California State University, San Bernardino
CSUSB ScholarWorks

Symmetric presentations of finite groups

Joshua Anthony Roche

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project
Part of the Applied Mathematics Commons

Recommended Citation

Roche, Joshua Anthony, "Symmetric presentations of finite groups" (2008). Theses Digitization Project. 3442.
https://scholarworks.lib.csusb.edu/etd-project/3442

This Thesis is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks. For more information, please contact scholarworks@csusb.edu.

Symmetric Presentations of Finite Groups

A Thesis

Presented to the

Faculty of California State University, San Bernardino

In Partial Fulfillment
of the Requirements for the Degree
Master of Arts
in
Mathematics
by
Joshua Anthony Roche

December 2008

A Thesis
Presented to the

Faculty of

California State University,

San Bernardino

by
Joshua Anthony Roche

December 2008

Approved by:

Abstract

It is often the case that a progenitor, $P=m^{\star n}: N$, factored by a subgroup generated by one or more relators, $M=\left\langle\pi_{1} w_{1}, \pi_{2} w_{2}, \ldots, \pi_{k} w_{k}\right\rangle$, gives a finite group F, particularly, a classical group, simple group, or a sporadic group. In such instances, the presentation of the factor group, $G=P / M=\langle x, y, t\rangle$, is also a symmetric presentation of the finite group F. Symmetric presentations of groups allow us to represent, and manipulate, group elements in a manner that is typically more convenient than conventional techniques; in this sense, symmetric presentations are particularly useful in the study of large finite groups.

In this thesis, we first construct, by manual double coset enumeration, the groups $A_{5}, S_{5}, S_{6}, S_{7}$, and $S_{7} \times 3$ as finite homomorphic images of the progenitors $2^{* 3}: S_{3}$, $2^{* 4}: A_{4}, 2^{* 5}: A_{5}, 3^{* 5}: S_{5}$, and $3^{* 5}: S_{5}$, respectively. We also demonstrate that their respective symmetric presentations enable us to represent, and manipulate, their group elements in a convenient (symmetric) fashion as well as to obtain, in most cases, useful permutation representations for their group elements.

We devote the majority of our efforts to the construction, and manipulation, of $M_{12}: 2$, or $\operatorname{Aut}\left(M_{12}\right)$, the outer automorphism group of the Mathieu group M_{12}. In particular, we construct, by the technique of manual double coset enumeration over S_{4}, the group $\operatorname{Aut}\left(M_{12}\right)$ as a finite homomorphic image of the progenitor $3^{\star 4}: S_{4}$. By way of this construction, we show that $\operatorname{Aut}\left(M_{12}\right)$ is isomorphic to $3^{\star 4}: S_{4}$ factored by two relations and we conclude that the symmetric presentation $\langle x, y, t| x^{4}=y^{2}=(y x)^{3}=$ $\left.t^{3}=[t, y]=\left[t^{x}, y\right]=(y x t)^{10}=\left(\left(x^{2} y\right)^{2} t\right)^{5}=e\right\rangle$ defines the group Aut $\left(M_{12}\right)$. Finally, we demonstrate that this symmetric presentation enables us to express and manipulate every element of $\operatorname{Aut}\left(M_{12}\right)$ either as a symmetric representation of the form πw, where π is a permutation of S_{4} on 4 letters and w is a word of concatenated generators of length at most eight, or as a permutation representation on 7920 letters.

Acknowledgements

First and foremost, I wish to extend my sincere graditude to Dr. Zahid Hasan for his instruction, help, and dedicated support. Without his guidance, I could not have pursued nor even understood the topics explored in this paper. I wish also to extend my appreciation to the faculty of the Mathematics Department at California State University, San Bernardino, particularly to Dr. Gary Griffing and Dr. Nadejda Dyakevich, for their valuable feedback and their sincere interest in my research.

Finally, I wish to thank my family for supporting me as they always do: my parents, Mike and Kathy, for their abundant optimism and encouragement, and Andy, Jack, and, of course, Emily for taking an interest in my research and giving me a reason to persevere, and smile, along the way.

Table of Contents

Abstract iii
Acknowledgements iv
List of Figures viii
1 Introduction 1
1.1 Definitions 1
1.2 The Progenitor $m^{\star n}: N$ 3
1.2.1 Free Products of n Copies of Cyclic Groups of Order m 3
1.2.2 The Control Subgroup N 3
1.2.3 Definition of a Progenitor 4
1.3 Homomorphic Images and Factor Groups 5
1.3.1 Identifying an Image of a Progenitor that is Homomorphic to a Finite Group F 5
1.3.2 Identifying a Factor Group $G=P / M$ that is Isomorphic to a Finite Group F 6
1.4 Proving that Factor Group G is Isomorphic to a Finite Group F 7
1.4.1 Double Coset Decomposition 8
1.4.2 Manual Double Coset Enumeration of G over N 9
1.4.3 Determining the Action of the Generators of G on the Right Cosets of N in G 11
1.4.4 Proving Factor Group G is Isomorphic to Finite Group F 13
1.5 Algorithm for Converting an Element of G from its Permutation Repre- sentation to its Symmetric Representation 14
1.6 Algorithm for Converting an Element of G from its Symmetric Represen- tation to its Permutation Representation 15
1.7 Motivation for the Subject 15
1.7.1 The Mathieu Group on 12 Letters, M_{12} 15
1.7.2 Motivation for Curtis' Investigation of Progenitors 16
1.7.3 Motivation for Studing Progenitors 17
$2 A_{5}$ as a Homomorphic Image of the Progenitor $2^{* 3}: S_{3}$ 18
2.1 Introduction 18
2.2 Manual Double Coset Enumeration of G Over S_{3} 19
2.3 Cayley Diagram of G Over S_{3} 22
2.4 Action of the Symmetric Generators and the Generators of S_{3} on the Right Cosets of G Over S_{3} 23
2.5 Proof of Isomorphism between G and A_{5} 24
2.6 Converting an Element of G from its Permutation Representation to its Symmetric Representation 28
2.7 Converting an Element of G from its Symmetric Representation to its Permutation Representation 29
$3 S_{5}$ as a Homomorphic Image of the Progenitor $2^{* 4}: A_{4}$ 32
3.1 Introduction 32
3.2 Manual Double Coset Enumeration of G Over A_{4} 33
3.3 Cayley Diagram of G Over A_{4} 37
3.4 Action of the Symmetric Generators and the Generators of A_{4} on the Right Cosets of G Over A_{4} 37
3.5 Proof of Isomorphism between G and S_{5} 39
3.6 Converting an Element of G from its Permutation Representation to its Symmetric Representation 43
3.7 Converting an Element of G from its Symmetric Representation to its Permutation Representation 44
$4 S_{6}$ as a Homomorphic Image of the Progenitor $2^{* 5}: A_{5}$ 47
4.1 Introduction 47
4.2 Manual Double Coset Enumeration of G Over A_{5} 48
4.3 Cayley Diagram of G Over A_{5} 52
4.4 Action of the Symmetric Generators and the Generators of A_{5} on the Right Cosets of G Over A_{5} 52
4.5 Proof of Isomorphism between G and S_{6} 54
4.6 Converting an Element of G from its Permutation Representation to its Symmetric Representation 59
4.7 Converting an Element of G from its Symmetric Representation to its Permutation Representation 60
$5 S_{7}$ as a Homomorphic Image of the Progenitor $3^{* 5}: S_{5}$ 63
5.1 Introduction 63
5.2 Manual Double Coset Enumeration of G Over S_{5} 64
5.3 Cayley Diagram of G Over S_{5} 74
5.4 Action of the Symmetric Generators and the Generators of S_{5} on the Right Cosets of G Over S_{5} 75
5.5 Proof of Isomorphism between G and S_{7} 77
5.6 Converting an Element of G from its Permutation Representation to its Symmetric Representation 81
5.7 Converting an Element of G from its Symmetric Representation to its Permutation Representation 82
$6 S_{7} \times 3$ as a Homomorphic Image of the Progenitor $3^{* 5}: S_{5}$ 86
6.1 Introduction 86
6.2 Manual Double Coset Enumeration of G Over S_{5} 87
6.3 Cayley Diagram of G Over S_{5} 125
6.4 Action of the Symmetric Generators and the Generators of S_{5} on the Right Cosets of G Over S_{5} 125
6.5 Proof of Isomorphism between G and $S_{7} \times 3$ 129
6.6 Converting an Element of G from its Permutation Representation to its Symmetric Representation 141
6.7 Converting an Element of G from its Symmetric Representation to its Permutation Representation 144
$7 \operatorname{Aut}\left(M_{12}\right)$ as a Homomorphic Image of the Progenitor $3^{\star 4}: S_{4}$ 148
7.1 Introduction 148
7.2 Manual Double Coset Enumeration of G Over S_{4} 149
7.3 Cayley Diagram of G Over S_{4} 430
7.4 Action of the Symmetric Generators and the Generators of S_{4} on the Right Cosets of G Over S_{4} 448
7.5 Proof of Isomorphism between G and $\operatorname{Aut}\left(M_{12}\right)$ 449
7.6 Converting an Element of G from its Permutation Representation to its Symmetric Representation 450
7.7 Converting an Element of G from its Symmetric Representation to its Permutation Representation 452
Bibliography 454

List of Figures

2.1 Cayley Diagram of G Over S_{3} 23
3.1 Cayley Diagram of G Over A_{4} 37
4.1 Cayley Diagram of G Over A_{5} 52
5.1 Cayley Diagram of G Over S_{5} 75
6.1 Cayley Diagram of G Over S_{5} 125
7.1 A Rough Sketch of the Cayley Diagram of G Over S_{4} 431
7.2 Our Breakdown of the Cayley Diagram of G Over S_{4} 432
7.3 Section of the Cayley Diagram of G Over S_{4} Depicting Right Cosets with Words of Length $0,1,2$, and 3 433
7.4 Section of the Cayley Diagram of G Over S_{4} Depicting Right Cosets with Words of Length 4 434
7.5 Section of the Cayley Diagram of G Over S_{4} Depicting Right Cosets with Words of Length 4 435
7.6 Section of the Cayley Diagram of G Over S_{4} Depicting Right Cosets with Words of Length 5 436
7.7 Section of the Cayley Diagram of G Over S_{4} Depicting Right Cosets with Words of Length 5 437
7.8 Section of the Cayley Diagram of G Over S_{4} Depicting Right Cosets with Words of Length 5 438
7.9 Section of the Cayley Diagram of G Over S_{4} Depicting Right Cosets with Words of Length 5 439
7.10 Section of the Cayley Diagram of G Over S_{4} Depicting Right Cosets with Words of Length 5 440
7.11 Section of the Cayley Diagram of G Over S_{4} Depicting Right Cosets with Words of Length 6 441
7.12 Section of the Cayley Diagram of G Over S_{4} Depicting Right Cosets with Words of Length 6 442
7.13 Section of the Cayley Diagram of G Over S_{4} Depicting Right Cosets with Words of Length 6 443
7.14 Section of the Cayley Diagram of G Over S_{4} Depicting Right Cosets with Words of Length 6 444
7.15 Section of the Cayley Diagram of G Over S_{4} Depicting Right Cosets with Words of Length 6 445
7.16 Section of the Cayley Diagram of G Over S_{4} Depicting Right Cosets with Words of Length 6 446
7.17 Section of the Cayley Diagram of G Over S_{4} Depicting Right Cosets with Words of Length 7 and 8 447

Chapter 1

Introduction

In this chapter, we introduce several important definitions, we introduce the concepts and techniques necessary for proving that a factor group $G=P / M$ is isomorphic to a finite group F, and we give the context and motivation for studying progenitors in general and M_{12} in particular.

1.1 Definitions

We make reference to the following definitions. (For a more detailed treatment of these definitions, see $[\operatorname{Rot} 95]$.)

Definition 1.1: G-sets. Let G be a group, and let X be a nonempty set. Then X is a G-set of degree $|X|$ if there is a function (called an action), $\widehat{\phi}: G \times X \rightarrow X$, denoted by $\widehat{\phi}:(g, x) \mapsto g x$, such that:
(1) $e x=x$ for all $x \in X$, where e is the identity of G; and
(2) $(g h) x=g(h x)$ for all $g, h \in G$ and all $x \in X$.

Definition 1.2: Faithful. Let X be a G-set with action $\hat{\phi}$. Then X is faithful if the homomorphism $\phi: G \rightarrow S_{X}$ is injective.

Definition 1.3: Transitive. A G-set is transitive if, for every $x, y \in X$, there exists a
$g \in G$ such that $y=g x$. Note also that a G-set is transitive if it has only one orbit.

Definition 1.4: k-Transitive. Let X be a G-set of degree n and let $k \leq n$ be a positive integer. Then X is k-transitive if, for every pair of k-tuples having distinct entries in X, say, $\left(x_{1}, x_{1}, \ldots, x_{k}\right)$ and $\left(y_{1}, y_{2}, \ldots, y_{k}\right)$, there is a $g \in G$ such that $g x_{i}=y_{i}$ for all $i \in\{1,2, \ldots, k\}$.

Definition 1.5: Sharply k-Transitive. A k-transitive G-set X is sharply k-transitive if only the identity fixes k distinct elements of X.

Definition 1.6: Conjugate. If $H \leq G$ and $g \in G$, then the conjugate $g^{-1} H g$ is $\left\{g^{-1} h g \mid h \in H\right\}$. The conjugate is often denoted by H^{g}.

Definition 1.7: Normalizer. If $H \leq G$, then the normalizer of H in G, denoted by $N_{G}(H)$, is $N_{G}(H)=\left\{a \in G \mid a^{-1} H a=H\right\}$.

Definition 1.8: Centralizer. If $a \in G$, then the centralizer of a in G, denoted by $C_{G}(a)$, is the set of all $x \in G$ which commute with a.

Definition 1.9: Simple Group. A group G is simple if it has no normal subgroups other than the trivial subgroup $\{1\}$ and itself.

Definition 1.10: Semi-Direct Product. Let G be a group, and let $H, K \leq G$. If

1. $H \cap K=\langle 1\rangle$,
2. $G=H K$, and
3. $K \triangleleft G$ and $H \leq G$,
then G is an internal semi-direct product of K by H.

1.2 The Progenitor $m^{\star n}: N$

1.2.1 Free Products of n Copies of Cyclic Groups of Order m

Consider a group generated by two elements of order 2, say, $\left\langle t_{1}, t_{2} \mid t_{1}^{2}=t_{2}^{2}=e\right\rangle$. Since the element $t_{1} t_{2}$ has infinite order, and since $\left\langle t_{1} t_{2}, t_{1}\right\rangle=\left\langle t_{1}, t_{2}\right\rangle$, we may refer to $\left\langle t_{1}, t_{2} \mid t_{1}^{2}=t_{2}^{2}=e\right\rangle$ as an infinite dihedral group

$$
\left\langle t_{1}, t_{2} \mid t_{1}^{2}=t_{2}^{2}=e\right\rangle=\left\{e, t_{1}, t_{2}, t_{1} t_{2}, t_{2} t_{1}, t_{1} t_{2} t_{1}, \ldots\right\}
$$

where elements of odd length in t_{1} and t_{2} are involutions (meaning they are of order 2), and elements of even length in t_{1} and t_{2} are of order infinity.

We denote $2^{* 2}=\left\langle t_{1}, t_{2} \mid t_{1}^{2}=t_{2}^{2}=e\right\rangle$. Since $2^{* 2}$ is generated by two cyclic subgroups of order 2 with no relation between them, $2^{* 2}$ is isomorphic to the free product of two copies of the cyclic group C_{2} of order 2. That is,

$$
2^{* 2}=\left\langle t_{1}, t_{2} \mid t_{1}^{2}=t_{2}^{2}=e\right\rangle=\left\{e, t_{1}, t_{2}, t_{1} t_{2}, t_{2} t_{1}, t_{1} t_{2} t_{1}, \ldots\right\}=\left\langle t_{1}\right\rangle *\left\langle t_{2}\right\rangle \cong C_{2} * C_{2}
$$

In fact, we can extend this notion to n generators and define a free product of n copies of the cyclic group of order 2 by:

$$
2^{* n}=\left\langle t_{1}, t_{2}, \ldots, t_{n} \mid t_{1}^{2}=t_{2}^{2}=\cdots=t_{n}^{2}=e\right\rangle=\left\langle t_{1}\right\rangle *\left\langle t_{2}\right\rangle * \cdots *\left\langle t_{n}\right\rangle \cong \underbrace{C_{2} * C_{2} * \cdots * C_{2}}_{n \text { times }}
$$

Even more generally, we can define $m^{* n}$ to be a free product of n copies of the cyclic group C_{m}, where m is the order of the generators t_{i}. That is, we can define $m^{* n}$ so that $m^{* n}=\left\langle t_{1}, t_{2}, \ldots, t_{n} \mid t_{1}^{m}=t_{2}^{m}=\cdots=t_{n}^{m}=e\right\rangle=\left\langle t_{1}\right\rangle *\left\langle t_{2}\right\rangle * \cdots *\left\langle t_{n}\right\rangle \cong \underbrace{C_{m} * C_{m} * \cdots * C_{m}}_{n \text { times }}$.

1.2.2 The Control Subgroup N

The control subgroup N is a subgroup of S_{n} which acts transitively on $m^{\star n}$ by permuting the generators of each cyclic group. In particular, the control subgroup N acts on the generators of $m^{* n}$, the symmetric generators, by conjugation. That is, for any element $\pi \in N$ and any symmetric generator t_{i},

$$
\pi^{-1} t_{i} \pi=t_{i}^{\pi}=t_{(i) \pi}
$$

Suppose, for example, that $m^{\star n}: N$ is a progenitor with control subgroup $N \cong S_{3}$ and symmetric generators $\left\{t_{0}, t_{1}, t_{2}\right\}$. Then $(021)^{-1} t_{2}\left(\begin{array}{ll}0 & 1\end{array}\right)=t_{2}^{(021)}=t_{2(021)}=t_{1}$.

1.2.3 Definition of a Progenitor

Definition 1.11: Progenitor. A progenitor is an infinite semi-direct product of the form

$$
m^{* n}: N
$$

where $m^{* n}$ is a free product of n copies of the cyclic group of order m generated by elements t_{i} of order m in the set $T=\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}$, and where N is a subgroup of S_{n} which acts transitively (and by conjugation) on $m^{* n}: N$ by permuting the generators of $m^{* n}$. As was mentioned above, we call N the control subgroup and we call the generators $t_{1}, t_{2}, \ldots, t_{n}$ of the free product $m^{* n}$ the symmetric generators.

Multiplication of Elements in a Progenitor. Since N acts by conjugation as permutations of the n symmetric generators, the multiplication of any two elements $\pi_{1} w_{1}, \pi_{2} w_{2} \in m^{* n}: N$, where $\pi_{1}, \pi_{2} \in N$ and w_{1} and w_{2} are words in the free generators t_{i}, is given by:

$$
\begin{gathered}
\left(\pi_{1} w_{1}\right)\left(\pi_{2} w_{2}\right)=\pi_{1}\left(\pi_{2} \pi_{2}^{-1}\right) w_{1} \pi_{2} w_{2} \\
=\left(\pi_{1} \pi_{2}\right)\left(\pi_{2}^{-1} w_{1} \pi_{2}\right) w_{2}=\left(\pi_{1} \pi_{2}\right) w_{1}^{\pi_{2}} w_{2}
\end{gathered}
$$

Inversion of Elements in a Progenitor. The inverse of any element $\pi t_{k_{i}} t_{k_{j}} \cdots t_{k_{n}}$ in $m^{* n}: N$ is given by

$$
\begin{gathered}
\left(\pi t_{k_{i}} t_{k_{j}} \cdots t_{k_{n}}\right)^{-1}=t_{k_{n}}^{-1} t_{k_{i}}^{-1} \cdots t_{k_{j}}^{-1} \pi^{-1}=\left(\pi^{-1} \pi\right) t_{k_{n}}^{-1} t_{k_{i}}^{-1} \cdots t_{k_{j}}^{-1} \pi^{-1} \\
=\pi^{-1}\left(\pi t_{k_{n}}^{-1} t_{k_{i}}^{-1} \cdots t_{k_{j}}^{-1} \pi^{-1}\right)=\pi^{-1}\left(t_{k_{n}}^{-1} t_{k_{i}}^{-1} \cdots t_{k_{j}}^{-1}\right)^{\pi^{-1}} .
\end{gathered}
$$

Representation of Elements in a Progenitor. Since $\left(\pi_{1} w_{1}\right)\left(\pi_{2} w_{2}\right)=\left(\pi_{1} \pi_{2}\right) w_{1}^{\pi_{2}} w_{2}$ (see above), every element of N can be gathered on the left by way of conjugation. Therefore, every element of $m^{\star n}: N$ can be represented as an element of the form πw, where π is a permutation of N and w is a word in the symmetric generators t_{i} for $1 \leq i \leq n$. This representation is unique provided that w is simplified so that adjacent symmetric generators are distinct.

Definition 1.12: Point Stabilizer. Let $m^{* n}: N$ be a progenitor and let w be a reduced word in the symmetric generators t_{i}. Then the point stabilizer of w in N is defined by:

$$
N^{w}=\left\{\pi \in N \mid w^{\pi}=w\right\}=C_{N}(w) .
$$

For example, the point stabilizer of the word t_{1} in N is given by $N^{1}=\{\pi \in N \mid$ $\left.t_{1}^{\pi}=t_{1}\right\}=C_{N}\left(t_{1}\right)$. Likewise, the point stabilizer of the word $t_{1} t_{2}$ in N is given by $N^{12}=\left\{\pi \in N \mid\left(t_{1} t_{2}\right)^{\pi}=t_{1} t_{2}\right\}=C_{N}\left(\left\langle t_{1}, t_{2}\right\rangle\right)$.

Definition 1.13: Coset Stabilizer. Let $N w$ be a (single) right coset of N in the progenitor $m^{* n}: N$, where w is a reduced word in the symmetric generators t_{i}. Then

$$
N^{(w)}=\{\pi \in N \mid N w \pi=N w\}=\left\{\pi \in N \mid N w^{\pi}=N w\right\}
$$

is the coset stabilizer subgroup of $N w$.

1.3 Homomorphic Images and Factor Groups

1.3.1 Identifying an Image of a Progenitor that is Homomorphic to a Finite Group F

Under certain conditions, a group F may be a homomorphic image of a progenitor $m^{\star n}: N$. We provide these conditions in Lemma 1.1 below.

Lemma 1.1. Let F be a group, let $T=\left\{t_{0}, t_{1}, \ldots, t_{n}\right\} \subseteq F$, and let $N \leq F$. Define $N \cong N_{F}(T)=\left\{g \in F \mid g^{-1} T g=T\right\}$ to be the set normalizer in F of T. If $F=\langle T\rangle$ and if N permutes T transitively (but not necessarily faithfully), then F is a homomorphic image of the (infinite) progenitor $m^{* n}: N$. In this case, T is called a symmetric generating set for F.

Example 1.1: Identifying an Image of a Progenitor that is Homomorphic to S_{5}. Suppose that $F=S_{5}=\langle(12),(13),(14),(15)\rangle$. Let $t_{1}=(12), t_{2}=(13), t_{3}=(14)$, and $t_{4}=(15)$. Define $T=\left\{t_{1}, t_{2}, t_{3}, t_{4}\right\}$. Then $N=N_{F}(T)=S_{4}=\langle(2345),(23)\rangle$, and N is transitive on T. Therefore, by Lemma 1.1, F is a homomorphic image of $2^{* 4}: S_{4}$; that is, F is a homomorphic image of $2^{* 4}: N$. We denote $P=2^{* 4}: S_{4}$. Then there exists a homomorphism $\alpha: P \rightarrow F$, and $P / \operatorname{ker} \alpha \cong F$.

1.3.2 Identifying a Factor Group $G=P / M$ that is Isomorphic to a Finite Group F

Let F be a finite group, and let $P=m^{* n}: N$ be a progenitor. If finite group F and progenitor $P=m^{* n}: N$ satisfy the conditions established by Lemma 1.1, then we may identify a normal subgroup M with which to factor $P=m^{* n}: N$ so that

$$
G=P / M \cong F .
$$

If $P=m^{* n}: N$ satisfys Lemma 1.1, then there exists a homomorphism $\alpha: P \rightarrow F$. The group $M=\operatorname{ker} \alpha$ is the smallest normal subgroup of P, and the factor group $G=P / M$ is isomorphic to F. We call the elements $w_{1} \pi_{1}, w_{2} \pi_{2}, \ldots, w_{k} \pi_{k} \in \operatorname{ker} \alpha$ generating $\operatorname{ker} \alpha$ the relators. The relators are often expressed as relations equal to the identity e of P :

$$
w_{1} \pi_{1}=e, \quad w_{2} \pi_{2}=e, \quad \ldots \quad w_{k} \pi_{k}=e
$$

For this reason, the factor group G is expressed in terms of the progenitor $m^{* n}: N$ factored by the appropriate relators $w_{1} \pi_{1}, w_{2} \pi_{2}, \ldots, w_{k} \pi_{k}$. That is,

$$
G=P / M=\frac{m^{* n}: N}{\pi_{1} w_{1}, \pi_{2} w_{2}, \ldots, w_{k} \pi_{k}} .
$$

Identifying the Relators. Let F be a finite group, let $P=m^{* n}: N$ be a progenitor, and suppose that there exists a homomorphism $\alpha: P \rightarrow F$. The relators with which to factor P to construct a symmetric presentation of F are the generators of ker α. In general, however, it is quite difficult to find all elements of the kernel explicitly. Lemma 1.2 below is a useful tool for finding the relators (that is, the generators of the kernel).

Lemma 1.2.

$$
N \cap\left\langle t_{i}, t_{j}\right\rangle \leq C_{N}\left(N^{i j}\right),
$$

where $N^{i j}$ denotes the stabilizer in N of the two points i and j.

Proof. Let $\pi \in\left\langle t_{i}, t_{j}\right\rangle \cap N$. Then $\pi=w\left(t_{i}, t_{j}\right)$; that is, π is some word w in t_{i} and t_{j}. Now let $g \in N^{i j}$. Then, since $g \in N^{i j}$, we have $\pi^{g}=w\left(t_{i}, t_{j}\right)^{g}=w\left(t_{(i) g}, t_{(j) g}\right)=$ $w\left(t_{i}, t_{j}\right)=\pi$.

Example 1.2: Identifying a Factor Group G that is Isomorphic to S_{5}. Suppose that $F=S_{5}=\left\langle\left(\begin{array}{ll}1 & 2\end{array}\right),\left(\begin{array}{ll}1 & 3\end{array}\right),\left(\begin{array}{ll}1 & 4\end{array}\right),\left(\begin{array}{ll}1 & 5\end{array}\right)\right\rangle$. Let $t_{1}=\left(\begin{array}{ll}1 & 2\end{array}\right), t_{2}=\left(\begin{array}{ll}1 & 3\end{array}\right), t_{3}=\left(\begin{array}{ll}1 & 4\end{array}\right)$, and $t_{4}=(15)$. Define $T=\left\{t_{1}, t_{2}, t_{3}, t_{4}\right\}$. Then $N=N_{F}(T)=S_{4}=\left\langle\left(\begin{array}{ll}2 & 4\end{array}\right.\right.$ 5), (23) \rangle, and N is transitive on T. Therefore, by Lemma 1.1, F is a homomorphic image of $2^{* 4}: S_{4}$; that is, F is a homomorphic image of $2^{* 4}: N$. We denote $P=2^{* 4}: S_{4}$. Then there exists a homomorphism $\alpha: P \rightarrow F$, and $P / \operatorname{ker} \alpha \cong F$.

We now use Lemma 1.2 to aid our search for the appropriate relators with which to factor $2^{* 4}: S_{4}$. Let $N=S_{4}=\langle x, y\rangle$, where $x \sim(1234)$, and $y \sim(12)$. We consider N^{12}, the point stabilizer of t_{1} and t_{2} in N. Now, $N^{12}=\left\{\pi \in N \mid\left(t_{1} t_{2}\right)^{\pi}=t_{1} t_{2}\right\}=\langle(34)\rangle$. Therefore, $C_{N}\left(N^{12}\right)$, the centralizer of N^{12} in N, is $C_{N}\left(N^{12}\right)=\{e,(12)\}$. By Lemma 1.2, $N \cap\left\langle t_{1}, t_{2}\right\rangle \leq C_{N}\left(N^{12}\right)=\{e,(12)\}$. That is, the appropriate relations with which to factor P are of the form $w_{k}=\pi_{k}$ or, simply, $w_{k} \pi_{k}=e$, where $\pi_{k} \in\{e,(12)\}$ and w_{k} is a word in t_{1} and t_{2}.

Possible relations include, for example, $t_{1} t_{2}=(12)$ or $t_{2} t_{1} t_{2} t_{1}=e$ or $t_{1} t_{2} t_{1} t_{2} t_{1} t_{2} t_{1}=\left(\begin{array}{ll}1 & 2\end{array}\right)$. It turns out, in this case, that the kernel of this homomorphism is equal to the normal closure of the relation $t_{2}^{t_{1}}=\left(\begin{array}{l}12\end{array}\right)$, namely $\left\langle t_{2}^{t_{1}}=\left(\begin{array}{ll}1 & 2\end{array}\right)\right\rangle^{P}$. Therefore $G=\frac{2^{* 4}: S_{4}}{t_{1} t_{2} t_{1}=(12)} \cong S_{5}$ or, in terms of the relator, $G=\frac{2^{* 4}: S_{4}}{(12) t_{1} t_{2} t_{1}} \cong S_{5}$. Moreover, a symmetric presentation of S_{5} is given by $\left\langle x, y, t \mid x^{4}=y^{2}=(x y)^{3}=t^{2}=\left[t, y^{x^{2}}\right]=\left[t, y^{x} y^{x^{2}}\right]=e, t t^{x}=y\right\rangle$.

1.4 Proving that Factor Group G is Isomorphic to a Finite Group F

If a finite group F and a progenitor $P=m^{\star n}: N$ satisy Lemma 1.1, and if an appropriate factor group $G=P / M=\left\langle t_{0}, t_{1}, \ldots, t_{n}\right\rangle$ is identified by computer or by hand, then it is possible, using several techniques, to prove by hand that G is isomorphic F.

For the remainder of this thesis, in fact, we will set out to prove that, for some particular finite group F, progenitor P, and factor group $G=P / M, F$ is a homomorphic image of P and, moreover, $G=P / M$ is isompohic to F. To prove that F is a homomorphic image of P and $G \cong F$, we start by constructing $G=P / M$, piece by piece, by way of a technique called manual double coset enumeration. Before describing the technique of manual double coset enumeration, however, we first illustrate the concept of double
coset decomposition.

1.4.1 Double Coset Decomposition

Consider a group G having two subgroups, H and K. We define a relation \sim on G so that, for all $x, y \in G, x \sim y$ if and only if there exists an $h \in H$ and $k \in K$ such that $y=h x k$. This relation is an equivalence relation, and its equivalence classes are sets of the form

$$
H x K=\{h x k \mid h \in H, k \in K\}=\bigcup_{k \in K} H x k=\bigcup_{h \in H} h x K
$$

This subset of G, which is both a union of the right cosets of G and a union of the left cosets of G, is called a double coset of H and K in G. In fact, if G acts by right multiplication on the right cosets of H in G, then double cosets of the form $H x K$ correspond to the orbits of K in this action. The number of (single) right cosets of H in $H x K$, is given by Lemma 1.3 below.

Lemma 1.3. If H and K are finite subgroups of a group G, and if x is an element of G, then $|H x K|=|H||K| /\left|H^{x} \cap K\right|$.

Proof. We proceed by counting the number of (single) right cosets of H in $H x K$. Now,

$$
\begin{gathered}
H x k_{1} \neq H x k_{2} \Longleftrightarrow H x k_{1} k_{2}^{-1} x^{-1} \neq H \\
\Longleftrightarrow k_{1} k_{2}^{-1} \notin\left(x^{-1} H x\right) \cup K=H^{x} \cap K \\
\Longleftrightarrow\left(H^{x} \cap K\right) k_{1} \neq\left(H^{x} \cap K\right) k_{2} .
\end{gathered}
$$

Therefore, the number of single cosets of H in $H x K$ is equal to the number of single cosets of $H^{x} \cap K$ in K, and so

$$
|H x K|=|H|\left|K:\left(H^{x} \cap K\right)\right|=|H||K| /\left|H^{x} \cap K\right|
$$

We now return to the progenitor $m^{* n}: N$ and we consider the double cosets of the form $N x N$ in $m^{* n}: N$. Note first that, since every element x in the progenitor can be
represented as πw for some $\pi \in N$ and some reduced word w in the symmetric generators t_{i}, the double coset $N x N$ can be represented by the reduced word w as follows:

$$
N x N=N \pi w N=N w N .
$$

We denote the double $\operatorname{coset} N w N$ by $[w]$. The double coset $N w N$ is equal to the union of the distict (single) right cosets of the form $N w^{\pi}$ for some $\pi \in N$:

$$
N w N=\bigcup_{\pi \in N} N w^{\pi}
$$

and the progenitor, in turn, is equal to the disjoint union of its double cosets:

$$
m^{* n}: N=N e N \cup N w_{1} N \cup N w_{2} N \cup N w_{3} N \cup \cdots \cup N w_{k} N \cup \cdots
$$

To determine the number of distinct single cosets in a double coset $N w N$, we refer to Lemma 1.4 below.

Lemma 1.4. Let $N w N$ be a double coset in the progenitor $m^{* n}: N$, where w is a reduced word in the symmetric generators t_{i}. The number of distinct (single) right cosets in the double coset $N w N$ is given by $\left|N: N^{(w)}\right|$.

Proof. We note first that

$$
\begin{aligned}
& N^{(w)}=\{\pi \in N \mid N w \pi=N w\}=\left\{\pi \in N \mid N w \pi w^{-1}=N\right\} \\
& =\left\{\pi \in N \mid w \pi w^{-1} \in N\right\}=\left\{\pi \in N \mid \pi \in N^{w}\right\}=N \cap N^{w} .
\end{aligned}
$$

By Lemma 1.3, $|N w N|=\left|N: N^{(w)}\right|$.

1.4.2 Manual Double Coset Enumeration of G over N

In order to construct a factor group G by hand, we use a process called manual double coset enumeration. Construction by manual double coset enumeration helps us to determine the index of N in G and, ultimately, the order of G (that is, the number of distinct right cosets of N in G). Manual double coset enumeration of a factor group $G=\left(m^{* n}: N\right) / M$ over N involves the several steps. Before describing these steps, we first
define (1) the action of $g \in G$ on the right cosets of N in G and (2) the orbit of $N^{(w)}$ on T.

Action of a Generator on a Right Coset. Let X denote the set of single (right) cosets of N in the factor group $G=\left(m^{* n}: N\right) / M$, let $N w \in X$, where w is a reduced word in the symmetric generators t_{i}, and let $g \in G$. We define an action $\widehat{\phi}$ of g on $N w$ by right multiplication of g on the right coset $N w$. That is, we define an action $\widehat{\phi}$ of g on $N w$ with the mapping $\widehat{\phi}: G \times X \rightarrow X$ given by

$$
\widehat{\phi}:(g, N w) \mapsto N w g
$$

Orbits of $N^{(w)}$ on T. Let $N w$ be a right coset of N in the progenitor $m^{\star n}: N$, where w is a reduced word in the symmetric generators t_{i}, and let $N^{(w)}$ be the coset stabilizer subgroup of $N w$. Then

$$
O\left(t_{i}\right)=\left\{\left(t_{i}\right)^{n} \mid n \in N^{(w)}\right\},
$$

where $i \in\{0,1,2, \ldots, n\}$, are the orbits of $N^{(w)}$ on T. The orbits of $N^{(w)}$ on T are subsets of $T=\left\{t_{0}, t_{1}, t_{2}, \ldots, t_{n}\right\}$ on which the coset stabilizer $N^{(w)}$ is transitive.

Procedure for Manual Double Coset Emuneration of G over N. The procedure for manual double coset emuneration of G over N is as follows:

1. We first consider the double coset characterized by a reduced word $w_{0}=e$ of length zero. This is the double coset $N e N$, which we denote [*]. By Lemma 1.4, the number of distinct right cosets of N in G in a double coset $N w N$ is given by $\left|N: N^{(w)}\right|$. Since $[*]$ is a double coset with a word of length zero, the number of distinct right cosets in [*] is $|N: N|=1$.
2. We next determine the orbits of N on T. Since N is transitive on
$T=\left\{t_{0}, t_{1}, t_{2}, \ldots, t_{n}\right\}$, we take a representative from the orbit of N on T, say t_{i}, and multiply it by the elements of N on the right to get the (right) coset $N t_{i}$. The relations $\pi_{1} w_{1}, \pi_{2} w_{2}, \ldots, \pi_{k} w_{k}$ indicate whether or not the new double coset $N t_{i} N$ is distinct. If $N t_{i} N$ is indeed distinct, we proceed to step 3.
3. We next consider the double coset characterized by a reduced word $w_{1}=t_{i}$ of length one. This is the double coset $N t_{i} N$, which we denote $[i]$. Since $[i]$ is a double coset with a word of length one, the coset stabilizer is $N^{(i)}=\left\{\pi \in N \mid N t_{i}^{\pi}=N t_{i}\right\}$.

Therefoere, by Lemma 1.4, the number of distinct (single) right cosets in $[i]$ is $\left|N: N^{(i)}\right|$.
4. We then determine the orbits of $N^{(i)}$ on T. We take a representative from each of the orbits, say t_{j}, t_{h}, and so on, and we multiply each of these representatives by $N t_{i}$ on the right to get $N t_{i} t_{j}, N t_{i} t_{h}$, and so on. The relations $\pi_{1} w_{1}, \pi_{2} w_{2}, \ldots, \pi_{k} w_{k}$ again indicate whether or not the new double cosets $N t_{i} t_{j} N, N t_{i} t_{h} N$, and so on, are distinct. If one or more of the double cosets $N t_{i} t_{j} N, N t_{i} t_{h} N$, and so on, are indeed distinct, we proceed to step 5 .
5. We next consider the distinct double cosets characterized by reduced words $w_{2}=$ $t_{i} t_{j}, w_{3}=t_{i} t_{h}$, and so on, of length two, and we repeat steps 3 and 4 . When the relations $\pi_{1} w_{1}, \pi_{2} w_{2}, \ldots, \pi_{k} w_{k}$ indicate that there are no new distinct double cosets, or when the coset stabilizer $N^{\left(w_{f}\right)}$ is transitive on the symmetric generators, we conclude that right multiplication on the right cosets of N in G is closed. This signifies that our manual double coset enumeration of G over N is complete.

In Chapters 2 through 7, the construction of $G=P / M$ by way of manual double coset enumeration will play an important role when we prove that G is isomorphic to a finite group F. In addition to constructing $G=P / M$ by way of manual double coset enumeration, we will also need to determine the permutation representations of the generators of G and, ultimately, show that G is isomorphic to a group G_{1} generated by these permutation representations. To determine the permutation representations of the generators of a factor group G, we determine the action of the generators of G on the set of all right cosets of N in G.

1.4.3 Determining the Action of the Generators of G on the Right Cosets of N in G

Let X denote the set of distinct right cosets of N in G, that is, let $X=\left\{N w_{0}, N w_{1}, \ldots, N w_{q}\right\}$, where $w_{0}, w_{1}, \ldots, w_{q}$ are reduced words of concatenated symmetric generators t_{i}. Recall that we had defined an action $\widehat{\phi}$ of $g \in G$ on $N w \in X$ by the right multiplication of g on the right coset $N w$. That is, we had defined an action $\widehat{\phi}$ of g on $N w$ with the mapping $\widehat{\phi}: G \times X \rightarrow X$ given by $\widehat{\phi}:(g, N w) \mapsto N w g$.

Action of a Generator on the Set of Right Cosets. We now define a mapping $\phi: G \longrightarrow S_{X}$ so that ϕ maps a generator $g \in G$ to its action on X. That is, we define ϕ so that $\phi(g)=\widehat{\phi}(g): X \rightarrow X$. The action $\phi(g)$ of g on the set of right cosets of N in G is a permutation on $|X|$ letters. In this sense, the action $\phi(g)$ of g on the set of right cosets of N in G is equivalent to a permutation representation of g on $|X|$ letters.

Procedure for Determining the Action of a Generator on X. Suppose that $t_{i} \in G$ is a symmetric generator of a factor group G and suppose that $\pi \in N$ is a generator of its control subgroup N.

To calculate the action $\phi\left(t_{i}\right)$ of the symmetric generator t_{i} on the right cosets of N in G, we multiply every right coset $N w$ by t_{i} on the right. We consider first the identity $\operatorname{coset} N$: we multiply the identity coset N by t_{i}, we then multiply the new $\operatorname{coset} N t_{i}$ again by t_{i}, and we repeat this process until the product, by right multiplication, is again the identity coset N. We consider next another right coset, say $N t_{j}$: we multiply the right coset $N t_{j}$ by t_{i}, we then multiply the new coset $N t_{j} t_{i}$ again by t_{i}, and we repeat this process until the product, by right multiplication, is again the right coset $N t_{j}$. We repeat this action for every right coset of N in G. By way of this process, we find the actions $\phi\left(t_{i}\right)$ of the symmetric generators t_{i} on the right cosets of N in G and, equivalently, we find the permutation representations $p=\phi\left(t_{i}\right)$ of the symmetric generators t_{i} in their actions on the right cosets of N in G. Note that for symmetric generators t_{i} of order m, the actions $\phi\left(t_{i}\right)$ of the symmetric generators on the right cosets of N in G will be products of m-cycles.

Now, note that $\pi \in N \Rightarrow N w \pi=N \pi^{-1} w \pi=N w^{\pi}$. Therefore, to calculate the action $\phi(\pi)$ of a generator π on the right cosets of N in G, we conjugate every right coset $N w$ by π. Since $\pi \in N \Rightarrow N^{\pi}=N$, we consider first a non-trivial right coset, say $N t_{i}$: we conjugate the right coset $N t_{i}$ by π, we then conjugate the new $\operatorname{coset} N t_{i}^{\pi}=N t_{j}$ again by π, and we repeat this process until the conjugated product is again the right coset $N t_{i}$. We repeat this action for every right coset of N in G. By way of this process, we find the actions $\phi(\pi)$ of the generators $\pi \in N$ on the right cosets of N in G and, equivalently, we find the permutation representations $p=\phi(\pi)$ of the generators π in their actions on the right cosets of N in G. Note that for generators π of order k, the actions $\phi(\pi)$ of the generators on the right cosets of N in G will be products of k-cycles.

1.4.4 Proving Factor Group G is Isomorphic to Finite Group F

Suppose that a finite group F and a progenitor $P=m^{\star n}: N$ satisy Lemma 1.1. Let G denote the group P factored by the relations $\pi_{1} w_{1}=e, \ldots, \pi_{k} w_{k}=e$, that is, let

$$
G=\frac{m^{\star n}: N}{\left\langle\pi_{1} w_{1}, \pi_{2} w_{2}, \ldots, \pi_{k} w_{k}\right\rangle}
$$

and suppose G has been identified, with the help of Lemma 1.2, to be an appropriate factor group. To prove that F is a finite homomorphic image of P and, ultimately, to prove that $F \cong G$, we use the following general strategy:

1. We first show that $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of $G=\langle x, y, t\rangle$ and that $\langle\phi(x), \phi(y), \phi(t)\rangle \cong G$. Now, by way of manual double coset enumeration of G over N, we determine that $[G: N] \leq|X|$ (where X is the set of distinct right cosets of N in G) and, therefore, that $|G| \leq|N| \cdot|X|=s$. We then consider a permutation group $G_{1}=\langle\phi(x), \phi(y), \phi(t)\rangle \leq S_{X}$, where $\phi(x), \phi(y), \phi(t)$ are the permutation representations of the generators x, y, t of G, and we show that G_{1} is a homomorphic image of a G. To do this, we demonstrate that the generators $\phi(x)$ and $\phi(y)$ conjugate $\phi(t)$ in the same way that the generators x and y conjugate of the the symmetric generator t. We also demonstrate that, if relators $\pi_{1} w_{1}, \pi_{2} w_{2}, \ldots, \pi_{k} w_{k}$ hold true in G, then $\phi\left(\pi_{1}\right) \phi\left(w_{1}\right), \phi\left(\pi_{2}\right) \phi\left(w_{2}\right), \ldots, \phi\left(\pi_{k}\right) \phi\left(w_{k}\right)$ also hold true in G_{1}. After showing that G_{1} is a homomorphic image of G, and knowing that $\left|G_{1}\right|=s$, we are able to conclude $G_{1} \leq G$ and so $s=\left|G_{1}\right| \leq|G|$. Hence, $s \leq|G| \leq s \Rightarrow|G|=$ s.Finally, after showing that $G_{1} \leq G$ and $\left|G_{1}\right|=s=|G|$, we conclude $G \cong G_{1}$.
2. We next show $G_{1} \cong F$ and, ultimately, $G \cong F$. With the help of the computer algebra system MAGMA (see [BCP97]), we find elements $a, b, c \in G_{1}$ that generate a known presentation of F. That is, we find elements $a, b, c \in G_{1}$ such that $F \cong$ $\langle a, b, c\rangle$. After finding these elements, we are able to conclude $\langle a, b, c\rangle \leq G_{1}$ and, knowing that $|F|=|\langle a, b, c\rangle|=s=\left|G_{1}\right|$, we can then conclude $G_{1} \cong\langle a, b, c\rangle \cong F$. Knowing that G_{1} is a homomorphic image of a G and further that $G_{1} \cong F$, we can conclude F is a homomorphic image of a G. (Note, moreover, that since $G=P / M$, where $M=\left\langle\pi_{1} w_{1}, \pi_{2} w_{2}, \ldots, \pi_{k} w_{k}\right\rangle$, we can also conclude F is a homomorphic image of a P.) Finally, after showing that $G_{1} \cong F$ and $G \cong G_{1}$, we conclude $G \cong F$.

By proving that finite group F is isomorphic to G, we demonstrate that F can be defined in terms G. In other words, we demonstrate that the presentation of G, say $G=\langle x, y, t\rangle$, is
a symmetric presentation of F. Establishing that $G=\langle x, y, t\rangle$ is a symmetric presentation of F, in turn, enables us to express and manipulate every element g of $F \cong G$ either as a symmetric representation of the form $g=\pi w$, where $\pi \in N$ is a permutation on 4 letters and w is a word of concatenated symmetric generators of G, or as a permutation representation $p=\phi(g)$ on $|X|$ letters.

Below, we describe two algorithms important to the manipulation of elements as both symmetric representations and permutation representations. The first algorithm describes how a permutation representation $p=\phi(g)$ on $|X|$ letters may be converted to its symmetric representation form $g=\pi w$, and the second algorithm describes the reverse conversion.

1.5 Algorithm for Converting an Element of G from its Permutation Representation to its Symmetric Representation

Let F be a finite group and let $P=m^{\star n}: N$ be a progenitor. Suppose that finite group F and progenitor $P=m^{\star n}: N$ satisy Lemma 1.1, and suppose that the factor group $G=P / M=\left\langle t_{0}, t_{1}, \ldots, t_{n}\right\rangle$ is isomorphic to F. Let X denote the set of distinct right cosets of N in G.

Let $g \in G$ and suppose that $p=\phi(g)$ be the permutation representation of g on $|X|$ letters. Now, $N^{p}=\left\{\sigma_{1}^{p} \mid \sigma_{1} \in N\right\}=\left\{p^{-1} \sigma_{1} p \mid \sigma_{1} \in N\right\}=\left\{\sigma_{2} p \mid \sigma_{2} \in N\right\}=N p$, since $p^{-1} \sigma_{1} \in N$. Moreover, by the action of right multiplication, $N^{p}=N w$ for some right coset $N w$, where w is a word in the symmetric generators $T=\left\{t_{0}, t_{1}, \ldots, t_{n}\right\}$ (and their inverses, $t_{0}^{-1}, t_{1}^{-1}, \ldots, t_{n}^{-1}$, if the order of each symmetric generator is greater than 2). In this way, we determine w, the word component of the symmetric representation of $p=\phi(g)$.

Now, since $p=\phi(g)$ is the permutation representation of an element in $G=$ $\left\langle t_{0}, t_{1}, \ldots, t_{n}\right\rangle, N^{p}=N p$ and $N^{p}=N w$ imply that $N p=N w$. Moreover, $N p=N w$ implies that $p \in N w$ which implies that $p \sim \pi w$ for some $\pi \in N$ or, more precisely, $p=\phi(\pi) \phi(w)$ for some $\pi \in N$. Finally, $p=\phi(\pi) \phi(w)$ implies that $\phi(\pi)=p(\phi(w))^{-1}=$ $p \phi\left(w^{-1}\right)$. To determine $\pi \in N$, the permutation component of the symmetric representation of $p=\phi(g)$, we calculate the action of $\pi \sim \phi(\pi)=p \phi\left(w^{-1}\right)$ on the set of symmetric
generators $T=\left\{t_{0}, t_{1}, \ldots, t_{n}\right\}$.

1.6 Algorithm for Converting an Element of G from its Symmetric Representation to its Permutation Representation

Let F be a finite group and let $P=m^{\star n}: N$ be a progenitor. Suppose that finite group F and progenitor $P=m^{\star n}: N$ satisy Lemma 1.1, and suppose that the factor group $G=P / M=\left\langle t_{0}, t_{1}, \ldots, t_{n}\right\rangle$ is isomorphic to F. Let X denote the set of distinct right cosets of N in G.

Let $g \in G$ and suppose that g has the symmetric representation $g=\pi w$, such that $\pi \in N$ is a permutation on n letters and w is a word in the symmetric generators $T=$ $\left\{t_{0}, t_{1}, \ldots, t_{n}\right\}$ (including their inverses, $t_{0}^{-1}, t_{1}^{-1}, \ldots, t_{n}^{-1}$, if the order of each symmetric generator is greater than 2).

To determine the permutation representation $p=\phi(g)$ of g, we first calculate the action $\phi(\pi)$ of π on the set of right cosets of N in G, and we then calculate the action $\phi\left(t_{i}\right)$ of the symmetric generators t_{i} on the set of right cosets of N in G. In so doing, we determine the permutation representation $\phi(\pi)$ of π on $|X|$ letters and the permutation representation $\phi(w)$ of the word w on $|X|$ letters. To determine the permutation representation $p=\phi(g)$ of g, we calculate the product of the permutation representation of π and the permutation representation the word w. That is, we calculate $p=\phi(g)=\phi(\pi) \phi(w)$.

1.7 Motivation for the Subject

1.7.1 The Mathieu Group on 12 Letters, M_{12}

The Mathieu group on 12 letters, which we denote M_{12}, is a sporadic group of order 95,040 . This group is sharply 5 -transitive and its usual action is on 12 cosets of M_{11} (note that $\left[M_{12}: M_{11}\right]=12$). To properly define M_{12}, we refer to the Steiner system $S=S(5,6,12)$.

Steiner System. A Steiner system $S(l, m, n)$ is a collection of m-element subsets of an n-element set Λ such that no two of the m-element subsets of Λ have l or more in common. The number of these special m-element subsets in a Steiner system $S(l, m, n)$, if that Steiner system indeed exists, is given by $\binom{n}{l} /\binom{m}{l}$.

Thus a Steiner system $S=S(5,6,12)$ is a collection of 6 -element subsets, or hex$a d s$, of a 12 -element set such that no two have 5 or more in common. There are $\left(\frac{1}{5}\right) /\binom{6}{5}=$ 132 hexads in this Steiner system. One such example of a Steiner system S of the form $S(5,6,12)$ is $S=\{\{1,4,5,7,9,10\},\{1,4,5,7,8,12\},\{1,4,5,6,7,11\},\{1,4,5,6,8,9\}$, $\{1,4,6,9,11,12\}, \ldots\}$.

The Mathieu Group M_{12}. The Mathieu group on 12 letters, M_{12}, is the automorphism group of a Steiner system $S=S(5,6,12)$; that is, $M_{12}=\left\{\sigma \in S_{12} \mid S^{\sigma}=S\right\}$.

1.7.2 Motivation for Curtis' Investigation of Progenitors

The motivation for Curtis' investigation of progenitors and symmetric presentations was his interest in the behavior of the Mathieu groups M_{12} and M_{24} [Cur07]. The conclusions of his initial work with M_{12} are summarized below.
M_{12} as a Finite Homomorphic Image of $3^{\star 5}: A_{5} . M_{12}$ is generated by 5 elements of order 3 which are normalised, as a subset, by a subgroup of M_{12}, which is also transitive on the set of five elements, isomorphic to A_{5}. Thus, by Lemma $1.2, F=M_{12}$ is a homomorphic image of the progenitor $P=3^{* 5}: N$, where $N \cong A_{5}$. A presentation for the progenitor is $P=3^{* 5}: N=\left\langle x, y, t \mid x^{5}=y^{3}=(x y)^{2}=t^{3}=[t, y]=\left[t, y x^{-1} y x^{-2}\right]=e\right\rangle$, where $t \sim t_{0}$. Now, by the information above, there exists a homomorphism $\alpha: P \rightarrow M_{12}$, and therefore $P / \operatorname{ker} \alpha \cong M_{12}$. In order to factor P so that it is isomorphic to F, we must determine ker α. In particular, the question now is what element or elements of $3^{* 5}: N$ are needed to factor the progenitor P in order to obtain F. Since every element of P is of the form πw, where $\pi \in N$ and w is a word in the five t_{i} 's, we must determine the elements of N that can be written as a product of the symmetric generators $t_{0}, t_{1}, t_{2}, t_{3}$, and t_{4}.

Let $N=\langle x, y\rangle$, where $x \sim(01234)$, and $y \sim(421)$. Now the point stabilizers of N are $N^{0} \cong A_{4}=\langle(142),(12)(34)\rangle$ and $N^{01} \cong A_{3}=\langle(243)\rangle$, and the centralizer in
N of N^{01} is $\langle(243)\rangle$. Therefore, by Lemma 1.3, the elements of $\left\langle t_{0}, t_{1}\right\rangle$ may be written as (243) or (234) or the identity e. We find that the required relator is $\left(t_{0}^{-1} t_{1}\right)^{2}=\left(\begin{array}{ll}2 & 34\end{array}\right)$; that is, $\left(t^{-1}\left(t^{x}\right)\right)^{2}=y x^{-1} y x^{-2}$.

Therefore $F=\langle x, y, t| x^{5}=y^{3}=(x y)^{2}=t^{3}=[t, y]=\left[t, y x^{-1} y x^{-2}\right]=$ $\left.e,\left(t^{-1}\left(t^{x}\right)\right)^{2}=y x^{-1} y x^{-2}\right\rangle$ is a symmetric presentation of $C_{3} \times M_{12}$. However, the center is $Z\left(C_{3} \times M_{12}\right)=C_{3}=\left\langle(x t)^{8}\right\rangle$. By factoring out the center, we obtain $M_{12} \cong F=$ $\left\langle x, y, t \mid x^{5}=y^{3}=(x y)^{2}=t^{3}=[t, y]=\left[t, y x^{-1} y x^{-2}\right]=(x t)^{8}=e,\left(t^{-1}\left(t^{x}\right)\right)^{2}=y x^{-1} y x^{-2},\right\rangle$.

Let $M_{12}=\langle\alpha(x), \alpha(y), \alpha(t)\rangle$, so that $A_{5} \cong\langle\alpha(x), \alpha(y)|[\alpha(x)]^{5}=[\alpha(y)]^{3}=$ $\left.[\alpha(x) \alpha(y)]^{2}=\alpha(e)\right\rangle$. A homomorphism of the type described above can be given as α : $3^{* 5}: N \longrightarrow M_{12}$, where $\alpha(x)=(13954)(267108), \alpha(y)=(\infty 67)(039)(185)(2410)$,
 $\alpha(t)^{\alpha\left(x^{2}\right)}, \alpha(t)^{\alpha\left(x^{3}\right)}$, and $\alpha(t)^{\alpha\left(x^{4}\right)}$. Since $|\alpha(x) \alpha(y)|=2$, the five elements of order 3 that generate M_{12} are the five conjugates $t_{0}=\alpha(t)=\left(\begin{array}{ll}12 & 810\end{array}\right)(1139)(147)(265)$ under conjugation by $N=N_{G}\left(t_{0}, t_{1}, t_{2}, t_{3}, t_{4}\right)=\langle\alpha(x), \alpha(y)\rangle \cong A_{5}$. Moreover, the relation $\left[\alpha(t)^{-1} \alpha(t)^{\alpha(x)}\right]^{2}=\alpha(y) \alpha(x)^{-1} \alpha(y) \alpha(x)^{-2}$ holds in M_{12}. Therefore, we can perform a manual double coset enumeration of M_{12} over A_{5} to construct the group by hand.

1.7.3 Motivation for Studing Progenitors

Whereas every element of M_{12} is usually represented by a permutation on 12 letters, with the symmetric presentation discovered by Curtis,
$\left\langle x, y, t \mid x^{5}=y^{3}=(x y)^{2}=t^{3}=[t, y]=\left[t, y x^{-1} y x^{-2}\right]=(x t)^{8}=e,\left(t^{-1}\left(t^{x}\right)\right)^{2}=y x^{-1} y x^{-2}\right\rangle$,
every element of M_{12} is represented by a permutation on 5 letters followed by a word generated by $\left\{t_{1}, t_{2}, t_{3}, t_{4}, t_{5}\right\}$.

In general, symmetric presentations offer a uniform and straight-forward way of constructing finite groups. The symmetric representation of elements of finite groups allows us to express each element in a convenient and shorter form, and the manipulation of elements written as symmetric representations is equivalent to the manipulation of permutations. For more examples of symmetric presentations and the manipulation of symmetrically-represented group elements, see [HK06], [HN05], [Con71], [Cur07], and [CH96].

Chapter 2

A_{5} as a Homomorphic Image of the Progenitor $2^{* 3}: S_{3}$

In this chapter, we investigate A_{5} as a homomorphic image of the progenitor $2^{* 3}: S_{3}$. The group A_{5} is the alternating group on five letters having order $5!/ 2=60$. The progenitor $2^{* 3}: S_{3}$ is a semi-direct product of $2^{* 3}$, a free product of three copies of the cyclic group of order 2 , and S_{3}, the symmetric group on three letters which permutes the three symmetric generators, t_{0}, t_{1}, and t_{2}, by conjugation.

2.1 Introduction

Let \bar{G} be a homomorphic image of the infinite semi-direct product, the progenitor, $2^{* 3}: S_{3}$. A symmetric presentation of $2^{* 3}: S_{3}$ is given by

$$
\bar{G}=\left\langle x, y, t \mid x^{3}=y^{2}=(x y)^{2}=e=t^{2}=[t, x]\right\rangle,
$$

where $[t, x]=t x t x$ and e is the identity. In this case, $N \cong S_{3} \cong\langle x, y| x^{3}=y^{2}=(x y)^{2}=$ $e\rangle$, and the action of N on the three symmetric generators is given by $x \sim\left(\begin{array}{ll}0 & 1\end{array}\right)$, $y \sim(12)$, and $t \sim t_{0}$.

Let G denote the group \vec{G} factored by the relations $(y x t)^{5}=e$ and $(x t)^{5}=e$. That is, let

$$
G=\frac{\bar{G}}{(y x t)^{5},(x t)^{5}} .
$$

A symmetric presentation for G is given by

$$
\left\langle x, y, t \mid x^{3}=y^{2}=(x y)^{2}=e=t^{2}=[t, x]=(y x t)^{5}=(x t)^{5}\right\rangle .
$$

Now, we consider the following relations:

$$
\begin{gathered}
{\left[\begin{array}{lll}
\left.\left(\begin{array}{ll}
0 & 2
\end{array}\right) t_{0}\right]^{5}=e \\
\text { and }
\end{array}\right.} \\
{\left[\left(\begin{array}{ll}
0 & 1
\end{array}\right) t_{0}\right]^{5}=e}
\end{gathered}
$$

According to a computer proof by [CHB96], the progenitor $2^{* 3}: S_{3}$, factored by the relations $\left.\left[\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}\right]^{5}=e$ and $\left[\left(\begin{array}{ll}0 & 1\end{array}\right) t_{0}\right]^{5}=e$, is isomorphic to A_{5}. We will construct A_{5} by way of manual double coset enumeration of $G \cong \frac{2^{* 3} S_{3}}{\left[\left(\begin{array}{ll}1 & 1\end{array}\right) t_{0} 5^{5},\left[\left(\begin{array}{ll}1 & \left.1) t_{0}\right]^{5}\end{array}\right.\right.\right.}$ over S_{3}. In so doing, we will show that A_{5} is isomorphic to the symmetric presentation

$$
G=\left\langle x, y, t \mid x^{3}=y^{2}=(x y)^{2}=e=t^{2}=[t, x]=(y x t)^{5}=(x t)^{5}\right\rangle .
$$

2.2 Manual Double Coset Enumeration of G Over S_{3}

We first determine the order of the homomorphic image, G, of the progenitor. To determine the order of the homomorphic image G, we will determine the index of $N \cong S_{3}$ in G. We determine the index of $N \cong S_{3}$ in G first by expanding the relations $\left.\left[\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}\right]^{5}=e$ and $\left[\left(\begin{array}{ll}0 & 1\end{array}\right) t_{0}\right]^{5}=e$, and next by performing manual double coset enumeration on G over $N \cong S_{3}$. To begin, we expand the relations that factor the progenitor $2^{* 3}: S_{3}$:

$$
\begin{gather*}
{\left[\begin{array}{lll}
\left.\left[\begin{array}{ll}
0 & 1
\end{array}\right) t_{0}\right]^{5} & =e \\
{\left[\left(\begin{array}{ll}
0 & 1
\end{array}\right) t_{0}\right]^{5}} & =e
\end{array}\right.} \tag{2.1}
\end{gather*}
$$

We expand relations (2.1) and (2.2) in detail below:

1. Let $\pi=\left(\begin{array}{ll}0 & 1\end{array}\right)$.

Then $\left[\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}\right]^{5}=e \Rightarrow\left(\pi t_{0}\right)^{5}=e \Rightarrow \pi t_{0} \pi t_{0} \pi t_{0} \pi t_{0} \pi t_{0}$ $=e \Rightarrow \pi t_{0} \pi t_{0} \pi t_{0} \pi^{2} \pi^{-1} t_{0} \pi t_{0}=e \Rightarrow \pi t_{0} \pi t_{0} \pi^{3} \pi^{-1} \pi^{-1} t_{0} \pi^{2} t_{0}^{\pi} t_{0}=e \Rightarrow$ $\pi t_{0} \pi^{4} \pi^{-1} \pi^{-1} \pi^{-1} t_{0} \pi^{3} t_{0}^{\pi^{2}} t_{0}^{\pi} t_{0}=e \Rightarrow \pi^{5} \pi^{-1} \pi^{-1} \pi^{-1} \pi^{-1} t_{0} \pi^{4} t_{0}^{\pi^{3}} t_{0}^{\pi^{2}} t_{0}^{\pi} t_{0}$
$=e \Rightarrow \pi^{5} t_{0}^{\pi^{4}} t_{0}^{\pi^{3}} t_{0}^{\pi^{2}} t_{0}^{\pi} t_{0}=e \Rightarrow(012)^{5} t_{0}^{(012)^{4}} t_{0}^{(012)^{3}} t_{0}^{(012)^{2}} t_{0}^{(012)} t_{0}=e$
$\Rightarrow(021) t_{0}^{(012)} t_{0}^{e} t_{0}^{(021)} t_{0}^{(012)} t_{0}=e \Rightarrow(021) t_{1} t_{0} t_{2} t_{1} t_{0}=e \Rightarrow(021) t_{1} t_{0} t_{2}=t_{0} t_{1}$.

Thus relation (2.1) implies that (021) $t_{1} t_{0} t_{2}=t_{0} t_{1}$ or, equivalently, $N t_{1} t_{0} t_{2}=$ $N t_{0} t_{1}$. That is, using our short-hand notation, $102 \sim 01$.
2. Let $\pi=\left(\begin{array}{ll}0 & 1\end{array}\right)$.

Then $\left[\left(\begin{array}{ll}0 & 1\end{array}\right) t_{0}\right]^{5}=e \Rightarrow\left(\pi t_{0}\right)^{5}=e \Rightarrow \pi t_{0} \pi t_{0} \pi t_{0} \pi t_{0} \pi t_{0}=e$
$\Rightarrow \pi t_{0} \pi t_{0} \pi t_{0} \pi^{2} \pi^{-1} t_{0} \pi t_{0}=e$
$\Rightarrow \pi t_{0} \pi t_{0} \pi^{3} \pi^{-1} \pi^{-1} t_{0} \pi^{2} t_{0}^{\pi} t_{0}=e \Rightarrow \pi t_{0} \pi^{4} \pi^{-1} \pi^{-1} \pi^{-1} t_{0} \pi^{3} t_{0}^{\pi^{2}} t_{0}^{\pi} t_{0}=e$
$\Rightarrow \pi^{5} \pi^{-1} \pi^{-1} \pi^{-1} \pi^{-1} t_{0} \pi^{4} t_{0}^{\pi^{3}} t_{0}^{\pi^{2}} t_{0}^{\pi} t_{0}=e \Rightarrow \pi^{5} t_{0}^{\pi^{4}} t_{0}^{\pi^{3}} t_{0}^{\pi^{2}} t_{0}^{\pi} t_{0}=e$
$\Rightarrow(01)^{5} t_{0}^{(01)^{4}} t_{0}^{(01)^{3}} t_{0}^{(01)^{2}} t_{0}^{(01)} t_{0}=e$
$\Rightarrow\left(\begin{array}{ll}0 & 1)\end{array} t_{0}^{e} t_{0}^{(01)} t_{0}^{3} t_{0}^{(01)} t_{0}=e \Rightarrow\left(\begin{array}{ll}0 & 1)\end{array} t_{0} t_{1} t_{0} t_{1} t_{0}=e \Rightarrow\left(\begin{array}{ll}0 & 1)\end{array} t_{0} t_{1} t_{0}=t_{0} t_{1}\right.\right.\right.$.
Thus relation (2.2) implies that (01) $t_{0} t_{1} t_{0}=t_{0} t_{1}$ or, equivalently, $N t_{0} t_{1} t_{0}=N t_{0} t_{1}$. That is, using our short-hand notation, $010 \sim 01$.

We now perform manual double coset enumeration of G over S_{3}.

1. We first note that the double coset $N e N=\{N e n \mid n \in N\}=\{N n \mid n \in N\}=\{N\}$. In this sense, we say that $N e N$ is a double coset with a word in the t_{i} 's of length zero.

Let [*] denote the double coset $N e N$.
We first determine the order of the double coset [*].
The double coset $[*]$ has one distinct right coset: the identity right coset, $N e=$ $\{n e \mid n \in N\}=N$.

We next determine the distinct double cosets of the form $N w N$, where w is a word of length one given by $w=t_{i}, i \in\{0,1,2\}$.

Since $N \cong S_{3}$ is transitive, and since the orbit of N on T is $O(0)=\{g 0 \mid g \in N\}=$ $\{0,1,2\}=O(1)=O(2), N$ has one orbit on $T=\left\{t_{0}, t_{1}, t_{2}\right\}:\{0,1,2\}$.

Therefore, there is one double coset of the form $N w N$, where w is a word of length one given by $w=t_{i}, i \in\{0,1,2\}: N t_{0} N$.
2. We next consider the double coset $N t_{0} N$.

Let [0] denote the double coset $N t_{0} N$.
Note that $N t_{0} N=\left\{N t_{0} n \mid n \in N\right\}=\left\{N n^{-1} t_{0} n \mid n \in N\right\}=\left\{N t_{0}^{n} \mid n \in N\right\}$ $=\left\{N t_{0}, N t_{1}, N t_{2}\right\}$.

We first determine the order of the double coset [0].
Note that the point stabilizer is $N^{0}=\left\{n \in N \mid t_{0}^{n}=t_{0}\right\}=\langle(12)\rangle \cong S_{2}$, and note further that the coset stabilizer is $N^{(0)} \geq\left\{n \in N \mid N t_{0}^{n}=N t_{0}\right\}=N^{0}=\langle(12)\rangle \cong$ S_{2}. Thus $\left|N^{(0)}\right| \geq\left|S_{2}\right|=2$, and, by Lemma 1.4, $\left|N t_{0} N\right|=\frac{|N|}{\left|N^{(0)}\right|}=\frac{6}{2}=3$.
That is, the double coset [0] has at most three distinct single cosets.
We next determine the distinct double cosets of the form $N w N$, where w is a word of length two given by $w=t_{0} t_{i}, i \in\{0,1,2\}$.

Since $O(0)=\left\{g 0 \mid g \in N^{(0)}\right\}=\{0\}$ and since $O(1)=\left\{g 1 \mid g \in N^{(0)}\right\}=\{1,2\}=$ $O(2), N^{(0)}$ has two orbits on $T=\left\{t_{0}, t_{1}, t_{2}\right\}:\{0\}$ and $\{1,2\}$.

Therefore, there are at most two double cosets of the form $N w N$, where w is a word of length two given by $w=t_{0} t_{i}, i \in\{0,1\}: N t_{0} t_{0} N$ and $N t_{0} t_{1} N$.

But, since $N t_{0} t_{0} N=N t_{0}^{2} N=N e N=N$, we conclude that there is one distinct double coset of the form $N t_{0} t_{i} N$, where $i \in\{0,1,2\}: N t_{0} t_{1} N$.
3. We next consider the double coset $N t_{0} t_{1} N$.

Let [01] denote the double coset $N t_{0} t_{1} N$.
Note that $N t_{0} t_{1} N=\left\{N t_{0} t_{1} n \mid n \in N\right\}=\left\{N n^{-1} t_{0} t_{1} n \mid n \in N\right\}=\left\{N\left(t_{0} t_{1}\right)^{n} \mid n \in\right.$ $N\}=\left\{N t_{i} t_{j} \mid i, j \in\{0,1,2\}, i \neq j\right\}=\left\{N t_{0} t_{1}, N t_{0} t_{2}, N t_{1} t_{0}, N t_{1} t_{2}, N t_{2} t_{0}, N t_{2} t_{1}\right\}$.

We first determine the order of the double coset [01].
Note that the point stabilizer is $N^{01}=\left\{n \in N \mid\left(t_{0} t_{1}\right)^{n}=t_{0} t_{1}\right\}=\{e\}$, and note further that the coset stabilizer is $N^{(01)} \geq\left\{n \in N \mid N t_{0}^{n}=N t_{0}\right\}=N^{01}=\{e\}$. Thus $\left|N^{(01)}\right| \geq\left|N^{01}\right|=|\{e\}|=1$ and, by Lemma 1.4, $\left|N t_{0} t_{1}\right|=\frac{|N|}{\left|N^{(0)}\right|}=\frac{6}{1}=6$.
That is, the double coset [01] has at most six distinct single cosets.
We next determine the distinct double cosets of the form $N w N$, where w is a word of length one given by $w=t_{0} t_{1} t_{i}, i \in\{0,1,2\}$.
Since $O(0)=\left\{g 0 \mid g \in N^{(0)}\right\}=\{0\}$, since $O(1)=\left\{g 1 \mid g \in N^{(0)}\right\}=\{1\}$, and since $O(2)=\left\{g 2 \mid g \in N^{(0)}\right\}=\{2\}, N^{(01)}$ has three orbits on $T=\left\{t_{0}, t_{1}, t_{2}\right\}:\{0\}$ and $\{1\}$ and $\{2\}$.

Therefore, there are at most three double cosets of the form $N w N$, where w is a word of length three given by $w=t_{0} t_{1} t_{i}, i \in\{0,1,2\}: N t_{0} t_{1} t_{0} N, N t_{0} t_{1} t_{1} N$, and
$N t_{0} t_{1} t_{2} N$.
But note that $N t_{0} t_{1} t_{1} N=N t_{0} t_{1}^{2} N=N t_{0} e N=N t_{0} N$.
Moreover, note that by relation (2.2), (0 1) $t_{0} t_{1} t_{0}=t_{0} t_{1}$ implies that $N t_{0} t_{1} t_{0}=$ $N t_{0} t_{1}$ which implies that $N t_{0} t_{1} t_{0} N=N t_{0} t_{1} N$. That is, [01] = [010].
Further, by relation (2.1), ($\left.\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1} t_{0} t_{2}=t_{0} t_{1} \Rightarrow\left[\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1} t_{0} t_{2}\right]^{(01)}=\left[t_{0} t_{1}\right]^{(01)} \Rightarrow$ $\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{1} t_{2}=t_{1} t_{0}$ implies that $N t_{0} t_{1} t_{2}=N t_{1} t_{0}$ which implies that $N t_{0} t_{1} t_{2} N=$ $N t_{0} t_{1} N$. That is, $[01]=[012]$.

Since $N t_{0} t_{1} t_{1} N=N t_{0} N$ and $N t_{0} t_{1} t_{0} N=N t_{0} t_{1} N$ and $N t_{0} t_{1} t_{2} N=N t_{0} t_{1} N$, we need not consider additional double cosets of the form $N t_{0} t_{1} t_{i} N$, where $i \in\{0,1,2\}$. In fact, since $N^{(01)}$ is transitive on the symmetric generators and since $N t_{0} t_{1} t_{1} N=$ $N t_{0} t_{1}^{2} N=N t_{0} e N=N t_{0} N$ and $N t_{0} t_{1} t_{0} N=N t_{0} t_{1} N$ and $N t_{0} t_{1} t_{2} N=N t_{0} t_{1} N$ imply that the double cosets $[011]=[0],[010]=[01]$, and $[012]=[01]$, respectively, we have completed the double coset enumeration of G over S_{3}.

In total, therefore, there are at most 3 distinct double cosets of N in G and at most 10 distinct right (single) cosets of N in G. The double cosets of N in G are as follows: [*], [0], and [01].

2.3 Cayley Diagram of G Over S_{3}

The Cayley diagram of G over S_{3} is illustrated in Figure 2.1. The vertices of the Cayley diagram indicate the set of right cosets of N in $G,\left\{N w_{i} \mid w_{i}\right.$ are words in $\left.T\right\}$. The nodes represent the double cosets of N in G and each node is labeled with the number of distinct right (single) cosets of N in G within the double cosets. The lines between the nodes indicate relations between the images of the right cosets of one node and the right cosets of other nodes; the number of lines emanating from a particular node is determined by the number of orbits on the point stabilizer. The lines are labeled with integers indicating the number of pathways (or orbits) from the vertices (the right cosets) of one node (one double coset) to the vertices of another node. Put together, these pieces of the diagram illustrate the action of N on the right cosets of N in G by right multiplication.

Figure 2.1: Cayley Diagram of G Over S_{3}

2.4 Action of the Symmetric Generators and the Generators of S_{3} on the Right Cosets of G Over S_{3}

Let X denote the set of all (10) distinct right cosets of N in G, that is, let $X=$ $\left\{N, N t_{0}, N t_{1}, N t_{2}, N t_{0} t_{1}, N t_{0} t_{2}, N t_{1} t_{0}, N t_{1} t_{2} N t_{2} t_{0}, N t_{2} t_{1}\right\}$. We define a mappping $\phi: G \longrightarrow S_{X}$ so that ϕ maps a symmetric generator $g \in G$ to its action (by right multiplication) on X. That is, we define ϕ so that $\phi(g)=\widehat{\phi}(g): X \rightarrow X$. Then the action $\phi(t) \sim \phi\left(t_{0}\right)$ of the symmetric generator $t \sim t_{0}$ on the set of right cosets of N in G may be expressed as

$$
\phi(t) \sim \phi\left(t_{0}\right)=(* 0)(110)(220)(1221)
$$

and the action of the generator $x \sim\left(\begin{array}{ll}0 & 12\end{array}\right)$ of S_{3} on the set of right cosets of N in G may be expressed as

$$
\phi(x) \sim \phi\left(\left(\begin{array}{ll}
0 & 1
\end{array} 2\right)\right)=\left(\begin{array}{ll}
0 & 1
\end{array}\right)(011220)(021021)
$$

and the action of the generator $y \sim(12)$ of S_{3} on the set of right cosets of N in G may be expressed as

$$
\phi(y) \sim \phi((12))=(12)(0102)(1020)(1221) .
$$

Since there are 10 distinct right cosets of N in G, these actions may be written as permutations on 10 letters. In fact, the actions of the generators on the set of right cosets of N in G are equivalent to the permutation representations of the generators in their action on the right cosets of N in G. To better manipulate the permutation representations of the symmetric generators t_{i} and the generators x and y, it is helpful to label the distinct
single cosets of N in G as follows:

(10)	$*$	(5)	02
(1)	0	(6)	10
(2)	1	(7)	12
(3)	2	(8)	20
(4)	01	(9)	21

Having labeled each of the 10 distinct right cosets of N in G, we may express the permutation representation of the symmetric generators $t \sim t_{0}, t^{x} \sim t_{1}$, and $t^{x^{2}} \sim t_{2}$, and the generators $x \sim(012)$ and $y \sim(12)$, in their action on the right cosets of N in G as, respectively

$$
\begin{aligned}
& \phi(t) \sim \phi\left(t_{0}\right):(101)(26)(38)(7.9), \\
& \phi\left(t^{x}\right) \sim \phi\left(t_{1}\right):(102)(14)(39)(58), \\
& \phi\left(t^{x^{2}}\right) \sim \phi\left(t_{2}\right):(103)(15)(27)(46), \\
& \phi(x) \sim \phi((012)):(123)(478)(569), \\
& \phi(y) \sim \phi((12)):(23)(45)(68)(79)
\end{aligned}
$$

2.5 Proof of Isomorphism between G and A_{5}

We now demonstrate that $G \cong A_{5}$.

Proof. To prove that $G \cong A_{5}$, we must first show that $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of G and that $|G|=|\langle\phi(x), \phi(y), \phi(t)\rangle|=60$ (from which we can conclude $G \cong\langle\phi(x), \phi(y), \phi(t)\rangle)$, and we must next show that $\langle\phi(x), \phi(y), \phi(t)\rangle \cong A_{5}$ (from which we can conclude A_{5} is a homomorphic image of G and $G \cong A_{5}$).

We first show $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of G and $|G|=|\langle\phi(x), \phi(y), \phi(t)\rangle|=60$. From our construction of G using manual double coset enumeration of G over S_{3}, illustrated by the Cayley Diagram in Figure 2.1, we concluded that group G defined by the symmetric presentation must contain a homomorphic image of $N \cong S_{3}$ whose index [$\left.G: N\right]$ is at most 10 :

$$
\begin{gathered}
{[G: N]=\frac{|N|}{\left|N^{(*)}\right|}+\frac{|N|}{\left|N^{(0)}\right|}+\frac{|N|}{\left|N^{(01)}\right|} \leq \frac{6}{6}+\frac{6}{2}+\frac{6}{1}=} \\
1+3+6=10
\end{gathered}
$$

Since the index of N in G is at most 10 , and since $|G|=\frac{|G|}{|N|} \cdot|N|$, the order of the homomorphic image group G is at most 60:

$$
|G|=\frac{|G|}{|N|} \cdot|N| \leq 10 \cdot|N|=10 \cdot 6=60 \Rightarrow|G| \leq 60
$$

We now consider $\langle\phi(x), \phi(y), \phi(t)\rangle$. Note that $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a group generated by the permutation representations of the generators x, y, and t and, as such, it is a subgroup of the symmetric group S_{10} acting on the ten right cosets of N in G. We now show that $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of G and, therefore, that $|G| \geq|\langle\phi(x), \phi(y), \phi(t)\rangle|=60$. To show that $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of G, we first demonstrate that $\langle\phi(x), \phi(y), \phi(t)\rangle \leq S_{10}$ is a homomorphic image of \bar{G}. Now, recall that $\bar{G}=\langle x, y, t\rangle$ is a homomorphic image of the progenitor $2^{* 3}: S_{3}$, and its presentation is given by

$$
\bar{G}=\left\langle x, y, t \mid x^{3}=y^{2}=(x y)^{2}=e=t^{2}=[t, x]\right\rangle
$$

where $x \sim(012), y \sim(12)$, and $t \sim t_{0}$, and $N=\langle x, y\rangle \cong S_{3}$. Let $\alpha: \bar{G} \longrightarrow\langle\phi(x), \phi(y), \phi(t)\rangle$ be a mapping from \bar{G} to $\langle\phi(x), \phi(y), \phi(t)\rangle$. We note first that the mapping $\alpha: \bar{G} \longrightarrow\langle\phi(x), \phi(y), \phi(t)\rangle$ is well defined. The generators $\phi(x), \phi(y)$, and $\phi(t)$ are the permutation representations of $x \sim\left(\begin{array}{ll}0 & 1\end{array}\right), y \sim(12)$, and $t \sim t_{0}$ on 10 letters. Since the order of $\phi(x)$ is 3 , the order of $\phi(y)$ is 2 , and the order of $\phi(x) \phi(y)$ is 2 , we conclude $\langle\phi(x), \phi(y)\rangle \cong N \cong S_{3}$. Moreover, we can demonstrate that $\phi(t)$ has exactly three conjugates under conjugation by the elements of $\langle\phi(x), \phi(y)\rangle \cong N \cong S_{3}$. Now, since $t \sim t_{0}$, we have that

$$
\begin{aligned}
& \phi(t)^{\phi(x)} \sim \phi\left(t_{0}\right)^{\phi((012))}=\left[\left(\begin{array}{ll}
10 & \left.1)(26)\left(\begin{array}{ll}
3 & 8)(79)
\end{array}\right]^{1} 23\right)(478)(569)
\end{array}=\right.\right. \\
& {[(123)(478)(569)][(101)(26)(38)(79)][(132)(487)(596)]=} \\
& (102)(14)(39)(58)=\phi\left(t_{1}\right) \sim \phi\left(t^{x}\right)
\end{aligned}
$$

and further that

$$
\begin{aligned}
& {[(132)(487)(596)][(101)(26)(38)(79)][(123)(478)(569)]=} \\
& (103)(15)(27)(46)=\phi\left(t_{2}\right) \sim \phi\left(t^{x^{2}}\right)
\end{aligned}
$$

Therefore, $\phi(t)$ has exactly three conjugates under conjugation by the elements of $\langle\phi(x), \phi(y)\rangle \cong N \cong S_{3}$; these conjugates are, namely, $\phi(t) \sim \phi\left(t_{0}\right), \phi\left(t^{x}\right) \sim \phi\left(t_{1}\right)$, and $\phi\left(t^{x^{2}}\right) \sim \phi\left(t_{2}\right)$. Since $\langle\phi(x), \phi(y)\rangle \cong N \cong S_{3}$ and since $\phi(t)$ has exactly three conjugates under conjugation by the elements of $\langle\phi(x), \phi(y)\rangle \cong N$, we conclude that $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of $\bar{G}=\langle x, y, t\rangle$. That is, $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of the progenitor $2^{\star 3}: S_{3}$.

Next, to show that $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of G, we must show that $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of \bar{G} factored by the relations $(y x t)^{5}=e$ and $(x t)^{5}=e$; that is, we must show that $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of the progenitor $2^{* 3}: S_{3}$ factored by the relations $\left.\left[\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}\right]^{5}=e$ and $\left[\left(\begin{array}{ll}0 & 1\end{array}\right) t_{0}\right]^{5}=e$. Let $\tilde{\alpha}: G \longrightarrow\langle\phi(x), \phi(y), \phi(t)\rangle$ be a mapping from G to $\langle\phi(x), \phi(y), \phi(t)\rangle$. We note first that the mapping $\tilde{\alpha}: G \longrightarrow\langle\phi(x), \phi(y), \phi(t)\rangle$ is well-defined, and we know already that $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of the progenitor $2^{* 3}: S_{3}$. Now, to show that $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of G, we need only demonstrate that the relations $\left.\left[\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}\right]^{5}=e$ and $\left[\left(\begin{array}{ll}0 & 1\end{array}\right) t_{0}\right]^{5}=e$, which hold true in G, also hold true in $\langle\phi(x), \phi(y), \phi(t)\rangle \leq S_{10}$.

