax = −x and f(x) = xl. The case l = 1 is special in the sense
that it includes linear functions. For E = R, Ax = −x and f(x) = 2x in (1)
existence of equilibria in K◦ fails, and all solutions in K◦ grow exponentially.

Motivated by the analysis of generalized Riccati equations and other non-
linear matrix equations, the contraction rate of flows with respect to Thomp-
son’s metric has been investigated in [7], [10]. In particular, Gaubert and Qu
[3] studied the time-dependent case for order-preserving flows. In our case the
semiflow generated by (1) is not order-preserving in general, since f need not
to be quasimonotone increasing in the sense of Volkmann [12].

The paper is organized as follows: In the preliminary Section 2 we state
some properties of Thompson’s metric in our situation and of positive semi-
groups. Moreover, we show existence of global solutions to (1) and nonex-
pansiveness of the semiflow with respect to Thompson’s metric under the
assumption that l < 1 and that A generates a semigroup of positive opera-
tors. In Section 3 we state and prove our main results on global asymptotic
stability. Section 4 contains some examples.

2. Preliminaries

The interrelation between the topologies generated by d and ∥ · ∥ on K◦

are characterized by the following Proposition 1, see [5]. Let p ∈ K◦ be fixed
and let ∥ · ∥p denote the Minkowski functional

∥x∥p = min
{
α ≥ 0 : −αp ≤ x ≤ αp

}
(x ∈ E) .

Then ∥ · ∥p is an equivalent norm on E [2, Prop.19.9], and we write

distp(x, ∂K) := inf
{
∥x− y∥p : y ∈ ∂K

}
for the distance to the boundary of K with respect to this norm.

Proposition 1. For all x, y ∈ K◦ :

(i) ∥x− y∥p ≤
(
exp(d(x, y))− 1

)
exp

(
max{d(x, p), d(y, p)}

)
;

(ii) d(x, y) ≤ ∥x− y∥p/min
{
distp(x, ∂K),distp(y, ∂K)

}
;

(iii) − log(distp(x, ∂K)) ≤ d(x, p) .
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In particular, if f is d-Lipschitz continuous then f is locally Lipschitz
continuous in norm, and thus (2) has unique local solutions, i.e., initial value
problems for (1) have unique mild solutions on maximal time intervals. In
case that f is a d-contraction, we will see that (1) generates a nonexpansive
semiflow on [0,∞).

We assume from now on that A is the generator of a C0-semigroup
(T (t))t≥0 of positive operators, i.e., T (t)(K) ⊆ K for each t ≥ 0. Then A
is quasimonotone increasing, i.e., for all x ∈ D(A) ∩K and each

ϕ ∈ K∗ :=
{
ψ ∈ E∗ : ψ ≥ 0 on K

}
such that ϕ(x) = 0 we have ϕ(Ax) ≥ 0 (cf. [1], [6]). We recall the follow-
ing result from [4], for which we give a new proof here. We also recall the
directional derivative m+ from [8], which we use for ∥ · ∥p here,

m+[x, y] := lim
h→0+

∥x+ hy∥p − ∥x∥p
h

(x, y ∈ E) ,

and the property(
d

dt

)
+

∥T (t)x∥p = m+[T (t)x,AT (t)x] (x ∈ D(A)) ,

where
(
d
dt

)
+
denotes the right side derivative.

Proposition 2. If p ∈ D(A) ∩ K◦ and ω := min{α ∈ R : Ap ≤ αp}
then m+[p,Ap] = ω and m+[x,Ax] ≤ ω∥x∥p for all x ∈ D(A). Moreover,
∥T (t)x∥p ≤ eωt∥x∥p for all t ≥ 0 and x ∈ E, in particular T (t)p ≤ eωtp for
all t ≥ 0.

