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Abstract : Using upper ℓp-estimates for normalized weakly null sequence images, we describe

a new family of operator ideals WD(∞, ξ)
ℓp

with parameters 1 ≤ p ≤ ∞ and 1 ≤ ξ ≤ ω1.

These classes contain the completely continuous operators, and are distinct for all choices
1 ≤ p ≤ ∞ and, when p ̸= 1, for infinitely many 1 ≤ ξ ≤ ω1. For the case ξ = 1, there exists

an ideal norm ∥ · ∥(p,1) on the class WD(∞,1)
ℓp

under which it forms a Banach ideal. We also

prove that each space WD(∞, ω1)
ℓp

(X,Y ) is the intersection of the spaces WD(∞, ξ)
ℓp

(X,Y )

over all 1 ≤ ξ < ω1.
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1. Introduction

The roots of the theory of operator ideals extend at least as far back
as 1941 when J.W. Calkin observed that if H is a Hilbert space, then the
subspaces of finite-rank operators, compact operators, and Hilbert-Schmidt
operators all form multiplicative ideals in the space L(H) of continuous linear
operators on H ([7]). However, the concept of an ideal as a class of operators
between arbitrary Banach spaces developed more recently, with the first thor-
ough treatment of the subject, a monograph by Albrecht Pietsch, appearing
in 1978 ([15]).

In this paper we define and study a new family of operator ideals WD(∞, ξ)
ℓp

with parameters 1 ≤ p ≤ ∞ and 1 ≤ ξ ≤ ω1, where ω1 denotes the first
uncountable ordinal. For any fixed value of ξ, these ideals are distinct for
all choices of p, which is to say that for any 1 ≤ p < q ≤ ∞ there exist
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Banach spaces X and Y for which the components satisfy WD(ξ,∞)
ℓp

(X,Y ) ̸=
WD(ξ,∞)

ℓq
(X,Y ). It remains an open question whether, for fixed 1 < p ≤ ∞,

the ideals are distinct for all choices of ξ. However, we do obtain a partial
positive answer by finding, for any fixed p ̸= 1, a sequence (ξn)∞n=1 of countable
ordinals 1 ≤ ξn < ω1, n ∈ N, such that, as classes,

WD(∞, ω1)
ℓp ( WD(∞, ξn)

ℓp ( WD(∞, ξm)
ℓp

for all m < n. We shall also see that WD(∞, ξ)
ℓp

always strictly includes the
ideal of completely continuous operators V, which shows that they are distinct
from some other notable families of operator ideals with a parameter related to
the ℓp spaces. For instance, let Np, Ip, and Πp denote the ideals of p-nuclear,
p-integral, and absolutely p-summing operators, respectively. Then

Np ( Ip ( Πp ( V ( WD(∞, ξ)
ℓp

(cf., e.g., Proposition 22 in [16] together with Theorem 2.17 in [9]).
Of special interest are the those operator ideals whose components are

always norm-closed. For instance, given arbitrary Banach spaces X and Y ,
the compact, weakly compact, and completely continuous operators from X
into Y are always norm-closed in L(X,Y ), whereas the finite-rank operators
are not. We shall see that, when p ̸= 1, there always exist separable spaces X

for which WD(∞, ξ)
ℓp

(X) fails to be norm-closed in L(X), and when p ̸= ∞, we
can choose X to be reflexive. Nevertheless, in the case ξ = 1, we can construct

an ideal norm ∥·∥(p,1) for the class WD(∞,1)
ℓp

so that it forms a Banach ideal,

that is, a “nice” norm assignment for each component space WD(∞,1)
ℓp

(X,Y )
under which it becomes a Banach space.

The ideas for the construction of this family originate with [6] and [4]. In
[6], the authors defined the subset WS(X,Y ) of (wn)-singular operators in
L(X,Y ) as those operators T for which, given any normalized basic sequence
(xn) in X, the image sequence (Txn) fails to dominate (wn). Here, (wn) is
taken to be some normalized 1-spreading basis for some fixed Banach space
W . They showed that when (wn) is the summing basis for c0, the unit vector
basis for ℓ1, or the unit vector basis for c0, the resulting classes WS are
the norm-closed ideals of weakly compact, Rosenthal, or compact operators,
respectively. Meanwhile, in [4] the authors constructed and studied classes of
operators based on Schreier family support. In particular, they defined SSξ,
the Sξ-strictly singular operators, as the class of all continuous linear Banach
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space operators T for which if (xn) is any normalized basic sequence in the
domain space, for any ϵ > 0 there exists some z ∈ [xn] with support lying in
the ξth Schreier family Sξ, and satisfying ∥Tz∥ < ϵ∥z∥.

In this paper, we use similar ideas to produce operator ideals with certain
nice properties. However, whereas classes WS and SSξ were constructed
using normalized basic sequences and singular estimates on their images, for

the classes WD(∞, ξ)
ℓp

we instead use normalized weakly null sequences and
uniform upper estimates. Since continuous linear operators preserve weak
convergence, the choice of weakly null sequences in place of basic sequences

allows us to show that the classes WD(∞, ξ)
ℓp

are indeed multiplicative ideals
between arbitrary Banach spaces. The choice of uniform upper estimates
instead of singular estimates then gives us a natural way to show that each

class WD(∞, ξ)
ℓp

is closed under addition.

We shall also show that the ideals WD(∞, ξ)
ℓp

are just quantized versions of

the ideal WD(∞, ω1)
ℓp

, in the sense that

WD(∞, ω1)
ℓp

(X,Y ) =
∩

1≤ξ<ω1

WD(∞, ξ)
ℓp

(X,Y )

for all choices of Banach spaces X and Y . Somewhat analogous results can be
found, for instance, in [3], where it was shown that whenever X is separable,

SS(X∗, Y ) =
∪

1≤ξ<ω1

SSξ(X
∗, Y ),

where SS denotes the ideal of strictly singular operators. Similar quantiza-
tions appeared in [6] for the weakly compact and Rosenthal operators. How-
ever the quantized classes do not always form operator ideals themselves. In
particular, in [13] the authors showed that SS1 fails to be closed under ad-
dition, and hence is not an operator ideal. The results here can therefore be
viewed as somewhat nicer quantizations than have typically been obtained for
operator ideals.

Now we shall take a moment to recall some essential definitions and basic
facts relevant to our project. Let J be a subclass of the class L of all continu-
ous linear operators between Banach spaces, such that for each pair of Banach
spaces X and Y , J (X,Y ) := L(X,Y ) ∩ J is a linear subspace containing all
the finite-rank operators from X into Y . We call J an operator ideal if when-
ever W,X, Y, Z are Banach spaces and T ∈ J (X,Y ), then for all operators
A ∈ L(W,X) and B ∈ L(Y,Z) we have BTA ∈ J (W,Z). An ideal norm with
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respect to an operator ideal J is a rule ρ that assigns to every T ∈ J (X,Y ),
a nonnegative real value ρ(T ), and satisfying the following conditions for all
Banach spaces W , X, Y , and Z. First, ρ(x∗ ⊗ y) = ∥x∗∥∥y∥ for all x∗ ∈ X∗

and y ∈ Y , where x∗ ⊗ y is viewed as the 1-dimensional operator x 7→ x∗(x)y
lying in J (X,Y ); second, ρ(S + T ) ≤ ρ(S) + ρ(T ) for all S, T ∈ J (X,Y );
and third, ρ(BTA) ≤ ∥B∥ρ(T )∥A∥ for all T ∈ J (X,Y ), A ∈ L(W,X), and
B ∈ L(Y, Z). A Banach ideal is then an operator ideal J equipped with an
an ideal norm ρ such that all components J (X,Y ) are complete with respect
to the norm on that space induced by ρ.