To demonstrate that the relation $\left[\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}\right]^{5}=e$, or, equivalently, the relation $t_{1} t_{0} t_{2} t_{1} t_{0}=\left(\begin{array}{ll}0 & 1\end{array}\right)$, holds true in $\langle\phi(x), \phi(y), \phi(t)\rangle \leq S_{10}$, we show that $\phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{2}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right) \sim \phi\left(t^{x}\right) \phi(t) \phi\left(t^{x^{2}}\right) \phi\left(t^{x}\right) \phi(t) \in S_{10}$ acts on the three symmetric generators $\phi\left(t_{0}\right), \phi\left(t_{1}\right)$, and $\phi\left(t_{2}\right)$ by conjugation in the same way that $\phi\left(\left(\begin{array}{ll}0 & 1\end{array}\right)\right) \sim \phi(x)$ acts on the three symmetric generators $\phi\left(t_{0}\right), \phi\left(t_{1}\right)$, and $\phi\left(t_{2}\right)$ by conjugation. We first conjugate the symmetric generators $\phi\left(t_{0}\right), \phi\left(t_{1}\right)$, and $\phi\left(t_{2}\right)$ by $\phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{2}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right)$. This gives us

$$
\begin{aligned}
& \phi\left(t_{0}\right)^{\phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{2}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right)}=[(101)(26)(38)(79)]^{(123)(478)(569)}=\phi\left(t_{1}\right), \\
& \phi\left(t_{1}\right)^{\phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{2}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right)}=\left[\left(\begin{array}{ll}
10 & 2
\end{array}\right)\left(\begin{array}{ll}
1 & 4
\end{array}\right)\left(\begin{array}{ll}
3 & 9
\end{array}\right)\left(\begin{array}{ll}
5 & 8
\end{array}\right)\right]^{(123)(478)(569)}=\phi\left(t_{2}\right), \\
& \phi\left(t_{2}\right)^{\phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{2}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right)}=\left[\left(\begin{array}{ll}
10 & 3
\end{array}\right)(15)(27)(46)\right]^{(123)(478)(569)}=\phi\left(t_{0}\right)
\end{aligned}
$$

We next conjugate the symmetric generators $\phi\left(t_{0}\right), \phi\left(t_{1}\right)$, and $\phi\left(t_{2}\right)$ by $\phi\left(\left(\begin{array}{ll}0 & 1\end{array}\right)\right)$. This gives us

$$
\begin{aligned}
& \phi\left(t_{0}\right)^{\phi\left(\left(\begin{array}{ll}
0 & 1
\end{array}\right)\right)}=\left[\left(\begin{array}{lll}
10 & 1)(26)(38)(79)
\end{array}{ }^{(123)(478)(569)}=\phi\left(t_{1}\right),\right.\right. \\
& \phi\left(t_{1}\right)^{\phi\left(\left(\begin{array}{ll}
1 & 2))
\end{array}=\left[\left(\begin{array}{ll}
10 & 2
\end{array}\right)\left(\begin{array}{ll}
1 & 4
\end{array}\right)\left(\begin{array}{ll}
3 & 9
\end{array}\right)\left(\begin{array}{ll}
5
\end{array}\right)\right]^{(123)(478)(569)}=\phi\left(t_{2}\right),\right.\right.}
\end{aligned}
$$

$$
\phi\left(t_{2}\right)^{\phi((012))}=[(103)(15)(27)(46)]^{(123)(478)(569)}=\phi\left(t_{0}\right)
$$

Since $\phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{2}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right) \sim \phi\left(t^{x}\right) \phi(t) \phi\left(t^{x^{2}}\right) \phi\left(t^{x}\right) \phi(t) \in S_{10}$ acts on the three symmetric generators $\phi\left(t_{0}\right), \phi\left(t_{1}\right)$, and $\phi\left(t_{2}\right)$ by conjugation in the same way that $\phi((012)) \sim$ $\phi(x)$ acts on the three symmetric generators $\phi\left(t_{0}\right), \phi\left(t_{1}\right)$, and $\phi\left(t_{2}\right)$ by conjugation, we conclude that the relation $\left[\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}\right]^{5}=e$, which holds true in G, also holds true in $\langle\phi(x), \phi(y), \phi(t)\rangle \leq S_{10}$.

To demonstrate that the relation $\left[\left(\begin{array}{ll}0 & 1\end{array}\right) t_{0}\right]^{5}=e$, or, equivalently, the relation $t_{0} t_{1} t_{0} t_{1} t_{0}=(01)$, holds true in $\langle\phi(x), \phi(y), \phi(t)\rangle \leq S_{10}$, we show that $\phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right) \sim \phi(t) \phi\left(t^{x}\right) \phi(t) \phi\left(t^{x}\right) \phi(t) \in S_{10}$ acts on the three symmetric generators $\phi\left(t_{0}\right), \phi\left(t_{1}\right)$, and $\phi\left(t_{2}\right)$ by conjugation in the same way that the element $\phi\left(\left(\begin{array}{ll}0 & 1))\end{array}\right) \phi(y x)\right.$ acts on the three symmetric generators $\phi\left(t_{0}\right), \phi\left(t_{1}\right)$, and $\phi\left(t_{2}\right)$ by conjugation. We first conjugate the symmetric generators $\phi\left(t_{0}\right), \phi\left(t_{1}\right)$, and $\phi\left(t_{2}\right)$ by $\phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right)$. This gives us

$$
\begin{aligned}
& \phi\left(t_{0}\right)^{\phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right)}=\left[\left(\begin{array}{ll}
10 & 1)(26)(38)(79)
\end{array}\right]^{(2)(46)(57)(89)}=\phi\left(t_{1}\right),\right. \\
& \phi\left(t_{1}\right)^{\phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right)}=\left[\left(\begin{array}{ll}
10 & 2)(14)(39)(5
\end{array}\right)\right]^{(12)(46)(57)(89)}=\phi\left(t_{0}\right) \\
& \phi\left(t_{2}\right)^{\phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right)}=\left[\left(\begin{array}{lll}
10 & 3)(15)(27)(46)
\end{array}\right]^{(2)(46)(57)(89)}=\phi\left(t_{2}\right)\right.
\end{aligned}
$$

We next conjugate the symmetric generators $\phi\left(t_{0}\right), \phi\left(t_{1}\right)$, and $\phi\left(t_{2}\right)$ by $\phi((01))$. This gives us

$$
\begin{aligned}
& \phi\left(t_{0}\right)^{\phi((01))}=\left[\left(\begin{array}{ll}
10 & 1)(26)(38)(79)
\end{array}\right]^{(12)(46)(57)(89)}=\phi\left(t_{1}\right),\right. \\
& \phi\left(t_{1}\right)^{\phi\left(\left(\begin{array}{ll}
1)
\end{array}\right)=\left[\left(\begin{array}{ll}
10 & 2)(14)(39)(58)
\end{array}\right]^{(12)(46)(57)(89)}=\phi\left(t_{0}\right), ~\right.\right.} \\
& \phi\left(t_{2}\right)^{\phi((01))}=[(103)(15)(27)(46)]^{(12)(46)(57)(89)}=\phi\left(t_{2}\right)
\end{aligned}
$$

Since $\phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right) \sim \phi(t) \phi\left(t^{x}\right) \phi(t) \phi\left(t^{x}\right) \phi(t) \in S_{10}$ acts on the three symmetric generators $\phi\left(t_{0}\right), \phi\left(t_{1}\right)$, and $\phi\left(t_{2}\right)$ by conjugation in the same way that the element $\phi\left(\left(\begin{array}{ll}0 & 1\end{array}\right)\right) \sim \phi(y x)$ acts on the three symmetric generators $\phi\left(t_{0}\right), \phi\left(t_{1}\right)$, and $\phi\left(t_{2}\right)$ by conjugation, we conclude that the relation $\left.\left[\begin{array}{ll}0 & 1\end{array}\right) t_{0}\right]^{5}=e$, which holds true in G, also holds true in $\langle\phi(x), \phi(y), \phi(t)\rangle \leq S_{10}$.

Since $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of the progenitor $2^{* 3}: S_{3}$, and since the relations $\left.\left[\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}\right]^{5}=e$ and $\left.\left[\begin{array}{ll}0 & 1\end{array}\right) t_{0}\right]^{5}=e$ hold true in $\langle\phi(x), \phi(y), \phi(t)\rangle \leq S_{10}$, we conclude that $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of the progenitor $2^{* 3}: S_{3}$
factored by the relations $\left.\left[\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}\right]^{5}=e$ and $\left.\left[\begin{array}{ll}0 & 1\end{array}\right) t_{0}\right]^{5}=e$; that is, we conclude that $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of G.

More importantly, since $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of G, we have that $\langle\phi(x), \phi(y), \phi(t)\rangle \leq G$. In fact, since $\langle\phi(x), \phi(y), \phi(t)\rangle \leq G$, we have that $|G| \geq|\langle\phi(x), \phi(y), \phi(t)\rangle|$. Since it is easily demonstrated, with MAGMA or by hand, that $|\langle\phi(x), \phi(y), \phi(t)\rangle|=60$, we conclude finally that $|G| \geq|\langle\phi(x), \phi(y), \phi(t)\rangle|=60$, that is, $|G| \geq 60$. Given $|G| \leq 60$ and $|G| \geq 60$, we conclude $|G|=60$. Moreover, since $|\langle\phi(x), \phi(y), \phi(t)\rangle|=60=|G|$ and since $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of G, we conclude

$$
\langle\phi(x), \phi(y), \phi(t)\rangle \cong G
$$

We finally show that $\langle\phi(x), \phi(y), \phi(t)\rangle \cong A_{5}$. Let $G_{1}=\langle\phi(x), \phi(y), \phi(t)\rangle$. Now, with the help of MAGMA (see [BCP97]), we know that the elements $a=\left(\begin{array}{ll}156)(3108)\end{array}\right.$ $(497), b=(34)(56)(710)(89)$, and $c=(12)(35)(46)(710)$ belong to G_{1}. (Note: The labels for the right cosets in this case were assigned by MAGMA and are different from the labels that we assigned earlier.) Therefore, $\langle a, b, c\rangle \leq G_{1}$, where $G_{1}=\langle\phi(x), \phi(y), \phi(t)\rangle$, a permutation group on 10 letters, is a permutation representation of G and, further, $\left|G_{1}\right|=60$. But $|\langle a, b, c\rangle|=\left|G_{1}\right|=60$. Therefore, $G_{1}=\langle a, b, c\rangle$. However, $\langle a, b, c\rangle \cong$ $A_{5} \cong\left\langle a, b, c \mid a^{3}=b^{2}=c^{2}=(a b)^{3}=[c, a]=e\right\rangle$. Therefore, $G_{1} \cong A_{5}$ and, since $G_{1}=\langle\phi(x), \phi(y), \phi(t)\rangle \cong G$, we conclude that $G \cong A_{5}$.

2.6 Converting an Element of G from its Permutation Representation to its Symmetric Representation

To illustrate how a permutation representation of an element of A_{5} on 10 letters may be converted to its symmetric representation form, we consider the following example:

Example 2.1. Let $g \in G \cong A_{5}$ and let $p=\phi(g)=(1075)(194)(268)$ be the permutation representation of g on 10 letters. Then $10^{p}=7$ implies $N^{p}=N t_{1} t_{2}$, since 10 and 7 are labels for the right cosets N and $N t_{1} t_{2}$, respectively. Moreover, since $N^{p}=N p$ and $N^{p}=$ $N t_{1} t_{2}$, we have that $N p=N t_{1} t_{2}$. Now, $N p=N t_{1} t_{2}$ implies that $p \in N t_{1} t_{2}$ which implies that $p \sim \pi t_{1} t_{2}$ for some $\pi \in N \cong S_{3}$ or, more precisely, $p=\phi\left(\pi t_{1} t_{2}\right)=\phi(\pi) \phi\left(t_{1}\right) \phi\left(t_{2}\right)$
for some $\pi \in N \cong S_{3}$. To determine $\pi \in N$, we note first that $p=\phi(\pi) \phi\left(t_{1}\right) \phi\left(t_{2}\right) \Rightarrow$ $p\left(\phi\left(t_{2}\right)\right)^{-1}\left(\phi\left(t_{1}\right)\right)^{-1}=p \phi\left(t_{2}^{-1}\right) \phi\left(t_{1}^{-1}\right)=p \phi\left(t_{2}\right) \phi\left(t_{1}\right)=\phi(\pi)$. We then calculate the action of $\pi \sim \phi(\pi)=p \phi\left(t_{2}\right) \phi\left(t_{1}\right)$ on the symmetric generators t_{i}, where $i \in\{0,1,2\}$. Now, $\phi(\pi)=p \phi\left(t_{2}\right) \phi\left(t_{1}\right)=[(1075)(194)(268)][(103)(15)(27)(46)][(102)(14)(39)(58)]$ $=\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)\left(\begin{array}{ll}4 & 8\end{array}\right)\left(\begin{array}{ll}5 & 9\end{array}\right)$. The element $\pi \sim \phi(\pi)=p \phi\left(t_{2}\right) \phi\left(t_{1}\right)=\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)\left(\begin{array}{ll}4 & 8\end{array}\right)\left(\begin{array}{ll}5 & 9\end{array}\right)$ acts on the right cosets $N t_{0}, N t_{1}$, and $N t_{2}$ via the mapping $\phi: G \longrightarrow S_{X}$ defined by $\phi(\pi, N w)=N w^{\pi}$. The mappings below illustrate this action:

$$
\begin{gathered}
N t_{0}=1 \mapsto 1^{p}=3=N t_{2}, \quad N t_{2}=3 \mapsto 3^{p}=2=N t_{1} \\
N t_{1}=2 \mapsto 2^{p}=1=N t_{0}
\end{gathered}
$$

Therefore, the element $\phi(\pi)$ acts as (021) on the right cosets $N t_{0}, N t_{1}$, and $N t_{2}$, and so $\phi(\pi)$ is the permutation representation of $\pi=\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) \in S_{3}$ on 10 letters. Therefore, $\pi=\left(\begin{array}{ll}0 & 2\end{array}\right)$ and $w=t_{1} t_{2}$, and so the symmetric representation of g is $(021) t_{1} t_{2}$.

2.7 Converting an Element of G from its Symmetric Representation to its Permutation Representation

To illustrate how an element of A_{5} in symmetric representation form may be converted to its permutation representation on 10 letters, we consider the following example:

Example 2.2. Let $g \in G \cong A_{5}$ have the symmetric representation (021) $t_{1} t_{2}$. To determine the permutation representation $p=\phi(g)$ of g, we first calculate the action of $\pi=\left(\begin{array}{ll}0 & 2\end{array}\right)$ on the right cosets of N in G. Now, the element $\pi=\left(\begin{array}{ll}0 & 2\end{array}\right)$ acts on the right cosets N in G via the mapping $\phi: G \longrightarrow S_{X}$ defined by $\phi(\pi, N w)=N w^{\pi}$. The mappings below illustrate this action:

$$
\begin{aligned}
& 10=N \mapsto N^{(021)}=N=10 \\
& 1=N t_{0} \mapsto N t_{0}^{(021)}=N t_{2}=3 \\
& 3=N t_{2} \mapsto N t_{2}^{(021)}=N t_{1}=2 \\
& 2=N t_{1} \mapsto N t_{1}^{(021)}=N t_{0}=1
\end{aligned}
$$

$$
\begin{aligned}
& 4=N t_{0} t_{1} \mapsto N\left(t_{0} t_{1}\right)^{(021)}=N t_{2} t_{0}=8 \\
& 8=N t_{2} t_{0} \mapsto N\left(t_{2} t_{0}\right)^{(021)}=N t_{1} t_{2}=7 \\
& 7=N t_{1} t_{2} \mapsto N\left(t_{1} t_{2}\right)^{(021)}=N t_{0} t_{1}=4 \\
& 5=N t_{0} t_{2} \mapsto N\left(t_{0} t_{2}\right)^{(021)}=N t_{2} t_{1}=9 \\
& 9=N t_{2} t_{1} \mapsto N\left(t_{2} t_{1}\right)^{(021)}=N t_{1} t_{0}=6 \\
& 6=N t_{1} t_{0} \mapsto N\left(t_{1} t_{0}\right)^{(021)}=N t_{0} t_{2}=5
\end{aligned}
$$

Therefore, the permutation representation of $\pi=\left(\begin{array}{ll}0 & 2\end{array}\right)$ is $\phi(\pi)=\left(\begin{array}{ll}1 & 3\end{array}\right)(487)(596)$. Similarly, we calculate the action of the symmetric generator t_{1} on the right cosets of N in G. The symmetric generator t_{1} acts on the right cosets of N in G via the mapping $\phi: G \longrightarrow S_{X}$ defined by $\phi\left(t_{1}, N w\right)=N w t_{1}$. The mappings below illustrate this action:

$$
\begin{gathered}
10=N \mapsto N t_{1}=2 \\
2=N t_{1} \mapsto N t_{1} t_{1}=N=10 \\
1=N t_{0} \mapsto N t_{0} t_{1}=4 \\
4=N t_{0} t_{1} \mapsto N t_{0} t_{1} t_{2}=N t_{0}=1 \\
3=N t_{2} \mapsto N t_{2} t_{1}=9 \\
9=N t_{2} t_{1} \mapsto N t_{2} t_{1} t_{1}=N t_{2}=3 \\
5=N t_{0} t_{2} \mapsto N t_{0} t_{2} t_{1}=N t_{2} t_{0}=8 \\
8=N t_{2} t_{0} \mapsto N t_{2} t_{0} t_{1}=N t_{0} t_{2}=5
\end{gathered}
$$

Therefore, the permutation representation of t_{1} is $\phi\left(t_{1}\right)=(102)(14)(39)(59)$. Finally, we calculate the action of the symmetric generator t_{2} on the right cosets of N in G. The symmetric generator t_{2} acts on the right cosets of N in G via the mapping $\phi: G \longrightarrow S_{X}$ defined by $\phi\left(t_{2}, N w\right)=N w t_{2}$. The mappings below illustrate this action:

$$
\begin{gathered}
10=N \mapsto N t_{2}=3 \\
3=N t_{2} \mapsto N t_{2} t_{2}=N=10 \\
1=N t_{0} \mapsto N t_{0} t_{2}=5
\end{gathered}
$$

$$
\begin{gathered}
5=N t_{0} t_{2} \mapsto N t_{0} t_{2} t_{2}=N t_{0}=1 \\
2=N t_{1} \mapsto N t_{1} t_{2}=7 \\
7=N t_{1} t_{2} \mapsto N t_{1} t_{2} t_{2}=N t_{1}=2 \\
4=N t_{0} t_{1} \mapsto N t_{0} t_{1} t_{2}=N t_{1} t_{0}=6 \\
6=N t_{1} t_{0} \mapsto N t_{1} t_{0} t_{2}=N t_{0} t_{1}=4
\end{gathered}
$$

Therefore, the permutation representation of t_{2} is $\phi\left(t_{2}\right)=\left(\begin{array}{ll}10 & 3\end{array}\right)\left(\begin{array}{l}15\end{array}\right)(27)(46)$. Now, $g=\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1} t_{2} \sim \phi(g)=\phi(\pi) \phi\left(t_{1}\right) \phi\left(t_{2}\right)=\left[\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)\left(\begin{array}{ll}4 & 8\end{array}\right)\left(\begin{array}{ll}5 & 9\end{array}\right)\right]\left[(102)(14)\left(\begin{array}{ll}1 & 9\end{array}\right)(59)\right]$ $[(103)(15)(27)(46)]=(1075)(194)(268)$. Therefore, the permutation representation of g is $p=\phi(g)=(1075)(194)(268)$.

Chapter 3

S_{5} as a Homomorphic Image of the Progenitor $2^{* 4}$: A_{4}

In this chapter, we investigate S_{5} as a homomorphic image of the progenitor $2^{* 4}: A_{4}$. The group S_{5} is the symmetric group on five letters having order $5!=120$. The progenitor $2^{* 4}: A_{4}$ is a semi-direct product of $2^{* 4}$, a free product of four copies of the cyclic group of order 2 , and A_{4}, the alternating group on four letters which permutes the four symmetric generators, t_{0}, t_{1}, t_{2}, and t_{3}, by conjugation.

3.1 Introduction

Let \bar{G} be a homomorphic image of the infinite semi-direct product, the progenitor, $2^{* 4}: A_{4}$. A symmetric presentation of $2^{* 4}: A_{4}$ is given by

$$
\bar{G}=\left\langle x, y, t \mid x^{3}=y^{3}=(x y)^{2}=e=t^{2}=[t, x]\right\rangle,
$$

where $[t, x]=t x t x$ and e is the identity. In this case, $N \cong A_{4} \cong\langle x, y| x^{3}=y^{3}=$ $\left.(x y)^{2}=e\right\rangle$, and the action of N on the four symmetric generators is given by $x \sim\left(\begin{array}{l}123)\end{array}\right.$, $y \sim\left(\begin{array}{ll}0 & 1\end{array}\right)$, and $t \sim t_{0}$.

Let G denote the group \bar{G} factored by the relations $(y t)^{4}=e$ and $(x y t)^{6}=e$. That is, let

$$
G=\frac{\bar{G}}{(y t)^{4},(x y t)^{6}} .
$$

A symmetric presentation for G is given by

$$
\left\langle x, y, t \mid x^{3}=y^{3}=(x y)^{2}=e=t^{2}=[t, x]=(y t)^{4}=(x y t)^{6}\right\rangle .
$$

Now, we consider the following relations:

$$
\begin{gathered}
{\left[\begin{array}{lll}
\left(\begin{array}{ll}
0 & 1
\end{array}\right) t_{0}
\end{array}\right]^{4}=e} \\
\text { and } \\
{\left[\left(\begin{array}{ll}
0 & 1
\end{array}\right)\left(\begin{array}{ll}
2 & 3
\end{array}\right) t_{0}\right]^{6}=e}
\end{gathered}
$$

According to a computer proof by [CHB96], the progenitor $2^{* 4}: A_{4}$, factored by the relations $\left.\left[\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}\right]^{4}=e$ and $\left[\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{0}\right]^{6}=e$, is isomorphic to S_{5}. In fact, factoring the progenitor $2^{* 4}: A_{4}$ by the relation $\left.\left[\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}\right]^{4}=e$ alone suffices. We will construct S_{5} by way of manual double coset enumeration of $G \cong \frac{2^{* 4}: A_{4}}{\left[(012) t_{0}\right]^{4},\left[(01)(23) t_{0}\right]^{6}}$ over A_{4}. In so doing, we will show that S_{5} is isomorphic to the symmetric presentation

$$
G=\left\langle x, y, t \mid x^{3}=y^{3}=(x y)^{2}=e=t^{2}=[t, x]=(y t)^{4}=(x y t)^{6}\right\rangle .
$$

3.2 Manual Double Coset Enumeration of G Over A_{4}

We first determine the order of the homomorphic image, G, of the progenitor. To determine the order of the homomorphic image G, we will determine the index of $N \cong A_{4}$ in G. We determine the index of $N \cong A_{4}$ in G first by expanding the relations $\left.\left[\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}\right]^{4}=e$ and $\left[\left(\begin{array}{lll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{0}\right]^{6}=e$, and next by performing manual double coset enumeration on G over $N \cong A_{4}$. To begin, we expand the relations that factor the progenitor $2^{* 4}: A_{4}$:

$$
\begin{gather*}
{\left[\left(\begin{array}{lll}
0 & 1 & 2)
\end{array} t_{0}\right]^{4}=e\right.} \tag{3.1}\\
{\left[\left(\begin{array}{lll}
0 & 1
\end{array}\right)\left(\begin{array}{ll}
2 & 3
\end{array} t_{0}\right]^{6}=e\right.} \tag{3.2}
\end{gather*}
$$

As mentioned above, relation (3.1), $\left.\left[\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}\right]^{4}=e$, is required to determine the homomorphic image, G, of the progenitor, and the other relation, (3.2), can be derived from relation (3.1). We expand relations (3.1) and (3.2) in detail below:

1. Let $\pi=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right)$.

Then $\left[\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}\right]^{4}=e \Rightarrow\left(\pi t_{0}\right)^{4}=e \Rightarrow \pi t_{0} \pi t_{0} \pi t_{0} \pi t_{0}=e \Rightarrow$ $\pi t_{0} \pi t_{0} \pi^{2} \pi^{-1} t_{0} \pi t_{0}=e \Rightarrow \pi t_{0} \pi^{3} \pi^{-1} \pi^{-1} t_{0} \pi^{2} t_{0}^{\pi} t_{0}=e \Rightarrow$

$$
\begin{aligned}
& \pi^{4} \pi^{-1} \pi^{-1} \pi^{-1} t_{0} \pi^{3} t_{0}^{\pi^{2}} t_{0}^{\pi} t_{0}=e \Rightarrow \pi^{4} t_{0}^{\pi^{3}} t_{0}^{\pi^{2}} t_{0}^{\pi} t_{0}=e \Rightarrow \\
& (012)^{4} t_{0}^{(012)^{3}} t_{0}^{(012)^{2}} t_{0}^{(012)} t_{0}=e \Rightarrow\left(\begin{array}{lll}
0 & 1 & 2) t_{0}^{e} t_{0}^{(021)} t_{0}^{(012)} t_{0}=e \\
\Rightarrow(012) & t_{0} t_{2} t_{1} t_{0}=e \Rightarrow\left(\begin{array}{lll}
(012) & t_{0} t_{2}=t_{0} t_{1}
\end{array}\right.
\end{array} .\right.
\end{aligned}
$$

Thus relation (3.1) implies that (012) $t_{0} t_{2}=t_{0} t_{1}$ or, equivalently, $N t_{0} t_{2}=N t_{0} t_{1}$. That is, using our short-hand notation, $02 \sim 01$.
2. Let $\pi=\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right)$.

$$
\begin{aligned}
& \text { Then }\left[\left(\begin{array}{ll}
0 & 1
\end{array}\right)\left(\begin{array}{ll}
2 & 3
\end{array}\right) t_{0}\right]^{6}=e \Rightarrow\left(\pi t_{0}\right)^{6}=e \Rightarrow \pi t_{0} \pi t_{0} \pi t_{0} \pi t_{0} \pi t_{0} \pi t_{0}=e \\
& \Rightarrow \pi t_{0} \pi t_{0} \pi t_{0} \pi t_{0} \pi^{2} \pi^{-1} t_{0} \pi t_{0}=e \Rightarrow \\
& \pi t_{0} \pi t_{0} \pi t_{0} \pi^{3} \pi^{-1} \pi^{-1} t_{0} \pi^{2} t_{0}^{\pi} t_{0}=e \Rightarrow \pi t_{0} \pi t_{0} \pi^{4} \pi^{-1} \pi^{-1} \pi^{-1} t_{0} \pi^{3} t_{0}^{\pi^{2}} t_{0}^{\pi} t_{0}=e \\
& \Rightarrow \pi t_{0} \pi^{5} \pi^{-1} \pi^{-1} \pi^{-1} \pi^{-1} t_{0} \pi^{4} t_{0}^{\pi^{3}} t_{0}^{\pi^{2}} t_{0}^{\pi} t_{0}=e \Rightarrow \\
& \pi^{6} \pi^{-1} \pi^{-1} \pi^{-1} \pi^{-1} \pi^{-1} t_{0} \pi^{5} t_{0}^{\pi^{4}} t_{0}^{\pi^{3}} t_{0}^{\pi^{2}} t_{0}^{\pi} t_{0}=e \Rightarrow \pi^{6} t_{0}^{\pi^{5}} t_{0}^{\pi^{4}} t_{0}^{\pi^{3}} t_{0}^{\pi^{2}} t_{0}^{\pi} t_{0}=e \Rightarrow
\end{aligned}
$$

Thus relation (3.2) implies that $t_{1} t_{0} t_{1}=t_{0} t_{1} t_{0}$ or, equivalently,
$N t_{1} t_{0} t_{1}=N t_{0} t_{1} t_{0}$. That is, using our short-hand notation, $101 \sim 010$.
We now perform manual double coset enumeration of G over A_{4}.

1. We first note that the double $\operatorname{coset} N e N=\{N e n \mid n \in N\}=\{N n \mid n \in N\}=\{N\}$.

Let [*] denote the double coset $N e N$.
The double coset [*] has one distinct right coset: the identity right coset, $N e=$ $\{n e \mid n \in N\}=N$.

Moreover, since $N \cong A_{4}$ is transitive, and since $O(0)=\left\{0^{g} \mid g \in N\right\}=\{0,1,2,3\}=$ $O(1)=O(2)=O(3), N$ must have one orbit on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0,1,2,3\}$.

Therefore, there is one double coset of the form $N w N$, where w is a word of length one given by $w=t_{i}, i \in\{0,1,2,3\}: N t_{0} N$.
2. We next consider the double coset $N t_{0} N$.

Let [0] denote the double coset $N t_{0} N$.
Note that $N^{(0)} \geq N^{0}=\left\langle\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)\right\rangle \cong A_{3}$. Thus $\left|N^{(0)}\right| \geq\left|A_{3}\right|=3$, and, by Lemma $1.4,\left|N t_{0} N\right|=\frac{|N|}{\left|N^{(0)}\right|}=\frac{12}{3}=4$.

Therefore, the double coset [0$]$ has at most four distinct single cosets.
Moreover, $N^{(0)}$ must have two orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\}$ and $\{1,2,3\}$.
Therefore, there are at most two double cosets of the form $N w N$, where w is a word of length two given by $w=t_{0} t_{i}, i \in\{0,1\}: N t_{0} t_{0} N$ and $N t_{0} t_{1} N$.

But, since $N t_{0} t_{0} N=N t_{0}^{2} N=N e N=N$, we need only consider one additional the double coset of the form $N t_{0} t_{i} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1} N$.
3. We next consider the double coset $N t_{0} t_{1} N$.

Let [01] denote the double coset $N t_{0} t_{1} N$.
Now, by relation (3.1), ($\left.\begin{array}{lll}1 & 1 & 2\end{array}\right) t_{0} t_{2}=t_{0} t_{1}$ and $\left.\left.\left[\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{2}\right]^{(12} 33\right)=\left(t_{0} t_{1}\right)^{(1} 233\right) \Rightarrow$ $\left(\begin{array}{ll}0 & 2\end{array}\right) t_{0} t_{3}=t_{0} t_{2}$ imply that $t_{0} t_{2}=\left(\begin{array}{ll}0 & 2\end{array}\right) t_{0} t_{1}=\left(\begin{array}{ll}0 & 2\end{array}\right) t_{0} t_{3}$. Therefore, $t_{0} t_{2}=$ $(021) t_{0} t_{1}=\left(\begin{array}{ll}0 & 2\end{array}\right) t_{0} t_{3}$ implies that

$$
01 \sim 02 \sim 03
$$

Similarly, by conjugation, we find that

$$
10 \sim 12 \sim 13, \quad 20 \sim 21 \sim 23, \quad 30 \sim 31 \sim 32
$$

Since each of the twelve single cosets has three names, the double coset [01] has at most four distinct single cosets.

An alternative approach for determining the order of the double coset is as follows: We note that $N^{(01)} \geq N^{01}=\langle e\rangle$. Now, by relation (3.1), $N\left(t_{0} t_{1}\right)^{(123)}=N t_{0} t_{2}=$ $N t_{0} t_{1}$ implies that (123 $\left.\begin{array}{ll}1 & 2\end{array}\right) \in N^{(01)}$. Therefore, $N^{(01)} \geq\left\langle\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)\right\rangle \cong A_{3}$, and so $\left|N^{(01)}\right| \geq\left|A_{3}\right|=3$. Now, by Lemma 1.4, $\left|N t_{0} t_{1} N\right|=\frac{|N|}{\left|N^{(01)}\right|} \leq \frac{12}{3}=4$.
Therefore, as we concluded earlier, the double coset [01] has at most four distinct single cosets.
Now, $N^{(01)}$ must have two orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\}$ and $\{1,2,3\}$.
Therefore, there are at most two double cosets of the form $N w N$, where w is a word of length three given by $w=t_{0} t_{1} t_{i}, i \in\{0,1\}: N t_{0} t_{1} t_{0} N$ and $N t_{0} t_{1} t_{1} N$.

But, since $N t_{0} t_{1} t_{1} N=N t_{0} t_{1}^{2} N=N t_{0} e N=N t_{0} N$, we need only consider one additional the double coset of the form $N t_{0} t_{1} t_{i} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1} t_{0} N$.
4. We next consider the double coset $N t_{0} t_{1} t_{0} N$.

Let [010] denote the double coset $N t_{0} t_{1} t_{0} N$.
Now, by relations (3.2), $t_{1} t_{0} t_{1}=t_{0} t_{1} t_{0}$, and, by conjugation with elements of $A_{4},\left(t_{1} t_{0} t_{1}\right)^{(01)(23))}=\left(t_{0} t_{1} t_{0}\right)^{(01)(23)} \Rightarrow t_{0} t_{1} t_{0}=t_{1} t_{0} t_{1}$, and $\left(t_{1} t_{0} t_{1}\right)^{(13)(02)}=$ $\left(t_{0} t_{1} t_{0}\right)^{(13)(02)} \Rightarrow t_{3} t_{2} t_{3}=t_{2} t_{3} t_{2}$, and $\left(t_{1} t_{0} t_{1}\right)^{(12)(03)}=\left(t_{0} t_{1} t_{0}\right)^{(12)(03)} \Rightarrow t_{2} t_{3} t_{2}=$ $t_{3} t_{2} t_{3}$, and $\left(t_{1} t_{0} t_{1}\right)^{(012)}=\left(t_{0} t_{1} t_{0}\right)^{(012)} \Rightarrow t_{2} t_{1} t_{2}=t_{1} t_{2} t_{1}$, and $\left(t_{1} t_{0} t_{1}\right)^{(021)}=$ $\left(t_{0} t_{1} t_{0}\right)^{(021)} \Rightarrow t_{0} t_{2} t_{0}=t_{2} t_{0} t_{2}$, and $\left(t_{1} t_{0} t_{1}\right)^{(013}=\left(t_{0} t_{1} t_{0}\right)^{(013)} \Rightarrow t_{3} t_{1} t_{3}=$ $t_{1} t_{3} t_{1}$, and $\left(t_{1} t_{0} t_{1}\right)^{(031)}=\left(t_{0} t_{1} t_{0}\right)^{(031)} \Rightarrow t_{0} t_{3} t_{0}=t_{3} t_{0} t_{3}$, and $\left(t_{1} t_{0} t_{1}\right)^{(023)}=$ $\left(t_{0} t_{1} t_{0}\right)^{(023)} \Rightarrow t_{1} t_{2} t_{1}=t_{2} t_{1} t_{2}$, and $\left(t_{1} t_{0} t_{1}\right)^{(032)}=\left(t_{0} t_{1} t_{0}\right)^{(032)} \Rightarrow t_{1} t_{3} t_{1}=$ $t_{3} t_{1} t_{3}$, and $\left(t_{1} t_{0} t_{1}\right)^{(123)}=\left(t_{0} t_{1} t_{0}\right)^{(123)} \Rightarrow t_{2} t_{0} t_{2}=t_{0} t_{2} t_{0}$, and $\left(t_{1} t_{0} t_{1}\right)^{(132)}=$ $\left(t_{0} t_{1} t_{0}\right)^{(132)} \Rightarrow t_{3} t_{0} t_{3}=t_{0} t_{3} t_{0}$. Furthermore, by relation (3.1),
$\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{2}=t_{0} t_{1}=\left(\begin{array}{lll}0 & 1 & 3\end{array}\right) t_{0} t_{3} \Rightarrow\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{2} t_{0}=t_{0} t_{1} t_{0}=\left(\begin{array}{lll}0 & 1 & 3\end{array}\right) t_{0} t_{3} t_{0}$. Therefore,
(012) $\begin{aligned} & 0\end{aligned} t_{2} t_{0}=t_{0} t_{1} t_{0}=\left(\begin{array}{lll}0 & 1 & 3\end{array}\right) t_{0} t_{3} t_{0}$ and, the above relations, imply that:

$$
010 \sim 020 \sim 030 \sim 101 \sim 121 \sim 131 \sim 202 \sim 212 \sim 232 \sim 303 \sim 313 \sim 323
$$

Since each of the twelve single cosets has twelve names, the double coset [010] has one distinct single coset.

An alternative approach for determining the order of the double coset is as follows: We note that $N^{(010)} \geq N^{010}=\langle e\rangle$. Now, by relations (3.1) and (3.2), $N\left(t_{0} t_{1} t_{0}\right)^{(01)(23)}=N t_{1} t_{0} t_{1}=N t_{0} t_{1} t_{0}$ implies that $\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) \in N^{(010)}$, and $N\left(t_{0} t_{1} t_{0}\right)^{\left(\begin{array}{ll}(12)\end{array}\right)}=N t_{1} t_{2} t_{1}=N t_{0} t_{1} t_{0}$ implies that $\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) \in N^{(010)}$. Therefore, $N^{(010)} \geq\left\langle\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right),\left(\begin{array}{lll}0 & 1 & 2\end{array}\right)\right\rangle \cong A_{4}$. Therefore, $\left|N^{(010)}\right| \geq\left|A_{4}\right|=12$. Now, by Lemma 1.4, $\left|N t_{0} t_{1} t_{0} N\right|=\frac{|N|}{\left|N^{(010)}\right|} \leq \frac{12}{12}=1$.
Therefore, as we concluded earlier, the double coset [010] has one distinct single coset.
Now, $N^{(010)}$ must have one orbit on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0,1,2,3\}$.
Therefore, there is at most one double coset of the form $N w N$, where w is a word of length four given by $t_{0} t_{1} t_{0} t_{i}, i=0: N t_{0} t_{1} t_{0} t_{0} N$.

But, since $N t_{0} t_{1} t_{0} t_{0} N=N t_{0} t_{1} t_{0}^{2} N=N t_{0} t_{1} e N=N t_{0} t_{1} N$, we need not consider additional double cosets of the form $N t_{0} t_{1} t_{0} t_{i} N$, where $i \in\{0,1,2,3\}$.

Figure 3.1: Cayley Diagram of G Over A_{4}

In fact, since $N^{(010)}$ is transitive on the symmetric generators and since $N t_{0} t_{1} t_{0} t_{0}=$ $N t_{0} t_{1} t_{0}^{2}=N t_{0} t_{1} e=N t_{0} t_{1}$ implies that the double coset [0100] $=[01]$, we must have completed the double coset enumeration of G over A_{4}.

In total, therefore, there are at most 4 distinct double cosets of N in G and at most 10 distinct right (single) cosets of N in G. The double cosets of N in G are as follows: [*], [0], [01], and [010].

3.3 Cayley Diagram of G Over A_{4}

The Cayley diagram of G over A_{4} is illustrated in Figure 3.1. For a detailed explanation of the meaning of the component parts of a Cayley diagram, see Section 2.3.

3.4 Action of the Symmetric Generators and the Generators of A_{4} on the Right Cosets of G Over A_{4}

Let X denote the set of all (10) distinct right cosets of N in G, that is, let $X=$ $\left\{N, N t_{0}, N t_{1}, N t_{2}, N t_{3}, N t_{0} t_{1}, N t_{1} t_{0}, N t_{2} t_{0}, N t_{3} t_{0}, N t_{0} t_{1} t_{0}\right\}$. We define a mapping $\phi: G \longrightarrow S_{X}$ so that ϕ maps a generator $g \in G$ to its action (by right multiplication) on X. That is, we define ϕ so that $\phi(g)=\widehat{\phi}(g): X \rightarrow X$. Then the action $\phi(t) \sim \phi\left(t_{0}\right)$ of the symmetric generator $t \sim t_{0}$ on the right cosets of N in G may be expressed as

$$
\phi(t) \sim \phi\left(t_{0}\right)=(* 0)(110)(220)(330)(01010)
$$

and the action $\phi(x) \sim \phi((123))$ of the generator $x \sim\left(\begin{array}{l}1 \\ 2\end{array} 3\right)$ of A_{4} on the right cosets of N in G may be expressed as

$$
\phi(x) \sim \phi\left(\left(\begin{array}{ll}
1 & 2
\end{array}\right)\right)=\left(\begin{array}{ll}
1 & 2
\end{array}\right)(102030),
$$

and the action $\phi(y) \sim \phi((12))$ of the generator $y \sim(12)$ of S_{3} on the right cosets of N in G may be expressed as

$$
\phi(y) \sim \phi\left(\left(\begin{array}{ll}
1 & 2
\end{array}\right)\right)=\left(\begin{array}{lll}
0 & 1 & 2
\end{array}\right)\left(\begin{array}{lll}
0 & 10 & 20
\end{array}\right)
$$

Since there are 10 distinct right cosets of N in G, these actions may be written as permutations on 10 letters. In fact, the actions of the generators on the set of right cosets of N in G are equivalent to the permutation representations of the generators in their action on the right cosets of N in G. To better manipulate the permutation representations of the symmetric generators t_{i} and the generators x and y, it is helpful to label the distinct single cosets of N in G as follows:

(10)	$*$	(5)	01
(1)	0	(6)	10
(2)	1	(7)	20
(3)	2	(8)	30
(4)	3	(9)	010

Having labeled each of the 10 distinct right cosets of N in G, we express the permutation representation of the symmetric generators $t \sim t_{0}, t^{y} \sim t_{1}, t^{y^{2}} \sim t_{2}$, and $t^{y x^{2}} \sim t_{3}$, and the generators $x \sim(123)$ and $y \sim(012)$ in their action on the right cosets of N in G as

$$
\begin{aligned}
& \phi(t) \sim \phi\left(t_{0}\right):(101)(26)(37)(48)(59), \\
& \phi\left(t^{y}\right) \sim \phi\left(t_{1}\right):(102)(15)(37)(48)(69), \\
& \phi\left(t^{y^{2}}\right) \sim \phi\left(t_{2}\right):(103)(15)(26)(48)(79), \\
& \phi\left(t^{y x^{2}}\right) \sim \phi\left(t_{3}\right):(104)(15)(26)(37)(89), \\
& \phi(x) \sim \phi((123)):\left(\begin{array}{ll}
2 & 3
\end{array}\right)\binom{6}{7}, \\
& \phi(y) \sim \phi((012)):\left(\begin{array}{ll}
1 & 2
\end{array}\right)(567)
\end{aligned}
$$

3.5 Proof of Isomorphism between G and S_{5}

We now demonstrate that $G \cong S_{5}$.

Proof. To prove that $G \cong S_{5}$, we must first show that $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of G and that $|G|=|\langle\phi(x), \phi(y), \phi(t)\rangle|=120$ (from which we can conclude $G \cong\langle\phi(x), \phi(y), \phi(t)\rangle)$, and we must next show that $\langle\phi(x), \phi(y), \phi(t)\rangle \cong S_{5}$ (from which we can conclude S_{5} is a homomorphic image of G and $G \cong S_{5}$).

We first show $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of G and $|G|=|\langle\phi(x), \phi(y), \phi(t)\rangle|=120$. From our construction of G using manual double coset enumeration of G over A_{4}, illustrated by the Cayley Diagram in Figure 3.1, we concluded that group G defined by the symmetric presentation must contain a homomorphic image of $N \cong A_{4}$ whose index $[G: N]$ is at most 10 :

$$
\begin{gathered}
{[G: N]=\frac{|N|}{\left|N^{(*)}\right|}+\frac{|N|}{\left|N^{(0)}\right|}+\frac{|N|}{\left|N^{(01)}\right|}+\frac{|N|}{\left|N^{(010)}\right|} \leq \frac{12}{12}+\frac{12}{3}+\frac{12}{3}+\frac{12}{12}=} \\
1+4+4+1=10
\end{gathered}
$$

Since the index of N in G is at most 10 , and since $|G|=\frac{|G|}{|N|} \cdot|N|$, the order of the homomorphic image group G is at most 120:

$$
|G|=\frac{|G|}{|N|} \cdot|N| \leq 10 \cdot|N|=10 \cdot 12=120 \Rightarrow|G| \leq 120
$$

We now consider $\langle\phi(x), \phi(y), \phi(t)\rangle$. Note that $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a group generated by the permutation representations of the generators x, y, and t and, as such, it is a subgroup of the symmetric group S_{10} acting on the ten right cosets of N in G. We now show that $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of G and, therefore, that $|G| \geq|\langle\phi(x), \phi(y), \phi(t)\rangle|=120$. To show that $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of G, we first demonstrate that $\langle\phi(x), \phi(y), \phi(t)\rangle \leq S_{10}$ is a homomorphic image of \bar{G}. Now, recall that $\bar{G}=\langle x, y, t\rangle$ is a homomorphic image of the progenitor $2^{* 4}: A_{4}$, and its presentation is given by

$$
\bar{G}=\left\langle x, y, t \mid x^{3}=y^{3}=(x y)^{2}=e=t^{2}=[t, x]\right\rangle
$$

where $x \sim\left(\begin{array}{ll}1 & 2\end{array}\right), y \sim\left(\begin{array}{ll}0 & 1\end{array}\right)$, and $t \sim t_{0}$, and $N=\langle x, y\rangle \cong A_{4}$. Let $\alpha: \bar{G} \longrightarrow\langle\phi(x), \phi(y), \phi(t)\rangle$ be a mapping from \bar{G} to $\langle\phi(x), \phi(y), \phi(t)\rangle$. We note first that
the mapping $\alpha: \vec{G} \longrightarrow\langle\phi(x), \phi(y), \phi(t)\rangle$ is well defined. The generators $\phi(x), \phi(y)$, and $\phi(t)$ are the permutation representations of $x \sim(123), y \sim(012)$, and $t \sim t_{0}$ on 10 letters. Since the order of $\phi(x)$ is 3 , the order of $\phi(y)$ is 3 , and the order of $\phi(x) \phi(y)$ is 2 , we conclude $\langle\phi(x), \phi(y)\rangle \cong N \cong A_{4}$. Moreover, we can demonstrate that $\phi(t)$ has exactly four conjugates under conjugation by the elements of $\langle\phi(x), \phi(y)\rangle \cong N \cong A_{4}$. Now, since $t \sim t_{0}$, we have that

$$
\begin{aligned}
& \phi(t)^{\phi(y)} \sim \phi\left(t_{0}\right)^{\phi\left(\left(\begin{array}{ll}
0 & 1
\end{array}\right)\right)}=\left[\left(\begin{array}{ll}
10 & 1
\end{array}\right)\left(\begin{array}{ll}
2 & 6)\left(\begin{array}{ll}
3 & 7
\end{array}\right)(48)(59)
\end{array}\right]^{(132)(576)}=\right. \\
& {[(123)(567)][(101)(26)(37)(48)(59)][(132)(576)]=} \\
& (102)(15)(37)(48)(69)=\phi\left(t_{1}\right) \sim \phi\left(t^{y}\right)
\end{aligned}
$$

and further that

$$
\begin{aligned}
& \phi(t)^{\phi\left(y^{2}\right)} \sim \phi\left(t_{0}\right)^{\phi\left(\left(\begin{array}{ll}
0 & 2
\end{array}\right)^{2}\right)}=\left[\left(\begin{array}{ll}
10 & 1)(26)(37)(48)(59)
\end{array}\right]^{(123)(567)}=\right. \\
& {[(132)(576)][(101)(26)(37)(48)(59)][(123)(567)]=} \\
& (103)(15)(26)(48)(79)=\phi\left(t_{2}\right) \sim \phi\left(t^{y^{2}}\right)
\end{aligned}
$$

and further that

$$
\begin{gathered}
\phi(t)^{\phi\left(y x^{2}\right)} \sim \phi\left(t_{0}\right)^{\phi\left((012)(123)^{2}\right)}=[(101)(26)(37)(48)(59)]^{(124)(568)}= \\
{[(142)(586)][(101)(26)(37)(48)(59)][(124)(568)]=} \\
(104)(15)(26)(37)(89)=\phi\left(t_{3}\right) \sim \phi\left(t^{y x^{2}}\right)
\end{gathered}
$$

Therefore, $\phi(t)$ has exactly four conjugates under conjugation by the elements of $\langle\phi(x), \phi(y)\rangle \cong N \cong A_{4} ;$ these conjugates are, namely, $\phi(t) \sim \phi\left(t_{0}\right), \phi\left(t^{y}\right) \sim \phi\left(t_{1}\right)$, $\phi\left(t^{y^{2}}\right) \sim \phi\left(t_{2}\right)$, and $\phi\left(t^{y x^{2}}\right) \sim \phi\left(t_{3}\right)$. Since $\langle\phi(x), \phi(y)\rangle \cong N \cong A_{4}$ and since $\phi(t)$ has exactly four conjugates under conjugation by the elements of $\langle\phi(x), \phi(y)\rangle \cong N$, we conclude that $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of $\bar{G}=\langle x, y, t\rangle$. That is, $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of the progenitor $2^{* 4}: A_{4}$.

Next, to show that $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of G, we must show that $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of \bar{G} factored by the relations $(y t)^{4}=e$ and $(x y t)^{6}=e$; that is, we must show that $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of the progenitor $2^{* 4}: A_{4}$ factored by the relations $\left[\left(\begin{array}{ll}0 & 1\end{array}\right) t_{0}\right]^{4}=e$ and $\left[\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{0}\right]^{6}=e$.

Let $\tilde{\alpha}: G \longrightarrow\langle\phi(x), \phi(y), \phi(t)\rangle$ be a mapping from G to $\langle\phi(x), \phi(y), \phi(t)\rangle$. We note first that the mapping $\tilde{\alpha}: G \longrightarrow\langle\phi(x), \phi(y), \phi(t)\rangle$ is well-defined, and we know already that $\langle\phi(x), \phi(y) ; \phi(t)\rangle$ is a homomorphic image of the progenitor $2^{* 4}: A_{4}$. Now, to show that $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of G, we need only demonstrate that the relations $\left[\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}\right]^{4}=e$ and $\left[\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{0}\right]^{6}=e$, which hold true in G, also hold true in $\langle\phi(x), \phi(y), \phi(t)\rangle \leq S_{10}$.

To demonstrate that the relation $\left.\left[\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}\right]^{4}=e$, or, equivalently, the relation $t_{0} t_{2} t_{1} t_{0}=(021)$, holds true in $\langle\phi(x), \phi(y), \phi(t)\rangle \leq S_{10}$, we show that $\phi\left(t_{0}\right) \phi\left(t_{2}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right)$ $\sim \phi(t) \phi\left(t^{y^{2}}\right) \phi\left(t^{y}\right) \phi(t) \in S_{10}$ acts on the four symmetric generators $\phi\left(t_{0}\right), \phi\left(t_{1}\right), \phi\left(t_{2}\right)$, and $\phi\left(t_{3}\right)$ by conjugation in the same way that $\phi\left(\left(\begin{array}{ll}0 & 2\end{array}\right)\right) \sim \phi\left(y^{2}\right)$ acts on the four symmetric generators $\phi\left(t_{0}\right), \phi\left(t_{1}\right), \phi\left(t_{2}\right)$, and $\phi\left(t_{3}\right)$ by conjugation. We first conjugate the symmetric generators $\phi\left(t_{0}\right), \phi\left(t_{1}\right), \phi\left(t_{2}\right)$, and $\phi\left(t_{3}\right)$ by $\phi\left(t_{0}\right) \phi\left(t_{2}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right)$. This gives us

$$
\begin{aligned}
& \left.\phi\left(t_{1}\right)^{\phi\left(t_{0}\right) \phi\left(t_{2}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right)}=\left[\left(\begin{array}{ll}
10 & 2
\end{array}\right)\left(\begin{array}{ll}
1 & 5
\end{array}\right)\left(\begin{array}{ll}
3 & 7
\end{array}\right)\left(\begin{array}{ll}
4 & 8
\end{array}\right)\left(\begin{array}{ll}
6 & 9
\end{array}\right)\right]^{(13} 3\right)(576)=\phi\left(t_{0}\right), \\
& \left.\phi\left(t_{2}\right)^{\phi\left(t_{0}\right) \phi\left(t_{2}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right)}=\left[\left(\begin{array}{ll}
10 & 3
\end{array}\right)\left(\begin{array}{l}
1
\end{array}\right)(26)(48)(79)\right]^{(13} 2\right)\left(\begin{array}{ll}
5 & 7
\end{array}\right)=\phi\left(t_{1}\right), \\
& \left.\phi\left(t_{3}\right)^{\phi\left(t_{0}\right) \phi\left(t_{2}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right)}=[(104)(15)(26)(37)(89)]^{(13} 2\right)(576)=\phi\left(t_{3}\right)
\end{aligned}
$$

We next conjugate the symmetric generators $\phi\left(t_{0}\right), \phi\left(t_{1}\right), \phi\left(t_{2}\right)$, and $\phi\left(t_{3}\right)$ by $\phi((021))$. This gives us

$$
\begin{aligned}
& \phi\left(t_{0}\right)^{\phi((021))}=\left[(101)\left(\begin{array}{ll}
2 & 6)(37)(48)(59)
\end{array}\right]^{(132)(576)}=\phi\left(t_{2}\right),\right. \\
& \phi\left(t_{1}\right)^{\phi((021))}=\left[\left(\begin{array}{ll}
10 & 2
\end{array}\right)\left(\begin{array}{ll}
1 & 5
\end{array}\right)(37)(48)\left(\begin{array}{ll}
6 & 9
\end{array}\right)\right]^{(132)(576)}=\phi\left(t_{0}\right), \\
& \phi\left(t_{2}\right)^{\phi((021))}=[(103)(15)(26)(48)(79)]^{(132)(576)}=\phi\left(t_{1}\right), \\
& \phi\left(t_{3}\right)^{\phi((021))}=[(104)(15)(26)(37)(89)]^{(132)(576)}=\phi\left(t_{3}\right)
\end{aligned}
$$

Since $\phi\left(t_{0}\right) \phi\left(t_{2}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right) \sim \phi(t) \phi\left(t^{y^{2}}\right) \phi\left(t^{y}\right) \phi(t) \in S_{10}$ acts on the four symmetric generators $\phi\left(t_{0}\right), \phi\left(t_{1}\right), \phi\left(t_{2}\right)$, and $\phi\left(t_{3}\right)$ by conjugation in the same way that $\phi((021)) \sim \phi\left(y^{2}\right)$ acts on the four symmetric generators $\phi\left(t_{0}\right), \phi\left(t_{1}\right), \phi\left(t_{2}\right)$, and $\phi\left(t_{3}\right)$ by conjugation, we conclude that the relation $\left[\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}\right]^{4}=e$, which holds true in G, also holds true in $\langle\phi(x), \phi(y), \phi(t)\rangle \leq S_{10}$.

To demonstrate that the relation $\left[\left(\begin{array}{lll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{0}\right]^{6}=e$, or, equivalently, the relation $t_{1} t_{0} t_{1} t_{0} t_{1} t_{0}=e$, holds true in $\langle\phi(x), \phi(y), \phi(t)\rangle \leq S_{\text {10 }}$, we show that
$\phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right) \sim \phi\left(t^{y}\right) \phi(t) \phi\left(t^{y}\right) \phi(t) \phi\left(t^{y}\right) \phi(t) \in S_{10}$ acts on the four symmetric generators $\phi\left(t_{0}\right), \phi\left(t_{1}\right), \phi\left(t_{2}\right)$, and $\phi\left(t_{3}\right)$ by conjugation in the same way that the identity element $\phi(e)$ acts on the four symmetric generators $\phi\left(t_{0}\right), \phi\left(t_{1}\right), \phi\left(t_{2}\right)$, and $\phi\left(t_{3}\right)$ by conjugation. We first conjugate the symmetric generators $\phi\left(t_{0}\right), \phi\left(t_{1}\right), \phi\left(t_{2}\right)$, and $\phi\left(t_{3}\right)$ by $\phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right)$. This gives us

$$
\begin{aligned}
& \phi\left(t_{0}\right)^{\phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right)}=\left[\left(\begin{array}{ll}
10 & 1)(26)(37)(48)(59)
\end{array}\right]^{\phi(e)}=\phi\left(t_{0}\right),\right. \\
& \phi\left(t_{1}\right)^{\phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right)}=\left[\left(\begin{array}{ll}
10 & \left.2)(15)(37)(48)\left(\begin{array}{ll}
4 & 9
\end{array}\right)\right]^{\phi(e)}=\phi\left(t_{1}\right), ~
\end{array}\right.\right. \\
& \phi\left(t_{2}\right)^{\phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right)}=\left[\left(\begin{array}{ll}
10 & 3)(15)(26)(48)(79)
\end{array}\right]^{\phi(e)}=\phi\left(t_{2}\right),\right. \\
& \phi\left(t_{3}\right)^{\phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right)}=\left[\left(\begin{array}{ll}
10 & 4
\end{array}\right)\left(\begin{array}{ll}
1 & 5)(26)(37)(89)
\end{array}\right]^{\phi(e)}=\phi\left(t_{3}\right)\right.
\end{aligned}
$$

We next conjugate the symmetric generators $\phi\left(t_{0}\right), \phi\left(t_{1}\right), \phi\left(t_{2}\right)$, and $\phi\left(t_{3}\right)$ by the identity element $\phi(e)$. This gives us

$$
\begin{aligned}
& \phi\left(t_{0}\right)^{\phi(e)}=\left[\left(\begin{array}{ll}
10 & 1
\end{array}\right)\left(\begin{array}{ll}
2 & 6)(37)(48)(59)
\end{array}\right]^{\phi(e)}=\phi\left(t_{0}\right),\right. \\
& \phi\left(t_{1}\right)^{\phi(e)}=[(102)(15)(37)(48)(69)]^{\phi(e)}=\phi\left(t_{1}\right), \\
& \phi\left(t_{2}\right)^{\phi(e)}=[(103)(15)(26)(48)(79)]^{\phi(e)}=\phi\left(t_{2}\right), \\
& \phi\left(t_{3}\right)^{\phi(e)}=[(104)(15)(26)(37)(89)]^{\phi(e)}=\phi\left(t_{3}\right)
\end{aligned}
$$

Since $\phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right) \sim \phi\left(t^{y}\right) \phi(t) \phi\left(t^{y}\right) \phi(t) \phi\left(t^{y}\right) \phi(t) \in S_{10}$ acts on the four symmetric generators $\phi\left(t_{0}\right), \phi\left(t_{1}\right), \phi\left(t_{2}\right)$, and $\phi\left(t_{3}\right)$ by conjugation in the same way that the identity element $\phi(e)$ acts on the four symmetric generators $\phi\left(t_{0}\right), \phi\left(t_{1}\right), \phi\left(t_{2}\right)$, and $\phi\left(t_{3}\right)$ by conjugation, we conclude that the relation $\left[\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{0}\right]^{6}=e$, which holds true in G, also holds true in $\langle\phi(x), \phi(y), \phi(t)\rangle \leq S_{10}$.

Since $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of the progenitor $2^{* 4}: A_{4}$, and since the relations $\left.\left[\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}\right]^{4}=e$ and $\left[\left(\begin{array}{lll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{0}\right]^{6}=e$ hold true in $\langle\phi(x), \phi(y), \phi(t)\rangle \leq$ S_{10}, we conclude that $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of the progenitor $2^{* 4}: A_{4}$ factored by the relations $\left.\left[\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}\right]^{4}=e$ and $\left[\left(\begin{array}{lll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{0}\right]^{6}=e$; that is, we conclude that $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of G.

More importantly, since $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of G, we have that $\langle\phi(x), \phi(y), \phi(t)\rangle \leq G$. In fact, since $\langle\phi(x), \phi(y), \phi(t)\rangle \leq G$, we have that $|G| \geq|\langle\phi(x), \phi(y), \phi(t)\rangle|$. Since it is easily demonstrated, with MAGMA or by hand, that
$|\langle\phi(x), \phi(y), \phi(t)\rangle|=120$, we conclude finally that $|G| \geq|\langle\phi(x), \phi(y), \phi(t)\rangle|=120$, that is, $|G| \geq 120$. Given $|G| \leq 120$ and $|G| \geq 120$, we conclude $|G|=120$. Moreover, since $|\langle\phi(x), \phi(y), \phi(t)\rangle|=120=|G|$ and since $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of G, we conclude

$$
\langle\phi(x), \phi(y), \phi(t)\rangle \cong G .
$$

We finally show that $\langle\phi(x), \phi(y), \phi(t)\rangle \cong S_{5}$. Let $G_{1}=\langle\phi(x), \phi(y), \phi(t)\rangle$. Now, with the help of MAGMA (see [BCP97]), we know that the elements $a=(19587)$ $(236410), b=(12)(35)(47)(68)(910)$, and $c=(17)(36)(410)(58)$ belong to G_{1}. (Note: The labels for the right cosets in this case were assigned by MAGMA and are different from the labels that we assigned earlier.) Therefore, $\langle a, b, c\rangle \leq G_{1}$, where $G_{1}=$ $\langle\phi(x), \phi(y), \phi(t)\rangle$, a permutation group on 10 letters, is a permutation representation of G and, further, $\left|G_{1}\right|=120$. But $|\langle a, b, c\rangle|=\left|G_{1}\right|=120$. Therefore, $G_{1}=\langle a, b, c\rangle$. However, $\langle a, b, c\rangle \cong S_{5} \cong\left\langle a, b, c \mid a^{5}=b^{2}=c^{2}=(a b)^{4}=\left(a^{-2}(a b)^{2}\right)^{3}=\left(a^{-2} b a^{2} b\right)^{2}=[c, b]=e\right\rangle$. Therefore, $G_{1} \cong S_{5}$ and, since $G_{1}=\langle\phi(x), \phi(y), \phi(t)\rangle \cong G$, we conclude that $G \cong S_{5}$.

3.6 Converting an Element of G from its Permutation Representation to its Symmetric Representation

To illustrate how a permutation representation of an element of S_{5} on 10 letters may be converted to its symmetric representation form, we consider the following example:

Example 3.1. Let $g \in G \cong S_{5}$ and let $p=\phi(g)=(108)(13)(49)(57)$ be the permutation representation of g on 10 letters. Then $10^{p}=8$ implies $N^{p}=N t_{3} t_{0}$, since 10 and 8 are labels for the right cosets N and $N t_{3} t_{0}$, respectively. Moreover, since $N^{p}=N p$ and $N^{p}=$ $N t_{3} t_{0}$, we have that $N p=N t_{3} t_{0}$. Now, $N p=N t_{3} t_{0}$ implies that $p \in N t_{3} t_{0}$ which implies that $p \sim \pi t_{3} t_{0}$ for some $\pi \in N \cong A_{4}$ or, more precisely, $p=\phi\left(\pi t_{3} t_{0}\right)=\phi(\pi) \phi\left(t_{3}\right) \phi\left(t_{0}\right)$ for some $\pi \in N \cong A_{4}$. To determine π, we note first that $p=\phi(\pi) \phi\left(t_{3}\right) \phi\left(t_{0}\right) \Rightarrow$ $p\left(\phi\left(t_{0}\right)\right)^{-1}\left(\phi\left(t_{3}\right)\right)^{-1}=p \phi\left(t_{0}^{-1}\right) \phi\left(t_{3}^{-1}\right)=p \phi\left(t_{0}\right) \phi\left(t_{3}\right)=\phi(\pi)$. We then calculate the action of $\pi \sim \phi(\pi)=p \phi\left(t_{0}\right) \phi\left(t_{3}\right)$ on the symmetric generators t_{i}, where $i \in\{0,1,2,3\}$. Now, $\pi \sim \phi(\pi)=p \phi\left(t_{0}\right) \phi\left(t_{3}\right)=[(108)(13)(49)(57)][(101)(26)(37)(48)(59)]$
$[(104)(15)(26)(37)(89)]=(134)(578)$. The element $\pi \sim \phi(\pi)=$
$p \phi\left(t_{0}\right) \phi\left(t_{3}\right)(134)(578)$ acts on the right cosets $N t_{0}, N t_{1}, N t_{2}$, and $N t_{3}$ via the mapping $\phi: G \longrightarrow S_{X}$ defined by $\phi(\pi, N w)=N w^{\pi}$. The mappings below illustrate this action:

$$
\begin{aligned}
& N t_{0}=1 \mapsto 1^{p}=3=N t_{2}, \quad N t_{2}=3 \mapsto 3^{p}=4=N t_{3}, \\
& N t_{3}=4 \mapsto 4^{p}=1=N t_{0}, \quad N t_{1}=2 \mapsto 2^{p}=2=N t_{1}
\end{aligned}
$$

Therefore, the element $\phi(\pi)$ acts as (023) on the right cosets $N t_{0}, N t_{1}, N t_{2}$, and $N t_{3}$, and so $\phi(\pi)$ is the permutation representation of $\pi=\left(\begin{array}{ll}0 & 2\end{array}\right) \in A_{4}$ on 10 letters. Therefore, $\pi=(023) \in A_{4}$ and $w=t_{3} t_{0}$, and so the symmetric representation of g is $(023) t_{3} t_{0}$.

3.7 Converting an Element of G from its Symmetric Representation to its Permutation Representation

To illustrate how an element of S_{5} in symmetric representation form may be converted to its permutation representation on 10 letters, we consider the following example:

Example 3.2. Let $g \in G \cong S_{5}$ have the symmetric representation (023 3) $t_{3} t_{0}$. To determine the permutation representation $p=\phi(g)$ of g, we first calculate the action of $\pi=\left(\begin{array}{ll}0 & 2\end{array}\right)$ on the right cosets of N in G. Now, the element $\pi=\left(\begin{array}{ll}0 & 2\end{array}\right)$ acts on the right cosets N in G via the mapping $\phi: G \longrightarrow S_{X}$ defined by $\phi(\pi, N w)=N w^{\pi}$. The mappings below illustrate this action:

$$
\begin{gathered}
10=N \mapsto N^{(023)}=N=10 \\
1=N t_{0} \mapsto N t_{0}^{(023)}=N t_{2}=3 \\
3=N t_{2} \mapsto N t_{2}^{(023)}=N t_{3}=4 \\
4=N t_{3} \mapsto N t_{3}^{(023)}=N t_{0}=1 \\
2=N t_{1} \mapsto N t_{1}^{(023)}=N t_{1}=2 \\
5=N t_{0} t_{1} \mapsto N\left(t_{0} t_{1}\right)^{(023)}=N t_{2} t_{0}=7 \\
7=N t_{2} t_{0} \mapsto N\left(t_{2} t_{0}\right)^{(023)}=N t_{3} t_{2}=N t_{3} t_{0}=8 \\
8=N t_{3} t_{0} \mapsto N\left(t_{3} t_{0}\right)^{(023)}=N t_{0} t_{2}=N t_{0} t_{1}=5
\end{gathered}
$$

$$
9=N t_{0} t_{1} t_{0} \mapsto N\left(t_{0} t_{1} t_{0}\right)^{(023)}=N t_{2} t_{1} t_{2}=N t_{0} t_{1} t_{0}=9
$$

Therefore, the permutation representation of $\pi=\left(\begin{array}{lll}0 & 2 & 3\end{array}\right)$ is $\phi(\pi)=\left(\begin{array}{lll}1 & 3 & 4\end{array}\right)\left(\begin{array}{ll}5 & 7\end{array}\right)$. Similarly, we calculate the action of the symmetric generator t_{3} on the right cosets of N in G. The symmetric generator t_{3} acts on the right cosets of N in G via the mapping $\phi: G \longrightarrow S_{X}$ defined by $\phi\left(t_{3}, N w\right)=N w t_{3}$. The mappings below illustrate this action:

$$
\begin{gathered}
10=N \mapsto N t_{3}=4 \\
4=N t_{3} \mapsto N t_{3} t_{3}=N=10 \\
1=N t_{0} \mapsto N t_{0} t_{3}=N t_{0} t_{1}=5 \\
5=N t_{0} t_{1} \mapsto N t_{0} t_{1} t_{3}=N t_{0} t_{3} t_{3}=N t_{0}=1 \\
2=N t_{1} \mapsto N t_{1} t_{3}=N t_{1} t_{0}=6 \\
6=N t_{1} t_{0} \mapsto N t_{1} t_{0} t_{3}=N t_{1} t_{3} t_{3}=N t_{1}=2 \\
3=N t_{2} \mapsto N t_{2} t_{3}=N t_{2} t_{0}=7 \\
7=N t_{2} t_{0} \mapsto N t_{2} t_{0} t_{3}=N t_{2} t_{3} t_{3}=N t_{2}=3 \\
8=N t_{3} t_{0} \mapsto N t_{3} t_{0} t_{3}=N t_{0} t_{1} t_{0}=9 \\
9=N t_{0} t_{1} t_{0} \mapsto N t_{0} t_{1} t_{0} t_{3}=N t_{3} t_{0} t_{3} t_{3}=N t_{3} t_{0}=8
\end{gathered}
$$

Therefore, the permutation representation of t_{3} is $\phi\left(t_{3}\right)=\left(\begin{array}{ll}10 & 4\end{array}\right)\left(\begin{array}{ll}1 & 5\end{array}\right)\left(\begin{array}{ll}2 & 6\end{array}\right)(37)(89)$. Finally, we calculate the action of the symmetric generator t_{0} on the right cosets of N in G. The symmetric generator t_{0} acts on the right cosets of N in G via the mapping $\phi: G \longrightarrow S_{X}$ defined by $\phi\left(t_{0}, N w\right)=N w t_{0}$. The mappings below illustrate this action:

$$
\begin{gathered}
10=N \mapsto N t_{0}=1 \\
1=N t_{0} \mapsto N t_{0} t_{0}=N=10 \\
2=N t_{1} \mapsto N t_{1} t_{0}=6 \\
6=N t_{1} t_{0} \mapsto N t_{1} t_{0} t_{0}=N t_{1}=2 \\
3=N t_{2} \mapsto N t_{2} t_{0}=7 \\
7=N t_{2} t_{0} \mapsto N t_{2} t_{0} t_{0}=N t_{2}=3
\end{gathered}
$$

$$
\begin{gathered}
4=N t_{3} \mapsto N t_{3} t_{0}=8 \\
8=N t_{3} t_{0} \mapsto N t_{3} t_{0} t_{0}=N t_{3}=4 \\
5=N t_{0} t_{1} \mapsto N t_{0} t_{1} t_{0}=9 \\
9=N t_{0} t_{1} t_{0} \mapsto N t_{0} t_{1} t_{0} t_{0}=N t_{0} t_{1}=5
\end{gathered}
$$

Therefore, the permutation representation of t_{0} is $\phi\left(t_{0}\right)=(101)(26)(37)(48)(59)$. Now, $g=\left(\begin{array}{ll}0 & 3\end{array}\right) t_{3} t_{0} \sim \phi(g)=\phi((023)) \phi\left(t_{3}\right) \phi\left(t_{0}\right)=[(134)(578)][(104)(15)(26)(37)(89)]$ $[(101)(26)(37)(48)(59)]=(108)(13)(49)(57)$. Therefore, the permutation representation of g is $p=\phi(g)=(108)(13)(49)(57)$.

Chapter 4

S_{6} as a Homomorphic Image of the Progenitor $2^{* 5}: A_{5}$

In this chapter, we investigate S_{6} as a homomorphic image of the progenitor $2^{* 5}: A_{5}$. The group S_{6} is the symmetric group on six letters having order $6!=720$. The progenitor $2^{* 5}: A_{5}$ is a semi-direct product of $2^{* 5}$, a free product of five copies of the cyclic group of order 2 , and A_{5}, the alternating group on five letters which permutes the five symmetric generators, $t_{0}, t_{1}, t_{2}, t_{3}$, and t_{4}, by conjugation.

4.1 Introduction

Let \bar{G} be a homomorphic image of the infinite semi-direct product, the progenitor, $2^{\star 5}: A_{5}$. A symmetric presentation of $2^{\star 5}: A_{5}$ is given by

$$
\bar{G}=\left\langle x, y, t \mid x^{5}=y^{3}=(x y)^{2}=e=[t, y]=\left[t, y^{x^{2}}\right]\right\rangle
$$

where $[t, y]=t y t y,\left[t, y^{x^{2}}\right]=t y^{x^{2}} t y^{x^{2}}$, and e is the identity. In this case, $N \cong A_{5} \cong\langle x, y|$ $\left.x^{5}=y^{3}=(x y)^{2}=e\right\rangle$, and the action of N on the five symmetric generators is given by $x \sim(01234), y \sim(421)$, and $t \sim t_{0}$.

Let G denote the group \bar{G} factored by the relations $\left(x y^{-1} x^{2} y^{-1} t\right)^{4}=e$ and $\left(x^{2} y^{-1} x^{2} t\right)^{6}=$ e. That is, let

$$
G=\frac{\bar{G}}{\left(x y^{-1} x^{2} y^{-1} t\right)^{4},\left(x^{2} y^{-1} x^{2} t\right)^{6}}
$$

A symmetric presentation for G is given by

$$
\left\langle x, y, t \mid x^{5}=y^{3}=(x y)^{2}=e=[t, y]=\left[t, y^{x^{2}}\right]=\left(x y^{-1} x^{2} y^{-1} t\right)^{4}=\left(x^{2} y^{-1} x^{2} t\right)^{6}\right\rangle
$$

Now, we consider the following relations:

$$
\begin{gathered}
{\left[\begin{array}{lll}
\left(\begin{array}{ll}
0 & 1
\end{array}\right) t_{0}
\end{array}\right]^{4}=e} \\
\text { and } \\
{\left[\left(\begin{array}{ll}
0 & 1
\end{array}\right)\left(\begin{array}{ll}
2 & 3
\end{array}\right) t_{0}\right]^{6}=e}
\end{gathered}
$$

According to a computer proof by [CHB96], the progenitor $2^{\star 5}: A_{5}$, factored by the relations $\left.\left[\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}\right]^{4}=e$ and $\left[\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{0}\right]^{6}=e$, is isomorphic to S_{6}. In fact, factoring the progenitor $2^{\star 5}: A_{5}$ by the relation $\left.\left[\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}\right]^{4}=e$ alone suffices. We will construct S_{6} by hand by way of manual double coset enumeration of $G \cong \frac{2^{\star 5}: A_{5}}{\left.\left[(012) t_{0}\right]^{4},(01)(23) t_{0}\right]^{6}}$ over S_{3}. In so doing, we will show that S_{6} is isomorphic to the symmetric presentation

$$
\left\langle x, y, t \mid x^{5}=y^{3}=(x y)^{2}=e=[t, y]=\left[t, y^{x^{2}}\right]=\left(x y^{-1} x^{2} y^{-1} t\right)^{4}=\left(x^{2} y^{-1} x^{2} t\right)^{6}\right\rangle
$$

4.2 Manual Double Coset Enumeration of G Over A_{5}

We first determine the order of the homomorphic image, G, of the progenitor. To determine the order of the homomorphic image G, we will determine the index of $N \cong A_{5}$ in G. We determine the index of $N \cong A_{5}$ in G first by expanding the relations $\left.\left[\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}\right]^{4}=e$ and $\left[\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{0}\right]^{6}=e$, and next by performing manual double coset enumeration on G over $N \cong A_{5}$. To begin, we expand the relations that factor the progenitor $2^{* 5}: A_{5}$:

$$
\begin{gather*}
{\left[\begin{array}{lll}
\left(\begin{array}{lll}
0 & 2
\end{array}\right) t_{0}
\end{array}\right]^{4}=\dot{e}} \tag{4.1}\\
{\left[\left(\begin{array}{lll}
0 & 1
\end{array}\right)\left(\begin{array}{ll}
2 & 3
\end{array}\right) t_{0}\right]^{6}=e} \tag{4.2}
\end{gather*}
$$

As mentioned above, relation (4.1), $\left.\left[\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}\right]^{4}=e$, is required to determine the homomorphic image, G, of the progenitor, and the other relation, (4.2), can be derived from relation (4.1). We expand relations (4.1) and (4.2) in detail below:

1. Let $\pi=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right)$.

Then $\left.\left[\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}\right]^{4}=e \Rightarrow\left(\pi t_{0}\right)^{4}=e \Rightarrow \pi t_{0} \pi t_{0} \pi t_{0} \pi t_{0}=e \Rightarrow$ $\pi t_{0} \pi t_{0} \pi^{2} \pi^{-1} t_{0} \pi t_{0}=e \Rightarrow \pi t_{0} \pi^{3} \pi^{-1} \pi^{-1} t_{0} \pi^{2} t_{0}^{\pi} t_{0}=e \Rightarrow$
$\pi^{4} \pi^{-1} \pi^{-1} \pi^{-1} t_{0} \pi^{3} t_{0}^{\pi^{2}} t_{0}^{\pi} t_{0}=e \Rightarrow \pi^{4} t_{0}^{\pi^{3}} t_{0}^{\pi^{2}} t_{0}^{\pi} t_{0}=e \Rightarrow$

(0112) $t_{0} t_{2} t_{1} t_{0}=e \Rightarrow\left(\begin{array}{ll}0 & 1\end{array}\right) t_{0} t_{2}=t_{0} t_{1}$.

Thus relation (4.1) implies that (012) $t_{0} t_{2}=t_{0} t_{1}$ or, equivalently, $N t_{0} t_{2}=N t_{0} t_{1}$.
That is, using our short-hand notation, $02 \sim 01$.
2. Let $\pi=\left(\begin{array}{ll}0 & 1)(23)\end{array}\right.$.

$$
\begin{aligned}
& \text { Then }\left[\left(\begin{array}{ll}
0 & 1
\end{array}\right)\left(\begin{array}{ll}
2 & 3
\end{array}\right) t_{0}\right]^{6}=e \Rightarrow\left(\pi t_{0}\right)^{6}=e \Rightarrow \pi t_{0} \pi t_{0} \pi t_{0} \pi t_{0} \pi t_{0} \pi t_{0}=e \Rightarrow \\
& \pi t_{0} \pi t_{0} \pi t_{0} \pi t_{0} \pi^{2} \pi^{-1} t_{0} \pi t_{0}=e \Rightarrow \\
& \pi t_{0} \pi t_{0} \pi t_{0} \pi^{3} \pi^{-1} \pi^{-1} t_{0} \pi^{2} t_{0}^{\pi} t_{0}=e \Rightarrow \pi t_{0} \pi t_{0} \pi^{4} \pi^{-1} \pi^{-1} \pi^{-1} t_{0} \pi^{3} t_{0}^{\pi^{2}} t_{0}^{\pi} t_{0}=e \\
& \Rightarrow \pi t_{0} \pi^{5} \pi^{-1} \pi^{-1} \pi^{-1} \pi^{-1} t_{0} \pi^{4} t_{0}^{\pi^{3}} t_{0}^{\pi^{2}} t_{0}^{\pi} t_{0}=e \Rightarrow \\
& \pi^{6} \pi^{-1} \pi^{-1} \pi^{-1} \pi^{-1} \pi^{-1} t_{0} \pi^{5} t_{0}^{\pi^{4}} t_{0}^{\pi^{3}} t_{0}^{\pi^{2}} t_{0}^{\pi} t_{0}=e \Rightarrow \pi^{6} t_{0}^{\pi^{5}} t_{0}^{\pi^{4}} t_{0}^{\pi^{3}} t_{0}^{\pi^{2}} t_{0}^{\pi} t_{0}=e \Rightarrow
\end{aligned}
$$

$$
\begin{aligned}
& t_{1} t_{0} t_{1}=t_{0} t_{1} t_{0} .
\end{aligned}
$$

Thus relation (4.2) implies that $t_{1} t_{0} t_{1}=t_{0} t_{1} t_{0}$ or, equivalently,
$N t_{1} t_{0} t_{1}=N t_{0} t_{1} t_{0}$. That is, using our short-hand notation, $101 \sim 010$.
We now perform manual double coset enumeration of G over A_{5}.

1. We first note that the double coset $N e N=\{N e n \mid n \in N\}=\{N n \mid n \in N\}=\{N\}$.

Let [*] denote the double coset $N e N$.
The double coset [$*$] has one distinct right coset: the identity right coset, $\mathrm{Ne}=$ $\{n e \mid n \in N\}=N$. Moreover, since $N \cong A_{5}$ is transitive, and since $O(0)=\left\{0^{g} \mid\right.$ $\left.g \in N^{(*)}\right\}=\{0,1,2,3,4\}=O(1)=O(2)=O(3)=O(4), N$ must have one orbit on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}, t_{4}\right\}:\{0,1,2,3,4\}$.

Therefore, there is one double coset of the form $N w N$, where w is a word of length one given by $w=t_{i}, i \in\{0,1,2,3,4\}: N t_{0} N$.
2. We next consider the double coset $N t_{0} N$.

Let [0] denote the double coset $N t_{0} N$.
Now, note that $N^{(0)} \geq N^{0}=\left\langle\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}3 & 4\end{array}\right),\left(\begin{array}{ll}1 & 2\end{array}\right)\right\rangle \cong A_{4}$. Thus $\left|N^{(0)}\right| \geq\left|A_{4}\right|=12$ and, by Lemma 1.4, $\left|N t_{0} N\right|=\frac{|N|}{\left|N^{(0)}\right|}=\frac{60}{12}=5$.

Therefore, the double coset [*] has at most five distinct single cosets.
Moreover, $N^{(0)}$ must have two orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}, t_{4}\right\}:\{0\}$ and $\{1,2,3,4\}$.
Therefore, there are at most two double cosets of the form $N w N$, where w is a word of length two given by $w=t_{0} t_{i}, i \in\{0,1\}: N t_{0} t_{0} N$ and $N t_{0} t_{1} N$.

But, since $N t_{0} t_{0} N=N t_{0}^{2} N=N e N=N$, we need only consider one additional the double coset of the form $N t_{0} t_{i} N$, where $i \in\{0,1,2,3,4\}: N t_{0} t_{1} N$.
3. We next consider the double coset $N t_{0} t_{1} N$.

Let [01] denote the double coset $N t_{0} t_{1} N$.
Now, by relation (4.1), ($\left.\begin{array}{lll}1 & 1 & 2\end{array}\right) t_{0} t_{2}=t_{0} t_{1}$, and $\left[\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{2}\right]^{(24)(13)}$
$=\left(t_{0} t_{1}\right)^{(24)(13)} \Rightarrow\left(\begin{array}{lll}0 & 3 & 4\end{array}\right) t_{0} t_{4}=t_{0} t_{3}$, and $\left.\left.\left[\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{2}\right]^{1} 3 \begin{array}{ll}1 & 2\end{array}\right)=\left(t_{0} t_{1}\right)^{(1} 324\right)$
$\Rightarrow\left(\begin{array}{lll}0 & 3 & 1\end{array}\right) t_{0} t_{1}=t_{0} t_{3}$. Therefore, $\left(\begin{array}{lll}0 & 3 & 4\end{array}\right) t_{0} t_{4}=t_{0} t_{3}=\left(\begin{array}{lll}0 & 3 & 1\end{array}\right) t_{0} t_{1}=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right) t_{0} t_{2}$
implies that

$$
01 \sim 02 \sim 03 \sim 04
$$

Similarly, by conjugation, we find that

$$
\begin{array}{ll}
10 \sim 12 \sim 13 \sim 14, & 20 \sim 21 \sim 23 \sim 24 \\
30 \sim 31 \sim 32 \sim 34, & 40 \sim 41 \sim 42 \sim 43
\end{array}
$$

Since each of the twelve single cosets has three names, the double coset [01] must have at most four distinct single cosets.

An alternative approach for determining the order of the double coset is as follows: We note that $N^{(01)} \geq N^{01}=\langle(234)\rangle \cong A_{3}$. This means that (234) $\in N^{(01)}$. Now, by relation (4.1), $N\left(t_{0} t_{1}\right)^{(12)(34)}=N t_{0} t_{2}=N t_{0} t_{1}$ implies that (12)(34) $\in N^{(01)}$. Therefore, (2 34), (1 2) (3 4) $\in N^{(01)}$, and so $N^{(01)} \geq\left\langle\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}3 & 4\end{array}\right),\left(\begin{array}{ll}2 & 3\end{array}\right)\right\rangle \cong A_{4}$. That is, $\left|N^{(01)}\right| \geq\left|A_{4}\right|=12$. Now, by Lemma 1.4, $\left|N t_{0} t_{1} N\right|=\frac{|N|}{\left|N^{(01)}\right|} \leq \frac{60}{12}=5$.
Therefore, as we concluded earlier, the double coset [01] has at most five distinct single cosets.

Now, $N^{(01)}$ must have two orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}, t_{4}\right\}:\{0\}$ and $\{1,2,3,4\}$.
Therefore, there are at most two double cosets of the form $N w N$, where w is a word of length three given by $w=t_{0} t_{1} t_{i}, i \in\{0,1\}: N t_{0} t_{1} t_{0} N$ and $N t_{0} t_{1} t_{1} N$.

But, since $N t_{0} t_{1} t_{1} N=N t_{0} t_{1}^{2} N=N t_{0} e N=N t_{0} N$, we need only consider one additional the double coset of the form $N t_{0} t_{1} t_{i} N$, where $i \in\{0,1,2,3,4\}: N t_{0} t_{1} t_{0} N$.
4. We next consider the double coset $N t_{0} t_{1} t_{0} N$.