Proof. Replacing A by A − ωI and T (t) by e−ωtT (t) we may assume
ω = 0. Since p ∈ K◦ we have p + hAp ∈ K◦ for small h > 0. For these
h we have

∥p+ hAp∥p = min
{
α ∈ R : p+ hAp ≤ αp

}
= min

{
α ∈ R : Ap ≤ α− 1

h
p

}
= 1 ,

which implies m+[p,Ap] = 0. If x ∈ D(A) and α = ∥x∥p then −αp ≤ x ≤ αp,
which implies

−αT (t)p ≤ T (t)x ≤ αT (t)p and ∥T (t)x∥p ≤ α∥T (t)p∥p .
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But then

m+[x,Ax] = lim
t→0+

∥T (t)x∥p − α

t

≤ α lim
t→0+

∥T (t)p∥p − ∥p∥p
t

= αm+[p,Ap] = 0 .

Hence (
d

dt

)
+

∥T (t)x∥p = m+[T (t)x,AT (t)x] ≤ 0

for all t ≥ 0 and x ∈ D(A), which implies ∥T (t)x∥p ≤ ∥x∥p for all t ≥ 0
and x ∈ E.

Here we remark that if p ∈ D(A)∩K◦ and −Ap ∈ K◦ then ω < 0 and the
semigroup is exponentially stable. On the other hand, exponential stability
of the semigroup implies that A : D(A) → E is bijective and −A−1 is positive
as can be seen from

(λI −A)−1x =

∫ ∞

0
e−λtT (t)xdt (x ∈ E)

for λ ≥ 0.

Proposition 3. For each t ≥ 0 we have T (t)(K◦) ⊆ K◦. If the semigroup
is exponentially stable then we have −A−1(K◦) ⊆ K◦.

Proof. Choose p ≫ 0. By strong continuity, we find δ > 0 such that
T (t)p ≫ 0 for t ∈ [0, δ]. If x ≫ 0 we find α > 0 with p ≤ αx which implies
T (t)p ≤ αT (t)x for any t ≥ 0. In particular, T (t)x ≫ 0 for all t ∈ [0, δ].
We have shown T (t)(K◦) ⊆ K◦ for t ∈ [0, δ]. By the semigroup property, this
holds for all t ≥ 0.

Let the semigroup be exponentially stable and x ≫ 0. Since −A−1 is
positive, we have y := −A−1x ≥ 0, and if y ̸∈ K◦ we find ϕ ∈ K∗ \ {0} such
that ϕ(y) = 0. But then ϕ(Ay) ≥ 0 in contradiction to Ay = −x ∈ −K◦.

For T > 0 let C([0, T ], E) be endowed with the maximum norm ∥ · ∥∞ and
ordered by the normal and solid cone

KT :=
{
u ∈ C([0, T ], E) : u(t) ≥ 0 for all t ∈ [0, T ]

}
.

Note that (since [0, T ] is compact)

K◦
T =

{
u ∈ C([0, T ], E) : u(t) ≫ 0 for all t ∈ [0, T ]

}
.
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The Thompson metric with respect to KT is denoted by dT . We will see that
d-contractivity of f yields existence of global mild solutions for (1):

Proposition 4. Let f : K◦ → K◦ be d-Lipschitz continuous with con-
stant l < 1 and let A be the generator of a positive semigroup. Then each
initial value problem

u′(t) = Au(t) + f(u(t)) , u(0) = x≫ 0 ,

has a unique mild solution on [0,∞). In particular, u(t) ≫ 0 for each t ≥ 0.

Proof. Fix T > 0 and consider the integral operator S : K◦
T → K◦

T defined
as

(Sv)(t) = T (t)x+

∫ t

0
T (t− s)f(v(s)) ds .

Let v, w ∈ K◦
T . We have v ≤ exp(dT (v, w))w and w ≤ exp(dT (v, w))v, that

is to say

v(t) ≤ exp(dT (v, w))w(t) and w(t) ≤ exp(dT (v, w))v(t) for all t ∈ [0, T ] .