We will also need to use the Schreier families. These are denoted Sξ for
each countable ordinal 0 ≤ ξ < ω1, and we must define them as follows. Put
S0 := {{n} : n ∈ N} ∪ {∅} and S1 := {F ⊂ N : #F ≤ minF} ∪ {∅}. Now
fix a countable ordinal 1 ≤ ξ < ω1. In case ξ = ζ + 1 for some countable
ordinal 1 ≤ ζ < ω1 we define Sξ as the set containing ∅ together with all
F ⊂ N such that there exist n ∈ N and F1 < · · · < Fn ∈ Sζ satisfying
{minFk}nk=1 ∈ S1 and F =

∪n
k=1 Fk. In case ξ is a limit ordinal we fix a

strictly increasing sequence (ζn) of non-limit-ordinals satisfying supn ζn = ξ,
and define Sξ :=

∪∞
n=1{F ∈ Sζn : n ≤ F}.

Usually in the literature, the family of finite subsets of natural numbers
is denoted [N]<∞, or P<∞(N). However, for convenience, let us abuse our
notation and write this family as if it were the “ω1th Schreier family.” In
other words, we set Sω1 := {F ⊂ N : #F < ∞}. This will greatly simplify the
writing.

The sets Sξ (1 ≤ ξ ≤ ω1) have some very nice properties, most especially
that each is spreading. This means that if {m1 < · · · < mk} ∈ Sξ and
{n1 < · · · < nk} satisfies mi ≤ ni for all 1 ≤ i ≤ k, then {n1 < · · · < nk} ∈ Sξ

also holds. They are also hereditary, which means that if E ∈ Sξ and F ⊆ E
then F ∈ Sξ. Contrary to what we might expect, though, the Schreier families
are not increasing under the inclusion relation. However, it is easily seen that,
for all 1 ≤ ξ ≤ ω1, we have S1 ⊆ Sξ, and in particular we have {k} ∈ Sξ for
all k ∈ N. Moreover, the Schreier families do behave somewhat nicely under
the inclusion relation in the sense that, if 1 ≤ ζ < ξ ≤ ω1 are ordinals, then
there is d = d(ζ, ξ) ∈ N such that for all F ∈ Sζ satisfying d ≤ minF we have
F ∈ Sξ.

We will appeal several times to the Bessaga-Pe lczyński Selection Princi-
ple. However, the version that we need is slightly stronger than typically
stated in the literature. More specifically, we need a small uniform bound
on the equivalence constant. The proof is practically identical to the stan-
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dard small perturbations and gliding hump arguments found, for instance, in
Theorem 1.3.9 and Proposition 1.3.10 from [1].

Theorem 1.1. (Uniform Bessaga-Pe lczyński Selection Principle)Suppose
X is a Banach space with a basis (ei), and corresponding coefficient functionals
(e∗i ) ⊂ X∗. Let (xn) ⊂ X be a sequence satisfying limn→∞∥xn∥ = 1 and
limn→∞ e∗i (xn) = 0 for all i ∈ N. Then for any ϵ > 0, there exists a basic
subsequence (xnk

) which is (1 + ϵ)-congruent to a normalized block basis
of (ei).

We divide the remainder of this paper into Sections 2 and 3. In Section 2

we define the classes WD(∞, ξ)
ℓp

, and establish that, for the nontrivial case
p ̸= 1, they fail to be norm-closed, but as long as ξ = 1 they form Banach
ideals. Then, in Section 3 we discuss the significance of the parameters p
and ξ.

2. The operator ideals WD(∞, ξ)
ℓp

Let us state formally the definition of classes WD(∞, ξ)
ℓp

.

Definition 2.1. Let X and Y be Banach spaces, and fix some constants
0 ≤ C < ∞ and 1 ≤ p ≤ ∞, and some ordinal 1 ≤ ξ ≤ ω1. Put Aξ :=
{(αk) ∈ c00 : supp(αk) ∈ Sξ}, the set of all scalar sequences with sup-

port in the ξth Schreier family. Then we denote by WD(C, ξ)
ℓp

(X,Y ) the

set of all operators T ∈ L(X,Y ) for which, given ϵ > 0, each normalized
weakly null sequence (xn) ⊂ X admits a subsequence (xnk

) such that for all
(αk) ∈ Aξ, the estimate ∥

∑
αkTxnk

∥ ≤ (C + ϵ)∥(αk)∥ℓp holds. Then we set

WD(∞, ξ)
ℓp

(X,Y ) :=
∪

C≥0WD(C, ξ)
ℓp

(X,Y ).

Immediate from the definitions and the inequality ∥(αk)∥ℓp ≤ ∥(αk)∥ℓq for
all (αk) ∈ c00 and 1 ≤ q ≤ p ≤ ∞, we get the following relations.

Proposition 2.2. LetX and Y be Banach spaces, and fix some constants
0 ≤ C ≤ D ≤ ∞ and 1 ≤ q ≤ p ≤ ∞, and some ordinal 1 ≤ ξ ≤ ω1. Then

WD(C, ξ)
ℓp

(X,Y ) ⊆ WD(C, ξ)
ℓq

(X,Y ) and WD(C, ξ)
ℓp

(X,Y ) ⊆ WD(D, ξ)
ℓp

(X,Y ).

When checking that an operator satisfies the definition of WD(C, ξ)
ℓp

, the
following propositions will come in handy.
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Proposition 2.3. Let X and Y be Banach spaces, and fix constants
0 ≤ C < ∞ and 1 ≤ p ≤ ∞, and some ordinal 1 ≤ ξ ≤ ω1. Then

T ∈ WD(C, ξ)
ℓp

(X,Y ) if and only if for all ϵ > 0 and every seminormalized

weakly null sequence (xn) ⊂ X which admits a subsequence (xnk
) satisfy-

ing ∥xnk
∥ → 1, there exists a further subsequence (x′nk

) such that for all
(αk) ∈ Aξ, the estimate ∥

∑
αkTx

′
nk
∥ ≤ (C + ϵ)∥(αk)∥ℓp holds.

Proof. We need only prove the “only if” part since the “if” part is obvious.

Suppose T ∈ WD(C, ξ)
ℓp

(X,Y ). Let (xn) be a seminormalized weakly null
sequence with a subsequence tending to 1 in norm, and pick ϵ > 0. Let 1 < δ <
1+ ϵ

2C , which gives us Cδ+ ϵ
2 < C+ϵ, and pass to a further subsequence so that

∥xnk
∥ ≤ δ for all k. By definition of T ∈ WD(C, ξ)

ℓp
(X,Y ) we can pass to yet a

further subsequence so that (
xnk

∥xnk
∥) satisfies ∥

∑
αkT

xnk
∥xnk

∥∥ ≤ (C+ ϵ
2δ )∥(αk)∥ℓp

for all (αk) ∈ Aξ. Since also (∥xnk
∥αk) ∈ Aξ for each (αk) ∈ Aξ, we get∥∥∥∑αkTxnk

∥∥∥ =

∥∥∥∥∑∥xnk
∥αkT

xnk

∥xnk
∥

∥∥∥∥ ≤
(
C +

ϵ

2δ

)∥∥(∥xnk
∥αk)

∥∥
ℓp

≤
(
Cδ +

ϵ

2

)
∥(αk)∥ℓp ≤ (C + ϵ)∥(αk)∥ℓp .

Proposition 2.4. Let X and Y be Banach spaces, and fix constants
0 ≤ C < ∞ and 1 ≤ p ≤ ∞. If (xn) ⊂ X is a sequence for which (Txn)
has a norm-null subsequence, then given ϵ > 0, there exists a further subse-
quence (xnk

) for which the estimate ∥
∑

αkTxnk
∥ ≤ (C + ϵ)∥(αk)∥ℓp holds for

all (αk) ∈ c00.

Proof. Pick a subsequence so that ∥Txnk
∥ ≤ ϵ2−k and hence, by Hölder,

if q is conjugate to p so that 1
p + 1

q = 1, ∥
∑

αkTxnk
∥ ≤ ϵ∥(2−kαk)∥ℓ1 ≤

ϵ∥(2−k)∥ℓq∥(αk)∥ℓp ≤ (C + ϵ)∥(αk)∥ℓp for any sequence (αk) ∈ c00.