Let [010] denote the double coset $N t_{0} t_{1} t_{0} N$.
Now, by relation (4.2), $t_{1} t_{0} t_{1}=t_{0} t_{1} t_{0}$, and, by conjugation with elements of A_{5}, $\left(t_{1} t_{0} t_{1}\right)^{(12)(34)}=\left(t_{0} t_{1} t_{0}\right)^{(12)(34)} \Rightarrow t_{2} t_{0} t_{2}=t_{0} t_{2} t_{0}$,
and $\left(t_{1} t_{0} t_{1}\right)^{(13)(24)}=\left(t_{0} t_{1} t_{0}\right)^{(13)(24)} \Rightarrow t_{3} t_{0} t_{3}=t_{0} t_{3} t_{0}$,
and $\left(t_{1} t_{0} t_{1}\right)^{(14)(23)}=\left(t_{0} t_{1} t_{0}\right)^{(14)(23)} \Rightarrow t_{4} t_{0} t_{4}=t_{0} t_{4} t_{0}$,
and $\left(t_{1} t_{0} t_{1}\right)^{(02)(34)}=\left(t_{0} t_{1} t_{0}\right)^{(02)(34)} \Rightarrow t_{1} t_{2} t_{1}=t_{2} t_{1} t_{2}$,
and $\left(t_{1} t_{0} t_{1}\right)^{(03)(24)}=\left(t_{0} t_{1} t_{0}\right)^{(03)(24)} \Rightarrow t_{1} t_{3} t_{1}=t_{3} t_{1} t_{3}$,
and $\left(t_{1} t_{0} t_{1}\right)^{(04)(23)}=\left(t_{0} t_{1} t_{0}\right)^{(04)(23)} \Rightarrow t_{1} t_{4} t_{1}=t_{4} t_{1} t_{4}$,
and $\left(t_{1} t_{0} t_{1}\right)^{(03)(12)}=\left(t_{0} t_{1} t_{0}\right)^{(03)(12)} \Rightarrow t_{2} t_{3} t_{2}=t_{3} t_{2} t_{3}$,
and $\left(t_{1} t_{0} t_{1}\right)^{(04)(12)}=\left(t_{0} t_{1} t_{0}\right)^{(04)(12)} \Rightarrow t_{2} t_{4} t_{2}=t_{4} t_{2} t_{4}$,
and $\left(t_{1} t_{0} t_{1}\right)^{(04)(13)}=\left(t_{0} t_{1} t_{0}\right)^{(04)(13)} \Rightarrow t_{3} t_{4} t_{3}=t_{4} t_{3} t_{4}$.
Furthermore, by relation (4.1), ($\left.\begin{array}{lll}0 & 3 & 4\end{array}\right) t_{0} t_{4}=t_{0} t_{3}=\left(\begin{array}{lll}0 & 3 & 1\end{array}\right) t_{0} t_{1}=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right) t_{0} t_{2} \Rightarrow$ (03 4) $t_{0} t_{4} t_{0}=t_{0} t_{3} t_{0}=\left(\begin{array}{ll}0 & 3\end{array}\right) t_{0} t_{1} t_{0}=\left(\begin{array}{ll}1 & 2\end{array} 3\right) t_{0} t_{2} t_{0}$ Therefore, $\left(\begin{array}{lll}0 & 3 & 4\end{array}\right) t_{0} t_{4} t_{0}=$ $t_{0} t_{3} t_{0}=\left(\begin{array}{lll}0 & 3 & 1\end{array}\right) t_{0} t_{1} t_{0}=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right) t_{0} t_{2} t_{0}$ implies that

$$
\begin{gathered}
010 \sim 020 \sim 030 \sim 040 \sim 101 \sim 121 \sim 131 \sim 141 \sim 202 \sim 212 \sim \\
\quad 232 \sim 242 \sim 303 \sim 313 \sim 323 \sim 343 \sim 404 \sim 414 \sim 424 \sim 434
\end{gathered}
$$

Since each of the twenty single cosets has twenty names, the double coset [010] must have one distinct single coset.

An alternative approach for determining the order of the double coset is as follows: We note that $N^{(010)} \geq N^{010}=\left\langle\left(\begin{array}{lll}2 & 3 & 4\end{array}\right)\right\rangle$. This means that $\left(\begin{array}{lll}2 & 3 & 4\end{array}\right) \in N^{(010)}$. Now, by relations (4.1) and (4.2), $N\left(t_{0} t_{1} t_{0}\right)^{(01)(23)}=N t_{1} t_{0} t_{1}=N t_{0} t_{1} t_{0}$ implies that $(01)(23) \in N^{(010)}$, and $N\left(t_{0} t_{1} t_{0}\right)^{(01234)}=N t_{1} t_{2} t_{1}=N t_{0} t_{1} t_{0}$ implies that $(01234) \in N^{(010)}$. Therefore, (234), (12)(34), (01234) $1 \begin{aligned} & 1 \\ & 0\end{aligned} N^{(010)}$, and so $N^{(010)} \geq\left\langle(12)(34),\left(\begin{array}{ll}2 & 3\end{array}\right),\left(\begin{array}{ll}0 & 1\end{array} 234\right)\right\rangle \cong A_{5}$. That is, $\left|N^{(010)}\right| \geq\left|A_{5}\right|=60$. Now, by Lemma 1.4, $\left|N t_{0} t_{1} t_{0} N\right|=\frac{|N|}{\left|N^{(010)}\right|} \leq \frac{60}{60}=1$.
Therefore, as we concluded earlier, the double coset [010] has one distinct single coset.

Figure 4.1: Cayley Diagram of G Over A_{5}

Now, $N^{(010)}$ must have one orbit on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}, t_{4}\right\}:\{0,1,2,3,4\}$.
Therefore, there is at most one double coset of the form $N w N$, where w is a word of length four given by $w=t_{0} t_{1} t_{0} t_{i}, i=0: N t_{0} t_{1} t_{0} t_{0} N$.

But, since $N t_{0} t_{1} t_{0} t_{0} N=N t_{0} t_{1} t_{0}^{2} N=N t_{0} t_{1} e N=N t_{0} t_{1} N$, we need not consider additional double cosets of the form $N t_{0} t_{1} t_{0} t_{i} N$, where $i \in\{0,1,2,3\}$.

In fact, since $N^{(010)}$ is transitive on the symmetric generators and since $N t_{0} t_{1} t_{0} t_{0}=$ $N t_{0} t_{1} t_{0}^{2}=N t_{0} t_{1} e=N t_{0} t_{1}$ implies that the double coset [0100] $=[01]$, we have completed the double coset enumeration of G over A_{5}.

In total, therefore, there are at most 4 distinct double cosets of N in G and at most 12 distinct right (single) cosets of N in G. The double cosets of N in G are as follows: [*], [0], [01], and [010].

4.3 Cayley Diagram of G Over A_{5}

The Cayley diagram of G over A_{5} is illustrated in Figure 4.1. For a detailed explanation of the meaning of the component parts of a Cayley diagram, see Section 2.3.

4.4 Action of the Symmetric Generators and the Generators of A_{5} on the Right Cosets of G Over A_{5}

Let X denote the set of all (12) distinct right cosets of N in G, that is, let $X=$ $\left\{N, N t_{0}, N t_{1}, N t_{2}, N t_{3}, N t_{4}, N t_{0} t_{1}, N t_{1} t_{0}, N t_{2} t_{0}, N t_{3} t_{0}, N t_{4} t_{0}, N t_{0} t_{1} t_{0}\right\}$. We define a map-
ping $\phi: G \longrightarrow S_{X}^{\dot{\prime}}$ so that ϕ maps a generator $g \in G$ to its action (by right multiplication) on X. That is, we define ϕ so that $\phi(g)=\widehat{\phi}(g): X \rightarrow X$. Then the action $\phi(t) \sim \phi\left(t_{0}\right)$ of the symmetric generator $t \sim t_{0}$ on the right cosets of N in G may be expressed as

$$
\phi(t) \sim \phi\left(t_{0}\right)=(* 0)(110)(220)(330)(440)(01010)
$$

and the action $\phi(x) \sim \phi((01234))$ of the generator $x \sim(01234)$ of A_{5} on the right cosets of N in G may be expressed as

$$
\phi(x) \sim \phi((01234))=(01234)(0112233440),
$$

and the action $\phi(y) \dot{\sim} \phi((421))$ of the generator $y \sim(421)$ of A_{5} on the right cosets of N in G may be expressed as

$$
\phi(y) \sim \phi((421))=(142)(104020) .
$$

Since there are 12 distinct right cosets of N in G, these actions may be written as permutations on 12 letters. In fact, the actions of the generators on the set of right cosets of N in G are equivalent to the permutation representations of the generators in their action on the right cosets of N in G. To better manipulate the permutation representations of the symmetric generators t_{i} and the generators x and y, it is helpful to label the distinct single cosets of N in G as follows:

(12)	$*$	(3)	2	(6)	01	(9)	30
(1)	0	(4)	3	(7)	10	(10)	40
(2)	1	(5)	4	(8)	20	(11)	010

Having labeled each of the 12 distinct right cosets of N in G, we express the permutation representation of the symmetric generator $t \sim t_{0}, t^{x} \sim t_{1}, t^{x^{2}} \sim t_{2}, t^{x^{3}} \sim t_{3}$, and $t^{x^{4}} \sim t_{4}$, and the generators $x \sim(01234)$ and $y \sim(421)$, in their action on the right cosets of N in G as, resprectively,

$$
\begin{aligned}
& \phi(t) \sim \phi\left(t_{0}\right):(121)(27)(38)(49)(510)(611), \\
& \phi\left(t^{x}\right) \sim \phi\left(t_{1}\right):(122)(16)(38)(49)(510)(711), \\
& \phi\left(t^{x^{2}}\right) \sim \phi\left(t_{2}\right):(123)(16)(27)(49)(510)(811), \\
& \phi\left(t^{x^{3}}\right) \sim \phi\left(t_{3}\right):(124)(16)(27)(38)(510)(911),
\end{aligned}
$$

$$
\begin{gathered}
\phi\left(t^{x^{4}}\right) \sim \phi\left(t_{4}\right):(125)(16)(27)(38)(49)(1011) \\
\phi(x) \sim \phi((01234)):(12345)(678910) \\
\phi(y) \sim \phi((421)):(253)(7108)
\end{gathered}
$$

4.5 Proof of Isomorphism between G and S_{6}

We now demonstrate that $G \cong S_{6}$.

Proof. To prove that $G \cong S_{6}$, we must first show that $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of G and that $|G|=|\langle\phi(x), \phi(y), \phi(t)\rangle|=720$ (from which we can conclude $G \cong\langle\phi(x), \phi(y), \phi(t)\rangle)$, and we must next show that $\langle\phi(x), \phi(y), \phi(t)\rangle \cong S_{6}$ (from which we can conclude S_{6} is a homomorphic image of G and $G \cong S_{6}$).

We first show $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of G and $|G|=|\langle\phi(x), \phi(y), \phi(t)\rangle|=720$. From our construction of G using manual double coset enumeration of G over A_{5}, illustrated by the Cayley Diagram in Figure 4.1, we concluded that group G defined by the symmetric presentation must contain a homomorphic image of $N \cong A_{5}$ whose index [$G: N$] is at most 12 :

$$
\begin{gathered}
{[G: N]=\frac{|N|}{\left|N^{(*)}\right|}+\frac{|N|}{\left|N^{(0)}\right|}+\frac{|N|}{\left|N^{(01)}\right|}+\frac{|N|}{\left|N^{(010)}\right|} \leq \frac{60}{60}+\frac{60}{12}+\frac{60}{12}+\frac{60}{60}=} \\
1+5+5+1=12
\end{gathered}
$$

Since the index of N in G is at most 12, and since $|G|=\frac{|G|}{|N|} \cdot|N|$, the order of the homomorphic image group G is at most 720:

$$
|G|=\frac{|G|}{|N|} \cdot|N| \leq 12 \cdot|N|=12 \cdot 60=720 \Rightarrow|G| \leq 720
$$

We now consider $\langle\phi(x), \phi(y), \phi(t)\rangle$. Note that $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a group generated by the permutation representations of the generators x, y, and t and, as such, it is a subgroup of the symmetric group S_{12} acting on the twelve right cosets of N in G. We now show that $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of G and, therefore, that $|G| \geq|\langle\phi(x), \phi(y), \phi(t)\rangle|=720$. To show that $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of G, we first demonstrate that $\langle\phi(x), \phi(y), \phi(t)\rangle \leq S_{12}$ is a homomorphic image of \bar{G}.

Now, recall that $\bar{G}=\langle x, y, t\rangle$ is a homomorphic image of the progenitor $2^{* 5}: A_{5}$, and its presentation is given by

$$
\bar{G}=\left\langle x, y, t \mid x^{5}=y^{3}=(x y)^{2}=e=[t, y]=\left[t, y^{x^{2}}\right]\right\rangle,
$$

where $x \sim(01234), y \sim(421)$, and $t \sim t_{0}$, and $N=\langle x, y\rangle \cong A_{5}$. Let $\alpha: \bar{G} \longrightarrow\langle\phi(x), \phi(y), \phi(t)\rangle$ be a mapping from \bar{G} to $\langle\phi(x), \phi(y), \phi(t)\rangle$. We note first that the mapping $\alpha: \bar{G} \longrightarrow\langle\phi(x), \phi(y), \phi(t)\rangle$ is well defined. The generators $\phi(x), \phi(y)$, and $\phi(t)$ are the permutation representations of $x \sim(01234), y \sim(421)$, and $t \sim t_{0}$ on 12 letters. Since the order of $\phi(x)$ is 5 , the order of $\phi(y)$ is 3 , and the order of $\phi(x) \phi(y)$ is 2 , we conclude $\langle\phi(x), \phi(y)\rangle \cong N \cong A_{5}$. Moreover, we can demonstrate that $\phi(t)$ has exactly five conjugates under conjugation by the elements of $\langle\phi(x), \phi(y)\rangle \cong N \cong A_{5}$. Now, since $t \sim t_{0}$, we have that

$$
\begin{aligned}
& \text { [(12 } 345)(678910)][(121)(27)(38)(49)(510)(611)][(15432)(610987)] \\
& =(122)(16)(38)(49)(510)(711)=\phi\left(t_{1}\right) \sim \phi\left(t^{x}\right)
\end{aligned}
$$

and further that

$$
\begin{gathered}
\phi(t)^{\phi\left(x^{2}\right)} \sim \phi\left(t_{0}\right)^{\phi\left((01234)^{2}\right)}=[(121)(27)(38)(49)(510)(611)]^{(14253)(697108)}= \\
{[(13524)(681079)][(121)(27)(38)(49)(510)(611)][(14253)(697108)]} \\
=(123)(16)(27)(49)(510)(811)=\phi\left(t_{2}\right) \sim \phi\left(t^{x^{2}}\right)
\end{gathered}
$$

and further that

$$
\begin{gathered}
\left.\left.\phi(t)^{\phi\left(x^{3}\right)} \sim \phi\left(t_{0}\right)^{\phi((0} 1234\right)^{3}\right)=\left[(1 2 1) (2 7) (3 8) (4 9) (5 1 0) \left(\begin{array}{ll}
6 & \left.11)]^{1} 3524\right)(681079)
\end{array}=\right.\right. \\
{[(14253)(697108)][(121)(27)(38)(49)(510)(611)][(13524)(681079)]} \\
=(124)(16)(27)(38)(510)(911)=\phi\left(t_{3}\right) \sim \phi\left(t^{x^{3}}\right)
\end{gathered}
$$

and further that
 $[(15432)(610987)][(121)(27)(38)(49)(510)(611)][(12345)(678910)]$

$$
=(125)(16)(27)(38)(49)(1011)=\phi\left(t_{4}\right) \sim \phi\left(t^{x^{4}}\right)
$$

Therefore, $\phi(t)$ has exactly five conjugates under conjugation by the elements of $\langle\phi(x), \phi(y)\rangle \cong N \cong A_{5}$; these conjugates are, namely, $\phi(t) \sim \phi\left(t_{0}\right), \phi\left(t^{x}\right) \sim \phi\left(t_{1}\right)$, $\phi\left(t^{x^{2}}\right) \sim \phi\left(t_{2}\right), \phi\left(t^{x^{3}}\right) \sim \phi\left(t_{3}\right)$, and $\phi\left(t^{x^{4}}\right) \sim \phi\left(t_{4}\right)$. Since $\langle\phi(x), \phi(y)\rangle \cong N \cong A_{5}$ and since $\phi(t)$ has exactly five conjugates under conjugation by the elements of $\langle\phi(x), \phi(y)\rangle \cong N$, we conclude that $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of $\bar{G}=\langle x, y, t\rangle$. That is, $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of the progenitor $2^{* 5}: A_{5}$.

Next, to show that $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of G, we must show that $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of \bar{G} factored by the relations $\left(x y^{-1} x^{2} y^{-1} t\right)^{4}=e$ and $\left(x^{2} y^{-1} x^{2} t\right)^{6}=e$; that is, we must show that $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of the progenitor $2^{* 5}: A_{5}$ factored by the relations $\left.\left[\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}\right]^{4}=e$ and $\left[\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{0}\right]^{6}=e$. Let $\tilde{\alpha}: G \longrightarrow\langle\phi(x), \phi(y), \phi(t)\rangle$ be a mapping from G to $\langle\phi(x), \phi(y), \phi(t)\rangle$. We note first that the mapping $\tilde{\alpha}: G \longrightarrow\langle\phi(x), \phi(y), \phi(t)\rangle$ is welldefined, and we know already that $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of the progenitor $2^{* 5}: A_{5}$. Now, to show that $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of G, we need only demonstrate that the relations $\left[\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}\right]^{4}=e$ and $\left[\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{0}\right]^{6}=e$, which hold true in G, also hold true in $\langle\phi(x), \phi(y), \phi(t)\rangle \leq S_{12}$.

To demonstrate that the relation $\left.\left[\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}\right]^{4}=e$, or, equivalently, the relation $t_{0} t_{2} t_{1} t_{0}=(021)$, holds true in $\langle\phi(x), \phi(y), \phi(t)\rangle \leq S_{12}$, we show that $\phi\left(t_{0}\right) \phi\left(t_{2}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right)$ $\sim \phi(t) \phi\left(t^{x^{2}}\right) \phi\left(t^{x}\right) \phi(t) \in S_{12}$ acts on the five symmetric generators $\phi\left(t_{0}\right), \phi\left(t_{1}\right), \phi\left(t_{2}\right)$, $\phi\left(t_{3}\right)$, and $\phi\left(t_{4}\right)$ by conjugation in the same way that $\phi\left(\left(\begin{array}{ll}0 & 1\end{array}\right)\right) \sim \phi\left(x y^{-1} x^{2} y^{-1}\right)$ acts on the five symmetric generators $\phi\left(t_{0}\right), \phi\left(t_{1}\right), \phi\left(t_{2}\right), \phi\left(t_{3}\right)$, and $\phi\left(t_{4}\right)$ by conjugation. We first conjugate the symmetric generators $\phi\left(t_{0}\right), \phi\left(t_{1}\right), \phi\left(t_{2}\right), \phi\left(t_{3}\right)$, and $\phi\left(t_{4}\right)$ by $\phi\left(t_{0}\right) \phi\left(t_{2}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right)$. This gives us

$$
\begin{aligned}
& \phi\left(t_{1}\right)^{\phi\left(t_{0}\right) \phi\left(t_{2}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right)}=\left[\left(\begin{array}{ll}
12 & 2
\end{array}\right)\left(\begin{array}{ll}
1 & 6
\end{array}\right)\left(\begin{array}{ll}
3 & 8
\end{array}\right)\left(\begin{array}{ll}
4 & 9
\end{array}\right)\left(\begin{array}{ll}
5 & 10)\left(\begin{array}{ll}
7 & 11
\end{array}\right)
\end{array}\right]^{(13} 2\right)\left(\begin{array}{ll}
6 & 7
\end{array}\right)=\phi\left(t_{0}\right), \\
& \phi\left(t_{2}\right)^{\phi\left(t_{0}\right) \phi\left(t_{2}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right)}=\left[\left(\begin{array}{ll}
12 & 3
\end{array}\right)\binom{1}{6}(27)(49)\left(\begin{array}{ll}
5 & 10)(811)
\end{array}\right]^{(13} 2\right)(687)=\phi\left(t_{1}\right), \\
& \phi\left(t_{3}\right)^{\phi\left(t_{0}\right) \phi\left(t_{2}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right)}=\left[\left(\begin{array}{ll}
12 & 4
\end{array}\right)\left(\begin{array}{ll}
1 & 6)(27)(3
\end{array}\right)\left(\begin{array}{ll}
5 & 10)(911)
\end{array}\right]^{(13} 2\right)(687)=\phi\left(t_{3}\right), \\
& \left.\phi\left(t_{4}\right)^{\phi\left(t_{0}\right) \phi\left(t_{2}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right)}=\left[\left(\begin{array}{ll}
12 & 5
\end{array}\right)(16)(27)(38)(49)(1011)\right]^{(13} 32\right)\left(\begin{array}{ll}
6 & 7
\end{array}\right)=\phi\left(t_{4}\right)
\end{aligned}
$$

We next conjugate the symmetric generators $\phi\left(t_{0}\right), \phi\left(t_{1}\right), \phi\left(t_{2}\right), \phi\left(t_{3}\right)$, and $\phi\left(t_{4}\right)$ by $\phi((021))$. This gives us

$$
\begin{aligned}
& \phi\left(t_{0}\right)^{\phi\left(\left(\begin{array}{ll}
0 & 1
\end{array}\right)\right)}=\left[(\begin{array} { l l }
{ 1 2 } & { 1 }
\end{array}) (\begin{array} { l l }
{ 2 } & { 7 }
\end{array}) (\begin{array} { l l }
{ 3 } & { 8 }
\end{array}) \left(\begin{array}{ll}
4 & \left.9)(510)\left(\begin{array}{ll}
6 & 11)
\end{array}\right]^{(13} 2\right)(687)
\end{array}=\phi\left(t_{2}\right),\right.\right. \\
& \left.\phi\left(t_{1}\right)^{\phi\left(\left(\begin{array}{ll}
0 & 2
\end{array}\right)\right)}=\left[\left(\begin{array}{lll}
12 & 2
\end{array}\right)\left(\begin{array}{ll}
1 & 6
\end{array}\right)\left(\begin{array}{ll}
3 & 8
\end{array}\right)\left(\begin{array}{ll}
4 & 9
\end{array}\right)\left(\begin{array}{ll}
5 & 10
\end{array}\right)\left(\begin{array}{ll}
7 & 11
\end{array}\right)\right]^{(1} 32\right)\left(\begin{array}{ll}
6 & 8
\end{array}\right)=\phi\left(t_{0}\right), \\
& \phi\left(t_{2}\right)^{\phi\left(\left(\begin{array}{ll}
0 & 1
\end{array}\right)\right)}=\left[(\begin{array} { l l }
{ 1 2 } & { 3 }
\end{array}) \left(\begin{array}{ll}
1 & \left.6)(27)(49)\left(\begin{array}{ll}
5 & 10)(811)
\end{array}\right]^{(1} 32\right)\left(\begin{array}{ll}
6 & 8
\end{array}\right)=\phi\left(t_{1}\right), \\
\end{array}\right.\right. \\
& \phi\left(t_{3}\right)^{\phi((021))}=\left[\left(\begin{array}{ll}
124)(16)(27)(38)(510)(911)
\end{array}\right]^{(13} 2\right)\left(\begin{array}{ll}
6 & 8
\end{array}\right)=\phi\left(t_{3}\right), \\
& \left.\phi\left(t_{4}\right)^{\phi((021))}=\left[(125)(16)\left(\begin{array}{ll}
2 & 7
\end{array}\right)\left(\begin{array}{ll}
3 & 8
\end{array}\right)(49)(1011)\right]^{(13} 2\right)\left(\begin{array}{ll}
6 & 8
\end{array}\right)=\phi\left(t_{4}\right)
\end{aligned}
$$

Since $\phi\left(t_{0}\right) \dot{\phi}\left(t_{2}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right) \sim \phi(t) \phi\left(t^{x^{2}}\right) \phi\left(t^{x}\right) \phi(t) \in S_{12}$ acts on the five symmetric generators $\phi\left(t_{0}\right), \phi\left(t_{1}\right), \phi\left(t_{2}\right), \phi\left(t_{3}\right)$, and $\phi\left(t_{4}\right)$ by conjugation in the same way that $\phi((021)) \sim$ $\phi\left(x y^{-1} x^{2} y^{-1}\right)$ acts on the five symmetric generators $\phi\left(t_{0}\right), \phi\left(t_{1}\right), \phi\left(t_{2}\right), \phi\left(t_{3}\right)$, and $\phi\left(t_{4}\right)$ by conjugation, we conclude that the relation $\left[\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}\right]^{4}=e$, which holds true in G, also holds true in $\langle\phi(x), \phi(y), \phi(t)\rangle \leq S_{12}$.

To demonstrate that the relation $\left[\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & \left.3) t_{0}\right]^{6}=e \text {, or, equivalently, the rela- }\end{array}\right.\right.$ tion $t_{1} t_{0} t_{1} t_{0} t_{1} t_{0}=e$, holds true in $\langle\phi(x), \phi(y), \phi(t)\rangle \leq S_{12}$, we show that $\phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right) \sim \phi\left(t^{x}\right) \phi(t) \phi\left(t^{x}\right) \phi(t) \phi\left(t^{x}\right) \phi(t) \in S_{12}$ acts on the five symmetric generators $\phi\left(t_{0}\right), \phi\left(t_{1}\right), \phi\left(t_{2}\right), \phi\left(t_{3}\right)$, and $\phi\left(t_{4}\right)$ by conjugation in the same way that the identity element $\phi(e)$ acts on the five symmetric generators $\phi\left(t_{0}\right), \phi\left(t_{1}\right), \phi\left(t_{2}\right)$, $\phi\left(t_{3}\right)$, and $\phi\left(t_{4}\right)$ by conjugation. We first conjugate the symmetric generators $\phi\left(t_{0}\right), \phi\left(t_{1}\right)$, $\phi\left(t_{2}\right), \phi\left(t_{3}\right)$, and $\phi\left(t_{4}\right)$ by $\phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right)$. This gives us

$$
\begin{aligned}
& \phi\left(t_{0}\right)^{\phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right)}=\left[\left(\begin{array}{lll}
12 & 1)(27)(3 & 8)(49)(510)(611)
\end{array}\right]^{\phi(e)}=\phi\left(t_{0}\right),\right. \\
& \phi\left(t_{1}\right)^{\phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right)}=\left[\begin{array}{lll}
12 & 2)(16)(38)(49)(510)(711)
\end{array}\right]^{\phi(e)}=\phi\left(t_{1}\right), \\
& \phi\left(t_{2}\right)^{\phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right)}=\left[\begin{array}{lll}
12 & 3
\end{array}\right)\left(\begin{array}{ll}
1 & 6)(27)(49)(510)(811)
\end{array}\right]^{\phi(e)}=\phi\left(t_{2}\right), \\
& \left.\phi\left(t_{3}\right)^{\phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right)}=\left[\begin{array}{lll}
\left(\begin{array}{ll}
2 & 4
\end{array}\right)\left(\begin{array}{ll}
1 & 6) \\
\hline
\end{array} \quad 7\right)(38)(510)(911
\end{array}\right)\right]^{\phi(e)}=\phi\left(t_{3}\right), \\
& \phi\left(t_{4}\right)^{\phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right)}=[(125)(16)(27)(38)(49)(1011)]^{\phi(e)}=\phi\left(t_{4}\right)
\end{aligned}
$$

We next conjugate the symmetric generators $\phi\left(t_{0}\right), \phi\left(t_{1}\right), \phi\left(t_{2}\right), \phi\left(t_{3}\right)$, and $\phi\left(t_{4}\right)$ by the identity element $\phi(e)$. This gives us

$$
\phi\left(t_{0}\right)^{\phi(e)}=[(121)(27)(38)(49)(510)(611)]^{\phi(e)}=\phi\left(t_{0}\right),
$$

$$
\begin{aligned}
& \phi\left(t_{1}\right)^{\phi(e)}=[(122)(16)(38)(49)(510)(711)]^{\phi(e)}=\phi\left(t_{1}\right), \\
& \phi\left(t_{2}\right)^{\phi(e)}=[(123)(16)(27)(49)(510)(811)]^{\phi(e)}=\phi\left(t_{2}\right), \\
& \phi\left(t_{3}\right)^{\phi(e)}=\left[\left(\begin{array}{ll}
12 & 4
\end{array}\right)(16)(27)(38)(510)(911)\right]^{\phi(e)}=\phi\left(t_{3}\right), \\
& \phi\left(t_{4}\right)^{\phi(e)}=[(125)(16)(27)(38)(49)(1011)]^{\phi(e)}=\phi\left(t_{4}\right)
\end{aligned}
$$

Since $\phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right) \sim \phi\left(t^{x}\right) \phi(t) \phi\left(t^{x}\right) \phi(t) \phi\left(t^{x}\right) \phi(t) \in S_{12}$ acts on the five symmetric generators $\phi\left(t_{0}\right), \phi\left(t_{1}\right), \phi\left(t_{2}\right), \phi\left(t_{3}\right)$, and $\phi\left(t_{4}\right)$ by conjugation in the same way that the identity element $\phi(e)$ acts on the five symmetric generators $\phi\left(t_{0}\right), \phi\left(t_{1}\right), \phi\left(t_{2}\right)$, $\phi\left(t_{3}\right)$, and $\phi\left(t_{4}\right)$ by conjugation, we conclude that the relation $\left.\left[\begin{array}{lll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{0}\right]^{6}=e$. which holds true in G, also holds true in $\langle\phi(x), \phi(y), \phi(\dot{t})\rangle \leq S_{12}$.

Since $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of the progenitor $2^{* 5}: A_{5}$, and since the relations $\left[\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}\right]^{4}=e$ and $\left[\left(\begin{array}{lll}0 & 1) & (23)\end{array} t_{0}\right]^{6}=e\right.$ hold true in $\langle\phi(x), \phi(y), \phi(t)\rangle \leq$ S_{12}, we conclude that $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of the progenitor $2^{* 5}: A_{5}$ factored by the relations $\left[\left(\begin{array}{ll}0 & 1\end{array}\right) t_{0}\right]^{4}=e$ and $\left[\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{0}\right]^{6}=e$; that is, we conclude that $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of G.

More importantly, since $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of G, we have that $\langle\phi(x), \phi(y), \phi(t)\rangle \leq G$. In fact, since $\langle\phi(x), \phi(y), \phi(t)\rangle \leq G$, we have that $|G| \geq|\langle\phi(x), \phi(y), \phi(t)\rangle|$. Since it is easily demonstrated, with MAGMA or by hand, that $|\langle\phi(x), \phi(y), \phi(t)\rangle|=720$, we conclude finally that $|G| \geq|\langle\phi(x), \phi(y), \phi(t)\rangle|=720$, that is, $|G| \geq 720$. Given $|G| \leq 720$ and $|G| \geq 720$, we conclude $|G|=720$. Moreover, since $|\langle\phi(x), \phi(y), \phi(t)\rangle|=720=|G|$ and since $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of G, we conclude

$$
\langle\phi(x), \phi(y), \phi(t)\rangle \cong G
$$

We finally show that $\langle\phi(x), \phi(y), \phi(t)\rangle \cong S_{6}$. Let $G_{1}=\langle\phi(x), \phi(y), \phi(t)\rangle$. Now, with the help of MAGMA (see [BCP97]), we know that the elements $a=\left(\begin{array}{l}1573112)\end{array}\right.$ $(46810129), b=(12)(36)(47)(59)(811)(1012)$, and $c=(112)(29)(36)(47)(510)$ (811) belong to G_{1}. (Note: The labels for the right cosets in this case were assigned by MAGMA and are different from the labels that we assigned earlier.) Therefore, $\langle a, b, c\rangle \leq$ G_{1}, where $G_{1}=\langle\phi(x), \phi(y), \phi(t)\rangle$, a permutation group on 12 letters, is a permutation representation of G and, further, $\left|G_{1}\right|=720$. But $|\langle a, b, c\rangle|=\left|G_{1}\right|=720$. Therefore, $G_{1}=\langle a, b, c\rangle$. Moreover, $\langle a, b, c\rangle \cong S_{6} \cong\langle a, b, c| a^{6}=b^{2}=c^{2}=(a b)^{5}=\left(a^{-2}(a b)^{2}\right)^{3}=$
$\left.\left(a^{-2} b a^{2} b\right)^{2}=[c, b]=e\right\rangle$. Therefore, $G_{1} \cong S_{6}$ and, since $G_{1}=\langle\phi(x), \phi(y), \phi(t)\rangle \cong G$, we conclude $G \cong S_{6}$.

4.6 Converting an Element of G from its Permutation Representation to its Symmetric Representation

To illustrate how a permutation representation of an element of S_{6} on 12 letters may be converted to its symmetric representation form, we consider the following example:

Example 4.1. Let $g \in G \cong S_{6}$ and let $p=\phi(g)=\left(\begin{array}{llll}1 & 8 & 2 & 6\end{array}\right]$ (410)(59)(1112) be the permutation representation of g on 12 letters. Then $12^{p}=11$ implies $N^{p}=N t_{0} t_{1} t_{0}$, since 12 and 11 are labels for the right cosets N and $N t_{0} t_{1} t_{0}$, respectively. Moreover, since $N^{p}=N p$ and $N^{p}=N t_{0} t_{1} t_{0}$, we have that $N p=N t_{0} t_{1} t_{0}$. Now, $N p=N t_{0} t_{1} t_{0}$ implies that $p \in N t_{0} t_{1} t_{0}$ which implies that $p \sim \pi t_{0} t_{1} t_{0}$ for some $\pi \in N \cong A_{5}$ or, more precisely, $p=\phi\left(\pi t_{0} t_{1} t_{0}\right)=\phi(\pi) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right)$ for some $\pi \in N \cong S_{3}$. To determine $\pi \in N$, we note first that $p=\phi(\pi) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right) \Rightarrow p\left(\phi\left(t_{0}\right)\right)^{-1}\left(\phi\left(t_{1}\right)\right)^{-1}\left(\phi\left(t_{0}\right)\right)^{-1}=$ $p \phi\left(t_{0}^{-1}\right) \phi\left(t_{1}^{-1}\right) \phi\left(t_{0}^{-1}\right)=p \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right)=\phi(\pi)$. We then calculate the action of $\pi \sim$ $\phi(\pi)=\phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right)$ on the symmetric generators t_{i}, where $i \in\{0,1,2,3,4\}$. Now, $\phi(\pi)=\phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right)=[(182637)(410)(59)(1112)][(121)(27)(38)(49)(510)(611)]$ $[(122)(16)(38)(49)(510)(711)][(121)(27)(38)(49)(510)(611)]=(13)(45)(68)(910)$. The element $\phi(\pi)=\phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right)=(13)(45)(68)(910)$ acts on the right cosets $N t_{0}$, $N t_{1}, N t_{2}, N t_{3}$, and $N t_{4}$ via the mapping $\phi: G \longrightarrow S_{X}$ defined by $\phi(\pi, N w)=N w^{\pi}$. The mappings below illustrate this action:

$$
\begin{gathered}
N t_{0}=1 \mapsto 1^{p}=3=N t_{2}, \quad N t_{2}=3 \mapsto 3^{p}=1=N t_{0}, \\
N t_{1}=2 \mapsto 2^{p}=2=N t_{1}, \quad N t_{3}=4 \mapsto 4^{p}=5=N t_{4}, \\
N t_{4}=5 \mapsto 5^{p}=4=N t_{3}
\end{gathered}
$$

Therefore, the element $\phi(\pi)$ acts as (02)(34) on the right cosets $N t_{0}, N t_{1}, N t_{2}, N t_{3}$, and $N t_{4}$, and so $\phi(\pi)$ is the permutation representation of $\pi=(02)(34) \in A_{5}$ on 12 letters. Therefore, $\pi=(02)(34)$ and $w=t_{0} t_{1} t_{0}$, and so the symmetric representation of
g is $(02)(34) t_{0} t_{1} t_{0}$.

4.7 Converting an Element of G from its Symmetric Representation to its Permutation Representation

To illustrate how an element of S_{6} in symmetric representation form may be converted to its permutation representation on 12 letters, we consider the following example:

Example 4.2. Let $g \in G \cong S_{6}$ have the symmetric representation $g=\left(\begin{array}{ll}0 & 4\end{array} 321\right) t_{2} t_{4} t_{2}$. To determine the permutation representation $p=\phi(g)$ of g, we first calculate the action of $\pi=\left(\begin{array}{l}0 \\ 3\end{array} 21\right)$ on the right cosets of N in G. Now, the element $\pi=(04321)$ acts on the right cosets N in G via the mapping $\phi: G \longrightarrow S_{X}$ defined by $\phi(\pi, N w)=N w^{\pi}$. The mappings below illustrate this action:

$$
\begin{aligned}
& 12=N \mapsto N^{(04321)}=N=12 \\
& \left.1=N t_{0} \mapsto N t_{0}^{(043} 31\right)=N t_{4}=5 \\
& \left.5=N t_{4} \mapsto N t_{4}^{(043} 21\right)=N t_{3}=4 \\
& 4=N t_{3} \mapsto N t_{3}^{(04321)}=N t_{2}=3 \\
& 3=N t_{2} \mapsto N t_{2}^{(04321)}=N t_{1}=2 \\
& \left.2=N t_{1} \mapsto N\left(t_{1}\right)^{(04} 4321\right)=N t_{0}=1 \\
& \left.6=N t_{0} t_{1} \mapsto N\left(t_{0} t_{1}\right)^{(04} 4321\right)=N t_{4} t_{0}=10 \\
& 10=N t_{4} t_{0} \mapsto N\left(t_{4} t_{0}\right)^{(04321)}=N t_{3} t_{4}=N t_{3} t_{0}=9 \\
& 9=N t_{3} t_{0} \mapsto N\left(t_{3} t_{0}\right)^{(04321)}=N t_{2} t_{4}=N t_{2} t_{0}=8 \\
& 8=N t_{2} t_{0} \mapsto N\left(t_{2} t_{0}\right)^{(04321)}=N t_{1} t_{4}=N t_{1} t_{0}=7 \\
& 7=N t_{1} t_{0} \mapsto N\left(t_{1} t_{0}\right)^{(04321)}=N t_{0} t_{4}=N t_{0} t_{1}=6 \\
& 11=N t_{0} t_{1} t_{0} \mapsto N\left(t_{0} t_{1} t_{0}\right)^{(04321)}=N t_{4} t_{0} t_{4}=N t_{0} t_{1} t_{0}=11
\end{aligned}
$$

Therefore, the permutation representation of $\pi=(04321)$ is $\phi(\pi)=(15432)(610987)$. Similarly, we calculate the action of the symmetric generator t_{2} on the right cosets of N
in G. The symmetric generator t_{2} acts on the right cosets of N in G via the mapping $\phi: G \longrightarrow S_{X}$ defined by $\phi\left(t_{2}, N w\right)=N w t_{2}$. The mappings below illustrate this action:

$$
\begin{gathered}
12=N \mapsto N t_{2}=3 \\
3=N t_{2} \mapsto N t_{2} t_{2}=N=12 \\
1=N t_{0} \mapsto N t_{0} t_{2}=N t_{0} t_{1}=6 \\
6=N t_{0} t_{1} \mapsto N t_{0} t_{1} t_{2}=N t_{0} t_{2} t_{2}=N t_{0}=1 \\
2=N t_{1} \mapsto N t_{1} t_{2}=N t_{1} t_{0}=7 \\
7=N t_{1} t_{0} \mapsto N t_{1} t_{0} t_{2}=N t_{1} t_{2} t_{2}=N t_{1}=2 \\
4=N t_{3} \mapsto N t_{3} t_{2}=N t_{3} t_{0}=9 \\
9=N t_{3} t_{0} \mapsto N t_{3} t_{0} t_{2}=N t_{3} t_{2} t_{2}=N t_{3}=4 \\
5=N t_{4} \mapsto N t_{4} t_{2}=N t_{4} t_{0}=10 \\
10=N t_{4} t_{0} \mapsto N t_{4} t_{0} t_{2}=N t_{4} t_{2} t_{2}=N t_{4}=5 \\
8=N t_{2} t_{0} \mapsto N t_{2} t_{0} t_{2}=N t_{0} t_{1} t_{0}=11 \\
11=N t_{0} t_{1} t_{0} \mapsto N t_{0} t_{1} t_{0} t_{2}=N t_{2} t_{0} t_{2} t_{2}=N t_{2} t_{0}=8
\end{gathered}
$$

Therefore, the permutation representation of t_{2} is $\phi\left(t_{2}\right)=(123)(16)(27)(49)(510)(811)$. Finally, we calculate the action of the symmetric generator t_{0} on the right cosets of N in G. The symmetric generator t_{0} acts on the right cosets of N in G via the mapping $\phi: G \longrightarrow S_{X}$ defined by $\phi\left(t_{0}, N w\right)=N w t_{0}$. The mappings below illustrate this action:

$$
\begin{gathered}
10=N \mapsto N t_{0}=1 \\
1=N t_{0} \mapsto N t_{0} t_{0}=N=10 \\
2=N t_{1} \mapsto N t_{1} t_{0}=6 \\
6=N t_{1} t_{0} \mapsto N t_{1} t_{0} t_{0}=N t_{1}=2 \\
3=N t_{2} \mapsto N t_{2} t_{0}=7 \\
7=N t_{2} t_{0} \mapsto N t_{2} t_{0} t_{0}=N t_{2}=3 \\
4=N t_{3} \mapsto N t_{3} t_{0}=8
\end{gathered}
$$

$$
\begin{gathered}
8=N t_{3} t_{0} \mapsto N t_{3} t_{0} t_{0}=N t_{3}=4 \\
5=N t_{0} t_{1} \mapsto N t_{0} t_{1} t_{0}=9 \\
9=N t_{0} t_{1} t_{0} \mapsto N t_{0} t_{1} t_{0} t_{0}=N t_{0} t_{1}=5
\end{gathered}
$$

Therefore, the permutation representation of t_{4} is $\phi\left(t_{4}\right)=(125)(16)(27)(38)(49)(1011)$. Now, $g=(04321) t_{2} t_{4} t_{2} \sim \phi(g)=\phi((04321)) \phi\left(t_{2}\right) \phi\left(t_{4}\right) \phi\left(t_{2}\right)=[(15432)(610987)]$ $[(123)(16)(27)(49)(510)(811)][(125)(16)(27)(38)(49)(1011)]$
$\left.[(123)(16)(27)(49)(510)(811)]=\left(\begin{array}{ll}1 & 8 \\ 2 & 6\end{array}\right] 7\right)(410)(59)(1112)$. Therefore, the permutation representation of g is $p=\phi(g)=\left(\begin{array}{ll}182637\end{array}\right)(410)(59)(1112)$.

Chapter 5

S_{7} as a Homomorphic Image of the Progenitor $3^{* 5}: S_{5}$

In this chapter, we investigate S_{7} as a homomorphic image of the progenitor $3^{* 5}: S_{5}$. The group S_{7} is the symmetric group on seven letters having order $7!=5040$. The progenitor $3^{* 5}: S_{5}$ is a semi-direct product of $3^{* 5}$, a free product of five copies of the cyclic group of order 3 , and S_{5}, the symmetric group on five letters which permutes the five symmetric generators, $t_{0}, t_{1}, t_{2}, t_{3}$, and t_{4}, (and their inverses, $t_{0}^{2}=t_{0}^{-1}, t_{1}^{2}=t_{1}^{-1}, t_{2}^{2}=t_{2}^{-1}, t_{3}^{2}=t_{3}^{-1}$, and $t_{4}^{2}=t_{4}^{-1}$) by conjugation.

5.1 Introduction

Let \bar{G} be a homomorphic image of the infinite semi-direct product, the progenitor, $3^{* 5}: S_{5}$. A symmetric presentation of $3^{* 5}: S_{5}$ is given by

$$
\bar{G}=\left\langle x, y, t \mid x^{5}=y^{2}=(y x)^{4}=[x, y]^{3}=t^{3}=[t, y]=\left[t^{x}, y\right]=\left[t^{x^{2}}, y\right]=e\right\rangle
$$

where $[x, y]^{3}=x y x y x y,[t, y]=t y t y,\left[t^{x}, y\right]=t^{x} y t^{x} y,\left[t^{x^{2}}, y\right]=t^{x^{2}} y t x^{2} y$, and e is the identity. In this case, $N \cong S_{5} \cong\left\langle x, y \mid x^{5}=y^{2}=(y x)^{4}=[x, y]^{3}=e\right\rangle$, and the action of N on the five symmetric generators is given by $x \sim(01234), y \sim(34)$, and $t \sim t_{0}$.

Let G denote the group \bar{G} factored by the relations $\left(x y x^{-1} y x t\right)^{5}=e$,

$$
\begin{aligned}
& \left(x^{-2} y x^{2} t\right)^{4}=e,\left(t^{-1} t^{x}\right)^{3}=e, \text { and }\left(x y x^{-1} y x t^{-1} t^{x}\right)^{2}=e . \text { That is, let } \\
& \qquad G=\frac{\bar{G}}{\left(x y x^{-1} y x t\right)^{5},\left(x^{-2} y x^{2} t\right)^{4},\left(t^{-1} t^{x}\right)^{3},\left(x y x^{-1} y x t^{-1} t^{x}\right)^{2}} .
\end{aligned}
$$

A symmetric presentation for G is given by

$$
\begin{gathered}
\langle x, y, t| x^{5}, y^{2},(y x)^{4},[x, y]^{3}, t^{3},[t, y],\left[t^{x}, y\right],\left[t^{x^{2}}, y\right],\left(x y x^{-1} y x t\right)^{5}, \\
\left.\left(x^{-2} y x^{2} t\right)^{4},\left(t^{-1} t^{x}\right)^{3},\left(x y x^{-1} y x t^{-1} t^{x}\right)^{2}\right\rangle .
\end{gathered}
$$

Now, we consider the following relations:

$$
\begin{gathered}
{\left[\left(\begin{array}{ll}
(1 & 1
\end{array}\right) t_{0}\right]^{5}=e} \\
{\left[\left(\begin{array}{ll}
0 & 1
\end{array}\right) t_{0}\right]^{4}=e} \\
{\left[\begin{array}{ll}
t_{0}^{-1} t_{1}
\end{array}\right]^{3}=e} \\
\text { and } \\
{\left[\left(\begin{array}{lll}
0 & 1 & 2) t_{0}^{-1} t_{1}
\end{array}\right]^{2}=e\right.}
\end{gathered}
$$

According to a computer proof by [CHB96], the progenitor $3^{* 5}: S_{5}$, factored by the relations $\left[\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}\right]^{5}=e,\left[\left(\begin{array}{ll}0 & 1\end{array}\right) t_{0}\right]^{4}=e,\left[t_{0}^{-1} t_{1}\right]^{3}=e$, and $\left[\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}^{-1} t_{1}\right]^{2}=e$, is isomorphic to S_{7}. In fact, factoring the progenitor $3^{* 5}: S_{5}$ by the relation $\left.\left[\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}\right]^{5}=e$ alone suffices. We will construct S_{7} by hand by way of manual double coset enumeration of $\left.\left.\left.G \cong \frac{3^{* 5}: S_{5}}{\left[\left(\begin{array}{lll}1 & 2\end{array}\right) t_{0}\right]^{5},[(0} 1\right) t_{0}\right]^{4},\left[t_{0}^{-1} t_{1}\right]^{3},\left[\left(\begin{array}{ll}(1) & 1\end{array}\right) t_{0}^{-1} t_{1}\right]^{2}\right]$ over S_{5}. In so doing, we will show that S_{7} is isomorphic to the symmetric presentation

$$
\begin{gathered}
\langle x, y, t| x^{5}, y^{2},(y x)^{4},[x, y]^{3}, t^{3},[t, y],\left[t^{x}, y\right],\left[t^{x^{2}}, y\right],\left(x y x^{-1} y x t\right)^{5},\left(x^{-2} y x^{2} t\right)^{4} \\
\left.\left(t^{-1} t^{x}\right)^{3},\left(x y x^{-1} y x t^{-1} t^{x}\right)^{2}\right\rangle
\end{gathered}
$$

5.2 Manual Double Coset Enumeration of G Over S_{5}

We first determine the order of the homomorphic image, G, of the progenitor. To determine the order of the homomorphic image G, we will determine the index of $N \cong S_{5}$ in G. We determine the index of $N \cong S_{5}$ in G first by expanding the relations $\left.\left[\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}\right]^{5}=e$, $\left[\left(\begin{array}{ll}0 & 1\end{array}\right) t_{0}\right]^{4}=e,\left[t_{0}^{-1} t_{1}\right]^{3}=e$, and $\left.\left[\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}^{-1} t_{1}\right]^{2}=e$, and next by performing manual double coset enumeration on G over $N \cong S_{5}$. To begin, we expand the relations that factor the progenitor $3^{* 5}: S_{5}$:

$$
\left[\left(\begin{array}{lll}
0 & 1 & 2 \tag{5.1}
\end{array}\right) t_{0}\right]^{5}=e
$$

$$
\begin{gather*}
{\left[\left(\begin{array}{ll}
0 & 1
\end{array} t_{0}\right]^{4}=e\right.} \tag{5.2}\\
{\left[t_{0}^{-1} t_{1}\right]^{3}=e} \tag{5.3}\\
{\left[\left(\begin{array}{ll}
0 & 1
\end{array}\right) t_{0}^{-1} t_{1}\right]^{2}=e} \tag{5.4}
\end{gather*}
$$

As mentioned above, relation (5.1), $\left.\left[\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}\right]^{5}=e$, is required to determine the homomorphic image, G, of the progenitor, and the other relations can be derived from relation (5.1). We expand relations (5.1), (5.2), (5.3), and (5.4) in detail below:

1. Let $\pi=\left(\begin{array}{ll}0 & 1\end{array}\right)$.

Then $\left[\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}\right]^{5}=\dot{e}$
$\Rightarrow\left(\pi t_{0}\right)^{5}=e$
$\Rightarrow \pi t_{0} \pi t_{0} \pi t_{0} \pi t_{0} \pi t_{0}=e$
$\Rightarrow \pi t_{0} \pi t_{0} \pi t_{0} \pi^{2} \pi^{-1} t_{0} \pi t_{0}=e$
$\Rightarrow \pi t_{0} \pi t_{0} \pi^{3} \pi^{-1} \pi^{-1} t_{0} \pi^{2} t_{0}^{\pi} t_{0}=e$
$\Rightarrow \pi t_{0} \pi^{4} \pi^{-1} \pi^{-1} \pi^{-1} t_{0} \pi^{3} t_{0}^{\pi^{2}} t_{0}^{\pi} t_{0}=e$
$\Rightarrow \pi^{5} \pi^{-1} \pi^{-1} \pi^{-1} \pi^{-1} t_{0} \pi^{4} t_{0}^{\pi^{3}} t_{0}^{\pi^{2}} t_{0}^{\pi} t_{0}=e$
$\Rightarrow \pi^{5} t_{0}^{\pi^{4}} t_{0}^{\pi^{3}} t_{0}^{\pi^{2}} t_{0}^{\pi} t_{0}=e$
$\Rightarrow\left(\begin{array}{lll}0 & 1 & 2\end{array}\right)^{5} t_{0}^{(012)} t_{0}^{4} t_{0}^{(012)^{3}} t_{0}^{\left(\begin{array}{lll}(12)\end{array} t_{0}^{(012)} t_{0}=e\right.}$
$\Rightarrow(021) t_{0}^{(012)} t_{0}^{e} t_{0}^{(021)} t_{0}^{(012)} t_{0}=e$
$\Rightarrow\left(\begin{array}{lll}0 & 1\end{array}\right) t_{1} t_{0} t_{2} t_{1} t_{0}=e$
$\Rightarrow\left(\begin{array}{ll}0 & 2\end{array}\right) t_{1} t_{0} t_{2}=t_{0}^{-1} t_{1}^{-1}$.
Thus relation (5.1) implies that (021) $t_{1} t_{0} t_{2}=t_{0}^{-1} t_{1}^{-1}$ or, equivalently, $N t_{1} t_{0} t_{2}=$ $N t_{0}^{-1} t_{1}^{-1}$. That is, using our short-hand notation, $102 \sim \overline{0} \overline{1}$.
2. Let $\pi=\left(\begin{array}{ll}0 & 1\end{array}\right)$.

Then $\left[\left(\begin{array}{ll}0 & 1\end{array}\right) t_{0}\right]^{4}=e$
$\Rightarrow\left(\pi t_{0}\right)^{4}=e$
$\Rightarrow \pi t_{0} \pi t_{0} \pi t_{0} \pi t_{0}=e$
$\Rightarrow \pi t_{0} \pi t_{0} \pi^{2} \pi^{-1} t_{0} \pi t_{0}=e$
$\Rightarrow \pi t_{0} \pi^{3} \pi^{-1} \pi^{-1} t_{0} \pi^{2} t_{0}^{\pi} t_{0}=e$
$\Rightarrow \pi^{4} \pi^{-1} \pi^{-1} \pi^{-1} t_{0} \pi^{3} t_{0}^{\pi^{2}} t_{0}^{\pi} t_{0}=e$
$\Rightarrow \pi^{4} t_{0}^{\pi^{3}} t_{0}^{\pi^{2}} t_{0}^{\pi} t_{0}=e$
$\Rightarrow\left(\begin{array}{ll}0 & 1)^{4} t_{0}^{(01)^{3}} t_{0}^{(01)^{2}} t_{0}^{(01)} t_{0}=e \\ \end{array}\right.$
$\Rightarrow e t_{0}^{(01)} t_{0}^{e} t_{0}^{(01)} t_{0}=e$
$\Rightarrow e t_{1} t_{0} t_{1} t_{0}=e$
$\Rightarrow t_{1} t_{0}=t_{0}^{-1} t_{1}^{-1}$.
Thus relation (5.2) implies that $t_{1} t_{0}=t_{0}^{-1} t_{1}^{-1}$ or, equivalently, $N t_{1} t_{0}=N t_{0}^{-1} t_{1}^{-1}$. That is, using our short-hand notation, $10 \sim \overline{0} \overline{1}$.
3. Now $\left[t_{0}^{-1} t_{1}\right]^{3}=e$
$\Rightarrow\left[t_{0}^{-1} t_{1}\right]\left[t_{0}^{-1} t_{1}\right]\left[t_{0}^{-1} t_{1}\right]=e$
$\Rightarrow t_{0}^{-1} t_{1} t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}=e$
$\Rightarrow t_{0}^{-1} t_{1} \cdot t_{0}^{-1}=t_{1}^{-1} t_{0} t_{1}^{-1}$.
Thus relation (5.3) implies that $t_{0}^{-1} t_{1} t_{0}^{-1}=t_{1}^{-1} t_{0} t_{1}^{-1}$ or, equivalently, $N t_{0}^{-1} t_{1} t_{0}^{-1}=$ $N t_{1}^{-1} t_{0} t_{1}^{-1}$. That is, using our short-hand notation, $\overline{0} 1 \overline{0} \sim \overline{1} 0 \overline{1}$.
4. Let $\pi=\left(\begin{array}{ll}0 & 1\end{array}\right)$.

Then $\left[\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}^{-1} t_{1}\right]^{2}=e$
$\Rightarrow\left(\pi t_{0}^{-1} t_{1}\right)^{2}=e$
$\Rightarrow \pi t_{0}^{-1} t_{1} \pi t_{0}^{-1} t_{1}=e$
$\Rightarrow \pi^{2} \pi^{-1} t_{0}^{-1} t_{1} \pi t_{0}^{-1} t_{1}=e$
$\Rightarrow \pi^{2}\left(t_{0}^{-1} t_{1}\right)^{\pi} t_{0}^{-1} t_{1}=e$
$\Rightarrow \pi^{2}\left(t_{0}^{-1}\right)^{\pi} t_{1}^{\pi} t_{0}^{-1} t_{1}=e$
$\Rightarrow\left(\begin{array}{ll}0 & 1\end{array}\right)^{2}\left(t_{0}^{-1}\right)^{(012)} t_{1}^{(012)} t_{0}^{-1} t_{1}=e$
$\Rightarrow\left(\begin{array}{ll}0 & 2\end{array}\right)\left(t_{1}^{-1}\right) t_{2} t_{0}^{-1} t_{1}=e$
$\Rightarrow\left(\begin{array}{ll}0 & 21)\end{array}\right)\left(t_{1}^{-1}\right) t_{2}=t_{1}^{-1} t_{0}$.
Thus relation (5.4) implies that (021) ($\left.t_{1}^{-1}\right) t_{2}=t_{1}^{-1} t_{0}$ or, equivalently, $N t_{1}^{-1} t_{2}=$ $N t_{1}^{-1} t_{0}$. That is, using our short-hand notation, $\overline{1} 2 \sim \overline{1} 0$.

We now perform manual double coset enumeration of G over S_{5}.

1. We first note that the double coset $N e N=\{N e n \mid n \in N\}=\{N n \mid n \in N\}=\{N\}$. Let [*] denote the double coset $N e N$.

The double coset [*] has one distinct right coset: the identity right coset, $\mathrm{Ne}=$ $\{n e \mid n \in N\}=N$.

Moreover, N has two orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}, t_{4}\right\}:\{0,1,2,3,4\}$ and $\{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}\}$. Therefore, there are two double cosets of the form $N w N$, where w is a word of length one given by $w=t_{i}^{ \pm 1}, i \in\{0,1,2,3,4\}: N t_{0} N$ and $N t_{0}^{-1} N$.
2. We next consider the double coset $N t_{0} N$.

Let [0] denote the double coset $N t_{0} N$.
Note that $N^{(0)} \geq N^{0}=\left\langle\left(\begin{array}{ll}1 & 2\end{array}\right),\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)\right\rangle \cong S_{4}$. Thus $\left|N^{(0)}\right| \geq\left|S_{4}\right|=24$ and, by Lemma 1.4, $\left|N t_{0} N\right|=\frac{|N|}{\left|N^{(0)}\right|} \leq \frac{120}{24}=5$.
Therefore, the double coset [0] has at most five distinct single cosets.
Moreover, $N^{(0)}$ has four orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}, t_{4}\right\}:\{0\},\{1,2,3,4\}$, $\{\overline{0}\}$, and $\{\overline{1}, \overline{2}, \overline{3}, \overline{4}\}$.

Therefore, there are at most four double cosets of the form $N w N$, where w is a word of length two given by $w=t_{0} t_{i}^{ \pm 1}, i \in\{0,1\}: N t_{0} t_{0} N, N t_{0} t_{1} N, N t_{0} t_{0}^{-1} N$, and $N t_{0} t_{1}^{-1} N$.
But, since $N t_{0} t_{0} N=N t_{0}^{2} N=N t_{0}^{1} N$, and since $N t_{0} t_{0}^{1} N=N e N=N$, we need only consider two addotional double cosets of the form $N t_{0} t_{i}^{ \pm 1} N$, where $i \in$ $\{0,1,2,3,4\}: N t_{0} t_{1} N$ and $N t_{0} t_{1}^{-1} N$.
3. We next consider the double coset $N t_{0}^{-1} N$.

Let [$\overline{0}]$ denote the double coset $N t_{0}^{-1} N$.
Note that $N^{(\overline{0})} \geq N^{\overline{0}}=\left\langle\left(\begin{array}{ll}1 & 2\end{array}\right),\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)\right\rangle \cong S_{4}$. Thus $\left|N^{(0)}\right| \geq\left|S_{4}\right|=24$ and, by Lemma 1.4, $\left|N t_{0}^{-1} N\right|=\frac{|N|}{\left|N^{(0)}\right|} \leq \frac{120}{24}=5$.
Therefore, the double coset $[\overline{0}]$ has at most five distinct single cosets.
Moreover, $N^{(\overline{0})}$ has four orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}, t_{4}\right\}:\{0\},\{1,2,3,4\},\{\overline{0}\}$, and $\{\overline{1}, \overline{2}, \overline{3}, \overline{4}\}$.

Therefore, there are at most four double cosets of the form $N w N$, where w is a word of length two given by $w=t_{0}^{-1} t_{i}^{ \pm 1}, i \in\{0,1\}: N t_{0}^{-1} t_{0} N, N t_{0}^{-1} t_{1} N, N t_{0}^{-1} t_{0}^{-1} N$, and $N t_{0}^{-1} t_{1}^{-1} N$.

But note that $N t_{0}^{-1} t_{0}^{-1} N=N t_{0}^{-2} N=N t_{0} N$ and $N t_{0}^{-1} t_{0} N=N e N=N$.
Moreover, by relation (5.2), since $t_{1} t_{0}=t_{0}^{-1} t_{1}^{-1}$ implies that $N t_{0}^{-1} t_{1}^{-1}=N t_{1} t_{0}$, and since $N t_{0}^{-1} t_{1}^{-1}=N t_{1} t_{0}$ implies that $\left\{N\left(t_{i}^{-1} t_{j}^{-1}\right) \mid i, j \in\{0,1,2,3,4\}, i \neq j\right\}=$
$\left\{N t_{j} t_{i} \mid i, j \in\{0,1,2,3,4\}, i \neq j\right\}$, we have that $N t_{0} t_{1} N=N t_{0}^{-1} t_{1}^{-1} N$. That is, $[01]=[\overline{0} \overline{1}]$.
Since $N t_{0}^{-1} t_{0}^{-1} N=N t_{0}^{-2} N=N t_{0} N$ and $N t_{0}^{-1} t_{0} N=N e N=N$, and since, by relation (5.2), $N t_{0} t_{1} N=N t_{0}^{-1} t_{1}^{-1} N$, we conclude that there is one distinct double coset of the form $N t_{0}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3,4\}: N t_{0}^{-1} t_{1} N$.
4. We next consider the double coset $N t_{0} t_{1}^{-1} N$.

Let [01] denote the double coset $N t_{0} t_{1}^{-1} N$.
Now, by relation (5.4), ($\left.\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1}^{-1} t_{2}=t_{1}^{-1} t_{0} \Rightarrow t_{2}\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1}^{-1} t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow$ $(021)(012) t_{2}(021) t_{1}^{-1} t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow(021) t_{2}^{(021)} t_{1}^{-1} t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow$ (021) $t_{1} t_{1}^{-1} t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow(021) e t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow(021) t_{2}=t_{2} t_{1}^{-1} t_{0}$, and by right multiplication, (021) $t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{ll}0 & 2\end{array}\right) t_{2} t_{0}^{-1}=t_{2} t_{1}^{-1} t_{0} t_{0}^{-1} \Rightarrow(021) t_{2} t_{0}^{-1}=$ $t_{2} t_{1}^{-1} e \Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{2} t_{0}^{-1}=t_{2} t_{1}^{-1}$, and by conjugation, ($\left.\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{2} t_{0}^{-1}=t_{2} t_{1}^{-1} \Rightarrow$ $\left[\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{2} t_{0}^{-1}\right]^{\left(\begin{array}{lll}0 & 1\end{array}\right)}=\left[t_{2} t_{1}^{-1}\right]^{\left(\begin{array}{lll}0 & 1\end{array}\right)} \Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{0} t_{1}^{-1}=t_{0} t_{2}^{-1} \Rightarrow t_{0} t_{1}^{-1}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{2}^{-1}$. Therefore, $t_{0} t_{1}^{-1}=\left(\begin{array}{lll}0 & 1\end{array}\right) t_{0} t_{2}^{-1}$. Moreover, by conjugation with (2 3) and (2 4) , we have
$\left.\left[t_{0} t_{1}^{-1}\right]^{(23)}=\left[\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{2}^{-1}\right]^{(23)} \Rightarrow t_{0} t_{1}^{-1}=\left(\begin{array}{lll}0 & 1 & 3\end{array}\right) t_{0} t_{3}^{-1}$
and $\left[t_{0} t_{1}^{-1}\right]^{(24)}=\left[\begin{array}{lll}\left(\begin{array}{ll}1 & 2\end{array}\right) t_{0} t_{2}^{-1}\end{array}\right]^{(24)} \Rightarrow t_{0} t_{1}^{-1}=\left(\begin{array}{lll}0 & 1 & 4\end{array}\right) t_{0} t_{4}^{-1}$.
Therefore, we find that $t_{0} t_{1}^{-1}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{2}^{-1}=\left(\begin{array}{lll}0 & 1 & 3\end{array}\right) t_{0} t_{3}^{-1}=\left(\begin{array}{lll}0 & 1 & 4\end{array}\right) t_{0} t_{4}^{-1}$.
That is, using our short-hand notation, we have

$$
0 \overline{1} \sim 0 \overline{2} \sim 0 \overline{3} \sim 0 \overline{4}
$$

By conjugating the above relationships, we have also

$$
\begin{array}{ll}
1 \overline{0} \sim 1 \overline{2} \sim 1 \overline{3} \sim 1 \overline{4}, & 2 \overline{0} \sim 2 \overline{1} \sim 2 \overline{3} \sim 2 \overline{4}, \\
3 \overline{0} \sim 3 \overline{1} \sim 3 \overline{2} \sim 3 \overline{4}, & 4 \overline{0} \sim 4 \overline{1} \sim 4 \overline{2} \sim 4 \overline{3}
\end{array}
$$

Since each of the twenty single cosets has four names, the double coset [$0 \overline{1}]$ must have at most five distinct single cosets.

An alternative approach for determining the order of the double coset is as follows: We note that $N^{(0 \overline{1})} \geq N^{0 \overline{1}}=\langle(23),(24)\rangle \cong S_{3}$. In fact, by relation (5.4),
$N\left(t_{0} t_{1}^{-1}\right)^{(12)}=N t_{0} t_{2}^{-1}=N t_{0} t_{1}^{-1}$ implies that (12) $\in N^{(0 \overline{1})}$, and $\left.N\left(t_{0} t_{1}^{-1}\right)^{(123} 4\right)=$ $N t_{0} t_{2}^{-1}=N t_{0} t_{1}^{-1}$ implies that $(1234) \in N^{(0 \overline{1})}$. Therefore, (12), (1234) $123 N^{(0 \overline{1})}$, and so $N^{(0 \overline{1})} \geq\left\langle\left(\begin{array}{ll}1 & 2\end{array}\right),\left(\begin{array}{lll}1 & 2 & 3\end{array} 4\right)\right\rangle \cong S_{4}$. Therefore, $\left|N^{(0 \overline{1})}\right| \geq\left|S_{4}\right|=24$. Now, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} N\right|=\frac{|N|}{\left|N^{(01)}\right|} \leq \frac{120}{24}=5$.
Therefore, as we concluded earlier, the double coset [01] has at most five distinct single cosets.
Now, $N^{0 \overline{1}}$ has four orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}, t_{4}\right\}:\{0\},\{1,2,3,4\},\{\overline{0}\}$, and $\{\overline{1}, \overline{2}, \overline{3}, \overline{4}\}$.
Therefore, there are at most four double cosets of the form $N w N$, where w is a word of length three given by $w=t_{0} t_{1}^{-1} t_{i}^{ \pm 1}, i \in\{0,1\}: N t_{0} t_{1}^{-1} t_{0} N, N t_{0} t_{1}^{-1} t_{1} N$, $N t_{0} t_{1}^{-1} t_{0}^{-1} N$, and $N t_{0} t_{1}^{-1} t_{1}^{-1} N$.
But note that $N t_{0} t_{1}^{-1} t_{1} N=N t_{0} e N=N t_{0} N$ and $N t_{0} t_{1}^{-1} t_{1}^{-1} N=N t_{0} t_{1}^{-2} N=$ $N t_{0} t_{1} N$.

Moreover, by relation (5.2), since $t_{1} t_{0}=t_{0}^{-1} t_{1}^{-1} \Rightarrow\left[t_{1} t_{0}\right]^{(01)}=\left[t_{0}^{-1} t_{1}^{-1}\right]^{(01)} \Rightarrow$ $t_{0} t_{1}=t_{1}^{-1} t_{0}^{-1} \Rightarrow t_{0} t_{0} t_{1}=t_{0} t_{1}^{-1} t_{0}^{-1} \Rightarrow t_{0}^{-1} t_{1}=t_{0} t_{1}^{-1} t_{0}^{-1}$ we have that $N t_{0} t_{1}^{-1} t_{0}^{-1} N=$ $N t_{0}^{-1} t_{1} N$. That is, $[\overline{0} 1]=[0 \overline{1} \overline{0}]$.
Since $N t_{0} t_{1}^{-1} t_{1} N=N t_{0} e N=N t_{0} N$ and $N t_{0} t_{1}^{-1} t_{1}^{-1} N=N t_{0} t_{1}^{-2} N=N t_{0} t_{1} N$, and since, by relation (5.2), $N t_{0} t_{1}^{-1} t_{0}^{-1} N=N t_{0}^{-1} t_{1} N$, we conclude that there is one distinct double coset of the form $N t_{0} t_{1}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3,4\}: N t_{0} t_{1}^{-1} t_{0} N$.
5. We next consider the double coset $N t_{0} t_{1} N$.

Let [01] denote the double coset $N t_{0} t_{1} N$.
Note that by relation (5.2), since $t_{1} t_{0}=t_{0}^{-1} t_{1}^{-1}$ implies that $N t_{0}^{-1} t_{1}^{-1}=N t_{1} t_{0}$, and since $N t_{0}^{-1} t_{1}^{-1}=N t_{1} t_{0}$ implies that $\left\{N t_{i}^{-1} t_{j}^{-1} \mid i, j \in\{0,1,2,3,4\}, i \neq j\right\}=$ $\left\{N t_{j} t_{i} \mid i, j \in\{0,1,2,3,4\}, i \neq j\right\}$, we have that $N t_{0} t_{1} N=N t_{0}^{-1} t_{1}^{-1} N$. That is, $[01]=[\overline{0} \overline{1}]$.
Therefore, note that $N t_{0} t_{1} N=\left\{N t_{0} t_{1} n \mid n \in N\right\}=\left\{N n^{-1} t_{0} t_{1} n \mid n \in N\right\}=$ $\left\{N\left(t_{0} t_{1}\right)^{n} \mid n \in N\right\}=\left\{N t_{i} t_{j} \mid i, j \in\{0,1,2,3,4\}, i \neq j\right\}=\left\{N t_{0} t_{1}, N t_{0} t_{2}, N t_{0} t_{3}\right.$, $N t_{0} t_{4}, N t_{1} t_{0}, N t_{1} t_{2}, N t_{1} t_{3}, N t_{1} t_{4}, N t_{2} t_{0}, N t_{2} t_{1}, N t_{2} t_{3}, N t_{2} t_{4}, N t_{3} t_{0}, N t_{3} t_{1}, N t_{3} t_{2}$, $N t_{3} t_{4}, N t_{4} t_{0}, N t_{4} t_{1}, N t_{4} t_{2}, N t_{4} t_{3}, N t_{0}^{-1} t_{1}^{-1}, N t_{0}^{-1} t_{2}^{-1}, N t_{0}^{-1} t_{3}^{-1}, N t_{0}^{-1} t_{4}^{-1}, N t_{1}^{-1} t_{0}^{-1}$, $N t_{1-}^{-1} t_{2}^{-1}, N t_{1}^{-1} t_{3}^{-1}, N t_{1}^{-1} t_{4}^{-1}, N t_{2}^{-1} t_{0}^{-1}, N t_{2}^{-1} t_{1}^{-1}, N t_{2}^{-1} t_{3}^{-1}, N t_{2}^{-1} t_{4}^{-1}, N t_{3}^{-1} t_{0}^{-1}$,
$\left.N t_{3}^{-1} t_{1}^{-1}, N t_{3}^{-1} t_{2}^{-1}, N t_{3}^{-1} t_{4}^{-1}, N t_{4}^{-1} t_{0}^{-1}, N t_{4}^{-1} t_{1}^{-1}, N t_{4}^{-1} t_{2}^{-1}, N t_{4}^{-1} t_{3}^{-1}\right\}$
$=\left\{N t_{j}^{-1} t_{i}^{-1} \mid i, j \in\{0,1,2,3,4\}, i \neq j\right\}=\left\{N\left(t_{1}^{-1} t_{0}^{-1}\right)^{n} \mid n \in N\right\}$
$=\left\{N n^{-1} t_{1}^{-1} t_{0}^{-1} n \mid n \in N\right\}=\left\{N t_{1}^{-1} t_{0}^{-1} n \mid n \in N\right\}=N t_{0}^{-1} t_{1}^{-1} N$.
Now, by relation (5.2), $t_{1} t_{0}=t_{0}^{-1} t_{1}^{-1} \Rightarrow\left[t_{1} t_{0}\right]^{(01)}=\left[t_{0}^{-1} t_{1}^{-1}\right]^{(01)} \Rightarrow t_{0} t_{1}=t_{1}^{-1} t_{0}^{-1}$.
That is, using our short-hand notation, we have

$$
01 \sim \overline{1} \overline{0}
$$

Similarly, by conjugating the above relationship, we have

$$
\begin{array}{rcccc}
02 \sim \overline{2} \overline{0} & 03 \sim \overline{3} \overline{0} & 04 \sim \overline{4} \overline{0} & 10 \sim \overline{0} \overline{1} & 12 \sim \overline{2} \overline{1} \\
13 \sim \overline{3} \overline{1} & 14 \sim \overline{4} \overline{1} & 20 \sim \overline{0} \overline{2} & 21 \sim \overline{1} \overline{2} & 23 \sim \overline{3} \overline{2} \\
24 \sim \overline{4} \overline{2} & 30 \sim \overline{0} \overline{3} & 31 \sim \overline{1} \overline{3} & 32 \sim \overline{2} \overline{3} & 34 \sim \overline{4} \overline{3} \\
& & & \\
40 \sim \overline{0} \overline{4} & 41 \sim \overline{1} \overline{4} & 42 \sim \overline{2} \overline{4} & 43 \sim \overline{3} \overline{4}
\end{array}
$$

Since each of the forty single cosets has two names, the double coset $[01]=[\overline{0} \overline{1}]$ must have at most twenty distinct single cosets.

An alternative approach for determining the order of the double coset is as follows:

Now, by Lemma 1.4, $\left|N t_{0} t_{1} N\right|=\frac{|N|}{\left|N^{(01)}\right|} \leq \frac{120}{6}=20$.
Therefore, as we concluded earlier, the double coset $[01]=[\overline{0} \overline{1}]$ has at most twenty distinct single cosets.

Now, N^{01} has six orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}, t_{4}\right\}:\{0\},\{1\},\{2,3,4\},\{\overline{0}\},\{\overline{1}\}$, and $\{\overline{2}, \overline{3}, \overline{4}\}$.

Therefore, there are at most six double cosets of the form $N w N$, where w is a word of length three given by $w=t_{0} t_{1} t_{i}^{ \pm 1}, i \in\{0,1,2\}: N t_{0} t_{1} t_{0} N, N t_{0} t_{1} t_{1} N, N t_{0} t_{1} t_{2} N$, $N t_{0} t_{1} t_{0}^{-1} N, N t_{0} t_{1} t_{1}^{-1} N$, and $N t_{0} t_{1} t_{2}^{-1} N$.

But note that $N t_{0} t_{1} t_{1}^{-1} N=N t_{0} e N=N t_{0} N$ and $N t_{0} t_{1} t_{1} N=N t_{0} t_{1}^{2} N=N t_{0} t_{1}^{-1} N$.
Moreover, by relation (5.2), since $t_{1} t_{0}=t_{0}^{-1} t_{1}^{-1} \Rightarrow t_{0} t_{1} t_{0}=t_{0} t_{0}^{-1} t_{1}^{-1} \Rightarrow t_{0} t_{1} t_{0}=t_{1}^{-1}$ implies that $N t_{0} t_{1} t_{0}=N t_{1}^{-1}$, we have that $N t_{0} t_{1} t_{0} N=N t_{0}^{-1} N$. That is, $[\overline{0}]=$ [010].

Similarly, by relation (5.2), since $t_{1} t_{0}=t_{0}^{-1} t_{1}^{-1} \Rightarrow\left[t_{1} t_{0}\right]^{(01)}$
$=\left[t_{0}^{-1} t_{1}^{-1}\right]^{(01)} \Rightarrow t_{0} t_{1}=t_{1}^{-1} t_{0}^{-1} \Rightarrow t_{0} t_{1} t_{0}^{-1}=t_{1}^{-1} t_{0}^{-1} t_{0}^{-1} \Rightarrow t_{0} t_{1} t_{0}^{-1}=t_{1}^{-1} t_{0}$ implies that $N t_{0} t_{1} t_{0}^{-1}=N t_{1}^{-1} t_{0}$, we have that $N t_{0} t_{1} t_{0}^{-1} N=N t_{0}^{-1} t_{1} N$. That is, $[\overline{0} 1]=$ [010̄].

Likewise, by relation (5.1), since (021) $t_{1} t_{0} t_{2}=t_{0}^{-1} t_{1}^{-1} \Rightarrow$
$\left.\left[\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1} t_{0} t_{2}\right]^{(01)}=\left[t_{0}^{-1} t_{1}^{-1}\right]^{(01)} \Rightarrow\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{1} t_{2}=t_{1}^{-1} t_{0}^{-1}$ implies that $N t_{0} t_{1} t_{2}=$ $N t_{1}^{-1} t_{0}^{-1}$ we have that $N t_{0} t_{1} t_{2} N=N t_{0}^{-1} t_{1}^{-1} N$. That is, $[\overline{0} \overline{1}]=[012]$.
Similarly, by relation (5.4), since (021) $t_{1}^{-1} t_{2}=t_{1}^{-1} t_{0} \Rightarrow t_{2}\left(\begin{array}{ll}0 & 2\end{array}\right) t_{1}^{-1} t_{2}$
$=t_{2} t_{1}^{-1} t_{0} \Rightarrow(021)(012) t_{2}(021) t_{1}^{-1} t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow(021) t_{2}^{\left(0{ }^{21}\right)} t_{1}^{-1} t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow$
(021) $t_{1} t_{1}^{-1} t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow(021) e t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow(021) t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow(021) t_{2}=$ $t_{2} t_{1}^{-1} t_{0} \Rightarrow(021) t_{2} t_{0}^{-1}=t_{2} t_{1}^{-1} t_{0} t_{0}^{-1} \Rightarrow(021) t_{2} t_{0}^{-1}$
$=t_{2} t_{1}^{-1} e \Rightarrow\left(\begin{array}{lll}0 & 1\end{array}\right) t_{2} t_{0}^{-1}=t_{2} t_{1}^{-1} \Rightarrow\left[\left(\begin{array}{lll}0 & 2\end{array}\right) t_{2} t_{0}^{-1}\right]^{(12)}=\left[t_{2} t_{1}^{-1}\right]^{(12)} \Rightarrow\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{1} t_{0}^{-1}=$ $t_{1} t_{2}^{-1} \Rightarrow t_{0}\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{1} t_{0}^{-1}=t_{0} t_{1} t_{2}^{-1} \Rightarrow$
(012) (0 211) $t_{0}\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{1} t_{0}^{-1}=t_{0} t_{1} t_{2}^{-1} \Rightarrow\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}^{(012)} t_{1} t_{0}^{-1}=t_{0} t_{1} t_{2}^{-1} \Rightarrow$
(012) $t_{1} t_{1} t_{0}^{-1}=t_{0} t_{1} t_{2}^{-1} \Rightarrow(012) t_{1}^{-1} t_{0}^{-1}=t_{0} t_{1} t_{2}^{-1}$ implies that $N t_{0} t_{1} t_{2}^{-1}$
$=N t_{1}^{-1} t_{0}^{-1}$, we have that $N t_{0} t_{1} t_{2}^{-1} N=N t_{0}^{-1} t_{1}^{-1} N$. That is, $[\overline{0} \overline{1}]=[01 \overline{2}]$.
Since $N t_{0} t_{1} t_{1}^{-1} N=N t_{0} N, N t_{0} t_{1} t_{1} N=N t_{0} t_{1}^{-1} N, N t_{0} t_{1} t_{0} N=N t_{0}^{-1} N, N t_{0} t_{1} t_{0}^{-1} N$ $=N t_{0}^{-1} t_{1} N, N t_{0} t_{1} t_{2} N=N t_{0}^{-1} t_{1}^{-1} N$, and $N t_{0} t_{1} t_{2}^{-1} N=N t_{0}^{-1} t_{1}^{-1} N$, we need not consider additional double cosets of the form $N t_{0} t_{1} t_{i}^{ \pm 1} N, i \in\{0,1,2,3,4\}$.
6. We next consider the double coset $N t_{0}^{-1} t_{1} N$.

Let [$\overline{0} 1]$ denote the double coset $N t_{0}^{-1} \cdot t_{1} N$.
Now, by relation (5.4), ($\left.\left.\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1}^{-1} t_{2}=t_{1}^{-1} t_{0} \Rightarrow\left[\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1}^{-1} t_{2}\right]^{(01)}=\left[t_{1}^{-1} t_{0}\right]^{(01)} \Rightarrow$ (012) $t_{0}^{-1} t_{2}=t_{0}^{-1} t_{1}$ and, by conjugation with elements of $N \cong S_{5}$,
$\left.\left[\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}^{-1} t_{2}\right]^{(23)}=\left[t_{0}^{-1} t_{1}\right]^{(23)} \Rightarrow\left(\begin{array}{lll}0 & 1 & 3\end{array}\right) t_{0}^{-1} t_{3}=t_{0}^{-1} t_{1}$ and $\left[\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}^{-1} t_{2}\right]^{(24)}=$ $\left[t_{0}^{-1} t_{1}\right]^{(24)} \Rightarrow\left(\begin{array}{ll}0 & 1\end{array}\right) t_{0}^{-1} t_{4}=t_{0}^{-1} t_{1}$.
Therefore, by relation (5.4), ($\left.\begin{array}{lll}1 & 1 & 2\end{array}\right) t_{0}^{-1} t_{2}=t_{0}^{-1} t_{1}=\left(\begin{array}{lll}0 & 1 & 3\end{array}\right) t_{0}^{-1} t_{3}=\left(\begin{array}{lll}0 & 1 & 4\end{array}\right) t_{0}^{-1} t_{4}$.
That is, using our short-hand notation, we have

$$
\overline{0} 1 \sim \overline{0} 2 \sim \overline{0} 3 \sim \overline{0} 4
$$

By conjugating the above relationship, we have also that

$$
\overline{1} 0 \sim \overline{1} 2 \sim \overline{1} 3 \sim \overline{1} 4, \quad \overline{2} 0 \sim \overline{2} 1 \sim \overline{2} 3 \sim \overline{2} 4
$$

$$
\overline{3} 0 \sim \overline{3} 1 \sim \overline{3} 2 \sim \overline{3} 4, \quad \overline{4} 0 \sim \overline{4} 1 \sim \overline{4} 2 \sim \overline{4} 3
$$

Since each of the twenty single cosets has four names, the double coset [$\overline{0} 1]$ must have at most five distinct single cosets.
Now, $N^{\overline{0} 1}$ has four orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}, t_{4}\right\}:\{0\},\{1,2,3,4\},\{\overline{0}\}$, and $\{\overline{1}, \overline{2}, \overline{3}, \overline{4}\}$.

Therefore, there are at most four double cosets of the form $N w N$, where w is a word of length three given by $w=t_{0}^{-1} t_{1} t_{i}^{ \pm 1}, i \in\{0,1\}: N t_{0}^{-1} t_{1} t_{0} N, N t_{0}^{-1} t_{1} t_{1} N$, $N t_{0}^{-1} t_{1} t_{0}^{-1} N$, and $N t_{0}^{-1} t_{1} t_{1}^{-1} N$.

But note that $N t_{0}^{-1} t_{1} t_{1} N=N t_{0}^{-1} t_{1}^{2} N=N t_{0}^{-1} t_{1}^{-1} N$ and $N t_{0}^{-1} t_{1} t_{1}^{-1} N=N t_{0}^{-1} e N=$ $N t_{0}^{-1} N$.

Moreover, by relation (5.2), since $t_{1} t_{0}=t_{0}^{-1} t_{1}^{-1} \Rightarrow t_{0}^{-1} t_{1} t_{0}=t_{0}^{-1} t_{0}^{-1} t_{1}^{-1}$ $\Rightarrow t_{0}^{-1} t_{1} t_{0}=t_{0} t_{1}^{-1}$ implies that $N t_{0}^{-1} t_{1} t_{0}=N t_{0} t_{1}^{-1}$, we have that $N t_{0}^{-1} t_{1} t_{0} N=$ $N t_{0} t_{1}^{-1} N$. That is, $[0 \overline{1}]=[\overline{0} 10]$.
Similarly, by relation (5.2), since $t_{1} t_{0}=t_{0}^{-1} t_{1}^{-1} \Rightarrow t_{0}^{-1} t_{1} t_{0}=t_{0}^{-1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow t_{0}^{-1} t_{1} t_{0}=t_{0} t_{1}^{-1} \Rightarrow t_{0}^{-1} t_{1} t_{0} t_{0}=t_{0} t_{1}^{-1} t_{0} \Rightarrow t_{0}^{-1} t_{1} t_{0}^{-1}=t_{0} t_{1}^{-1} t_{0}$ implies that $N t_{0}^{-1} t_{1} t_{0}^{-1}=N t_{0} t_{1}^{-1} t_{0}$ we have that $N t_{0}^{-1} t_{1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{0} N$. That is, $[0 \overline{1} 0]=$ [$\mathrm{0} 1 \overline{0}]$.
Since $N t_{0}^{-1} t_{1} t_{1} N=N t_{0}^{-1} t_{1}^{2} N=N t_{0}^{-1} t_{1}^{-1} N, N t_{0}^{-1} t_{1} t_{1}^{-1} N=N t_{0}^{-1} e N=N t_{0}^{-1} N$, $N t_{0}^{-1} t_{1} t_{0} N=N t_{0} t_{1}^{-1} N$, and $N t_{0}^{-1} t_{1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{0} N$, we need not consider additional double cosets of the form $N t_{0}^{-1} t_{1} t_{i}^{ \pm 1} N, i \in\{0,1,2,3,4\}$.
7. We finally consider the double coset $N t_{0}^{-1} t_{1} t_{0}^{-1} N$.