Thus

(Sv)(t) ≤ T (t)x+

∫ t

0
T (t− s) exp(ldT (v, w))f(w(s)) ds

≤ exp(ldT (v, w))S(w)(t) (t ∈ [0, T ]) ,

and therefore Sv ≤ exp(ldT (v, w))Sw; analogously Sw ≤ exp(ldT (v, w))Sv.
Thus

dT (Sv, Sw) ≤ ldT (v, w) (v, w ∈ K◦
T ) ,

and therefore S has a unique fixed point u ∈ K◦
T which is a mild solution of

(1) on [0, T ]. Since T > 0 was arbitrary, the assertion follows.

In the sequel, let u(·, x) : [0,∞) → K◦ denote the mild solution of (1) with
initial value u(0) = x≫ 0.

Proposition 5. Under the assumptions of Proposition 4, for all x, y ≫ 0

t 7→ d(u(t, x), u(t, y)) is monotone decreasing on [0,∞),

i.e., the semiflow of (1) is non-expansive with respect to Thompson’s metric.
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Proof. For x, y ∈ K◦ and v := u(·, x), w := u(·, y) we have

v(t) = T (t)x+

∫ t

0
T (t− s)f(v(s)) ds (t ≥ 0) ,

w(t) = T (t)y +

∫ t

0
T (t− s)f(w(s)) ds (t ≥ 0) ,

thus

v(τ) ≤ max
{
exp(d(x, y)), exp(ldt(v, w))

}
w(τ) (τ ∈ [0, t]) ,

w(τ) ≤ max
{
exp(d(x, y)), exp(ldt(v, w))

}
v(τ) (τ ∈ [0, t]) ,

which implies

dt(v, w) ≤ max
{
d(x, y), ldt(v, w)

}
(t ≥ 0) .

Since l < 1 and d(v(t), w(t)) ≤ dt(v, w) (t ≥ 0) we get

d(v(t), w(t)) ≤ d(x, y) (t ≥ 0) ,

and the assertion follows by translation of v and w.

3. Global asymptotic stability

Proposition 6. Let f : K◦ → K◦ be d-Lipschitz continuous with con-
stant l < 1 and let A be the generator of a positive semigroup which is
exponentially stable. Then there is a unique solution x0 ∈ K◦ ∩D(A) of the
equation Ax0 + f(x0) = 0.

Remark. Observe that existence of x0 ∈ K◦ ∩D(A) with Ax0 + f(x0) = 0
implies via −Ax0 ∈ K◦ exponential stability of the semigroup (cf. Section 2),
which thus is a necessary assumption.

Proof. Proposition 3 yields −A−1(f(K◦)) ⊆ K◦. Since −A−1 : E → E
is linear and order-preserving, the function −A−1 ◦ f : K◦ → K◦ is again
d-Lipschitz continuous with constant l. Thus −A−1 ◦ f has a unique fixed
point x0 in K◦ by Banach’s Fixed Point Theorem. Since A−1(E) = D(A), we
have x0 ∈ D(A), and the assertion follows.
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The following is our main result on global asymptotic stability.

Theorem 1. Let f : K◦ → K◦ be d-Lipschitz continuous with constant
l < 1 and let A be the generator of a positive semigroup which is exponentially
stable. Let x0 ∈ K◦ ∩ D(A) be the unique solution of the equation Ax0 +
f(x0) = 0. Then for every x ∈ K◦ we have u(t, x) → x0 as t→ ∞ and

d(u(t, x), x0) ≤
ed(x,x0) − 1

µ
e−γt (t ≥ 0) ,

where

δ := −min
{
ω ∈ R : Ax0 ≤ ωx0

}
> 0 ,

µ := l
(
1− e−δ/2

)
+ e−δ/2 ∈ (0, 1) ,

γ := − logµ > 0 .

Remark. We recall from Proposition 2 that, with p := x0, we have in
Theorem 1

−δ = m+[x0, Ax0] = lim
h→0+

∥x0 + hAx0∥p − ∥x0∥p
h

.