Recall that a linear operator between Banach spaces X and Y is called
completely continuous just in case it always sends weakly null sequences into
norm-null ones. We write V(X,Y ) for the space of these completely continu-
ous operators. (As mentioned previously, V is a norm-closed operator ideal.)
Thus, Proposition 2.4 yields the following.

Proposition 2.5. Let X and Y be Banach spaces, and let 1 ≤ p ≤ ∞,

0 ≤ C ≤ ∞, and 1 ≤ ξ ≤ ω1. Then V(X,Y ) ⊆ WD(C,ξ)
ℓp

(X,Y ).
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Let us observe, via several steps, that the class WD(∞,ξ)
ℓp

is indeed an
operator ideal.

Proposition 2.6. Let W , X, Y , and Z be Banach spaces, and fix con-
stants 1 ≤ p ≤ ∞ and 0 ≤ C < ∞, and some ordinal 1 ≤ ξ ≤ ω1.

Suppose T ∈ WD(C, ξ)
ℓp

(X,Y ) with A ∈ L(W,X) and B ∈ L(Y, Z). Then

TA ∈ WD(C∥A∥, ξ)
ℓp

(W,Y ) and BT ∈ WD(C∥B∥, ξ)
ℓp

(X,Z).

Proof. Let’s first show that TA ∈ WD(C∥A∥, ξ)
ℓp

(W,Y ). Recall that an op-
erator is weak-to-weak continuous if and only if it is norm-to-norm continu-
ous. Thus if (wn) is a normalized weakly null sequence in W , we get that
(Awn) is weakly null in X. If it contains a norm-null subsequence then so
does TAwn, and so by Proposition 2.4 we are done. Otherwise, we can pass
to a subsequence if necessary so that ∥Awn∥ → δ for some 0 < δ ≤ ∥A∥.
Hence ∥δ−1Awn∥ → 1, and by Proposition 2.3 we get, for any ϵ > 0, a
subsequence (nk) satisfying ∥

∑
αkTδ

−1Awnk
∥ ≤ (C + ϵ

δ )∥(αk)∥ℓp and hence
∥
∑

αkTAwnk
∥ ≤ (Cδ + ϵ)∥(αk)∥ℓp ≤ (C∥A∥ + ϵ)∥(αk)∥ℓp for all (αk) ∈ Aξ.

Next, we show that BT ∈ WD(C∥B∥, ξ)
ℓp

(X,Z). Fix a normalized weakly

null sequence (xn) ⊂ X, and let ϵ > 0. To make things nontrivial, we may
assume B ̸= 0. Then we can find a subsequence (xnk

) such that for all (αk) ∈
Aξ we get ∥

∑
αkTxnk

∥ ≤
(
C + ϵ

∥B∥
)
∥(αk)∥ℓp and hence ∥

∑
αkBTxnk

∥ ≤
∥B∥∥

∑
αkTxnk

∥ ≤ (C∥B∥ + ϵ)∥(αk)∥ℓp .

By “pushing out” a scalar sequence (αk) ∈ Aξ, and using the spreading
property of Sξ, we obtain the following obvious lemma.

Lemma 2.7. Let Y be a Banach space, and fix an ordinal 1 ≤ ξ ≤ ω1.
Suppose (yn) and (y′k) are sequences in Y such that (y′k)k≥m is a subsequence of
(yn)n≥m for some m ∈ N. If (αk) ∈ Aξ satisfies min supp(αk) ≥ m then there
exists (βn) ∈ Aξ which satisfies

∑
αky

′
k =

∑
βnyn and ∥(αk)∥ℓp = ∥(βn)∥ℓp

for all 1 ≤ p ≤ ∞.

Proposition 2.8. Let X and Y be Banach spaces, and fix constants 0 ≤
C,D < ∞ and 1 ≤ p ≤ ∞. Then for any S ∈ WD(C, ξ)

ℓp
(X,Y ) and T ∈

WD(D, ξ)
ℓp

(X,Y ) we have S + T ∈ WD(C+D, ξ)
ℓp

(X,Y ).

Proof. Let ϵ > 0 and pick a normalized weakly null sequence (xn) ⊂ X.

By definition of S ∈ WD(C, ξ)
ℓp

(X,Y ) applied to ϵ
2 > 0 and (xn) we get a
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subsequence (xnk
) such that for all (αk) ∈ Aξ, the estimate ∥

∑
αkSxnk

∥ ≤
(C + ϵ

2)∥(αk)∥ℓp holds. Next, apply the definition of T ∈ WD(D, ξ)
ℓp

(X,Y ) to
ϵ
2 > 0 and (xnk

) to find a further subsequence (ki) such that for all (αi) ∈
Aξ we get ∥

∑
αiTxnki

∥ ≤ (D + ϵ
2)∥(αi)∥ℓp . Notice that since (xnki

) is a
subsequence of (xnk

), then for each scalar sequence (αi) ∈ Aξ, by Lemma 2.7,
∥
∑

αi(S + T )xnki
∥ ≤ ∥

∑
αiSxnki

∥+ ∥
∑

αiTxnki
∥ ≤ (C +D + ϵ)∥(αi)∥ℓp .

From Propositions 2.5, 2.6, and 2.8, it now follows immediately that

WD(∞, ξ)
ℓp

is an operator ideal. In fact, the same combination of propositions

shows that WD(0,ξ)
ℓp

is an operator ideal, but it turns out that, using Propo-
sition 2.5 along with the fact that every family Sξ contains all the singletons,

regardless of our choice of p or ξ we always get WD(0, ξ)
ℓp

= V, the completely
continuous operators.

Let us now construct two important examples.

Example 2.9. Let X be a Banach space which fails to contain a copy of ℓ1.
(This is true in particular if X is reflexive.) Fix constants 1 ≤ q < p ≤ ∞ and

0 ≤ C ≤ ∞, and some ordinal 1 ≤ ξ ≤ ω1. Then WD(C, ξ)
ℓp

(X, ℓq) = K(X, ℓq).

Proof. Assume 0 ≤ C < ∞. By Proposition 2.5 we already have K(X, ℓq)⊆
V(X, ℓq) ⊆ WD(C, ξ)

ℓp
(X, ℓq), and so it suffices to prove WD(C, ξ)

ℓp
(X, ℓq) contains

only compact operators. For suppose towards a contradiction that there exists

T ∈ WD(C, ξ)
ℓp

(X, ℓq) which is not compact. Then we can find a seminormalized

sequence (xn) ⊂ X for which (Txn) fails to have a convergent subsequence.
Since X fails to contain a copy of ℓ1, we can apply Rosenthal’s ℓ1 Theorem to
pass to a subsequence so that (xn) is weak Cauchy. Hence we can pass to a
further subsequence if necessary so that (x2n − x2n+1) and (Tx2n − Tx2n+1)
are both weakly null and seminormalized. This means the sequence (x′n)
defined by x′n := (x2n − x2n+1)/∥x2n − x2n+1∥ is normalized and weakly null,
whereas the sequence (Tx′n) is seminormalized and weakly null. By passing
to yet another subsequence if necessary, by Proposition 2.1.3 in [1] we can
assume (Tx′n) is K-equivalent, K ≥ 1, to the unit vector basis of ℓq. Thus, by

this equivalence together with the definition of T ∈ WD(C, ξ)
ℓp

(X,Y ), for any

ϵ > 0 we can find a subsequence (nk) such that ∥(αk)∥ℓq ≤ K∥
∑

αkTx
′
nk
∥ ≤

K(C+ϵ)∥(αk)∥ℓp for all (αk) ∈ Aξ. Due to S1 ⊆ Sξ, the above inequality holds
also for all (αk) ∈ A1. Notice that every (βk) ∈ c00 induces a corresponding
“spread out” sequence (αk) ∈ A1 satisfying ∥(αk)∥ℓr = ∥(βk)∥ℓr for all 1 ≤
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r ≤ ∞. Thus we obtain the impossible estimate ∥(βk)∥ℓq = ∥(αk)∥ℓq ≤
K(C + ϵ)∥(αk)∥ℓp = K(C + ϵ)∥(βk)∥ℓp for all (βk) ∈ c00.