Let $[\overline{0} 1 \overline{0}]$ denote the double coset $N t_{0}^{-1} t_{1} t_{0}^{-1} N$.
Note again that, by relation (5.2), since $t_{1} t_{0}=t_{0}^{-1} t_{1}^{-1} \Rightarrow t_{0}^{-1} t_{1} t_{0}=t_{0}^{-1} t_{0}^{-1} t_{1}^{-1} \Rightarrow$ $t_{0}^{-1} t_{1} t_{0}=t_{0} t_{1}^{-1} \Rightarrow t_{0}^{-1} t_{1} t_{0} t_{0}=t_{0} t_{1}^{-1} t_{0} \Rightarrow t_{0}^{-1} t_{1} t_{0}^{-1}=t_{0} t_{1}^{-1} t_{0}$ implies that $N t_{0}^{-1} t_{1} t_{0}^{-1}$ $=N t_{0} t_{1}^{-1} t_{0}$ we have that $N t_{0}^{-1} t_{1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{0} N$. That is, $[0 \overline{1} 0]=[\overline{0} 1 \overline{0}]$.
Note that $N t_{0}^{-1} t_{1} t_{0}^{-1} N=\left\{N t_{0}^{-1} t_{1} t_{0}^{-1} n \mid n \in N\right\}=\left\{N n^{-1} t_{0}^{-1} t_{1} t_{0}^{-1} n \mid n \in\right.$ $N\}=\left\{N\left(t_{0}^{-1} t_{1} t_{0}^{-1}\right)^{n} \mid n \in N\right\}=\left\{N t_{i}^{-1} t_{j} t_{i}^{-1} \mid i, j \in\{0,1,2,3,4\}, i \neq j\right\}=$ $\left\{N t_{0}^{-1} t_{1} t_{0}^{-1}, N t_{0}^{-1} t_{2} t_{0}^{-1}, N t_{0}^{-1} t_{3} t_{0}^{-1}, N t_{0}^{-1} t_{4} t_{0}^{-1}, N t_{1}^{-1} t_{0} t_{1}^{-1}, N t_{1}^{-1} t_{2} t_{1}^{-1}, N t_{1}^{-1} t_{3} t_{1}^{-1}\right.$, $N t_{1}^{-1} t_{4} t_{1}^{-1}, N t_{2}^{-1} t_{0} t_{2}^{-1}, N t_{2}^{-1} t_{1} t_{2}^{-1}, N t_{2}^{-1} t_{3} t_{2}^{-1}, N t_{2}^{-1} t_{4} t_{2}^{-1}, N t_{3}^{-1} t_{0} t_{3}^{-1}, N t_{3}^{-1} t_{1} t_{3}^{-1}$, $N t_{3}^{-1} t_{2} t_{3}^{-1}, N t_{3}^{-1} t_{4} t_{3}^{-1}, N t_{4}^{-1} t_{0} t_{4}^{-1}, N t_{4}^{-1} t_{1} t_{4}^{-1}, N t_{4}^{-1} t_{2} t_{4}^{-1}, N t_{4}^{-1} t_{3} t_{4}^{-1}, N t_{0} t_{1}^{-1} t_{0}$,

$$
\begin{aligned}
& N t_{0} t_{2}^{-1} t_{0}, N t_{0} t_{3}^{-1} t_{0}, N t_{0} t_{4}^{-1} t_{0}, N t_{1} t_{0}^{-1} t_{1}, N t_{1} t_{2}^{-1} t_{1}, N t_{1} t_{3}^{-1} t_{1}, N t_{1} t_{4}^{-1} t_{1}, N t_{2} t_{0}^{-1} t_{2}, \\
& N t_{2} t_{1}^{-1} t_{2}, N t_{2} t_{3}^{-1} t_{2}, N t_{2} t_{4}^{-1} t_{2}, N t_{3} t_{0}^{-1} t_{3}, N t_{3} t_{1}^{-1} t_{3}, N t_{3} t_{2}^{-1} t_{3}, N t_{3} t_{4}^{-1} t_{3}, N t_{4} t_{0}^{-1} t_{4}, \\
& \left.N t_{4} t_{1}^{-1} t_{4}, N t_{4} t_{2}^{-1} t_{4}, N t_{4} t_{3}^{-1} t_{4}\right\}=\left\{N t_{i} t_{j}^{-1} t_{i} \mid i, j \in\{0,1,2,3,4\}, i \neq j\right\} \\
& =\left\{N\left(t_{0} t_{1}^{-1} t_{0}\right)^{n} \mid n \in N\right\}=\left\{N n^{-1} t_{0} t_{1}^{-1} t_{0} n \mid n \in N\right\}=\left\{N t_{0} t_{1}^{-1} t_{0} n \mid n \in N\right\} \\
& =N t_{0} t_{1}^{-1} t_{0} N .
\end{aligned}
$$

Now, by relation (5.4), ($\begin{aligned} & 0 \\ & 2\end{aligned} 1$ 1) $t_{1}^{-1} t_{2}=t_{1}^{-1} t_{0}=\left(\begin{array}{lll}0 & 3 & 1\end{array}\right) t_{1}^{-1} t_{3}=\left(\begin{array}{lll}0 & 4 & 1\end{array}\right) t_{1}^{-1} t_{4}$ and (0 241$) t_{1}^{-1} t_{2} t_{1}^{-1}=t_{1}^{-1} t_{0} t_{1}^{-1}=\left(\begin{array}{lll}0 & 3 & 1\end{array}\right) t_{1}^{-1} t_{3} t_{1}^{-1}=\left(\begin{array}{lll}0 & 4 & 1\end{array}\right) t_{1}^{-1} t_{4} t_{1}^{-1}$. Similarly, by conjugation of these relations, ($\left.\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}^{-1} t_{2} t_{0}^{-1}=t_{0}^{-1} t_{1} t_{0}^{-1}=\left(\begin{array}{lll}0 & 1 & 3\end{array}\right) t_{0}^{-1} t_{3} t_{0}^{-1}=$ (0114) $t_{0}^{-1} t_{4} t_{0}^{-1}$ and (012) $t_{2}^{-1} t_{1} t_{2}^{-1}=t_{2}^{-1} t_{0} t_{2}^{-1}=\left(\begin{array}{ll}0 & 3\end{array}\right) t_{2}^{-1} t_{3} t_{2}^{-1}=\left(\begin{array}{ll}0 & 4\end{array}\right) t_{2}^{-1} t_{4} t_{2}^{-1}$ and (02 3) $t_{3}^{-1} t_{2} t_{3}^{-1}=t_{3}^{-1} t_{0} t_{3}^{-1}=\left(\begin{array}{lll}0 & 1 & 3\end{array}\right) t_{3}^{-1} t_{1} t_{3}^{-1}=\left(\begin{array}{lll}0 & 4\end{array}\right) t_{3}^{-1} t_{4} t_{3}^{-1}$ and $\left(\begin{array}{ll}0 & 2\end{array}\right.$ 4) $t_{4}^{-1} t_{2} t_{4}^{-1}=t_{4}^{-1} t_{0} t_{4}^{-1}=\left(\begin{array}{lll}0 & 3 & 4\end{array}\right) t_{4}^{-1} t_{3} t_{4}^{-1}=\left(\begin{array}{lll}0 & 1 & 4\end{array}\right) t_{4}^{-1} t_{1} t_{4}^{-1}$. Finally, by relation (5.3), $t_{0}^{-1} t_{1} t_{0}^{-1}=t_{1}^{-1} t_{0} t_{1}^{-1}$ and $\left[t_{0}^{-1} t_{1} t_{0}^{-1}\right]^{(02)}=\left[t_{1}^{-1} t_{0} t_{1}^{-1}\right]^{(02)} \Rightarrow t_{2}^{-1} t_{1} t_{2}^{-1}=$ $t_{1}^{-1} t_{2} t_{1}^{-1}$ and $\left[t_{0}^{-1} t_{1} t_{0}^{-1}\right]^{(03)}=\left[t_{1}^{-1} t_{0} t_{1}^{-1}\right]^{(03)} \Rightarrow t_{3}^{-1} t_{1} t_{3}^{-1}=t_{1}^{-1} t_{3} t_{1}^{-1}$ and $\left[t_{0}^{-1} t_{1} t_{0}^{-1}\right]^{(04)}=\left[t_{1}^{-1} t_{0} t_{1}^{-1}\right]^{(04)} \Rightarrow t_{4}^{-1} t_{1} t_{4}^{-1}=t_{1}^{-1} t_{4} t_{1}^{-1}$.

Therefore, the following single cosets, expressed in our short-hand notation, are equivalent:

$$
\begin{gathered}
0 \overline{1} 0 \sim 0 \overline{2} 0 \sim 0 \overline{3} 0 \sim 0 \overline{4} 0 \sim 1 \overline{0} 1 \sim 1 \overline{2} 1 \sim 1 \overline{3} 1 \sim 1 \overline{4} 1 \sim 2 \overline{0} 2 \sim 2 \overline{1} 2 \sim \\
2 \overline{3} 2 \sim 2 \overline{4} 2 \sim 3 \overline{0} 3 \sim 3 \overline{1} 3 \sim 3 \overline{2} 3 \sim 3 \overline{4} 3 \sim 4 \overline{0} 4 \sim 4 \overline{1} 4 \sim 4 \overline{2} 4 \sim 4 \overline{3} 4 \\
\overline{0} 1 \overline{0} \sim \overline{0} 2 \overline{0} \sim \overline{0} 3 \overline{0} \sim \overline{0} 4 \overline{0} \sim \overline{1} 0 \overline{1} \sim \overline{1} 2 \overline{1} \sim \overline{1} 3 \overline{1} \sim \overline{1} 4 \overline{1} \sim \overline{2} 0 \overline{2} \sim \overline{2} 1 \overline{2} \sim \\
\overline{2} 3 \overline{2} \sim \overline{2} 4 \overline{2} \sim \overline{3} 0 \overline{3} \sim \overline{3} 1 \overline{3} \sim \overline{3} 2 \overline{3} \sim \overline{3} 4 \overline{3} \sim \overline{4} 0 \overline{4} \sim \overline{4} 1 \overline{4} \sim \overline{4} 2 \overline{4} \sim \overline{4} 3 \overline{4}
\end{gathered}
$$

Since each of the forty singe cosets has forty names, the double coset $[\overline{0} 10]=[0 \overline{1} 0]$ must have one distinct single coset.

An alternative approach for determining the order of the double coset is as follows: We note that $N^{(\overline{0} 1 \overline{0})} \geq N^{\overline{0} 10}=\langle(23),(24)\rangle \cong S_{3}$. In fact, by relations (5.2), (5.3), and (5.4), $N\left(t_{0}^{-1} t_{1} t_{0}^{-1}\right)^{(01)}=N t_{1}^{-1} t_{0} t_{1}^{-1}=N t_{0}^{-1} t_{1} t_{0}^{-1}$ implies that (01) $\in N^{(\overline{0} 1 \overline{0})}$, and $\left.N\left(t_{0}^{-1} t_{1} t_{0}^{-1}\right)^{(012} 1234\right)=N t_{1}^{-1} t_{0} t_{1}^{-1}=N t_{0}^{-1} t_{1} t_{0}^{-1}$ implies that $\left(\begin{array}{llll}0 & 1 & 2 & 3\end{array}\right) \in$ $N^{(\overline{0} 1 \overline{0})}$. Therefore, (01), (01234) $10 N^{(\overline{0} 1 \overline{0})}$, and so $N^{(\overline{0} 1 \overline{0})} \geq\left\langle\left(\begin{array}{ll}0 & \left.1),\left(\begin{array}{ll}0 & 1\end{array} 234\right)\right\rangle \cong\end{array}\right.\right.$ S_{5}. Therefore, $\left|N^{(\overline{0} 1 \overline{0})}\right| \geq\left|S_{5}\right|=120$. Now, by Lemma 1.4, $\left|N t_{0}^{-1} t_{1} t_{0}^{-1}\right|=\frac{|N|}{\left.\mid N^{(\overline{0} 10}\right)} \leq$ $\frac{120}{120}=1$.

Therefore, as we concluded earlier, the double coset $[\overline{0} 1 \overline{0}]=[0 \overline{1} 0]$ has at most one distinct single coset.

Now, $N^{\overline{0} 1 \overline{0}}$ has two orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}, t_{4}\right\}:\{0,1,2,3,4\}$ and $\{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}\}$.
Therefore, there are at most two double cosets of the form $N w N$, where w is a word of length four given by $w=t_{0}^{-1} t_{1} t_{0}^{-1} t_{i}^{ \pm 1}, i=0: N t_{0}^{-1} t_{1} t_{0}^{-1} t_{0} N$ and $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{0}^{-1} N$. But note that $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{0} N=N t_{0}^{-1} t_{1} e N=N t_{0}^{-1} t_{1} N$.
Moreover, by relation (5.2), since $t_{1} t_{0}=t_{0}^{-1} t_{1}^{-1} \Rightarrow t_{0}^{-1} t_{1} t_{0}=t_{0}^{-1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow t_{0}^{-1} t_{1} t_{0}=t_{0} t_{1}^{-1} \Rightarrow t_{0}^{-1} t_{1} t_{0}^{-1} t_{0}^{-1}=t_{0}^{-1} t_{1} t_{0}=t_{0} t_{1}^{-1}$ implies that $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{0}^{-1}=$ $N t_{0}^{-1} t_{1} t_{0}=N t_{0} t_{1}^{-1}$, we have that $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{0}^{-1} N=N t_{0}^{-1} t_{1} t_{0} N=N t_{0} t_{1}^{-1} N$. That is, $[0 \overline{1}]=[\overline{0} 1 \overline{0} \overline{0}]$.

Since $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{0} N=N t_{0}^{-1} t_{1} N$ and $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} N$, we need not consider additional double cosets of the form $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3,4\}$.

In fact, since $N^{(\overline{0} 1 \overline{0})}$ is transitive on the symmetric generators and since $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{0} N=N t_{0}^{-1} t_{1} t N$ and $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} N$ imply that the double $\operatorname{coset}[\overline{0} 1 \overline{0} 0]=[\overline{0} 1]$ and the double coset $[\overline{0} 1 \overline{0} \overline{0}]=[0 \overline{1}]$, we have completed the double coset enumeration of G over S_{5}.

In total, therefore, there are at most 7 distinct double cosets of N in G and at most 42 distinct right (single) cosets of N in G. The double cosets of N in G are as follows: [*], $[0],[\overline{0}],[\overline{0} 1],[01]=[\overline{0} \overline{1}],[0 \overline{1}]$, and $[\overline{0} 1 \overline{0}]=[0 \overline{1} 0]$.

5.3 Cayley Diagram of G Over S_{5}

The Cayley diagram of G over S_{5} is illustrated in Figure 5.1. For a detailed explanation of the meaning of the component parts of a Cayley diagram, see Section 2.3.

Figure 5.1: Cayley Diagram of G Over S_{5}

5.4 Action of the Symmetric Generators and the Generators of S_{5} on the Right Cosets of G Over S_{5}

Let X denote the set of all (42) distinct right cosets of N in G, that is, let $X=$ $\left\{N, N t_{0}, N t_{1}, N t_{2}, N t_{3}, N t_{4}, N t_{0}^{-1}, N t_{1}^{-1}, N t_{2}^{-1}, N t_{3}^{-1}, N t_{4}^{-1}, N t_{0}^{-1} t_{1}, N t_{1}^{-1} t_{0}, N t_{2}^{-1} t_{0}\right.$, $N t_{3}^{-1} t_{0}, N t_{4}^{-1} t_{0}, N t_{0} t_{1}^{-1}, N t_{1} t_{0}^{-1}, N t_{2} t_{0}^{-1}, N t_{3} t_{0}^{-1}, N t_{4} t_{0}^{-1}, N t_{0} t_{1}, N t_{0} t_{2}, N t_{0} t_{3}, N t_{0} t_{4}$, $N t_{1} t_{0}, N t_{1} t_{2}, N t_{1} t_{3}, N t_{1} t_{4}, N t_{2} t_{0}, N t_{2} t_{1}, N t_{2} t_{3}, N t_{2} t_{4}, N t_{3} t_{0}, N t_{3} t_{1}, N t_{3} t_{2}, N t_{3} t_{4}, N t_{4} t_{0}$, $\left.N t_{4} t_{1}, N t_{4} t_{2}, N t_{4} t_{3}, N t_{0} t_{1}^{-1} t_{0}\right\}$. We define a mapping $\phi: G \longrightarrow S_{X}$ so that ϕ maps a generator $g \in G$ to its action (by right multiplication) on X. That is, we define ϕ so that $\phi(g)=\widehat{\phi}(g): X \rightarrow X$. Then the action $\phi(t) \sim \phi\left(t_{0}\right)$ of the symmetric generator $t \sim t_{0}$ on the right cosets of N in G may be expressed as

$$
\begin{aligned}
\phi(t) \sim \phi\left(t_{0}\right)= & (* 0 \overline{0})(1101 \overline{0})(2202 \overline{0})(3303 \overline{0})(4404 \overline{0})(\overline{1} \overline{1} 001) \\
& (\overline{2} \overline{2} 002)(\overline{3} \overline{3} 003)(\overline{4} \overline{4} 004)(0 \overline{1} 0 \overline{1} 0 \overline{0} 1),
\end{aligned}
$$

and the action $\phi(x) \sim \phi\left(\left(\begin{array}{lll}0 & 1 & 2\end{array} 34\right)\right)$ of the generator $x \sim\left(\begin{array}{llll}0 & 1 & 2 & 3\end{array}\right)$ of S_{5} on the right cosets of N in G may be expressed as
$\phi(x) \sim \phi((01234))=(01234)(\overline{0} \overline{1} \overline{2} \overline{3} \overline{4})(\overline{0} 1 \overline{1} 2 \overline{2} 3 \overline{3} 4 \overline{4} 0)(0 \overline{1} 1 \overline{2} 2 \overline{3} 3 \overline{4} 4 \overline{0})(0112233440)$
and the action $\phi(y) \sim \phi((01234))$ of the generator $y \sim(34)$ of S_{5} on the right cosets of N in G may be expressed as

$$
\begin{gathered}
\phi(y) \sim \phi((01234))=(34)(\overline{3} \overline{4})(\overline{3} 0 \overline{4} 0)(3 \overline{0} 4 \overline{0})(0304)(1314)(2324) \\
(3040)(3141)(3242)(3443) .
\end{gathered}
$$

Since there are 42 distinct right cosets of N in G, these actions may be written as permutations on 42 letters. In fact, the actions of the generators on the set of right cosets of N in G are equivalent to the permutation representations of the generators in their action on the right cosets of N in G. To better manipulate the permutation representations of the symmetric generators t_{i} and the generators x and y, it is helpful to label the distinct single cosets of N in G as follows:

(42)	$*$	(7)	$\overline{1}$	(14)	$\overline{3} 0$	(21)	01	(28)	14	(35)	32
(1)	0	(8)	$\overline{2}$	(15)	$\overline{4} 0$	(22)	02	(29)	20	(36)	34
(2)	1	(9)	$\overline{3}$	(16)	$0 \overline{1}$	(23)	03	(30)	21	(37)	40
(3)	2	(10)	$\overline{4}$	(17)	$1 \overline{0}$	(24)	04	(31)	23	(38)	41
(4)	3	(11)	$\overline{0} 1$	(18)	$2 \overline{0}$	(25)	10	(32)	24	(39)	42
(5)	4	(12)	$\overline{1} 0$	(19)	$3 \overline{0}$	(26)	12	(33)	30	(40)	43
(6)	$\overline{0}$	(13)	$\overline{2} 0$	(20)	$4 \overline{0}$	(27)	13	(34)	31	(41)	$0 \overline{1} 0$

Having labeled each of the 42 distinct right cosets of N in G, we may express the permutation representation of the symmetric generators $t \sim t_{0}, t^{x} \sim t_{1}, t^{x^{2}} \sim t_{2}, t^{x^{3}} \sim t_{3}$, and $t^{x^{4}} \sim t_{4}$, and the generators $x \sim(01234)$ and $y \sim(34)$, in their action on the right cosets of N in G as, respectively,

$$
\begin{aligned}
& \phi(t) \sim \phi\left(t_{0}\right):(4216)(22517)(32918)(43319)(53720)(71221) \\
&(81322)(91423)(101524)(164111), \\
& \phi\left(t^{x}\right) \sim \phi\left(t_{1}\right):(4227)(12116)(33018)(43419)(53820)(61125) \\
&(81326)(91427)(101528)(121741), \\
& \phi\left(t^{x^{2}}\right) \sim \phi\left(t_{2}\right):(4238)(12216)(22617)(43519)(53920)(61129) \\
&(71230)(91431)(101532)(131841), \\
& \phi\left(t^{x^{3}}\right) \sim \phi\left(t_{3}\right):(4249)(12316)(22717)(33118)(54020)(61133)
\end{aligned}
$$

$(71234)(81335)(101536)(141941)$,
$\phi\left(t^{x^{4}}\right) \sim \phi\left(t_{4}\right):\left(\begin{array}{lll}42 & 5 & 10\end{array}\right)\left(\begin{array}{l}1 \\ 24\end{array} 16\right)(22817)(33218)(43619)\left(\begin{array}{ll}6 & 11\end{array} 37\right)$
(71238)(81339)(91440)(152041),

$$
\begin{gathered}
\phi(x) \sim \phi((01234)):(12345)(678910)(1112131415)(1617181920) \\
(2126313637)(2227323338)(2328293439)(2425303540), \\
\phi(y) \sim \phi(34):(45)(910)(1415)(1920)(2324)(2728)(3132) \\
(3337)(3438)(3539)(3640)
\end{gathered}
$$

5.5 Proof of Isomorphism between G and S_{7}

We now demonstrate that $G \cong S_{7}$.

Proof. To prove that $G \cong S_{7}$, we must first show that $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of G and that $|G|=|\langle\phi(x), \phi(y), \phi(t)\rangle|=5040$ (from which we can conclude $G \cong\langle\phi(x), \phi(y), \phi(t)\rangle)$, and we must next show that $\langle\phi(x), \phi(y), \phi(t)\rangle \cong S_{7}$ (from which we can conclude S_{7} is a homomorphic image of G and $G \cong S_{7}$).

We first show $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of G and $|G|=|\langle\phi(x), \phi(y), \phi(t)\rangle|=5040$. From our construction of G using manual double coset enumeration of G over S_{5}, illustrated by the Cayley Diagram in Figure 5.1, we concluded that group G defined by the symmetric presentation must contain a homomorphic image of $N \cong S_{5}$ whose index [$G: N$] is at most 42 :

$$
\begin{aligned}
& {[G: N]=\frac{|N|}{\left|N^{(*)}\right|}+\frac{|N|}{\left|N^{(0)}\right|}+\frac{|N|}{\left|N^{(\overline{0})}\right|}+\frac{|N|}{\left|N^{(0 \overline{1})}\right|}+\frac{|N|}{\left|N^{(01)}\right|}+\frac{|N|}{\left|N^{(\overline{0} 1)}\right|}+\frac{|N|}{\left|N^{(0 \overline{1})}\right|} \leq} \\
& \frac{120}{120}+\frac{120}{24}+\frac{120}{24}+\frac{120}{24}+\frac{120}{6}+\frac{120}{24}+\frac{120}{120}=1+5+5+5+20+5+1=42
\end{aligned}
$$

Since the index of N in G is at most 42 , and since $|G|=\frac{|G|}{|N|} \cdot|N|$, the order of the homomorphic image group G is at most 5040:

$$
|G|=\frac{|G|}{|N|} \cdot|N| \leq 42 \cdot|N|=42 \cdot 120=5040 \Rightarrow|G| \leq 5040
$$

We now consider $\langle\phi(x), \phi(y), \phi(t)\rangle$. Note that $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a group generated by the permutation representations of the generators x, y, and t and, as such, it
is a subgroup of the symmetric group S_{42} acting on the forty-two right cosets of N in G. We now show that $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of G and, therefore, that $|G| \geq|\langle\phi(x), \phi(y), \phi(t)\rangle|=5040$. To show that $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of G, we first demonstrate that $\langle\phi(x), \phi(y), \phi(t)\rangle \leq S_{42}$ is a homomorphic image of \bar{G}. Now, recall that $\bar{G}=\langle x, y, t\rangle$ is a homomorphic image of the progenitor $3^{* 5}: S_{5}$, and its presentation is given by

$$
\bar{G}=\left\langle x, y, t \mid x^{5}=y^{2}=(y x)^{4}=[x, y]^{3}=t^{3}=[t, y]=\left[t^{x}, y\right]=\left[t^{x^{2}}, y\right]=e\right\rangle
$$

where $x \sim(01234), y \sim(34)$, and $t \sim t_{0}$, and $N=\langle x, y\rangle \cong S_{5}$. Let $\alpha: \bar{G} \longrightarrow\langle\phi(x), \phi(y), \phi(t)\rangle$ be a mapping from \bar{G} to $\langle\phi(x), \phi(y), \phi(t)\rangle$. We note first that the mapping $\alpha: \bar{G} \longrightarrow\langle\phi(x), \phi(y), \phi(t)\rangle$ is well defined. The generators $\phi(x), \phi(y)$, and $\phi(t)$ are the permutation representations of $x \sim(01234), y \sim(34)$, and $t \sim t_{0}$ on 42 letters. Since the order of $\phi(x)$ is 5 , the order of $\phi(y)$ is 2 , and the order of $\phi(x) \phi(y)$ is 4 , we conclude $\langle\phi(x), \phi(y)\rangle \cong N \cong S_{5}$. Moreover, we can demonstrate that $\phi(t)$ has exactly five conjugates under conjugation by the elements of $\langle\phi(x), \phi(y)\rangle \cong N \cong S_{5}$. Now, since $t \sim t_{0}$, we have that

$$
[(12345)(678910)(1112131415)(1617181920)(2126313637)
$$

(22 27323338$)(2328293439)(2425303540)][(4216)(22517)$

$$
(32918)(43319)(53720)(71221)(81322)(91423)(101524)(164111)]
$$

[(15432)(610987)(1115141312)(1620191817)(2137363126)
$(2238333227)(2339342928)(2440353025)]=$ $(4227)(12116)(33018)(43419)(53820)(61125)$

$$
(81326)(91427)(101528)(121741)=\phi\left(t_{1}\right) \sim \phi\left(t^{x}\right)
$$

and similarly,

$$
\begin{aligned}
& \phi(t) .^{\phi\left(x^{2}\right)} \sim \phi\left(t_{0}\right)^{\phi((0} 1 \begin{array}{lllll}
& 2 & 3 & \left.4)^{2}\right)
\end{array}=\phi\left(t_{2}\right) \sim \phi\left(t^{x^{2}}\right) \\
& \phi(t)^{\phi\left(x^{3}\right)} \sim \phi\left(t_{0}\right)^{\phi\left(\left(\begin{array}{lllll}
1 & 1 & 2 & 3 & 4
\end{array}\right)^{3}\right)}=\phi\left(t_{3}\right) \sim \phi\left(t^{x^{3}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \phi(t)^{\phi(x)} \sim \phi\left(t_{0}\right)^{\phi((01234))}=\left[\left(\begin{array}{lll}
42 & 1 & \left.6)\left(\begin{array}{ll}
2 & 25
\end{array}\right]\right)(32918)\left(\begin{array}{ll}
4 & 33
\end{array} 19\right)\left(\begin{array}{ll}
5 & 37
\end{array} 20\right)(71221)
\end{array}\right.\right. \\
& (81322)(91423)(101524)(164111)]^{\phi((01234))}=
\end{aligned}
$$

$$
\phi(t)^{\phi\left(x^{4}\right)} \sim \phi\left(t_{0}\right)^{\phi\left(\left(\begin{array}{lllll}
0 & 1 & 2 & 3 & 4
\end{array}\right)^{4}\right)}=\phi\left(t_{4}\right) \sim \phi\left(t^{x^{4}}\right)
$$

Therefore, $\phi(t)$ has exactly five conjugates under conjugation by the elements of $\langle\phi(x), \phi(y)\rangle \cong N \cong S_{5}$; these conjugates are, namely, $\phi(t) \sim \phi\left(t_{0}\right), \phi\left(t^{x}\right) \sim \phi\left(t_{1}\right)$, $\phi\left(t^{x^{2}}\right) \sim \phi\left(t_{2}\right), \phi\left(t^{x^{3}}\right) \sim \phi\left(t_{3}\right)$, and $\phi\left(t^{x^{4}}\right) \sim \phi\left(t_{4}\right)$. Since $\langle\phi(x), \phi(y)\rangle \cong N \cong S_{5}$ and since $\phi(t)$ has exactly five conjugates under conjugation by the elements of $\langle\phi(x), \phi(y)\rangle \cong N$, we conclude that $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of $\bar{G}=\langle x, y, t\rangle$. That is, $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of the progenitor $3^{\star 5}: S_{5}$.

Next, to show that $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of G, we show that $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of \bar{G} factored by the relations $\left(x y x^{-1} y x t\right)^{5}=e$, $\left(x^{-2} y x^{2} t\right)^{4}=e,\left(t^{-1} t^{x}\right)^{3}=e$, and $\left(x y x^{-1} y x t^{-1} t^{x}\right)^{2}=e$; that is, we we show that $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of the progenitor $3^{* 5}: S_{5}$ factored by the relations $\left.\left[\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}\right]^{5}=e,\left[\left(\begin{array}{ll}0 & 1\end{array}\right) t_{0}\right]^{4}=e,\left[t_{0}^{-1} t_{1}\right]^{3}=e$, and $\left.\left[\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}^{-1} t_{1}\right]^{2}=e$. Let $\tilde{\alpha}: G \longrightarrow\langle\phi(x), \phi(y), \phi(t)\rangle$ be a mapping from G to $\langle\phi(x), \phi(y), \phi(t)\rangle$. We note first that the mapping $\tilde{\alpha}: G \longrightarrow\langle\phi(x), \phi(y), \phi(t)\rangle$ is well-defined, and we know already that $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of the progenitor $3^{* 5}: S_{5}$. Now, to show that $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of G, we need only demonstrate that the relations $\left[\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}\right]^{5}=e,\left[\left(\begin{array}{ll}0 & 1\end{array}\right) t_{0}\right]^{4}=e,\left[t_{0}^{-1} t_{1}\right]^{3}=e$, and $\left[\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}^{-1} t_{1}\right]^{2}=e$, which hold true in G, also hold true in $\langle\phi(x), \phi(y), \phi(t)\rangle \leq S_{42}$.

To demonstrate that the relation $\left.\left[\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}\right]^{5}=e$, or, equivalently, the relation $t_{1} t_{0} t_{2} t_{1} t_{0}=\left(\begin{array}{ll}0 & 1\end{array} 2\right.$), holds true in $\langle\phi(x), \phi(y), \phi(t)\rangle \leq S_{42}$, we show that $\phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{2}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right) \sim \phi\left(t^{x}\right) \phi(t) \phi\left(t^{x^{2}}\right) \phi\left(t^{x}\right) \phi(t) \in S_{42}$ acts on the five symmetric generators $\phi\left(t_{0}\right), \phi\left(t_{1}\right), \phi\left(t_{2}\right), \phi\left(t_{3}\right)$, and $\phi\left(t_{4}\right)$ by conjugation in the same way that $\phi\left(\left(\begin{array}{ll}0 & 1\end{array} 2\right)\right) \sim \phi\left(x y x^{-1} y x\right)$ acts on the five symmetric generators $\phi\left(t_{0}\right), \phi\left(t_{1}\right), \phi\left(t_{2}\right), \phi\left(t_{3}\right)$, and $\phi\left(t_{4}\right)$ by conjugation. We first conjugate the symmetric generators $\phi\left(t_{0}\right), \phi\left(t_{1}\right), \phi\left(t_{2}\right)$, $\phi\left(t_{3}\right)$, and $\phi\left(t_{4}\right)$ by $\phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{2}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right)$. This gives us

$$
\begin{aligned}
& \phi\left(t_{0}\right)^{\phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{2}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right)}=\phi\left(t_{1}\right), \\
& \phi\left(t_{1}\right)^{\phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{2}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right)}=\phi\left(t_{2}\right), \\
& \phi\left(t_{2}\right)^{\phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{2}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right)}=\phi\left(t_{0}\right), \\
& \phi\left(t_{3}\right)^{\phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{2}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right)}=\phi\left(t_{3}\right), \\
& \phi\left(t_{4}\right)^{\phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{2}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right)}=\phi\left(t_{4}\right)
\end{aligned}
$$

We next conjugate the symmetric generators $\phi\left(t_{0}\right), \phi\left(t_{1}\right), \phi\left(t_{2}\right), \phi\left(t_{3}\right)$, and $\phi\left(t_{4}\right)$ by $\phi\left(\left(\begin{array}{ll}0 & 1\end{array}\right)\right)$. This gives us

$$
\begin{aligned}
& \phi\left(t_{0}\right)^{\phi\left(\left(\begin{array}{ll}
0 & 1
\end{array}\right)\right)}=\phi\left(t_{1}\right), \\
& \phi\left(t_{1}\right)^{\phi\left(\left(\begin{array}{ll}
0 & 1
\end{array} 2\right)\right)}=\phi\left(t_{2}\right), \\
& \phi\left(t_{2}\right)^{\phi\left(\left(\begin{array}{ll}
(12))
\end{array}=\phi\left(t_{0}\right), ~\right.\right.} \\
& \phi\left(t_{3}\right)^{\phi((012))}=\phi\left(t_{3}\right), \\
& \phi\left(t_{4}\right)^{\phi\left(\left(\begin{array}{ll}
0 & 1
\end{array}\right)\right)}=\phi\left(t_{4}\right)
\end{aligned}
$$

Since $\phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{2}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right) \sim \phi\left(t^{x}\right) \phi(t) \phi\left(t^{x^{2}}\right) \phi\left(t^{x}\right) \phi(t) \in S_{42}$ acts on the five symmetric generators $\phi\left(t_{0}\right), \phi\left(t_{1}\right), \phi\left(t_{2}\right), \phi\left(t_{3}\right)$, and $\phi\left(t_{4}\right)$ by conjugation in the same way that $\phi((012)) \sim \phi\left(x y x^{-1} y x\right)$ acts on the five symmetric generators $\phi\left(t_{0}\right), \phi\left(t_{1}\right), \phi\left(t_{2}\right)$, $\phi\left(t_{3}\right)$, and $\phi\left(t_{4}\right)$ by conjugation, we conclude that the relation $\left.\left[\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}\right]^{5}=e$, which holds true in G, also holds true in $\langle\phi(x), \phi(y), \phi(t)\rangle \leq S_{42}$. By way of a similar process, we find that the relations $\left[\left(\begin{array}{ll}0 & 1\end{array}\right) t_{0}\right]^{4}=e,\left[t_{0}^{-1} t_{1}\right]^{3}=e$, and $\left.\left[\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}^{-1} t_{1}\right]^{2}=e$ also hold true in $\langle\phi(x), \phi(y), \phi(t)\rangle \leq S_{42}$.

Since $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of the progenitor $3^{* 5}: S_{5}$, and since the relations $\left[\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}\right]^{5}=e,\left[\left(\begin{array}{ll}0 & 1\end{array}\right) t_{0}\right]^{4}=e,\left[t_{0}^{-1} t_{1}\right]^{3}=e$, and $\left.\left[\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}^{-1} t_{1}\right]^{2}=e$ hold true in $\langle\phi(x), \phi(y), \phi(t)\rangle \leq S_{42}$, we conclude that $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of the progenitor $3^{* 5}: S_{5}$ factored by the relations $\left[\left(\begin{array}{ll}0 & 1\end{array} 2\right) t_{0}\right]^{5}=e,\left[\left(\begin{array}{ll}0 & 1\end{array}\right) t_{0}\right]^{4}=e$, $\left[t_{0}^{-1} t_{1}\right]^{3}=e$, and $\left[\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}^{-1} t_{1}\right]^{2}=e$; that is, we conclude that $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of G.

More importantly, since $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of G, we have that $\langle\phi(x), \phi(y), \phi(t)\rangle \leq G$. In fact, since $\langle\phi(x), \phi(y), \phi(t)\rangle \leq G$, we have that $|G| \geq|\langle\phi(x), \phi(y), \phi(t)\rangle|$. Since it is easily demonstrated, with MAGMA or by hand, that $|\langle\phi(x), \phi(y), \phi(t)\rangle|=5040$, we conclude finally that $|G| \geq|\langle\phi(x), \phi(y), \phi(t)\rangle|=5040$, that is, $|G| \geq 5040$. Given $|G| \leq 5040$ and $|G| \geq 5040$, we conclude $|G|=5040$. Moreover, since $|\langle\phi(x), \phi(y), \phi(t)\rangle|=5040=|G|$ and since $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of G, we conclude

$$
\langle\phi(x), \phi(y), \phi(t)\rangle \cong G .
$$

We finally show that $\langle\phi(x), \phi(y), \phi(t)\rangle \cong S_{7}$. Let $G_{1}=\langle\phi(x), \phi(y), \phi(t)\rangle$. Now, with the help of MAGMA (see [BCP97]), we know that the elements $a=(1422363319$ 3) (262741392413)(5161431352025)(729108344232)(9211138281718)
$(12233715304026), b=(511)(717)(1224)(1325)(1831)(1932)(2633)(3438)(3541)$
$(3642)(3940)$, and $c=(123)(4910)(51213)(61516)(71819)(82021)(112425)$
$(142728)(173132)(233729)$ belong to G_{1}. (Note: The labels for the right cosets in this case were assigned by MAGMA and are different from the labels that we assigned earlier.) Therefore, $\langle a, b, c\rangle \leq G_{1}$, a permutation group on 42 letters, is a permutation representation of G and, further, $\left|G_{1}\right|=5040$. But $|\langle a, b, c\rangle|=5040=\left|G_{1}\right|$. Therefore, $G_{1}=\langle a, b, c\rangle$. Moreover, $\langle a, b, c\rangle \cong S_{7} \cong\langle a, b, c| a^{7}=b^{2}=(a b)^{6}=\left(a^{-2}(a b)^{2}\right)^{3}=$ $\left.\left(a^{-2} b a^{2} b\right)^{2}=c^{3}=[c, b]=\left[c^{a}, b\right]=\left[c^{a^{2}}, b\right]=e\right\rangle$. Therefore, $G_{1} \cong S_{7}$ and, since $G_{1}=\langle\phi(x), \phi(y), \phi(t)\rangle \cong G$, we conclude $G \cong S_{7}$.

5.6 Converting an Element of G from its Permutation Representation to its Symmetric Representation

To illustrate how a permutation representation of an element of S_{7} on 42 letters may be converted to its symmetric representation form, we consider the following example:

Example 5.1. Let $g \in G \cong S_{7}$ and let $p=\phi(g)=\left(\begin{array}{ll}1 & 28221723224261627\end{array}\right)$ (310354240)(41539189)(53281914)(634113829733123730)(1320314136) (21 25) be the permutation representation of g on 42 letters. Then $42^{p}=40$ implies $N^{p}=N t_{4} t_{3}$, since 42 and 40 are labels for the right cosets N and $N t_{4} t_{3}$, respectively. Moreover, since $N^{p}=N p$ and $N^{p}=N t_{4} t_{3}$, we have that $N p=N t_{4} t_{3}$. Now, $N p=N t_{4} t_{3}$ implies that $p \in N t_{4} t_{3}$ which implies that $p \sim \pi t_{4} t_{3}$ for some $\pi \in N \cong S_{5}$ or, more precisely, $p=\phi\left(\pi t_{4} t_{3}\right)=\phi(\pi) \phi\left(t_{4}\right) \phi\left(t_{3}\right)$ for some $\pi \in N \cong S_{5}$. To determine $\pi \in N$, we note first that $p=\phi(\pi) \phi\left(t_{4}\right) \phi\left(t_{3}\right) \Rightarrow p\left(\phi\left(t_{3}\right)\right)^{-1}\left(\phi\left(t_{4}\right)\right)^{-1}=p \phi\left(t_{3}^{-1}\right) \phi\left(t_{4}^{-1}\right)=\phi(\pi)$. We then calculate the action of $\pi \sim \phi(\pi)=p \phi\left(t_{3}^{-1}\right) \phi\left(t_{4}^{-1}\right)$ on the symmetric generators t_{i}, where $i \in\{0,1,2,3,4\}$. Now, $\phi(\pi)=p \phi\left(t_{3}^{-1}\right) \phi\left(t_{4}^{-1}\right)=$
[(128221723224261627)(310354240)(41539189)(53281914)
(634113829733123730)(1320314136)(21 25)][(4249)(12316)
$(22717)(33118)(54020)(61133)(71234)(81335)(101536)(141941)]^{-1}$
[(42 510$)(12416)(22817)(33218)(43619)(61137)(71238)(81339)$

$$
(91440)(152041)]^{-1}
$$

$$
=(12)(345)(67)(8910)(1112)(131415)(1617)(181920)(2125)
$$

(22 27242623 28)(29 34373033 38)(3136 39)(32 3540).
The element $\pi \sim \phi(\pi)=p \phi\left(t_{3}^{-1}\right) \phi\left(t_{4}^{-1}\right)=(12)(345)(67)(8910)(1112)(131415)(1617)$ (18 1920) (21 25) (22 2724262328$)(293437303338)(313639)(323540)$ acts on the right cosets $N t_{0}, N t_{1}, N t_{2}, N t_{3}$, and $N t_{4}$ via the mapping $\phi: G \longrightarrow S_{X}$ defined by $\phi(\pi, N w)=N w^{\pi}$. The mappings below illustrate this action:

$$
\begin{gathered}
N t_{0}=1 \mapsto 1^{p}=2=N t_{1}, \quad N t_{1}=2 \mapsto 2^{p}=1=N t_{0}, \\
N t_{2}=3 \mapsto 3^{p}=4=N t_{3}, \quad N t_{3}=4 \mapsto 4^{p}=5=N t_{4}, \\
N t_{4}=5 \mapsto 5^{p}=3=N t_{2}
\end{gathered}
$$

Therefore, the element $\phi(\pi)$ acts as (01)(234) on the right cosets $N t_{0}, N t_{1}, N t_{2}, N t_{3}$, and $N t_{4}$, and so $\phi(\pi)$ is the permutation representation of $\pi=\left(\begin{array}{ll}0 & 1\end{array}\right)(234) \in S_{5}$ on 42 letters. Therefore, $\pi=\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right)$ and $w=t_{4} t_{3}$, and so the symmetric representation of g is $(01)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{4} t_{3}$.

5.7 Converting an Element of G from its Symmetric Representation to its Permutation Representation

To illustrate how an element of S_{7} in symmetric representation form may be converted to its permutation representation on 42 letters, we consider the following example:

Example 5.2. Let $g \in G \cong S_{7}$ have the symmetric representation $g=\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array} 4\right) t_{4} t_{3}$. To determine the permutation representation $p=\phi(g)$ of g, we first calculate the action of $\pi=(01)(234)$ on the right cosets of N in G. Now, the element $\pi=(01)(234)$ acts on the right cosets N in G via the mapping $\phi: G \longrightarrow S_{X}$ defined by $\phi(\pi, N w)=N w^{\pi}$. The mappings below illustrate this action:

$$
\left.42=N \mapsto N^{(0} 1\right)\left(\begin{array}{ll}
2 & 3
\end{array}\right)=N=42
$$

$$
\begin{aligned}
& 1=N t_{0} \mapsto N t_{0}^{(01)\left(\begin{array}{ll}
2 & 3
\end{array}\right)}=N t_{1}=2 \\
& 2=N t_{1} \mapsto N t_{1}^{(01)\left(\begin{array}{lll}
2 & 3 & 4
\end{array}\right)=N t_{0}=1} \\
& 3=N t_{2} \mapsto N t_{2}^{(01)(234)}=N t_{3}=4 \\
& 4=N t_{3} \mapsto N t_{3}^{(01)(234)}=N t_{4}=5 \\
& 5=N t_{4} \mapsto N t_{4}^{(01)(234)}=N t_{2}=3 \\
& 6=N t_{0}^{-1} \mapsto N\left(t_{0}^{-1}\right)^{(01)\left(\begin{array}{ll}
2 & 3
\end{array}\right)}=N t_{1}^{-1}=7 \\
& 7=N t_{1}^{-1} \mapsto N\left(t_{1}^{-1}\right)^{(01)\left(\begin{array}{ll}
2 & 4
\end{array}\right)}=N t_{0}^{-1}=6 \\
& 8=N t_{2}^{-1} \mapsto N\left(t_{2}^{-1}\right)^{(01)\left(\begin{array}{ll}
2 & 3
\end{array}\right)}=N t_{3}^{-1}=9 \\
& 9=N t_{3}^{-1} \mapsto N\left(t_{3}^{-1}\right)^{\left(\begin{array}{lll}
1
\end{array}\right)\left(\begin{array}{ll}
2 & 4
\end{array}\right)}=N t_{4}^{-1}=10 \\
& 10=N t_{4}^{-1} \mapsto N\left(t_{4}^{-1}\right)^{\left(\begin{array}{lll}
1
\end{array}\right)\left(\begin{array}{ll}
2 & 3
\end{array}\right)}=N t_{2}^{-1}=8 \\
& 11=N t_{0}^{-1} t_{1} \mapsto N\left(t_{0}^{-1} t_{1}\right)^{(01)(234)}=N t_{1}^{-1} t_{0}=12 \\
& 12=N t_{1}^{-1} t_{0} \mapsto N\left(t_{1}^{-1} t_{0}\right)^{(01)(234)}=N t_{0}^{-1} t_{1}=11 \\
& 13=N t_{2}^{-1} t_{0} \mapsto N\left(t_{2}^{-1} t_{0}\right)^{(01)(234)}=N t_{3}^{-1} t_{1}=N t_{3}^{-1} t_{0}=14 \\
& 14=N t_{3}^{-1} t_{0} \mapsto N\left(t_{3}^{-1} t_{0}\right)^{(01)\left(\begin{array}{ll}
23 & 4
\end{array}\right)=N t_{4}^{-1} t_{1}=N t_{4}^{-1} t_{0}=15} \\
& 15=N t_{4}^{-1} t_{0} \mapsto N\left(t_{4}^{-1} t_{0}\right)^{(01)(234)}=N t_{2}^{-1} t_{1}=N t_{2}^{-1} t_{0}=13 \\
& \left.16=N t_{0} t_{1}^{-1} \mapsto N\left(t_{0} t_{1}^{-1}\right)^{(1)} 1\right)\left(\begin{array}{ll}
24) & 4
\end{array}=N t_{1} t_{0}^{-1}=17\right. \\
& 17=N t_{1} t_{0}^{-1} \mapsto N\left(t_{1} t_{0}^{-1}\right)^{\left(\begin{array}{ll}
1
\end{array}\right)\left(\begin{array}{ll}
2 & 3
\end{array}\right)}=N t_{0} t_{1}^{-1}=16 \\
& 18=N t_{2} t_{0}^{-1} \mapsto N\left(t_{2} t_{0}^{-1}\right)^{\left(\begin{array}{ll}
1
\end{array}\right)\left(\begin{array}{ll}
2 & 3
\end{array}\right)}=N t_{3} t_{1}^{-1}=N t_{3} t_{0}^{-1}=19 \\
& 19=N t_{3} t_{0}^{-1} \mapsto N\left(t_{3} t_{0}^{-1}\right)^{\left(\begin{array}{ll}
1
\end{array}\right)\left(\begin{array}{ll}
2 & 3
\end{array}\right)}=N t_{4} t_{1}^{-1}=N t_{4} t_{0}^{-1}=20 \\
& 20=N t_{4} t_{0}^{-1} \mapsto N\left(t_{4} t_{0}^{-1}\right)^{\left(\begin{array}{ll}
1
\end{array}\right)\left(\begin{array}{ll}
23 & 4
\end{array}\right)=N t_{2} t_{1}^{-1}=N t_{2} t_{0}^{-1}=18} \\
& 21=N t_{0} t_{1} \mapsto N\left(t_{0} t_{1}\right)^{(01)(234)}=N t_{1} t_{0}=25 \\
& 25=N t_{1} t_{0} \mapsto N\left(t_{1} t_{0}\right)^{(01)(234)}=N t_{0} t_{1}=21 \\
& 22=N t_{0} t_{2} \mapsto N\left(t_{0} t_{2}\right)^{(01)\left(\begin{array}{ll}
2 & 3
\end{array}\right)}=N t_{1} t_{3}=27 \\
& 27=N t_{1} t_{3} \mapsto N\left(t_{1} t_{3}\right)^{(01)(234)}=N t_{0} t_{4}=24 \\
& \left.24=N t_{0} t_{4} \mapsto N\left(t_{0} t_{4}\right)^{(01)(2)} 34\right)=N t_{1} t_{2}=26
\end{aligned}
$$

$$
\begin{aligned}
& 26=N t_{1} t_{2} \mapsto N\left(t_{1} t_{2}\right)^{(01)(234)}=N t_{0} t_{3}=23 \\
& 23=N t_{0} t_{3} \mapsto N\left(t_{0} t_{3}\right)^{(01)(234)}=N t_{1} t_{4}=28 \\
& 28=N t_{1} t_{4} \mapsto N\left(t_{1} t_{4}\right)^{(01)(234)}=N t_{0} t_{2}=22 \\
& 29=N t_{2} t_{0} \mapsto N\left(t_{2} t_{0}\right)^{(01)(234)}=N t_{3} t_{1}=34 \\
& 34=N t_{3} t_{1} \mapsto N\left(t_{3} t_{1}\right)^{(01)(234)}=N t_{4} t_{0}=37 \\
& 37=N t_{4} t_{0} \mapsto N\left(t_{4} t_{0}\right)^{(01)\left(\begin{array}{ll}
2 & 3
\end{array}\right)}=N t_{2} t_{1}=30 \\
& 30=N t_{2} t_{1} \mapsto N\left(t_{2} t_{1}\right)^{(01)(234)}=N t_{3} t_{0}=33 \\
& 33=N t_{3} t_{0} \mapsto N\left(t_{3} t_{0}\right)^{(01)(234)}=N t_{4} t_{1}=38 \\
& 38=N t_{4} t_{1} \mapsto N\left(t_{4} t_{1}\right)^{(01)(234)}=N t_{2} t_{0}=29 \\
& 31=N t_{2} t_{3} \mapsto N\left(t_{2} t_{3}\right)^{(01)\left(\begin{array}{ll}
2 & 3
\end{array}\right)}=N t_{3} t_{4}=36 \\
& 36=N t_{3} t_{4} \mapsto N\left(t_{3} t_{4}\right)^{(01)\left(\begin{array}{ll}
2 & 3
\end{array}\right)}=N t_{4} t_{2}=39 \\
& 39=N t_{4} t_{2} \mapsto N\left(t_{4} t_{2}\right)^{(01)\left(\begin{array}{ll}
2 & 3
\end{array}\right)}=N t_{2} t_{3}=31 \\
& 32=N t_{2} t_{4} \mapsto N\left(t_{2} t_{4}\right)^{(01)\left(\begin{array}{ll}
2 & 3
\end{array}\right)}=N t_{3} t_{2}=35 \\
& 35=N t_{3} t_{2} \mapsto N\left(t_{3} t_{2}\right)^{(01)\left(\begin{array}{ll}
2 & 3
\end{array}\right)}=N t_{4} t_{3}=40 \\
& 40=N t_{4} t_{3} \mapsto N\left(t_{4} t_{3}\right)^{(01)(234)}=N t_{2} t_{4}=32 \\
& 41=N t_{0} t_{1}^{-1} t_{0} \mapsto N\left(t_{0} t_{1}^{-1} t_{0}\right)^{(01)(234)}=N t_{1} t_{0}^{-1} t_{1}=N t_{0} t_{1}^{-1} t_{0}=41
\end{aligned}
$$

Therefore, the permutation representation of $\pi=\left(\begin{array}{ll}0 & 1)(234)\end{array}\right.$ is
$\phi(\pi)=(12)(345)(67)(8910)(1112)(131415)(1617)(181920)(2125)$
(22 2724262328)(29 3437303338)(3136 39)(32 3540).
Similarly, we calculate the action of the symmetric generator t_{4} on the right cosets of N in G. The symmetric generator t_{4} acts on the right cosets of N in G via the mapping $\phi: G \longrightarrow S_{X}$ defined by $\phi\left(t_{4}, N w\right)=N w t_{4}$. By this mapping, the permutation representation of t_{4} in its action on the right cosets of N in G is $\phi\left(t_{4}\right)=(42510)(12416)(22817)(33218)(43619)(61137)(71238)(81339)$ (9 1440) (15 2041).

Finally, we calculate the action of the symmetric generator t_{3} on the right cosets of N in G. The symmetric generator t_{3} acts on the right cosets of N in G via the
mapping $\phi: G \longrightarrow S_{X}$ defined by $\phi\left(t_{3}, N w\right)=N w t_{3}$. By this mapping, the permutation representation of t_{3} in its action on the right cosets of N in G, therefore, is $\phi\left(t_{3}\right)=$ $(4249)(12316)(22717)(33118)(54020)(61133)(71234)(81335)(101536)$ (141941). Now, (01)(2 34$) t_{4} t_{3} \sim \phi((01)(234)) \phi\left(t_{4}\right) \phi\left(t_{3}\right)=$
$[(12)(345)(67)(89.10)(1112)(131415)(1617)(181920)(2125)$
(22 27242623 28)(29 3437303338$)(313639)(323540)][(42510)$
$(12416)(22817)(33218)(43619)(61137)(71238)(81339)(91440)$
$(152041)][(4249)(12316)(22717)(3.3118)(54020)(61133)$
$(71234)(81335)(101536)(141941)]$
$=(128221723224261627)(310354240)(41539189)(53281914)$
(6 34113829733123730)(13 20314136)(21 25).
Therefore, the permutation representation of $g=\left(0^{\prime} 1\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{4} t_{3}$ is $p=\phi(g)=(128221723224261627)(3103542.40)(41539189)(53281914)$ (6 34113829733123730)(13 20314136)(21 25).

Chapter 6

$S_{7} \times 3$ as a Homomorphic Image of the Progenitor $3^{* 5}: S_{5}$

In this chapter, we investigate $S_{7} \times 3$ as a homomorphic image of the progenitor $3^{* 5}: S_{5}$. The group $S_{7} \times 3$ is the direct product of three copies of the symmetric group on seven letters; its order is $7!\times 3=15120$. The progenitor $3^{* 5}: S_{5}$ is a semi-direct product of $3^{* 5}$, a free product of five copies of the cyclic group of order 3 , and S_{5}, the symmetric group on five letters which permutes the five symmetric generators, $t_{0}, t_{1}, t_{2}, t_{3}$, and t_{4}, (and their inverses, $t_{0}^{2}=t_{0}^{-1}, t_{1}^{2}=t_{1}^{-1}, t_{2}^{2}=t_{2}^{-1}, t_{3}^{2}=t_{3}^{-1}$, and $t_{4}^{2}=t_{4}^{-1}$) by conjugation.

6.1 Introduction

Let \bar{G} be a homomorphic image of the infinite semi-direct product, the progenitor, $3^{* 5}: S_{5}$. A symmetric presentation of $3^{* 5}: S_{5}$ is given by

$$
\bar{G}=\left\langle x, y, t \mid x^{5}=y^{2}=(y x)^{4}=[x, y]^{3}=t^{3}=[t, y]=\left[t^{x}, y\right]=\left[t^{x^{2}}, y\right]=e\right\rangle
$$

where $[x, y]^{3}=x y x y x y,[t, y]=t y t y,\left[t^{x}, y\right]=t^{x} y t^{x} y,\left[t^{x^{2}}, y\right]=t^{x^{2}} y t^{x^{2}} y$, and e is the identity. In this case, $N \cong S_{5} \cong\left\langle x, y \mid x^{5}=y^{2}=(y x)^{4}=[x, y]^{3}=e\right\rangle$, and the action of N on the five symmetric generators is given by $x \sim(01234), y \sim(34)$, and $t \sim t_{0}$.

Let G denote the group \bar{G} factored by the relations $(y x t)^{6}=e,\left(t^{-1} t^{x}\right)^{3}=e$,
$\left(x y x^{-1} y x t^{-1} t^{x}\right)^{2}=e$, and $\left(x^{-2} y x^{2} t\right)^{12}=e$. That is, let

$$
G=\frac{\bar{G}}{(y x t)^{6},\left(t^{-1} t^{x}\right)^{3},\left(x y x^{-1} y x t^{-1} t^{x}\right)^{2},\left(x^{-2} y x^{2} t\right)^{12}}
$$

A symmetric presentation for G is given by

$$
\begin{gathered}
\langle x, y, t| x^{5}, y^{2},(y x)^{4},[x, y]^{3}, t^{3},[t, y],\left[t^{x}, y\right],\left[t^{x^{2}}, y\right],(y x t)^{6} \\
\left.\left(t^{-1} t^{x}\right)^{3},\left(x y x^{-1} y x t^{-1} t^{x}\right)^{2},\left(x^{-2} y x^{2} t\right)^{12}\right\rangle .
\end{gathered}
$$

We now consider the following relations:

$$
\begin{gathered}
\left.\left[\begin{array}{llll}
0 & 1 & 2 & 3
\end{array}\right) t_{0}\right]^{6}=e \\
{\left[t_{0}^{-1} t_{1}\right]^{3}=e} \\
{\left[\left(\begin{array}{lll}
0 & 1 & 2
\end{array}\right) t_{0}^{-1} t_{1}\right]^{2}=e} \\
\text { and } \\
{\left[\left(\begin{array}{ll}
0 & 1)
\end{array} t_{0}\right]^{12}=e\right.}
\end{gathered}
$$

According to a computer proof by [CHB96], the progenitor $3^{* 5}: S_{5}$, factored by the relations $\left[\left(\begin{array}{llll}0 & 1 & 2 & 3\end{array}\right) t_{0}\right]^{6}=e,\left[t_{0}^{-1} t_{1}\right]^{3}=e,\left[\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}^{-1} t_{1}\right]^{2}=e$, and $\left[\left(\begin{array}{ll}(0) & 1\end{array} t_{0}\right]^{12}=e\right.$, is isomorphic to $S_{7} \times 3$. In fact, factoring the progenitor $3^{* 5}: S_{5}$ by the relation $\left.\left[\begin{array}{lll}0 & 1 & 2\end{array} 3\right) t_{0}\right]^{6}=e$ alone suffices. We will construct $S_{7} \times 3$ by hand by way of manual double coset enumeration of $G \cong \frac{3^{* 5}: S_{5}}{\left[\left(\begin{array}{lll}1 & 1 & 3\end{array}\right) t_{0}\right]^{6},\left[t_{0}^{-1} t_{1}\right]^{3},\left[(012) t_{0}^{-1} t_{1}\right]^{2},\left[(01) t_{0}\right]^{12}}$ over S_{5}. In so doing, we will show that $S_{7} \times 3$ is isomorphic to the symmetric presentation

$$
\begin{gathered}
\langle x, y, t| x^{5}, y^{2},(y x)^{4},[x, y]^{3}, t^{3},[t, y],\left[t^{x}, y\right],\left[t^{x^{2}}, y\right],(y x t)^{6} \\
\left.\left(t^{-1} t^{x}\right)^{3},\left(x y x^{-1} y x t^{-1} t^{x}\right)^{2},\left(x^{-2} y x^{2} t\right)^{12}\right\rangle .
\end{gathered}
$$

6.2 Manual Double Coset Enumeration of G Over S_{5}

We first determine the order of the homomorphic image, G, of the progenitor. To determine the order of the homomorphic image G, we will determine the index of $N \cong S_{5}$ in G. We determine the index of $N \cong S_{5}$ in G first by expanding the relations [(llllll $\left.\left.\begin{array}{lll}1 & 2 & 3\end{array}\right) t_{0}\right]^{6}=e$, $\left[t_{0}^{-1} t_{1}\right]^{3}=e,\left[\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}^{-1} t_{1}\right]^{2}=e$, and $\left[\left(\begin{array}{ll}(& 1\end{array}\right) t_{0}\right]^{12}=e$, and next by performing manual double coset enumeration on G over $N \cong S_{5}$. To begin, we expand the relations that factor the progenitor $3^{* 5}: S_{5}$:

$$
\left[\left(\begin{array}{llll}
0 & 1 & 2 & 3 \tag{6.1}
\end{array}\right) t_{0}\right]^{6}=e
$$

$$
\begin{gather*}
{\left[t_{0}^{-1} t_{1}\right]^{3}=e} \tag{6.2}\\
{\left[\left(\begin{array}{ll}
0 & 1
\end{array}\right) t_{0}^{-1} t_{1}\right]^{2}=e} \tag{6.3}\\
{\left[\left(\begin{array}{ll}
0 & 1
\end{array} t_{0}\right]^{12}=e\right.} \tag{6.4}
\end{gather*}
$$

As mentioned above, relation (6.1), $\left.\left[\begin{array}{llll}0 & 1 & 2 & 3\end{array}\right) t_{0}\right]^{6}=e$, is required to determine the homomorphic image, G, of the progenitor, and the other relations can be derived from relation (6.1). We expand relations (6.1), (6.2), (6.3), and (6.4) in detail below:

1. Let $\pi=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right)$.

Then $\left.\left[\begin{array}{llll}0 & 1 & 2 & 3\end{array}\right) t_{0}\right]^{6}=e \Rightarrow\left(\pi t_{0}\right)^{6}=e \Rightarrow$
$\pi t_{0} \pi t_{0} \pi t_{0} \pi t_{0} \pi t_{0} \pi t_{0}=e \Rightarrow \pi t_{0} \pi t_{0} \pi t_{0} \pi t_{0} \pi^{2} \pi^{-1} t_{0} \pi t_{0}=e \Rightarrow$
$\pi t_{0} \pi t_{0} \pi t_{0} \pi^{3} \pi^{-1} \pi^{-1} t_{0} \pi^{2} t_{0}^{\pi} t_{0}=e \Rightarrow \pi t_{0} \pi t_{0} \pi^{4} \pi^{-1} \pi^{-1} \pi^{-1} t_{0} \pi^{3} t_{0}^{\pi^{2}} t_{0}^{\pi} t_{0}=e$
$\Rightarrow \pi t_{0} \pi^{5} \pi^{-1} \pi^{-1} \pi^{-1} \pi^{-1} t_{0} \pi^{4} t_{0}^{\pi^{3}} t_{0}^{\pi^{2}} t_{0}^{\pi} t_{0}=e \Rightarrow$
$\pi^{6} \pi^{-1} \pi^{-1} \pi^{-1} \pi^{-1} \pi^{-1} t_{0} \pi^{5} t_{0}^{\pi^{4}} t_{0}^{\pi^{3}} t_{0}^{\pi^{2}} t_{0}^{\pi} t_{0}=e \Rightarrow \pi^{6} t_{0}^{\pi^{5}} t_{0}^{\pi^{4}} t_{0}^{\pi^{3}} t_{0}^{\pi^{2}} t_{0}^{\pi} t_{0}=e \Rightarrow$
(0123) $\left.\left.t_{0}^{(0123)^{5}} t_{0}^{(0123}\right)^{4} t_{0}^{(0123}\right)^{3} t_{0}^{(0123)^{2}} t_{0}^{(0123)} t_{0}=e$
$\Rightarrow(02)(13) t_{0}^{(0123)} t_{0}^{e} t_{0}^{(0321)} t_{0}^{(02)(13)} t_{0}^{(0123)} t_{0}=e \Rightarrow$
$(02)(13) t_{1} t_{0} t_{3} t_{2} t_{1} t_{0}=e \Rightarrow(02)(13) t_{1} t_{0} t_{3}=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1}$.
Thus relation (6.1) implies that (0 2) (1 3$) t_{1} t_{0} t_{3}=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1}$ or, equivalently, $N t_{1} t_{0} t_{3}=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1}$. That is, using our short-hand notation, $103 \sim \overline{0} \overline{1} \overline{1}$.
2. Now $\left[t_{0}^{-1} t_{1}\right]^{3}=e \Rightarrow\left[t_{0}^{-1} t_{1}\right]\left[t_{0}^{-1} t_{1}\right]\left[t_{0}^{-1} t_{1}\right]=e \Rightarrow t_{0}^{-1} t_{1} t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}=e \Rightarrow t_{0}^{-1} t_{1} t_{0}^{-1}=$ $t_{1}^{-1} t_{0} t_{1}^{-1}$.
Thus relation (6.2) implies that $t_{0}^{-1} t_{1} t_{0}^{-1}=t_{1}^{-1} t_{0} t_{1}^{-1}$ or, equivalently, $N t_{0}^{-1} t_{1} t_{0}^{-1}=$ $N t_{1}^{-1} t_{0} t_{1}^{-1}$. That is, using our short-hand notation, $\overline{0} 1 \overline{0} \sim \overline{1} 0 \overline{1}$.
3. Let $\pi=\left(\begin{array}{ll}0 & 1\end{array}\right)$.

Then $\left[\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}^{-1} t_{1}\right]^{2}=e \Rightarrow\left(\pi t_{0}^{-1} t_{1}\right)^{2}=e \Rightarrow \pi t_{0}^{-1} t_{1} \pi t_{0}^{-1} t_{1}=e$
$\Rightarrow \pi^{2} \pi^{-1} t_{0}^{-1} t_{1} \pi t_{0}^{-1} t_{1}=e \Rightarrow \pi^{2}\left(t_{0}^{-1} t_{1}\right)^{\pi} t_{0}^{-1} t_{1}=e$
$\Rightarrow \pi^{2}\left(t_{0}^{-1}\right)^{\pi} t_{1}^{\pi} t_{0}^{-1} t_{1}=e \Rightarrow(012)^{2}\left(t_{0}^{-1}\right)^{(012)} t_{1}^{(012)} t_{0}^{-1} t_{1}=e$
$\Rightarrow(021) t_{1}^{-1} t_{2} t_{0}^{-1} t_{1}=e \Rightarrow(021) t_{1}^{-1} t_{2}=t_{1}^{-1} t_{0}$.
Thus relation (6.3) implies that (021) $t_{1}^{-1} t_{2}=t_{1}^{-1} t_{0}$ or, equivalently, $N t_{1}^{-1} t_{2}=$ $N t_{1}^{-1} t_{0}$. That is, using our short-hand notation, $\overline{1} 2 \sim \overline{1} 0$.
4. Let $\pi=\left(\begin{array}{ll}0 & 1\end{array}\right)$.

Then $\left[\left(\begin{array}{ll}0 & 1)\end{array} t_{0}\right]^{12}=e \Rightarrow\left(\pi t_{0}\right)^{12}=e\right.$

$$
\Rightarrow \pi t_{0} \pi t_{0}=e
$$

$$
\Rightarrow \pi t_{0} \pi^{2} \pi^{-1} t_{0} \pi t_{0}=e
$$

$$
\Rightarrow \pi t_{0} \pi^{3} \pi^{-1} \pi^{-1} t_{0} \pi^{2} t_{0}^{\pi} t_{0}=e
$$

$$
\Rightarrow \pi t_{0} \pi^{4} \pi^{-1} \pi^{-1} \pi^{-1} t_{0} \pi^{3} t_{0}^{\pi^{2}} t_{0}^{\pi} t_{0}=e
$$

$$
\Rightarrow \pi t_{0} \pi^{5} \pi^{-1} \pi^{-1} \pi^{-1} \pi^{-1} t_{0}^{\prime} \pi^{4} t_{0}^{\pi^{3}} t_{0}^{\pi^{2}} t_{0}^{\pi} t_{0}=e
$$

$$
\Rightarrow \pi t_{0} \pi t_{0} \pi t_{0} \pi t_{0} \pi t_{0} \pi t_{0} \pi^{6} \pi^{-1} \pi^{-1} \pi^{-1} \pi^{-1} \pi^{-1} t_{0} \pi^{5} t_{0}^{\pi^{4}} t_{0}^{\pi^{3}} t_{0}^{\pi^{2}} t_{0}^{\pi} t_{0}=e
$$

$$
\Rightarrow \pi t_{0} \pi t_{0} \pi t_{0} \pi t_{0} \pi t_{0} \pi^{7} \pi^{-1} \pi^{-1} \pi^{-1} \pi^{-1} \pi^{-1} \pi^{-1} t_{0} \pi^{6} t_{0}^{\pi^{5}} t_{0}^{\pi^{4}} t_{0}^{\pi^{3}} t_{0}^{\pi^{2}} t_{0}^{\pi} t_{0}=e
$$

$$
\Rightarrow \pi t_{0} \pi t_{0} \pi t_{0} \pi t_{0} \pi^{8} \pi^{-1} \pi^{-1} \pi^{-1} \pi^{-1} \pi^{-1} \pi^{-1} \pi^{-1} t_{0} \pi^{7} t_{0}^{\pi^{6}} t_{0}^{\pi^{5}} t_{0}^{\pi^{4}} t_{0}^{\pi^{3}} t_{0}^{\pi^{2}} t_{0}^{\pi} t_{0}=e
$$

$$
\Rightarrow \pi t_{0} \pi t_{0} \pi t_{0} \pi^{9} \pi^{-8} t_{0} \pi^{8} t_{0}^{\pi^{7}} t_{0}^{\pi^{6}} t_{0}^{\pi^{5}} t_{0}^{4} t_{0}^{\pi^{3}} t_{0}^{\pi^{2}} t_{0}^{\pi} t_{0}=e
$$

$$
\Rightarrow \pi t_{0} \pi t_{0} \pi^{10} \pi^{-9} t_{0} \pi^{9} t_{0}^{\pi^{8}} t_{0}^{\pi^{7}} t_{0}^{\pi^{6}} t_{0}^{\pi^{5}} t_{0}^{\pi^{4}} t_{0}^{\pi^{3}} t_{0}^{\pi^{2}} t_{0}^{\pi} t_{0}=e
$$

$$
\Rightarrow \pi t_{0} \pi^{11} \pi^{-10} t_{0} \pi^{10} t_{0}^{\pi^{9}} t_{0}^{\pi^{8}} t_{0}^{\pi^{7}} t_{0}^{\pi^{6}} t_{0}^{\pi^{5}} t_{0}^{\pi^{4}} t_{0}^{\pi^{3}} t_{0}^{\pi^{2}} t_{0}^{\pi} t_{0}=e
$$

$$
\Rightarrow \pi^{12} \pi^{-11} t_{0} \pi^{11} t_{0}^{\pi^{10}} t_{0}^{\pi^{9}} t_{0}^{\pi^{8}} t_{0}^{\pi^{7}} t_{0}^{\pi^{6}} t_{0}^{\pi^{5}} t_{0}^{\pi^{4}} t_{0}^{\pi^{3}} t_{0}^{\pi^{2}} t_{0}^{\pi} t_{0}
$$

$$
\Rightarrow \pi^{12} t_{0}^{\pi^{11}} t_{0}^{\pi^{10}} t_{0}^{\pi^{9}} t_{0}^{\pi^{8}} t_{0}^{\pi^{7}} t_{0}^{\pi^{6}} t_{0}^{\pi^{5}} t_{0}^{\pi^{4}} t_{0}^{\pi^{3}} t_{0}^{\pi^{2}} t_{0}^{\pi} t_{0}=e
$$

$$
(01)^{12} t_{0}^{(01)^{11}} t_{0}^{(01)^{10}} t_{0}^{(01)^{9}} t_{0}^{(01)^{8}} t_{0}^{(01)^{7}} t_{0}^{(01)^{6}} t_{0}^{(01)^{5}} t_{0}^{(01)^{4}} t_{0}^{(01)^{3}} t_{0}^{(01)^{2}} t_{0}^{(01)} t_{0}
$$

$$
\Rightarrow t_{1} t_{0} t_{1} t_{0} t_{1} t_{0} t_{1} t_{0} t_{1} t_{0} t_{1} t_{0}=e
$$

$$
\Rightarrow t_{1} t_{0} t_{1} t_{0}=t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1}
$$

Thus relation (6.4) implies that $t_{1} t_{0} t_{1} t_{0} t_{1} t_{0} t_{1} t_{0}=t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}$ or, equivalently, $N t_{1} t_{0} t_{1} t_{0} t_{1} t_{0} t_{1} t_{0}=N t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}$. That is, using our short-hand notation, $10101010 \sim$ 1 $\overline{0} \overline{1} \overline{1} \overline{0}$.

We now perform manual double coset enumeration of G over S_{5}.

1. We first note that the double coset $N e N=\{N e n \mid n \in N\}=\{N n \mid n \in N\}=\{N\}$.

Let [*] denote the double coset $N e N$.
The double coset [*] has one distinct right coset: the identity right coset, $N e=$ $\{n e \mid n \in N\}=N$.

Moreover, since $N \cong S_{5}$ is transitive on $\{0,1,2,3,4\}$, and since $N \cong S_{5}$ is also transitive on the inverses $\{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}\}, N$ has two orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}, t_{4}\right\}$: $\{0,1,2,3,4\}$ and $\{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}\}$.

Therefore, there are two double cosets of the form $N w N$, where w is a word of length one given by $w=t_{i}^{ \pm 1}, i \in\{0,1,2,3,4\}: N t_{0} N$ and $N t_{0}^{-1} N$.
2. We next consider the double coset $N t_{0} N$.

Let [0] denote the double coset $N t_{0} N$.
Note that $N^{(0)} \geq N^{0}=\left\langle\left(\begin{array}{ll}1 & 2\end{array}\right),\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)\right\rangle \cong S_{4}$. Thus $\left|N^{(0)}\right| \geq\left|S_{4}\right|=24$ and, by Lemma 1.4, $\left|N t_{0} N\right|=\frac{|N|}{\left|N^{(0)}\right|} \leq \frac{120}{24}=5$.
Therefore, the double coset [0] has at most five distinct single cosets.
Moreover, $N^{(0)}$ has four orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}, t_{4}\right\}:\{0\},\{1,2,3,4\},\{\overline{0}\}$, and $\{\overline{1}, \overline{2}, \overline{3}, \overline{4}\}$.

Therefore, there are at most four double cosets of the form $N w N$, where w is a word of length two given by $w=t_{0} t_{i}^{ \pm 1}, i \in\{0,1\}: N t_{0} t_{0} N, N t_{0} t_{1} N, N t_{0} t_{0}^{-1} N$, and $N t_{0} t_{1}^{-1} N$.
But, since $N t_{0} t_{0} N=N t_{0}^{2} N=N t_{0}^{-1} N$, and since $N t_{0} t_{0}^{-1} N=N e N=N$, we conclude that there are two distinct double cosets of the form $N t_{0} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3,4\}: N t_{0} t_{1} N$ and $N t_{0} t_{1}^{-1} N$.
3. We next consider the double coset $N t_{0}^{-1} N$.

Let [0] denote the double coset $N t_{0}^{-1} N$.
Note that $N^{(\overline{0})} \geq N^{\overline{0}}\left\langle\left(\begin{array}{ll}1 & 2\end{array}\right),\left(\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right)\right\rangle \cong S_{4}$. Thus $\left|N^{(\overline{0})}\right| \geq\left|S_{4}\right|=24$ and, by Lemma 1.4, $\left|N t_{0}^{-1} N\right|=\frac{|N|}{\left|N^{(0)}\right|} \leq \frac{120}{24}=5$.
Therefore, the double coset [$\overline{0}]$ has at most five distinct single cosets.
Moreover, $N^{(\overline{0})}$ has four orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}, t_{4}\right\}:\{0\},\{1,2,3,4\},\{\overline{0}\}$, and $\{\overline{1}, \overline{2}, \overline{3}, \overline{4}\}$.

Therefore, there are at most four double cosets of the form $N w N$, where w is a word of length two given by $w=t_{0}^{-1} t_{i}^{ \pm 1}, i \in\{0,1\}: N t_{0}^{-1} t_{0} N, N t_{0}^{-1} t_{1} N, N t_{0}^{-1} t_{0}^{-1} N$, and $N t_{0}^{-1} t_{1}^{-1} N$. But, since $N t_{0}^{-1} t_{0}^{-1} N=N t_{0}^{-2} N=N t_{0} N$, and since $N t_{0}^{-1} t_{0} N=$ $N e N=N$, we conclude that there are two distinct double cosets of the form $N t_{0}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3,4\}: N t_{0}^{-1} t_{1} N$ and $N t_{0}^{-1} t_{1}^{-1} N$.
4. We next consider the double coset $N t_{0} t_{1}^{-1} N$.

Let [$0 \overline{1}]$ denote the double coset $N t_{0} t_{1}^{-1} N$.
Now, by relation (6.3) and left multiplication, (021) $t_{1}^{-1} t_{2}=t_{1}^{-1} t_{0} \Rightarrow t_{2}(021) t_{1}^{-1} t_{2}$ $=t_{2} t_{1}^{-1} t_{0} \Rightarrow(021)(012) t_{2}(021) t_{1}^{-1} t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow(021) t_{2}^{\left(0{ }^{2}\right)} t_{1}^{-1} t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow$ (021) $t_{1} t_{1}^{-1} t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{ll}0 & 2\end{array}\right) e t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{2}=t_{2} t_{1}^{-1} t_{0}$ and, by right multiplication, (021) $t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{2} t_{0}^{-1}=t_{2} t_{1}^{-1} t_{0} t_{0}^{-1} \Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{2} t_{0}^{-1}=$ $t_{2} t_{1}^{-1} e \Rightarrow\left(\begin{array}{ll}0 & 2\end{array}\right) t_{2} t_{0}^{-1}=t_{2} t_{1}^{-1}$, and finally by conjugation, (021) $t_{2} t_{0}^{-1}=t_{2} t_{1}^{-1} \Rightarrow$ $\left[\begin{array}{lll}\left(\begin{array}{lll}2 & 1\end{array}\right) t_{2} t_{0}^{-1}\end{array}\right]^{\left(\begin{array}{ll}l & 1\end{array}\right)}=\left[t_{2} t_{1}^{-1}\right]^{\left(\begin{array}{lll}1 & 1\end{array}\right)} \Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{0} t_{1}^{-1}=t_{0} t_{2}^{-1} \Rightarrow t_{0} t_{1}^{-1}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{2}^{-1}$. Furthermore, $\left[t_{0} t_{1}^{-1}\right]^{(23)}=\left[\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{2}^{-1}\right]^{(23)} \Rightarrow t_{0} t_{1}^{-1}=\left(\begin{array}{lll}0 & 1 & 3\end{array}\right) t_{0} t_{3}^{-1}$ and $\left.\left[t_{0} t_{1}^{-1}\right]^{(24)}=\left[\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{2}^{-1}\right]^{(24)} \Rightarrow t_{0} t_{1}^{-1}=\left(\begin{array}{lll}0 & 1 & 4\end{array}\right) t_{0} t_{4}^{-1}$.
Therefore, by relation $(6.3), t_{0} t_{1}^{-1}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{2}^{-1}=\left(\begin{array}{lll}0 & 1 & 3\end{array}\right) t_{0} t_{3}^{-1}=\left(\begin{array}{lll}0 & 1 & 4\end{array}\right) t_{0} t_{4}^{-1}$.
That is, using our short-hand notation, we have

$$
0 \overline{1} \sim 0 \overline{2} \sim 0 \overline{3} \sim 0 \overline{4}
$$

By conjugating the above relationship, we also have that

$$
\begin{array}{ll}
1 \overline{0} \sim 1 \overline{2} \sim 1 \overline{3} \sim 1 \overline{4}, & 2 \overline{0} \sim 2 \overline{1} \sim 2 \overline{3} \sim 2 \overline{4}, \\
3 \overline{0} \sim 3 \overline{1} \sim 3 \overline{2} \sim 3 \overline{4}, & 4 \overline{0} \sim 4 \overline{1} \sim 4 \overline{2} \sim 4 \overline{3}
\end{array}
$$

Since each of the twenty single cosets has four names, the double coset [$0 \overline{1}]$ must have at most five distinct single cosets.

An alternative approach for determining the order of the double coset is as fol-
 $N\left(t_{0} t_{1}^{-1}\right)^{(12)}=N t_{0} t_{2}^{-1}=N t_{0} t_{1}^{-1}$ implies that (12) $\in N^{(0 \overline{1})}$, and $N\left(t_{0} t_{1}^{-1}\right)^{(13)}=$ $N t_{0} t_{3}^{-1}=N t_{0} t_{1}^{-1}$ implies that (13) $\in N^{(0 \overline{1})}$, and $N\left(t_{0} t_{1}^{-1}\right)^{(14)}=N t_{0} t_{4}^{-1}=N t_{0} t_{1}^{-1}$ implies that (14) $\in N^{(0 \overline{1})}$. Therefore, (12), (13), (14) $14 \begin{aligned} & 1 \\ & 1^{(0 \overline{1})} \text {, and so } N^{(0 \overline{1})} \geq ~\end{aligned}$ $\left\langle(12),\left(\begin{array}{ll}1 & 3\end{array}\right),\left(\begin{array}{ll}1 & 4\end{array}\right)\right\rangle \cong S_{4}$. That is, $\left|N^{(0 \overline{1})}\right| \geq\left|S_{4}\right|=24$. Now, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} N\right|=\frac{|N|}{\left|N^{(01)}\right|} \leq \frac{120}{24}=5$.
Therefore, as we concluded earlier, the double coset [0̄] has at most five distinct single cosets.

Now, $N^{(0 \overline{1})}$ has four orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}, t_{4}\right\}:\{0\},\{1,2,3,4\},\{\overline{0}\}$, and $\{\overline{1}, \overline{2}, \overline{3}, \overline{4}\}$.

Therefore, there are at most four double cosets of the form $N w N$, where w is a word of length three given by $w=t_{0} t_{1}^{-1} t_{i}^{ \pm 1}, i \in\{0,1\}: N t_{0} t_{1}^{-1} t_{0} N, N t_{0} t_{1}^{-1} t_{1} N$, $N t_{0} t_{1}^{-1} t_{0}^{-1} N$, and $N t_{0} t_{1}^{-1} t_{1}^{-1} N$.

But, since $N t_{0} t_{1}^{-1} t_{1} N=N t_{0} e N=N t_{0} N$, and since $N t_{0} t_{1}^{-1} t_{1}^{-1} N=N t_{0} t_{1}^{-2} N=$ $N t_{0} t_{1} N$, we conclude that there are two distinct double cosets of the form $N t_{0} t_{1}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3,4\}: N t_{0} t_{1}^{-1} t_{0} N$ and $N t_{0} t_{1}^{-1} t_{0}^{-1} N$.
5. We next consider the double coset $N t_{0} t_{1} N$.

Let [01] denote the double coset $N t_{0} t_{1} N$.
Note that the relations $\left.\left[\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}\right]^{6}=e,\left[t_{0}^{-1} t_{1}\right]^{3}=e,\left[\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}^{-1} t_{1}\right]^{2}=e$, and $\left[\left(\begin{array}{ll}0 & 1\end{array} t_{0}\right]^{12}=e\right.$ do not apply to the single cosets in the double coset $N t_{0} t_{1} N$; therefore, each of the twenty single cosets has one name.

Since each of the twenty single cosets has one name, the double coset [01] must have at most twenty distinct single cosets.

An alternative approach for determining the order of the double coset is as follows:
We note that $N^{(01)} \geq N^{01} \cong S_{3}=\langle(23),(24)\rangle \cong S_{3}$. Therefore, $\left|N^{(01)}\right| \geq\left|S_{3}\right|=6$.
Now, by Lemma 1.4, $\left|N t_{0} t_{1} N\right|=\frac{|N|}{\left|N^{(01)}\right|} \leq \frac{120}{6}=20$.
Therefore, as we concluded earlier, the double coset [01] has at most twenty distinct single cosets.

Now, $N^{(01)}$ has six orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}, t_{4}\right\}:\{0\},\{1\},\{2,3,4\},\{\overline{0}\},\{\overline{1}\}$, and $\{\overline{2}, \overline{3}, \overline{4}\}$.

Therefore, there are at most six double cosets of the form $N w N$, where w is a word of length three given by $w=t_{0} t_{1} t_{i}^{ \pm 1}, i \in\{0,1,2\}: N t_{0} t_{1} t_{0} N, N t_{0} t_{1} t_{1} N, N t_{0} t_{1} t_{2} N$, $N t_{0} t_{1} t_{0}^{-1} N, N t_{0} t_{1} t_{1}^{-1} N$, and $N t_{0} t_{1} t_{2}^{-1} N$.

But note that $N t_{0} t_{1} t_{1}^{-1} N=N t_{0} e N=N t_{0} N$ and $N t_{0} t_{1} t_{1} N=N t_{0} t_{1}^{2} N=N t_{0} t_{1}^{-1} N$.
Moreover, by relation (6.3), (021) $t_{1}^{-1} t_{2}=t_{1}^{-1} t_{0} \Rightarrow t_{2}\left(\begin{array}{ll}0 & 21)\end{array} t_{1}^{-1} t_{2}=t_{2} t_{1}^{-1} t_{0}\right.$
$\Rightarrow\left(\begin{array}{lll}0 & 2\end{array}\right)\left(\begin{array}{lll}0 & 1\end{array}\right) t_{2}\left(\begin{array}{ll}0 & 2\end{array}\right) t_{1}^{-1} t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{lll}0 & 2\end{array}\right) t_{2}^{(021)} t_{1}^{-1} t_{2}=t_{2} t_{1}^{-1} t_{0}$
$\Rightarrow(021) t_{1} t_{1}^{-1} t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{ll}0 & 2\end{array}\right) e t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow(021) t_{2}=t_{2} t_{1}^{-1} t_{0}$
$\Rightarrow\left(\begin{array}{ll}0 & 1\end{array}\right) t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{ll}0 & 2\end{array}\right) t_{2} t_{0}^{-1}=t_{2} t_{1}^{-1} t_{0} t_{0}^{-1} \Rightarrow\left(\begin{array}{ll}0 & 2\end{array}\right) t_{2} t_{0}^{-1}=t_{2} t_{1}^{-1} e$
$\Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{2} t_{0}^{-1}=t_{2} t_{1}^{-1} \Rightarrow\left[\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{2} t_{0}^{-1}\right]^{(12)}=\left[t_{2} t_{1}^{-1}\right]^{(12)} \Rightarrow\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{1} t_{0}^{-1}=t_{1} t_{2}^{-1}$
$\Rightarrow t_{0}\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{1} t_{0}^{-1}=t_{0} t_{1} t_{2}^{-1} \Rightarrow\left(\begin{array}{lll}0 & 1 & 2\end{array}\right)\left(\begin{array}{lll}0 & 2\end{array}\right) t_{0}\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{1} t_{0}^{-1}=t_{0} t_{1} t_{2}^{-1}$
$\left.\Rightarrow\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}^{(01} 2\right) t_{1} t_{0}^{-1}=t_{0} t_{1} t_{2}^{-1} \Rightarrow\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{1} t_{1} t_{0}^{-1}=t_{0} t_{1} t_{2}^{-1} \Rightarrow\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{1}^{-1} t_{0}^{-1}=$ $t_{0} t_{1} t_{2}^{-1}$ implies that $N t_{0} t_{1} t_{2}^{-1}=N t_{1}^{-1} t_{0}^{-1}$, and therefore $N t_{0} t_{1} t_{2}^{-1} N=N t_{0}^{-1} t_{1}^{-1} N$. That is, $[\overline{0} \overline{1}]=[01 \overline{2}]$.