Proof. Let x ∈ K◦ and u(t) := u(t, x), h(t) := ed(u(t),x0) (t ≥ 0). Recall
that h is decreasing by Proposition 5 and ≥ 1, and observe −Ax0 = f(x0) ∈
K◦. By Proposition 2 we have T (t)x0 ≤ e−δtx0 where δ > 0 here. Hence

T (t+ s)x0 = T (t)T (s)x0 ≤ T (t)
(
e−δsx0

)
≤ T (t)x0 (s, t ≥ 0) ,

which means that t 7→ T (t)x0 is decreasing on [0,∞). From

u(t) = T (t)x+

∫ t

0
T (t− s)f(u(s)) ds (t ≥ 0)

we obtain by splitting the integral as
∫ t/2
0 +

∫ t
t/2 :
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u(t) ≤ h(0)T (t)x0 +

∫ t

0
h(s)lT (t− s)(−Ax0) ds

≤ h(0)T (t)x0 + h(0)l
∫ t/2

0
T (t− s)(−Ax0) ds

+ h(t/2)l
∫ t

t/2
T (t− s)(−Ax0) ds

= h(0)T (t)x0 + h(0)l
(
T (t/2)x0 − T (t)x0

)
+ h(t/2)l

(
x0 − T (t/2)x0

)
≤ h(0)T (t/2)x0 + h(t/2)l

(
x0 − T (t/2)x0

)
= h(t/2)lx0 +

(
h(0)− h(t/2)l

)
T (t/2)x0

≤ h(t/2)lx0 +
(
h(0)− h(t/2)l

)
e−δt/2x0

=
[
h(t/2)l

(
1− e−δt/2

)
+ h(0)e−δt/2

]
x0

and

u(t) ≥ h(0)−1T (t)x0 +

∫ t

0
h(s)−lT (t− s)(−Ax0) ds

≥ h(0)−1T (t)x0 + h(0)−l

∫ t/2

0
T (t− s)(−Ax0) ds

+ h(t/2)−l

∫ t

t/2
T (t− s)(−Ax0) ds

=
1

h(0)
T (t)x0 +

1

h(0)l

(
T (t/2)x0 − T (t)x0

)
+

1

h(t/2)l

(
x0 − T (t/2)x0

)
≥ h(0)−1T (t/2)x0 + h(t/2)−l

(
x0 − T (t/2)x0

)
= h(t/2)−lx0 +

(
h(0)−1 − h(t/2)−l

)
T (t/2)x0

≥ h(t/2)−lx0 +
(
h(0)−1 − h(t/2)−l

)
e−δt/2x0

=
[
h(t/2)−l

(
1− e−δt/2

)
+ h(0)−1e−δt/2

]
x0 .
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We thus have shown

h(t) ≤ max


(
1− e−δt/2

h(t/2)l
+

e−δt/2

h(0)

)−1

, h(t/2)l(1− e−δt/2) + h(0)e−δt/2

 .

Now let α = h(0), β = h(t/2)l ≤ α, λ = e−δt/2 ∈ (0, 1) and observe

1 = (1− λ)2 + 2λ(1− λ) + λ2

≤ (1− λ)2 + λ(1− λ)
(
α/β + β/α

)
+ λ2

=
(
(1− λ)β + λα

)(
(1− λ)β−1 + λα−1

)
,

which means
(
(1− λ)β−1 + λα−1

)−1 ≤
(
(1− λ)β + λα

)
. This yields

h(t) ≤ h(t/2)l
(
1− e−δt/2

)
+ h(0)e−δt/2 (t ≥ 0) .

Since the problem is autonomous we also have

h(s+ t) ≤ h(s+ t/2)l
(
1− e−δt/2

)
+ h(s)e−δt/2 (s, t ≥ 0) .

We know that h is decreasing, so h(t) tends to some c ≥ 1 as t → ∞. The
first inequality gives us c ≤ cl, and l < 1 implies c = 1.

Rate of convergence: We let t = 1, s = n ∈ N0 in the second inequality.
Then we have

h(n+ 1) ≤ h(n+ 1/2)l
(
1− e−δ/2

)
+ h(n)e−δ/2 (n ∈ N0) ,

and

h(n+ 1)− 1 ≤
(
h(n+ 1/2)l − 1

)(
1− e−δ/2

)
+ (h(n)− 1)e−δ/2 (n ∈ N0) .