Example 2.10. Let X and Y be Banach spaces, and fix numbers 1 ≤
p ≤ q < ∞ and an ordinal 1 ≤ ξ ≤ ω1. Suppose T ∈ L(X,Y ) is an operator
such that TX has a K-embedding, K ≥ 1, into ℓq. (In other words, suppose
there is an operator Q ∈ L(TX, ℓq) which satisfies K−1∥y∥ ≤ ∥Qy∥ ≤ K∥y∥
for all y ∈ TX.) Then T ∈ WD(K2∥T∥, ξ)

ℓp
(X,Y ), and the same result holds

if 1 ≤ p ≤ ∞ and TX has a K-embedding into c0. Thus, for 1 ≤ p ≤
q < ∞ we have WD(∞, ξ)

ℓp
(X, ℓq) = L(X, ℓq), and for 1 ≤ p ≤ ∞ we have

WD(∞, ξ)
ℓp

(X, c0) = L(X, c0).

Proof. Fix a normalized weakly null sequence (xn) ⊂ X, and denote by
Q ∈ L(TX, ℓq) (resp., Q ∈ L(TX, c0)) the K-embedding. If (Txn) contains
a norm-null subsequence then we are done by Proposition 2.4. Otherwise let
ϵ > 0, and find a subsequence so that ∥QTxnk

∥ → r with 0 < r ≤ K∥T∥, and
quickly enough so that by the uniform version of Bessaga-Pe lczyński combined
with Lemma 2.1.1 in [1], we can pass to a further subsequence if necessary so
that (1rQTxnk

) is (1 + ϵ
Kr )-equivalent to the unit vector basis of ℓq (resp. c0).

This gives us, in the ℓq case,∥∥∥∑αkTxnk

∥∥∥ ≤ K
∥∥∥∑αkQTxnk

∥∥∥ = Kr

∥∥∥∥∑αk
1

r
QTxnk

∥∥∥∥
≤ Kr

(
1 +

ϵ

Kr

)
∥(αk)∥ℓq ≤

(
K2∥T∥ + ϵ

)
∥(αk)∥ℓq

≤
(
K2∥T∥ + ϵ

)
∥(αk)∥ℓp

for all (αk) ∈ c00, and a similar inequality holds in the c0 case.

We must lay some groundwork aimed at showing that, in case ξ = 1, the

class WD(∞,1)
ℓp

forms a Banach ideal. We begin by defining a seminorm on the

linear space WD(∞,ξ)
ℓp

(X,Y ).

Definition 2.11. Let X and Y be Banach spaces, and fix a constant

1 ≤ p ≤ ∞ and an ordinal 1 ≤ ξ ≤ ω1. For each T ∈ WD(∞, ξ)
ℓp

(X,Y ), we

define C(p, ξ)(T ) := inf
{

0 ≤ C < ∞ : T ∈ WD(C, ξ)
ℓp

(X,Y )
}

.

Proposition 2.12. Let X and Y be Banach spaces, and fix a constant

1 ≤ p ≤ ∞ and an ordinal 1 ≤ ξ ≤ ω1. If T ∈ WD(∞, ξ)
ℓp

(X,Y ) then T ∈
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WD(C(p, ξ)(T ), ξ)

ℓp
(X,Y ). Furthermore, T 7→ C(p, ξ)(T ) defines a seminorm on

the linear space WD(∞, ξ)
ℓp

(X,Y ).

Proof. The first part of the proposition is clear from applying the definition

of T ∈ WD(C, ξ)
ℓp

(X,Y ) for C(p, ξ)(T ) < C < ∞, and absolute homogeneity
is similarly obvious. The only thing nontrivial to show is that the triangle

inequality holds. Indeed, let S, T ∈ WD(∞, ξ)
ℓp

(X,Y ), and suppose (xn) is a
normalized weakly null sequence. Let ϵ > 0. Then we can apply the definition

of S ∈ WD(C(p, ξ)(S), ξ)

ℓp
(X,Y ) to (xn) and ϵ

2 > 0 to find a subsequence (nk)

satisfying
∥∥∑αkSxnk

∥∥ ≤
(
C(p, ξ)(S) + ϵ

2

)
∥(αk)∥ℓp for all (αk) ∈ Aξ. Then,

we successively apply the definition of T ∈ WD(C(p, ξ)(T ),ξ)

ℓp
(X,Y ) to (xnk

)

and ϵ
2 > 0 to find to a further subsequence (nkj ) so that

∥∥∑αjTxnkj

∥∥ ≤(
C(p,ξ)(T ) + ϵ

2

)
∥(αj)∥ℓp for all (αj) ∈ Aξ. Thus, by these facts together with

Lemma 2.7,∥∥∥∑αj(S + T )xnkj

∥∥∥ ≤
∥∥∥∑αjSxnkj

∥∥∥+
∥∥∥∑αjTxnkj

∥∥∥
=
(
C(p, ξ)(S) +

ϵ

2

)
∥(αj)∥ℓp +

(
C(p, ξ)(T ) +

ϵ

2

)
∥(αj)∥ℓp

=
(
C(p, ξ)(S) + C(p, ξ)(T ) + ϵ

)
∥(αj)∥ℓp .

Thus, C(p, ξ)(S + T ) ≤ C(p, ξ)(S) + C(p, ξ)(T ), and we are done.

Next we show that WD(∞, ξ)
ℓp

fails to be norm-closed (as a class) whenever
p ̸= 1. The main idea toward this end proceeds from the following lemma.

Lemma 2.13. Fix constants 1 < p ≤ ∞ and 1 ≤ q < ∞, and an ordinal
1 ≤ ξ ≤ ω1. Let (Xm) and (Ym) be sequences of Banach spaces, and for

each m ∈ N, let Tm ∈ WD(∞, ξ)
ℓp

(Xm, Ym) be an operator satisfying ∥Tm∥ = 1.

If C(p, ξ)(Tm) → ∞ then there exists a subsequence (mj) and a sequence

of operators Sj ∈ WD(∞, ξ)
ℓp

(X,Y ) for which Sj → S ∈ L(X,Y ) but S /∈
WD(∞, ξ)

ℓp
(X,Y ), where we defineX := (

⊕∞
j=1Xmj )ℓq and Y := (

⊕∞
j=1 Ymj )ℓq .

Proof. Define the subsequence by letting (mj) be an increasing sequence
satisfying Cj := C(p, ξ)(Tmj ) > j2j for every j. Next, set S :=

⊕∞
j=1 2−jTmj ∈

L(X,Y ). For each i, let Pi ∈ L(Y ) denote the continuous linear projection
onto the first i coordinates of Y , and set Si := PiS. It’s easy to see that
Si → S.
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Next, we claim that each Si ∈ WD(Mi, ξ)
ℓp

(X,Y ) ⊆ WD(∞, ξ)
ℓp

(X,Y ), where

we set Mi := ∥(2−jCj)
i
j=1∥ℓq . Indeed fix any i ∈ N, and let (xn) be a nor-

malized weakly null sequence in X. Pick any ϵ > 0. For each j, let X̃j

be the obvious isometrically isomorphic copy of Xj contained in X, and let

Uj : X̃j → Xj be the corresponding isometric isomorphism. For each n, write
xn = (xn,j)j ∈ X. Then (xn,j)n is a sequence in Xj which is bounded by 1.
If (xn,j)n has a norm-null subsequence, then by Proposition 2.4 we can find a
subsequence (nk) such that, for all (αk) ∈ c00,∥∥∥∥∥∑

k

αkTmjxnk,j

∥∥∥∥∥ ≤
(
Cj +

ϵ2j

i1/q

)∥∥(xnk,j)k
∥∥
ℓp

(2.1)

Otherwise we can find a subsequence (nk) so that ∥xnk,j∥Xj → r as k →
∞ for some 0 < r ≤ 1. Clearly, (xn,j)n is weakly null in Xj , and so by
Propositions 2.3 and 2.12, we can pass to a further subsequence if necessary
so that, for all (αk) ∈ Aξ,∥∥∥∥∥∑

k

αkTmjxnk,j

∥∥∥∥∥ = r

∥∥∥∥∥∑
k

αkTmj

xnk,j

r

∥∥∥∥∥
≤ r

(
Cj +

ϵ2j

i1/qr

)
∥(xnk,j)k∥ℓp ≤

(
Cj +

ϵ2j

i1/q

)
∥(xnk,j)k∥ℓp .