Since $N t_{0} t_{1} t_{1}^{-1} N=N t_{0} N, N t_{0} t_{1} t_{1} N=N t_{0} t_{1}^{-1} N$, and $N t_{0} t_{1} t_{2}^{-1} N=N t_{0}^{-1} t_{1}^{-1} N$, we conclude that there are three distinct double cosets of the form $N t_{0} t_{1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3,4\}: N t_{0} t_{1} t_{0} N, N t_{0} t_{1} t_{0}^{-1} N$, and $N t_{0} t_{1} t_{2} N$.
6. We next consider the double coset $N t_{0}^{-1} t_{1} N$.

Let [$\overline{0} 1]$ denote the double coset $N t_{0}^{-1} t_{1} N$.
Now, by relation (6.3), and by conjugation, (021) $t_{1}^{-1} t_{2}=t_{1}^{-1} t_{0}$
$\left.\Rightarrow\left[\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1}^{-1} t_{2}\right]^{(01)}=\left[t_{1}^{-1} t_{0}\right]^{(01)} \Rightarrow\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}^{-1} t_{2}=t_{0}^{-1} t_{1}$ and, by conjugation with elements of $\left.N \cong S_{5},\left[\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}^{-1} t_{2}\right]^{(23)}=\left[t_{0}^{-1} t_{1}\right]^{(23)} \Rightarrow\left(\begin{array}{lll}0 & 1 & 3\end{array}\right) t_{0}^{-1} t_{3}=t_{0}^{-1} t_{1}$ and $\left[\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}^{-1} t_{2}\right]^{(24)}=\left[t_{0}^{-1} t_{1}\right]^{(24)} \Rightarrow\left(\begin{array}{lll}0 & 1 & 4\end{array}\right) t_{0}^{-1} t_{4}=t_{0}^{-1} t_{1}$.

Thus, by relation (6.3), ($\left.\begin{array}{l}1 \\ 1\end{array} 2\right) t_{0}^{-1} t_{2}=t_{0}^{-1} t_{1}=\left(\begin{array}{lll}0 & 1 & 3\end{array}\right) t_{0}^{-1} t_{3}=\left(\begin{array}{lll}0 & 1 & 4\end{array}\right) t_{0}^{-1} t_{4}$.
That is, using our short-hand notation, we have

$$
\overline{0} 1 \sim \overline{0} 2 \sim \overline{0} 3 \sim \overline{0} 4
$$

By conjugating the above relationship, we also have that

$$
\begin{gathered}
\overline{0} 1 \sim \overline{0} 2 \sim \overline{0} 3 \sim \overline{0} 4, \quad \overline{1} 0 \sim \overline{1} 2 \sim \overline{1} 3 \sim \overline{1} 4, \\
\overline{2} 0 \sim \overline{2} 1 \sim \overline{2} 3 \sim \overline{2} 4, \quad \overline{3} 0 \sim \overline{3} 1 \sim \overline{3} 2 \sim \overline{3} 4, \\
\overline{4} 0 \sim \overline{4} 1 \sim \overline{4} 2 \sim \overline{4} 3
\end{gathered}
$$

Since each of the twenty single cosets has four names, the double coset [$\overline{0} 1$] must have at most five distinct single cosets.

Now, $N^{(\overline{0} 1)}$ has four orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}, t_{4}\right\}:\{0\},\{1,2,3,4\},\{\overline{0}\}$, and $\{\overline{1}, \overline{2}, \overline{3}, \overline{4}\}$.

Therefore, there are at most four double cosets of the form $N w N$, where w is a word of length three given by $w=t_{0}^{-1} t_{1} t_{i}^{ \pm 1}, i \in\{0,1\}: N t_{0}^{-1} t_{1} t_{0} N, N t_{0}^{-1} t_{1} t_{1} N$, $N t_{0}^{-1} t_{1} t_{0}^{-1} N$, and $N t_{0}^{-1} t_{1} t_{1}^{-1} N$.

But note that $N t_{0}^{-1} t_{1} t_{1} N=N t_{0}^{-1} t_{1}^{2} N=N t_{0}^{-1} t_{1}^{-1} N$ and $N t_{0}^{-1} t_{1} t_{1}^{-1} N=N t_{0}^{-1} e N=$ $N t_{0}^{-1} N$. Since $N t_{0}^{-1} t_{1} t_{1} N=N t_{0}^{-1} t_{1}^{2} N=N t_{0}^{-1} t_{1}^{-1} N$ and $N t_{0}^{-1} t_{1} t_{1}^{-1} N=N t_{0}^{-1} e N=$ $N t_{0}^{-1} N$, we conclude that there are two distinct double cosets of the form $N t_{0}^{-1} t_{1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3,4\}: N t_{0}^{-1} t_{1} t_{0} N$ and $N t_{0}^{-1} t_{1} t_{0}^{-1} N$.
7. We next consider the double coset $N t_{0}^{-1} t_{1}^{-1} N$.

Let [$\overline{0} \overline{1}]$ denote the double coset $N t_{0}^{-1} t_{1}^{-1} N$.
Note that the relations $\left.\left[\left(\begin{array}{lll}0 & 1 & 2\end{array}\right)\right)_{0} t_{0}\right]^{6}=e,\left[t_{0}^{-1} t_{1}\right]^{3}=e,\left[\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}^{-1} t_{1}\right]^{2}=e$, and $\left[\left(\begin{array}{ll}0 & 1\end{array}\right) t_{0}\right]^{12}=e$ do not apply to the single cosets in the double coset $N t_{0}^{-1} t_{1}^{-1} N$; therefore, each of the twenty single cosets has one name.

Since each of the twenty single cosets has one name, the double coset [$\overline{0} \overline{1}]$ must have at most twenty distinct single cosets.

An alternative approach for determining the order of the double coset is as follows: We note that $N^{(\overline{\mathrm{O}} \overline{\mathrm{I}})} \geq N^{\overline{\mathrm{o}} \overline{\mathrm{I}}}=\left\langle\left(\begin{array}{ll}2 & 3\end{array}\right),\left(\begin{array}{ll}2 & 4\end{array}\right)\right\rangle \cong S_{3}$. Therefore, $\left|N^{(\overline{\mathrm{O}} \overline{\mathrm{I}})}\right| \geq\left|S_{3}\right|=6$. Now, by Lemma 1.4, $\left|N t_{0}^{-1} t_{1}^{-1} N\right|=\frac{|N|}{\left|N^{(\overline{(01})}\right|} \leq \frac{120}{6}=20$.
Therefore, as we concluded earlier, the double coset [$[\overline{1} \overline{1}]$ has at most twenty distinct single cosets.
Now, $N^{(\overline{0} \overline{1})}$ has six orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}, t_{4}\right\}:\{0\},\{1\},\{2,3,4\},\{\overline{0}\},\{\overline{1}\}$, and $\{\overline{2}, \overline{3}, \overline{4}\}$.

Therefore, there are at most six double cosets of the form $N w N$, where w is a word of length three given by $w=t_{0}^{-1} t_{1}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2\}: N t_{0}^{-1} t_{1}^{-1} t_{0} N, N t_{0}^{-1} t_{1}^{-1} t_{1} N$, $N t_{0}^{-1} t_{1}^{-1} t_{2} N, N t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{1}^{-1} N$, and $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} N$.
But note that $N t_{0}^{-1} t_{1}^{-1} t_{1} N=N t_{0}^{-1} e N=N t_{0}^{-1} N$ and $N t_{0}^{-1} t_{1}^{-1} t_{1}^{-1} N=N t_{0} t_{1}^{-2} N=N t_{0} t_{1} N$.
Moreover, by relation (6.3), (021) $t_{1}^{-1} t_{2}=t_{1}^{-1} t_{0} \Rightarrow t_{1}^{-1}\left(\begin{array}{ll}0 & 21)\end{array} t_{1}^{-1} t_{2}=t_{1}^{-1} t_{1}^{-1} t_{0}\right.$
$\Rightarrow(021)(012) t_{1}-1(021) t_{1}^{-1} t_{2}=t_{1}^{-1} t_{1}^{-1} t_{0} \Rightarrow(021)\left(t_{2}^{-1}\right)^{(021)} t_{1}^{-1} t_{2}=t_{1}^{-1} t_{1}^{-1} t_{0}$
$\Rightarrow\left(\begin{array}{ll}0 & 2\end{array}\right) t_{0}^{-1} t_{1}^{-1} t_{2}=t_{1}^{-1} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{ll}0 & 2\end{array}\right) t_{0}^{-1} t_{1}^{-1} t_{2}=t_{1} t_{0}$ implies that $N t_{0}^{-1} t_{1}^{-1} t_{2}=$ $N t_{1} t_{0}$, and therefore, $N t_{0}^{-1} t_{1}^{-1} t_{2} N=N t_{0} t_{1} N$. That is, [01] $=[\overline{0} \overline{1} 2]$.

Since $N t_{0}^{-1} t_{1}^{-1} t_{1} N=N t_{0}^{-1} e N=N t_{0}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{1}^{-1} N=N t_{0}^{-1} t_{1}^{-2} N=N t_{0}^{-1} t_{1} N$, and $N t_{0}^{-1} t_{1}^{-1} t_{2} N=N t_{1} t_{0} N$, we conclude that there are three distinct double cosets
of the form $N t_{0}^{-1} t_{1}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3,4\}: N t_{0}^{-1} t_{1}^{-1} t_{0} N, N t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} N$, and $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} N$.
8. We next consider the double coset $N t_{0} t_{1}^{-1} t_{0} N$.

Let [010] denote the double coset $N t_{0} t_{1}^{-1} t_{0} N$.
Now, by relation (6.3), (021) $\begin{aligned} & -1\end{aligned} t_{2}=t_{1}^{-1} t_{0}=\left(\begin{array}{lll}0 & 3 & 1\end{array}\right) t_{1}^{-1} t_{3}=\left(\begin{array}{lll}0 & 4 & 1\end{array}\right) t_{1}^{-1} t_{4}$ and, by left multiplication, $t_{0}\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1}^{-1} t_{2}=t_{0} t_{1}^{-1} t_{0}=t_{0}\left(\begin{array}{lll}0 & 3 & 1\end{array}\right) t_{1}^{-1} t_{3}=t_{0}\left(\begin{array}{lll}0 & 4 & 1\end{array}\right) t_{1}^{-1} t_{4} \Rightarrow$ $(021)(012) t_{0}(021) t_{1}^{-1} t_{2}=t_{0} t_{1}^{-1} t_{0}=\left(\begin{array}{lll}0 & 3 & 1\end{array}\right)\left(\begin{array}{lll}0 & 1 & 3\end{array}\right) t_{0}\left(\begin{array}{lll}0 & 3 & 1\end{array}\right) t_{1}^{-1} t_{3}$
$=(041)(014) t_{0}(041) t_{1}^{-1} t_{4} \Rightarrow t_{0}^{(021)} t_{1}^{-1} t_{2}=t_{0} t_{1}^{-1} t_{0}=t_{0}^{(031)} t_{1}^{-1} t_{3}=t_{0}^{(041)} t_{1}^{-1} t_{4}$ $\Rightarrow\left(\begin{array}{ll}0 & 2\end{array}\right) t_{2} t_{1}^{-1} t_{2}=t_{0} t_{1}^{-1} t_{0}=\left(\begin{array}{ll}0 & 3\end{array}\right) t_{3} t_{1}^{-1} t_{3}=\left(\begin{array}{lll}0 & 4 & 1\end{array}\right) t_{4} t_{1}^{-1} t_{4}$. Similarly, by conjugation of these relations, ($\begin{aligned} & 1 \\ & 1\end{aligned} 2$) $t_{2} t_{0}^{-1} t_{2}=t_{1} t_{0}^{-1} t_{1}=\left(\begin{array}{lll}0 & 1 & 3\end{array}\right) t_{3} t_{0}^{-1} t_{3}=\left(\begin{array}{lll}0 & 1 & 4\end{array}\right) t_{4} t_{0}^{-1} t_{4}$ and (012) $t_{1} t_{2}^{-1} t_{1}=t_{0} t_{2}^{-1} t_{0}=\left(\begin{array}{ll}0 & 3\end{array} 2\right) t_{3} t_{2}^{-1} t_{3}=\left(\begin{array}{ll}0 & 4\end{array}\right) t_{4} t_{2}^{-1} t_{4}$ and $\left(\begin{array}{ll}0 & 2\end{array}\right) t_{2} t_{3}^{-1} t_{2}=$ $t_{0} t_{3}^{-1} t_{0}=(013) t_{1} t_{3}^{-1} t_{1}=(043) t_{4} t_{3}^{-1} t_{4}$ and (024) $t_{2} t_{4}^{-1} t_{2}=t_{0} t_{4}^{-1} t_{0}=(034) t_{3} t_{4}^{-1} t_{3}$ $=\left(\begin{array}{lll}0 & 1 & 4\end{array}\right) t_{1} t_{4}^{-1} t_{1}$. Furthermore, by relation (6.2), $t_{0}^{-1} t_{1} t_{0}^{-1}=t_{1}^{-1} t_{0} t_{1}^{-1} \Rightarrow t_{1} t_{0}^{-1} t_{1}=$ $t_{0} t_{1}^{-1} t_{0}$ and so $\left[t_{0} t_{1}^{-1} t_{0}\right]^{(02)}=\left[t_{1} t_{0}^{-1} t_{1}\right]^{(02)} \Rightarrow t_{2} t_{1}^{-1} t_{2}=t_{1} t_{2}^{-1} t_{1}$ and $\left[t_{0} t_{1}^{-1} t_{0}\right]^{(03)}=$ $\left[t_{1} t_{0}^{-1} t_{1}\right]^{(03)} \Rightarrow t_{3} t_{1}^{-1} t_{3}=t_{1} t_{3}^{-1} t_{1}$ and $\left[t_{0} t_{1}^{-1} t_{0}\right]^{(04)}=\left[t_{1} t_{0}^{-1} t_{1}\right]^{(04)} \Rightarrow t_{4} t_{1}^{-1} t_{4}=$ $t_{1} t_{4}^{-1} t_{1}$.

These relations imply that:

$$
\begin{aligned}
& 0 \overline{1} 0 \sim 0 \overline{2} 0 \sim 0 \overline{3} 0 \sim 0 \overline{4} 0 \sim 1 \overline{0} 1 \sim 1 \overline{2} 1 \sim 1 \overline{3} 1 \sim 1 \overline{4} 1 \sim 2 \overline{0} 2 \sim 2 \overline{1} 2 \sim \\
& 2 \overline{3} 2 \sim 2 \overline{4} 2 \sim 3 \overline{0} 3 \sim 3 \overline{1} 3 \sim 3 \overline{2} 3 \sim 3 \overline{4} 3 \sim 4 \overline{0} 4 \sim 4 \overline{1} 4 \sim 4 \overline{2} 4 \sim 4 \overline{3} 4
\end{aligned}
$$

Since each of the twenty single cosets has twenty names, the double coset [010] must have one distinct single coset.
Now, $N^{(0 \overline{1} 0)}$ has two orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}, t_{4}\right\}:\{0,1,2,3,4\}$ and $\{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}\}$.
Therefore, there are at most two double cosets of the form $N w N$, where w is a word of length four given by $w=t_{0} t_{1}^{-1} t_{0} t_{i}^{ \pm 1}, i=0: N t_{0} t_{1}^{-1} t_{0} t_{0} N$ and $N t_{0} t_{1}^{-1} t_{0} t_{0}^{-1} N$.

But note that $N t_{0} t_{1}^{-1} t_{0} t_{0}^{-1} N=N t_{0} t_{1}^{-1} e N=N t_{0} t_{1}^{-1} N$ and note further that $N t_{0} t_{1}^{-1} t_{0} t_{0} N=N t_{0} t_{1}^{-1} t_{0}^{2} N=N t_{0} t_{1}^{-1} t_{0}^{-1} N$.
Since $N t_{0} t_{1}^{-1} t_{0} t_{0}^{-1} N=N t_{0} t_{1}^{-1} e N=N t_{0} t_{1}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{0} t_{0} N=N t_{0} t_{1}^{-1} t_{0}^{2} N=$ $N t_{0} t_{1}^{-1} t_{0}^{-1} N$, we need not consider additional double cosets of the form $N t_{0} t_{1}^{-1} t_{0} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3,4\}$.
9. We next consider the double coset $N t_{0} t_{1}^{-1} t_{0}^{-1} N$.

Let $[0 \overline{1} \overline{0}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{0}^{-1} N$.
Recall that in step 4 of our manual double coset enumeration, we determined, by relation (6.3), that $t_{0} t_{1}^{-1}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{2}^{-1}=\left(\begin{array}{lll}0 & 1 & 3\end{array}\right) t_{0} t_{3}^{-1}=\left(\begin{array}{lll}0 & 1 & 4\end{array}\right) t_{0} t_{4}^{-1}$. Now, by right multiplication, we find that $t_{0} t_{1}^{-1} t_{0}^{-1}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{2}^{-1} t_{0}^{-1}=\left(\begin{array}{lll}0 & 1 & 3\end{array}\right) t_{0} t_{3}^{-1} t_{0}^{-1}=$ (014) $t_{0} t_{4}^{-1} t_{0}^{-1}$.

These relations imply that:

$$
0 \overline{1} \overline{0} \sim 0 \overline{2} \overline{0} \sim 0 \overline{3} \overline{0} \sim 0 \overline{4} \overline{0}
$$

By conjugating the relationship above, we find also that

$$
\begin{array}{lr}
1 \overline{0} \overline{1} \sim 1 \overline{2} \overline{1} \sim 1 \overline{3} \overline{1} \sim 1 \overline{4} \overline{1}, & 2 \overline{1} \overline{2} \sim 2 \overline{0} \overline{2} \sim 2 \overline{3} \overline{2} \sim 2 \overline{4} \overline{2}, \\
3 \overline{1} \overline{3} \sim 3 \overline{2} \overline{3} \sim 3 \overline{0} \overline{3} \sim 3 \overline{4} \overline{3}, & 4 \overline{1} \overline{4} \sim 4 \overline{2} \overline{4} \sim 4 \overline{3} \overline{4} \sim 4 \overline{0} \overline{4}
\end{array}
$$

Since each of the twenty single cosets has four names, the double coset [$0 \overline{1} \overline{0}]$ must have at most five distinct single cosets.
Now, $N^{(0 \overline{1} \overline{0})}$ has four orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}, t_{4}\right\}:\{0\},\{1,2,3,4\},\{\overline{0}\}$, and $\{\overline{1}, \overline{2}, \overline{3}, \overline{4}\}$.

Therefore, there are at most four double cosets of the form $N w N$, where w is a word of length four given by $w=t_{0} t_{1}^{-1} t_{0}^{-1} t_{i}^{ \pm 1}, i \in\{0,1\}: N t_{0} t_{1}^{-1} t_{0}^{-1} t_{0} N, N t_{0} t_{1}^{-1} t_{0}^{-1} t_{0}^{-1} N$, $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{1} N$, and $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} N$.
But note that $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{0}^{-1} N=N t_{0} t_{1}^{-1}\left(t_{0}^{-1}\right)^{2} N=N t_{0} t_{1}^{-1} t_{0} N$ and note further that $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{0} N=N t_{0} t_{1}^{-1} e N=N t_{0} t_{1}^{-1} N$.
Moreover, by relation (6.3) and by left and right multiplication and conjugation, $\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1}^{-1} t_{2}=t_{1}^{-1} t_{0} \Rightarrow t_{2}\left(\begin{array}{lll}0 & 2\end{array}\right) t_{1}^{-1} t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right)\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{2}\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1}^{-1} t_{2}$ $=t_{2} t_{1}^{-1} t_{0} \Rightarrow(021) t_{2}^{(021)} t_{1}^{-1} t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow(021) t_{1} t_{1}^{-1} t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow(021) e t_{2}=$ $t_{2} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{lll}0 & 1\end{array}\right) t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{lll}0 & 2\end{array}\right) t_{2} t_{0}^{-1}=t_{2} t_{1}^{-1} t_{0} t_{0}^{-1} \Rightarrow$ (021) $t_{2} t_{0}^{-1}=t_{2} t_{1}^{-1} e \Rightarrow(021) t_{2} t_{0}^{-1}=t_{2} t_{1}^{-1} \Rightarrow\left(\begin{array}{ll}0 & 2\end{array}\right) t_{2} t_{0}^{-1}=t_{2} t_{1}^{-1} \Rightarrow$ $\left.\left.\left[\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{2} t_{0}^{-1}\right]^{(0} 12\right)=\left[t_{2} t_{1}^{-1}\right]^{(0} 12\right) \Rightarrow\left(\begin{array}{ll}0 & 2\end{array}\right) t_{0} t_{1}^{-1}=t_{0} t_{2}^{-1} \Rightarrow t_{0} t_{1}^{-1}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{2}^{-1} \Rightarrow$ $\left[t_{0} t_{1}^{-1}\right]^{(01)}=\left[\left(\begin{array}{ll}0 & 1\end{array}\right) t_{0} t_{2}^{-1}\right]^{(01)} \Rightarrow t_{1} t_{0}^{-1}=\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1} t_{2}^{-1} \Rightarrow t_{1} t_{0}^{-1} t_{1}^{-1}=\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1} t_{2}^{-1} t_{1}^{-1}$ $\Rightarrow t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}=(021) t_{1} t_{2}^{-1} t_{1}^{-1} t_{0}$. Further, by relation (6.3), (021) $t_{1}^{-1} t_{2}=t_{1}^{-1} t_{0} \Rightarrow$
$t_{2}^{-1}(021) t_{1}^{-1} t_{2}=t_{2}^{-1} t_{1}^{-1} t_{0} \Rightarrow(021)(012) t_{2}^{-1}(021) t_{1}^{-1} t_{2}=t_{2}^{-1} t_{1}^{-1} t_{0}$
$\Rightarrow\left(\begin{array}{ll}0 & 2\end{array}\right)\left(t_{2}^{-1}\right)^{(021)} t_{1}^{-1} t_{2}=t_{2}^{-1} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{ll}0 & 2\end{array}\right) t_{1} t_{2}=t_{2}^{-1} t_{1}^{-1} t_{0} \Rightarrow t_{1}\left(\begin{array}{ll}(021)\end{array} t_{1} t_{2}=\right.$ $t_{1} t_{2}^{-1} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{lllll}0 & 2 & 1\end{array}\right)\left(\begin{array}{llll}0 & 1 & 2\end{array}\right) t_{1}\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1} t_{2}=t_{1} t_{2}^{-1} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1}^{(021)} t_{1} t_{2}=$ $t_{1} t_{2}^{-1} t_{1}^{-1} t_{0} \Rightarrow(021) t_{0} t_{1} t_{2}=t_{1} t_{2}^{-1} t_{1}^{-1} t_{0}$. Therefore, $t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}=\left(\begin{array}{ll}0 & 2\end{array}\right) t_{1} t_{2}^{-1} t_{1}^{-1} t_{0}$ and (021) $\begin{aligned} & 0 \\ & 0\end{aligned} t_{1} t_{2}=t_{1} t_{2}^{-1} t_{1}^{-1} t_{0}$ imply that $t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}=\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1} t_{2}^{-1} t_{1}^{-1} t_{0}$
$=\left(\begin{array}{ll}0 & 1\end{array}\right) t_{0} t_{1} t_{2}$ and this implies, in turn, that $N t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}=N t_{0} t_{1} t_{2}$. Therefore, $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{1} N=N t_{0} t_{1} t_{2} N$. That is, [012] $=[0 \overline{1} \overline{0} 1]$.
Since $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{0} N$ and $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{0} N=N t_{0} t_{1}^{-1} N$ and
$N t_{0} t_{1}^{-1} t_{0}^{-1} t_{1} N=N t_{0} t_{1} t_{2} N$, we conclude that there is one distinct double coset of the form $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3,4\}: N t_{0} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} N$.
10. We next consider the double coset $N t_{0} t_{1} t_{0} N$.

Let [010] denote the double coset $N t_{0} t_{1} t_{0} N$.
By relation (6.3) and by conujugation and right and left multiplication, (021) $t_{1}^{-1} t_{2}$ $=t_{1}^{-1} t_{0} \Rightarrow(021) t_{1}^{-1} t_{2} t_{2}=t_{1}^{-1} t_{0} t_{2} \Rightarrow(021) t_{1}^{-1} t_{2}^{-1}=t_{1}^{-1} t_{0} t_{2} \Rightarrow t_{1}^{-1}(021) t_{1}^{-1} t_{2}^{-1}=$ $t_{1}^{-1} t_{1}^{-1} t_{0} t_{2} \Rightarrow(021)(012) t_{1}^{-1}(021) t_{1}^{-1} t_{2}^{-1}=t_{1} t_{0} t_{2}$
$\Rightarrow\left(t_{1}^{-1}\right)^{(021)} t_{1}^{-1} t_{2}^{-1}=t_{1} t_{0} t_{2} \Rightarrow(021) t_{0}^{-1} t_{1}^{-1} t_{2}^{-1}=t_{1} t_{0} t_{2} \Rightarrow\left[\left(\begin{array}{lll}0 & 1) & \left.t_{0}^{-1} t_{1}^{-1} t_{2}^{-1}\right]^{(01)}= \\ 0\end{array}\right.\right.$ $\left[t_{1} t_{0} t_{2}\right]^{(01)} \Rightarrow(012) t_{1}^{-1} t_{0}^{-1} t_{2}^{-1}=t_{0} t_{1} t_{2} \Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right)\left(\begin{array}{lll}0 & 1\end{array}\right) t_{1}^{-1} t_{0}^{-1} t_{2}^{-1}=\left(\begin{array}{lll}0 & 2\end{array}\right) t_{0} t_{1} t_{2} \Rightarrow$ $t_{1}^{-1} t_{0}^{-1} t_{2}^{-1}=\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{0} t_{1} t_{2} \Rightarrow t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{2}^{-1}=\left(\begin{array}{ll}0 & 2\end{array}\right) t_{0} t_{1} t_{2} t_{2}^{-1} \Rightarrow t_{1}^{-1} t_{0}^{-1} t_{2}$
$=\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{0} t_{1} \Rightarrow t_{1}^{-1} t_{0}^{-1} t_{2} t_{0}=\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{0} t_{1} t_{0} \Rightarrow t_{1}^{-1} t_{0}^{-1} t_{2} t_{0} t_{1}^{-1}=\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{0} t_{1} t_{0} t_{1}^{-1}$. Also, by relation (6.3), ($\begin{array}{l}0 \\ 2\end{array} 1$ 1 $) t_{1}^{-1} t_{2}=t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1}^{-1} t_{2} t_{0}=t_{1}^{-1} t_{0} t_{0} \Rightarrow$ (021) $\begin{aligned} & -1 \\ & 1\end{aligned} t_{2} t_{0}=t_{1}^{-1} t_{0}^{-1} \Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1}^{-1} t_{2} t_{0} t_{2}=t_{1}^{-1} t_{0}^{-1} t_{2} \Rightarrow\left(\begin{array}{lll}0 & 1\end{array}\right) t_{1}^{-1} t_{2} t_{0} t_{2} t_{0}=$ $t_{1}^{-1} t_{0}^{-1} t_{2} t_{0} \Rightarrow(021) t_{1}^{-1} t_{2} t_{0} t_{2} t_{0} t_{1}^{-1}=t_{1}^{-1} t_{0}^{-1} t_{2} t_{0} t_{1}^{-1}$. Now, $t_{1}^{-1} t_{0}^{-1} t_{2} t_{0} t_{1}^{-1}$
$=(021) t_{0} t_{1} t_{0} t_{1}^{-1}$ and (021) $t_{1}^{-1} t_{2} t_{0} t_{2} t_{0} t_{1}^{-1}=t_{1}^{-1} t_{0}^{-1} t_{2} t_{0} t_{1}^{-1}$ imply that
(021) $t_{1}^{-1} t_{2} t_{0} t_{2} t_{0} t_{1}^{-1}=t_{1}^{-1} t_{0}^{-1} t_{2} t_{0} t_{1}^{-1}=\left(\begin{array}{ll}0 & 2\end{array}\right) t_{0} t_{1} t_{0} t_{1}^{-1} \Rightarrow(021) t_{1}^{-1} t_{2} t_{0} t_{2} t_{0} t_{1}^{-1}=$ (021) $t_{0} t_{1} t_{0} t_{1}^{-1}$, and so (021) $t_{1}^{-1} t_{2} t_{0} t_{2} t_{0} t_{1}^{-1}=\left(\begin{array}{ll}0 & 21\end{array}\right) t_{0} t_{1} t_{0} t_{1}^{-1} \Rightarrow$
(021) $t_{1}^{-1} t_{2} t_{0} t_{2} t_{0} t_{1}^{-1} t_{1}=\binom{0}{2} t_{0} t_{1} t_{0} t_{1}^{-1} t_{1} \Rightarrow(021) t_{1}^{-1} t_{2} t_{0} t_{2} t_{0}=\left(\begin{array}{ll}0 & 2\end{array}\right) t_{0} t_{1} t_{0} \Rightarrow$ $(012)(021) t_{1}^{-1} t_{2} t_{0} t_{2} t_{0}=(012)(021) t_{0} t_{1} t_{0} \Rightarrow t_{1}^{-1} t_{2} t_{0} t_{2} t_{0}=t_{0} t_{1} t_{0} \Rightarrow t_{1} t_{1}^{-1} t_{2} t_{0} t_{2} t_{0}$ $=t_{1} t_{0} t_{1} t_{0} \Rightarrow t_{2} t_{0} t_{2} t_{0}=t_{1} t_{0} t_{1} t_{0} \Rightarrow t_{2} t_{0} t_{2} t_{0} t_{0}^{-1}=t_{1} t_{0} t_{1} t_{0} t_{0}^{-1} \Rightarrow t_{2} t_{0} t_{2}=t_{1} t_{0} t_{1}$. Finally, by conjugation, $\left[t_{2} t_{0} t_{2}\right]^{(23)}=\left[t_{1} t_{0} t_{1}\right]^{(23)} \Rightarrow t_{3} t_{0} t_{3}=t_{1} t_{0} t_{1}$ and, also by conjugation, $\left[t_{2} t_{0} t_{2}\right]^{(24)}=\left[t_{1} t_{0} t_{1}\right]^{(24)} \Rightarrow t_{4} t_{0} t_{4}=t_{1} t_{0} t_{1} \Rightarrow$ and so $t_{2} t_{0} t_{2}=t_{1} t_{0} t_{1}$ and $t_{3} t_{0} t_{3}=t_{1} t_{0} t_{1}$ and $t_{4} t_{0} t_{4}=t_{1} t_{0} t_{1}$ imply that $t_{2} t_{0} t_{2}=t_{1} t_{0} t_{1}=t_{3} t_{0} t_{3}=t_{4} t_{0} t_{4}$.

These relations imply that:

$$
101 \sim 202 \sim 303 \sim 404
$$

Similarly, by conjugating the above relationship, we find that:

$$
\begin{array}{ll}
010 \sim 212 \sim 313 \sim 414, & 020 \sim 121 \sim 323 \sim 424, \\
030 \sim 131 \sim 232 \sim 434, & 040 \sim 141 \sim 242 \sim 343
\end{array}
$$

Since each of the twenty single cosets has four names, the double coset [010] must have at most five distinct single cosets.

Now, $N^{(010)}$ has four orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}, t_{4}\right\}:\{0\},\{1,2,3,4\},\{\overline{0}\}$, and $\{\overline{1}, \overline{2}, \overline{3}, \overline{4}\}$.

Therefore, there are at most four double cosets of the form $N w N$, where w is a word of length four given by $w=t_{0} t_{1} t_{0} t_{i}^{ \pm 1}, i \in\{0,1\}: N t_{0} t_{1} t_{0} t_{0} N, N t_{0} t_{1} t_{0} t_{0}^{-1} N$, $N t_{0} t_{1} t_{0} t_{1} N$, and $N t_{0} t_{1} t_{0} t_{1}^{-1} N$.

But note that $N t_{0} t_{1} t_{0} t_{0} N=N t_{0} t_{1} t_{0}^{2} N=N t_{0} t_{1} t_{0}^{-1} N$ and note further that
$N t_{0} t_{1} t_{0} t_{0}^{-1} N=N t_{0} t_{1} e N=N t_{0} t_{1} N$.
Since $N t_{0} t_{1} t_{0} t_{0} N=N t_{0} t_{1} t_{0}^{-1} N$ and $N t_{0} t_{1} t_{0} t_{0}^{1} N=N t_{0} t_{1} N$, we conclude that there are two distinct double cosets of the form $N t_{0} t_{1} t_{0} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3,4\}$: $N t_{0} t_{1} t_{0} t_{1} N$ and $N t_{0} t_{1} t_{0} t_{1}^{-1} N$.
11. We next consider the double coset $N t_{0} t_{1} t_{0}^{-1} N$.

Let [$01 \overline{0}]$ denote the double coset $N t_{0} t_{1} t_{0}^{-1} N$.
Recall that in step 4 of our manual double coset enumeration, we determined, by relation (6.3), that $t_{0} t_{1}^{-1}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{2}^{-1}=\left(\begin{array}{lll}0 & 1 & 3\end{array}\right) t_{0} t_{3}^{-1}=\left(\begin{array}{lll}0 & 1 & 4\end{array}\right) t_{0} t_{4}^{-1}$. Now, by conjugating this relationship, we find that $\left.\left[t_{0} t_{1}^{-1}\right]^{(01)}=\left[\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{2}^{-1}\right]^{\left(\begin{array}{ll}1\end{array}\right)}=$ $\left.\left.\left.\left[\left(\begin{array}{lll}0 & 1 & 3\end{array}\right) t_{0} t_{3}^{-1}\right]^{(0} 1\right)=\left[\begin{array}{lll}0 & 1 & 4\end{array}\right) t_{0} t_{4}^{-1}\right]^{(0} 1\right) \Rightarrow t_{1} t_{0}^{-1}=\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1} t_{2}^{-1}=\left(\begin{array}{lll}0 & 3 & 1\end{array}\right) t_{1} t_{3}^{-1}=$ (041) $t_{1} t_{4}^{-1}$ and, by left multiplication, $t_{0} t_{1} t_{0}^{-1}=t_{0}(021) t_{1} t_{2}^{-1}=t_{0}(031) t_{1} t_{3}^{-1}=$ $t_{0}(041) t_{1} t_{4}^{-1} \Rightarrow t_{0} t_{1} t_{0}^{-1}=(021)(012) t_{0}(021) t_{1} t_{2}^{-1}=(031)(013) t_{0}(031) t_{1} t_{3}^{-1}=$ $(041)(014) t_{0}\left(\begin{array}{ll}(0 & 4\end{array}\right) t_{1} t_{4}^{-1} \Rightarrow t_{0} t_{1} t_{0}^{-1}=\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{0}^{(021)} t_{1} t_{2}^{-1}=\left(\begin{array}{lll}0 & 3 & 1\end{array}\right) t_{0}^{(031)} t_{1} t_{3}^{-1}=$ $\left.\left(\begin{array}{lll}0 & 4 & 1\end{array}\right) t_{0}^{(0} 41\right), ~ t_{1} t_{4}^{-1} \Rightarrow t_{0} t_{1} t_{0}^{-1}=\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{2} t_{1} t_{2}^{-1}=\left(\begin{array}{lll}0 & 3 & 1\end{array}\right) t_{3} t_{1} t_{3}^{-1}=\left(\begin{array}{lll}0 & 4 & 1\end{array}\right) t_{4} t_{1} t_{4}^{-1}$. These relations imply that:

$$
01 \overline{0} \sim 21 \overline{2} \sim 31 \overline{3} \sim 41 \overline{4}
$$

Similarly, by conjugating the above relationship, we find that

$$
\begin{array}{ll}
10 \overline{1} \sim 20 \overline{2} \sim 30 \overline{3} \sim 40 \overline{4}, & 02 \overline{0} \sim 12 \overline{1} \sim 32 \overline{3} \sim 42 \overline{4}, \\
03 \overline{0} \sim 13 \overline{1} \sim 23 \overline{2} \sim 43 \overline{4}, & 04 \overline{0} \sim 14 \overline{1} \sim 24 \overline{2} \sim 34 \overline{3}
\end{array}
$$

Since each of the twenty single cosets has four names, the double coset [010] must have at most five distinct single cosets.

Now, $N^{(01 \overline{0})}$ has four orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}, t_{4}\right\}:\{0\},\{1,2,3,4\}$, $\{\overline{0}\}$, and $\{\overline{1}, \overline{2}, \overline{3}, \overline{4}\}$.
Therefore, there are at most four double cosets of the form $N w N$, where w is a word of length four given by $w=t_{0} t_{1} t_{0}^{-1} t_{i}^{ \pm 1}, i \in\{0,1\}: N t_{0} t_{1} t_{0}^{-1} t_{0} N, N t_{0} t_{1} t_{0}^{-1} t_{0}^{-1} N$, $N t_{0} t_{1} t_{0}^{-1} t_{1} N$, and $N t_{0} t_{1} t_{0}^{-1} t_{1}^{-1} N$.

But note that $N t_{0} t_{1} t_{0}^{-1} t_{0}^{-1} N=N t_{0} t_{1}\left(t_{0}^{-1}\right)^{2} N=N t_{0} t_{1} t_{0} N$ and note further that $N t_{0} t_{1} t_{0}^{-1} t_{0} N=N t_{0} t_{1} e N=N t_{0} t_{1} N$.
Moreover, by relation (6.2), $t_{0}^{-1} t_{1} t_{0}^{-1}=t_{1}^{-1} t_{0} t_{1}^{-1} \Rightarrow t_{0}^{-1} t_{0}^{-1} t_{1} t_{0}^{-1}=t_{0}^{-1} t_{1}^{-1} t_{0} t_{1}^{-1} \Rightarrow$ $t_{0} t_{1} t_{0}^{-1}=t_{0}^{-1} t_{1}^{-1} t_{0} t_{1}^{-1} \Rightarrow t_{0} t_{1} t_{0}^{-1} t_{1}=t_{0}^{-1} t_{1}^{-1} t_{0} t_{1}^{-1} t_{1} \Rightarrow t_{0} t_{1} t_{0}^{-1} t_{1}=t_{0}^{-1} t_{1}^{-1} t_{0}$ implies that $N t_{0} t_{1} t_{0}^{-1} t_{1}=N t_{0}^{-1} t_{1}^{-1} t_{0}$. Therefore, $N t_{0} t_{1} t_{0}^{-1} t_{1} N=N t_{0}^{-1} t_{1}^{-1} t_{0} N$. That is, $[\overline{0} \overline{1} 0]=[010 \overline{1} 1]$.
Since $N t_{0} t_{1} t_{0}^{-1} t_{0}^{-1} N=N t_{0} t_{1} t_{0} N$ and $N t_{0} t_{1} t_{0}^{-1} t_{0} N=N t_{0} t_{1} N$ and $N t_{0} t_{1} t_{0}^{-1} t_{1} N=$ $N t_{0}^{-1} t_{1}^{-1} t_{0} N$, we conclude that there is one distinct double coset of the form $N t_{0} t_{1} t_{0}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3,4\}: N t_{0} t_{1} t_{0}^{-1} t_{1}^{-1} N$.
12. We next consider the double coset $N t_{0} t_{1} t_{2} N$.

Let [012] denote the double coset $N t_{0} t_{1} t_{2} N$.
Note that, by relation (6.3), (021) $t_{1}^{-1} t_{2}=t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{ll}0 & 2\end{array}\right) t_{1}^{-1} t_{2} t_{2}=t_{1}^{-1} t_{0} t_{2} \Rightarrow$ (02 1) $t_{1}^{-1} t_{2}^{-1}=t_{1}^{-1} t_{0} t_{2} \Rightarrow t_{1}^{-1}(021) t_{1}^{-1} t_{2}^{-1}=t_{1}^{-1} t_{1}^{-1} t_{0} t_{2}$
$\Rightarrow\left(\begin{array}{lll}0 & 2\end{array}\right)\left(\begin{array}{lll}0 & 1 & 2\end{array} t_{1}^{-1}\left(\begin{array}{lll}(021)\end{array} t_{1}^{-1} t_{2}^{-1}=t_{1} t_{0} t_{2} \Rightarrow\left(t_{1}^{-1}\right)^{(021)} t_{1}^{-1} t_{2}^{-1}=t_{1} t_{0} t_{2}\right.\right.$
$\Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{0}^{-1} t_{1}^{-1} t_{2}^{-1}=t_{1} t_{0} t_{2}$ and, by conjugation, $\left.\left[\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{0}^{-1} t_{1}^{-1} t_{2}^{-1}\right]^{(0} 1\right)$
$=\left[t_{1} t_{0} t_{2}\right]^{(01)} \Rightarrow\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{1}^{-1} t_{0}^{-1} t_{2}^{-1}=t_{0} t_{1} t_{2}$. This implies that $N t_{1}^{-1} t_{0}^{-1} t_{2}^{-1}=N t_{0} t_{1} t_{2}$ and, therefore, $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} N=N t_{0} t_{1} t_{2} N$ Thus, $N t_{0} t_{1} t_{2} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} N$. That is, $[012]=[\overline{0} \overline{1} \overline{2}]$.

Thus, note that $N t_{0} t_{1} t_{2} N=\left\{N t_{0} t_{1} t_{2} n \mid n \in N\right\}=\left\{N n^{-1} t_{0} t_{1} t_{2} n \mid n \in N\right\}=$ $\left\{N\left(t_{0} t_{1} t_{2}\right)^{n} \mid n \in N\right\}=\left\{N t_{i} t_{j} t_{k} \mid i, j, k \in\{0,1,2,3,4\}, i \neq j \neq k\right\}=\left\{N t_{i}^{-1} t_{j}^{-1} t_{k}^{-1} \mid\right.$ $i, j, k \in\{0,1,2,3,4\}, i \neq j \neq k\}=\left\{N\left(t_{0}^{-1} t_{1}^{-1} t_{2}^{-1}\right)^{n} \mid n \in N\right\}=\left\{N n^{-1} t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} n \mid\right.$ $n \in N\}=\left\{N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} n \mid n \in N\right\}=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} N$.

Now, by relation (6.3) and by right and left multiplication, (021) $t_{1}^{-1} t_{2}=t_{1}^{-1} t_{0}$ $\Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1}^{-1} t_{2} t_{2}=t_{1}^{-1} t_{0} t_{2} \Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1}^{-1} t_{2}^{-1}=t_{1}^{-1} t_{0} t_{2} \Rightarrow t_{1}^{-1}\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1}^{-1} t_{2}^{-1}=$ $t_{1}^{-1} t_{1}^{-1} t_{0} t_{2} \Rightarrow(021)(012) t_{1}^{-1}(021) t_{1}^{-1} t_{2}^{-1}=t_{1} t_{0} t_{2} \Rightarrow\left(t_{1}^{-1}\right)^{(021)} t_{1}^{-1} t_{2}^{-1}=t_{1} t_{0} t_{2}$ $\Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{0}^{-1} t_{1}^{-1} t_{2}^{-1}=t_{1} t_{0} t_{2} \Rightarrow t_{0}^{-1} t_{1}^{-1} t_{2}^{-1}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{1} t_{0} t_{2}$. Moreover, by relation (6.1), (0 2) (13) $t_{1} t_{0} t_{3}=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1}$, and so $t_{0}^{-1} t_{1}^{-1} t_{2}^{-1}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{1} t_{0} t_{2}$ and $(02)(13) t_{1} t_{0} t_{3}=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1}$ imply that $\left(\begin{array}{ll}0 & 2\end{array}\right)\left(\begin{array}{ll}1 & 3\end{array}\right) t_{1} t_{0} t_{3}=\left(\begin{array}{ll}0 & 1\end{array}\right) t_{1} t_{0} t_{2}$. Therefore, by conjugation, $\left.\left.\left[\left(\begin{array}{ll}0 & 2\end{array}\right)\left(\begin{array}{ll}1 & 3\end{array}\right) t_{1} t_{0} t_{3}\right]^{(0} 1\right)=\left[\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{1} t_{0} t_{2}\right]^{(1)} 1\right) \Rightarrow\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}0 & 3\end{array}\right) t_{0} t_{1} t_{3}=$ $\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{0} t_{1} t_{2}$. By further conjugation, $\left.\left[\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}0 & 3\end{array}\right) t_{0} t_{1} t_{3}\right]^{(34)}=\left[\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{0} t_{1} t_{2}\right]^{(34)} \Rightarrow$ $(12)(04) t_{0} t_{1} t_{4}=(021) t_{0} t_{1} t_{2}$. Therefore, by relations (6.1) and (6.3),
$(12)(03) t_{0} t_{1} t_{3}=(021) t_{0} t_{1} t_{2}=(12)(04) t_{0} t_{1} t_{4}$.
Thererfore, in terms of our short-hand notation, these relations imply that:

$$
012 \sim 013 \sim 014
$$

Similarly, by conjugation, we have

$$
\begin{array}{lll}
021 \sim 023 \sim 024, & 031 \sim 032 \sim 034, & 041 \sim 042 \sim 043, \\
102 \sim 103 \sim 104, & 120 \sim 123 \sim 124, & 130 \sim 132 \sim 134, \\
140 \sim 142 \sim 143, & 201 \sim 203 \sim 204, & 210 \sim 213 \sim 214, \\
230 \sim 231 \sim 234, & 240 \sim 241 \sim 243, & 301 \sim 302 \sim 304, \\
310 \sim 312 \sim 314, & 320 \sim 321 \sim 324, & 340 \sim 341 \sim 342, \\
401 \sim 402 \sim 403, & 410 \sim 412 \sim 413, & 420 \sim 421 \sim 423, \\
& 430 \sim 431 \sim 432, & 430 \sim 431 \sim 432
\end{array}
$$

Since each of the sixty single cosets has three names, the double coset [012] $=[\overline{0} \overline{1} \overline{2}]$ must have at most twenty distinct single cosets.

Now, $N^{(012)}$ has six orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}, t_{4}\right\}:\{0\},\{1\},\{2,3,4\},\{\overline{0}\},\{\overline{1}\}$, and $\{\overline{2}, \overline{3}, \overline{4}\}$.

Therefore, there are at most six double cosets of the form $N w N$, where w is a word of length four given by $w=t_{0} t_{1} t_{2} t_{i}^{ \pm 1}, i \in\{0,1,2\}: N t_{0} t_{1} t_{2} t_{0} N, N t_{0} t_{1} t_{2} t_{0}^{-1} N$, $N t_{0} t_{1} t_{2} t_{1} N, N t_{0} t_{1} t_{2} t_{1}^{-1} N, N t_{0} t_{1} t_{2} t_{2} N$, and $N t_{0} t_{1} t_{2} t_{2}^{-1} N$.

But note that $N t_{0} t_{1} t_{2} t_{2}^{-1} N=N t_{0} t_{1} e N=N t_{0} t_{1} N$ and, by relation (6.3),
$N t_{0} t_{1} t_{2} t_{2} N=N t_{0} t_{1} t_{2}^{2} N=N t_{0} t_{1} t_{2}^{-1} N=N t_{0}^{-1} t_{1}^{-1} N$.
Moreover, by relation (6.3) and by left and right multiplication, (021) $t_{1}^{-1} t_{2}=t_{1}^{-1} t_{0}$ $\Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1}^{-1} t_{2} t_{0}^{-1}=t_{1}^{-1} t_{0} t_{0}^{-1} \Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1}^{-1} t_{2} t_{0}^{-1}=t_{1}^{-1} \Rightarrow t_{2}^{-1}(021) t_{1}^{-1} t_{2} t_{0}^{-1}=$ $t_{2}^{-1} t_{1}^{-1} \Rightarrow(021)(012) t_{2}^{-1}\left(\begin{array}{lll}0 & 2\end{array}\right) t_{1}^{-1} t_{2} t_{0}^{1}=t_{2}^{-1} t_{1}^{-1} \Rightarrow\left(\begin{array}{ll}0 & 2\end{array}\right)\left(t_{2}^{-1}\right)^{(021)} t_{1}^{-1} t_{2} t_{0}^{-1}=$ $t_{2}^{-1} t_{1}^{-1} \Rightarrow(021) t_{1}^{-1} t_{1}^{-1} t_{2} t_{0}^{-1}=t_{2}^{-1} t_{1}^{-1} \Rightarrow(021) t_{1} t_{2} t_{0}^{-1}=t_{2}^{-1} t_{1}^{-1} \Rightarrow t_{1}(021) t_{1} t_{2} t_{0}^{-1}$ $=t_{1} t_{2}^{-1} t_{1}^{-1} \Rightarrow\left(\begin{array}{lll}0 & 1\end{array}\right)\left(\begin{array}{lll}0 & 1\end{array}\right) t_{1}\left(\begin{array}{lll}0 & 2\end{array}\right) t_{1} t_{2} t_{0}^{-1}=t_{1} t_{2}^{-1} t_{1}^{-1} \Rightarrow\left(\begin{array}{lll}0 & 2\end{array}\right)\left(t_{1}\right)^{(021)} t_{1} t_{2} t_{0}^{-1}=$ $t_{1} t_{2}^{-1} t_{1}^{-1} \Rightarrow\left(\begin{array}{ll}0 & 2\end{array}\right) t_{0} t_{1} t_{2} t_{0}^{-1}=t_{1} t_{2}^{-1} t_{1}^{-1}$. This implies that $N t_{0} t_{1} t_{2} t_{0}^{-1}=N t_{1} t_{2}^{-1} t_{1}^{-1}$ and, therefore, $N t_{0} t_{1} t_{2} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{0}^{-1} N$. That is, $[0 \overline{1} \overline{0}]=[012 \overline{0}]$.

Similarly, by relation (6.3) and by left and right multiplication and conjugation, (021) $t_{1}^{-1} t_{2}=t_{1}^{-1} t_{0} \Rightarrow t_{2}\left(\begin{array}{ll}0 & 2\end{array}\right) t_{1}^{-1} t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{lll}0 & 2\end{array}\right)\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{2}\left(\begin{array}{ll}0 & 2\end{array}\right) t_{1}^{-1} t_{2}=$ $t_{2} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{lll}0 & 2\end{array}\right) t_{2}^{(021)} t_{1}^{-1} t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{ll}0 & 2\end{array}\right) t_{1} t_{1}^{-1} t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{ll}0 & 2\end{array}\right) e t_{2}=$ $t_{2} t_{1}^{-1} t_{0} \Rightarrow(021) t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow(021) t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow(021) t_{2} t_{0}^{-1}=t_{2} t_{1}^{-1} t_{0} t_{0}^{-1} \Rightarrow$ (021) $t_{2} t_{0}^{-1}=t_{2} t_{1}^{-1} e \Rightarrow\left(\begin{array}{ll}0 & 2\end{array}\right) t_{2} t_{0}^{-1}=t_{2} t_{1}^{-1} \Rightarrow(021) t_{2} t_{0}^{-1}=t_{2} t_{1}^{-1} \Rightarrow$ $\left[\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{2} t_{0}^{-1}\right]^{\left(\begin{array}{lll}1 & 2\end{array}\right)}=\left[t_{2} t_{1}^{-1}\right]^{\left(\begin{array}{lll}1 & 2\end{array}\right)} \Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{0} t_{1}^{-1}=t_{0} t_{2}^{-1} \Rightarrow t_{0} t_{1}^{-1}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{2}^{-1} \Rightarrow$ $\left[t_{0} t_{1}^{-1}\right]^{(01)}=\left[\left(\begin{array}{ll}0 & 1\end{array}\right) t_{0} t_{2}^{-1}\right]^{(01)} \Rightarrow t_{1} t_{0}^{-1}=\left(\begin{array}{ll}0 & 2\end{array}\right) t_{1} t_{2}^{-1} \Rightarrow t_{1} t_{0}^{-1} t_{1}^{-1}=\left(\begin{array}{lll}0 & 2\end{array}\right) t_{1} t_{2}^{-1} t_{1}^{-1}$ $\Rightarrow t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}=\left(\begin{array}{ll}0 & 2\end{array}\right) t_{1} t_{2}^{-1} t_{1}^{-1} t_{0}$, and also by relation (6.3), (021) $t_{1}^{-1} t_{2}=$ $t_{1}^{-1} t_{0} \Rightarrow t_{2}^{-1}\left(\begin{array}{ll}0 & 2\end{array}\right) t_{1}^{-1} t_{2}=t_{2}^{-1} t_{1}^{-1} t_{0} \Rightarrow(021)(012) t_{2}^{-1}\left(\begin{array}{ll}0 & 2\end{array}\right) t_{1}^{-1} t_{2}=t_{2}^{-1} t_{1}^{-1} t_{0} \Rightarrow$ $(021)\left(t_{2}^{-1}\right)^{(021)} t_{1}^{-1} t_{2}=t_{2}^{-1} t_{1}^{-1} t_{0} \Rightarrow(021) t_{1} t_{2}=t_{2}^{-1} t_{1}^{-1} t_{0} \Rightarrow t_{1}(021) t_{1} t_{2}=$ $t_{1} t_{2}^{-1} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{llll}0 & 2 & 1\end{array}\right)\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{1}\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1} t_{2}=t_{1} t_{2}^{-1} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1}^{(021)} t_{1} t_{2}=$ $t_{1} t_{2}^{-1} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{ll}0 & 2\end{array}\right) t_{0} t_{1} t_{2}=t_{1} t_{2}^{-1} t_{1}^{-1} t_{0}$. Now, $t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}=\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1} t_{2}^{-1} t_{1}^{-1} t_{0}$ and (0 21 1) $t_{0} t_{1} t_{2}=t_{1} t_{2}^{-1} t_{1}^{-1} t_{0}$ imply that $t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{1} t_{2} \Rightarrow t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}=$ (0 12 2) $t_{0} t_{1} t_{2} t_{0}$. This implies that $N t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}=N t_{0} t_{1} t_{2} t_{0}$ and, therefore, $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} N=N t_{0} t_{1} t_{2} t_{0} N$. That is, $[0 \overline{1} \overline{0} \overline{1}]=[0120]$.

Similarly, by relation (6.3) and by left and right multiplication and conjugation, $t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}=(021) t_{1} t_{2}^{-1} t_{1}^{-1} t_{0}$ and (021) $t_{0} t_{1} t_{2}=t_{1} t_{2}^{-1} t_{1}^{-1} t_{0}$ imply that $t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}=$
(0112) $t_{0} t_{1} t_{2} \Rightarrow t_{1} t_{0}^{-1} t_{1}^{-1} t_{0} t_{1}^{-1}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{1} t_{2} t_{1}^{-1}$. Now, by relation (6.2), $t_{0}^{-1} t_{1} t_{0}^{-1}=$ $t_{1}^{-1} t_{0} t_{1}^{-1} \Rightarrow t_{0} t_{1} t_{0}^{-1}=t_{0}^{-1} t_{1}^{-1} t_{0} t_{1}^{-1} \Rightarrow t_{1} t_{0} t_{1} t_{0}^{-1}=t_{1} t_{0}^{-1} t_{1}^{-1} t_{0} t_{1}^{-1}$. Therefore, $t_{1} t_{0}^{-1} t_{1}^{-1} t_{0} t_{1}^{-1}=\left(\begin{array}{ll}0 & 1\end{array}\right) t_{0} t_{1} t_{2} t_{1}^{-1}$ and $t_{1} t_{0} t_{1} t_{0}^{-1}=t_{1} t_{0}^{-1} t_{1}^{-1} t_{0} t_{1}^{-1}$ imply that $t_{1} t_{0} t_{1} t_{0}^{-1}$ $=t_{1} t_{0}^{-1} t_{1}^{-1} t_{0} t_{1}^{-1}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{1} t_{2} t_{1}^{-1}$ and this implies, in turn, that $N t_{1} t_{0} t_{1} t_{0}^{-1}=$ $N t_{0} t_{1} t_{2} t_{1}^{-1}$. Therefore, $N t_{0} t_{1} t_{0} t_{1}^{-1} N=N t_{0} t_{1} t_{2} t_{1}^{-1} N$. That is, $[010 \overline{1}]=[012 \overline{1}]$.

Finally, by relation (6.3) and by conjugation and right and left multiplication, $\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1}^{-1} t_{2}=t_{1}^{-1} t_{0} \Rightarrow\left[\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1}^{-1} t_{2}\right]^{\left(\begin{array}{ll}1\end{array}\right)}=\left[t_{1}^{-1} t_{0} r b r a c k ~\left(\begin{array}{ll}(1)\end{array} \Rightarrow\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}^{-1} t_{2}=\right.\right.$ $t_{0}^{-1} t_{1} \Rightarrow t_{0}^{-1}\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}^{-1} t_{2}=t_{0}^{-1} t_{0}^{-1} t_{1} \Rightarrow\left(\begin{array}{lll}0 & 1 & 2\end{array}\right)\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{0}^{-1}\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}^{-1} t_{2}=t_{0} t_{1}$ $\Rightarrow\left(\begin{array}{lll}0 & 1 & 2\end{array}\right)\left(t_{0}^{-1}\right)^{\left(\begin{array}{lll}1 & 2\end{array} t_{0}^{-1} t_{2}=t_{0} t_{1} \Rightarrow\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{1}^{-1} t_{0}^{-1} t_{2}=t_{0} t_{1} \Rightarrow\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{1}^{-1} t_{0}^{-1} t_{2} t_{2}=\right.}$ $t_{0} t_{1} t_{2} \Rightarrow\left(\begin{array}{ll}0 & 1\end{array} 2\right) t_{1}^{-1} t_{0}^{-1} t_{2}^{-1}=t_{0} t_{1} t_{2} \Rightarrow\left(\begin{array}{ll}0 & 1\end{array} 2\right) t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1}=t_{0} t_{1} t_{2} t_{1}$, and, also by relation (6.3) and conjugation and left and right multiplication, (02 1) $t_{1}^{-1} t_{2}=$ $t_{1}^{-1} t_{0} \Rightarrow t_{2}\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1}^{-1} t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right)\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{2}\left(\begin{array}{lll}0 & 2\end{array}\right) t_{1}^{-1} t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow$ (021) $t_{2}^{(021)} t_{1}^{-1} t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow(021) t_{1} t_{1}^{-1} t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow(021) e t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow$ $\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{2} t_{0}^{-1}=t_{2} t_{1}^{-1} t_{0} t_{0}^{-1} \Rightarrow$ (021) $\left.\left.\left.t_{2} t_{0}^{-1}=t_{2} t_{1}^{-1} e \Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{2} t_{0}^{-1}=t_{2} t_{1}^{-1} \Rightarrow\left[\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{2} t_{0}^{-1}\right]^{(1} 12\right) ~ 2\right) ~=~\left[\begin{array}{ll}t_{2} t_{1}^{-1}\end{array}\right]^{\left(\begin{array}{lll}1 & 1\end{array}\right)}$ $\Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{0} t_{1}^{-1}=t_{0} t_{2}^{-1} \Rightarrow t_{0} t_{1}^{-1}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{2}^{-1} \Rightarrow t_{2} t_{0} t_{1}^{-1}=t_{2}\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{2}^{-1} \Rightarrow$ $t_{2} t_{0} t_{1}^{-1}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right)\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{2}\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{2}^{-1} \Rightarrow t_{2} t_{0} t_{1}^{-1}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{2}^{(012)} t_{0} t_{2}^{-1} \Rightarrow t_{2} t_{0} t_{1}^{-1}=$ (012) $\begin{aligned} & 0\end{aligned} t_{0} t_{2}^{-1} \Rightarrow t_{2} t_{0} t_{1}^{-1}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}^{-1} t_{2}^{-1} \Rightarrow t_{2} t_{0} t_{1}^{-1} t_{1}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}^{-1} t_{2}^{-1} t_{1} \Rightarrow t_{2} t_{0}=$ (012) $t_{0}^{-1} t_{2}^{-1} t_{1} \Rightarrow t_{0}^{-1} t_{2} t_{0}=t_{0}^{-1}\left(\begin{array}{ll}0 & 1\end{array}\right) t_{0}^{-1} t_{2}^{-1} t_{1} \Rightarrow t_{0}^{-1} t_{2} t_{0}$
$\left.\left.=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right)\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{0}^{-1}\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}^{-1} t_{2}^{-1} t_{1} \Rightarrow t_{0}^{-1} t_{2} t_{0}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right)\left(t_{0}^{-1}\right)^{(0} 12\right) ~ 2\right) ~ t_{0}^{-1} t_{2}^{-1} t_{1} \Rightarrow$ $t_{0}^{-1} t_{2} t_{0}=\left(\begin{array}{ll}0 & 1\end{array} 2\right) t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1}$. Now, (0122$) t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1}=t_{0} t_{1} t_{2} t_{1}$ and $t_{0}^{-1} t_{2} t_{0}=$ $\left(\begin{array}{ll}0 & 1\end{array}\right) t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1}$ imply that $t_{0}^{-1} t_{2} t_{0}=(012) t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1}=t_{0} t_{1} t_{2} t_{1} \Rightarrow t_{0}^{-1} t_{2} t_{0}=$ $t_{0} t_{1} t_{2} t_{1}$ which implies that $N t_{0}^{-1} t_{2} t_{0}=N t_{0} t_{1} t_{2} t_{1}$. Therefore, $N t_{0} t_{1} t_{2} t_{1} N$ $=N t_{0}^{-1} t_{1} t_{0} N$. That is, $[\overline{0} 10]=[0121]$.
Since $N t_{0} t_{1} t_{2} t_{2} N=N t_{0} t_{1} t_{2}^{2} N=N t_{0} t_{1} t_{2}^{-1} N=N t_{0}^{-1} t_{1}^{-1} N$ and
$N t_{0} t_{1} t_{2} t_{2}^{-1} N=N t_{0} t_{1} N$ and $N t_{0} t_{1} t_{2} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{0}^{-1} N$ and
$N t_{0} t_{1} t_{2} t_{0} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} N$ and $N t_{0} t_{1} t_{2} t_{1} N=N t_{0}^{-1} t_{1} t_{0} N$ and
$N t_{0} t_{1} t_{2} t_{1}^{-1} N=N t_{0} t_{1} t_{0} t_{1}^{-1} N$, we need not consider additional double cosets of the form $N t_{0} t_{1} t_{2} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3,4\}$.
13. We next consider the double coset $N t_{0}^{-1} t_{1}^{-1} t_{0} N$.

Let $[\overline{0} \overline{1} 0]$ denote the double coset $N t_{0}^{-1} t_{1}^{-1} t_{0} N$.

Now, by relation (6.3), and by left multiplication, (021) $t_{1}^{-1} t_{2}=t_{1}^{-1} t_{0} \Rightarrow$ $t_{0}^{-1}(021) t_{1}^{-1} t_{2}=t_{0}^{-1} t_{1}^{-1} t_{0} \Rightarrow(021)\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}^{-1}\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1}^{-1} t_{2}=t_{0}^{-1} t_{1}^{-1} t_{0} \Rightarrow$ $(021)\left(t_{0}^{-1}\right)^{(021)} t_{1}^{-1} t_{2}=t_{0}^{-1} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{ll}0 & 2\end{array}\right) t_{2}^{-1} t_{1}^{-1} t_{2}=t_{0}^{-1} t_{1}^{-1} t_{0}$. Note further that $\left.\left[\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{2}^{-1} t_{1}^{-1} t_{2}\right]^{(23)}=\left[t_{0}^{-1} t_{1}^{-1} t_{0}\right]^{(23)} \Rightarrow\left(\begin{array}{lll}0 & 3 & 1\end{array}\right) t_{3}^{-1} t_{1}^{-1} t_{3}=t_{1}^{-1} t_{1}^{-1} t_{0}$ and $\left.\left[\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{2}^{-1} t_{1}^{-1} t_{2}\right]^{(24)}=\left[t_{0}^{-1} t_{1}^{-1} t_{0}\right]^{(24)} \Rightarrow\left(\begin{array}{lll}0 & 4 & 1\end{array}\right) t_{4}^{-1} t_{1}^{-1} t_{4}=t_{1}^{-1} t_{1}^{-1} t_{0}$. Thus, by relation (6.3), (0 211$) t_{2}^{-1} t_{1}^{-1} t_{2}=t_{0}^{-1} t_{1}^{-1} t_{0}=\left(\begin{array}{lll}0 & 3 & 1\end{array}\right) t_{3}^{-1} t_{1}^{-1} t_{3}=\left(\begin{array}{lll}0 & 4 & 1\end{array}\right) t_{4}^{-1} t_{1}^{-1} t_{4}$. These relations imply that:

$$
\overline{0} \overline{1} 0 \sim \overline{2} \overline{1} 2 \sim \overline{3} \overline{1} 3 \sim \overline{4} \overline{1} 4
$$

Similarly, by conjugation, we find that

$$
\begin{array}{ll}
\overline{1} \overline{0} 1 \sim \overline{2} \overline{0} 2 \sim \overline{3} \overline{0} 3 \sim \overline{4} 0 \overline{0} 4, & \overline{0} \overline{2} 0 \sim \overline{1} \overline{2} 1 \sim \overline{3} \overline{2} 3 \sim \overline{4} \overline{2} 4, \\
\overline{0} \overline{3} 0 \sim \overline{1} \overline{3} 1 \sim \overline{2} \overline{3} 2 \sim \overline{4} \overline{3} 4, & \overline{0} \overline{4} 0 \sim \overline{1} \overline{4} 1 \sim \overline{2} \overline{4} 2 \sim \overline{3} \overline{4} 3
\end{array}
$$

Since each of the twenty single cosets has four names, the double coset [$\overline{0} \overline{1} 0]$ must have at most five distinct single cosets.
Now, $N^{(\overline{0} \overline{1} 0)}$ has four orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}, t_{4}\right\}:\{0\},\{1,2,3,4\},\{\overline{0}\}$, and $\{\overline{1}, \overline{2}, \overline{3}, \overline{4}\}$.

Therefore, there are at most four double cosets of the form $N w N$, where w is a word of length four given by $w=t_{0}^{-1} t_{1}^{-1} t_{0} t_{i}^{ \pm 1}, i \in\{0,1\}: N t_{0}^{-1} t_{1}^{-1} t_{0} t_{0} N, N t_{0}^{-1} t_{1}^{-1} t_{0} t_{0}^{-1} N$, $N t_{0}^{-1} t_{1}^{-1} t_{0} t_{1} N$, and $N t_{0}^{-1} t_{1}^{-1} t_{0} t_{1}^{-1} N$.
But note that $N t_{0}^{-1} t_{1}^{-1} t_{0} t_{0} N=N t_{0}^{-1} t_{1}^{-1} t_{0}^{2} N=N t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} N$ and $N t_{0}^{-1} t_{1}^{-1} t_{0} t_{0}^{-1} N=N t_{0}^{-1} t_{1}^{-1} e N=N t_{0}^{-1} t_{1}^{-1} N$.
Moreover, by relation (6.2), $t_{0}^{-1} t_{1} t_{0}^{-1}=t_{1}^{-1} t_{0} t_{1}^{-1} \Rightarrow t_{0} t_{1} t_{0}^{-1}=t_{0}^{-1} t_{1}^{-1} t_{0} t_{1}^{-1}$ implies that $N t_{0}^{-1} t_{1}^{-1} t_{0} t_{1}^{-1}=N t_{0} t_{1} t_{0}^{-1}$. Therefore, $N t_{0}^{-1} t_{1}^{-1} t_{0} t_{1}^{-1} N=N t_{0} t_{1} t_{0}^{-1} N$. That is, $[01 \overline{0}]=[0 \overline{0} 10 \overline{1}]$.
Similarly, by relation (6.2), $t_{0}^{-1} t_{1} t_{0}^{-1}=t_{1}^{-1} t_{0} t_{1}^{-1} \Rightarrow t_{0} t_{1} t_{0}^{-1}=t_{0}^{-1} t_{1}^{-1} t_{0} t_{1}^{-1}$
$\Rightarrow t_{0} t_{1} t_{0}^{-1} t_{1}^{-1}=t_{0}^{-1} t_{1}^{-1} t_{0} t_{1}$ implies that $N t_{0}^{-1} t_{1}^{-1} t_{0} t_{1}=N t_{0} t_{1} t_{0}^{-1} t_{1}^{-1}$. Therefore, $N t_{0}^{-1} t_{1}^{-1} t_{0} t_{1} N=N t_{0} t_{1} t_{0}^{-1} t_{1}^{-1} N$. That is, $[01 \overline{0} \overline{1}]=[\overline{0} \overline{1} 01]$.
Since $N t_{0}^{-1} t_{1}^{-1} t_{0} t_{0} N=N t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} N$ and $N t_{0}^{-1} t_{1}^{-1} t_{0} t_{0}^{-1} N=N t_{0}^{-1} t_{1}^{-1} N$ and $N t_{0}^{-1} t_{1}^{-1} t_{0} t_{1}^{-1} N=N t_{0} t_{1} t_{0}^{-1} N$ and $N t_{0}^{-1} t_{1}^{-1} t_{0} t_{1} N=N t_{0} t_{1} t_{0}^{-1} t_{1}^{-1} N$, we need not
consider additional double cosets of the form $N t_{0}^{-1} t_{1}^{-1} t_{0} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3,4\}$.
14. We next consider the double coset $N t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} N$.

Let [$\overline{0} \overline{1} \overline{0}]$ denote the double coset $N t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} N$.
Now, by relation (6.3) and by left and right multiplication and conjugation,
(021) $t_{1}^{-1} t_{2}=t_{1}^{-1} t_{0} \Rightarrow t_{2}\left(\begin{array}{ll}0 & 21)\end{array} t_{1}^{-1} t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right)\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{2}\left(\begin{array}{ll}0 & 2\end{array}\right) t_{1}^{-1} t_{2}=\right.$ $t_{2} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{lll}0 & 2\end{array}\right) t_{2}^{(021)} t_{1}^{-1} t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow(0.21) t_{1} t_{1}^{-1} t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow(021) e t_{2}=$ $t_{2} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{lll}0 & 2\end{array}\right) t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{ll}0 & 2\end{array}\right) t_{2} t_{0}^{-1}=t_{2} t_{1}^{-1} t_{0} t_{0}^{-1} \Rightarrow$ (021) $t_{2} t_{0}^{-1}=t_{2} t_{1}^{-1} e \Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{2} t_{0}^{-1}=t_{2} t_{1}^{-1} \Rightarrow\left(\begin{array}{ll}0 & 2\end{array}\right) t_{2} t_{0}^{-1}=t_{2} t_{1}^{-1} \Rightarrow$
$\left.\left.\left.\left[\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{2} t_{0}^{-1}\right]^{\left(\begin{array}{lll}1 & 2\end{array}\right)}=\left[t_{2} t_{1}^{-1}\right]^{(0} 12\right) 2\right) \Rightarrow\left(\begin{array}{ll}0 & 2\end{array}\right) t_{0} t_{1}^{-1}=t_{0} t_{2}^{-1} \Rightarrow t_{0} t_{1}^{-1}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{2}^{-1} \Rightarrow$ $\left.\left[t_{0} t_{1}^{-1}\right]^{(01)}=\left[\begin{array}{lll}(0 & 1 & 2\end{array}\right) t_{0} t_{2}^{-1}\right]^{(01)} \Rightarrow t_{1} t_{0}^{-1}=\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1} t_{2}^{-1} \Rightarrow t_{1} t_{0}^{-1} t_{1}^{-1}=\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1} t_{2}^{-1} t_{1}^{-1}$ $\Rightarrow t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}=\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1} t_{2}^{-1} t_{1}^{-1} t_{0}$. Also by relation (6.3) , (021) $21-1 t_{2}=t_{1}^{-1} t_{0} \Rightarrow$ $t_{2}^{-1}(021) t_{1}^{-1} t_{2}=t_{2}^{-1} t_{1}^{-1} t_{0} \Rightarrow(021)(012) t_{2}^{-1}(021) t_{1}^{-1} t_{2}=t_{2}^{-1} t_{1}^{-1} t_{0} \Rightarrow$ $(021)\left(t_{2}^{-1}\right)^{(021)} t_{1}^{-1} t_{2}=t_{2}^{-1} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{ll}0 & 2\end{array}\right) t_{1} t_{2}=t_{2}^{-1} t_{1}^{-1} t_{0} \Rightarrow t_{1}\left(\begin{array}{ll}(21)\end{array}\right) t_{1} t_{2}=$ $t_{1} t_{2}^{-1} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{llll}0 & 2 & 1\end{array}\right)\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{1}\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1} t_{2}=t_{1} t_{2}^{-1} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1}^{(021)} t_{1} t_{2}=$ $t_{1} t_{2}^{-1} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{lll}0 & 2\end{array}\right) t_{0} t_{1} t_{2}=t_{1} t_{2}^{-1} t_{1}^{-1} t_{0}$. Now, $t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}=\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1} t_{2}^{-1} t_{1}^{-1} t_{0}$ and ($\begin{array}{ll}0 & 2\end{array} 1$) $t_{0} t_{1} t_{2}=t_{1} t_{2}^{-1} t_{1}^{-1} t_{0}$ imply that $t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{1} t_{2}$. Moreover, by relation (6.3), $t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{1} t_{2} \Rightarrow t_{1} t_{0}^{-1} t_{1}^{-1} t_{0} t_{0}=\left(\begin{array}{ll}0 & 1\end{array} 2\right) t_{0} t_{1} t_{2} t_{0} \Rightarrow$ $t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}=\left(\begin{array}{ll}0 & 1\end{array} 2\right) t_{0} t_{1} t_{2} t_{0}$, and $t_{1} t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}=t_{1}\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{1} t_{2} \Rightarrow t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}=$ $(012)(021) t_{1}\left(\begin{array}{ll}0 & 1\end{array} 2\right) t_{0} t_{1} t_{2} \Rightarrow t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{1}^{(012)} t_{0} t_{1} t_{2} \Rightarrow t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}=$ $\left.\left.\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{2} t_{0} t_{1} t_{2} \Rightarrow\left[t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}\right]^{(0} 12\right)=\left[\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{2} t_{0} t_{1} t_{2}\right]^{(01} 12\right) \Rightarrow t_{2}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1}=$ (012) $t_{0} t_{1} t_{2} t_{0}$. Therefore, $t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}=\left(\begin{array}{ll}0 & 1\end{array}\right) t_{0} t_{1} t_{2} t_{0}$ and $t_{2}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1}=$
(0 1 2 2) $t_{0} t_{1} t_{2} t_{0}$ imply that $t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}=\left(\begin{array}{ll}0 & 1\end{array}\right) t_{0} t_{1} t_{2} t_{0}=t_{2}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1}$. Now, by conjugation, we have that $\left[t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}\right]^{(03)}=\left[t_{2}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1}\right]^{(03)} \Rightarrow t_{1} t_{3}^{-1} t_{1}^{-1} t_{3}^{-1}=$ $t_{2}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1}$ and $\left[t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}\right]^{(04)}=\left[t_{2}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1}\right]^{(04)} \Rightarrow t_{1} t_{4}^{-1} t_{1}^{-1} t_{4}^{-1}=t_{2}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1}$ and so $t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}=t_{2}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1}=t_{1} t_{3}^{-1} t_{1}^{-1} t_{3}^{-1}=t_{1} t_{4}^{-1} t_{1}^{-1} t_{4}^{-1}$. Finally, $t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}$ $=t_{2}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1}=t_{1} t_{3}^{-1} t_{1}^{-1} t_{3}^{-1}=t_{1} t_{4}^{-1} t_{1}^{-1} t_{4}^{-1}$ and $t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{1} t_{2} t_{0}=$ $t_{2}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1}$ imply that $t_{1} t_{3}^{-1} t_{1}^{-1} t_{3}^{-1}=\left(\begin{array}{ll}0 & 1\end{array}\right) t_{0} t_{1} t_{2} t_{0}$ and so, by conjugation, $\left.\left[t_{1} t_{3}^{-1} t_{1}^{-1} t_{3}^{-1}\right]^{(23)}=\left[\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{1} t_{2} t_{0}\right]^{(23)} \Rightarrow t_{1} t_{2}^{-1} t_{1}^{-1} t_{2}^{-1}=\left(\begin{array}{lll}0 & 1 & 3\end{array}\right) t_{0} t_{1} t_{3} t_{0} \Rightarrow$ (031) $\begin{aligned} & 0\end{aligned} t_{2}^{-1} t_{1}^{-1} t_{2}^{-1}=\left(\begin{array}{lll}0 & 3 & 1\end{array}\right)\left(\begin{array}{lll}0 & 1 & 3\end{array}\right) t_{0} t_{1} t_{3} t_{0} \Rightarrow\left(\begin{array}{lll}0 & 3 & 1\end{array}\right) t_{1} t_{2}^{-1} t_{1}^{-1} t_{2}^{-1}=t_{0} t_{1} t_{3} t_{0} \Rightarrow$ $(032)(031) t_{1} t_{2}^{-1} t_{1}^{-1} t_{2}^{-1}=(032) t_{0} t_{1} t_{3} t_{0} \Rightarrow(02)(13) t_{1} t_{2}^{-1} t_{1}^{-1} t_{2}^{-1}=(032) t_{0} t_{1} t_{3} t_{0}$. Now, by relation (6.3) and by right and left multiplication, (021) $t_{1}^{-1} t_{2}=t_{1}^{-1} t_{0} \Rightarrow$
(021) $t_{1}^{-1} t_{2} t_{2}=t_{1}^{-1} t_{0} t_{2} \Rightarrow(021) t_{1}^{-1} t_{2}^{-1}=t_{1}^{-1} t_{0} t_{2} \Rightarrow t_{1}^{-1}(021) t_{1}^{-1} t_{2}^{-1}=t_{1}^{-1} t_{1}^{-1} t_{0} t_{2}$ $\Rightarrow(021)(012) t_{1}^{-1}(021) t_{1}^{-1} t_{2}^{-1}=t_{1} t_{0} t_{2} \Rightarrow\left(t_{1}^{-1}\right)^{(021)} t_{1}^{-1} t_{2}^{-1}=t_{1} t_{0} t_{2}$
$\Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{0}^{-1} t_{1}^{-1} t_{2}^{-1}=t_{1} t_{0} t_{2} \Rightarrow t_{0}^{-1} t_{1}^{-1} t_{2}^{-1}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{1} t_{0} t_{2}$. By relation (6.1) , (02) (13) $t_{1} t_{0} t_{3}=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1}$, and so $t_{0}^{-1} t_{1}^{-1} t_{2}^{-1}=\left(\begin{array}{ll}0 & 1\end{array}\right) t_{1} t_{0} t_{2}$ and $(02)(13) t_{1} t_{0} t_{3}=$ $t_{0}^{-1} t_{1}^{-1} t_{2}^{-1}$ imply that $(02)(13) t_{1} t_{0} t_{3}=\left(\begin{array}{ll}0 & 1\end{array}\right) t_{1} t_{0} t_{2}$. Therefore, by conjugation and right multiplication, $\left[\left(\begin{array}{ll}0 & 2\end{array}\right)\left(\begin{array}{ll}1 & 3\end{array}\right) t_{1} t_{0} t_{3}\right]^{(01)}=\left[\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{1} t_{0} t_{2}\right]^{(01)} \Rightarrow\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}0 & 3\end{array}\right) t_{0} t_{1} t_{3}=$ (02 1) $t_{0} t_{1} t_{2} \Rightarrow\left(\begin{array}{ll}1 & 2\end{array}\right)(03) t_{0} t_{1} t_{3} t_{0}=\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{0} t_{1} t_{2} t_{0} \Rightarrow\left(\begin{array}{ll}0 & 2\end{array}\right)\left(\begin{array}{ll}1 & 2\end{array}\right)(03) t_{0} t_{1} t_{3} t_{0}=$ $(021)(021) t_{0} t_{1} t_{2} t_{0} \Rightarrow\left(\begin{array}{ll}0 & 3\end{array}\right) t_{0} t_{1} t_{3} t_{0}=\left(\begin{array}{ll}0 & 1\end{array}\right) t_{0} t_{1} t_{2} t_{0}$. Therefore,
$\left(\begin{array}{ll}0 & 2\end{array}\right)\left(\begin{array}{ll}1 & 3\end{array}\right) t_{1} t_{2}^{-1} t_{1}^{-1} t_{2}^{-1}=\left(\begin{array}{lll}0 & 3 & 2\end{array}\right) t_{0} t_{1} t_{3} t_{0}$ and $\left(\begin{array}{lll}0 & 3 & 2\end{array}\right) t_{0} t_{1} t_{3} t_{0}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{1} t_{2} t_{0} \mathrm{im}-$
 (012) $t_{0} t_{1} t_{2} t_{0}$ and $t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{1} t_{2} t_{0}=t_{2}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1}=t_{1} t_{3}^{-1} t_{1}^{-1} t_{3}^{-1}=$ $t_{1} t_{4}^{-1} t_{1}^{-1} t_{4}^{-1}$ imply that $t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}=(02)(13) t_{1} t_{2}^{-1} t_{1}^{-1} t_{2}^{-1}=t_{1} t_{3}^{-1} t_{1}^{-1} t_{3}^{-1}=$
$t_{1} t_{4}^{-1} t_{1}^{-1} t_{4}^{-1}$. Therefore, $t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1}=(02)(13) t_{1} t_{2}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1}^{-1}=t_{1} t_{3}^{-1} t_{1}^{-1} t_{3}^{-1} t_{1}^{-1}$
$=t_{1} t_{4}^{-1} t_{1}^{-1} t_{4}^{-1} t_{1}^{-1}$. Now, $t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}=t_{2}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} \Rightarrow t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1}=$
$t_{2}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} t_{1}^{-1} \Rightarrow t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1}=t_{2}^{-1} t_{1}^{-1} t_{2}^{-1}$ and so, by conjugation,
$\left[t_{2}^{-1} t_{1}^{-1} t_{2}^{-1}\right]^{(02)}=\left[t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1}\right]^{(02)} \Rightarrow t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}=t_{1} t_{2}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1}^{-1}$.
Since $t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1}=(02)(13) t_{1} t_{2}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1}^{-1}$, we have that (02)(13) $t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}$ $=\left(\begin{array}{ll}0 & 2\end{array}\right)\binom{1}{3} t_{1} t_{2}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1}^{-1}=t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1}=t_{2}^{-1} t_{1}^{-1} t_{2}^{-1}$. Similarly, by conjugation, $\left[t_{2}^{-1} t_{1}^{-1} t_{2}^{-1}\right]^{(23)}=\left[t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1}\right]^{(23)} \Rightarrow t_{3}^{-1} t_{1}^{-1} t_{3}^{-1}=t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1}$. Since $t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1}=t_{2}^{-1} t_{1}^{-1} t_{2}^{-1}$, we have that $t_{3}^{-1} t_{1}^{-1} t_{3}^{-1}=t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1}=t_{2}^{-1} t_{1}^{-1} t_{2}^{-1}$. Finally, by conjugation, $\left[t_{2}^{-1} t_{1}^{-1} t_{2}^{-1}\right]^{(24)}=\left[t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1}\right]^{(24)} \Rightarrow t_{4}^{-1} t_{1}^{-1} t_{4}^{-1}$ $=t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1}$. Since $t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1}=t_{2}^{-1} t_{1}^{-1} t_{2}^{-1}$, we have that $t_{4}^{-1} t_{1}^{-1} t_{4}^{-1}=$ $t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1}=t_{2}^{-1} t_{1}^{-1} t_{2}^{-1}$. By further conjugation, $\left[\left(\begin{array}{ll}1 & 2) \\ (03) & 3\end{array} t_{0} t_{1} t_{3}\right]^{(34)}=\right.$ $\left[\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{0} t_{1} t_{2}\right]^{(34)} \Rightarrow(12)(04) t_{0} t_{1} t_{4}=\left(\begin{array}{ll}0 & 2\end{array}\right) t_{0} t_{1} t_{2}$. Therefore, by relations (6.1) and (6.3), (12) (0 3) $t_{0} t_{1} t_{3}=\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{0} t_{1} t_{2}$ That is, by relations (6.1) and (6.3), (02)(13) $t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}=t_{2}^{-1} t_{1}^{-1} t_{2}^{-1}=t_{3}^{-1} t_{1}^{-1} t_{3}^{-1}=t_{4}^{-1} t_{1}^{-1} t_{4}^{-1}$. These relations imply that:

$$
\overline{0} \overline{1} \overline{0} \sim \overline{2} \overline{1} \overline{2} \sim \overline{3} \overline{1} \overline{3} \sim \overline{4} \overline{1} \overline{4}
$$

Similarly, by conjugation, we find that

$$
\begin{array}{ll}
\overline{1} \overline{1} \overline{1} \sim \overline{2} \overline{2} \overline{2} \sim \overline{3} \overline{0} \overline{3} \sim \overline{4} \overline{0} \overline{4}, & \overline{0} \overline{2} \overline{0} \sim \overline{1} \overline{2} \overline{1} \sim \overline{3} \overline{2} \overline{3} \sim \overline{4} \overline{2} \overline{4}, \\
\overline{0} \overline{3} \overline{0} \sim \overline{1} \overline{3} \overline{1} \sim \overline{2} \overline{3} \overline{2} \sim \overline{4} \overline{3} \overline{4}, & \overline{0} \overline{4} \overline{0} \sim \overline{1} \overline{4} \overline{1} \sim \overline{2} \overline{4} \overline{2} \sim \overline{3} \overline{4} \overline{3}
\end{array}
$$

Since each of the twenty single cosets has four names, the double coset [$\overline{0} \overline{1} \overline{0}]$ must have at most five distinct single cosets.