By the mean value theorem and monotonicity of h we have

h(n+ 1/2)l − 1 ≤ l
(
h(n+ 1/2)− 1

)
≤ l(h(n)− 1) ,

and thus

h(n+ 1)− 1 ≤ µ(h(n)− 1) (n ∈ N0) ,

where µ = l(1− e−δ/2) + e−δ/2 < 1. This yields

h(n)− 1 ≤ µn(h(0)− 1) (n ∈ N0) .
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For t > 0, we choose n ∈ N such that n− 1 < t ≤ n and obtain

h(t)− 1 ≤ h(n− 1)− 1 ≤ µn−1(h(0)− 1) ≤ µt−1(h(0)− 1) ,

and

d(u(t), x0) = log h(t) = log(1 + h(t)− 1) ≤ h(t)− 1 ≤ µt−1(h(0)− 1) ,

which is the claim.

Observe that we have in the proof Ax0 ≤ −δx0. In case of equality Ax0 =
−δx0, i.e., if x0 is an eigenvalue of A, we give another estimate which turns
out to be sharp.

Theorem 2. Let f : K◦ → K◦ be d-Lipschitz continuous with constant
l < 1 and let A be the generator of a positive semigroup which is exponen-
tially stable. Let x0 ∈ K◦ ∩ D(A) be the unique solution of the equation
Ax0 + f(x0) = 0 and assume Ax0 = −δx0. Then, for all x ∈ K◦ and t ≥ 0

d(u(t, x), x0) ≤
1

1− l
log
(
1 +

(
e(1−l)d(x,x0) − 1

)
e−δ(1−l)t

)
.

Remark. For each a > 0 the function t 7→ log
(
1 + ae−δ(1−l)t

)
is strictly

decreasing to 0 as t→ ∞ and

log
(
1 + ae−δ(1−l)t

)
≤ ae−δ(1−l)t (t ≥ 0) .

Thus, also Theorem 2 gives an exponential decay estimate with respect to
d for global asymptotic stability of the equilibrium x0 of (1). We shall see in
the proof that the estimate is optimal.

Proof of Theorem 2. Let again u := u(·, x) and h(t) := exp(d(u(t), x0))
(t ≥ 0). We start the estimates as in the proof of Theorem 1. For t ≥ 0 we
have

u(t) ≤ h(0)T (t)x0 +

∫ t

0
h(s)lT (t− s)(−Ax0) ds

=

(
h(0)e−δt + δ

∫ t

0
e−δ(t−s)h(s)l ds

)
x0
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and

u(t) ≥ h(0)−1T (t)x0 +

∫ t

0
h(s)−lT (t− s)(−Ax0) ds

=

(
h(0)−1e−δt + δ

∫ t

0
e−δ(t−s)(h(s))−l ds

)
x0 .

Thus

h(t) ≤ max

{(
e−δt 1

h(0)
+

∫ t

0
e−δ(t−s) 1

(h(s))l
ds

)−1

,

e−δth(0) +

∫ t

0
e−δ(t−s)(h(s))l ds

}
.

We next prove for any t ≥ 0:(
e−δt 1

h(0)
+

∫ t

0
e−δ(t−s) 1

(h(s))l
ds

)−1

≤ e−δth(0) +

∫ t

0
e−δ(t−s)(h(s))l ds .

This inequality is equivalent to(
h(0) + δ

∫ t

0
eδs(h(s))l ds

)(
1

h(0)
+ δ

∫ t

0
eδs

1

(h(s))l
ds

)
≥ e2δt.

According to the Cauchy-Schwarz inequality we have

eδt − 1 = δ

∫ t

0
eδs ds =

(∫ t

0

√
δeδs/2(h(s))l/2

√
δeδs/2

1

(h(s))l/2
ds

)

≤
(
δ

∫ t

0
eδs(h(s))l ds

)1/2(
δ

∫ t

0
eδs

1

(h(s))l
ds

)1/2

.