In either case, for each j and any subsequence of (xn,j)n, we can pass to a
further subsequence so that the inequality (2.1) holds for all (αk) ∈ Aξ.

Thus, by successively passing to further subsequences for j = 1, . . . , i,
due to Lemma 2.7, we get a subsequence (nk) such that (2.1) holds for all
j = 1, . . . , i and all (αk) ∈ Aξ. In particular, this means

∥∥∥∥∥∑
k

αkSixnk

∥∥∥∥∥ =

 i∑
j=1

2−jq

∥∥∥∥∥∑
k

αkTmjxnk,j

∥∥∥∥∥
q
1/q

≤

 i∑
j=1

2−jq

(
Cj +

ϵ2j

i1/q

)q

∥(αk)∥qℓp

1/q

=

∥∥∥∥(2−jCj +
ϵ

i1/q

)i
j=1

∥∥∥∥
ℓq

∥(αk)∥ℓp

≤

(∥∥∥(2−jCj

)i
j=1

∥∥∥
ℓq

+

∥∥∥∥( ϵ

i1/q

)i
j=1

∥∥∥∥
ℓq

)
∥(αk)∥ℓp = (Mi + ϵ)∥(αk)∥ℓp ,
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which proves the claim that Si ∈ WD(Mi, ξ)
ℓp

(X,Y ) ⊆ WD(∞, ξ)
ℓp

(X,Y ).

However, it cannot be that S ∈ WD(C, ξ)
ℓp

(X,Y ) for any 0 ≤ C < ∞. To

show why not, fix i ∈ N, and let (xn) be a normalized weakly null sequence
in Xi. Then let ϵ > 0 be such that, for any subsequence (nk), there exists
(αk) ∈ Aξ with ∥

∑
k αkTmixnk

∥ > (i2i + ϵ)∥(αk)∥ℓp . Let Qi : Xi → X be the
canonical embedding of Xi into X, and observe that (Qixn)n is a normalized
weakly null sequence in X. However, for every subsequence (nk) there exists
(αk) ∈ Aξ with∥∥∥∥∥∑

k

αkSQixnk

∥∥∥∥∥ = 2−i

∥∥∥∥∥∑
k

αkTmixnk

∥∥∥∥∥
> 2−i

(
i2i + ϵ

)
∥(αk)∥ℓp ≥

(
i + 2−iϵ

)
∥(αk)∥ℓp .

It follows that S /∈ WD(i, ξ)
ℓp

(X,Y ) for any i, and hence S /∈ WD(∞, ξ)
ℓp

(X,Y ).

Example 2.14. Fix a constant 1 < p ≤ ∞ and an ordinal 1 ≤ ξ ≤ ω1.

There exists a Banach space X for which WD(∞, ξ)
ℓp

(X) is not norm-closed. If
p ̸= ∞, then we can choose X to be reflexive.

Proof. For convenience in writing, let us consider the case where p ̸= ∞.
The case where p = ∞ uses c0 in place of ℓp, and the resulting proof is nearly
identical, except that the resulting space X is not reflexive.

Let (en) denote the unit vector basis of ℓp. For each finite E ⊂ N, define
the functional fE ∈ ℓ∗p by the rule fE(en) = 1 if n ∈ E and fE(en) = 0
otherwise. Now, fix m ∈ N, and define the norming set Bm := Bℓ∗p ∪{fE : E ⊂
N,#E = m}, where Bℓ∗p denotes the closed unit ball of ℓ∗p = ℓq. Notice that for

every E ⊂ N of size m, we have |fE(
∑

αkek)| ≤ ∥(αk)k∈E∥ℓ1 ≤ m
1− 1

p ∥(αk)∥ℓp
so that ∥fE∥ℓ∗p ≤ m

1− 1
p . So Bm is a bounded subset of ℓ∗p containing Bℓ∗p . Due

to the identity ∥x∥ℓp = supf∈Bℓ∗p
|f(x)|, we can now define an equivalent norm

∥·∥m on ℓp by the rule ∥x∥m := supf∈Bm
|f(x)|. Put Xm := (ℓp, ∥·∥m), and

notice that for all n and E, we have |fE(en)| ≤ 1. Hence (en) is still normalized
in Xm, and weakly null since Xm is isomorphic to ℓp. Furthermore, this
isomorphism also means the identity map Im ∈ L(Xm) is a norm-1 operator

which lies in WD(∞, ξ)
ℓp

(Xm) by Example 2.10. However, we will show that

C(p, ξ)(Im) ≥ m
1− 1

p .
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Suppose C < m
1− 1

p , and let 0 < ϵ < m
1− 1

p − C. Then, let (enk
) be any

subsequence of (en), which we have previously observed is normalized and
weakly null in Xm. Pick E = (m + 1 < m + 2 < · · · < 2m) ∈ S1 ⊆ Sξ of size
m, and define F := (nm+1 < nm+2 < · · · < n2m). Since Sξ is spreading, we
have F ∈ Sξ, and also of size m. Next, define (αk) ∈ Aξ by letting αk = 1 for
all k ∈ E and αk = 0 otherwise. Then

∥∥∥∑αkenk

∥∥∥
m

≥
∣∣∣fF (∑αkenk

)∣∣∣ =

∣∣∣∣∣fF
(∑

n∈F
en

)∣∣∣∣∣ = m

= m
1− 1

p ∥(αk)∥ℓp > (C + ϵ)∥(αk)∥ℓp .

Thus, the identity map Im does not lie in WD(C, ξ)
ℓp

(Xm), and C(p, ξ)(Im) ≥

m
1− 1

p as claimed.

We have therefore constructed a sequence (Xm) of Banach spaces and a

corresponding sequence Im ∈ WD(∞, ξ)
ℓp

(Xm) of norm-1 operators with

C(p,∞)(Im) → ∞. By Lemma 2.13, there exists a space X for which

WD(∞, ξ)
ℓp

(X) fails to be norm-closed, and in case p ̸= ∞, we can choose
it to be reflexive.

Even though WD(∞, ξ)
ℓp

is not a norm-closed operator ideal, when ξ = 1 its

components are Fσ-subsets of L(X,Y ), as the following Proposition shows.

Proposition 2.15. Let X and Y be Banach spaces, and fix constants

0 ≤ C < ∞ and 1 ≤ p ≤ ∞. We consider the case ξ = 1. Then WD(C,1)
ℓp

(X,Y )

is a norm-closed subset of L(X,Y ).

Proof. Let (Tj) be a sequence in WD(C,1)
ℓp

(X,Y ) converging to some T ∈
L(X,Y ). Fix any ϵ > 0, and let (xn) ⊂ X be a normalized weakly null se-

quence in X. Without loss of generality we may assume ∥T −Tj∥ < ϵ/(2j
1− 1

p )
for all j. Let (xnk

) be a subsequence formed by a diagonal argument using the
Tj ’s with ϵ

2 > 0. In other words, begin with a subsequence (xn1,k
) given by the

definition of T1 ∈ WD(C,1)
ℓp

(X,Y ), corresponding to ϵ
2 > 0. Then find a further

subsequence (xn2,k
) ⊂ (xn1,k

) given by the definition of T2 ∈ WD(C, ξ)
ℓp

(X,Y ),
also corresponding to ϵ

2 > 0, and so on. Finally, for each k, put nk := nk,k.