Now, $N^{(\overline{\overline{1}} \overline{0})}$ has four orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}, t_{4}\right\}:\{0\},\{1,2,3,4\},\{\overline{0}\}$, and $\{\overline{1}, \overline{2}, \overline{3}, \overline{4}\}$.

Therefore, there are at most four double cosets of the form $N w N$, where w is a word of length four given by $w=t_{0}^{-1} t_{1}^{-1} t_{0} t_{i}^{ \pm 1}, i \in\{0,1\}$: $N t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{0} N$, $N t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{0}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1} N$, and $N t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} N$.
But note that $N t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{0}^{-1} N=N t_{0}^{-1} t_{1}^{-1}\left(t_{0}^{-1}\right)^{2} N=N t_{0}^{-1} t_{1}^{-1} t_{0} N$ and note further that $N t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{0} N=N t_{0}^{-1} t_{1}^{-1} e N=N t_{0}^{-1} t_{1}^{-1} N$.
Moreover, by relation (6.3) and by left and right multiplication and conjugation, (021) $\begin{aligned} & 0\end{aligned} t_{1}^{-1} t_{2}=t_{1}^{-1} t_{0} \Rightarrow t_{2}\left(\begin{array}{lll}0 & 2\end{array}\right) t_{1}^{-1} t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{llll}0 & 2 & 1\end{array}\right)\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{2}\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1}^{-1} t_{2}=$ $t_{2} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{lll}0 & 2\end{array}\right) t_{2}^{(021)} t_{1}^{-1} t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{ll}0 & 2\end{array}\right) t_{1} t_{1}^{-1} t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{ll}0 & 2\end{array}\right) e t_{2}=$ $t_{2} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{ll}0 & 2\end{array}\right) t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{ll}0 & 2\end{array}\right) t_{2} t_{0}^{-1}=t_{2} t_{1}^{-1} t_{0} t_{0}^{-1} \Rightarrow$ (02 1) $t_{2} t_{0}^{-1}=t_{2} t_{1}^{-1} e \Rightarrow\left(\begin{array}{ll}0 & 2\end{array}\right) t_{2} t_{0}^{-1}=t_{2} t_{1}^{-1} \Rightarrow(021) t_{2} t_{0}^{-1}=t_{2} t_{1}^{-1} \Rightarrow$ $\left.\left[\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{2} t_{0}^{-1}\right]^{(0} 12\right)=\left[t_{2} t_{1}^{-1}\right]^{\left(\begin{array}{lll}0 & 1 & 2\end{array}\right)} \Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{0} t_{1}^{-1}=t_{0} t_{2}^{-1} \Rightarrow t_{0} t_{1}^{-1}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{2}^{-1} \Rightarrow$ $\left.\left[t_{0} t_{1}^{-1}\right]^{(01)}=\left[\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{2}^{-1}\right]^{(01)} \Rightarrow t_{1} t_{0}^{-1}=\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1} t_{2}^{-1} \Rightarrow t_{1} t_{0}^{-1} t_{1}^{-1}=\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1} t_{2}^{-1} t_{1}^{-1}$ $\Rightarrow t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}=\left(\begin{array}{ll}0 & 2\end{array}\right) t_{1} t_{2}^{-1} t_{1}^{-1} t_{0}$. Also by relation (6.3), (021) $\begin{aligned} & \text { (} \\ & 1\end{aligned} t_{2}=t_{1}^{-1} t_{0} \Rightarrow$ $t_{2}^{-1}(021) t_{1}^{-1} t_{2}=t_{2}^{-1} t_{1}^{-1} t_{0} \Rightarrow(021)(012) t_{2}^{-1}(021) t_{1}^{-1} t_{2}=t_{2}^{-1} t_{1}^{-1} t_{0} \Rightarrow$ $(021)\left(t_{2}^{-1}\right)^{(021)} t_{1}^{-1} t_{2}=t_{2}^{-1} t_{1}^{-1} t_{0} \Rightarrow(021) t_{1} t_{2}=t_{2}^{-1} t_{1}^{-1} t_{0} \Rightarrow t_{1}(021) t_{1} t_{2}=$ $t_{1} t_{2}^{-1} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{llll}0 & 2 & 1\end{array}\right)\left(\begin{array}{llll}0 & 1 & 2\end{array}\right) t_{1}\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1} t_{2}=t_{1} t_{2}^{-1} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1}^{(021)} t_{1} t_{2}=$ $t_{1} t_{2}^{-1} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{lll}0 & 2\end{array}\right) t_{0} t_{1} t_{2}=t_{1} t_{2}^{-1} t_{1}^{-1} t_{0}$. Now, $t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}=\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1} t_{2}^{-1} t_{1}^{-1} t_{0}$ and (02 21) $t_{0} t_{1} t_{2}=t_{1} t_{2}^{-1} t_{1}^{-1} t_{0}$ imply that $t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{1} t_{2} \Rightarrow t_{1} t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}=$ $t_{1}\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{1} t_{2} \Rightarrow t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right)\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1}\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{1} t_{2} \Rightarrow t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}=$ (012) $t_{1}^{(012)}{ }^{1} t_{0} t_{1} t_{2} \Rightarrow t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{2} t_{0} t_{1} t_{2}$ and this implies, in turn, that $N t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}=N t_{2} t_{0} t_{1} t_{2}$. Therefore, $N t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1} N=N t_{0} t_{1} t_{2} t_{0} N$; therefore, since $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} N=N t_{0} t_{1} t_{2} t_{0} N$ and since $N t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1} N=N t_{0} t_{1} t_{2} t_{0} N$, we conclude that $N t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} N$. That is, [0 $\left.\overline{1} \overline{0} \overline{1}\right]=[\overline{0} \overline{0} \overline{1} 1]$.
Since $N t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{0}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{0} N$ and $N t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{0} N=N t_{0}^{-1} t_{1}^{-1} N$ and $N t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} N$, we conclude that there is one distinct double coset of the form $N t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3,4\}: N t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} N$.
15. We next consider the double coset $N t_{0}^{-1} t_{1} t_{0} N$.

Let [$\overline{0} 10]$ denote the double coset $N t_{0}^{-1} t_{1} t_{0} N$.
Now, by relation (6.3), (021) $\begin{aligned} & -1 \\ & t_{2}\end{aligned} t_{1}^{-1} t_{0}=\left(\begin{array}{lll}0 & 3 & 1\end{array}\right) t_{1}^{-1} t_{3}=\left(\begin{array}{lll}0 & 4 & 1\end{array}\right) t_{1}^{-1} t_{4}$ and, by right multiplication, (021) $t_{1}^{-1} t_{2} t_{1}=t_{1}^{-1} t_{0} t_{1}=\left(\begin{array}{ll}0 & 3\end{array}\right) t_{1}^{-1} t_{3} t_{1}=(041) t_{1}^{-1} t_{4} t_{1}$. Similarly, by conjugation of these relations, (012) $t_{0}^{-1} t_{2} t_{0}=t_{0}^{-1} t_{1} t_{0}=\left(\begin{array}{ll}0 & 1\end{array} 3\right) t_{0}^{-1} t_{3} t_{0}=$ (014) $\begin{aligned} & -1\end{aligned} t_{0} t_{4} t_{0}$ and (012) $\begin{aligned} & -1\end{aligned} t_{1} t_{2}=t_{2}^{-1} t_{0} t_{2}=\left(\begin{array}{lll}0 & 3 & 2\end{array}\right) t_{2}^{-1} t_{3} t_{2}=\left(\begin{array}{lll}0 & 4 & 2\end{array}\right) t_{2}^{-1} t_{4} t_{2}$ and (0 $\left.2 \begin{array}{ll}3\end{array}\right) t_{3}^{-1} t_{2} t_{3}=t_{3}^{-1} t_{0} t_{3}=\left(\begin{array}{lll}0 & 1 & 3\end{array}\right) t_{3}^{-1} t_{1} t_{3}=\left(\begin{array}{lll}0 & 4 & 3\end{array}\right) t_{3}^{-1} t_{4} t_{3}$ and $\left(\begin{array}{lll}0 & 2 & 4\end{array}\right) t_{4}^{-1} t_{2} t_{4}=$ $t_{4}^{-1} t_{0} t_{4}=\left(\begin{array}{lll}0 & 3 & 4\end{array}\right) t_{4}^{-1} t_{3} t_{4}=\left(\begin{array}{lll}0 & 1 & 4\end{array}\right) t_{4}^{-1} t_{1} t_{4}$. These relations imply that:

$$
\overline{0} 10 \sim \overline{0} 20 \sim \overline{0} 30 \sim \overline{0} 40
$$

Similarly, by further conjugation, we find that

$$
\begin{array}{ll}
\overline{1} 01 \sim \overline{1} 21 \sim \overline{1} 31 \sim \overline{1} 41, & \overline{2} 02 \sim \overline{2} 12 \sim \overline{2} 32 \sim \overline{2} 42, \\
\overline{3} 03 \sim \overline{3} 13 \sim \overline{3} 23 \sim \overline{3} 43, & \overline{4} 04 \sim \overline{4} 14 \sim \overline{4} 24 \sim \overline{4} 34
\end{array}
$$

Since each of the twenty single cosets has four names, the double coset [0010] must have at most five distinct single cosets.

Now, $N^{(\overline{0} 10)}$ has four orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}, t_{4}\right\}:\{0\},\{1,2,3,4\},\{\overline{0}\}$, and - $\{\overline{1}, \overline{2}, \overline{3}, \overline{4}\}$.

Therefore, there are at most four double cosets of the form $N w N$, where w is a word of length four given by $w=t_{0}^{-1} t_{1} t_{0} t_{i}^{ \pm 1}, i \in\{0,1\}: N t_{0}^{-1} t_{1} t_{0} t_{0} N, N t_{0}^{-1} t_{1} t_{0} t_{0}^{-1} N$, $N t_{0}^{-1} t_{1} t_{0} t_{1} N$, and $N t_{0}^{-1} t_{1} t_{0} t_{1}^{-1} N$.
But note that $N t_{0}^{-1} t_{1} t_{0} t_{0} N=N t_{0}^{-1} t_{1} t_{0}^{2} N=N t_{0}^{-1} t_{1} t_{0}^{-1} N$ and note further that $N t_{0}^{-1} t_{1} t_{0} t_{0}^{-1} N=N t_{0}^{-1} t_{1} e N=N t_{0}^{-1} t_{1} N$.

Moreover, by relation (6.3) and by conjugation and left and right multiplication, (021) $t_{1}^{-1} t_{2}=t_{1}^{-1} t_{0} \Rightarrow t_{2}\left(\begin{array}{ll}0 & 2\end{array}\right) t_{1}^{-1} t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right)\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{2}\left(\begin{array}{ll}0 & 2\end{array}\right) t_{1}^{-1} t_{2}=$ $t_{2} t_{1}^{-1} t_{0} \Rightarrow(021) t_{2}^{(021)} t_{1}^{-1} t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow(021) t_{1} t_{1}^{-1} t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow(021) e t_{2}=$ $t_{2} t_{1}^{-1} t_{0} \Rightarrow(021) t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{2} t_{0}^{-1}=t_{2} t_{1}^{-1} t_{0} t_{0}^{-1} \Rightarrow$ (021) $t_{2} t_{0}^{-1}=t_{2} t_{1}^{-1} e \Rightarrow\left(\begin{array}{ll}0 & 2\end{array}\right) t_{2} t_{0}^{-1}=t_{2} t_{1}^{-1} \Rightarrow\left(\begin{array}{ll}0 & 2\end{array}\right) t_{2} t_{0}^{-1}=t_{2} t_{1}^{-1} \Rightarrow$ $\left.\left[\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{2} t_{0}^{-1}\right]^{(0} 12\right)=\left[t_{2} t_{1}^{-1}\right]^{\left(\begin{array}{lll}1 & 2\end{array}\right)} \Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{0} t_{1}^{-1}=t_{0} t_{2}^{-1} \Rightarrow t_{0} t_{1}^{-1}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{2}^{-1} \Rightarrow$ $t_{1} t_{0} t_{1}^{-1}=t_{1}\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{2}^{-1} \Rightarrow t_{1} t_{0} t_{1}^{-1}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right)\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1}\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{2}^{-1} \Rightarrow t_{1} t_{0} t_{1}^{-1}=$ $\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{1}^{\left(\begin{array}{ll}1 & 2\end{array}\right)} t_{0} t_{2}^{-1} \Rightarrow t_{1} t_{0} t_{1}^{-1}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{2} t_{0} t_{2}^{-1} \Rightarrow t_{0}^{-1} t_{1} t_{0} t_{1}^{-1}=t_{0}^{-1}\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{2} t_{0} t_{2}^{-1} \Rightarrow$ $t_{0}^{-1} t_{1} t_{0} t_{1}^{-1}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right)\left(\begin{array}{lll}2 & 2\end{array}\right) t_{0}^{-1}\left(\begin{array}{lll}1 & 1\end{array}\right) t_{2} t_{0} t_{2}^{-1} \Rightarrow t_{0}^{-1} t_{1} t_{0} t_{1}^{-1}=(012)\left(t_{0}^{-1}\right)^{(012)} t_{2} t_{0} t_{2}^{-1}$
$\Rightarrow t_{0}^{-1} t_{1} t_{0} t_{1}^{-1}=\left(\begin{array}{ll}0 & 1\end{array} 2\right) t_{1}^{-1} t_{2} t_{0} t_{2}^{-1} \Rightarrow\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}^{-1} t_{1} t_{0} t_{1}^{-1}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right)\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{1}^{-1} t_{2} t_{0} t_{2}^{-1} \Rightarrow$ (012) $\begin{aligned} & 0\end{aligned} t_{0}^{-1} t_{1} t_{0} t_{1}^{-1}=\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1}^{-1} t_{2} t_{0} t_{2}^{-1}$ and, also by relation (6.3) and right multiplication, (021) $t_{1}^{-1} t_{2}=t_{1}^{-1} t_{0} \Rightarrow(021) t_{1}^{-1} t_{2} t_{0}=t_{1}^{-1} t_{0} t_{0} \Rightarrow(021) t_{1}^{-1} t_{2} t_{0}=t_{1}^{-1} t_{0}^{-1} \Rightarrow$ (02 1) $t_{1}^{-1} t_{2} t_{0} t_{2}^{-1}=t_{1}^{-1} t_{0}^{-1} t_{2}^{-1}$ and, also by relation (6.3) and by conjugation and left and right multiplication, ($\left.\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1}^{-1} t_{2}=t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1}^{-1} t_{2} t_{2}=t_{1}^{-1} t_{0} t_{2} \Rightarrow$ (021) $t_{1}^{-1} t_{2}^{-1}=t_{1}^{-1} t_{0} t_{2} \Rightarrow t_{1}^{-1}(021) t_{1}^{-1} t_{2}^{-1}=t_{1}^{-1} t_{1}^{-1} t_{0} t_{2} \Rightarrow$
(021) (012) $t_{1}^{-1}\left(\begin{array}{lll}0 & 2\end{array}\right) t_{1}^{-1} t_{2}^{-1}=t_{1} t_{0} t_{2} \Rightarrow\left(t_{1}^{-1}\right)^{(021)} t_{1}^{-1} t_{2}^{-1}=t_{1} t_{0} t_{2} \Rightarrow$
(02 1) $t_{0}^{-1} t_{1}^{-1} t_{2}^{-1}=t_{1} t_{0} t_{2} \Rightarrow\left[\left(\begin{array}{lll}0 & 2\end{array}\right) t_{0}^{-1} t_{1}^{-1} t_{2}^{-1}\right]^{(01)}=\left[t_{1} t_{0} t_{2}\right]^{(01)} \Rightarrow\left(\begin{array}{lll}0 & 1 & 2\end{array} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1}\right.$ $=t_{0} t_{1} t_{2} \Rightarrow(021)(012) t_{1}^{-1} t_{0}^{-1} t_{2}^{-1}=\left(\begin{array}{ll}0 & 2\end{array}\right) t_{0} t_{1} t_{2} \Rightarrow t_{1}^{-1} t_{0}^{-1} t_{2}^{-1}=\left(\begin{array}{ll}0 & 2\end{array}\right) t_{0} t_{1} t_{2}$ and, therefore, (012 1 $) t_{0}^{-1} t_{1} t_{0} t_{1}^{-1}=\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1}^{-1} t_{2} t_{0} t_{2}^{-1}$ and (021) $t_{1}^{-1} t_{2} t_{0} t_{2}^{-1}=t_{1}^{-1} t_{0}^{-1} t_{2}^{-1}$ and $t_{1}^{-1} t_{0}^{-1} t_{2}^{-1}=\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{0} t_{1} t_{2}$ imply that (0122$) t_{0}^{-1} t_{1} t_{0} t_{1}^{-1}=\left(\begin{array}{ll}0 & 2\end{array}\right) t_{1}^{-1} t_{2} t_{0} t_{2}^{-1}=$ $t_{1}^{-1} t_{0}^{-1} t_{2}^{-1}=\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{0} t_{1} t_{2} \Rightarrow\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}^{-1} t_{1} t_{0} t_{1}^{-1}=\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{0} t_{1} t_{2}$ which implies that $N t_{0}^{-1} t_{1} t_{0} t_{1}^{-1}=N t_{0} t_{1} t_{2}$ and which implies, in turn, that the double cosets $N t_{0}^{-1} t_{1} t_{0} t_{1}^{-1} N=N t_{0} t_{1} t_{2} N$. That is, [012] $=[\overline{0} 10 \overline{1}]$.

Similarly, by relation (6.4), $t_{1} t_{0} t_{1} t_{0} t_{1} t_{0} t_{1} t_{0}=t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}$ and, by relation (6.2) and by left and right multiplication, $t_{0}^{-1} t_{1} t_{0}^{-1}=t_{1}^{-1} t_{0} t_{1}^{-1} \Rightarrow t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}=t_{1}^{-1} t_{0} t_{1}^{-1} t_{1}$ $\Rightarrow t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}=t_{1}^{-1} t_{0} \Rightarrow t_{0} t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}=t_{0} t_{1}^{-1} t_{0} \Rightarrow t_{1} t_{0}^{-1} t_{1}=t_{0} t_{1}^{-1} t_{0} \Rightarrow t_{1} t_{1} t_{0}^{-1} t_{1}=$ $t_{1} t_{0} t_{1}^{-1} t_{0} \Rightarrow t_{1}^{-1} t_{0}^{-1} t_{1}=t_{1} t_{0} t_{1}^{-1} t_{0} \Rightarrow t_{1}^{-1} t_{0}^{-1} t_{1} t_{1}=t_{1} t_{0} t_{1}^{-1} t_{0} t_{1} \Rightarrow t_{1}^{-1} t_{0}^{-1} t_{1}^{-1}=$ $t_{1} t_{0} t_{1}^{-1} t_{0} t_{1} \Rightarrow t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}=t_{1} t_{0} t_{1}^{-1} t_{0} t_{1} t_{0}^{-1}$. Now, $t_{1} t_{0} t_{1} t_{0} t_{1} t_{0} t_{1} t_{0}=t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}$ and $t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}=t_{1} t_{0} t_{1}^{-1} t_{0} t_{1} t_{0}^{-1}$ imply that $t_{1} t_{0} t_{1} t_{0} t_{1} t_{0} t_{1} t_{0}=t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}=$ $t_{1} t_{0} t_{1}^{-1} t_{0} t_{1} t_{0}^{-1}$ which implies that $t_{1} t_{0} t_{1} t_{0} t_{1} t_{0} t_{1} t_{0}=t_{1} t_{0} t_{1}^{-1} t_{0} t_{1} t_{0}^{-1} \Rightarrow$
$t_{1}^{-1} t_{1} t_{0} t_{1} t_{0} t_{1} t_{0} t_{1} t_{0}=t_{1}^{-1} t_{1} t_{0} t_{1}^{-1} t_{0} t_{1} t_{0}^{-1} \Rightarrow t_{0} t_{1} t_{0} t_{1} t_{0} t_{1} t_{0}=t_{0} t_{1}^{-1} t_{0} t_{1} t_{0}^{-1} \Rightarrow$
$t_{0}^{-1} t_{0} t_{1} t_{0} t_{1} t_{0} t_{1} t_{0}=t_{0}^{-1} t_{0} t_{1}^{-1} t_{0} t_{1} t_{0}^{-1} \Rightarrow t_{1} t_{0} t_{1} t_{0} t_{1} t_{0}=t_{1}^{-1} t_{0} t_{1} t_{0}^{-1} \Rightarrow t_{1}^{-1} t_{1} t_{0} t_{1} t_{0} t_{1} t_{0}=$ $t_{1}^{-1} t_{1}^{-1} t_{0} t_{1} t_{0}^{-1} \Rightarrow t_{0} t_{1} t_{0} t_{1} t_{0}=t_{1} t_{0} t_{1} t_{0}^{-1} \Rightarrow t_{0} t_{1} t_{0} t_{1} t_{0} t_{0}^{-1}=t_{1} t_{0} t_{1} t_{0}^{-1} t_{0}^{-1} \Rightarrow t_{0} t_{1} t_{0} t_{1}=$ $t_{1} t_{0} t_{1} t_{0} \Rightarrow t_{0} t_{1} t_{0} t_{1} t_{1}^{-1}=t_{1} t_{0} t_{1} t_{0} t_{1}^{-1} \Rightarrow t_{0} t_{1} t_{0}=t_{1} t_{0} t_{1} t_{0} t_{1}^{-1} \Rightarrow t_{1}^{-1} t_{0} t_{1} t_{0}=$ $t_{1}^{-1} t_{1} t_{0} t_{1} t_{0} t_{1}^{-1} \Rightarrow t_{1}^{-1} t_{0} t_{1} t_{0}=t_{0} t_{1} t_{0} t_{1}^{-1}$, and so this implies that $N t_{1}^{-1} t_{0} t_{1} t_{0}=$ $N t_{0} t_{1} t_{0} t_{1}^{-1}$. Therefore, $N t_{1}^{-1} t_{0} t_{1} t_{0} N=N t_{0} t_{1} t_{0} t_{1}^{-1} N$. That is, [010 $]=[\overline{0} 101]$.
Since $N t_{0}^{-1} t_{1} t_{0} t_{0} N=N t_{0}^{-1} t_{1} t_{0}^{2} N=N t_{0}^{-1} t_{1} t_{0}^{-1} N$ and $N t_{0}^{-1} t_{1} t_{0} t_{0}^{-1} N=N t_{0}^{-1} t_{1} e N=$ $N t_{0}^{-1} t_{1} N$ and $N t_{0}^{-1} t_{1} t_{0} t_{1}^{-1} N=N t_{0} t_{1} t_{2} N$ and $N t_{0}^{-1} t_{1} t_{0} t_{1} N=N t_{0} t_{1} t_{0} t_{1}^{-1} N$, we need not consider additional double cosets of the form $N t_{0}^{-1} t_{1} t_{0} t_{i}^{ \pm 1} N$, where $i \in$ $\{0,1,2,3,4\}$.
16. We next consider the double coset $N t_{0}^{-1} t_{1} t_{0}^{-1} N$.

Let $[\overline{0} 1 \overline{0}]$ denote the double coset $N t_{0}^{-1} t_{1} t_{0}^{1} N$.
Recall that in step 6 of our manual double coset enumeration, we determined, by relation (6.3), that (0221$) t_{1}^{-1} t_{2}=t_{1}^{-1} t_{0}=\left(\begin{array}{lll}0 & 3 & 1\end{array}\right) t_{1}^{-1} t_{3}=\left(\begin{array}{lll}0 & 4 & 1\end{array}\right) t_{1}^{-1} t_{4}$. Now, by right multiplication, we have (0 211$) t_{1}^{-1} t_{2} t_{1}^{-1}=t_{1}^{-1} t_{0} t_{1}^{-1}=\left(\begin{array}{lll}0 & 3 & 1\end{array}\right) t_{1}^{-1} t_{3} t_{1}^{-1}=$ (0 41 1) $t_{1}^{-1} t_{4} t_{1}^{-1}$. Similarly, by conjugation of these relations, (0122) $t_{0}^{-1} t_{2} t_{0}^{-1}=$ $t_{0}^{-1} t_{1} t_{0}^{-1}=\left(\begin{array}{lll}0 & 1 & 3\end{array}\right) t_{0}^{-1} t_{3} t_{0}^{-1}=\left(\begin{array}{lll}0 & 1 & 4\end{array}\right) t_{0}^{-1} t_{4} t_{0}^{-1}$ and $\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{2}^{-1} t_{1} t_{2}^{-1}=t_{2}^{-1} t_{0} t_{2}^{-1}=$ (032) $t_{2}^{-1} t_{3} t_{2}^{-1}=(042) t_{2}^{-1} t_{4} t_{2}^{-1}$ and (023) $t_{3}^{-1} t_{2} t_{3}^{-1}=t_{3}^{-1} t_{0} t_{3}^{-1}=(013) t_{3}^{-1} t_{1} t_{3}^{-1}=$ (0 43) $)_{3}^{-1} t_{4} t_{3}^{-1}$ and $\left(\begin{array}{ll}0 & 2\end{array}\right) t_{4}^{-1} t_{2} t_{4}^{-1}=t_{4}^{-1} t_{0} t_{4}^{-1}=\left(\begin{array}{lll}0 & 3 & 4\end{array}\right) t_{4}^{-1} t_{3} t_{4}^{-1}=\left(\begin{array}{lll}0 & 1\end{array}\right) t_{4}^{-1} t_{1} t_{4}^{-1}$. Finally, by relation (6.2), $t_{0}^{-1} t_{1} t_{0}^{-1}=t_{1}^{-1} t_{0} t_{1}^{-1}$ and $\left[t_{0}^{-1} t_{1} t_{0}^{-1}\right]^{(02)}=\left[t_{1}^{-1} t_{0} t_{1}^{-1}\right]^{(02)} \Rightarrow$ $t_{2}^{-1} t_{1} t_{2}^{-1}=t_{1}^{-1} t_{2} t_{1}^{-1}$ and $\left[t_{0}^{-1} t_{1} t_{0}^{-1}\right]^{(03)}=\left[t_{1}^{-1} t_{0} t_{1}^{-1}\right]^{(03)} \Rightarrow t_{3}^{-1} t_{1} t_{3}^{-1}=t_{1}^{-1} t_{3} t_{1}^{-1}$ and $\left[t_{0}^{-1} t_{1} t_{0}^{-1}\right]^{(04)}=\left[t_{1}^{-1} t_{0} t_{1}^{-1}\right]^{(04)} \Rightarrow t_{4}^{-1} t_{1} t_{4}^{-1}=t_{1}^{-1} t_{4} t_{1}^{-1}$. These relations imply that:

$$
\overline{0} 1 \overline{0} \sim \overline{0} 2 \overline{0} \sim \overline{0} 3 \overline{0} \sim \overline{0} 4 \overline{0} \sim \overline{1} 0 \overline{1} \sim \overline{1} 2 \overline{1} \sim \overline{1} 3 \overline{1} \sim \overline{1} 4 \overline{1} \sim \overline{2} 0 \overline{2} \sim \overline{2} 1 \overline{2} \sim
$$

$$
\overline{2} 3 \overline{2} \sim \overline{2} 4 \overline{2} \sim \overline{3} 0 \overline{3} \sim \overline{3} 1 \overline{3} \sim \overline{3} 2 \overline{3} \sim \overline{3} 4 \overline{3} \sim \overline{4} 0 \overline{4} \sim \overline{4} 1 \overline{4} \sim \overline{4} 2 \overline{4} \sim \overline{4} 3 \overline{4}
$$

Since each of the twenty single cosets has twenty names, the double coset [$\overline{0} 1 \overline{0}]$ must have one distinct single coset.

Now, $N^{(\overline{0} 1 \overline{0})}$ has two orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}, t_{4}\right\}:\{0,1,2,3,4\}$ and $\{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}\}$. Therefore, there are at most two double cosets of the form $N w N$, where w is a word of length four given by $w=t_{0}^{-1} t_{1} t_{0}^{-1} t_{i}^{ \pm 1}, i=0: N t_{0}^{-1} t_{1} t_{0}^{-1} t_{0} N$ and $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{0}^{-1} N$. But note that $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{0} N=N t_{0}^{-1} t_{1} e N=N t_{0}^{-1} t_{1} N$ and note further that $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{0}^{-1} N=N t_{0}^{-1} t_{1} t_{0} N$. Since $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{0} N=N t_{0}^{-1} t_{1} e N=N t_{0}^{-1} t_{1} N$ and $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{0}^{-1} N=N t_{0}^{-1} t_{1} t_{0} N$, we need not consider additional double cosets of the form $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3,4\}$.
17. We next consider the double coset $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} N$.

Let [$0 \overline{1} \overline{0} \overline{1}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} N$.
Note first that, by relation (6.3) and by left and right multiplication and conjugation, (021) $t_{1}^{-1} t_{2}=t_{1}^{-1} t_{0} \Rightarrow t_{2}(021) t_{1}^{-1} t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow(021)(012) t_{2}(021) t_{1}^{-1} t_{2}=$ $t_{2} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array} t_{2}^{\left(0{ }^{2} 1\right)} t_{1}^{-1} t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{ll}0 & 2\end{array}\right) t_{1} t_{1}^{-1} t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{ll}0 & 2\end{array}\right) e t_{2}=\right.$ $t_{2} t_{1}^{-1} t_{0} \Rightarrow(021) t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow(021) t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{ll}0 & 2\end{array}\right) t_{2} t_{0}^{-1}=t_{2} t_{1}^{-1} t_{0} t_{0}^{-1} \Rightarrow$ $\left(\begin{array}{ll}0 & 2\end{array}\right) t_{2} t_{0}^{-1}=t_{2} t_{1}^{-1} e \Rightarrow\left(\begin{array}{ll}0 & 2\end{array}\right) t_{2} t_{0}^{-1}=t_{2} t_{1}^{-1} \Rightarrow\left(\begin{array}{ll}0 & 2\end{array}\right) t_{2} t_{0}^{-1}=t_{2} t_{1}^{-1} \Rightarrow$
$\left.\left.\left[\begin{array}{llll}0 & 2 & 1\end{array}\right) t_{2} t_{0}^{-1}\right]^{(0} 122\right)=\left[t_{2} t_{1}^{-1}\right]^{\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) \Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{0} t_{1}^{-1}=t_{0} t_{2}^{-1} \Rightarrow t_{0} t_{1}^{-1}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{2}^{-1} \Rightarrow}$ $\left[t_{0} t_{1}^{-1}\right]^{(01)}=\left[\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{2}^{-1}\right]^{(01)} \Rightarrow t_{1} t_{0}^{-1}=\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1} t_{2}^{-1} \Rightarrow t_{1} t_{0}^{-1} t_{1}^{-1}=\left(\begin{array}{lll}0 & 2\end{array}\right) t_{1} t_{2}^{-1} t_{1}^{-1}$ $\Rightarrow t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}=\left(\begin{array}{ll}0 & 2\end{array}\right) t_{1} t_{2}^{-1} t_{1}^{-1} t_{0}$, and also by relation (6.3), (021) $t_{1}^{-1} t_{2}=$ $t_{1}^{-1} t_{0} \Rightarrow t_{2}^{-1}\left(\begin{array}{lll}0 & 2\end{array}\right) t_{1}^{-1} t_{2}=t_{2}^{-1} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{ll}0 & 2\end{array}\right)\left(\begin{array}{ll}0 & 1\end{array}\right) t_{2}^{-1}\left(\begin{array}{lll}0 & 1\end{array}\right) t_{1}^{-1} t_{2}=t_{2}^{-1} t_{1}^{-1} t_{0} \Rightarrow$ $(021)\left(t_{2}^{-1}\right)^{(021)} t_{1}^{-1} t_{2}=t_{2}^{-1} t_{1}^{-1} t_{0} \Rightarrow(021) t_{1} t_{2}=t_{2}^{-1} t_{1}^{-1} t_{0} \Rightarrow t_{1}(021) t_{1} t_{2}=$ $t_{1} t_{2}^{-1} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{lllll}0 & 2 & 1\end{array}\right)\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{1}\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1} t_{2}=t_{1} t_{2}^{-1} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1}^{(021)} t_{1} t_{2}=$ $t_{1} t_{2}^{-1} t_{1}^{-1} t_{0} \Rightarrow(021) t_{0} t_{1} t_{2}=t_{1} t_{2}^{-1} t_{1}^{-1} t_{0}$, and so $t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}=\left(\begin{array}{ll}0 & 2\end{array}\right) t_{1} t_{2}^{-1} t_{1}^{-1} t_{0}$ and (021) $t_{0} t_{1} t_{2}=t_{1} t_{2}^{-1} t_{1}^{-1} t_{0}$ imply that $t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}=(021) t_{1} t_{2}^{-1} t_{1}^{-1} t_{0}=(012) t_{0} t_{1} t_{2} \Rightarrow$ $t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}=\left(\begin{array}{ll}0 & 1\end{array}\right) t_{0} t_{1} t_{2} \Rightarrow t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}=\left(\begin{array}{ll}0 & 1\end{array}\right) t_{0} t_{1} t_{2} t_{0}$ and this implies, in turn, that $N t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}=N t_{0} t_{1} t_{2} t_{0}$ and thus $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} N=N t_{0} t_{1} t_{2} t_{0} N$.
Similarly, by relation (6.3) and by left and right multiplication and conjugation, (021) $t_{1}^{-1} t_{2}=t_{1}^{-1} t_{0} \Rightarrow t_{2}\left(\begin{array}{ll}0 & 2\end{array}\right) t_{1}^{-1} t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{lll}0 & 2\end{array}\right)\left(\begin{array}{ll}0 & 1\end{array}\right) t_{2}\left(\begin{array}{ll}0 & 2\end{array}\right) t_{1}^{-1} t_{2}=$ $t_{2} t_{1}^{-1} t_{0} \Rightarrow(021) t_{2}^{(021)} t_{1}^{-1} t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{ll}0 & 21\end{array}\right) t_{1} t_{1}^{-1} t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow(021) e t_{2}=$ $t_{2} t_{1}^{-1} t_{0} \Rightarrow(021) t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow(021) t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{ll}0 & 2\end{array}\right) t_{2} t_{0}^{-1}=t_{2} t_{1}^{-1} t_{0} t_{0}^{-1} \Rightarrow$ (021) $t_{2} t_{0}^{-1}=t_{2} t_{1}^{-1} e \Rightarrow(021) t_{2} t_{0}^{-1}=t_{2} t_{1}^{-1} \Rightarrow(021) t_{2} t_{0}^{1}=t_{2} t_{1}^{-1} \Rightarrow$ $\left.\left.\left.\left[\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{2} t_{0}^{-1}\right]^{\left(\begin{array}{lll}1 & 2\end{array}\right)}=\left[t_{2} t_{1}^{-1}\right]^{(0} 12\right) ~ 2\right) ~\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{0} t_{1}^{-1}=t_{0} t_{2}^{-1} \Rightarrow t_{0} t_{1}^{-1}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{2}^{-1} \Rightarrow$ $\left[t_{0} t_{1}^{-1}\right]^{(01)}=\left[\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{2}^{-1}\right]^{(01)} \Rightarrow t_{1} t_{0}^{-1}=\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1} t_{2}^{-1} \Rightarrow t_{1} t_{0}^{-1} t_{1}^{-1}=\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1} t_{2}^{-1} t_{1}^{-1}$ $\Rightarrow t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}=\left(\begin{array}{ll}0 & 2\end{array}\right) t_{1} t_{2}^{-1} t_{1}^{-1} t_{0}$, and also by relation (6.3), (021) $t_{1}^{-1} t_{2}=$ $t_{1}^{-1} t_{0} \Rightarrow t_{2}^{-1}\left(\begin{array}{ll}0 & 2\end{array}\right) t_{1}^{-1} t_{2}=t_{2}^{-1} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{ll}0 & 21\end{array}\right)\left(\begin{array}{ll}0 & 1\end{array}\right) t_{2}^{-1}\left(\begin{array}{lll}0 & 2\end{array}\right) t_{1}^{-1} t_{2}=t_{2}^{-1} t_{1}^{-1} t_{0} \Rightarrow$ $(021)\left(t_{2}^{-1}\right)^{(021)} t_{1}^{-1} t_{2}=t_{2}^{-1} t_{1}^{-1} t_{0} \Rightarrow(021) t_{1} t_{2}=t_{2}^{-1} t_{1}^{-1} t_{0} \Rightarrow t_{1}(021) t_{1} t_{2}=$ $\left.t_{1} t_{2}^{-1} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right)\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{1}\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1} t_{2}=t_{1} t_{2}^{-1} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1}^{(02}{ }^{2}\right) t_{1} t_{2}=$ $t_{1} t_{2}^{-1} t_{1}^{-1} t_{0} \Rightarrow(021) t_{0} t_{1} t_{2}=t_{1} t_{2}^{-1} t_{1}^{-1} t_{0}$, and so $t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}=\left(\begin{array}{ll}0 & 21\end{array}\right) t_{1} t_{2}^{-1} t_{1}^{-1} t_{0}$ and (021) $t_{0} t_{1} t_{2}=t_{1} t_{2}^{-1} t_{1}^{-1} t_{0}$ imply that $t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{1} t_{2} \Rightarrow t_{1} t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}=$ $t_{1}\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{1} t_{2} \Rightarrow t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right)\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1}\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{1} t_{2} \Rightarrow t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}=$ (012) $\begin{aligned} & (012)\end{aligned} t_{0} t_{1} t_{2} \Rightarrow t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{2} t_{0} t_{1} t_{2}$ and this implies, in turn, that $N t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}=N t_{2} t_{0} t_{1} t_{2}$ and thus $N t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1} N=N t_{0} t_{1} t_{2} t_{0} N$.
Therefore, since $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} N=N t_{0} t_{1} t_{2} t_{0} N$ and since $N t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1} N=$ $N t_{0} t_{1} t_{2} t_{0} N$, we have that $N t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} N$. We conclude therefore that $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1} N=N t_{0} t_{1} t_{2} t_{0} N$. That is, $[0 \overline{1} \overline{0} \overline{1}]=$ $[\overline{0} \overline{1} \overline{0} 1]=[0120]$.
Hence note that $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} N=\left\{N t_{0} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} n \mid n \in N\right\}=\left\{N n^{-1} t_{0} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} n\right.$ $\mid n \in N\}=\left\{N\left(t_{0} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1}\right)^{n} \mid n \in N\right\}=\left\{N t_{i} t_{j}^{-1} t_{i}^{-1} t_{j}^{-1} \mid i, j \in\{0,1,2,3,4\}, i \neq\right.$
$j\}=\left\{N t_{i}^{-1} t_{j}^{-1} t_{i}^{-1} t_{j} \mid i, j \in\{0,1,2,3,4\}, i \neq j\right\}=\left\{N\left(t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1}\right)^{n} \mid n \in N\right\}=$ $\left\{N n^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1} n \mid n \in N\right\}=\left\{N t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1} n \mid n \in N\right\}=N t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1} N=$ $\left\{N t_{i} t_{j} t_{k} t_{i} \mid i, j, k \in\{0,1,2,3,4\}, i \neq j \neq k\right\}=\left\{N\left(t_{0} t_{1} t_{2} t_{0}\right)^{n} \mid n \in N\right\}=$ $\left\{N n^{-1} t_{0} t_{1} t_{2} t_{0} n \mid n \in N\right\}=\left\{N t_{0} t_{1} t_{2} t_{0} n \mid n \in N\right\}=N t_{0} t_{1} t_{2} t_{0} N$.

Now, by relation (6.3) and by left and right multiplication and conjugation, (021) $t_{1}^{-1} t_{2}=t_{1}^{-1} t_{0} \Rightarrow t_{2}\left(\begin{array}{lll}0 & 2\end{array}\right) t_{1}^{-1} t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right)\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{2}\left(\begin{array}{lll}0 & 2\end{array}\right) t_{1}^{-1} t_{2}=$ $t_{2} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{2}^{(021)} t_{1}^{-1} t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{ll}0 & 2\end{array}\right) t_{1} t_{1}^{-1} t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{ll}0 & 2\end{array}\right) e t_{2}=$ $t_{2} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow(021) t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{2} t_{0}^{-1}=t_{2} t_{1}^{-1} t_{0} t_{0}^{-1} \Rightarrow$ (021) $t_{2} t_{0}^{-1}=t_{2} t_{1}^{-1} e \Rightarrow\left(\begin{array}{lll}0 & 2\end{array}\right) t_{2} t_{0}^{-1}=t_{2} t_{1}^{-1} \Rightarrow\left(\begin{array}{ll}0 & 2\end{array}\right) t_{2} t_{0}^{-1}=t_{2} t_{1}^{-1} \Rightarrow$ $\left.\left[\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{2} t_{0}^{-1}\right]^{\left(\begin{array}{lll}1 & 2\end{array}\right)}=\left[t_{2} t_{1}^{-1}\right]^{(01} 12\right) \Rightarrow\left(\begin{array}{ll}0 & 2\end{array}\right) t_{0} t_{1}^{-1}=t_{0} t_{2}^{-1} \Rightarrow t_{0} t_{1}^{-1}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{2}^{-1} \Rightarrow$ $\left[t_{0} t_{1}^{-1}\right]^{(01)}=\left[\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{2}^{-1}\right]^{(01)} \Rightarrow t_{1} t_{0}^{-1}=\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1} t_{2}^{-1} \Rightarrow t_{1} t_{0}^{-1} t_{1}^{-1}=\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1} t_{2}^{-1} t_{1}^{-1}$ $\Rightarrow t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}=\left(\begin{array}{ll}0 & 2\end{array}\right) t_{1} t_{2}^{-1} t_{1}^{-1} t_{0}$, and also by relation (6.3), (021) $t_{1}^{-1} t_{2}=$ $t_{1}^{-1} t_{0} \Rightarrow t_{2}^{-1}(021) t_{1}^{-1} t_{2}=t_{2}^{-1} t_{1}^{-1} t_{0} \Rightarrow(021)(012) t_{2}^{-1}(021) t_{1}^{-1} t_{2}=t_{2}^{-1} t_{1}^{-1} t_{0} \Rightarrow$ $(021)\left(t_{2}^{-1}\right)^{(021)} t_{1}^{-1} t_{2}=t_{2}^{-1} t_{1}^{-1} t_{0} \Rightarrow(021) t_{1} t_{2}=t_{2}^{-1} t_{1}^{-1} t_{0} \Rightarrow t_{1}(021) t_{1} t_{2}=$ $t_{1} t_{2}^{-1} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right)\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{1}\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1} t_{2}=t_{1} t_{2}^{-1} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1}^{(021)} t_{1} t_{2}=$ $t_{1} t_{2}^{-1} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{0} t_{1} t_{2}=t_{1} t_{2}^{-1} t_{1}^{-1} t_{0}$, and so $t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}=\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1} t_{2}^{-1} t_{1}^{-1} t_{0}$ and (021) $t_{0} t_{1} t_{2}=t_{1} t_{2}^{-1} t_{1}^{-1} t_{0}$ imply that $t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{1} t_{2}$. Moreover, by relation (6.3), $t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{1} t_{2} \Rightarrow t_{1} t_{0}^{-1} t_{1}^{-1} t_{0} t_{0}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{1} t_{2} t_{0} \Rightarrow$ $t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{1} t_{2} t_{0}$ and $t_{1} t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}=t_{1}\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{1} t_{2} \Rightarrow t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}=$ (012) (021) $t_{1}\left(\begin{array}{ll}0 & 1\end{array}\right) t_{0} t_{1} t_{2} \Rightarrow t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{1}^{(012)} t_{0} t_{1} t_{2} \Rightarrow t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}=$ $\left.\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{2} t_{0} t_{1} t_{2} \Rightarrow\left[t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}\right]^{\left(\begin{array}{lll}1 & 1\end{array}\right)}=\left[\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{2} t_{0} t_{1} t_{2}\right]^{\left(\begin{array}{ll}(12)\end{array}\right)} \Rightarrow t_{2}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1}=$ (012) $t_{0} t_{1} t_{2} t_{0}$. Now, $t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}=\left(\begin{array}{ll}0 & 1\end{array}\right) t_{0} t_{1} t_{2} t_{0}$ and $t_{2}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1}=\left(\begin{array}{ll}0 & 1\end{array} 2\right) t_{0} t_{1} t_{2} t_{0}$ imply that $t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{1} t_{2} t_{0}=t_{2}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1}$. By conjugation, we see that $\left[t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}\right]^{(03)}=\left[t_{2}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1}\right]^{(03)} \Rightarrow t_{1} t_{3}^{-1} t_{1}^{-1} t_{3}^{-1}=t_{2}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1}$ and $\left[t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}\right]^{(04)}=\left[t_{2}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1}\right]^{(04)} \Rightarrow t_{1} t_{4}^{-1} t_{1}^{-1} t_{4}^{-1}=t_{2}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1}$ and so $t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}=t_{2}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1}=t_{1} t_{3}^{-1} t_{1}^{-1} t_{3}^{-1}=t_{1} t_{4}^{-1} t_{1}^{-1} t_{4}^{-1}$. Finally, $t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}=$ $t_{2}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1}=t_{1} t_{3}^{-1} t_{1}^{-1} t_{3}^{-1}=t_{1} t_{4}^{-1} t_{1}^{-1} t_{4}^{-1}$ and $t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{1} t_{2} t_{0}=$ $t_{2}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1}$ imply that $t_{1} t_{3}^{-1} t_{1}^{-1} t_{3}^{-1}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{1} t_{2} t_{0}$. Therefore, by conjugation, $\left[t_{1} t_{3}^{-1} t_{1}^{-1} t_{3}^{-1}\right]^{(23)}=\left[\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{1} t_{2} t_{0}\right]^{(23)} \Rightarrow t_{1} t_{2}^{-1} t_{1}^{-1} t_{2}^{-1}=\left(\begin{array}{lll}0 & 1 & 3\end{array}\right) t_{0} t_{1} t_{3} t_{0} \Rightarrow$ $\left(\begin{array}{lll}0 & 3 & 1\end{array}\right) t_{1} t_{2}^{-1} t_{1}^{-1} t_{2}^{-1}=\left(\begin{array}{lll}0 & 3 & 1\end{array}\right)\left(\begin{array}{lll}0 & 1 & 3\end{array}\right) t_{0} t_{1} t_{3} t_{0} \Rightarrow\left(\begin{array}{lll}0 & 3 & 1\end{array}\right) t_{1} t_{2}^{-1} t_{1}^{-1} t_{2}^{-1}=t_{0} t_{1} t_{3} t_{0} \Rightarrow$ $(032)(031) t_{1} t_{2}^{-1} t_{1}^{-1} t_{2}^{-1}=(032) t_{0} t_{1} t_{3} t_{0} \Rightarrow(02)(13) t_{1} t_{2}^{-1} t_{1}^{-1} t_{2}^{-1}=(032) t_{0} t_{1} t_{3} t_{0}$. Now, by relation (6.3) and by right and left multiplication, (021) $t_{1}^{-1} t_{2}=t_{1}^{-1} t_{0} \Rightarrow$
(021) $t_{1}^{-1} t_{2} t_{2}=t_{1}^{-1} t_{0} t_{2} \Rightarrow\left(\begin{array}{lll}0 & 1\end{array}\right) t_{1}^{-1} t_{2}^{-1}=t_{1}^{-1} t_{0} t_{2} \Rightarrow t_{1}^{-1}\left(\begin{array}{lll}0 & 1\end{array} t_{1}^{-1} t_{2}^{-1}=t_{1}^{-1} t_{1}^{-1} t_{0} t_{2}\right.$ $\Rightarrow(021)(012) t_{1}^{-1}(021) t_{1}^{-1} t_{2}^{-1}=t_{1} t_{0} t_{2} \Rightarrow\left(t_{1}^{-1}\right)^{(021)} t_{1}^{-1} t_{2}^{-1}=t_{1} t_{0} t_{2} \Rightarrow$
$\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{0}^{-1} t_{1}^{-1} t_{2}^{-1}=t_{1} t_{0} t_{2} \Rightarrow t_{0}^{-1} t_{1}^{-1} t_{2}^{-1}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{1} t_{0} t_{2}$ and, by relation (6.1), (02)(13) $t_{1} t_{0} t_{3}=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1}$, and so $t_{0}^{-1} t_{1}^{-1} t_{2}^{-1}=\left(\begin{array}{ll}0 & 1\end{array}\right) t_{1} t_{0} t_{2}$ and (0 2) (13) $t_{1} t_{0} t_{3}=$ $t_{0}^{-1} t_{1}^{-1} t_{2}^{-1}$ imply that $(02)(13) t_{1} t_{0} t_{3}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{1} t_{0} t_{2}$, and so, by conjugation and right multiplication, $\left.\left[\left(\begin{array}{ll}0 & 2\end{array}\right)\left(\begin{array}{ll}1 & 3\end{array}\right) t_{1} t_{0} t_{3}\right]^{(01)}=\left[\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{1} t_{0} t_{2}\right]^{(01)} \Rightarrow\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}0 & 3\end{array}\right) t_{0} t_{1} t_{3}=$ (0 211$) t_{0} t_{1} t_{2} \Rightarrow\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}0 & 3\end{array}\right) t_{0} t_{1} t_{3} t_{0}=\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{0} t_{1} t_{2} t_{0} \Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right)\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}0 & 3\end{array}\right) t_{0} t_{1} t_{3} t_{0}=$ $(021)(021) t_{0} t_{1} t_{2} t_{0} \Rightarrow\left(\begin{array}{ll}0 & 3\end{array}\right) t_{0} t_{1} t_{3} t_{0}=\left(\begin{array}{ll}0 & 1\end{array}\right) t_{0} t_{1} t_{2} t_{0}$. Therefore, $\left(\begin{array}{ll}0 & 2\end{array}\right)\left(\begin{array}{ll}1 & 3\end{array}\right) t_{1} t_{2}^{-1} t_{1}^{-1} t_{2}^{-1}=\left(\begin{array}{lll}0 & 3 & 2\end{array}\right) t_{0} t_{1} t_{3} t_{0}$ and $\left(\begin{array}{lll}0 & 3 & 2\end{array}\right) t_{0} t_{1} t_{3} t_{0}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{1} t_{2} t_{0} \mathrm{im}-$ ply that $\left(\begin{array}{lll}0 & 2\end{array}\right)\left(\begin{array}{ll}1 & 3\end{array}\right) t_{1} t_{2}^{-1} t_{1}^{-1} t_{2}^{-1}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{1} t_{2} t_{0}$, and ($\left.\begin{array}{lll}0 & 2\end{array}\right)\left(\begin{array}{ll}1 & 3\end{array}\right) t_{1} t_{2}^{-1} t_{1}^{-1} t_{2}^{-1}=$ $\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{1} t_{2} t_{0}$ and $t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{1} t_{2} t_{0}=t_{2}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1}=t_{1} t_{3}^{-1} t_{1}^{-1} t_{3}^{-1}=$ $t_{1} t_{4}^{-1} t_{1}^{-1} t_{4}^{-1}$ imply that $t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}=(02)(13) t_{1} t_{2}^{-1} t_{1}^{-1} t_{2}^{-1}=t_{1} t_{3}^{-1} t_{1}^{-1} t_{3}^{-1}$ $=t_{1} t_{4}^{-1} t_{1}^{-1} t_{4}^{-1}$. These relations imply that:

$$
1 \overline{0} \overline{1} \overline{0} \sim 1 \overline{2} \overline{1} \overline{2} \sim 1 \overline{3} \overline{1} \overline{3} \sim 1 \overline{4} \overline{1} \overline{4}
$$

Similiarly, by conjugation, we find that

$$
\begin{aligned}
& 0 \overline{1} \overline{0} \overline{1} \sim 0 \overline{2} \overline{0} \overline{2} \sim 0 \overline{3} \overline{0} \overline{3} \sim 0 \overline{4} \overline{0} \overline{4}, \quad 2 \overline{1} \overline{1} \overline{1} \sim 2 \overline{2} \overline{2} \overline{0} \sim 2 \overline{3} \overline{2} \overline{3} \sim 2 \overline{4} \overline{4} \overline{4}, \\
& 3 \overline{1} \overline{3} \overline{1} \sim 3 \overline{2} \overline{3} \overline{2} \sim 3 \overline{0} \overline{3} \overline{0} \sim 3 \overline{4} \overline{3} \overline{4}, \quad 4 \overline{1} \overline{4} \overline{1} \sim 4 \overline{2} \overline{4} \overline{2} \sim 4 \overline{3} \overline{4} \overline{3} \sim 4 \overline{0} \overline{4} \overline{0}
\end{aligned}
$$

Since each of the twenty single cosets has four names, the double coset $[0 \overline{1} \overline{0} \overline{1}]=$ $[\overline{0} \overline{1} \overline{0} 1]=[0120]$ must have at most five distinct single cosets.
Now, $N^{(0 \overline{1} \overline{0} \overline{1})}$ has four orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}, t_{4}\right\}:\{0\},\{1,2,3,4\},\{\overline{0}\}$, and $\{\overline{1}, \overline{2}, \overline{3}, \overline{4}\}$.

Therefore, there are at most four double cosets of the form $N w N$, where w is a word of length five given by $w=t_{0} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{i}^{ \pm 1}, i \in\{0,1\}: N t_{0} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0} N$, $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} N, N t_{0} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{1} N$, and $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{1}^{-1} N$.

But note that $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{1} N=N t_{0} t_{1}^{-1} t_{0}^{-1} e N=N t_{0} t_{1}^{-1} t_{0}^{-1} N$, and note further that, by relation (6.3) and by left and right multiplication and conjugation, (021) $t_{1}^{-1} t_{2}=t_{1}^{-1} t_{0} \Rightarrow t_{2}\left(\begin{array}{lll}0 & 2\end{array}\right) t_{1}^{-1} t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right)\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{2}\left(\begin{array}{lll}0 & 2\end{array}\right) t_{1}^{-1} t_{2}=$ $t_{2} t_{1}^{-1} t_{0} \Rightarrow(021) t_{2}^{(021)} t_{1}^{-1} t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow(021) t_{1} t_{1}^{-1} t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow(021) e t_{2}=$ $t_{2} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{lll}0 & 1\end{array}\right) t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{lll}0 & 2\end{array}\right) t_{2} t_{0}^{-1}=t_{2} t_{1}^{-1} t_{0} t_{0}^{-1} \Rightarrow$
(021) $t_{2} t_{0}^{-1}=t_{2} t_{1}^{-1} e \Rightarrow\left(\begin{array}{ll}0 & 2\end{array}\right) t_{2} t_{0}^{-1}=t_{2} t_{1}^{-1} \Rightarrow(021) t_{2} t_{0}^{-1}=t_{2} t_{1}^{-1} \Rightarrow$ $\left.\left[\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{2} t_{0}^{-1}\right]^{(0} 12\right)=\left[t_{2} t_{1}^{-1}\right]^{\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) \Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{0} t_{1}^{-1}=t_{0} t_{2}^{-1} \Rightarrow t_{0} t_{1}^{-1}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{2}^{-1} \Rightarrow}$ $\left.\left[t_{0} t_{1}^{-1}\right]^{(01)}=\left[\begin{array}{lll}(0 & 1 & 2\end{array}\right) t_{0} t_{2}^{-1}\right]^{(01)} \Rightarrow t_{1} t_{0}^{-1}=\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1} t_{2}^{-1} \Rightarrow t_{1} t_{0}^{-1} t_{1}^{-1}=\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1} t_{2}^{-1} t_{1}^{-1}$ $\Rightarrow t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}=\left(\begin{array}{ll}0 & 2\end{array}\right) t_{1} t_{2}^{-1} t_{1}^{-1} t_{0}$, and also by relation (6.3), ($\left.\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1}^{-1} t_{2}=$ $t_{1}^{-1} t_{0} \Rightarrow t_{2}^{-1}(021) t_{1}^{-1} t_{2}=t_{2}^{-1} t_{1}^{-1} t_{0} \Rightarrow(021)(012) t_{2}^{-1}(021) t_{1}^{-1} t_{2}=t_{2}^{-1} t_{1}^{-1} t_{0} \Rightarrow$ $(021)\left(t_{2}^{-1}\right)^{(021)} t_{1}^{-1} t_{2}=t_{2}^{-1} t_{1}^{-1} t_{0} \Rightarrow(021) t_{1} t_{2}=t_{2}^{-1} t_{1}^{-1} t_{0} \Rightarrow t_{1}(021) t_{1} t_{2}=$ $\left.t_{1} t_{2}^{-1} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{llll}0 & 2 & 1\end{array}\right)\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{1}\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1} t_{2}=t_{1} t_{2}^{-1} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1}^{(02}{ }^{2}\right) t_{1} t_{2}=$ $t_{1} t_{2}^{-1} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{lll}0 & 2\end{array}\right) t_{0} t_{1} t_{2}=t_{1} t_{2}^{-1} t_{1}^{-1} t_{0}$, and so $t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}=\left(\begin{array}{ll}0 & 2\end{array}\right) t_{1} t_{2}^{-1} t_{1}^{-1} t_{0}$ and ($\begin{array}{ll}0 & 2\end{array} 1$) $t_{0} t_{1} t_{2}=t_{1} t_{2}^{-1} t_{1}^{-1} t_{0}$ imply that $t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{1} t_{2}$. Therefore, $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{1} N=N t_{0} t_{1} t_{2} N$. That is, $[012]=[0 \overline{1} \overline{0} \overline{1} \overline{1}]=$ [01̄011].
Moreover, by relation (6.3), $t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}=\left(\begin{array}{ll}0 & 1\end{array}\right), t_{0} t_{1} t_{2} \Rightarrow t_{1} t_{0}^{-1} t_{1}^{-1} t_{0} t_{0}=$ (012) $t_{0} t_{1} t_{2} t_{0} \Rightarrow t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{1} t_{2} t_{0}$ and $t_{1} t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}=t_{1}\left(\begin{array}{ll}(12)\end{array}\right) t_{0} t_{1} t_{2} \Rightarrow$ $t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right)\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1}\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{1} t_{2} \Rightarrow t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{1}^{\left(\begin{array}{ll}01 & 2)\end{array} t_{0} t_{1} t_{2} \Rightarrow\right.}$ $\left.t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{2} t_{0} t_{1} t_{2} \Rightarrow\left[t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}\right]^{\left(\begin{array}{ll}1 & 2\end{array}\right)}=\left[\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{2} t_{0} t_{1} t_{2}\right]^{\left(\begin{array}{ll}(12)\end{array}\right.} \Rightarrow$ $t_{2}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1}=(012) t_{0} t_{1} t_{2} t_{0}$, and so $t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}=(012) t_{0} t_{1} t_{2} t_{0}$ and $t_{2}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1}=$ (012) $12 t_{0} t_{1} t_{2} t_{0}$ imply that $t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{1} t_{2} t_{0}=t_{2}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1}$ which implies, in turn, that $t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}=\left(\begin{array}{ll}0 & 1\end{array}\right) t_{0} t_{1} t_{2} t_{0}=t_{2}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} \Rightarrow t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1}=$ (012) $t_{0} t_{1} t_{2} t_{0} t_{1}=t_{2}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} t_{1} \Rightarrow t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1}=(012) t_{0} t_{1} t_{2} t_{0} t_{1}=t_{2}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1}^{-1}$. Therefore, $t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1}=t_{2}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1}^{-1}$ implies that $N t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1}=$ $N t_{2}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1}^{-1}$. Therefore, $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0} N=N t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} N$. That is, $[\overline{0} \overline{1} \overline{0} \overline{1}]=$ [$0 \overline{1} \overline{0} \overline{1} 0]$.

Similarly, by relation (6.3), $t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}=\left(\begin{array}{ll}0 & 1\end{array}\right) t_{0} t_{1} t_{2} t_{0}=t_{2}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} \Rightarrow$ $t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1}=\left(\begin{array}{ll}0 & 1\end{array}\right) t_{0} t_{1} t_{2} t_{0} t_{1}^{-1}=t_{2}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} t_{1}^{-1} \Rightarrow t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1}=$ (012) $t_{0} t_{1} t_{2} t_{0} t_{1}^{-1}=t_{2}^{-1} t_{1}^{-1} t_{2}^{-1}$. Therefore, $t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1}=t_{2}^{-1} t_{1}^{-1} t_{2}^{-1}$ implies that $N t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1}=N t_{2}^{-1} t_{1}^{-1} t_{2}^{-1}$. Therefore, $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{1}^{1} t_{0}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} N$.
That is, $[\overline{0} \overline{1} \overline{0}]=[0 \overline{1} \overline{0} \overline{1} \overline{0}]$.
Since $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0} N=N t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{1} N=N t_{0} t_{1}^{-1} t_{0}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{1} N=$ $N t_{0} t_{1} t_{2} N$, we need not consider additional double cosets of the form $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3,4\}$.
18. We next consider the double coset $N t_{0} t_{1} t_{0} t_{1} N$.

Let [0101] denote the double coset $N t_{0} t_{1} t_{0} t_{1} N$.
By relation (6.3) and by conujugation and right and left multiplication, (021) $t_{1}^{-1} t_{2}=$ $t_{1}^{-1} t_{0} \Rightarrow(021) t_{1}^{-1} t_{2} t_{2}=t_{1}^{-1} t_{0} t_{2} \Rightarrow(021) t_{1}^{-1} t_{2}^{-1}=t_{1}^{-1} t_{0} t_{2} \Rightarrow t_{1}^{-1}(021) t_{1}^{-1} t_{2}^{-1}=$ $t_{1}^{-1} t_{1}^{-1} t_{0} t_{2} \Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right)\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{1}^{-1}\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1}^{-1} t_{2}^{-1}=t_{1} t_{0} t_{2} \Rightarrow\left(t_{1}^{-1}\right)^{(021)} t_{1}^{-1} t_{2}^{-1}=$ $\left.t_{1} t_{0} t_{2} \Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{0}^{-1} t_{1}^{-1} t_{2}^{-1}=t_{1} t_{0} t_{2} \Rightarrow\left[\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{0}^{-1} t_{1}^{-1} t_{2}^{-1}\right]^{(01)}=\left[t_{1} t_{0} t_{2}\right]^{(01)} \Rightarrow$ $\left(\begin{array}{ll}0 & 1\end{array}\right) t_{1}^{-1} t_{0}^{-1} t_{2}^{-1}=t_{0} t_{1} t_{2} \Rightarrow\left(\begin{array}{ll}0 & 2\end{array}\right)\left(\begin{array}{ll}0 & 1\end{array}\right) t_{1}^{-1} t_{0}^{-1} t_{2}^{-1}=\left(\begin{array}{ll}0 & 2\end{array}\right) t_{0} t_{1} t_{2} \Rightarrow t_{1}^{-1} t_{0}^{-1} t_{2}^{-1}=$ (021) $t_{0} t_{1} t_{2} \Rightarrow(021)(012) t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{2}^{-1}=(021) t_{0} t_{1} t_{2} t_{2}^{-1} \Rightarrow(021)(012) t_{1}^{-1} t_{0}^{-1} t_{2}$ $=\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{0} t_{1} \Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right)\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{1}^{-1} t_{0}^{-1} t_{2} t_{0}=\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{0} t_{1} t_{0} \Rightarrow t_{1}^{-1} t_{0}^{-1} t_{2} t_{0} t_{1}^{-1}=$ (021) $t_{0} t_{1} t_{0} t_{1}^{-1}$. Also by relation (6.3), (021) $t_{1}^{-1} t_{2}=t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{ll}0 & 2\end{array}\right) t_{1}^{-1} t_{2} t_{0}=$ $t_{1}^{-1} t_{0} t_{0} \Rightarrow(021) t_{1}^{-1} t_{2} t_{0}=t_{1}^{-1} t_{0}^{-1} \Rightarrow(021) t_{1}^{-1} t_{2} t_{0} t_{2}=t_{1}^{-1} t_{0}^{-1} t_{2} \Rightarrow(021) t_{1}^{-1} t_{2} t_{0} t_{2} t_{0}$ $=t_{1}^{-1} t_{0}^{-1} t_{2} t_{0} \Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1}^{-1} t_{2} t_{0} t_{2} t_{0} t_{1}^{-1}=t_{1}^{-1} t_{0}^{-1} t_{2} t_{0} t_{1}^{-1}$. Now, $t_{1}^{-1} t_{0}^{-1} t_{2} t_{0} t_{1}^{-1}=$ (02 1) $t_{0} t_{1} t_{0} t_{1}^{-1}$ and (02 1) $t_{1}^{-1} t_{2} t_{0} t_{2} t_{0} t_{1}^{-1}=t_{1}^{-1} t_{0}^{-1} t_{2} t_{0} t_{1}^{-1}$ imply that
(021) $t_{1}^{-1} t_{2} t_{0} t_{2} t_{0} t_{1}^{-1}=t_{1}^{-1} t_{0}^{-1} t_{2} t_{0} t_{1}^{-1}=\left(\begin{array}{ll}0 & 21)\end{array} t_{0} t_{1} t_{0} t_{1}^{-1} \Rightarrow(021) t_{1}^{-1} t_{2} t_{0} t_{2} t_{0} t_{1}^{-1}\right.$ $=\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{0} t_{1} t_{0} t_{1}^{-1}$, and so (021) $t_{1}^{-1} t_{2} t_{0} t_{2} t_{0} t_{1}^{-1}=\left(\begin{array}{ll}0 & 2\end{array}\right) t_{0} t_{1} t_{0} t_{1}^{-1} \Rightarrow$ (02 1 1) $t_{1}^{-1} t_{2} t_{0} t_{2} t_{0} t_{1}^{-1} t_{1}=\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{0} t_{1} t_{0} t_{1}^{-1} t_{1} \Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1}^{-1} t_{2} t_{0} t_{2} t_{0}=\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{0} t_{1} t_{0} \Rightarrow$ $(012)(021) t_{1}^{-1} t_{2} t_{0} t_{2} t_{0}=(012)(021) t_{0} t_{1} t_{0} \Rightarrow t_{1}^{-1} t_{2} t_{0} t_{2} t_{0}=t_{0} t_{1} t_{0} \Rightarrow t_{1} t_{1}^{-1} t_{2} t_{0} t_{2} t_{0}$ $=t_{1} t_{0} t_{1} t_{0} \Rightarrow t_{2} t_{0} t_{2} t_{0}=t_{1} t_{0} t_{1} t_{0}$. Moreover, by conjugation, $\left[t_{2} t_{0} t_{2} t_{0}\right]^{(23)}=$ $\left[t_{1} t_{0} t_{1} t_{0}\right]^{(23)} \Rightarrow t_{3} t_{0} t_{3} t_{0}=t_{1} t_{0} t_{1} t_{0}$ and, also by conjugation, $\left[t_{2} t_{0} t_{2} t_{0}\right]^{(24)}=$ $\left[t_{1} t_{0} t_{1} t_{0}\right]^{(24)} \Rightarrow t_{4} t_{0} t_{4} t_{0}=t_{1} t_{0} t_{1} t_{0}$. Therefore, $t_{2} t_{0} t_{2} t_{0}=t_{1} t_{0} t_{1} t_{0}$ and $t_{3} t_{0} t_{3} t_{0}=$ $t_{1} t_{0} t_{1} t_{0}$ and $t_{4} t_{0} t_{4} t_{0}=t_{1} t_{0} t_{1} t_{0}$ imply that $t_{2} t_{0} t_{2} t_{0}=t_{1} t_{0} t_{1} t_{0}=t_{3} t_{0} t_{3} t_{0}=t_{4} t_{0} t_{4} t_{0}$. Therefore, by conjugation, we see that $\left[t_{2} t_{0} t_{2} t_{0}\right]^{(01)}=\left[t_{1} t_{0} t_{1} t_{0}\right]^{(01)}=\left[t_{3} t_{0} t_{3} t_{0}\right]^{(01)}$ $=\left[t_{4} t_{0} t_{4} t_{0}\right]^{(01)} \Rightarrow t_{2} t_{1} t_{2} t_{1}=t_{0} t_{1} t_{0} t_{1}=t_{3} t_{1} t_{3} t_{1}=t_{4} t_{1} t_{4} t_{1}$ and $\left[t_{2} t_{0} t_{2} t_{0}\right]^{(02)}=$ $\left[t_{1} t_{0} t_{1} t_{0}\right]^{(02)}=\left[t_{3} t_{0} t_{3} t_{0}\right]^{(02)}=\left[t_{4} t_{0} t_{4} t_{0}\right]^{(02)} \Rightarrow t_{0} t_{2} t_{0} t_{2}=t_{1} t_{2} t_{1} t_{2}=t_{3} t_{2} t_{3} t_{2}=$ $t_{4} t_{2} t_{4} t_{2}$ and $\left[t_{2} t_{0} t_{2} t_{0}\right]^{(03)}=\left[t_{1} t_{0} t_{1} t_{0}\right]^{(03)}=\left[t_{3} t_{0} t_{3} t_{0}\right]^{(03)}=\left[t_{4} t_{0} t_{4} t_{0}\right]^{(03)} \Rightarrow t_{2} t_{3} t_{2} t_{3}$ $=t_{1} t_{3} t_{1} t_{3}=t_{0} t_{3} t_{0} t_{3}=t_{4} t_{3} t_{4} t_{3}$ and $\left[t_{2} t_{0} t_{2} t_{0}\right]^{(04)}=\left[t_{1} t_{0} t_{1} t_{0}\right]^{(04)}=\left[t_{3} t_{0} t_{3} t_{0}\right]^{(04)}=$ $\left[t_{4} t_{0} t_{4} t_{0}\right]^{(04)} \Rightarrow t_{2} t_{4} t_{2} t_{4}=t_{1} t_{4} t_{1} t_{4}=t_{3} t_{4} t_{3} t_{4}=t_{0} t_{4} t_{0} t_{4}$. Finally, by relation (6.4), $t_{1} t_{0} t_{1} t_{0} t_{1} t_{0} t_{1} t_{0}=t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}$ and, by relation (6.2) and by left and right multiplication, $t_{0}^{-1} t_{1} t_{0}^{-1}=t_{1}^{-1} t_{0} t_{1}^{-1} \Rightarrow t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}=t_{1}^{-1} t_{0} t_{1}^{-1} t_{1} \Rightarrow t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}=t_{1}^{-1} t_{0} \Rightarrow$ $t_{0} t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}=t_{0} t_{1}^{-1} t_{0} \Rightarrow t_{1} t_{0}^{-1} t_{1}=t_{0} t_{1}^{-1} t_{0} \Rightarrow t_{1} t_{1} t_{0}^{-1} t_{1}=t_{1} t_{0} t_{1}^{-1} t_{0} \Rightarrow t_{1}^{-1} t_{0}^{-1} t_{1}=$ $t_{1} t_{0} t_{1}^{-1} t_{0} \Rightarrow t_{1}^{-1} t_{0}^{-1} t_{1} t_{1}=t_{1} t_{0} t_{1}^{-1} t_{0} t_{1} \Rightarrow t_{1}^{-1} t_{0}^{-1} t_{1}^{-1}=t_{1} t_{0} t_{1}^{-1} t_{0} t_{1} \Rightarrow t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}=$ $t_{1} t_{0} t_{1}^{-1} t_{0} t_{1} t_{0}^{-1}$. Now, $t_{1} t_{0} t_{1} t_{0} t_{1} t_{0} t_{1} t_{0}=t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}$ and $t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}=$
$t_{1} t_{0} t_{1}^{-1} t_{0} t_{1} t_{0}^{-1}$ imply that $t_{1} t_{0} t_{1} t_{0} t_{1} t_{0} t_{1} t_{0}=t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}=t_{1} t_{0} t_{1}^{-1} t_{0} t_{1} t_{0}^{-1}$ which implies that $t_{1} t_{0} t_{1} t_{0} t_{1} t_{0} t_{1} t_{0}=t_{1} t_{0} t_{1}^{-1} t_{0} t_{1} t_{0}^{-1} \Rightarrow t_{1}^{-1} t_{1} t_{0} t_{1} t_{0} t_{1} t_{0} t_{1} t_{0}=t_{1}^{-1} t_{1} t_{0} t_{1}^{-1} t_{0} t_{1} t_{0}^{-1}$ $\Rightarrow t_{0} t_{1} t_{0} t_{1} t_{0} t_{1} t_{0}=t_{0} t_{1}^{-1} t_{0} t_{1} t_{0}^{-1} \Rightarrow t_{0}^{-1} t_{0} t_{1} t_{0} t_{1} t_{0} t_{1} t_{0}=t_{0}^{-1} t_{0} t_{1}^{-1} t_{0} t_{1} t_{0}^{-1} \Rightarrow t_{1} t_{0} t_{1} t_{0} t_{1} t_{0}$ $=t_{1}^{-1} t_{0} t_{1} t_{0}^{-1} \Rightarrow t_{1}^{-1} t_{1} t_{0} t_{1} t_{0} t_{1} t_{0}=t_{1}^{-1} t_{1}^{-1} t_{0} t_{1} t_{0}^{-1} \Rightarrow t_{0} t_{1} t_{0} t_{1} t_{0}=t_{1} t_{0} t_{1} t_{0}^{-1} \Rightarrow$ $t_{0} t_{1} t_{0} t_{1} t_{0} t_{0}^{-1}=t_{1} t_{0} t_{1} t_{0}^{-1} t_{0}^{-1} \Rightarrow t_{0} t_{1} t_{0} t_{1}=t_{1} t_{0} t_{1} t_{0}$. Therefore, by conjugation, we see that $\left[t_{0} t_{1} t_{0} t_{1}\right]^{(12)}=\left[t_{1} t_{0} t_{1} t_{0}\right]^{(12)} \Rightarrow t_{0} t_{2} t_{0} t_{2}=t_{2} t_{0} t_{2} t_{0}$ and $\left[t_{0} t_{1} t_{0} t_{1}\right]^{(13)}=$ $\left[t_{1} t_{0} t_{1} t_{0}\right]^{(13)} \Rightarrow t_{0} t_{3} t_{0} t_{3}=t_{3} t_{0} t_{3} t_{0}$ and $\left[t_{0} t_{1} t_{0} t_{1}\right]^{(14)}=\left[t_{1} t_{0} t_{1} t_{0}\right]^{(14)} \Rightarrow t_{0} t_{4} t_{0} t_{4}=$ $t_{4} t_{0} t_{4} t_{0}$. Therefore, the relations $t_{2} t_{0} t_{2} t_{0}=t_{1} t_{0} t_{1} t_{0}=t_{3} t_{0} t_{3} t_{0}=t_{4} t_{0} t_{4} t_{0}$ and $t_{2} t_{1} t_{2} t_{1}=t_{0} t_{1} t_{0} t_{1}=t_{3} t_{1} t_{3} t_{1}=t_{4} t_{1} t_{4} t_{1}$ and $t_{0} t_{2} t_{0} t_{2}=t_{1} t_{2} t_{1} t_{2}=t_{3} t_{2} t_{3} t_{2}=t_{4} t_{2} t_{4} t_{2}$ and $t_{2} t_{3} t_{2} t_{3}=t_{1} t_{3} t_{1} t_{3}=t_{0} t_{3} t_{0} t_{3}=t_{4} t_{3} t_{4} t_{3}$ and $t_{2} t_{4} t_{2} t_{4}=t_{1} t_{4} t_{1} t_{4}=t_{3} t_{4} t_{3} t_{4}=$ $t_{0} t_{4} t_{0} t_{4}$, and $t_{0} t_{1} t_{0} t_{1}=t_{1} t_{0} t_{1} t_{0}$ and $t_{0} t_{2} t_{0} t_{2}=t_{2} t_{0} t_{2} t_{0}$ and $t_{0} t_{3} t_{0} t_{3}=t_{3} t_{0} t_{3} t_{0}$ and $t_{0} t_{4} t_{0} t_{4}=t_{4} t_{0} t_{4} t_{0}$ imply, in terms of our short-hand notation, that:

$$
1010 \sim 2020 \sim 3030 \sim 4040 \sim 0101 \sim 2121 \sim 3131 \sim 4141 \sim 1212 \sim 0202 \sim
$$

$$
3232 \sim 4242 \sim 1313 \sim 2323 \sim 0303 \sim 4343 \sim 1414 \sim 2424 \sim 3434 \sim 0404
$$

Since each of the twenty single cosets has twenty names, the double coset [0101] must have at most one distinct single coset.

Now, $N^{(0101)}$ has two orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}, t_{4}\right\}:\{0,1,2,3,4\}$ and $\{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}\}$. Therefore, there are at most two double cosets of the form $N w N$, where w is a word of length five given by $w=t_{0} t_{1} t_{0} t_{1} t_{i}^{ \pm 1}, i=0: N t_{0} t_{1} t_{0} t_{1} t_{0} N$ and $N t_{0} t_{1} t_{0} t_{1} t_{0}^{-1} N$.

But note that, by relations (6.2) and (6.4), $t_{0} t_{1} t_{0} t_{1}=t_{1} t_{0} t_{1} t_{0} \Rightarrow t_{0} t_{1} t_{0} t_{1} t_{0}=$ $t_{1} t_{0} t_{1} t_{0} t_{0} \Rightarrow t_{0} t_{1} t_{0} t_{1} t_{0}=t_{1} t_{0} t_{1} t_{0}^{-1}$ implies that $N t_{0} t_{1} t_{0} t_{1} t_{0}=N t_{1} t_{0} t_{1} t_{0}^{-1}$. Therefore, $N t_{0} t_{1} t_{0} t_{1} t_{0} N=N t_{0} t_{1} t_{0} t_{1}^{-1} N$. That is, $[010 \overline{1}]=[01010]$.
Similarly, by relations (6.2) and (6.4), $t_{0} t_{1} t_{0} t_{1}=t_{1} t_{0} t_{1} t_{0} \Rightarrow t_{0} t_{1} t_{0} t_{1} t_{0}^{-1}=t_{1} t_{0} t_{1} t_{0} t_{0}^{-1}$ $\Rightarrow t_{0} t_{1} t_{0} t_{1} t_{0}^{-1}=t_{1} t_{0} t_{1}$ implies that $N t_{0} t_{1} t_{0} t_{1} t_{0}^{-1}=N t_{1} t_{0} t_{1}$. Therefore, $N t_{0} t_{1} t_{0} t_{1} t_{0}^{-1} N=N t_{0} t_{1} t_{0} N$. That is, [010] $=[01010 \overline{]}$.
Since $N t_{0} t_{1} t_{0} t_{1} t_{0} N=N t_{0} t_{1} t_{0} t_{1}^{-1} N$ and $N t_{0} t_{1} t_{0} t_{1} t_{0}^{-1} N=N t_{0} t_{1} t_{0} N$, we need not consider additional double cosets of the form $N t_{0} t_{1} t_{0} t_{1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3,4\}$.
19. We next consider the double coset $N t_{0} t_{1} t_{0}^{-1} t_{1}^{-1} N$.

Let [010̄1] denote the double coset $N t_{0} t_{1} t_{0}^{-1} t_{1}^{-1} N$.

Note that by relation (6.2), $t_{0}^{-1} t_{1} t_{0}^{-1}=t_{1}^{-1} t_{0} t_{1}^{-1} \Rightarrow t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1}=t_{1}^{-1} t_{0} t_{1} \Rightarrow$ $t_{0} t_{1} t_{0}^{-1} t_{1}^{-1}=t_{0}^{-1} t_{1}^{-1} t_{0} t_{1}$ implies that $N t_{0} t_{1} t_{0}^{-1} t_{1}^{-1}=N t_{0}^{-1} t_{1}^{-1} t_{0} t_{1}$ which implies that $N t_{0} t_{1} t_{0}^{-1} t_{1}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{0} t_{1} N$. Therefore, $N t_{0} t_{1} t_{0}^{-1} t_{1}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{0} t_{1} N$. That is, $[01 \overline{0} \overline{1}]=[\overline{0} \overline{1} 01]$.

Hence note that $N t_{0} t_{1} t_{0}^{-1} t_{1}^{-1} N=\left\{N t_{0} t_{1} t_{0}^{-1} t_{1}^{-1} n \mid n \in N\right\}=\left\{N n^{-1} t_{0} t_{1} t_{0}^{-1} t_{1}^{-1} n \mid\right.$ $n \in N\}=\left\{N\left(t_{0} t_{1} t_{0}^{-1} t_{1}^{-1}\right)^{n} \mid n \in N\right\}=\left\{N t_{i} t_{j} t_{i}^{-1} t_{j}^{-1} \mid i, j \in\{0,1,2,3,4\}, i \neq\right.$ $j\}=\left\{N t_{i}^{-1} t_{j}^{-1} t_{i} t_{j} \mid i, j \in\{0,1,2,3,4\}, i \neq j\right\}=\left\{N\left(t_{0}^{-1} t_{1}^{-1} t_{0} t_{1}\right)^{n} \mid n \in N\right\}=$ $\left\{N n^{-1} t_{0}^{-1} t_{1}^{-1} t_{0} t_{1} n \mid n \in N\right\}=\left\{N t_{0}^{-1} t_{1}^{-1} t_{0} t_{1} n \mid n \in N\right\}=N t_{0}^{-1} t_{1}^{-1} t_{0} t_{1} N$.