Thus, from
√
ab+ 1 ≤

√
a+ c

√
b+ 1/c (a, b, c > 0) we obtain

eδt ≤
(
δ

∫ t

0
eδs(h(s))l ds

)1/2(
δ

∫ t

0
eδs

1

(h(s))l
ds

)1/2

+ 1

≤
(
h(0) + δ

∫ t

0
eδs(h(s))l ds

)1/2(
1

h(0)
+ δ

∫ t

0
eδs

1

(h(s))l
ds

)1/2

.
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Summing up, we now have

ed(u(t),x0) = h(t) ≤ e−δth(0) + δ

∫ t

0
e−δ(t−s)(h(s))l ds (t ≥ 0) .

For T > 0 consider C([0, T ],R) ordered by the cone

Kr :=
{
ξ ∈ C([0, T ],R) : ξ(t) ≥ 0 for all t ∈ [0, T ]

}
,

with corresponding Thompson metric dr, and S : K◦
r → K◦

r defined by

(Sξ)(t) = e−δth(0) + δ

∫ t

0
e−δ(t−s)(ξ(s))l ds .

As in the proof of Proposition 4 we have dr(Sξ, Sη) ≤ ldr(ξ, η) (ξ, η ∈ K◦
r ),

and moreover S is monotone increasing. Thus, there is a unique fixed point
ξ0 of S, and h(t) ≤ (Sh)(t) (t ∈ [0, T ]) implies h(t) ≤ ξ0(t) (t ∈ [0, T ]). Since
T > 0 was arbitrary, this proves that

h(t) ≤ ξ0(t) (t ≥ 0) ,

with ξ0 : [0,∞) → (0,∞) the solution of the initial value problem

(3) ξ′0(t) = δ(ξ0(t))
l − δξ0(t) , ξ0(0) = h(0).

A simple calculation shows

ξ0(t) =
(
1 + e−δ(1−l)t

(
h(0)1−l − 1

))1/(1−l)
(t ≥ 0) .

Thus

d(u(t), x0) = log(h(t)) ≤ log(ξ0(t))

=
1

1− l
log
(
1 + e−δ(1−l)t

(
e(1−l)d(x,x0) − 1

))
(t ≥ 0) .

Remark. As can be seen from the proof, the inequality in Theorem 2 is
best possible since the equation (3) is of the form (1) where Ax = −δx and
f(x) = δxl is a d-contraction with constant l.
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4. Examples

The following lemma gives a simple sufficient condition for a function
f : (0,∞) → (0,∞) to be a d-contraction.

Lemma 1. Let f : (0,∞) → (0,∞) be a C1-function such that

l := sup
x>0

x|f ′(x)|
f(x)

<∞ .

Then f is d-Lipschitz with constant l.

Proof. First note that d(x, y) = | log(y/x)| = | log y − log x| for x, y > 0.
We thus have to show

| log f(y)− log f(x)| ≤ l | log y − log x| (x, y > 0) .

Writing log f(z) = log
(
f(elog z)

)
this follows from the mean value theorem

applied to g(t) := log
(
f(et)

)
, since g′(t) = etf ′(et)/f(et).

As the example f(x) = xl shows, the estimate in Lemma 1 is sharp.

Examples 1. (i) Consider f(x) = log(β + x) with β > 1. Then we have
for x > 0 by the mean value theorem

xf ′(x)

f(x)
=

x

(β + x) log(β + x)

≤ x

(β + x) log(β + x)− β log β
≤ 1

1 + log β
.

By Lemma 1, f is a d-contraction on (0,∞) with constant l = 1
1+log β < 1.

(ii) Consider f(x) = arctan(β + x) where β > 0. Then we have for x > 0
by the mean value theorem

xf ′(x)

f(x)
=

x

(1 + (β + x)2) arctan(β + x)

≤ x

(1 + (β + x)2) arctan(β + x)− (1 + β2) arctanβ

≤ 1

1 + 2β arctanβ
.
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By Lemma 1, f is a d-contraction on (0,∞) with constant l = 1
1+2β arctanβ < 1.