Let (αk) ∈ A1, and set m := min supp(αk) ≤ #supp(αk). Notice that
(xnk

)k≥m is a subsequence of (xnm,i)i≥m so that by Lemma 2.7,
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∥∥∥∑αkTxnk

∥∥∥ ≤

∥∥∥∥∥∑
k

αkTmxnk

∥∥∥∥∥+ ∥T − Tm∥
∥∥∥∑αkxnk

∥∥∥
<
(
C +

ϵ

2

)
∥(αk)∥ℓp + m

1− 1
p

(
ϵ

2m
1− 1

p

)
∥(αk)∥ℓp

= (C + ϵ)∥(αk)∥ℓp

Definition 2.16. Fix Banach spaces X and Y , along with a constant
1 ≤ p ≤ ∞ and an ordinal 1 ≤ ξ ≤ ω1. We define the norm ∥·∥(p, ξ) on the

space WD(∞, ξ)
ℓp

(X,Y ) by the rule ∥T∥(p, ξ) := ∥T∥L(X,Y ) + C(p, ξ)(T ).

Notice that ∥·∥(p, ξ) is indeed a norm on WD(∞, ξ)
ℓp

(X,Y ), as it is the sum
of a norm and a seminorm.

Proposition 2.17. Fix 1 ≤ p ≤ ∞. In case ξ = 1, the rule ∥·∥(p,1) is an
ideal norm which makes WD(∞,1)

ℓp
into a Banach ideal.

Proof. As was observed earlier, that WD(∞,1)
ℓp

is an operator ideal follows

from Propositions 2.5, 2.6, and 2.8. To show that ∥·∥(p,1) induces a complete

norm on each component space WD(∞,1)
ℓp

(X,Y ), suppose (Tn) is a ∥·∥(p,1)-
Cauchy sequence. Then it is ∥·∥(p,1)-bounded and hence C(p,1)-bounded, say
by M > 0. It is also Cauchy in the operator norm so that Tn → T for some

T ∈ L(X,Y ). By Proposition 2.12, every Tn lies in the set WD(M,1)
ℓp

(X,Y ),
which is closed under the operator norm by Proposition 2.15. Hence, T ∈
WD(∞,1)

ℓp
(X,Y ) as well, and it remains only to show that ∥·∥(p,1) is indeed an

ideal norm.
Since any element of the form x∗ ⊗ y is rank-1, it is completely contin-

uous. By Proposition 2.5, this means C(p,1)(x
∗ ⊗ y) = 0 and hence ∥x∗ ⊗

y∥(p,1) = ∥x∗ ⊗ y∥L(X,Y ) = supx∈SX
∥(x∗ ⊗ y)(x)∥Y = supx∈SX

|x∗(x)|∥y∥Y =
∥x∗∥X∗∥y∥Y . The triangle inequality follows from the fact that ∥·∥(p,1) is a

norm on each component space WD(∞,1)
ℓp

(X,Y ). That

∥BTA∥(p,1) ≤ ∥B∥L(Y,Z)∥T∥(p,1)∥A∥L(W,X)

for all T ∈ J (X,Y ), A ∈ L(W,X), and B ∈ L(Y, Z), follows naturally from
Propositions 2.6 and 2.12.
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3. Significance of parameters

Let 1 < q < p < ∞. By Example 2.9 we get WD(∞, ξ)
ℓp

(ℓq) = K(ℓq), whereas

by Example 2.10 we get WD(∞, ξ)
ℓq

(ℓq) = L(ℓq). Applying Proposition 2.2
therefore gives us the following.

Proposition 3.1. Fix any ordinal 1 ≤ ξ ≤ ω1. For 1 ≤ q < p ≤ ∞, the

norm-closed operator ideals WD(∞, ξ)
ℓp and WD(∞, ξ)

ℓq are distinct (as classes).

However, it is natural to also ask whether the classes WD(∞, ξ)
ℓp

are distinct
as ξ ranges over 1 ≤ ξ ≤ ω1. Obviously, this is not the case for the trivial ideal

WD(∞, ξ)
ℓ1

= L. The question remains open in general for 1 < p ≤ ∞, but in
this section we do give a partial answer by exhibiting, for each 1 < p ≤ ∞,
a strictly increasing sequence (ξn) of countable ordinals 1 ≤ ξn < ξn+1 < ω1,
n ∈ N, and a sequence (Xn) of Banach spaces, such that for all m,n ∈ N with
m < n we have

WD(∞, ξn)
ℓp (Xm) ( WD(∞, ξm)

ℓp (Xm)

Our task requires a few preliminaries, which we proceed to lay out.

Proposition 3.2. Let X and Y be Banach spaces, and fix a constant
1 ≤ p ≤ ∞. Let 1 ≤ ξ < ζ ≤ ω1 be ordinals, and 0 ≤ C ≤ ∞. Then

WD(C, ζ)
ℓp

(X,Y ) ⊆ WD(C, ξ)
ℓp

(X,Y ).

Proof. We may assume C ̸= ∞. Suppose T ∈ WD(C, ζ)
ℓp

(X,Y ), and let

(xn) be a normalized weakly null sequence in X, and ϵ > 0. Then there
exists a subsquence (nk) such that ∥

∑
αkTxnk

∥ ≤ (C + ϵ)∥(αk)∥ℓp for all
(αk) ∈ Aζ . Let d = d(ξ, ζ) be such that if E ∈ Sξ with minE ≥ d then
E ∈ Sζ . Now, let (αk) ∈ Sξ, and define the scalar sequence (βk) as βk := αk−d

for k ≥ d and βk := 0 for k < d. By the spreading property of Sξ we
have (βk) ∈ Aξ, and since also min supp(βk) ≥ d we have (βk) ∈ Aζ . Thus,
∥
∑

αkTxnk+d
∥ = ∥

∑
βkTxnk

∥ ≤ (C + ϵ)∥(βk)∥ℓp = (C + ϵ)∥(αk)∥ℓp .

Let 1 ≤ ξ < ω1 be a countable ordinal. A finite sequence (Ei)
j
i=1 of

finite subsets of N is called Sξ-admissible whenever E1 < · · · < Ej and

{minEi}ji=1 ∈ Sξ. Then the Tsirelson-type space T [12 ,Sξ] is the comple-
tion of c00 under the norm ∥·∥T uniquely defined by the implicit equation
∥x∥T = max

{
∥x∥ℓ∞ , 12 sup

∑
i∥Eix∥T

}
, where the “sup” is taken over all

j ∈ N and all Sξ-admissible families (Ei)
j
i=1. Here we use the notation
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Eix :=
∑

n∈Ei
αnen for x :=

∑
αnen ∈ c00, where (en) are the canonical

basis vectors in c00. We also use the abbreviation T = T [12 ,Sξ] when the
ordinal ξ is understood from context.

It is easily seen that the canonical unit vectors in c00 form a normalized
1-unconditional basis for T . For 1 ≤ q < ∞, its q-convexification Tq[

1
2 ,Sξ],

where we again use the abbreviation Tq = Tq[
1
2 ,Sξ], is then usually defined

in the literature by setting Tq = Tq[
1
2 ,Sξ] = {(αn) : (|αn|q) ∈ T = T [12 ,Sξ]},

which is a Banach space under the norm ∥(αn)∥Tq := ∥(|αn|q)∥1/qT , and with
the canonical unit vectors in c00 again forming a normalized 1-unconditional
basis. (Notice also that if q = 1 then we get T1 = T .) However, it will serve
our purposes much better to use instead the following equivalent construction
(cf. [11, p. 1062]). We inductively define a sequence (∥·∥n) of norms on c00.
Set ∥·∥0 := ∥·∥ℓ∞ and define each successive ∥·∥n+1 by the rule ∥x∥n+1 =
max

{
∥x∥ℓ∞ , 2−1/q sup(

∑
i∥Eix∥qn)1/q

}
, where the “sup” is taken over all j ∈ N

and all Sξ-admissible families (Ei)
j
i=1. Then ∥x∥Tq := limn→∞∥x∥n defines a

norm on c00. In fact, it is easily seen (cf., e.g., the kind of argument used in the
proof to Theorem 10.3.2 in [1]) that ∥·∥Tq is the unique norm on c00 satisfying

the implicit equation ∥x∥Tq = max
{
∥x∥ℓ∞ , 2−1/q sup(

∑
i∥Eix∥qTq

)1/q
}

. The
space Tq is just the completion of c00 under this norm.