Recall that in step 4 of our manual double coset enumeration, we determined, by relation (6.3), that $t_{0} t_{1}^{-1}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{2}^{-1}=\left(\begin{array}{lll}0 & 1 & 3\end{array}\right) t_{0} t_{3}^{-1}=\left(\begin{array}{lll}0 & 1 & 4\end{array}\right) t_{0} t_{4}^{-1}$ and so, by conjugation, $\left.\left.\left.\left.\left.\left[t_{0} t_{1}^{-1}\right]^{(01)}=\left[\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{2}^{-1}\right]^{(0} 1\right)=\left[\begin{array}{lll}\left(\begin{array}{ll}0 & 1\end{array}\right) t_{0} t_{3}^{-1}\end{array}\right]^{(0} 1\right)=\left[\begin{array}{lll}0 & 1 & 4\end{array}\right) t_{0} t_{4}^{-1}\right]^{(0} 1\right) \Rightarrow$ $t_{1} t_{0}^{-1}=\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1} t_{2}^{-1}=\left(\begin{array}{lll}0 & 3 & 1\end{array}\right) t_{1} t_{3}^{-1}=\left(\begin{array}{lll}0 & 4 & 1\end{array}\right) t_{1} t_{4}^{-1}$ and finally, by left multiplication, $t_{0} t_{1} t_{0}^{-1}=t_{0}\left(\begin{array}{lll}0 & 2\end{array}\right) t_{1} t_{2}^{-1}=t_{0}\left(\begin{array}{lll}0 & 3 & 1\end{array}\right) t_{1} t_{3}^{-1}=t_{0}\left(\begin{array}{lll}0 & 4 & 1\end{array}\right) t_{1} t_{4}^{-1} \Rightarrow t_{0} t_{1} t_{0}^{-1}=$ $(021)(012) t_{0}(021) t_{1} t_{2}^{-1}=(031)(013) t_{0}(031) t_{1} t_{3}^{-1}=(041)(014) t_{0}(041) t_{1} t_{4}^{-1}$ $\Rightarrow t_{0} t_{1} t_{0}^{-1}=\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{0}^{(021)} t_{1} t_{2}^{-1}=\left(\begin{array}{lll}0 & 3 & 1\end{array}\right) t_{0}^{(031)} t_{1} t_{3}^{-1}=\left(\begin{array}{lll}0 & 4 & 1\end{array}\right) t_{0}^{(041)} t_{1} t_{4}^{-1} \Rightarrow$ $t_{0} t_{1} t_{0}^{-1}=\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{2} t_{1} t_{2}^{-1}=\left(\begin{array}{lll}0 & 3 & 1\end{array}\right) t_{3} t_{1} t_{3}^{-1}=\left(\begin{array}{lll}0 & 4 & 1\end{array}\right) t_{4} t_{1} t_{4}^{-1}$ and, by right multiplication, $t_{0} t_{1} t_{0}^{-1} t_{1}^{-1}=\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{2} t_{1} t_{2}^{-1} t_{1}^{-1}=\left(\begin{array}{lll}0 & 3\end{array}\right) t_{3} t_{1} t_{3}^{-1} t_{1}^{-1}=\left(\begin{array}{lll}0 & 4\end{array}\right) t_{4} t_{1} t_{4}^{-1} t_{1}^{-1} . \mathrm{By}$ conjugation, we find that $\left.\left[t_{0} t_{1} t_{0}^{-1} t_{1}^{-1}\right]^{(01)}=\left[\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{2} t_{1} t_{2}^{-1} t_{1}^{-1}\right]^{(01)}=$ $\left[\left(\begin{array}{lll}0 & 3 & 1\end{array}\right) t_{3} t_{1} t_{3}^{-1} t_{1}^{-1}\right]^{(01)}=\left[\left(\begin{array}{lll}0 & 4 & 1\end{array}\right) t_{4} t_{1} t_{4}^{-1} t_{1}^{-1}\right]^{(01)} \Rightarrow t_{1} t_{0} t_{1}^{-1} t_{0}^{-1}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{2} t_{0} t_{2}^{-1} t_{0}^{-1}=$ (013) $t_{3} t_{0} t_{3}^{-1} t_{0}^{-1}=\left(\begin{array}{lll}0 & 1\end{array}\right) t_{4} t_{0} t_{4}^{-1} t_{0}^{-1}$ and $\left[t_{0} t_{1} t_{0}^{-1} t_{1}^{-1}\right]^{(12)}=\left[(021) t_{2} t_{1} t_{2}^{-1} t_{1}^{-1}\right]^{(12)}=$ $\left[\left(\begin{array}{lll}0 & 3 & 1\end{array}\right) t_{3} t_{1} t_{3}^{-1} t_{1}^{-1}\right]^{(12)}=\left[\left(\begin{array}{lll}0 & 4\end{array}\right) t_{4} t_{1} t_{4}^{-1} t_{1}^{-1}\right]^{(12)} \Rightarrow t_{0} t_{2} t_{0}^{-1} t_{2}^{-1}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{1} t_{2} t_{1}^{-1} t_{2}^{-1}=$ (032) $t_{3} t_{2} t_{3}^{-1} t_{2}^{-1}=(042) t_{4} t_{2} t_{4}^{-1} t_{2}^{-1}$ and $\left[t_{0} t_{1} t_{0}^{-1} t_{1}^{-1}\right]^{(13)}=\left[(021) t_{2} t_{1} t_{2}^{-1} t_{1}^{-1}\right]^{(13)}=$ $\left[\left(\begin{array}{lll}0 & 3 & 1\end{array}\right) t_{3} t_{1} t_{3}^{-1} t_{1}^{-1}\right]^{(13)}=\left[\left(\begin{array}{ll}0 & 4\end{array}\right) t_{4} t_{1} t_{4}^{-1} t_{1}^{-1}\right]^{(13)} \Rightarrow t_{0} t_{3} t_{0}^{-1} t_{3}^{-1}=\left(\begin{array}{lll}0 & 2\end{array}\right) t_{2} t_{3} t_{2}^{-1} t_{3}^{-1}=$ (013) $t_{1} t_{3} t_{1}^{-1} t_{3}^{-1}=(043) t_{4} t_{3} t_{4}^{-1} t_{3}^{-1}$ and $\left[t_{0} t_{1} t_{0}^{-1} t_{1}^{-1}\right]^{(14)}=\left[(021) t_{2} t_{1} t_{2}^{-1} t_{1}^{-1}\right]^{(14)}=$ $\left[\left(\begin{array}{lll}0 & 3 & 1\end{array}\right) t_{3} t_{1} t_{3}^{-1} t_{1}^{-1}\right]^{(14)}=\left[\left(\begin{array}{lll}0 & 4\end{array}\right) t_{4} t_{1} t_{4}^{-1} t_{1}^{-1}\right]^{(14)} \Rightarrow t_{0} t_{4} t_{0}^{-1} t_{4}^{-1}=\left(\begin{array}{lll}0 & 2\end{array}\right) t_{2} t_{4} t_{2}^{-1} t_{4}^{-1}=$ (0 344) $t_{3} t_{4} t_{3}^{-1} t_{4}^{-1}=\left(\begin{array}{lll}0 & 1 & 4\end{array}\right) t_{1} t_{4} t_{1}^{-1} t_{4}^{-1}$. Now, by relation (6.2) and by right and left multiplication, $t_{0}^{-1} t_{1} t_{0}^{-1}=t_{1}^{-1} t_{0} t_{1}^{-1} \Rightarrow t_{0} t_{0}^{-1} t_{1} t_{0}^{-1}=t_{0} t_{1}^{-1} t_{0} t_{1}^{-1} \Rightarrow t_{1} t_{0}^{-1}=$ $t_{0} t_{1}^{-1} t_{0} t_{1}^{-1} \Rightarrow t_{1} t_{0}^{-1} t_{1}=t_{0} t_{1}^{-1} t_{0} t_{1}^{-1} t_{1} \Rightarrow t_{1} t_{0}^{-1} t_{1}=t_{0} t_{1}^{-1} t_{0} \Rightarrow t_{1} t_{0}^{-1} t_{1} t_{0}=t_{0} t_{1}^{-1} t_{0} t_{0} \Rightarrow$ $t_{1} t_{0}^{-1} t_{1} t_{0}=t_{0} t_{1}^{-1} t_{0}^{-1} \Rightarrow t_{1} t_{1} t_{0}^{-1} t_{1} t_{0}=t_{1} t_{0} t_{1}^{-1} t_{0}^{-1} \Rightarrow t_{1}^{-1} t_{0}^{-1} t_{1} t_{0}=t_{1} t_{0} t_{1}^{-1} t_{0}^{-1}$ and, by relation (6.4), $t_{1} t_{0} t_{1} t_{0} t_{1} t_{0} t_{1} t_{0}=t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}$ and, finally, by relation (6.2) and by left and right multiplication, $t_{0}^{-1} t_{1} t_{0}^{-1}=t_{1}^{-1} t_{0} t_{1}^{-1} \Rightarrow t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}=t_{1}^{-1} t_{0} t_{1}^{-1} t_{1} \Rightarrow$ $t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}=t_{1}^{-1} t_{0} \Rightarrow t_{0} t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}=t_{0} t_{1}^{-1} t_{0} \Rightarrow t_{1} t_{0}^{-1} t_{1}=t_{0} t_{1}^{-1} t_{0} \Rightarrow t_{1} t_{1} t_{0}^{-1} t_{1}=$
$t_{1} t_{0} t_{1}^{-1} t_{0} \Rightarrow t_{1}^{-1} t_{0}^{-1} t_{1}=t_{1} t_{0} t_{1}^{-1} t_{0} \Rightarrow t_{1}^{-1} t_{0}^{-1} t_{1} t_{1}=t_{1} t_{0} t_{1}^{-1} t_{0} t_{1} \Rightarrow t_{1}^{-1} t_{0}^{-1} t_{1}^{-1}=$ $t_{1} t_{0} t_{1}^{-1} t_{0} t_{1} \Rightarrow t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}=t_{1} t_{0} t_{1}^{-1} t_{0} t_{1} t_{0}^{-1}$. Now $t_{1} t_{0} t_{1} t_{0} t_{1} t_{0} t_{1} t_{0}=t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}$ and $t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}=t_{1} t_{0} t_{1}^{-1} t_{0} t_{1} t_{0}^{-1}$ imply that $t_{1} t_{0} t_{1} t_{0} t_{1} t_{0} t_{1} t_{0}=t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}=$ $t_{1} t_{0} t_{1}^{-1} t_{0} t_{1} t_{0}^{-1}$ which implies that $t_{1} t_{0} t_{1} t_{0} t_{1} t_{0} t_{1} t_{0}=t_{1} t_{0} t_{1}^{-1} t_{0} t_{1} t_{0}^{-1} \Rightarrow$
$t_{1}^{-1} t_{1} t_{0} t_{1} t_{0} t_{1} t_{0} t_{1} t_{0}=t_{1}^{-1} t_{1} t_{0} t_{1}^{-1} t_{0} t_{1} t_{0}^{-1} \Rightarrow t_{0} t_{1} t_{0} t_{1} t_{0} t_{1} t_{0}=t_{0} t_{1}^{-1} t_{0} t_{1} t_{0}^{-1} \Rightarrow$
$t_{0}^{-1} t_{0} t_{1} t_{0} t_{1} t_{0} t_{1} t_{0}=t_{0}^{-1} t_{0} t_{1}^{-1} t_{0} t_{1} t_{0}^{-1} \Rightarrow t_{1} t_{0} t_{1} t_{0} t_{1} t_{0}=t_{1}^{-1} t_{0} t_{1} t_{0}^{-1} \Rightarrow t_{1}^{-1} t_{1} t_{0} t_{1} t_{0} t_{1} t_{0}=$ $t_{1}^{-1} t_{1}^{-1} t_{0} t_{1} t_{0}^{-1} \Rightarrow t_{0} t_{1} t_{0} t_{1} t_{0}=t_{1} t_{0} t_{1} t_{0}^{-1} \Rightarrow t_{0} t_{1} t_{0} t_{1} t_{0} t_{0}^{-1}=t_{1} t_{0} t_{1} t_{0}^{-1} t_{0}^{-1} \Rightarrow t_{0} t_{1} t_{0} t_{1}=$ $t_{1} t_{0} t_{1} t_{0} \Rightarrow t_{0} t_{1} t_{0} t_{1} t_{1}^{-1}=t_{1} t_{0} t_{1} t_{0} t_{1}^{-1} \Rightarrow t_{0} t_{1} t_{0}=t_{1} t_{0} t_{1} t_{0} t_{1}^{-1} \Rightarrow t_{0} t_{1} t_{0} t_{0}^{-1}=$ $t_{1} t_{0} t_{1} t_{0} t_{1}^{-1} t_{0}^{-1} \Rightarrow t_{0} t_{1}=t_{1} t_{0} t_{1} t_{0} t_{1}^{-1} t_{0}^{-1} \Rightarrow t_{1}^{-1} t_{0} t_{1}=t_{1}^{-1} t_{1} t_{0} t_{1} t_{0} t_{1}^{-1} t_{0}^{-1} \Rightarrow t_{1}^{-1} t_{0} t_{1}=$ $t_{0} t_{1} t_{0} t_{1}^{-1} t_{0}^{-1} \Rightarrow t_{0}^{-1} t_{1}^{-1} t_{0} t_{1}=t_{0}^{-1} t_{0} t_{1} t_{0} t_{1}^{-1} t_{0}^{-1} \Rightarrow t_{0}^{-1} t_{1}^{-1} t_{0} t_{1}=t_{1} t_{0} t_{1}^{-1} t_{0}^{-1} \Rightarrow$ $\left[t_{0}^{-1} t_{1}^{-1} t_{0} t_{1}\right]^{(01)}=\left[t_{1} t_{0} t_{1}^{-1} t_{0}^{-1}\right]^{(01)} \Rightarrow t_{1}^{-1} t_{0}^{-1} t_{1} t_{0}=t_{0} t_{1} t_{0}^{-1} t_{1}^{-1}$; therefore, $t_{1}^{-1} t_{0}^{-1} t_{1} t_{0}$ $=t_{1} t_{0} t_{1}^{-1} t_{0}^{-1}$ and $t_{1}^{-1} t_{0}^{-1} t_{1} t_{0}=t_{0} t_{1} t_{0}^{-1} t_{1}^{-1}$ imply that $t_{1} t_{0} t_{1}^{-1} t_{0}^{-1}=t_{1}^{-1} t_{0}^{-1} t_{1} t_{0}=$ $t_{0} t_{1} t_{0}^{-1} t_{1}^{-1} \Rightarrow t_{1} t_{0} t_{1}^{-1} t_{0}^{-1}=t_{0} t_{1} t_{0}^{-1} t_{1}^{-1}$. By conjugation, we find that $\left[t_{1} t_{0} t_{1}^{-1} t_{0}^{-1}\right]^{(12)}$ $=\left[t_{0} t_{1} t_{0}^{-1} t_{1}^{-1}\right]^{(12)} \Rightarrow t_{2} t_{0} t_{2}^{-1} t_{0}^{-1}=t_{0} t_{2} t_{0}^{-1} t_{2}^{-1}$ and $\left[t_{1} t_{0} t_{1}^{-1} t_{0}^{-1}\right]^{(13)}=\left[t_{0} t_{1} t_{0}^{-1} t_{1}^{-1}\right]^{(13)}$ $\Rightarrow t_{3} t_{0} t_{3}^{-1} t_{0}^{-1}=t_{0} t_{3} t_{0}^{-1} t_{3}^{-1}$ and $\left[t_{1} t_{0} t_{1}^{-1} t_{0}^{-1}\right]^{(14)}=\left[t_{0} t_{1} t_{0}^{-1} t_{1}^{-1}\right]^{(14)} \Rightarrow t_{4} t_{0} t_{4}^{-1} t_{0}^{-1}$ $=t_{0} t_{4} t_{0}^{-1} t_{4}^{-1}$. These relations imply that:

$$
01 \overline{0} \overline{1} \sim 21 \overline{2} \overline{1} \sim 31 \overline{3} \overline{1} \sim 41 \overline{4} \overline{1} \sim 10 \overline{1} \overline{0} \sim 20 \overline{2} \overline{0} \sim 30 \overline{3} \overline{0} \sim 40 \overline{4} \overline{0} \sim 02 \overline{0} \overline{2} \sim 12 \overline{1} \overline{2} \sim
$$

$$
32 \overline{3} \overline{2} \sim 42 \overline{4} \overline{2} \sim 03 \overline{0} \overline{3} \sim 13 \overline{1} \overline{3} \sim 23 \overline{2} \overline{3} \sim 43 \overline{4} \overline{3} \sim 04 \overline{0} \overline{4} \sim 14 \overline{1} \overline{4} \sim 24 \overline{2} \overline{4} \sim 34 \overline{3} \overline{4}
$$

Since each of the twenty single cosets has twenty names, the double coset $[01 \overline{0} \overline{1}]=$ [0101] must have at most one distinct single coset.
Now, $N^{(01 \overline{0} \overline{1})}$ has two orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}, t_{4}\right\}:\{0,1,2,3,4\}$ and $\{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}\}$.
Therefore, there are at most two double cosets of the form $N w N$, where w is a word of length five given by $w=t_{0} t_{1} t_{0}^{-1} t_{1}^{-1} t_{i}^{ \pm 1}, i=0: N t_{0} t_{1} t_{0}^{-1} t_{1}^{-1} t_{0} N$ and $N t_{0} t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} N$.
But note that, by relations (6.2), (6.3), and (6.4), $t_{0} t_{1} t_{0}^{-1} t_{1}^{-1}=t_{1} t_{0} t_{1}^{-1} t_{0}^{-1} \Rightarrow$ $t_{0} t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}=t_{1} t_{0} t_{1}^{-1} t_{0}^{-1} t_{0} \Rightarrow t_{0} t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}=t_{1} t_{0} t_{1}^{-1}$ and this implies that $N t_{0} t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}=N t_{1} t_{0} t_{1}^{-1}$. Therefore, $N t_{0} t_{1} t_{0}^{-1} t_{1}^{-1} t_{0} N=N t_{0} t_{1} t_{0}^{-1} N$. That is, $[01 \overline{0}]=[01 \overline{0} \overline{1} 0]$.
Similarly, by relations (6.2) and (6.4), $t_{1}^{-1} t_{0}^{-1} t_{1} t_{0}=t_{0} t_{1} t_{0}^{-1} t_{1}^{-1} \Rightarrow t_{1}^{-1} t_{0}^{-1} t_{1} t_{0} t_{0}^{-1}=$ $t_{0} t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} \Rightarrow t_{1}^{-1} t_{0}^{-1} t_{1}=t_{0} t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}$ and this implies that $N t_{0} t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}=$ $N t_{1}^{-1} t_{0}^{-1} t_{1}$. Therefore, $N t_{0} t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{0} N$. That is, $[\overline{0} \overline{1} 0]=[01 \overline{0} \overline{1} \overline{0}]$.

Since $N t_{0} t_{1} t_{0}^{-1} t_{1}^{-1} t_{0} N=N t_{0} t_{1} t_{0}^{-1} N$ and $N t_{0} t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{0} N$, we need not consider additional double cosets of the form $N t_{0} t_{1} t_{0}^{-1} t_{1}^{-1} t_{i}^{ \pm 1} N$, where $i \in$ $\{0,1,2,3,4\}$.
20. We next consider the double coset $N t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} N$.

Let [$\overline{0} \overline{1} \overline{0} \overline{1}]$ denote the double coset $N t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} N$.
Now, by relation (6.3) and by left and right multiplication and conjugation, (021) $t_{1}^{-1} t_{2}=t_{1}^{-1} t_{0} \Rightarrow t_{2}\left(\begin{array}{ll}0 & 2\end{array}\right) t_{1}^{-1} t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow(021)(012) t_{2}(021) t_{1}^{-1} t_{2}=$ $t_{2} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{2}^{(021)} t_{1}^{-1} t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{ll}0 & 2\end{array}\right) t_{1} t_{1}^{-1} t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{ll}0 & 2\end{array}\right) e t_{2}=$ $t_{2} t_{1}^{-1} t_{0} \Rightarrow(021) t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow(021) t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{ll}0 & 2\end{array}\right) t_{2} t_{0}^{-1}=t_{2} t_{1}^{-1} t_{0} t_{0}^{-1} \Rightarrow$ (02 1) $t_{2} t_{0}^{-1}=t_{2} t_{1}^{-1} e \Rightarrow\left(\begin{array}{ll}0 & 2\end{array}\right) t_{2} t_{0}^{-1}=t_{2} t_{1}^{-1} \Rightarrow\left(\begin{array}{ll}0 & 2\end{array}\right) t_{2} t_{0}^{-1}=t_{2} t_{1}^{-1} \Rightarrow$ $\left[\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{2} t_{0}^{-1}\right]^{\left(\begin{array}{lll}1 & 2\end{array}\right)}=\left[\begin{array}{lll}t_{2} t_{1}^{-1}\end{array}\right]^{\left(\begin{array}{lll}1 & 1\end{array}\right)} \Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{0} t_{1}^{-1}=t_{0} t_{2}^{-1} \Rightarrow t_{0} t_{1}^{-1}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{2}^{-1} \Rightarrow$ $\left.\left[t_{0} t_{1}^{-1}\right]^{(0} 1\right)=\left[\begin{array}{lll}\left.\left(\begin{array}{ll}1 & 2\end{array}\right) t_{0} t_{2}^{-1}\right]^{(01)} \Rightarrow t_{1} t_{0}^{-1}=\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1} t_{2}^{-1} \Rightarrow t_{1} t_{0}^{-1} t_{1}^{-1}=\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1} t_{2}^{-1} t_{1}^{-1}\end{array}\right.$ $\Rightarrow t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}=\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1} t_{2}^{-1} t_{1}^{-1} t_{0}$, and also by relation (6.3), (021$) t_{1}^{-1} t_{2}=$ $t_{1}^{-1} t_{0} \Rightarrow t_{2}^{-1}\left(\begin{array}{lll}0 & 2\end{array}\right) t_{1}^{-1} t_{2}=t_{2}^{-1} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{ll}0 & 2\end{array}\right)\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{2}^{-1}\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1}^{-1} t_{2}=t_{2}^{-1} t_{1}^{-1} t_{0} \Rightarrow$ $(021)\left(t_{2}^{-1}\right)^{(021)} t_{1}^{-1} t_{2}=t_{2}^{-1} t_{1}^{-1} t_{0} \Rightarrow(021) t_{1} t_{2}=t_{2}^{-1} t_{1}^{-1} t_{0} \Rightarrow t_{1}\left(\begin{array}{lll}(021)\end{array} t_{1} t_{2}=\right.$ $t_{1} t_{2}^{-1} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right)\left(\begin{array}{lll}0 & 1\end{array}\right) t_{1}\left(\begin{array}{lll}0 & 2\end{array}\right) t_{1} t_{2}=t_{1} t_{2}^{-1} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{lll}0 & 2\end{array}\right) t_{1}^{\left(0{ }^{2} 1\right)} t_{1} t_{2}=$ $t_{1} t_{2}^{-1} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{ll}0 & 2\end{array}\right) t_{0} t_{1} t_{2}=t_{1} t_{2}^{-1} t_{1}^{-1} t_{0}$, and so $t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}=\left(\begin{array}{ll}0 & 2\end{array}\right) t_{1} t_{2}^{-1} t_{1}^{-1} t_{0}$ and ($\left.\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{0} t_{1} t_{2}=t_{1} t_{2}^{-1} t_{1}^{-1} t_{0}$ imply that $t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}=\left(\begin{array}{ll}0 & 1\end{array} 2\right) t_{0} t_{1} t_{2}$. Moreover, by relation (6.3), $t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{1} t_{2} \Rightarrow t_{1} t_{0}^{-1} t_{1}^{-1} t_{0} t_{0}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{1} t_{2} t_{0} \Rightarrow$ $t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{1} t_{2} t_{0}$ and $t_{1} t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}=t_{1}\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{1} t_{2} \Rightarrow t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}=$ (012) (021) $t_{1}\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{1} t_{2} \Rightarrow t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{1}^{(012)} t_{0} t_{1} t_{2} \Rightarrow t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}=$ $\left.\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{2} t_{0} t_{1} t_{2} \Rightarrow\left[t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}\right]^{\left(\begin{array}{ll}(1)\end{array}\right)}=\left[\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{2} t_{0} t_{1} t_{2}\right]^{\left(\begin{array}{ll}(1) & 1\end{array}\right)} \Rightarrow t_{2}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1}=$ (012) $t_{0} t_{1} t_{2} t_{0}$, and thus $t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}=\left(\begin{array}{ll}0 & 1\end{array}\right) t_{0} t_{1} t_{2} t_{0}$ and $t_{2}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1}=$ $\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{1} t_{2} t_{0}$ imply that $t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{1} t_{2} t_{0}=t_{2}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1}$. Now, by conjugation, we see that $\left[t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}\right]^{(03)}=\left[t_{2}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1}\right]^{(03)} \Rightarrow t_{1} t_{3}^{-1} t_{1}^{-1} t_{3}^{-1}=$ $t_{2}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1}$ and $\left[t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}\right]^{(04)}=\left[t_{2}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1}\right]^{(04)} \Rightarrow t_{1} t_{4}^{-1} t_{1}^{-1} t_{4}^{-1}=t_{2}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1}$ and so $t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}=t_{2}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1}=t_{1} t_{3}^{-1} t_{1}^{-1} t_{3}^{-1}=t_{1} t_{4}^{-1} t_{1}^{-1} t_{4}^{-1}$. Finally, $t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}$ $=t_{2}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1}=t_{1} t_{3}^{-1} t_{1}^{-1} t_{3}^{-1}=t_{1} t_{4}^{-1} t_{1}^{-1} t_{4}^{-1}$ and $t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}=\left(\begin{array}{ll}0 & 1\end{array} 2\right) t_{0} t_{1} t_{2} t_{0}=$ $t_{2}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1}$ imply that $t_{1} t_{3}^{-1} t_{1}^{-1} t_{3}^{-1}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{1} t_{2} t_{0}$ and so, by conjugation, $\left[t_{1} t_{3}^{-1} t_{1}^{-1} t_{3}^{-1}\right]^{(23)}=\left[\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{1} t_{2} t_{0}\right]^{(23)} \Rightarrow t_{1} t_{2}^{-1} t_{1}^{-1} t_{2}^{-1}=\left(\begin{array}{lll}0 & 1 & 3\end{array}\right) t_{0} t_{1} t_{3} t_{0} \Rightarrow$ $\left(\begin{array}{lll}0 & 3 & 1\end{array}\right) t_{1} t_{2}^{-1} t_{1}^{-1} t_{2}^{-1}=\left(\begin{array}{lll}0 & 3 & 1\end{array}\right)\left(\begin{array}{lll}0 & 1 & 3\end{array}\right) t_{0} t_{1} t_{3} t_{0} \Rightarrow\left(\begin{array}{lll}0 & 3 & 1\end{array}\right) t_{1} t_{2}^{-1} t_{1}^{-1} t_{2}^{-1}=t_{0} t_{1} t_{3} t_{0} \Rightarrow$ $(032)(031) t_{1} t_{2}^{-1} t_{1}^{-1} t_{2}^{-1}=\left(\begin{array}{ll}0 & 3\end{array}\right) t_{0} t_{1} t_{3} t_{0} \Rightarrow(02)(13) t_{1} t_{2}^{-1} t_{1}^{-1} t_{2}^{-1}=\left(\begin{array}{ll}0 & 3\end{array}\right) t_{0} t_{1} t_{3} t_{0}$.

Now, by relation (6.3) and by right and left multiplication, (021) $t_{1}^{-1} t_{2}=t_{1}^{-1} t_{0} \Rightarrow$ (021) $t_{1}^{-1} t_{2} t_{2}=t_{1}^{-1} t_{0} t_{2} \Rightarrow(021) t_{1}^{-1} t_{2}^{-1}=t_{1}^{-1} t_{0} t_{2} \Rightarrow t_{1}^{-1}(021) t_{1}^{-1} t_{2}^{-1}=t_{1}^{-1} t_{1}^{-1} t_{0} t_{2}$ $\Rightarrow(021)(012) t_{1}^{-1}(021) t_{1}^{-1} t_{2}^{-1}=t_{1} t_{0} t_{2} \Rightarrow\left(t_{1}^{-1}\right)^{(021)} t_{1}^{-1} t_{2}^{-1}=t_{1} t_{0} t_{2} \Rightarrow$ $\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{0}^{-1} t_{1}^{-1} t_{2}^{-1}=t_{1} t_{0} t_{2} \Rightarrow t_{0}^{-1} t_{1}^{-1} t_{2}^{-1}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{1} t_{0} t_{2}$ and, by relation (6.1), (02) (13) $t_{1} t_{0} t_{3}=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1}$, and so $t_{0}^{-1} t_{1}^{-1} t_{2}^{-1}=\left(\begin{array}{ll}0 & 1\end{array}\right) t_{1} t_{0} t_{2}$ and $\left(\begin{array}{ll}0 & 2\end{array}\right)\left(\begin{array}{ll}1 & 3\end{array}\right) t_{1} t_{0} t_{3}=$ $t_{0}^{-1} t_{1}^{-1} t_{2}^{-1}$ imply that $\left(\begin{array}{ll}0 & 2\end{array}\right)\left(\begin{array}{ll}1 & 3\end{array}\right) t_{1} t_{0} t_{3}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{1} t_{0} t_{2}$, and so, by conjugation and right multiplication, $\left.\left[\left(\begin{array}{ll}0 & 2\end{array}\right)\left(\begin{array}{ll}1 & 3\end{array}\right) t_{1} t_{0} t_{3}\right]^{(01)}=\left[\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{1} t_{0} t_{2}\right]^{(01)} \Rightarrow\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}0 & 3\end{array}\right) t_{0} t_{1} t_{3}=$ $(021) t_{0} t_{1} t_{2} \Rightarrow\left(\begin{array}{ll}1 & 2\end{array}\right)(03) t_{0} t_{1} t_{3} t_{0}=\left(\begin{array}{ll}0 & 2\end{array}\right) t_{0} t_{1} t_{2} t_{0} \Rightarrow(021)(12)(03) t_{0} t_{1} t_{3} t_{0}=$ $(021)(021) t_{0} t_{1} t_{2} t_{0} \Rightarrow\left(\begin{array}{ll}0 & 3\end{array}\right) t_{0} t_{1} t_{3} t_{0}=\left(\begin{array}{ll}0 & 1\end{array}\right) t_{0} t_{1} t_{2} t_{0}$. Therefore, $\left(\begin{array}{ll}0 & 2\end{array}\right)\left(\begin{array}{ll}1 & 3\end{array}\right) t_{1} t_{2}^{-1} t_{1}^{-1} t_{2}^{-1}=\left(\begin{array}{lll}0 & 3 & 2\end{array}\right) t_{0} t_{1} t_{3} t_{0}$ and $\left(\begin{array}{lll}0 & 3 & 2\end{array}\right) t_{0} t_{1} t_{3} t_{0}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{1} t_{2} t_{0} \mathrm{im}-$ ply that $\left(\begin{array}{ll}0 & 2\end{array}\right)\left(\begin{array}{ll}1 & 3\end{array}\right) t_{1} t_{2}^{-1} t_{1}^{-1} t_{2}^{-1}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{1} t_{2} t_{0}$, and (0 2) (1 3) $t_{1} t_{2}^{-1} t_{1}^{-1} t_{2}^{-1}=$ (012) $\begin{aligned} & 0\end{aligned} t_{1} t_{2} t_{0}$ and $t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{1} t_{2} t_{0}=t_{2}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1}=t_{1} t_{3}^{-1} t_{1}^{-1} t_{3}^{-1}=$ $t_{1} t_{4}^{-1} t_{1}^{-1} t_{4}^{-1}$ imply that $t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}=(02)(13) t_{1} t_{2}^{-1} t_{1}^{-1} t_{2}^{-1}=t_{1} t_{3}^{-1} t_{1}^{-1} t_{3}^{-1}=$ $t_{1} t_{4}^{-1} t_{1}^{-1} t_{4}^{-1}$ which implies that $t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1}=\left(\begin{array}{ll}0 & 2\end{array}\right)\left(\begin{array}{ll}1 & 3\end{array}\right) t_{1} t_{2}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1}^{-1}=$ $t_{1} t_{3}^{-1} t_{1}^{-1} t_{3}^{-1} t_{1}^{-1}=t_{1} t_{4}^{-1} t_{1}^{-1} t_{4}^{-1} t_{1}^{-1}$. Now $t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}=t_{2}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} \Rightarrow$ $t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1}=t_{2}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} t_{1}^{-1} \Rightarrow t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1}=t_{2}^{-1} t_{1}^{-1} t_{2}^{-1}$ and so, by conjugation, $\left[t_{2}^{-1} t_{1}^{-1} t_{2}^{-1}\right]^{(02)}=\left[t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1}\right]^{(02)} \Rightarrow t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}=t_{1} t_{2}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1}^{-1}$, and since $t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1}=(02)(13) t_{1} t_{2}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1}^{-1}$, we see that $(02)(13) t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}=$ (0 2) (13) $t_{1} t_{2}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1}^{-1}=t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1}=t_{2}^{-1} t_{1}^{-1} t_{2}^{-1}$. Similarly, by conjugation, $\left[t_{2}^{-1} t_{1}^{-1} t_{2}^{-1}\right]^{(23)}=\left[t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1}\right]^{(23)} \Rightarrow t_{3}^{-1} t_{1}^{-1} t_{3}^{-1}=t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1}$ and since $t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1}=t_{2}^{-1} t_{1}^{-1} t_{2}^{-1}$, we see that $t_{3}^{-1} t_{1}^{-1} t_{3}^{-1}=t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1}=t_{2}^{-1} t_{1}^{-1} t_{2}^{-1} ;$ and, finally, by conjugation, $\left[t_{2}^{-1} t_{1}^{-1} t_{2}^{-1}\right]^{(24)}=\left[t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1}\right]^{(24)} \Rightarrow t_{4}^{-1} t_{1}^{-1} t_{4}^{-1}=$ $t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1}$ and since $t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1}=t_{2}^{-1} t_{1}^{-1} t_{2}^{-1}$, we see that $t_{4}^{-1} t_{1}^{-1} t_{4}^{-1}=$ $t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1}=t_{2}^{-1} t_{1}^{-1} t_{2}^{-1}$. And, by further conjugation, $\left.\left[\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}0 & 3\end{array}\right) t_{0} t_{1} t_{3}\right]^{(34)}=$ $\left[\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{0} t_{1} t_{2}\right]^{(34)} \Rightarrow\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}0 & 4\end{array}\right) t_{0} t_{1} t_{4}=\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{0} t_{1} t_{2}$. Thus, by relations (6.1) and (6.3), (12) (0 3$) t_{0} t_{1} t_{3}=(021) t_{0} t_{1} t_{2}$. Thus, by relations (6.1) and (6.3),
(0 2) (1 3) $t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}=t_{2}^{-1} t_{1}^{-1} t_{2}^{-1}=t_{3}^{-1} t_{1}^{-1} t_{3}^{-1}=t_{4}^{-1} t_{1}^{-1} t_{4}^{-1}$ and, by right multiplication, (0 2) (13) $t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1}=t_{2}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1}^{-1}=t_{3}^{-1} t_{1}^{-1} t_{3}^{-1} t_{1}^{-1}=t_{4}^{-1} t_{1}^{-1} t_{4}^{-1} t_{1}^{-1}$. Note that, by relation (6.3), (021) $t_{1}^{-1} t_{2}=t_{1}^{-1} t_{0} \Rightarrow t_{0}^{-1}\left(\begin{array}{ll}0 & 2\end{array}\right) t_{1}^{-1} t_{2}=t_{0}^{-1} t_{1}^{-1} t_{0} \Rightarrow$ $(021)(012) t_{0}^{-1}(021) t_{1}^{-1} t_{2}=t_{0}^{-1} t_{1}^{-1} t_{0} \Rightarrow(021)\left(t_{0}^{-1}\right)^{(021)} t_{1}^{-1} t_{2}=t_{0}^{-1} t_{1}^{-1} t_{0} \Rightarrow$ (021) $t_{2}^{-1} t_{1}^{-1} t_{2}=t_{0}^{-1} t_{1}^{-1} t_{0} \Rightarrow(021) t_{2}^{-1} t_{1}^{-1} t_{2}^{-1}=t_{0}^{-1} t_{1}^{-1} t_{0} t_{2} \Rightarrow(021) t_{2}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1}^{-1}=$ $t_{0}^{-1} t_{1}^{-1} t_{0} t_{2} t_{1}^{-1} \Rightarrow(012)(021) t_{2}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1}^{-1}=(012) t_{0}^{-1} t_{1}^{-1} t_{0} t_{2} t_{1}^{-1} \Rightarrow t_{2}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1}^{-1}=$
(0 12 2) $t_{0}^{-1} t_{1}^{-1} t_{0} t_{2} t_{1}^{-1}$. Also, by relation (6.3) and by left and right multiplication and conjugation, (021) $t_{1}^{-1} t_{2}=t_{1}^{-1} t_{0} \Rightarrow t_{2}\left(\begin{array}{ll}0 & 1\end{array}\right) t_{1}^{-1} t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow$
$(021)(012) t_{2}(021) t_{1}^{-1} t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{lll}0 & 2 & 1) t_{2}^{(021)} t_{1}^{-1} t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow\end{array}\right.$
(0 211$) t_{1} t_{1}^{-1} t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) e t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow$ (0 211) $t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{2} t_{0}^{-1}=t_{2} t_{1}^{-1} t_{0} t_{0}^{-1} \Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{2} t_{0}^{-1}=t_{2} t_{1}^{-1} e \Rightarrow$ (021) $t_{2} t_{0}^{-1}=t_{2} t_{1}^{-1} \Rightarrow(012)(021) t_{2} t_{0}^{-1}=\left(\begin{array}{ll}0 & 1\end{array}\right) t_{2} t_{1}^{-1} \Rightarrow t_{2} t_{0}^{-1}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{2} t_{1}^{-1} \Rightarrow$ $t_{2} t_{2} t_{0}^{-1}=t_{2}\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{2} t_{1}^{-1} \Rightarrow t_{2}^{-1} t_{0}^{-1}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right)\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{2}\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{2} t_{1}^{-1} \Rightarrow t_{2}^{-1} t_{0}^{-1}=$ (012) $t_{2}^{(012)} t_{2} t_{1}^{-1} \Rightarrow t_{2}^{-1} t_{0}^{-1}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{2} t_{1}^{-1} \Rightarrow t_{0}^{-1} t_{2}^{-1} t_{0}^{-1}=t_{0}^{-1}\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{2} t_{1}^{-1} \Rightarrow$ $t_{0}^{-1} t_{2}^{-1} t_{0}^{-1}=(012)(021) t_{0}^{-1}\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{2} t_{1}^{-1} \Rightarrow t_{0}^{-1} t_{2}^{-1} t_{0}^{-1}=(012)\left(t_{0}^{-1}\right)^{(012)} t_{0} t_{2} t_{1}^{-1}$ $\Rightarrow t_{0}^{-1} t_{2}^{-1} t_{0}^{-1}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{1}^{-1} t_{0} t_{2} t_{1}^{-1} \Rightarrow t_{2}^{-1} t_{0}^{-1} t_{2}^{-1} t_{0}^{-1}=t_{2}^{-1}\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{1}^{-1} t_{0} t_{2} t_{1}^{-1} \Rightarrow$ $t_{2}^{-1} t_{0}^{-1} t_{2}^{-1} t_{0}^{-1}=(012)(021) t_{2}^{-1}(012) t_{1}^{-1} t_{0} t_{2} t_{1}^{-1} \Rightarrow t_{2}^{-1} t_{0}^{-1} t_{2}^{-1} t_{0}^{-1}=$ $(012)\left(t_{2}^{-1}\right)^{(012)} t_{1}^{-1} t_{0} t_{2} t_{1}^{-1} \Rightarrow t_{2}^{-1} t_{0}^{-1} t_{2}^{-1} t_{0}^{-1}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}^{-1} t_{1}^{-1} t_{0} t_{2} t_{1}^{-1}$. Now $t_{2}^{-1} t_{0}^{-1} t_{2}^{-1} t_{0}^{-1}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}^{-1} t_{1}^{-1} t_{0} t_{2} t_{1}^{-1}$ and $t_{2}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1}^{-1}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}^{-1} t_{1}^{-1} t_{0} t_{2} t_{1}^{-1}$ imply that $t_{2}^{-1} t_{0}^{-1} t_{2}^{-1} t_{0}^{-1}=t_{2}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1}^{-1}$. Therefore, (0 2) (1 3) $t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1}=$ $t_{3}^{-1} t_{1}^{-1} t_{3}^{-1} t_{1}^{-1}=t_{4}^{-1} t_{1}^{-1} t_{4}^{-1} t_{1}^{-1}=t_{2}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1}^{-1}=t_{2}^{-1} t_{0}^{-1} t_{2}^{-1} t_{0}^{-1}=$ (12) (03) $t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}=t_{3}^{-1} t_{0}^{-1} t_{3}^{-1} t_{0}^{-1}=t_{4}^{-1} t_{0}^{-1} t_{4}^{-1} t_{0}^{-1}=t_{0}^{-1} t_{2}-1 t_{0}^{-1} t_{2}^{-1}=$
(0 1)(2 3) $t_{1}^{-1} t_{2}^{-1} t_{1}^{-1} t_{2}^{-1}=t_{3}^{-1} t_{2}^{-1} t_{3}^{-1} t_{2}^{-1}=t_{4}^{-1} t_{2}^{-1} t_{4}^{-1} t_{2}^{-1}=t_{0}^{-1} t_{3}-1 t_{0}^{-1} t_{3}^{-1}=$
(021) $t_{1}^{-1} t_{3}^{-1} t_{1}^{-1} t_{3}^{-1}=t_{2}^{-1} t_{3}^{-1} t_{2}^{-1} t_{3}^{-1}=t_{4}^{-1} t_{3}^{-1} t_{4}^{-1} t_{3}^{-1}=t_{0}^{-1} t_{4}-1 t_{0}^{-1} t_{4}^{-1}=$
(0 1)(3 4)) $t_{1}^{-1} t_{4}^{-1} t_{1}^{-1} t_{4}^{-1}=t_{2}^{-1} t_{4}^{-1} t_{2}^{-1} t_{4}^{-1}=t_{3}^{-1} t_{4}^{-1} t_{3}^{-1} t_{4}^{-1}$. These relations imply that:

$$
\begin{gathered}
\overline{0} \overline{1} \overline{0} \overline{1} \sim \overline{2} \overline{1} \overline{2} \overline{1} \sim \overline{3} \overline{1} \overline{3} \overline{1} \sim \overline{4} 1 \overline{4} \overline{1} \sim \overline{1} \overline{0} \overline{1} \overline{0} \sim \overline{2} \overline{0} \overline{2} \overline{0} \sim \overline{3} \overline{0} \overline{3} \overline{0} \sim \overline{4} \overline{0} \overline{4} \overline{0} \sim \overline{0} \overline{2} \overline{0} \overline{2} \sim \overline{1} \overline{2} \overline{1} \overline{2} \sim \\
\overline{3} \overline{2} \overline{3} \overline{2} \sim \overline{4} \overline{2} \overline{4} \overline{2} \sim \overline{0} \overline{3} \overline{0} \overline{3} \sim \overline{1} \overline{3} \overline{1} \overline{3} \sim \overline{2} \overline{3} \overline{2} \overline{3} \sim \overline{4} \overline{3} \overline{4} \overline{3} \sim \overline{0} \overline{4} \overline{0} \overline{4} \sim \overline{1} \overline{4} \overline{1} \overline{4} \sim \overline{4} \overline{2} \overline{4} \sim \overline{3} \overline{3} \overline{4} \overline{4}
\end{gathered}
$$

Since each of the twenty single cosets has twenty names, the double coset [$\overline{0} \overline{1} \overline{0} \overline{1}]$ must have at most one distinct single coset.
Now, $N^{(\overline{0} \overline{1} \overline{0} \overline{1})}$ has two orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}, t_{4}\right\}:\{0,1,2,3,4\}$ and $\{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}\}$.
Thus there are at most two double cosets of the form $N w N$, where w is a word of length five given by $w=t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{i}^{ \pm 1}, i=0: N t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0} N$ and $N t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} N$.
But note that, by relations (6.1) and (6.3), (02)(13) $t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1}=$ (1 2) (0 3) $t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}$ and so, by right multiplication, (0 2) (1 3) $t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}=$ (12) (0 3) $t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{0} \Rightarrow\left(\begin{array}{ll}0 & 2\end{array}\right)\left(\begin{array}{l}1\end{array}\right) t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}=\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}0\end{array}\right) t_{1}^{-1} t_{0}^{-1} t_{1}^{-1}$ which
implies that $N t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}=N t_{1}^{-1} t_{0}^{-1} t_{1}^{-1}$. Therefore, $N t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0} N=$ $N t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} N$. That is, $[\overline{0} \overline{1} \overline{0}]=[\overline{0} \overline{1} \overline{0} \overline{1} 0]$.
Similarly, by relations (6.1) and (6.3), (0 2) (13) $t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1}=$ (12)(03) $t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}$ and so, by right multiplication, (02)(13) $t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}=$ (1 2) (0 3) $t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{0}^{-1} \Rightarrow\left(\begin{array}{ll}0 & 2\end{array}\right)\left(\begin{array}{ll}1 & 3\end{array}\right) t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}=\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}0 & 3\end{array}\right) t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}$ which implies that $N t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}=N t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}$. Therefore,
$N t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} N$. That is, $[0 \overline{1} \overline{0} \overline{1}]=[\overline{0} \overline{1} \overline{0} 1]$ $=[\overline{0} \overline{1} \overline{0} \overline{1} \overline{0}]$.

Since $N t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0} N=N t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} N$ and $N t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} N=$
$N t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} N$, we need not consider additional double cosets of the form $N t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3,4\}$.
21. We next consider the double coset $N t_{0} t_{1} t_{0} t_{1}^{-1} N$.

Let [$010 \overline{1}$] denote the double coset $N t_{0} t_{1} t_{0} t_{1}^{-1} N$.
Now, by relation (6.4), $t_{1} t_{0} t_{1} t_{0} t_{1} t_{0} t_{1} t_{0}=t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}$ and, by relation (6.2) and by left and right multiplication, $t_{0}^{-1} t_{1} t_{0}^{-1}=t_{1}^{-1} t_{0} t_{1}^{-1} \Rightarrow t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}=t_{1}^{-1} t_{0} t_{1}^{-1} t_{1} \Rightarrow$ $t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}=t_{1}^{-1} t_{0} \Rightarrow t_{0} t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}=t_{0} t_{1}^{-1} t_{0} \Rightarrow t_{1} t_{0}^{-1} t_{1}=t_{0} t_{1}^{-1} t_{0} \Rightarrow t_{1} t_{1} t_{0}^{-1} t_{1}=$ $t_{1} t_{0} t_{1}^{-1} t_{0} \Rightarrow t_{1}^{-1} t_{0}^{-1} t_{1}=t_{1} t_{0} t_{1}^{-1} t_{0} \Rightarrow t_{1}^{-1} t_{0}^{-1} t_{1} t_{1}=t_{1} t_{0} t_{1}^{-1} t_{0} t_{1} \Rightarrow t_{1}^{-1} t_{0}^{-1} t_{1}^{-1}=$ $t_{1} t_{0} t_{1}^{-1} t_{0} t_{1} \Rightarrow t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}=t_{1} t_{0} t_{1}^{-1} t_{0} t_{1} t_{0}^{-1}$. Now $t_{1} t_{0} t_{1} t_{0} t_{1} t_{0} t_{1} t_{0}=t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}$ and $t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}=t_{1} t_{0} t_{1}^{-1} t_{0} t_{1} t_{0}^{-1}$ imply that $t_{1} t_{0} t_{1} t_{0} t_{1} t_{0} t_{1} t_{0}=t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}=$ $t_{1} t_{0} t_{1}^{-1} t_{0} t_{1} t_{0}^{-1}$ which implies that $t_{1} t_{0} t_{1} t_{0} t_{1} t_{0} t_{1} t_{0}=t_{1} t_{0} t_{1}^{-1} t_{0} t_{1} t_{0}^{-1} \Rightarrow$
$t_{1}^{-1} t_{1} t_{0} t_{1} t_{0} t_{1} t_{0} t_{1} t_{0}=t_{1}^{-1} t_{1} t_{0} t_{1}^{-1} t_{0} t_{1} t_{0}^{-1} \Rightarrow t_{0} t_{1} t_{0} t_{1} t_{0} t_{1} t_{0}=t_{0} t_{1}^{-1} t_{0} t_{1} t_{0}^{-1} \Rightarrow$
$t_{0}^{-1} t_{0} t_{1} t_{0} t_{1} t_{0} t_{1} t_{0}=t_{0}^{-1} t_{0} t_{1}^{-1} t_{0} t_{1} t_{0}^{-1} \Rightarrow t_{1} t_{0} t_{1} t_{0} t_{1} t_{0}=t_{1}^{-1} t_{0} t_{1} t_{0}^{-1} \Rightarrow t_{1}^{-1} t_{1} t_{0} t_{1} t_{0} t_{1} t_{0}=$ $t_{1}^{-1} t_{1}^{-1} t_{0} t_{1} t_{0}^{-1} \Rightarrow t_{0} t_{1} t_{0} t_{1} t_{0}=t_{1} t_{0} t_{1} t_{0}^{-1} \Rightarrow t_{0} t_{1} t_{0} t_{1} t_{0} t_{0}^{-1}=t_{1} t_{0} t_{1} t_{0}^{-1} t_{0}^{-1} \Rightarrow t_{0} t_{1} t_{0} t_{1}=$ $t_{1} t_{0} t_{1} t_{0} \Rightarrow t_{0} t_{1} t_{0} t_{1} t_{1}^{-1}=t_{1} t_{0} t_{1} t_{0} t_{1}^{-1} \Rightarrow t_{0} t_{1} t_{0}=t_{1} t_{0} t_{1} t_{0} t_{1}^{-1} \Rightarrow t_{1}^{-1} t_{0} t_{1} t_{0}=$ $t_{1}^{-1} t_{1} t_{0} t_{1} t_{0} t_{1}^{-1} \Rightarrow t_{1}^{-1} t_{0} t_{1} t_{0}=t_{0} t_{1} t_{0} t_{1}^{-1}$, and this implies that $N t_{0} t_{1} t_{0} t_{1}^{-1}=$ $N t_{0}^{-1} t_{1} t_{0} t_{1}$ which implies that $N t_{0} t_{1} t_{0} t_{1}^{-1} N=N t_{0}^{-1} t_{1} t_{0} t_{1} N$. Therefore,
$N t_{0} t_{1} t_{0} t_{1}^{-1} N=N t_{0}^{-1} t_{1} t_{0} t_{1} N$ and so [010 $\left.\overline{1}\right]=[\overline{0} 101]$. Also, by relation (6.3) and by conjugation and left and right multiplication, ($\begin{array}{ll}0 & 2\end{array} 1$) $t_{1}^{-1} t_{2}=t_{1}^{-1} t_{0} \Rightarrow$ $t_{2}(021) t_{1}^{-1} t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow(021)(012) t_{2}(021) t_{1}^{-1} t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow(021) t_{2}^{(021)} t_{1}^{-1} t_{2}$ $=t_{2} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{lll}0 & 2\end{array}\right) t_{1} t_{1}^{-1} t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{lll}0 & 2\end{array}\right) e t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{lll}0 & 2\end{array}\right) t_{2}=$ $t_{2} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{2} t_{0}^{-1}=t_{2} t_{1}^{-1} t_{0} t_{0}^{-1} \Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{2} t_{0}^{-1}=$
$\left.t_{2} t_{1}^{-1} e \Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{2} t_{0}^{-1}=t_{2} t_{1}^{-1} \Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{2} t_{0}^{-1}=t_{2} t_{1}^{-1} \Rightarrow\left[\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{2} t_{0}^{-1}\right]^{\left(\begin{array}{ll}1 & 1\end{array}\right)}=$ $\left[t_{2} t_{1}^{-1}\right]^{\left(\begin{array}{lll}1 & 2\end{array}\right)} \Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{0} t_{1}^{-1}=t_{0} t_{2}^{-1} \Rightarrow t_{0} t_{1}^{-1}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{2}^{-1} \Rightarrow t_{1} t_{0} t_{1}^{-1}=$ $t_{1}(012) t_{0} t_{2}^{-1} \Rightarrow t_{1} t_{0} t_{1}^{-1}=(012)(021) t_{1}(012) t_{0} t_{2}^{-1} \Rightarrow t_{1} t_{0} t_{1}^{-1}=(012) t_{1}^{(012)} t_{0} t_{2}^{-1}$ $\Rightarrow t_{1} t_{0} t_{1}^{-1}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{2} t_{0} t_{2}^{-1} \Rightarrow t_{0} t_{1} t_{0} t_{1}^{-1}=t_{0}\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{2} t_{0} t_{2}^{-1} \Rightarrow t_{0} t_{1} t_{0} t_{1}^{-1}=$ $\left.\left(\begin{array}{lll}0 & 1 & 2\end{array}\right)\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{0}\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{2} t_{0} t_{2}^{-1} \Rightarrow t_{0} t_{1} t_{0} t_{1}^{-1}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}^{(012}\right)^{2} t_{2} t_{0} t_{2}^{-1} \Rightarrow t_{0} t_{1} t_{0} t_{1}^{-1}=$ (012) $t_{1} t_{2} t_{0} t_{2}^{-1}$, and this implies that $N t_{0} t_{1} t_{0} t_{1}^{-1}=N t_{1} t_{2} t_{0} t_{2}^{-1}$. Therefore, $N t_{0} t_{1} t_{0} t_{1}^{-1} N=N t_{0} t_{1} t_{2} t_{1}^{-1} N$; that is, $N t_{0} t_{1} t_{0} t_{1}^{-1} N=N t_{0} t_{1} t_{2} t_{1}^{-1} N$ and so [010 $\left.\overline{1}\right]=$ [0121]]. Therefore, we conclude that $N t_{0} t_{1} t_{0} t_{1}^{-1} N=N t_{0}^{-1} t_{1} t_{0} t_{1} N=N t_{0} t_{1} t_{2} t_{1}^{-1} N$. That is, $[010 \overline{1}]=[\overline{0} 101]=[012 \overline{1}]$.

Hence note that $N t_{0} t_{1} t_{0} t_{1}^{-1} N=N t_{0}^{-1} t_{1} t_{0} t_{1} N=N t_{0} t_{1} t_{2} t_{1}^{-1} N$.
Now, by relation (6.3) and by conjugation and right and left multiplication,
(021) $t_{1}^{-1} t_{2}=t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1}^{-1} t_{2} t_{2}=t_{1}^{-1} t_{0} t_{2} \Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1}^{-1} t_{2}^{-1}=t_{1}^{-1} t_{0} t_{2} \Rightarrow$ $t_{1}^{-1}\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1}^{-1} t_{2}^{-1}=t_{1}^{-1} t_{1}^{-1} t_{0} t_{2} \Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right)\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{1}^{-1}\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1}^{-1} t_{2}^{-1}=t_{1} t_{0} t_{2} \Rightarrow$ $\left(t_{1}^{-1}\right)^{(021)} t_{1}^{-1} t_{2}^{-1}=t_{1} t_{0} t_{2} \Rightarrow(021) t_{0}^{-1} t_{1}^{-1} t_{2}^{-1}=t_{1} t_{0} t_{2} \Rightarrow\left[\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{0}^{-1} t_{1}^{-1} t_{2}^{-1}\right]^{(01)}=$ $\left[t_{1} t_{0} t_{2}\right]^{(01)} \Rightarrow(012) t_{1}^{-1} t_{0}^{-1} t_{2}^{-1}=t_{0} t_{1} t_{2} \Rightarrow(021)(012) t_{1}^{-1} t_{0}^{-1} t_{2}^{-1}=(021) t_{0} t_{1} t_{2} \Rightarrow$ $t_{1}^{-1} t_{0}^{-1} t_{2}^{-1}=\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{0} t_{1} t_{2} \Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right)\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{2}^{-1}=\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{0} t_{1} t_{2} t_{2}^{-1} \Rightarrow$ $\left(\begin{array}{lll}0 & 2 & 1\end{array}\right)\left(\begin{array}{ll}0 & 1\end{array}\right) t_{1}^{-1} t_{0}^{-1} t_{2}=\left(\begin{array}{ll}0 & 2\end{array}\right) t_{0} t_{1} \Rightarrow(021)(012) t_{1}^{-1} t_{0}^{-1} t_{2} t_{0}=\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{0} t_{1} t_{0} \Rightarrow$ $t_{1}^{-1} t_{0}^{-1} t_{2} t_{0} t_{1}^{-1}=\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{0} t_{1} t_{0} t_{1}^{-1}$. Also, by relation (6.3), (021) $t_{1}^{-1} t_{2}=t_{1}^{-1} t_{0} \Rightarrow$ (021) $t_{1}^{-1} t_{2} t_{0}=t_{1}^{-1} t_{0} t_{0} \Rightarrow(021) t_{1}^{-1} t_{2} t_{0}=t_{1}^{-1} t_{0}^{-1} \Rightarrow(021) t_{1}^{-1} t_{2} t_{0} t_{2}=t_{1}^{-1} t_{0}^{-1} t_{2} \Rightarrow$ (021) $t_{1}^{-1} t_{2} t_{0} t_{2} t_{0}=t_{1}^{-1} t_{0}^{-1} t_{2} t_{0} \Rightarrow\left(\begin{array}{lll}0 & 2\end{array}\right) t_{1}^{-1} t_{2} t_{0} t_{2} t_{0} t_{1}^{-1}=t_{1}^{-1} t_{0}^{-1} t_{2} t_{0} t_{1}^{-1}$. Now, $t_{1}^{-1} t_{0}^{-1} t_{2} t_{0} t_{1}^{-1}=\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{0} t_{1} t_{0} t_{1}^{-1}$ and (02 21$) t_{1}^{-1} t_{2} t_{0} t_{2} t_{0} t_{1}^{-1}=t_{1}^{-1} t_{0}^{-1} t_{2} t_{0} t_{1}^{-1}$ imply that $(021) t_{1}^{-1} t_{2} t_{0} t_{2} t_{0} t_{1}^{-1}=t_{1}^{-1} t_{0}^{-1} t_{2} t_{0} t_{1}^{-1}=(021) t_{0} t_{1} t_{0} t_{1}^{-1} \Rightarrow(021) t_{1}^{-1} t_{2} t_{0} t_{2} t_{0} t_{1}^{-1}$ $=\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{0} t_{1} t_{0} t_{1}^{-1}$, and so (021) $\begin{aligned} & -1 \\ & 1\end{aligned} t_{2} t_{0} t_{2} t_{0} t_{1}^{-1}=\left(\begin{array}{ll}0 & 2\end{array}\right) t_{0} t_{1} t_{0} t_{1}^{-1} \Rightarrow$
(021) $t_{1}^{-1} t_{2} t_{0} t_{2} t_{0} t_{1}^{-1} t_{1}=\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{0} t_{1} t_{0} t_{1}^{-1} t_{1} \Rightarrow\left(\begin{array}{ll}0 & 2\end{array}\right) t_{1}^{-1} t_{2} t_{0} t_{2} t_{0}=\left(\begin{array}{ll}0 & 2\end{array}\right) t_{0} t_{1} t_{0} \Rightarrow$ $(012)(021) t_{1}^{-1} t_{2} t_{0} t_{2} t_{0}=(012)(021) t_{0} t_{1} t_{0} \Rightarrow t_{1}^{-1} t_{2} t_{0} t_{2} t_{0}=t_{0} t_{1} t_{0} \Rightarrow t_{1} t_{1}^{-1} t_{2} t_{0} t_{2} t_{0}$ $=t_{1} t_{0} t_{1} t_{0} \Rightarrow t_{2} t_{0} t_{2} t_{0}=t_{1} t_{0} t_{1} t_{0} \Rightarrow t_{2} t_{0} t_{2} t_{0} t_{0}=t_{1} t_{0} t_{1} t_{0} t_{0} \Rightarrow t_{2} t_{0} t_{2} t_{0}^{-1}=t_{1} t_{0} t_{1} t_{0}^{-1}$. Moreover, by conjugation, $\left[t_{2} t_{0} t_{2} t_{0}^{-1}\right]^{(23)}=\left[t_{1} t_{0} t_{1} t_{0}^{-1}\right]^{(23)} \Rightarrow t_{3} t_{0} t_{3} t_{0}^{-1}=t_{1} t_{0} t_{1} t_{0}^{-1}$ and, also by conjugation, $\left[t_{2} t_{0} t_{2} t_{0}^{-1}\right]^{(24)}=\left[t_{1} t_{0} t_{1} t_{0}^{-1}\right]^{(24)} \Rightarrow t_{4} t_{0} t_{4} t_{0}^{-1}=t_{1} t_{0} t_{1} t_{0}^{-1}$, and so $t_{2} t_{0} t_{2} t_{0}^{-1}=t_{1} t_{0} t_{1} t_{0}^{-1}$ and $t_{3} t_{0} t_{3} t_{0}^{-1}=t_{1} t_{0} t_{1} t_{0}^{-1}$ and $t_{4} t_{0} t_{4} t_{0}^{-1}=t_{1} t_{0} t_{1} t_{0}^{-1} \mathrm{im}-$ ply that $t_{2} t_{0} t_{2} t_{0}^{-1}=t_{1} t_{0} t_{1} t_{0}^{-1}=t_{3} t_{0} t_{3} t_{0}^{-1}=t_{4} t_{0} t_{4} t_{0}^{-1}$. Therefore, by conjugation, we see that $\left[t_{2} t_{0} t_{2} t_{0}^{-1}\right]^{(01)}=\left[t_{1} t_{0} t_{1} t_{0}^{-1}\right]^{(01)}=\left[t_{3} t_{0} t_{3} t_{0}^{-1}\right]^{(01)}=\left[t_{4} t_{0} t_{4} t_{0}^{-1}\right]^{(01)} \Rightarrow$ $t_{2} t_{1} t_{2} t_{1}^{-1}=t_{0} t_{1} t_{0} t_{1}^{-1}=t_{3} t_{1} t_{3} t_{1}^{-1}=t_{4} t_{1} t_{4} t_{1}^{-1}$ and $\left[t_{2} t_{0} t_{2} t_{0}^{-1}\right]^{(02)}=\left[t_{1} t_{0} t_{1} t_{0}^{-1}\right]^{(02)}=$

$$
\begin{aligned}
& {\left[t_{3} t_{0} t_{3} t_{0}^{-1}\right]^{(02)}=\left[t_{4} t_{0} t_{4} t_{0}^{-1}\right]^{(02)} \Rightarrow t_{0} t_{2} t_{0} t_{2}^{-1}=t_{1} t_{2} t_{1} t_{2}^{-1}=t_{3} t_{2} t_{3} t_{2}^{-1}=t_{4} t_{2} t_{4} t_{2}^{-1} \text { and }} \\
& {\left[t_{2} t_{0} t_{2} t_{0}^{-1}\right]^{(03)}=\left[t_{1} t_{0} t_{1} t_{0}^{-1}\right]^{(03)}=\left[t_{3} t_{0} t_{3} t_{0}^{-1}\right]^{(03)}=\left[t_{4} t_{0} t_{4} t_{0}^{-1}\right]^{(0)} \Rightarrow t_{2} t_{3} t_{2} t_{3}^{-1}=} \\
& t_{1} t_{3} t_{1} t_{3}^{-1}=t_{0} t_{3} t_{0} t_{3}^{-1}=t_{4} t_{3} t_{4} t_{3}^{-1} \text { and }\left[t_{2} t_{0} t_{2} t_{0}^{-1}\right]^{(04)}=\left[t_{1} t_{0} t_{1} t_{0}^{-1}\right]^{(04)}= \\
& {\left[t_{3} t_{0} t_{3} t_{0}^{-1}\right]^{(04)}=\left[t_{4} t_{0} t_{4} t_{0}^{-1}\right]^{(04)} \Rightarrow t_{2} t_{4} t_{2} t_{4}^{-1}=t_{1} t_{4} t_{1} t_{4}^{-1}=t_{3} t_{4} t_{3} t_{4}^{-1}=t_{0} t_{4} t_{0} t_{4}^{-1} .}
\end{aligned}
$$

Therefore, in terms of our short-hand notation, these relations imply that:

$$
101 \overline{0} \sim 202 \overline{0} \sim 303 \overline{0} \sim 404 \overline{0}
$$

Similiarly, by conjugation, we find that

$$
\begin{array}{ll}
010 \overline{1} \sim 212 \overline{1} \sim 313 \overline{1} \sim 414 \overline{1}, & 020 \overline{2} \sim 121 \overline{2} \sim 323 \overline{2} \sim 424 \overline{2}, \\
030 \overline{3} \sim 131 \overline{3} \sim 232 \overline{3} \sim 434 \overline{3}, & 040 \overline{4} \sim 141 \overline{4} \sim 242 \overline{4} \sim 343 \overline{4}
\end{array}
$$

Since each of the twenty single cosets has four names, the double coset [0101] = $[\overline{0} 101]=[012 \overline{1}]$ must have at most five distinct single cosets.
Now, $N^{(010 \overline{1})}$ has four orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}, t_{4}\right\}:\{0\},\{1,2,3,4\},\{\overline{0}\}$, and $\{\overline{1}, \overline{2}, \overline{3}, \overline{4}\}$.

Therefore, there are at most four double cosets of the form $N w N$, where w is a word of length five given by $w=t_{0} t_{1} t_{0} t_{1}^{-1} t_{i}^{ \pm 1}, i \in\{0,1\}$: $N t_{0} t_{1} t_{0} t_{1}^{-1} t_{0} N$, $N t_{0} t_{1} t_{0} t_{1}^{-1} t_{0}^{-1} N, N t_{0} t_{1} t_{0} t_{1}^{-1} t_{1} N$, and $N t_{0} t_{1} t_{0} t_{1}^{-1} t_{1}^{-1} N$.

But note that $N t_{0} t_{1} t_{0} t_{1}^{-1} t_{1}^{-1} N=N t_{0} t_{1} t_{0}\left(t_{1}^{-1}\right)^{2} N=N t_{0} t_{1} t_{0} t_{1} N$ and note further that $N t_{0} t_{1} t_{0} t_{1}^{-1} t_{1} N=N t_{0} t_{1} t_{0} e N=N t_{0} t_{1} t_{0} N$.

Moreover, by relations (6.2) and (6.4), $t_{1}^{-1} t_{0} t_{1} t_{0}=t_{0} t_{1} t_{0} t_{1}^{-1} \Rightarrow t_{1}^{-1} t_{0} t_{1} t_{0} t_{0}^{-1}=$ $t_{0} t_{1} t_{0} t_{1}^{-1} t_{0}^{-1} \Rightarrow t_{1}^{-1} t_{0} t_{1}=t_{0} t_{1} t_{0} t_{1}^{-1} t_{0}^{-1}$, and this implies that $N t_{1}^{-1} t_{0} t_{1}=$ $N t_{0} t_{1} t_{0} t_{1}^{-1} t_{0}^{-1}$. Therefore, $N t_{0} t_{1} t_{0} t_{1}^{-1} t_{0}^{-1} N=N t_{0}^{-1} t_{1} t_{0} N$. That is, $[0 \overline{0} 10]=[010 \overline{1} \overline{0}]$. Similarly, by relations (6.2) and (6.4), $t_{1}^{-1} t_{0} t_{1} t_{0}=t_{0} t_{1} t_{0} t_{1}^{-1} \Rightarrow t_{1}^{-1} t_{0} t_{1} t_{0} t_{0}=$ $t_{0} t_{1} t_{0} t_{1}^{-1} t_{0} \Rightarrow t_{1}^{-1} t_{0} t_{1} t_{0}^{-1}=t_{0} t_{1} t_{0} t_{1}^{-1} t_{0}$ and, by relation (6.3) and by conjugation and left and right multiplication, (021) $t_{1}^{-1} t_{2}=t_{1}^{-1} t_{0} \Rightarrow t_{2}\left(\begin{array}{ll}0 & 1\end{array}\right) t_{1}^{-1} t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow$ $(021)(012) t_{2}(021) t_{1}^{-1} t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow(021) t_{2}^{(021)} t_{1}^{-1} t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow$
(0 211) $t_{1} t_{1}^{-1} t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) e t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow$ (02 21 1) $t_{2}=t_{2} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{2} t_{0}^{-1}=t_{2} t_{1}^{-1} t_{0} t_{0}^{-1} \Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{2} t_{0}^{-1}=t_{2} t_{1}^{-1} e \Rightarrow$ (021) $\left.t_{2} t_{0}^{-1}=t_{2} t_{1}^{-1} \Rightarrow\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{2} t_{0}^{-1}=t_{2} t_{1}^{-1} \Rightarrow\left[\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{2} t_{0}^{-1}\right]^{\left(\begin{array}{lll}0 & 1\end{array}\right)}=\left[\begin{array}{ll}t_{2} t_{1}^{-1}\end{array}\right]^{\left(\begin{array}{lll}1 & 1 & 2\end{array}\right) \Rightarrow}$ $\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{0} t_{1}^{-1}=t_{0} t_{2}^{-1} \Rightarrow t_{0} t_{1}^{-1}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{2}^{-1} \Rightarrow t_{1} t_{0} t_{1}^{-1}=t_{1}\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{2}^{-1} \Rightarrow$
$t_{1} t_{0} t_{1}^{-1}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right)\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1}\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{2}^{-1} \Rightarrow t_{1} t_{0} t_{1}^{-1}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{1}^{\left(\begin{array}{lll}1 & 2\end{array}\right)} t_{0} t_{2}^{-1} \Rightarrow t_{1} t_{0} t_{1}^{-1}=$ (0112) $t_{2} t_{0} t_{2}^{-1} \Rightarrow t_{0}^{-1} t_{1} t_{0} t_{1}^{-1}=t_{0}^{-1}\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{2} t_{0} t_{2}^{-1} \Rightarrow t_{0}^{-1} t_{1} t_{0} t_{1}^{-1}=$ $(012)(021) t_{0}^{-1}(012) t_{2} t_{0} t_{2}^{-1} \Rightarrow t_{0}^{-1} t_{1} t_{0} t_{1}^{-1}=(012)\left(t_{0}^{-1}\right)^{(012)} t_{2} t_{0} t_{2}^{-1} \Rightarrow t_{0}^{-1} t_{1} t_{0} t_{1}^{-1}$ $=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{1}^{-1} t_{2} t_{0} t_{2}^{-1} \Rightarrow(012) t_{0}^{-1} t_{1} t_{0} t_{1}^{-1}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right)\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{1}^{-1} t_{2} t_{0} t_{2}^{-1} \Rightarrow$
(012) $t_{0}^{-1} t_{1} t_{0} t_{1}^{-1}=\left(\begin{array}{ll}0 & 21\end{array}\right) t_{1}^{-1} t_{2} t_{0} t_{2}^{-1}$ and, also by relation (6.3) and right multiplication, (021) $t_{1}^{-1} t_{2}=t_{1}^{-1} t_{0} \Rightarrow(021) t_{1}^{-1} t_{2} t_{0}=t_{1}^{-1} t_{0} t_{0} \Rightarrow(021) t_{1}^{-1} t_{2} t_{0}=t_{1}^{-1} t_{0}^{-1} \Rightarrow$ (021) $t_{1}^{-1} t_{2} t_{0} t_{2}^{-1}=t_{1}^{-1} t_{0}^{-1} t_{2}^{-1}$ and, also by relation (6.3) and by conjugation and left and right multiplication, (021) $t_{1}^{-1} t_{2}=t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{ll}0 & 21\end{array}\right) t_{1}^{-1} t_{2} t_{2}=t_{1}^{-1} t_{0} t_{2} \Rightarrow$ (021) $t_{1}^{-1} t_{2}^{-1}=t_{1}^{-1} t_{0} t_{2} \Rightarrow t_{1}^{-1}(021) t_{1}^{-1} t_{2}^{-1}=t_{1}^{-1} t_{1}^{-1} t_{0} t_{2} \Rightarrow$
(021) (012) $t_{1}^{-1}(021) t_{1}^{-1} t_{2}^{-1}=t_{1} t_{0} t_{2} \Rightarrow\left(t_{1}^{-1}\right)^{(021)} t_{1}^{-1} t_{2}^{-1}=t_{1} t_{0} t_{2} \Rightarrow$ (021) $t_{0}^{-1} t_{1}^{-1} t_{2}^{-1}=t_{1} t_{0} t_{2} \Rightarrow\left[(021) t_{0}^{-1} t_{1}^{-1} t_{2}^{-1}\right]^{(01)}=\left[t_{1} t_{0} t_{2}\right]^{(01)} \Rightarrow\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{1}^{-1} t_{0}^{-1} t_{2}^{-1}$ $=t_{0} t_{1} t_{2} \Rightarrow(021)(012) t_{1}^{-1} t_{0}^{-1} t_{2}^{-1}=(021) t_{0} t_{1} t_{2} \Rightarrow t_{1}^{-1} t_{0}^{-1} t_{2}^{-1}=(021) t_{0} t_{1} t_{2}$ and, therefore, (012) $\begin{array}{l}-1 \\ 0\end{array} t_{1} t_{0} t_{1}^{-1}=\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1}^{-1} t_{2} t_{0} t_{2}^{-1}$ and (0211$) t_{1}^{-1} t_{2} t_{0} t_{2}^{-1}=t_{1}^{-1} t_{0}^{-1} t_{2}^{-1}$ and $t_{1}^{-1} t_{0}^{-1} t_{2}^{-1}=\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{0} t_{1} t_{2}$ imply that (012) $12 t_{0}^{-1} t_{1} t_{0} t_{1}^{-1}=\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{1}^{-1} t_{2} t_{0} t_{2}^{-1}=$ $t_{1}^{-1} t_{0}^{-1} t_{2}^{-1}=\left(\begin{array}{lll}0 & 2 & 1\end{array}\right) t_{0} t_{1} t_{2} \Rightarrow\left(\begin{array}{ll}0 & 1\end{array}\right) t_{0}^{-1} t_{1} t_{0} t_{1}^{-1}=\left(\begin{array}{ll}0 & 2\end{array}\right) t_{0} t_{1} t_{2}$; therefore, $t_{1}^{-1} t_{0} t_{1} t_{0}^{-1}=$
 (021) $t_{0} t_{1} t_{2}$ and this implies that $N t_{0} t_{1} t_{0} t_{1}^{-1} t_{0}=N t_{0} t_{1} t_{2}$. Therefore, $N t_{0} t_{1} t_{0} t_{1}^{-1} t_{0} N=N t_{0} t_{1} t_{2} N$. That is, $[012]=[010 \overline{1} 0]$.
Since $N t_{0} t_{1} t_{0} t_{1}^{-1} t_{1}^{-1} N=N t_{0} t_{1} t_{0} t_{1} N$ and $N t_{0} t_{1} t_{0} t_{1}^{-1} t_{1} N=N t_{0} t_{1} t_{0} N$ and $N t_{0} t_{1} t_{0} t_{1}^{-1} t_{0}^{-1} N=N t_{0}^{-1} t_{1} t_{0} N$ and $N t_{0} t_{1} t_{0} t_{1}^{-1} t_{0} N=N t_{0} t_{1} t_{2} N$, we need not consider additional double cosets of the form $N t_{0} t_{1} t_{0} t_{1}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3,4\}$.
In fact, since $N^{(010 \overline{1})}$ is transitive on the symmetric generators and since
$N t_{0} t_{1} t_{0} t_{1}^{-1} t_{1}^{-1} N=N t_{0} t_{1} t_{0} t_{1} N$ and $N t_{0} t_{1} t_{0} t_{1}^{-1} t_{1} N=N t_{0} t_{1} t_{0} N$ and
$N t_{0} t_{1} t_{0} t_{1}^{-1} t_{0}^{-1} N=N t_{0}^{-1} t_{1} t_{0} N$ and $N t_{0} t_{1} t_{0} t_{1}^{-1} t_{0} N=N t_{0} t_{1} t_{2} N$ imply that the double coset $[010 \overline{1} \overline{1}]=[0101]$ and the double coset $[010 \overline{1} 1]=[010]$ and the double coset $[010 \overline{1} \overline{0}]=[\overline{0} 10]$ and the double coset $[010 \overline{1} 0]=[012]$, we have effectively completed the double coset enumeration of G over S_{5}.

In total, therefore, there are at most 21 distinct double cosets of N in G and at most 126 distinct right (single) cosets of N in G. The double cosets of N in G are as follows: [*], $[0],[\overline{0}],[\overline{0} 1],[01],[\overline{0} \overline{1}],[0 \overline{1}],[0 \overline{1} 0],[0 \overline{1} \overline{0}],[010],[01 \overline{0}],[012]=[\overline{0} \overline{1} \overline{2}],[\overline{0} \overline{1} 0],[\overline{0} \overline{1} \overline{0}],[\overline{0} 10],[\overline{0} 1 \overline{0}]$, $[0 \overline{1} \overline{0} \overline{1}]=[\overline{0} \overline{1} \overline{0} 1]=[0120],[0101],[010 \overline{1}]=[\overline{0} \overline{1} 01],[\overline{0} \overline{1} \overline{0} \overline{1}]$, and $[010 \overline{1}]=[\overline{0} 101]=[012 \overline{1}]$.

Figure 6.1: Cayley Diagram of G Over S_{5}

6.3 Cayley Diagram of G Over S_{5}

The Cayley diagram of G over S_{5} is illustrated in Figure 6.1. For a detailed explanation of the meaning of the component parts of a Cayley diagram, see Section 2.3.

6.4 Action of the Symmetric Generators and the Generators of S_{5} on the Right Cosets of G Over S_{5}

Let X denote the set of all (126) distinct right cosets of N in G. We define a mapping $\phi: G \longrightarrow S_{X}$ so that ϕ maps a generator $g \in G$ to its action (by right multiplication) on X. That is, we define ϕ so that $\phi(g)=\widehat{\phi}(g): X \rightarrow X$. Then the action $\phi(t) \sim \phi\left(t_{0}\right)$ of
the symmetric generator $t \sim t_{0}$ on the right cosets of N in G may be expressed as

$$
\phi(t) \sim \phi\left(t_{0}\right)=(* 0 \overline{0})(1101 \overline{0})(2202 \overline{0})(3303 \overline{0})(4404 \overline{0})(\overline{1} \overline{1} 0 \overline{1} \overline{0})(\overline{2} \overline{2} 0 \overline{2} \overline{0})(\overline{3} \overline{3} 0 \overline{3} \overline{0})
$$

$(\overline{4} \overline{4} 0 \overline{4} \overline{0})(0 \overline{1} 0 \overline{1} 00 \overline{1} \overline{0})(\overline{0} 10 \overline{0} 10 \overline{0} 1 \overline{0})(01010010])(0202002 \overline{0})(0303003 \overline{0})(0404004 \overline{0})$ $(12120 \overline{2} \overline{1})(13130 \overline{3} \overline{1})(141404 \overline{4} \overline{1})(21210 \overline{1} \overline{2})(23230 \overline{3} \overline{2})(24240 \overline{4} \overline{2})(31310 \overline{1} \overline{3})(32320 \overline{2} \overline{3})$ $(34340 \overline{4} \overline{3})(41410 \overline{1} \overline{4})(42420 \overline{2} \overline{4})(43430 \overline{3} \overline{4})(\overline{0} \overline{1} \overline{0} \overline{1} 0 \overline{0} \overline{1} \overline{0})(\overline{0} \overline{2} \overline{0} \overline{2} 00 \overline{0} \overline{2} \overline{0})(\overline{0} \overline{3} \overline{0} \overline{3} 0 \overline{0} \overline{3} \overline{0})$ $(\overline{0} \overline{4} \overline{0} \overline{4} 0 \overline{0} \overline{4} \overline{0})(1 \overline{0} \overline{1} 0121 \overline{0} \overline{1} \overline{0})(2 \overline{0} \overline{2} 0212 \overline{0} 2 \overline{0})(3 \overline{0} \overline{3} 0313 \overline{0} \overline{3} \overline{0})(4 \overline{0} \overline{4} 0414 \overline{0} \overline{4} \overline{0})(1010101$ 1010$)$ $(10 \overline{1} 1 \overline{1} 0101 \overline{0} \overline{1})(102 \overline{1} 01010 \overline{1})(201 \overline{2} 02020 \overline{2})(301 \overline{3} 03030 \overline{3})(401404040 \overline{4})(\overline{1} 0 \overline{1} 0 \overline{1} 0 \overline{1} \overline{0} \overline{1} \overline{0} \overline{1} \overline{1})$, and the action $\phi(x) \sim \phi((01234))$ of the generator $x \sim\left(\begin{array}{llll}0 & 1 & 2 & 3\end{array}\right)$ of S_{5} on the right cosets of N in G may be expressed as
$\phi(x) \sim \phi((01234))=(01234)(\overline{0} \overline{1} \overline{2} \overline{3} \overline{4})(\overline{0} 1 \overline{1} 0 \overline{2} 0 \overline{3} 0 \overline{4} 0)(0 \overline{1} 1 \overline{0} 2 \overline{0} 3 \overline{0} 4 \overline{0})(0112233440)$
$(0213243041)(0314203142)(0410213243)(\overline{0} \overline{1} \overline{1} \overline{2} \overline{2} \overline{3} \overline{3} \overline{4} \overline{4} \overline{0})(\overline{0} \overline{2} \overline{1} \overline{3} \overline{2} \overline{4} \overline{3} \overline{4} \overline{4} \overline{1})$
$(\overline{0} \overline{3} \overline{1} \overline{4} \overline{2} \overline{0} \overline{3} \overline{1} \overline{4} \overline{2})(0 \overline{0} \overline{1} \overline{1} \overline{0} \overline{2} \overline{1} \overline{3} \overline{2} \overline{4} \overline{3})(0 \overline{1} \overline{0} 1 \overline{0} \overline{1} 2 \overline{0} \overline{2} 3 \overline{0} \overline{3} 4 \overline{0} \overline{4})(010020030040$ 101) $(010 \overline{0} 02 \overline{0} 030 \overline{0} 04 \overline{0} 10 \overline{1})(\overline{0} \overline{1} 0 \overline{0} \overline{2} 0 \overline{0} \overline{3} 0 \overline{0} 40 \overline{1} 0 \overline{1})(012120230340401)(021130240301410)$ (031 140201310420$)(041102210320430)(0 \overline{0} \overline{0} \overline{0} \overline{2} \overline{0} \overline{0} \overline{3} \overline{0} \overline{0} 0 \overline{4} \overline{0} 1 \overline{1} 0 \overline{1})$
 and the action $\phi(y) \sim \phi((34))$ of the generator $y \sim(34)$ of S_{5} on the right cosets of N in G may be expressed as

$$
\phi(y) \sim \phi((34))=(34)(\overline{3} \overline{4})(\overline{3} 0 \overline{4} 0)(3 \overline{0} 4 \overline{0})(0304)(1314)(2324)(3040)(3141)(3242)
$$

$(3443)(\overline{0} \overline{3} \overline{0} \overline{4})(\overline{1} \overline{3} \overline{1} \overline{4})(\overline{2} \overline{3} \overline{2} \overline{4})(\overline{3} \overline{0} \overline{4} \overline{0})(\overline{3} \overline{1} \overline{4} \overline{1})(\overline{3} \overline{2} \overline{4} \overline{2})(\overline{3} \overline{4} \overline{4} \overline{3})(3 \overline{0} \overline{3} 4 \overline{0} \overline{4})(030040)(030 \overline{0} 04 \overline{0})$
$(\overline{0} \overline{3} 0 \overline{0} \overline{4} 0)(031041)(130140)(230240)(301401)(310410)(320420)(340430)(\overline{0} \overline{3} \overline{0} \overline{0} \overline{4} \overline{0})$ $(\overline{3} 03 \overline{4} 04)(3 \overline{0} \overline{3} \overline{0} 4 \overline{0} \overline{4} \overline{0})(030 \overline{3} 040 \overline{4})$.

Since there are 126 distinct right cosets of N in G, these actions may be written as permutations on 126 letters. In fact, the actions of the generators on the set of right cosets of N in G are equivalent to the permutation representations of the generators in their action on the right cosets of N in G. To better manipulate the permutation representations of
the symmetric generators t_{i} and the generators x and y ，it is helpful to label the distinct single cosets of N in G as follows：

（126）	＊	（21）	01	（42）	$\overline{0} \overline{2}$	（63）	$10 \overline{1}$	）	14	5）	$\overline{0} \overline{3} \overline{0}$
1）	0	（22）	02	（43）	$\overline{0} \overline{3}$	（64）	$2 \overline{0} \overline{2}$	（85）	201	（106）	$\overline{0} \overline{4} \overline{0}$
（2）	1	（23）	03	（44）	$\overline{0} 4$	（65）	$3 \overline{0} \overline{3}$	（86）	210	（107）	$\overline{0} 10$
（3）	2	（24）	04	（45）	$\overline{1} 0$	（66）	$4 \overline{0} \overline{4}$	（87）	230	（108）	101
（4）	3	（25）	10	（46）	$\overline{1} \overline{2}$	（67）	010	（88）	240	（109）	$\overline{2} 02$
5）	4	（26）	12	（47）	$\overline{1} \overline{3}$	（68）	020	（89）	30	（110）	$\overline{3} 03$
（6）	$\overline{0}$	（27）	13	（48）	$\overline{1} \overline{4}$	（69）	030	（90）	310	（111）	$\overline{4} 04$
（7）	$\overline{1}$	（28）	14	（49）	$\overline{2} \overline{0}$	（70）	040	（91）	320	（112）	$\overline{0} 1 \overline{0}$
8）	$\overline{2}$	（29）	20	（50）	$\overline{2} \overline{1}$	（71）	101	（92）	340	（113）	10
9）	$\overline{3}$	（30）	21	（51）	$\overline{2} \overline{3}$	（72）	010	（93）	401	（114）	人1龴
10）	$\overline{4}$	（31）	23	（52）	$\overline{2} \overline{4}$	（73）	$02 \overline{0}$	（94）	410	（115）	$2 \overline{0} 2$
11）	$0 \overline{1}$	（32）	24	（53）	$\overline{3} \overline{0}$	（74）	$030 \bar{\square}$	（95）	420	（116）	$3 \overline{3}$
2）	$1 \overline{0}$	（33）	30	（54）	$\overline{3} \overline{1}$	（75）	$040 \bar{\square}$	（96）	430	（117）	404
（3）	$2 \overline{0}$	（34）	31	（55）	$\overline{3} \overline{2}$	（76）	$10 \overline{1}$	（97）	0̄1̄0	（118）	
（14）	$3 \overline{0}$	（35）	32	（56）	$\overline{3} \overline{4}$	（77）	012	（98）	020	（119）	发
15）	$4 \overline{0}$	（36）	34	（57）	$\overline{4} \overline{0}$	（78）	02	（99）	0̄3̄0	（120）	
（16）	$\overline{0} 1$	（37）	40	（58）	$\overline{4} 1$	（79）	03	（100）	$\overline{0} 40$	（121）	
（17）	10	（38）	41	（59）	$\overline{4} \overline{2}$	（80）	041	（101）	$10 \overline{1}$	（122）	1010
（18）	$\overline{2} 0$	（39）	42	（60）	$\overline{4} \overline{3}$	（81）	102	（102）	$0 \overline{1} 0$	（123）	202
9）	$\overline{3} 0$	（40）	43	（61）	010	（82）	120	（103）	101	（124）	303
（20）	$\overline{4} 0$	（41）	$\overline{0} \overline{1}$	（62）	$0 \overline{10}$	（83）	130	（104）	$\overline{0} \overline{2} \overline{0}$	（125）	

Having labeled each of the 126 distinct right cosets of N in G ，we may express the permutation representation of the symmetric generator $t \sim t_{0}$ in its action on the right cosets of N in G as
$\phi(t) \sim \phi\left(t_{0}\right):\left(\begin{array}{ll}126 & 16)(22512)(32913)(43314)(53715)(71745)(81849)(91953)\end{array}\right.$
$(102057)(116162)(16107112)(216772)(226873)(236974)(247075)(268250)$
$(278354)(288458)(308646)(318755)(328859)(349047)(359151)(369260)$
$(389448)(399552)(409656)(4197102)(4298104)(4399105)(44100106)(6377114)$
$(6478115)(6579116)(6680117)(71118122)(76101119)(81108121)(85109123)$
（89 110124 ）（93 111125 ）（103 113120 ），
we may express the permutation representation of the symmetric generator $t^{x} \sim t_{1}$ in its action on the right cosets of N in G as
$\cdot \phi(t)^{\phi(x)} \sim \phi\left(t_{1}\right):(12627)(12111)(33013)(43414)(53815)(61641)(81850)(91954)$
$(102058)(126163)(17108112)(257176)(266873)(276974)(287075)(227849)$ $(237953)(248057)(298542)(318755)(328859)(338943)(359151)(369260)$ $(379344)(399552)(409656)(45101103)(4698104)(4799105)(48100106)(6281113)$
$(6482115)(6583116)(6684117)(67118121)(7297119)(77107122)(86109123)$

$$
(90110124)(94111125)(102114 \text { 120), }
$$

we may express the permutation representation of the symmetric generator $t^{x^{2}} \sim t_{2}$ in its action on the right cosets of N in G as
$\phi(t)^{\phi(x)^{2}} \sim \phi\left(t_{2}\right):(12638)(12211)(22612)(43514)(53915)(61642)(71746)(91955)$
$(102059)(136164)(18109112)(297176)(306772)(316974)(327075)(217745)$
$(237953)(248057)(258141)(278354)(288458)(338943)(349047)(369260)$
$(379344)(389448)(409656)(49101103)(5097102)(5199105)(52100106)(6285113)$
$(6386114)(6587116)(6688117)(68118123)(7398119)(78107122)(82108121)$

$$
(91110124)(95111125)(104115120),
$$

we may express the permutation representation of the symmetric generator $t^{x^{3}} \sim t_{3}$ in its action on the right cosets of N in G as $\phi(t)^{\phi(x)^{3}} \sim \phi\left(t_{3}\right):(12649)(12311)(22712)(33113)(54015)(61643)(71747)(81851)$ $(102060)(146165)(19110112)(337176)(346772)(356873)(367075)(217745)$ $(227849)(248057)(258141)(268250)(288458)(298542)(308646)(328859)$ $(379344)(389448)(399552)(53101$ 103)(54 97 102)(55 98 104)(56 100 106) $(6289113)(6390114)(6491115)(6692117)(69118124)(7499119)(79107122)$ $(83108121)(87109123)(96111125)(105116120)$,
we may express the permutation representation of the symmetric generator $t^{x^{4}} \sim t_{4}$ in its action on the right cosets of N in G as
$\phi(t)^{\phi(x)^{4}} \sim \phi\left(t_{4}\right):(126510)(12411)(22812)(33213)(43614)(61644)(71748)(81852)$
$(91956)(156166)(20111112)(377176)(386772)(396873)(406974)(217745)$
$(227849)(237953)(258141)(268250)(278354)(298542)(308646)(318755)$ $(338943)(349047)(359151)(57101$ 103)(5897102)(5998104)(6099105)(6293113)
$(6394114)(6495115)(6596116)(70118125)(75100119)(80107122)(84108121)$ (88 109123)(92 110124$)(106117120)$,
we may express the permutation representation of the generator $x \sim(01234)$ in its action on the right cosets of N in G as
$\phi(x) \sim \phi((01234)):(12345)(678910)(1112131415)(1617181920)(2126313637)$
$(2227323338)(2328293439)(2425303540)(4146515657)(4247525358)$
(43 48495459$)(4445505560)(6263646566)(6768697071)(7273747576)$
$(979899100$ 101)(7782879293)(7883888994)(7984859095)(8081869196) (102 104105106103$)(107108109110111)(113114115116117)(121123124125122)$, and we may express the permutation representation of the generator $y \sim(34)$ in its action on the right cosets of N in G as

$$
\phi(y) \sim \phi((34)):(45)(910)(1920)(1415)(2324)(2728)(3132)(3337)(3438)(3539)
$$

$(3640)(4344)(4748)(5152)(5357)(5458)(5559)(5660)(6566)(6970)(7475)(99100)$
$(7980)(8384)(8788)(8993)(9094)(9195)(9296)(105106)(110111)(116117)(124125)$.