(iii) Consider f(x) = 2 + β sin(log x) with |β| <
√
2. Then we have for

x > 0
x|f ′(x)|
f(x)

=
|β cos(log x)|

2 + β sin(log x)
=

|β|
√

1− y2

2 + βy
,

where y = sin(log x) ∈ [−1, 1]. A simple calculation shows that this is

≤ |β|√
4−β2

with equality for y = −β
2 . By Lemma 1, f is a d-contraction

on (0,∞) with constant l = |β|√
4−β2

< 1.

We give an application of Theorem 1.

Example 2. Consider the problem

∂tu(t, s) = ∂2su(t, s) + 2s∂su(t, s) +

(
u(t, s)

u(t,−s)

)1/4

,

u(0, s) = u0(s) ,

∂su(t, 1) = −u(t, 1) ,

∂su(t,−1) = u(t,−1) ,

with s ∈ [−1, 1] and t ≥ 0. We take E := C([−1, 1],R) ordered by the normal
and solid cone

K :=
{
x ∈ E : x(s) ≥ 0 for all s ∈ [−1, 1]

}
.

Clearly, x 7→ f(x)(s) :=
( x(s)
x(−s)

)1/4
(s ∈ [−1, 1]) is d-Lipschitz with constant

l = 1/2. We define

D(A) :=
{
x ∈ C2([−1, 1],R) : x′(1) = −x(1) , x′(−1) = x(−1)

}
and Ax := x′′+2sx′ for x ∈ D(A). Then A is a second order elliptic operator
with real coefficients and Robin boundary conditions and thus generates a
positive C0-semigroup in E (cf., e.g., [9]). Letting

w(s) := −e−s2
∫ s

0
eσ

2
dσ (s ∈ [−1, 1])

we have

w(−s) = −w(s) and w′(s) + 2sw(s) + 1 = 0 on [−1, 1] ,
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and c := w(−1) =
∫ 1
0 eσ

2−1 dσ ∈ [e−1, 1]. Thus

x0(s) := w(−1) +

∫ s

−1
w(σ) dσ (s ∈ [−1, 1])

defines a function x0 ∈ K◦ ∩D(A), satisfying

x′′0(s) + 2sx′0(s) + 1 = 0 and x0(−s) = x0(s) on [−1, 1] .

We conclude that x0 ∈ K◦ ∩D(A) satisfies Ax0 + f(x0) = 0. By the remark
following Proposition 6 the semigroup generated by A is exponentially stable.
Thus Theorem 1 is applicable. By

Ax0 = −1 = −1

c
· c ≤ −1

c
x0 , min

|s|≤1
x0(s) = c ,

we obtain

d(u(t, x), x0) ≤
ed(x,x0) − 1

µ
e−γt (t ≥ 0 , x≫ 0) ,

δ = c−1 ∈ [1, e], µ = (1 − e−1/(2c))/2 + e−1/(2c). The numerical values are
δ ≈ 1.85846, µ ≈ 0.69743, γ ≈ 0.36036. We also see that Theorem 2 cannot
be applied.

For an application of Theorem 2 we recall the example from the introduc-
tion.

Example 3. Consider again E = l∞(Z) endowed with the supremum
norm ∥ · ∥∞ and ordered by the normal and solid cone

K :=
{
x ∈ l∞(Z) : xn ≥ 0 for all n ∈ Z

}
.

For |β| < 2√
5
, let f : K◦ → K◦ be defined by

f(x) =
(
2 + β sin

(
log(xn−1xn+1)

))
n∈Z

and A : E → E be defined by A(xn) := (xn+1 − 4xn + xn−1)n∈Z. Then A
is quasimonotone increasing and generates a semigroup of positive operators.
Letting p := (1)n∈Z we have Ap = −2p = −f(p), and δ = −2. For |β| = 2√

17
,

the function f is a d-contraction with constant l = 1/2. By Theorem 2 we
have the estimate

d(u(t, x), p) ≤ 2 log
(
1 +

(
ed(x,p)/2 − 1

)
e−t
)

≤ 2
(
ed(x,p)/2 − 1

)
e−t (t ≥ 0, x≫ 0) .
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