Due to this construction, ∥x∥Tq ≤ ∥x∥ℓq for each x ∈ c00. Furthermore, Tq

is known to be a reflexive Banach space which contains no copy of ℓq. When
q = 1 this follows from Proposition 5.1 in [2]. In case 1 < q < ∞, Remark T.1
on [11, p. 1062] tells us that Tq is an asymptotic ℓq space which contains no
copy of ℓq, and thus by Remark 6.3 in [12] it is also reflexive. Therefore
each dual space T ∗

q is a reflexive space which fails to contain any copy of ℓp,
1
p + 1

q = 1. Notice that T ∗
q can also be viewed as a completion of c00 under

some norm ∥·∥T ∗
q
, with the usual action f(x) =

∑
αnβn for f = (αn) ∈ T ∗

q

and x = (βn) ∈ Tq.

In [14] was given an implicit formula for the norm of T1[
1
2 ,S1]

∗. It is natural
to conjecture that a similar formula always holds for the norm of Tq[

1
2 ,Sξ]

∗,
but for our purposes we only need a crude estimate.

Lemma 3.3. Let 1 < p ≤ ∞ and 1 ≤ q < ∞ be conjugate, i.e. 1
p + 1

q = 1.

Set 1 ≤ ξ < ω1 and Tq = Tq[
1
2 ,Sξ]. Then ∥x∥T ∗

q
≤ 21/q

∥∥(∥Eix∥T ∗
q
)
∥∥
ℓp

for all

x ∈ c00 and Sξ-admissible families (Ei)
j
i=1 satisfying x =

∑j
i=1Eix.

Proof. Let y ∈ Tq. Since x =
∑j

i=1Eix we have x(y) =
∑j

i=1(Eix)(Eiy).
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Then by this fact together with Hölder and the relation

2−1/q

(
j∑

i=1

∥Eiy∥qTq

)1/q

≤ ∥y∥Tq

(which follows from the construction of Tq), we have

|x(y)| =

∣∣∣∣∣
j∑

i=1

(Eix)(Eiy)

∣∣∣∣∣ ≤
j∑

i=1

|(Eix)(Eiy)| ≤
j∑

i=1

∥Eix∥T ∗
q
∥Eiy∥Tq

≤
∥∥(∥Eix∥T ∗

q
)
∥∥
ℓp

(
j∑

i=1

∥Eiy∥qTq

)1/q

≤ 21/q
∥∥(∥Eix∥T ∗

q
)
∥∥
ℓp
∥y∥Tq .

Lemma 3.4. Let Tq = Tq[
1
2 ,Sξ], 1 ≤ q < ∞ and 1 ≤ ξ < ω1, and let (uk)

be any normalized block basic sequence in the dual space T ∗
q (with respect

to the canonical unit vectors in c00). Then for every (αk) ∈ Aξ we have
∥
∑

αkuk∥T ∗
q

≤ 21/q∥(αk)∥ℓp , where 1 < p ≤ ∞ is conjugate to q, that is,
1
p + 1

q = 1.

Proof. Write supp(αk) =: {k1, . . . , kj} ∈ Sξ, and set Ei := supp{uki}
for each 1 ≤ i ≤ j. Then x :=

∑
αkuk =

∑j
i=1Eix, where ∥Eix∥T ∗

q
=

∥αkiuki∥T ∗
q

= |αki | for each 1 ≤ i ≤ j. Furthermore, due to ki ≤ min
supp{uki} = minEi together with {k1, . . . , kj} ∈ Sξ and the spreading prop-

erty of Schreier families, we see that (Ei)
j
i=1 is Sξ-admissible. All of this

together with Lemma 3.3 means∥∥∥∑αkuk

∥∥∥
T ∗
q

≤ 21/q
∥∥(∥Eix∥T ∗

q

)j
i=1

∥∥
ℓp

= 21/q
∥∥(αki)

j
i=1

∥∥
ℓp

= 21/q∥(αk)∥ℓp .

Lemma 3.5. Set Tq = Tq[
1
2 ,Sξ], 1 ≤ q < ∞ and 1 ≤ ξ < ω1. Let 1 < p ≤

∞ denote the conjugate of q, that is, 1
p + 1

q = 1. Then ∥x∗∥ℓp ≤ ∥x∗∥T ∗
q
for all

x∗ ∈ c00.

Proof. Since c00 ⊆ ℓp = ℓ∗q with c00 dense in ℓq, for each ϵ > 0 we can
find x ∈ c00 such that |x∗(x)| ≥ (∥x∗∥ℓp − ϵ)∥x∥ℓq . Combining this with
the relation ∥x∥Tq ≤ ∥x∥ℓq (which follows from the construction of Tq) we get
|x∗(x)| ≥ (∥x∗∥ℓp−ϵ)∥x∥ℓq ≥ (∥x∗∥ℓp−ϵ)∥x∥Tq and hence ∥x∗∥T ∗

q
≥ ∥x∗∥ℓp−ϵ.

Letting ϵ → 0 completes the proof.
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Example 3.6. Set Tq = Tq[
1
2 ,Sξ], 1 ≤ q < ∞ and 1 ≤ ξ < ω1, and let T ∗

q

denote its dual. Let 1 < p ≤ ∞ be conjugate to q, that is, 1
p + 1

q = 1. Then

WD(∞, ξ)
ℓp

(T ∗
q ) = L(T ∗

q ), whereas WD(∞, ω1)
ℓp (T ∗

q ) ̸= L(T ∗
q ).

Proof. Consider the identity operator I : T ∗
q → T ∗

q . We claim that

I ∈ WS(21/q , ξ)
ℓp

(T ∗
q ). Indeed, let (xn) be a normalized weakly null sequence

in T ∗
q , and let ϵ > 0. By the uniform version of the Bessaga-Pe lczyński

Selection Principle, there exists a subsquence (xnk
) which is (1 + 2−1/qϵ)-

equivalent to a normalized block basic sequence (uk) of the unit vector ba-
sis. Thus, by Lemma 3.4, for every (αk) ∈ Aξ we have ∥

∑
αkxnk

∥T ∗
q

≤
(1 + 2−1/qϵ)∥

∑
αkuk∥T ∗

q
≤ (21/q + ϵ)∥(αk)∥ℓp , and the claim is proved.

On the other hand, we also claim I /∈ WD(∞, ω1)
ℓp

(T ∗
q ). Let (en) be the

unit vector basis of T ∗
q , which is also weakly null since T ∗

q is reflexive. Recall
from Lemma 3.5 that ∥(αn)∥ℓp ≤ ∥(αn)∥T ∗

q
for all (αn) ∈ c00. Hence, for any

subsequence (nk) we have ∥
∑

αkenk
∥T ∗

q
≥ ∥(αk)∥ℓp . Since T ∗

q fails to contain
a copy of ℓp, then for any C ≥ 0 and ϵ > 0 we must now be able to find some
(αk) ∈ c00 with ∥

∑
αkenk

∥T ∗
q
≥ (C + ϵ)∥(αk)∥ℓp .

Thus, WD(∞, ω1)
ℓp

(T ∗
q ) ̸= L(T ∗

q ), and it remains only to recall that the norm-

closure of a proper (algebraic) ideal in a Banach algebra is again a proper ideal
(cf., e.g., Corollary VII.2.4 in [8]).

At this point, we have shown that for every fixed 1 < p ≤ ∞ and every

countable ordinal 1 ≤ ξ < ω1, the classes WD(∞, ξ)
ℓp and WD(∞, ω1)

ℓp are distinct.
We can use descriptive set theoretic methods to improve this result. For this
purpose, we must recall some additional terminology.

Denote by N<N :=
∪

n∈NNn, where Nn is the set of all sequences of elements
of N of length n ∈ N, with the convention that N0 = {∅}. We can define a
partial order ≤ on N<N by writing s ≤ t for s, t ∈ N<N whenever s is an initial
segment of t, that is, whenever the elements of s are precisely the initial
elements of t, and in the same order. Write s < t when the ordering is strict.
Then we define a tree (on N) as a subset T of N<N which is closed under
taking initial segments, i.e. if t ∈ T and s ≤ t then s ∈ T . Notice that this
means ∅ ∈ T for any nonempty tree T . A sequence (jn)∞n=0 of elements in N
is called an infinite branch of T just in case every (jn)n≤k ∈ T for all k ∈ N.
The tree T is called well-founded whenever it has no such infinite branches.
We define the derivative T 1 of T as the tree

T 1 :=
{
s ∈ T : s < t for some t ∈ T

}
.
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Then, using transfinite induction, we can define for each countable ordinal
1 ≤ ξ < ω1 the iterated derivative T ξ of T as follows. If 1 ≤ ξ < ω1 and T ξ

has been defined then we set T ξ+1 = (T ξ)1, and if ξ is a limit ordinal such
that T ζ has been defined for all 1 ≤ ζ < ξ then we set

T ξ :=
∩

0≤ζ<ξ

T ζ ,

where by convention T 0 = T . In case T ξ = ∅ for some countable ordinal
0 ≤ ξ < ω1 then we define the order, or ordinal index, of T , denoted o(T ), as
the least such ordinal; otherwise we write o(T ) = ω1. Also, by convention we
define o(∅) = 0.

It is well-known that if T is a well-founded tree on N then o(T ) < ω1 (cf.,
e.g., [10, p. 4]). We also have the following fact (cf., e.g., Proposition 1.5 in
[10]).

Proposition 3.7. Suppose S and T are trees on N. Then o(S) ≤ o(T )
if and only if there exists a map f : S → T such that for all s1 < s2 in S we
have f(s1) < f(s2).

Let us now give two successive propositions, the first of which is due to an
anonymous referee, and the second to Ryan Causey and Dan Freeman.

Proposition 3.8. Let 1 ≤ p ≤ ∞, and let X and Y be Banach spaces.
Then for each 0 ≤ C < ∞ we have∩

1≤ξ<ω1

WD(C, ξ)
ℓp

(X,Y ) = WD(C,ω1)
ℓp

(X,Y ).

Proof. We need only show that∩
1≤ξ<ω1

WD(C, ξ)
ℓp

(X,Y ) ⊆ WD(C,ω1)
ℓp

(X,Y ),

since the reverse inequality holds by Proposition 3.2. So let us assume that

T /∈ WD(C,ω1)
ℓp

(X,Y ). Then we can find ϵ > 0 and a normalized weakly null

sequence (xn) in X such that no subsequence of (Txn) is (C + ϵ)-dominated
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by the canonical basis of ℓp. Let us define a tree τ on N by

τ =

{
(k1 < · · · < km) ∈ N<N :

m ∈ N,

∥∥∥∥∥
m∑
j=1

αjTxkj

∥∥∥∥∥
Y

≤ (C + ϵ)
∥∥(αj)

m
j=1

∥∥
ℓp

∀(αj) ∈ c00

}
.

Notice that τ must be well-founded, since otherwise we could find an infinite
branch (kj)

∞
j=1 such that∥∥∥∥∥

m∑
j=1

αjTxkj

∥∥∥∥∥
Y

≤ (C + ϵ)
∥∥(αj)

m
j=1

∥∥
ℓp

for all m ∈ N and (αj) ∈ c00, violating the hypothesis that the canonical basis
of ℓp is not (C+ϵ)-dominated by any subsequence of (Txn). Thus, the ordinal
index of τ is countable, that is, o(τ) < ω1. It follows that

ξ := o(τ) + 1 < ω1

as well.
Assume towards a contradiction that T ∈ WD(C, ξ)

ℓp
(X,Y ). Then we can

find a subsequence (nk) such that∥∥∥∑αkTxnk

∥∥∥
Y
≤ (C + ϵ)∥(αk)∥ℓp

for all (αk) ∈ Aξ. Together with the spreading property of Sξ, this means we
can define a map f : Sξ → τ according to the rule

f
(
(k1, . . . , km)

)
= (nk1 , . . . , nkm).

Recall that o(Sξ) = ωξ (cf., e.g., Proposition 2.1 in [5]). Thus, by Proposi-
tion 3.7 it follows that

ξ ≤ ωξ = o(Sξ) ≤ o(τ) < ξ

which gives us the desired contradiction.

Proposition 3.9. (Causey-Freeman) Let 1 ≤ p ≤ ∞, and let X and Y
be Banach spaces. Then∩

1≤ξ<ω1

WD(∞, ξ)
ℓp

(X,Y ) = WD(∞, ω1)
ℓp

(X,Y ).
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Proof. Let us suppose

T ∈
∩

1≤ξ<ω1

WD(∞, ξ)
ℓp

(X,Y ).

By Proposition 2.2 we can write∩
1≤ξ<ω1

WD(∞, ξ)
ℓp

(X,Y ) =
∩

1≤ξ<ω1

∞∪
n=1

WD(n, ξ)
ℓp

(X,Y ),

so that for each 1 ≤ ξ < ω1 we have

T ∈ WD(nξ, ξ)
ℓp

(X,Y )

for some minimal nξ ∈ N. Then, due to Proposition 3.2 together with mini-
mality, we get nξ ≤ nζ whenever 1 ≤ ξ ≤ ζ < ω1.

We claim that (nξ)1≤ξ<ω1 is bounded. Indeed, suppose otherwise, towards
a contradiction. Then we can define a sequence (ξj)

∞
j=1 of countable ordinals

1 ≤ ξj < ω1, j ∈ N, such that nξj → ∞. Since

ζ := sup
j∈N

ξj

is the least upper bound of a countable set of countable ordinals, we must
have ζ < ω1. Thus nζ exists, and due to (nξ)1≤ξ<ω1 being nondecreasing in ξ
we get

∞ > nζ ≥ sup
j∈N

nξ = ∞,

which is impossible. This proves the claim.
Hence, there exists N ∈ N such that nξ ≤ N for all 1 ≤ ξ < ω1. By

Proposition 2.2 we now have

T ∈ WD(N, ξ)
ℓp

(X,Y )

for all 1 ≤ ξ < ω1. Applying Proposition 3.8 it follows that

T ∈
∩

1≤ξ<ω1

WD(N, ξ)
ℓp

(X,Y ) = WD(N,ω1)
ℓp

(X,Y ) ⊆ WD(∞, ω1)
ℓp

(X,Y )

and hence ∩
1≤ξ<ω1

WD(∞, ξ)
ℓp

(X,Y ) ⊆ WD(∞, ω1)
ℓp

(X,Y ).

The reverse inequality is immediate from Proposition 3.2.
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Now we are ready to prove what we had originally set out to do in this
section.

Proposition 3.10. Fix a number 1 < p ≤ ∞. There exists a strictly
increasing sequence (ξn) of countable ordinals 1 ≤ ξn < ξn+1 < ω1, n ∈ N,
and a sequence (Xn) of Banach spaces, such that for all m,n ∈ N with m < n
we have

WD(∞, ξn)
ℓp (Xm) ( WD(∞, ξm)

ℓp (Xm).

Proof. We will define (ξn)∞n=1 and (Xn)∞n=1 inductively, such that for each
n ∈ N we have

WD(∞, ξn+1)
ℓp (Xn) ( WD(∞, ξn)

ℓp (Xn). (3.1)

By Proposition 3.2, this will be sufficient to complete the proof.
We begin by setting ξ1 := 1. Now suppose we have defined ξn for some

n ∈ N. By Example 3.6, there exists a Banach space Xn = Tq[
1
2 ,Sξn ]∗,

1
p + 1

q = 1, such that

WD(∞, ω1)
ℓp

(Xn) ( L(Xn) = WD(∞, ξn)
ℓp

(Xn).

Then by Propositions 3.2 and 3.9 we can find ξn+1 > ξn such that

WD(∞, ξn+1)
ℓp

(Xn) ( L(Xn) = WD(∞, ξn)
ℓp

(Xn).

Recall once more that the norm-closure of a proper (algebraic) ideal in a
Banach algebra is again a proper ideal (cf., e.g., Corollary VII.2.4 in [8]).
Hence, the relation (3.1) holds for this n.
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