6.5 Proof of Isomorphism between G and $S_{7} \times 3$

We now demonstrate that $G \cong S_{7} \times 3$.

Proof. To prove that $G \cong S_{7} \times 3$, we must first show that $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of G and that $|G|=|\langle\phi(x), \phi(y), \phi(t)\rangle|=15120$ (from which we can conclude $G \cong\langle\phi(x), \phi(y), \phi(t)\rangle)$, and we must next show that $\langle\phi(x), \phi(y), \phi(t)\rangle \cong S_{7} \times 3$ (from which we can conclude $S_{7} \times 3$ is a homomorphic image of G and $G \cong S_{7} \times 3$).

We first show $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of G and $|G|=|\langle\phi(x), \phi(y), \phi(t)\rangle|=15120$. From our construction of G using manual double coset enumeration of G over S_{5}, illustrated by the Cayley Diagram in Figure 6.1, we concluded that group G defined by the symmetric presentation must contain a homomorphic image of $N \cong S_{5}$ whose index [$G: N$] is at most 126 :

$$
=1+5+5+5+20+20+5+1+5+5+5+20+5+5+5+1+5+1+1+1+5=126
$$

Since the index of N in G is at most 126, and since $|G|=\frac{|G|}{|N|} \cdot|N|$, the order of the homomorphic image group G is at most 15120:

$$
|G|=\frac{|G|}{|N|} \cdot|N| \leq 126 \cdot|N|=126 \cdot 120=15120 \Rightarrow|G| \leq 15120
$$

We now consider $\langle\phi(x), \phi(y), \phi(t)\rangle$. Note that $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a group generated by the permutation representations of the generators x, y, and t and, as such, it is a subgroup of the symmetric group S_{126} acting on the one hundred twenty-six right cosets of N in G. We now show that $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of G and, therefore, that $|G| \geq|\langle\phi(x), \phi(y), \phi(t)\rangle|=15120$. To show that $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of G, we first demonstrate that $\langle\phi(x), \phi(y), \phi(t)\rangle \leq S_{126}$ is a homomorphic image of \bar{G}. Now, recall that $\bar{G}=\langle x, y, t\rangle$ is a homomorphic image of the progenitor $3^{* 5}: S_{5}$, and its presentation is given by

$$
\bar{G}=\left\langle x, y, t \mid x^{5}=y^{2}=(y x)^{4}=[x, y]^{3}=t^{3}=[t, y]=\left[t^{x}, y\right]=\left[t^{x^{2}}, y\right]=e\right\rangle
$$

where $x \sim(01234), y \sim(34)$, and $t \sim t_{0}$, and $N=\langle x, y\rangle \cong S_{5}$. Let $\alpha_{-}: \bar{G} \longrightarrow\langle\phi(x), \phi(y), \phi(t)\rangle$ be a mapping from \bar{G} to $\langle\phi(x), \phi(y), \phi(t)\rangle$. We note first that

$$
\begin{aligned}
& {[G: N]=\frac{|N|}{\left|N^{(*)}\right|}+\frac{|N|}{\left|N^{(0)}\right|}+\frac{|N|}{\left|N^{(\overline{0})}\right|}+\frac{|N|}{\left|N^{(\overline{\overline{1}})}\right|}+\frac{|N|}{\left|N^{(01)}\right|}+\frac{|N|}{\left|N^{(\overline{\overline{1}})}\right|}+\frac{|N|}{\left|N^{(\overline{0})}\right|}} \\
& +\frac{|N|}{\left|N^{(0 \overline{1} 0}\right|}+\frac{|N|}{\left|N^{(0 \overline{0} \overline{0})}\right|}+\frac{|N|}{\left|N^{(010)}\right|}+\frac{|N|}{\left|N^{(01 \overline{0})}\right|}+\frac{|N|}{\left|N^{(012)}\right|}+\frac{|N|}{\left|N^{(\overline{\overline{1}} \overline{0})}\right|}+\frac{|N|}{\left|N^{(\overline{0} \overline{\overline{1}})}\right|} \\
& +\frac{|N|}{\left|N^{(\overline{0} 10)}\right|}+\frac{|N|}{\left|N^{(\overline{0} 1 \overline{0})}\right|}+\frac{|N|}{\left|N^{(0 \overline{1} \overline{\overline{1}} \overline{1})}\right|}+\frac{|N|}{\left|N^{(0101)}\right|}+\frac{|N|}{\left|N^{(01 \overline{0} \overline{1})}\right|}+\frac{|N|}{\left|N^{(\overline{0} \overline{1} \overline{\overline{1}})}\right|} \\
& +\frac{|N|}{\left|N^{(010 \overline{1})}\right|} \leq \frac{120}{120}+\frac{120}{24}+\frac{120}{24}+\frac{120}{24}+\frac{120}{6}+\frac{120}{6}+\frac{120}{24}+\frac{120}{120}+\frac{120}{24}+\frac{120}{24} \\
& +\frac{120}{24}+\frac{120}{6}+\frac{120}{24}+\frac{120}{24}+\frac{120}{24}+\frac{120}{120}+\frac{120}{24}+\frac{120}{120}+\frac{120}{120}+\frac{120}{120}+\frac{120}{24}
\end{aligned}
$$

the mapping $\alpha: \bar{G} \longrightarrow\langle\phi(x), \phi(y), \phi(t)\rangle$ is well defined. The generators $\phi(x), \phi(y)$, and $\phi(t)$ are the permutation representations of $x \sim\left(\begin{array}{ll}0 & 1\end{array} 24\right.$), $y \sim(34)$, and $t \sim t_{0}$ on 126 letters. Since the order of $\phi(x)$ is 5 , the order of $\phi(y)$ is 2 , and the order of $\phi(x) \phi(y)$ is 4 , we conclude $\langle\phi(x), \phi(y)\rangle \cong N \cong S_{5}$. Moreover, we demonstrate below that $\phi(t)$ has exactly five conjugates under conjugation by the elements of $\langle\phi(x), \phi(y)\rangle \cong N \cong S_{5}$. Now, given $t \sim t_{0}$, we see that

$$
\left.\left.\phi(t)^{\phi(x)} \sim \phi\left(t_{0}\right)^{\phi((0} 12334\right)\right)=\left[\left(\begin{array}{lll}
126 & 1 & 6
\end{array}\right)(22512)(32913)(43314)(53715)(71745)\right.
$$

$(81849)(91953)(102057)(116162)(16107112)(216772)(226873)(236974)(247075)$
$(268250)(278354)(288458)(308646)(318755)(328859)(349047)(359151)$
$(369260)(389448)(399552)(409656)(4197102)(4298104)(4399105)(44100106)$
$(6377114)(6478115)(6579116)(6680117)(71118122)(76101119)(81108121)$ $\left.\left.(85109123)(89110124)(93111125)(103113120)]^{\phi((011} 1234\right)\right)$ $=[(12345)(678910)(1112131415)(1617181920)(2126313637)$
$(2227323338)(2328293439)(2425303540)(4146515657)(4247525358)$
(43 48495459$)(4445505560)(6263646566)(6768697071)(7273747576)$
$(979899100$ 101)(7782879293)(7883888994)(7984859095)(8081869196) (102 104105106103$)(107108109110.111)(113114115116117)(121123124125$ 122)] $[(12616)(22512)(32913)(43314)(53715)(71745)(81849)(91953)(102057)(116162)$
$(16107112)(216772)(226873)(236974)(247075)(268250)(278354)(288458)$
$(308646)(318755)(328859)(349047)(359151)(369260)(389448)(399552)$
$(409656)(4197102)(4298104)(4399105)(44100106)(6377114)(6478115)(6579116)$ $(6680117)(71118122)(76101119)(81108121)(85109123)(89110124)(93111$ 125) $(103113120)][(15432)(610987)(1115141312)(1620191817)(2137363126)$
(22 383332 27)(23 393429 28)(24 40353025$)(4157565146)(4258535247)$
$(4359544948)(4460555045)(6266656463)(6771706968)(7276757473)$
(971011009998)(7793928782)(7894898883)(7995908584)(8096918681) (102 103106105104$)(107111110109108)(113117116115114)(121122125124123)]$ $=(12627)(12111)(33013)(43414)(53815)(61641)(81850)(91954)(102058)$ $(126163)(17108112)(257176)(266873)(276974)(287075)(227849)(237953)$ $(248057)(298542)(318755)(328859)(338943)(359151)(369260)(379344)$ $(399552)(409656)(45101103)(4698104)(4799105)(48100106)(6281113)(6482115)$
$(6583116)(6684117)(67118121)(7297119)(77107122)(86109123)(90110124)$ $(94111125)(102114120)=\phi\left(t_{1}\right) \sim \phi\left(t^{x}\right)$,
and further that

$$
\left.\left.\phi(t)^{\phi\left(x^{2}\right)} \sim \phi\left(t_{0}\right)^{\phi((0} 12234\right)^{2}\right)=\left[\left(\begin{array}{lll}
126 & 1 & 6)(225
\end{array}\right)(32913)(43314)(53715)(71745)\right.
$$

$(81849)(91953)(102057)(116162)(16107112)(216772)(226873)(236974)$ $(247075)(268250)(278354)(288458)(308646)(318755)(328859)(349047)$ (35 9151)(36 9260$)(389448)(399552)(409656)(4197102)(4298104)(4399105)$ $(44100106)(6377114)(6478115)(6579116)(6680117)(71118122)(76101119)$ $\left.\left.(81108121)(85109123)(89110124)(93111125)\left(\begin{array}{llllll}103 & 113 & 120)\end{array}\right]^{\phi((0} 121234\right)^{2}\right)$ $=[(13524)(681079)(1113151214)(1618201719)(2131372636)(2232382733)$ (23 29392834)(24 30402535)(41 51574656$)(4252584753)(4349594854)$ $(4450604555)(6264666365)(6769716870)(7274767375)(979910198100)$ $(7787938292)(7888948389)(7985958490)(8086968191)(102105103104106)$ $(107109111108110)(113115117114116)(121124122123125)]\left[\left(\begin{array}{ll}126 & 1 \\ 6\end{array}\right)(22512)\right.$ $(32913)(43314)(53715)(71745)(81849)(91953)(102057)(116162)(16107112)$ $(216772)(226873)(236974)(247075)(268250)(278354)(288458)(308646)$ $(318755)(328859)(349047)(359151)(369260)(389448)(399552)(409656)$ $(4197102)(4298104)(4399105)(44100106)(6377114)(6478115)(6579116)(6680117)$
$(71118122)(76101119)(81108121)(85109123)(89110124)(93111125)(103113120)]$ [(14253)(697108)(1114121513)(1619172018)(2136263731) $(2233273832)(2334283929)(2435254030)(4156465751)(4253475852)$ $(4354485949)(4455456050)(6265636664)(6770687169)(7275737674)$ $(971009810199)(7792829387)(7889839488)(7990849585)(8091819686)$ (102 106104103105$)(107110108111$ 109)(113 116114117115$)(121125123122124)]$ $=(12638)(12211)(22612)(43514)(53915)(61642)(71746)(91955)(102059)$ $(136164)(18109112)(297176)(306772)(316974)(327075)(217745)(237953)$ $(248057)(258141)(278354)(288458)(338943)(349047)(369260)(379344)$ $(389448)(409656)(49101$ 103)(50 97102$)(5199105)(52100106)(6285113)$ $(6386114)(6587116)(6688117)(68118123)(7398119)(78107122)(82108121)$ $(91110124)(95111125)(104115120)=\phi\left(t_{2}\right) \sim \phi\left(t^{x^{2}}\right)$,
and further that

$(81849)(91953)(102057)(116162)(16107$ 112)(216772)(226873)(236974)
$(247075)(268250)(278354)(288458)(308646)(318755)(328859)(349047)$
$(359151)(369260)(389448)(399552)(409656)(4197102)(4298104)(4399105)$ $(44100106)(6377114)(6478115)(6579116)(6680117)(71118122)(76101119)$ $\left.\left.(81108121)(85109123)(89110124)(93111125)\left(\begin{array}{lllll}103 & 113 & 120)\end{array}\right]^{\phi((0} 10234\right)^{3}\right)$ $=[(14253)(697108)(1114121513)(1619172018)(2136263731)$ (22 33273832)(23 342839 29)(24 35254030$)(4156465751)(4253475852)$ $(4354485949)(4455456050)(6265636664)(6770687169)(7275737674)$ $(971009810199)(7792829387)(7889839488)(7990849585)(8091819686)$ $(102106104103105)(107110108111109)(113116114117115)(121125123122124)]$
[(126 16) (2 2512$)(32913)(43314)(53715)(71745)(81849)(91953)(102057)$ $(116162)(16107112)(216772)(226873)(236974)(247075)(268250)(278354)$ $(288458)(308646)(318755)(328859)(349047)(359151)(369260)(389448)$ $(399552)(409656)(4197102)(4298104)(4399105)(44100106)(6377114)(6478115)$ $(6579116)(6680117)(71118122)(76101119)(81108121)(85109123)(89110124)$ (93 111 125) (103 113120$)][(13524)(681079)(1113151214)(1618201719)$ (21 31372636)(22 32382733)(23 29392834$)(2430402535)(4151574656)$ (4252584753)(4349594854)(4450604555)(6264666365)(6769716870) $(7274767375)(979910198100)(7787938292)(7888948389)(7985958490)$ $(8086968191)(102105103104$ 106)(107 109111108110$)(113115117114$ 116) $(121124122123125)]=(12649)(12311)(22712)(33113)(54015)(61643)$ $(71747)(81851)(102060)(146165)(19110112)(337176)(346772)(356873)(367075)$ $(217745)(227849)(248057)(258141)(268250)(288458)(298542)(308646)$ $(328859)(379344)(389448)(399552)(53101103)(5497102)(5598104)(56100106)$ $(6289113)(6390114)(6491115)(6692117)(69118124)(7499119)(79107122)$ $(83108121)(87109123)(96111125)(105116120)=\phi\left(t_{3}\right) \sim \phi\left(t^{x^{3}}\right)$, and further that

$$
\left.\left.\phi(t)^{\phi\left(x^{4}\right)} \sim \phi\left(t_{0}\right)^{\phi((0} 11234\right)^{4}\right)=\left[\left(\begin{array}{lll}
126 & 1 & 6
\end{array}\right)\left(\begin{array}{lll}
2 & 25 & 12
\end{array}\right)\left(\begin{array}{lll}
3 & 29 & 13
\end{array}\right)\left(\begin{array}{lll}
4 & 33 & 14
\end{array}\right)\left(\begin{array}{lll}
5 & 37 & 15
\end{array}\right)(71745)\right.
$$ $(81849)(91953)(102057)(116162)(16107112)(216772)(226873)(236974)(247075)$ $(268250)(278354)(288458)(308646)(318755)(328859)(349047)(359151)$ $(369260)(389448)(399552)(409656)(4197102)(4298104)(4399105)(44100106)$

$(6377114)(6478115)(6579116)(6680117)(71118122)(76101119)(81108121)$ $(85109123)(89110124)(93111125)(103113120)]^{\phi\left(\left(\begin{array}{llll}0 & 1 & 2 & 3\end{array}\right)^{4}\right)}$ $=[(15432)(610987)(1115141312)(1620191817)(2137363126)(2238333227)$
(23 39342928)(24 40353025$)(4157565146)(4258535247)(4359544948)$ $(4460555045)(6266656463)(6771706968)(7276757473)(971011009998)$ $(7793928782)(7894898883)(7995908584)(8096918681)(102103106105104)$ $(107111110109108)(113117116115114)(121122125124123)]\left[\left(\begin{array}{ll}126 & 1\end{array} 6\right)\left(\begin{array}{ll}2 & 25 \\ 12\end{array}\right)\right.$ $(32913)(43314)(53715)(71745)(81849)(91953)(102057)(116162)(16107112)$ $(216772)(226873)(236974)(247075)(268250)(278354)(288458)(308646)$ $(318755)(328859)(349047)(359151)(369260)(389448)(399552)(409656)$ $(4197102)(4298104)(4399105)(44100106)(6377114)(6478115)(6579116)(6680117)$ $(71118122)(76101119)(81108121)(85109123)(89110124)(93111125)(103113120)]$ [(1 2345$)(678910)(1112131415)(1617181920)(2126313637)$ $(2227323338)(232829.3439)(2425303540)(4146515657)(4247525358)$ $(4348495459)(4445505560)(6263646566)(6768697071)(7273747576)$ $(979899100101)(7782879293)(7883888994)(7984859095)(8081869196)$ (102 104105106103$)(107108109110111)(113114115116117)(121123124125$ 122)] $=(126510)(12411)(22812)(33213)(43614)(61644)(71748)(81852)(91956)$ (15 6166$)(20111112)(377176)(386772)(396873)(406974)(217745)(227849)$ $(237953)(258141)(268250)(278354)(298542)(308646)(318755)(338943)$ $(349047)(359151)(57101$ 103)(58 97102$)(5998104)(6099105)(6293113)$ $(6394114)(6495115)(6596116)(70118125)(75100119)(80107122)(84108121)$ $(88109123)(92110124)(106117120)=\phi\left(t_{4}\right) \sim \phi\left(t^{x^{4}}\right)$.

Therefore, $\phi(t)$ has exactly five conjugates under conjugation by the elements of $\langle\phi(x), \phi(y)\rangle \cong N \cong S_{5}$; these conjugates are, namely, $\phi(t) \sim \phi\left(t_{0}\right), \phi\left(t^{x}\right) \sim \phi\left(t_{1}\right)$, $\phi\left(t^{x^{2}}\right) \sim \phi\left(t_{2}\right), \phi\left(t^{x^{3}}\right) \sim \phi\left(t_{3}\right)$, and $\phi\left(t^{x^{4}}\right) \sim \phi\left(t_{4}\right)$. Since $\langle\phi(x), \phi(y)\rangle \cong N \cong S_{5}$ and since $\phi(t)$ has exactly five conjugates under conjugation by the elements of $\langle\phi(x), \phi(y)\rangle \cong N$, we conclude that $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of $\bar{G}=\langle x, y, t\rangle$. That is, $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic inage of the progenitor $3^{\star 5}: S_{5}$.

Next, to show that $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of G, we must show that $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of \bar{G} factored by the relations $(y x t)^{6}=e$, $\left(t^{-1} t^{x}\right)^{3}=e,\left(x y x^{-1} y x t^{-1} t^{x}\right)^{2}=e$, and $\left(x^{-2} y x^{2} t\right)^{12}=e$; that is, we must show that $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of the progenitor $3^{* 5}: S_{5}$ factored by the relations $\left.\left[\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}\right]^{6}=e,\left[t_{0}^{-1} t_{1}\right]^{3}=e,\left[\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}^{-1} t_{1}\right]^{2}=e$, and $\left[\left(\begin{array}{ll}0 & 1\end{array}\right) t_{0}\right]^{12}=e$. Let $\tilde{\alpha}: G \longrightarrow\langle\phi(x), \phi(y), \phi(t)\rangle$ be a mapping from G to $\langle\phi(x), \phi(y), \phi(t)\rangle$. We note that the mapping $\tilde{\alpha}: G \longrightarrow\langle\phi(x), \phi(y), \phi(t)\rangle$ is well-defined, and we know already that $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of the progenitor $3^{\star 5}: S_{5}$. Now, to show that $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of G, we need only demonstrate that the relations $\left[\left(\begin{array}{llll}0 & 1 & 2 & 3\end{array}\right) t_{0}\right]^{6}=e,\left[t_{0}^{-1} t_{1}\right]^{3}=e,\left[\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}^{-1} t_{1}\right]^{2}=e$, and $\left[\left(\begin{array}{ll}0 & 1\end{array}\right) t_{0}\right]^{12}=e$, which hold true in G, also hold true in $\langle\phi(x), \phi(y), \phi(t)\rangle \leq S_{126}$.

To demonstrate that the relation $\left[\left(\begin{array}{lll}0 & 1 & 2\end{array} 3\right) t_{0}\right]^{6}=e$, or, equivalently, the relation $t_{1} t_{0} t_{3} t_{2} t_{1} t_{0}=\left(\begin{array}{ll}0 & 2\end{array}\right)(13)$, holds true in $\langle\phi(x), \phi(y), \phi(t)\rangle \leq S_{126}$, we show that $\phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{3}\right) \phi\left(t_{2}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right) \sim \phi\left(t^{x}\right) \phi(t) \phi\left(t^{x^{3}}\right) \phi\left(t^{x^{2}}\right) \phi\left(t^{x}\right) \phi(t) \in S_{126}$ acts on the five symmetric generators $\phi\left(t_{0}\right), \phi\left(t_{1}\right), \phi\left(t_{2}\right), \phi\left(t_{3}\right)$, and $\phi\left(t_{4}\right)$ by conjugation in the same way that $\phi((02)(13)) \sim \phi\left((y x)^{2}\right)$ acts on the five symmetric generators $\phi\left(t_{0}\right), \phi\left(t_{1}\right), \phi\left(t_{2}\right)$, $\phi\left(t_{3}\right)$, and $\phi\left(t_{4}\right)$ by conjugation. We first conjugate the symmetric generators $\phi\left(t_{0}\right)$, $\phi\left(t_{1}\right), \phi\left(t_{2}\right), \phi\left(t_{3}\right)$, and $\phi\left(t_{4}\right)$ by $\phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{3}\right) \phi\left(t_{2}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right)$. This gives us

$$
\begin{aligned}
& \phi\left(t_{0}\right)^{\phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{3}\right) \phi\left(t_{2}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right)}=\phi\left(t_{2}\right), \\
& \phi\left(t_{1}\right)^{\phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{3}\right) \phi\left(t_{2}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right)}=\phi\left(t_{3}\right), \\
& \phi\left(t_{2}\right)^{\phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{3}\right) \phi\left(t_{2}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right)}=\phi\left(t_{0}\right), \\
& \phi\left(t_{3}\right)^{\phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{3}\right) \phi\left(t_{2}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right)}=\phi\left(t_{1}\right), \\
& \phi\left(t_{4}\right)^{\phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{3}\right) \phi\left(t_{2}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right)}=\phi\left(t_{4}\right)
\end{aligned}
$$

We next conjugate the symmetric generators $\phi\left(t_{0}\right), \phi\left(t_{1}\right), \phi\left(t_{2}\right), \phi\left(t_{3}\right)$, and $\phi\left(t_{4}\right)$ by $\phi((02)(13))$. This gives us

$$
\begin{aligned}
& \phi\left(t_{0}\right)^{\phi\left(\left(\begin{array}{ll}
0 & 2)(13))
\end{array}=\phi\left(t_{2}\right), ~\right.\right.} \\
& \phi\left(t_{1}\right)^{\phi((02)(13))}=\phi\left(t_{3}\right), \\
& \phi\left(t_{2}\right)^{\phi((02)(13))}=\phi\left(t_{0}\right), \\
& \phi\left(t_{3}\right)^{\phi((02)(13))}=\phi\left(t_{1}\right),
\end{aligned}
$$

$$
\phi\left(t_{4}\right)^{\phi((02)(13))}=\phi\left(t_{4}\right)
$$

Since $\phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{3}\right) \phi\left(t_{2}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right) \sim \phi\left(t^{x}\right) \phi(t) \phi\left(t^{x^{3}}\right) \phi\left(t^{x^{2}}\right) \phi\left(t^{x}\right) \phi(t) \in S_{126}$ acts on the five symmetric generators $\phi\left(t_{0}\right), \phi\left(t_{1}\right), \phi\left(t_{2}\right), \phi\left(t_{3}\right)$, and $\phi\left(t_{4}\right)$ by conjugation in the same way that $\phi\left(\left(\begin{array}{ll}0 & 2\end{array}\right)\left(\begin{array}{ll}1 & 3\end{array}\right)\right) \sim \phi\left((y x)^{2}\right)$ acts on the five symmetric generators $\phi\left(t_{0}\right), \phi\left(t_{1}\right)$, $\phi\left(t_{2}\right), \phi\left(t_{3}\right)$, and $\phi\left(t_{4}\right)$ by conjugation, we conclude that the relation [(lllll $\left.\left.\begin{array}{lll}0 & 1 & 2\end{array} 3\right) t_{0}\right]^{6}=e$, which holds true in G, also holds true in $\langle\phi(x), \phi(y), \phi(t)\rangle \leq S_{126}$.

To demonstrate that the relation $\left[t_{0}^{-1} t_{1}\right]^{3}=e$, or, equivalently, the relation $t_{0}^{-1} t_{1} t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}=e$, holds true in $\langle\phi(x), \phi(y), \phi(t)\rangle \leq S_{126}$, we must show that $\phi\left(t_{0}^{-1}\right) \phi\left(t_{1}\right) \phi\left(t_{0}^{-1}\right) \phi\left(t_{1}\right) \phi\left(t_{0}^{-1}\right) \phi\left(t_{1}\right) \sim \phi\left(t^{-1}\right) \phi\left(t^{x}\right) \phi\left(t^{-1}\right) \phi\left(t^{x}\right) \phi\left(t^{-1}\right) \phi\left(t^{x}\right) \in S_{126}$ acts on the five symmetric generators $\phi\left(t_{0}\right), \phi\left(t_{1}\right), \phi\left(t_{2}\right), \phi\left(t_{3}\right)$, and $\phi\left(t_{4}\right)$ by conjugation in the same way that the identity element $\phi(e)$ acts on the five symmetric generators $\phi\left(t_{0}\right)$, $\phi\left(t_{1}\right), \phi\left(t_{2}\right), \phi\left(t_{3}\right)$, and $\phi\left(t_{4}\right)$ by conjugation. We first conjugate the symmetric generators $\phi\left(t_{0}\right), \phi\left(t_{1}\right), \phi\left(t_{2}\right), \phi\left(t_{3}\right)$, and $\phi\left(t_{4}\right)$ by $\phi\left(t_{0}^{-1}\right) \phi\left(t_{1}\right) \phi\left(t_{0}^{-1}\right) \phi\left(t_{1}\right) \phi\left(t_{0}^{-1}\right) \phi\left(t_{1}\right)$. This gives us

$$
\begin{aligned}
& \phi\left(t_{0}\right)^{\phi\left(t_{0}^{-1}\right) \phi\left(t_{1}\right) \phi\left(t_{0}^{-1}\right) \phi\left(t_{1}\right) \phi\left(t_{0}^{-1}\right) \phi\left(t_{1}\right)}=\phi\left(t_{0}\right), \\
& \phi\left(t_{1}\right)^{\phi\left(t_{0}^{-1}\right) \phi\left(t_{1}\right) \phi\left(t_{0}^{-1}\right) \phi\left(t_{1}\right) \phi\left(t_{0}^{-1}\right) \phi\left(t_{1}\right)}=\phi\left(t_{1}\right), \\
& \phi\left(t_{2}\right)^{\phi\left(t_{0}^{-1}\right) \phi\left(t_{1}\right) \phi\left(t_{0}^{-1}\right) \phi\left(t_{1}\right) \phi\left(t_{0}^{-1}\right) \phi\left(t_{1}\right)}=\phi\left(t_{2}\right), \\
& \phi\left(t_{3}\right)^{\phi\left(t_{0}^{-1}\right) \phi\left(t_{1}\right) \phi\left(t_{0}^{-1}\right) \phi\left(t_{1}\right) \phi\left(t_{0}^{-1}\right) \phi\left(t_{1}\right)}=\phi\left(t_{3}\right), \\
& \phi\left(t_{4}\right)^{\phi\left(t_{0}^{-1}\right) \phi\left(t_{1}\right) \phi\left(t_{0}^{-1}\right) \phi\left(t_{1}\right) \phi\left(t_{0}^{-1}\right) \phi\left(t_{1}\right)}=\phi\left(t_{4}\right)
\end{aligned}
$$

We next conjugate the symmetric generators $\phi\left(t_{0}\right), \phi\left(t_{1}\right), \phi\left(t_{2}\right), \phi\left(t_{3}\right)$, and $\phi\left(t_{4}\right)$ by $\phi(e)$. This gives us

$$
\begin{aligned}
& \phi\left(t_{0}\right)^{\phi(e)}=\phi\left(t_{0}\right), \\
& \phi\left(t_{1}\right)^{\phi(e)}=\phi\left(t_{1}\right), \\
& \phi\left(t_{2}\right)^{\phi(e)}=\phi\left(t_{2}\right), \\
& \phi\left(t_{3}\right)^{\phi(e)}=\phi\left(t_{3}\right), \\
& \phi\left(t_{4}\right)^{\phi(e)}=\phi\left(t_{4}\right)
\end{aligned}
$$

Since $\phi\left(t_{0}^{-1}\right) \phi\left(t_{1}\right) \phi\left(t_{0}^{-1}\right) \phi\left(t_{1}\right) \phi\left(t_{0}^{-1}\right) \phi\left(t_{1}\right) \sim \phi\left(t^{-1}\right) \phi\left(t^{x}\right) \phi\left(t^{-1}\right) \phi\left(t^{x}\right) \phi\left(t^{-1}\right) \phi\left(t^{x}\right) \in S_{126}$ acts on the five symmetric generators $\phi\left(t_{0}\right), \phi\left(t_{1}\right), \phi\left(t_{2}\right), \phi\left(t_{3}\right)$, and $\phi\left(t_{4}\right)$ by conjugation in the-same way that the identity element $\phi(e)$ acts on the five symmetric generators $\phi\left(t_{0}\right)$,
$\phi\left(t_{1}\right), \phi\left(t_{2}\right), \phi\left(t_{3}\right)$, and $\phi\left(t_{4}\right)$ by conjugation, we conclude that the relation $\left[t_{0}^{-1} t_{1}\right]^{3}=e$, which holds true in G, also holds true in $\langle\phi(x), \phi(y), \phi(t)\rangle \leq S_{126}$.

To demonstrate that the relation $\left[\left(\begin{array}{lll}0 & 1 & 2)\end{array} t_{0}^{-1} t_{1}\right]^{2}=e\right.$, or, equivalently, the relation $t_{1}^{-1} t_{2} t_{0}^{-1} t_{1}=\left(\begin{array}{ll}0 & 1\end{array}\right)$, holds true in $\langle\phi(x), \phi(y), \phi(t)\rangle \leq S_{126}$, we show that $\phi\left(t_{1}^{-1}\right) \phi\left(t_{2}\right) \phi\left(t_{0}^{-1}\right) \phi\left(t_{1}\right) \sim \phi\left(\left(t^{x}\right)^{-1}\right) \phi\left(t^{x^{2}}\right) \phi\left(t^{-1}\right) \phi\left(t^{x}\right) \in S_{126}$ acts on the five symmetric generators $\phi\left(t_{0}\right), \phi\left(t_{1}\right), \phi\left(t_{2}\right), \phi\left(t_{3}\right)$, and $\phi\left(t_{4}\right)$ by conjugation in the same way that $\phi\left(\left(\begin{array}{lll}0 & 1 & 2\end{array}\right)\right) \sim \phi\left(x y x^{-1} y x t^{-1}\right)$ acts on the five symmetric generators $\phi\left(t_{0}\right), \phi\left(t_{1}\right), \phi\left(t_{2}\right)$, $\phi\left(t_{3}\right)$, and $\phi\left(t_{4}\right)$ by conjugation. We first conjugate the symmetric generators $\phi\left(t_{0}\right)$, $\phi\left(t_{1}\right), \phi\left(t_{2}\right), \phi\left(t_{3}\right)$, and $\phi\left(t_{4}\right)$ by $\phi\left(t_{1}^{-1}\right) \phi\left(t_{2}\right) \phi\left(t_{0}^{-1}\right) \phi\left(t_{1}\right)$. This gives us

$$
\begin{aligned}
& \phi\left(t_{0}\right)^{\phi\left(t_{1}^{-1}\right) \phi\left(t_{2}\right) \phi\left(t_{0}^{-1}\right) \phi\left(t_{1}\right)}=\phi\left(t_{1}\right), \\
& \phi\left(t_{1}\right)^{\phi\left(t_{1}^{-1}\right) \phi\left(t_{2}\right) \phi\left(t_{0}^{-1}\right) \phi\left(t_{1}\right)}=\phi\left(t_{2}\right), \\
& \phi\left(t_{2}\right)^{\phi\left(t_{1}^{-1}\right) \phi\left(t_{2}\right) \phi\left(t_{0}^{-1}\right) \phi\left(t_{1}\right)}=\phi\left(t_{0}\right), \\
& \phi\left(t_{3}\right)^{\phi\left(t_{1}^{-1}\right) \phi\left(t_{2}\right) \phi\left(t_{0}^{-1}\right) \phi\left(t_{1}\right)}=\phi\left(t_{3}\right), \\
& \phi\left(t_{4}\right)^{\phi\left(t_{1}^{-1}\right) \phi\left(t_{2}\right) \phi\left(t_{0}^{-1}\right) \phi\left(t_{1}\right)}=\phi\left(t_{4}\right)
\end{aligned}
$$

We next conjugate the symmetric generators $\phi\left(t_{0}\right), \phi\left(t_{1}\right), \phi\left(t_{2}\right), \phi\left(t_{3}\right)$, and $\phi\left(t_{4}\right)$ by $\phi\left(\left(\begin{array}{ll}0 & 1\end{array}\right)\right)$. This gives us

$$
\begin{aligned}
& \phi\left(t_{0}\right)^{\phi\left(\left(\begin{array}{lll}
0 & 1 & 2
\end{array}\right)\right)}=\phi\left(t_{1}\right) \\
& \phi\left(t_{1}\right)^{\phi\left(\left(\begin{array}{lll}
0 & 1 & 2
\end{array}\right)\right.}=\phi\left(t_{2}\right) \\
& \phi\left(t_{2}\right)^{\phi\left(\left(\begin{array}{lll}
0 & 1 & 2))
\end{array}\right.\right.}=\phi\left(t_{0}\right) \\
& \phi\left(t_{3}\right)^{\phi\left(\left(\begin{array}{lll}
0 & 1 & 2))
\end{array}\right.\right.}=\phi\left(t_{3}\right), \\
& \phi\left(t_{4}\right)^{\phi\left(\left(\begin{array}{lll}
(& 1 & 2
\end{array}\right)\right.}=\phi\left(t_{4}\right)
\end{aligned}
$$

Since $\phi\left(t_{1}^{-1}\right) \phi\left(t_{2}\right) \phi\left(t_{0}^{-1}\right) \phi\left(t_{1}\right) \sim \phi\left(\left(t^{x}\right)^{-1}\right) \phi\left(t^{x^{2}}\right) \phi\left(t^{-1}\right) \phi\left(t^{x}\right) \in S_{126}$ acts on the five symmetric generators $\phi\left(t_{0}\right), \phi\left(t_{1}\right), \phi\left(t_{2}\right), \phi\left(t_{3}\right)$, and $\phi\left(t_{4}\right)$ by conjugation in the same way that $\phi\left(\left(\begin{array}{lll}0 & 1 & 2\end{array}\right)\right) \sim \phi\left(x y x^{-1} y x t^{-1}\right)$ acts on the five symmetric generators $\phi\left(t_{0}\right), \phi\left(t_{1}\right)$, $\phi\left(t_{2}\right), \phi\left(t_{3}\right)$, and $\phi\left(t_{4}\right)$ by conjugation, we conclude that the relation $\left.\left[\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}^{-1} t_{1}\right]^{2}=e$, which holds true in G, also holds true in $\langle\phi(x), \phi(y), \phi(t)\rangle \leq S_{126}$.

To demonstrate that the relation $\left[\left(\begin{array}{ll}(1) t_{0}\end{array}\right]^{12}=e\right.$, or, equivalently, the relation $t_{1} t_{0} t_{1} t_{0} t_{1} t_{0} t_{1} t_{0} t_{1} t_{0} t_{1} t_{0}=e$, holds true in $\langle\phi(x), \phi(y), \phi(t)\rangle \leq S_{126}$, we show that
$\phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right)$
$\sim \phi\left(t^{x}\right) \phi(t) \phi\left(t^{x}\right) \phi(t) \phi\left(t^{x}\right) \phi(t) \phi\left(t^{x}\right) \phi(t) \phi\left(t^{x}\right) \phi(t) \phi\left(t^{x}\right) \phi(t) \in S_{126}$ acts on the five symmetric generators $\phi\left(t_{0}\right), \phi\left(t_{1}\right), \phi\left(t_{2}\right), \phi\left(t_{3}\right)$, and $\phi\left(t_{4}\right)$ by conjugation in the same way that the identity element $\phi(e)$ acts on the five symmetric generators $\phi\left(t_{0}\right), \phi\left(t_{1}\right), \phi\left(t_{2}\right), \phi\left(t_{3}\right)$, and $\phi\left(t_{4}\right)$ by conjugation. We first conjugate the symmetric generators $\phi\left(t_{0}\right), \phi\left(t_{1}\right)$, $\phi\left(t_{2}\right), \phi\left(t_{3}\right)$, and $\phi\left(t_{4}\right)$ by $\phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right)$. This gives us

$$
\begin{aligned}
& \phi\left(t_{0}\right)^{\phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right)}=\phi\left(t_{0}\right), \\
& \phi\left(t_{1}\right)^{\phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right)}=\phi\left(t_{1}\right), \\
& \phi\left(t_{2}\right)^{\phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right)}=\phi\left(t_{2}\right), \\
& \phi\left(t_{3}\right)^{\phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right)}=\phi\left(t_{3}\right), \\
& \phi\left(t_{4}\right)^{\phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right)}=\phi\left(t_{4}\right)
\end{aligned}
$$

We next conjugate the symmetric generators $\phi\left(t_{0}\right), \phi\left(t_{1}\right), \phi\left(t_{2}\right), \phi\left(t_{3}\right)$, and $\phi\left(t_{4}\right)$ by $\phi(e)$. This gives us

$$
\begin{aligned}
& \phi\left(t_{0}\right)^{\phi(e)}=\phi\left(t_{0}\right), \\
& \phi\left(t_{1}\right)^{\phi(e)}=\phi\left(t_{1}\right), \\
& \phi\left(t_{2}\right)^{\phi(e)}=\phi\left(t_{2}\right), \\
& \phi\left(t_{3}\right)^{\phi(e)}=\phi\left(t_{3}\right), \\
& \phi\left(t_{4}\right)^{\phi(e)}=\phi\left(t_{4}\right)
\end{aligned}
$$

Since $\phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right) \phi\left(t_{1}\right) \phi\left(t_{0}\right) \sim$ $\phi\left(t^{x}\right) \phi(t) \phi\left(t^{x}\right) \phi(t) \phi\left(t^{x}\right) \phi(t) \phi\left(t^{x}\right) \phi(t) \phi\left(t^{x}\right) \phi(t) \phi\left(t^{x}\right) \phi(t) \in S_{126}$ acts on the five symmetric generators $\phi\left(t_{0}\right), \phi\left(t_{1}\right), \phi\left(t_{2}\right), \phi\left(t_{3}\right)$, and $\phi\left(t_{4}\right)$ by conjugation in the same way that the identity element $\phi(e)$ acts on the five symmetric generators $\phi\left(t_{0}\right), \phi\left(t_{1}\right), \phi\left(t_{2}\right), \phi\left(t_{3}\right)$, and $\phi\left(t_{4}\right)$ by conjugation, we conclude that the relation $\left[\left(\begin{array}{ll}0 & \left.1) t_{0}\right]^{12}\end{array}=e\right.\right.$, which holds true in G, also holds true in $\langle\phi(x), \phi(y), \phi(t)\rangle \leq S_{126}$.

Since $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of the progenitor $3^{* 5}: S_{5}$, and since the relations $\left[\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}\right]^{6}=e,\left[t_{0}^{-1} t_{1}\right]^{3}=e,\left[\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}^{-1} t_{1}\right]^{2}=e$, and $\left[\left(\begin{array}{ll}0 & 1\end{array}\right) t_{0}\right]^{12}=e$ hold true in $\langle\phi(x), \phi(y), \phi(t)\rangle \leq S_{126}$, we conclude that $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic
image of the progenitor $3^{* 5}: S_{5}$ factored by the relations $\left.\left[\begin{array}{llll}0 & 1 & 2 & 3\end{array}\right) t_{0}\right]^{6}=e,\left[t_{0}^{-1} t_{1}\right]^{3}=e$, $\left[\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}^{-1} t_{1}\right]^{2}=e$, and $\left[\left(\begin{array}{ll}0 & 1)\end{array} t_{0}\right]^{12}=e\right.$; that is, we conclude that $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of G.

More importantly, since $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of G, we have that $\langle\phi(x), \phi(y), \phi(t)\rangle \leq G$. In fact, since $\langle\phi(x), \phi(y), \phi(t)\rangle \leq G$, we have that $|G| \geq|\langle\phi(x), \phi(y), \phi(t)\rangle|$. Since it is easily demonstrated, with MAGMA or by hand, that $|\langle\phi(x), \phi(y), \phi(t)\rangle|=15120$, we conclude finally that $|G| \geq|\langle\phi(x), \phi(y), \phi(t)\rangle|=$ 15120 , that is, $|G| \geq 15120$. Given $|G| \leq 15120$ and $|G| \geq 15120$, we conclude $|G|=$ 15120. Moreover, since $|\langle\phi(x), \phi(y), \phi(t)\rangle|=15120=|G|$ and since $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of G, we conclude

$$
\langle\phi(x), \phi(y), \phi(t)\rangle \cong G .
$$

We finally show that $\langle\phi(x), \phi(y), \phi(t)\rangle \cong S_{7} \times 3$. Let $G_{1}=\langle\phi(x), \phi(y), \phi(t)\rangle$. Now, with the help of MAGMA (see [BCP97]), we know that the elements
$a=(17887985211671)(258905711963115)(32311883515597)$ (4 4270124593346$)(553326112012119)(68545122950$ 126) (7110491127510325)(87412535958266)(10106541119610234) (11 11330371093688$)(128410822401799)(1331761047389$ 107) (144364483912338)(156292268110565)(166780941015647) (18694177792491)(202860277211468)(2111744100862993),
$b=(113)(219)(466)(546)(760)(888)(1156)(1248)(1586)(1865)(23110)(28126)$ $(29102)(3191)(3382)(3471)(3780)(39108)(44111)(45114)(47115)(4983)(50123)$ $(5358)(5498)(64122)(6790)(6976)(72112)(84118)(87104)(95109)(100105)$, and
$c=(1109122)(2110100)(381121)(410869)(511865)(652113)(744115)$ (8 123 104) (9 7836)(10 9468$)(1112698)(129133)(139564)(1489$ 125)(15 5383$)$ $(162796)(1779124)(184684)(1923105)(20106101)(21119103)(224142)(245999)$ $(2511763)(2612097)(285456)(2990112)(3085116)(318248)(325162)(3480114)$ (35 43 107)(374571)(387374)(397666)(407770)(4760111)(498658)(508788) (55 9261)(57 7593$)(6772102)$
belong to G_{1}. (Note: The labels for the right cosets in this case were assigned by MAGMA and are different from the labels that we assigned earlier.) Therefore, $\langle a, b, c\rangle \leq G_{1}$, a permutation group on 15120 letters, is a permutation representation of G and, further, $\left|G_{1}\right|=$ 15120. But $|\langle a, b, c\rangle|=15120=\left|G_{1}\right|$. Therefore, $G_{1}=\langle a, b, c\rangle$. Moreover, $\langle a, b, c\rangle \cong S_{7} \times 3 \cong\langle a, b, c| a^{7}=b^{2}=(a b)^{6}=\left(a^{-2}(a b)^{2}\right)^{3}=\left(a^{-2} b a^{2} b\right)^{2}=c^{3}=[c, b]=$ $\left.\left[c^{a}, b\right]=\left[c^{a^{2}}, b\right]=e\right\rangle$. Therefore, $G_{1} \cong S_{7} \times 3$ and, since $G_{1}=\langle\phi(x), \phi(y), \phi(t)\rangle \cong G$, we conclude $G \cong S_{7} \times 3$.

6.6 Converting an Element of G from its Permutation Representation to its Symmetric Representation

To illustrate how a permutation representation of an element of $S_{7} \times 3$ on 126 letters may be converted to its symmetric representation form, we consider the following example:

Example 6.1. Let $g \in G \cong S_{7} \times 3$ and let $p=\phi(g)=$ (1 11122107103101)(2 1412311110299315121110104100$)$ (4131251081059851212410910697)(676716211316)
(774686611419875676511520$)(97370631161810726964117$ 17)
(215378244579225777234980)(254385374189294481334293)
(26 6086405092305682364696$)(2751883854913248833559$ 94)
(28 4787395890315284345595$)(12611211811912061)$
be the permutation representation of g on 126 letters. Then $126^{p} \doteq 112$ implies $N^{p}=$ $N t_{0}^{-1} t_{1} t_{0}^{-1}$, since 126 and 112 are labels for the right cosets N and $N t_{0}^{-1} t_{1} t_{0}^{-1}$, respectively. Moreover, since $N^{p}=N p$ and $N^{p}=N t_{0}^{-1} t_{1} t_{0}^{-1}$, we have that $N p=$ $N t_{0}^{-1} t_{1} t_{0}^{-1}$. Now, $N p=N t_{0}^{-1} t_{1} t_{0}^{-1}$ implies that $p \in N t_{0}^{-1} t_{1} t_{0}^{-1}$ which implies that $p \sim \pi t_{0}^{-1} t_{1} t_{0}^{-1}$ for some $\pi \in N$ or, more precisely, $p=\phi(\pi) \phi\left(t_{0}^{-1}\right) \phi\left(t_{1}\right) \phi\left(t_{0}^{-1}\right)$ for some $\pi \in N$. To determine $\pi \in N \cong S_{5}$, we note first that $p=\phi(\pi) \phi\left(t_{0}^{-1}\right) \phi\left(t_{1}\right) \phi\left(t_{0}^{-1}\right) \Rightarrow$ $p\left(\phi\left(t_{0}^{-1}\right)\right)^{-1}\left(\phi\left(t_{1}\right)\right)^{-1}\left(\phi\left(t_{0}^{-1}\right)\right)^{-1}=p \phi\left(\left(t_{0}^{-1}\right)^{-1}\right) \phi\left(t_{1}^{-1}\right) \phi\left(\left(t_{0}^{-1}\right)^{-1}\right)=p \phi\left(t_{0}\right) \phi\left(t_{1}^{-1}\right) \phi\left(t_{0}\right)=$
$\phi(\pi)$. We then calculate the action of $\phi(\pi)=p \phi\left(t_{0}\right) \phi\left(t_{1}^{-1}\right) \phi\left(t_{0}\right)$ on the symmetric generators t_{i}, where $i \in\{0,1,2,3,4\}$. Now, $\phi(\pi)=p \phi\left(t_{0}\right) \phi\left(t_{1}^{-1}\right) \phi\left(t_{0}\right)=$
[(1 11122107103101)(21412311110299315121110104100)
(4131251081059851212410910697)(676716211316) (774686611419875676511520)(9737063116181072696411717) (215378244579225777234980)(254385374189294481334293) (26 6086405092305682364696$)(2751883854913248833559$ 94) $(284787395890315284345595)(12611211811912061)$]
[(126 16$)(22512)(32913)(43314)(53715)(71745)(81849)(91953)$ $(102057)(116162)(16107112)(216772)(226873)(236974)(247075)(268250)$ $(278354)(288458)(308646)(318755)(328859)(349047)(359151)(369260)$ $(389448)(399552)(409656)(4197102)(4298104)(4399105)(44100106)(6377114)$ $(6478115)(6579116)(6680117)(71118122)(76101119)(81108121)(85109123)$ $(89110124)(93111125)(103113120)]\left(\begin{array}{ll}12672)(11121)(31330)(41434)(51538)\end{array}\right.$ $(64116)(85018)(95419)(105820)(126361)(17112108)(257671)(267368)$ $(277469)(287570)(224978)(235379)(245780)(294285)(315587)(325988)$ $(3343$ 89)(35 5191$)(366092)(374493)(395295)(405696)(45103101)(4610498)$ $(4710599)(48106100)(6211381)(6411582)(6511683)(6611784)(67121118)(7211997)$
$(77122107)(86123109)(90124110)(94125111)(102120114)]$
[(126 16)(2 2512$)(32913)(43314)(53715)(71745)(81849)(91953)$ $(102057)(116162)(16107112)(216772)(226873)(236974)(247075)(268250)$
$(278354)(288458)(308646)(318755)(328859)(349047)(359151)(369260)$ $(389448)(399552)(409656)(4197102)(4298104)(4399105)(44100106)(6377114)$
$(6478115)(6579116)(6680117)(71118122)(76101119)(81108121)(85109123)$
$(89110124)(93111125)(103113120)]$
$=(12345)(678910)(1112131415)(1617181920)(2126313637)$
(22 27323338$)(2328293439)(2425303540)(4146515657)(4247525358)$ $(4348495459)(4445505560)(6263646566)(6768697071)(7273747576)$ (979899100101)(7782879293)(7883888994)(7984859095)(8081869196) $(102104105106103)(107108109110111)(113114115116117)(121123124125122)$. The element $\pi \sim \phi(\pi)=p \phi\left(t_{0}\right) \phi\left(t_{1}^{-i}\right) \phi\left(t_{0}\right)=$

$$
(12345)(678910)(1112131415)(1617181920)(2126313637)
$$

(22 27323338$)(2328293439)(2425303540)(4146515657)(4247525358)$
$(4348495459)(4445505560)(6263646566)(6768697071)(7273747576)$
(979899100101)(7782879293)(78 83888994$)(7984859095)(8081869196)$ $(102104105106103)(107108109110111)(113114115116117)(121123124125122)$ acts on the right cosets $N t_{0}, N t_{1}, N t_{2}, N t_{3}$, and $N t_{4}$ via the mapping $\phi: G \longrightarrow S_{X}$ defined by $\phi(\pi, N w)=N w^{\pi}$. The mappings below illustrate this action:

$$
\begin{gathered}
N t_{0}=1 \mapsto 1^{p}=2=N t_{1}, \quad N t_{1}=2 \mapsto 2^{p}=4=N t_{3}, \\
N t_{3}=4 \mapsto 4^{p}=3=N t_{2}, \quad N t_{2}=3 \mapsto 3^{p}=5=N t_{4}, \\
N t_{4}=5 \mapsto 5^{p}=1=N t_{0}
\end{gathered}
$$

Therefore, the element $\phi(\pi)$ acts as (0 1324) on the right cosets $N t_{0}, N t_{1}, N t_{2}, N t_{3}$, and $N t_{4}$, and so $\phi(\pi)$ is the permutation representation of $\pi=\left(\begin{array}{lll}0 & 1 & 3\end{array} 24\right) \in S_{5}$ on 126 letters. Therefore, $\pi=\left(\begin{array}{ll}0 & 1324)\end{array}\right)$ and $w=t_{0}^{-1} t_{1} t_{0}^{-1}$, and so the symmetric representation of g is $(01324) t_{0}^{-1} t_{1} t_{0}^{-1}$.

6.7 Converting an Element of G from its Symmetric Representation to its Permutation Representation

To illustrate how an element of $S_{7} \times 3$ in symmetric representation form may be converted to its permutation representation on 126 letters, we consider the following example:

Example 6.2. Let $g \in G \cong S_{7} \times 3$ have the symmetric representation
$g=\left(\begin{array}{lll}0 & 1 & 3\end{array} 24\right) t_{0}^{-1} t_{1} t_{0}^{-1}$. To determine the permutation representation $p=\phi(g)$ of g, we first calculate the action of $\pi=(01324)$ on the right cosets of N in G. Now, the element $\pi=(01324)$ acts on the right cosets N in G via the mapping $\phi: G \longrightarrow S_{X}$ defined by $\phi(\pi, N w)=N w^{\pi}$. To illustrate this action, we provide several examples below:

$$
\vdots
$$

$$
\begin{gathered}
121=N t_{0} t_{1} t_{0} t_{1}^{-1} \mapsto N\left(t_{0} t_{1} t_{0} t_{1}^{-1}\right)^{(01324)}=N t_{1} t_{3} t_{1} t_{3}^{-1}=N t_{0} t_{3} t_{0} t_{3}^{-1}=124 \\
124=N t_{0} t_{3} t_{0} t_{3}^{-1} \mapsto N\left(t_{0} t_{3} t_{0} t_{3}^{-1}\right)^{(01324)}=N t_{1} t_{2} t_{1} t_{2}^{-1}=N t_{0} t_{2} t_{0} t_{2}^{-1}=123 \\
123=N t_{0} t_{2} t_{0} t_{2}^{-1} \mapsto N\left(t_{0} t_{2} t_{0} t_{2}^{-1}\right)^{(01324)}=N t_{1} t_{4} t_{1} t_{4}^{-1}=N t_{0} t_{4} t_{0} t_{4}^{-1}=125 \\
125=N t_{0} t_{4} t_{0} t_{4}^{-1} \mapsto N\left(t_{0} t_{4} t_{0} t_{4}^{-1}\right)^{(01324)}=N t_{1} t_{0} t_{1} t_{0}^{-1}=122
\end{gathered}
$$

$$
\begin{aligned}
& \left.126=N \mapsto N^{(013} 142\right)=N=126 \\
& \left.1=N t_{0} \mapsto N t_{0}^{(013} 324\right)=N t_{1}=2 \\
& \left.2=N t_{1} \mapsto N t_{1}^{(013} 134\right)=N t_{3}=4 \\
& 4=N t_{3} \mapsto N t_{3}^{(01324)}=N t_{2}=3 \\
& \left.3=N t_{2} \mapsto N t_{2}^{(013} 34\right)=N t_{4}=5 \\
& \left.5=N t_{4} \mapsto N t_{4}^{(01} 1324\right)=N t_{0}=1 \\
& \left.6=N t_{0}^{-1} \mapsto N\left(t_{0}^{-1}\right)^{(013} 1324\right)=N t_{1}^{-1}=7 \\
& 7=N t_{1}^{-1} \mapsto N\left(t_{1}^{-1}\right)^{(01324)}=N t_{3}^{-1}=9 \\
& \left.9=N t_{3}^{-1} \mapsto N\left(t_{3}^{-1}\right)^{(01} 1324\right)=N t_{2}^{-1}=8 \\
& 8=N t_{2}^{-1} \mapsto N\left(t_{2}^{-1}\right)^{\left(\begin{array}{llll}
1 & 1 & 3 & 2
\end{array}\right)}=N t_{4}^{-1}=10 \\
& 10=N t_{4}^{-1} \mapsto N\left(t_{4}^{-1}\right)^{\left(\begin{array}{llll}
1 & 1 & 3 & 2
\end{array}\right)}=N t_{0}^{-1}=6
\end{aligned}
$$

$$
\left.122=N t_{1} t_{0} t_{1} t_{0}^{-1} \mapsto N\left(t_{1} t_{0} t_{1} t_{0}^{-1}\right)^{(013} 134\right)=N t_{3} t_{1} t_{3} t_{1}^{-1}=N t_{0} t_{1} t_{0} t_{1}^{-1}=121
$$

Therefore, the permutation representation of $\pi=\left(\begin{array}{llll}0 & 1 & 3 & 2\end{array}\right)$ is

$$
\phi(\pi)=(12345)(678910)(1112131415)(1617181920)(2126313637)
$$

(22 27323338)(23 28293439$)(2425303540)(4146515657)(4247525358)$
(43 48495459$)(4445505560)(6263646566)(6768697071)(7273747576)$
(979899100101)(7782879293)(7883888994)(7984859095)(8081869196) (102 104105106103$)(107108109110111)(113114115116117)(121123124125122)$.

Similarly, we calculate the action of the symmetric generator t_{0}^{-1} on the right cosets of N in G. The symmetric generator t_{0} acts on the right cosets of N in G via the mapping $\phi: G \longrightarrow S_{X}$ defined by $\phi\left(t_{0}, N w\right)=N w t_{0}$. By this mapping, the permutation representation of t_{0} in its action on the right cosets of N in G is

$$
\phi\left(t_{0}\right)=(12616)(22512)(32913)(43314)(53715)(71745)(81849)(91953)
$$

$(102057)(116162)(16107112)(216772)(226873)(236974)(247075)(268250)$
$(278354)(288458)(308646)(318755)(328859)(349047)(359151)(369260)$ $(389448)(399552)(409656)(4197102)(4298104)(4399105)(44100106)(6377114)$
$(6478115)(6579116)(6680117)(71118122)(76101$ 119)(81 108 121)(85 109 123) $(89110124)(93111125)(103113120)$.

Now, since $\phi: G \longrightarrow S_{X}$ is a group homomorphism, $\left(\phi\left(t_{0}\right)\right)^{-1}=\phi\left(t_{0}^{-1}\right)$. Therefore, the permutation representation of t_{0}^{-1} in its action on the right cosets of N in G is $\phi\left(t_{0}^{-1}\right)=\left(\phi\left(t_{0}\right)\right)^{-1}=(12661)(21225)(31329)(41433)(51537)(74517)(84918)(95319)$
$(105720)(116261)(16112107)(217267)(227368)(237469)(247570)(265082)$
$(275483)(285884)(304686)(315587)(325988)(344790)(355191)(366092)$ $(384894)(395295)(405696)(4110297)(4210498)(4310599)(44106100)(6311477)$
$(6411578)(6511679)(6611780)(71122118)(76119101)(81121$ 108)(85 123 109) $(89124110)(93125111)(103120113)$.

Finally, we calculate the action of the symmetric generator t_{1} on the right cosets of N in G. The symmetric generator t_{1} acts on the right cosets of N in G via the mapping $\phi: G \longrightarrow S_{X}$ defined by $\phi\left(t_{1}, N w\right)=N w t_{1}$. By this mapping, the permutation representation of t_{1} in its action on the right cosets of N in G is

$$
\phi\left(t_{1}\right)=(12627)(12111)(33013)(43414)(53815)(61641)(81850)(91954)
$$

$(102058)(126163)(17108112)(257176)(266873)(276974)(287075)(227849)$ $(237953)(248057)(298542)(318755)(328859)(338943)(359151)(369260)$ $(379344)(399552)(409656)(45101$ 103)(46 98 104)(4799105)(48 100106$)(6281$ 113) $(6482115)(6583116)(6684117)(67118121)(7297119)(77107122)(86109123)$ (90 110124)(94 111125)(102 114120).

Now, (01324) $t_{0}^{-1} t_{1} t_{0}^{-1} \sim \phi((01324)) \phi\left(t_{0}^{-1}\right) \phi\left(t_{1}\right) \phi\left(t_{0}^{-1}\right)=$

$$
\text { [(1 } 2435)(679810)(1112141315)(1617191820)(2127353237)
$$

(22 28333040)(23 26362938)(24 25343139)(41 47555257)(42 48535060) (43 46564958$)(4445545159)(6263656466)(6769687071)(7274737576)$ $(7783918893)(7884898696)(7982928594)(8081908795)(979998100101)$ $(102105104106103)(107108110109111)(113114116115117)(121124123125122)]$ $[(12661)(21225)(31329)(41433)(51537)(74517)(84918)(95319)(105720)$ $(116261)(16112107)(217267)(227368)(237469)(247570)(265082)(275483)$ $(285884)(304686)(315587)(325988)(344790)(355191)(366092)(384894)$ (39 52 95)(405696)(41 10297)(42 10498$)(4310599)(44106100)(6311477)(6411578)$ $(6511679)(6611780)(71122118)(76119101)(81121108)(85123109)(89124110)$ $(93125111)(103120113)][(12627)(12111)(33013)(43414)(53815)(61641)$ $(81850)(91954)(102058)(126163)(17108112)(257176)(266873)(276974)$ $(287075)(227849)(237953)(248057)(298542)(318755)(328859)(338943)$ $(359151)(369260)(379344)(399552)(409656)(45101103)(4698104)(4799105)$
$(48100106)(6281113)(6482115)(6583116)(6684117)(67118121)(7297119)$ $(77107122)(86109123)(90110124)(94111125)(102114120)][(12661)(21225)(31329)$ $(41433)(51537)(74517)(84918)(95319)(105720)(116261)(16112107)$ $(217267)(227368)(237469)(247570)(265082)(275483)(285884)(304686)$ $(315587)(325988)(344790)(355191)(366092)(384894)(395295)(405696)$ (41 10297)(42 10498$)(4310599)(44106100)(6311477)(6411578)(6511679)(6611780)$ $(71122118)(76119101)(81121108)(85123109)(89124110)(93125111)(103120113)]$ $=(111122107103101)(21412311110299315121110104$ 100) (4131251081059851212410910697)(676716211316)
(774686611419875676511520$)(97370631161810726964117$ 17) (21 5378244579225777234980$)(254385374189294481334293$) (26 6086405092305682364696$)(275188385491324883355994)$ (284787395890315284345595)(12611211811912061).

Therefore, the permutation representation of $g=\left(\begin{array}{ll}0 & 1\end{array} 324\right) t_{0}^{-1} t_{1} t_{0}^{-1}$ is $p=\phi(g)=$ (1 11122107103101)(2 1412311110299315121110104100$)$ (4131251081059851212410910697)(676716211316) $(774686611419875676511520)(97370631161810726964117$ 17) (215378244579225777234980)(254385374189294481334293) (26 6086405092305682364696$)(275188385491324883355994)$ (284787395890315284345595)(12611211811912061).

Chapter 7

$\operatorname{Aut}\left(M_{12}\right)$ as a Homomorphic

Image of the Progenitor $3^{\star 4}: S_{4}$

In our final chapter, we investigate $\operatorname{Aut}\left(M_{12}\right)$ as a homomorphic image of the progenitor $3^{\star 4}: S_{4}$. $\operatorname{Aut}\left(M_{12}\right)$, or $M_{12}: 2$, is an automorphism group of M_{12} having order $2 \times 95,040=$ 190,080 . The progenitor $3^{\star 4}: S_{4}$ is a semi-direct product of $3^{\star 4}$, a free product of four copies of the cyclic group of order 3 , and S_{4}, the symmetric group on four letters which permutes the four symmetric generators, t_{0}, t_{1}, t_{2}, and t_{3}, (and their inverses, $t_{0}^{2}=t_{0}^{-1}$, $t_{1}^{2}=t_{1}^{-1}, t_{2}^{2}=t_{2}^{-1}$, and $t_{3}^{2}=t_{3}^{-1}$) by conjugation.

7.1 Introduction

Let \bar{G} be a homomorphic image of the infinite semi-direct product, the progenitor, $3^{\star 4}: S_{4}$. A symmetric presentation of $3^{\star 4}: S_{4}$ is given by

$$
\bar{G}=\left\langle x, y, t \mid x^{4}=y^{2}=(y x)^{3}=t^{3}=[t, y]=\left[t^{x}, y\right]=e\right\rangle
$$

where $[t, y]=t y t y,\left[t^{x}, y\right]=t^{x} y t^{x} y$, and e is the identity. In this case, $N \cong S_{4} \cong\langle x, y|$ $\left.x^{4}=y^{2}=(y x)^{3}=e\right\rangle$, and the action of N on the four symmetric generators is given by $x \sim(0123), y \sim(23)$, and $t \sim t_{0}$.

Let G denote the group \bar{G} factored by the relations $(y x t)^{10}=e$ and $\left[\left(x^{2} y\right)^{2} t\right]^{5}=e$. That is, let

$$
G=\frac{\bar{G}}{(y x t)^{10},\left[\left(x^{2} y\right)^{2} t\right]^{5}} .
$$

A symmetric presentation for G is given by

$$
\left\langle x, y, t \mid x^{4}=y^{2}=(y x)^{3}=t^{3}=[t, y]=\left[t^{x}, y\right]=(y x t)^{10}=\left[\left(x^{2} y\right)^{2} t\right]^{5}=e\right\rangle .
$$

Now, we consider the following relations:

$$
\begin{gathered}
{\left[\begin{array}{lll}
\left(\begin{array}{ll}
1 & 2
\end{array}\right) t_{0}
\end{array}\right]^{10}=e} \\
\text { and }
\end{gathered}
$$

$$
\left[(01)\left(\begin{array}{ll}
2 & 3
\end{array}\right) t_{0}\right]^{5}=e
$$

According to a computer proof by [CHB96], the progenitor $3^{* 4}: S_{4}$, factored by the relations $\left[\begin{array}{lll}\left(\begin{array}{ll}1 & 2\end{array}\right) t_{0}\end{array}{ }^{10}=e \text { and }\left[\begin{array}{lll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{0}\right]^{5}=e$, is isomorphic to $\operatorname{Aut}\left(M_{12}\right)$. We will construct $\operatorname{Aut}\left(M_{12}\right)$ by hand by way of manual double coset enumeration of $G \cong$ $\frac{3^{* 4}: S_{4}}{\left[\left(\begin{array}{ll}1 & 1\end{array}\right) t_{0}\right]^{10},\left[(01)\left(\begin{array}{ll}2 & 3\end{array} t_{0}\right]^{5}\right.}$ over S_{4}. In so doing, we will show that $\operatorname{Aut}\left(M_{12}\right)$ is isomorphic to the symmetric presentation

$$
\left\langle x, y, t \mid x^{4}=y^{2}=(y x)^{3}=t^{3}=[t, y]=\left[t^{x}, y\right]=(y x t)^{10}=\left[\left(x^{2} y\right)^{2} t\right]^{5}=e\right\rangle
$$

7.2 Manual Double Coset Enumeration of G Over S_{4}

We first determine the order of the homomorphic image, G, of the progenitor. To determine the order of the homomorphic image G, we must determine the index of $N \cong S_{4}$ in G. We determine the index of $N \cong S_{4}$ in G first by expanding the relations [$\left.\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}\right]^{10}=e$ and $\left[\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{0}\right]^{5}=e$, and next by performing manual double coset enumeration on G over $N \cong S_{4}$. To begin, we expand the relations that factor the progenitor $3^{* 4}: S_{4}$:

$$
\begin{gather*}
{\left[\left(\begin{array}{lll}
0 & 1 & 2
\end{array}\right) t_{0}\right]^{10}=e} \tag{7.1}\\
{\left[\left(\begin{array}{ll}
0 & 1
\end{array}\right)\left(\begin{array}{ll}
2 & 3
\end{array}\right) t_{0}\right]^{5}=e} \tag{7.2}
\end{gather*}
$$

We expand relations (7.1) and (7.2) in detail below:

1. Let $\pi=\left(\begin{array}{ll}0 & 1\end{array}\right)$.

Then $\left[\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0}\right]^{10}=e$

$$
\Rightarrow\left(\pi t_{0}\right)^{10}=e
$$

$$
\Rightarrow \pi t_{0} \pi t_{0}=e
$$

$$
\Rightarrow \pi^{10} t_{0}^{\pi^{9}} t_{0}^{\pi^{8}} t_{0}^{\pi^{7}} t_{0}^{\pi^{6}} t_{0}^{\pi^{5}} t_{0}^{\pi^{4}} t_{0}^{\pi^{3}} t_{0}^{\pi^{2}} t_{0}^{\pi} t_{0}=e
$$

$\Rightarrow\left(\begin{array}{llll}0 & 1 & 2\end{array}\right) t_{0}^{e} t_{0}^{(021)} t_{0}^{(012)} t_{0}^{e} t_{0}^{(021)} t_{0}^{(012)} t_{0}^{e} t_{0}^{(021)} t_{0}^{(012)} t_{0}=e$
$\Rightarrow\left(\begin{array}{ll}0 & 1\end{array}\right) t_{0} t_{2} t_{1} t_{0} t_{2} t_{1} t_{0} t_{2} t_{1} t_{0}=e$
$\Rightarrow\left(\begin{array}{ll}0 & 1\end{array}\right) t_{0} t_{2} t_{1} t_{0} t_{2}=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1}$.
Thus relation (7.1) implies that (012) $t_{0} t_{2} t_{1} t_{0} t_{2}=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1}$ or, equivalently, $N t_{0} t_{2} t_{1} t_{0} t_{2}=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1}$. That is, using our short-hand notation, $02102 \sim$ $\overline{0} \overline{1} \overline{2} \overline{0} \overline{1}$.
2. Let $\pi=\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right)$.

Then $\left[\left(\begin{array}{ll}0 & 1)\end{array}\left(\begin{array}{ll}2 & 3\end{array}\right) t_{0}\right]^{5}=e\right.$
$\Rightarrow\left(\pi t_{0}\right)^{5}=e$
$\Rightarrow \pi t_{0} \pi t_{0} \pi t_{0} \pi t_{0} \pi t_{0}=e$
$\Rightarrow \pi t_{0} \pi t_{0} \pi t_{0} \pi^{2} \pi^{-1} t_{0} \pi t_{0}=e$
$\Rightarrow \pi t_{0} \pi t_{0} \pi^{3} \pi^{-2} t_{0} \pi^{2} t_{0}^{\pi} t_{0}=e$
$\Rightarrow \pi t_{0} \pi^{4} \pi^{-3} t_{0} \pi^{3} t_{0}^{\pi^{2}} t_{0}^{\pi} t_{0}=e$
$\Rightarrow \pi^{5} \pi^{-4} t_{0} \pi^{4} t_{0}^{\pi^{3}} t_{0}^{\pi^{2}} t_{0}^{\pi} t_{0}=e$
$\Rightarrow \pi^{5} t_{0}^{\pi^{4}} t_{0}^{\pi^{3}} t_{0}^{\pi^{2}} t_{0}^{\pi} t_{0}=e$

$\Rightarrow\left(\begin{array}{ll}0 & 1) \\ (23)\end{array} t_{0}^{e} t_{0}^{(01)(23)} t_{0}^{e} t_{0}^{(01)(23)} t_{0}=e\right.$
$\Rightarrow(01)(23) t_{0} t_{1} t_{0} t_{1} t_{0}=e$
$\Rightarrow(01)(23) t_{0} t_{1} t_{0}=t_{0}^{-1} t_{1}^{-1}$.
Thus relation (7.2) implies that (01)(23) $t_{0} t_{1} t_{0}=t_{0}^{-1} t_{1}^{-1}$ or, equivalently, $N t_{0} t_{1} t_{0}=$ $N t_{0}^{-1} t_{1}^{-1}$. That is, using our short-hand notation, $010 \sim \overline{0} \overline{1}$.

We now perform manual double coset enumeration of G over S_{4}.

1. We first note that the double coset $N e N=\{N e n \mid n \in N\}=\{N n \mid n \in N\}=\{N\}$.

Let [*] denote the double coset $N e N$.
The double coset [*] has one distinct right coset: the identity right coset, $N e=$ $\{n e \mid n \in N\}=N$.

Moreover, since $N \cong S_{4}$ is transitive on $\{0,1,2,3\}$ and also transitive on the inverses $\{\overline{0}, \overline{1}, \overline{2}, \overline{3}\}, N$ has two orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0,1,2,3\}$ and $\{\overline{0}, \overline{1}, \overline{2}, \overline{3}\}$.

Therefore, we conclude that there are two distinct double cosets of the form $N w N$, where w is a word of length one given by $w=t_{i}^{ \pm 1}, i=0: N t_{0} N$ and $N t_{0}^{-1} N$.
2. We next consider the double coset $N t_{0} N$.

Let [0] denote the double coset $N t_{0} N$.
Now, note that $N^{(0)} \geq N^{0}=\langle(12),(13)\rangle \cong S_{3}$. Thus $\left|N^{(0)}\right| \geq\left|S_{3}\right|=6$ and so, by Lemma 1.4, $\left|N t_{0} N\right|=\frac{|N|}{\left|N^{(0)}\right|} \leq \frac{24}{6}=4$.
Therefore, the double coset [0] has at most four distinct single cosets.
Moreover, $N^{(0)}$ has four orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1,2,3\},\{\overline{0}\}$, and $\{\overline{1}, \overline{2}, \overline{3}\}$.
Therefore, there are at most four double cosets of the form $N w N$, where w is a word of length two given by $w=t_{0} t_{i}^{ \pm 1}, i \in\{0,1\}: N t_{0} t_{0} N, N t_{0} t_{1} N, N t_{0} t_{0}^{-1} N$, and $N t_{0} t_{1}^{-1} N$. But, since $N t_{0} t_{0} N=N t_{0}^{2} N=N t_{0}^{-1} N$, and since $N t_{0} t_{0}^{-1} N=N e N=N$, we conclude that there are two distinct double cosets of the form $N t_{0} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1} N$ and $N t_{0} t_{1}^{-1} N$.
3. We next consider the double coset $N t_{0}^{-1} N$.

Let [$\overline{0}]$ denote the double coset $N t_{0}^{-1} N$.
Now, note that $N^{(\overline{0})} \geq N^{\overline{0}}=\left\langle\left(\begin{array}{ll}1 & 2),(13)\rangle \cong S_{3} \text {. Thus }\left|N^{(\overline{0})}\right| \geq\left|S_{3}\right|=6 \text { and so, by }\end{array}\right.\right.$ Lemma 1.4, $\left|N t_{0}^{-1} N\right|=\frac{|N|}{\left|N^{(0)}\right|} \leq \frac{24}{6}=4$.
Therefore, the double coset [0] has at most four distinct single cosets.
Moreover, $N^{(\overline{0})}$ has four orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1,2,3\},\{\overline{0}\}$, and $\{\overline{1}, \overline{2}, \overline{3}\}$.
Therefore, there are at most four double cosets of the form $N w N$, where w is a word of length two given by $w=t_{0}^{-1} t_{i}^{ \pm 1}, i \in\{0,1\}: N t_{0}^{-1} t_{0} N, N t_{0}^{-1} t_{1} N, N t_{0}^{-1} t_{0}^{-1} N$, and $N t_{0}^{-1} t_{1}^{-1} N$.
But, since $N t_{0}^{-1} t_{0}^{-1} N=N t_{0}^{-2} N=N t_{0} N$ and $N t_{0}^{-1} t_{0} N=N e N=N$, we conclude that there are two distinct double cosets of the form $N t_{0}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0}^{-1} t_{1} N$ and $N t_{0}^{-1} t_{1}^{-1} N$.
4. We next consider the double coset $N t_{0} t_{1} N$.

Let [01] denote the double coset $N t_{0} t_{1} N$.
Note that $N^{(01)} \geq N^{01}=\langle(23)\rangle \cong S_{2}$. Thus $\left|N^{(01)}\right| \geq\left|S_{2}\right|=2$ and so, by Lemma $1.4,\left|N t_{0} t_{1} N\right|=\frac{|N|}{\left|N^{(01)}\right|} \leq \frac{24}{1}=12$.
Therefore, the double coset [01] has at most twelve distinct single cosets.

Now, $N^{(01)}$ has six orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2,3\},\{\overline{0}\},\{\overline{1}\}$, and $\{\overline{2}, \overline{3}\}$.

Therefore, there are at most six double cosets of the form $N w N$, where w is a word of length three given by $w=t_{0} t_{1} t_{i}^{ \pm 1}, i \in\{0,1,2\}: N t_{0} t_{1} t_{0} N, N t_{0} t_{1} t_{1} N, N t_{0} t_{1} t_{2} N$, $N t_{0} t_{1} t_{0}^{-1} N, N t_{0} t_{1} t_{1}^{-1} N$, and $N t_{0} t_{1} t_{2}^{-1} N$.
But note that $N t_{0} t_{1} t_{1}^{-1} N=N t_{0} e N=N t_{0} N$ and $N t_{0} t_{1} t_{1} N=N t_{0} t_{1}^{2} N=N t_{0} t_{1}^{-1} N$.
Moreover, by relation (7.2), (01)(23) $t_{0} t_{1} t_{0}=t_{0}^{-1} t_{1}^{-1}$ implies that $N t_{0} t_{1} t_{0}=$ $N t_{0}^{-1} t_{1}^{-1}$ which implies that $N t_{0} t_{1} t_{0} N=N t_{0}^{-1} t_{1}^{-1} N$. That is, $[010]=[\overline{0} \overline{1}]$.

Therefore, we conclude that there are three distinct double cosets of the form
$N t_{0} t_{1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1} t_{2} N$ and $N t_{0} t_{1} t_{0}^{-1} N$ and $N t_{0} t_{1} t_{2}^{-1} N$.
5. We next consider the double coset $N t_{0} t_{1}^{-1} N$.

Let [$0 \overline{1}]$ denote the double coset $N t_{0} t_{1}^{-1} N$.
Note that $N^{(0 \overline{1})} \geq N^{0 \overline{1}}=\langle(23)\rangle \cong S_{2}$. Therefore, $\left|N^{(0 \overline{1})}\right| \geq\left|S_{2}\right|=2$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} N\right|=\frac{|N|}{\left|N^{(01)}\right|} \leq \frac{24}{1}=12$.
Therefore, the double coset $[0 \overline{1}]$ has at most twelve distinct single cosets.
Now, $N^{(0 \overline{1})}$ has six orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2,3\},\{\overline{0}\},\{\overline{1}\}$, and $\{\overline{2}, \overline{3}\}$.

Therefore, there are at most six double cosets of the form $N w N$, where w is a word of length three given by $w=t_{0} t_{1}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2\}: N t_{0} t_{1}^{-1} t_{0} N, N t_{0} t_{1}^{-1} t_{1} N$, $N t_{0} t_{1}^{-1} t_{2} N, N t_{0} t_{1}^{-1} t_{0}^{-1} N, N t_{0} t_{1}^{-1} t_{1}^{-1} N$, and $N t_{0} t_{1}^{-1} t_{2}^{-1} N$.
But note that $N t_{0} t_{1}^{-1} t_{1} N=N t_{0} e N=N t_{0} N$ and $N t_{0} t_{1}^{-1} t_{1}^{-1} N=N t_{0} t_{1}^{-2} N=$ $N t_{0} t_{1} N$.

Therefore, we conclude that there are four distinct double cosets of the form $N t_{0} t_{1}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1}^{-1} t_{0} N$ and $N t_{0} t_{1}^{-1} t_{2} N$ and $N t_{0} t_{1}^{-1} t_{0}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} N$.
6. We next consider the double coset $N t_{0}^{-1} t_{1} N$.

Let [$\overline{0} 1$] denote the double coset $N t_{0}^{-1} t_{1} N$.
Note that $N^{(\overline{0} 1)} \geq N^{\overline{0} 1}=\{e,(23)\} \cong S_{2}$. Therefore, $\left|N^{(\overline{0} 1)}\right| \geq\left|S_{2}\right|=2$ and so, by Lemma 1.4, $\left|N t_{0}^{-1} t_{1} N\right|=\frac{|N|}{\left|N^{(01)}\right|} \leq \frac{24}{1}=12$.

Therefore, the double coset [$\overline{0} 1]$ has at most twelve distinct single cosets.
Now, $N^{(\overline{0} 1)}$ has six orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2,3\},\{\overline{0}\},\{\overline{1}\}$, and $\{\overline{2}, \overline{3}\}$.

Therefore, there are at most six double cosets of the form $N w N$, where w is a word of length three given by $w=t_{0}^{-1} t_{1} t_{i}^{ \pm 1}, i \in\{0,1,2\}: N t_{0}^{-1} t_{1} t_{0} N, N t_{0}^{-1} t_{1} t_{1} N$, $N t_{0}^{-1} t_{1} t_{2} N, N t_{0}^{-1} t_{1} t_{0}^{-1} N, N t_{0}^{-1} t_{1} t_{1}^{-1} N$, and $N t_{0}^{-1} t_{1} t_{2}^{-1} N$.
But note that $N t_{0}^{-1} t_{1} t_{1}^{-1} N=N t_{0}^{-1} e N=N t_{0}^{-1} N$ and $N t_{0}^{-1} t_{1} t_{1} N=N t_{0}^{-1} t_{1}^{2} N=$ $N t_{0}^{-1} t_{1}^{-1} N$.

Moreover, by relation (7.2), (01)(23) $t_{0} t_{1} t_{0}=t_{0}^{-1} t_{1}^{-1} \Rightarrow t_{1}\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{0} t_{1} t_{0}=$ $t_{1} t_{0}^{-1} t_{1}^{-1} \Rightarrow(01)(23)(01)(23) t_{1}\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{0} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{1}^{-1} \Rightarrow$
(01) (23) $t_{1}^{(01)(23)} t_{0} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{1}^{-1} \Rightarrow(01)(23) t_{0} t_{0} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{1}^{-1} \Rightarrow$
$(01)(23) t_{0}^{-1} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{1}^{-1} \Rightarrow(01)(23)(01)(23) t_{0}^{-1} t_{1} t_{0}=(01)(23) t_{1} t_{0}^{-1} t_{1}^{-1} \Rightarrow$ $t_{0}^{-1} t_{1} t_{0}=\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{1} t_{0}^{-1} t_{1}^{-1} \Rightarrow t_{0}^{-1} t_{1} t_{0}=\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right)\left[t_{0} t_{1}^{-1} t_{0}^{-1}\right]^{(01)} \Rightarrow t_{0}^{-1} t_{1} t_{0}=$ $(01)(23)(01)\left[t_{0} t_{1}^{-1} t_{0}^{-1}\right](01) \Rightarrow t_{0}^{-1} t_{1} t_{0}=(23) t_{0} t_{1}^{-1} t_{0}^{-1}(01)$. Therefore, $N t_{0}^{-1} t_{1} t_{0} N$ $=N t_{0} t_{1}^{-1} t_{0}^{-1} N$. That is, $[\overline{0} 10]=[0 \overline{1} \overline{0}]$.
Therefore, we conclude that there are three distinct double cosets of the form
$N t_{0}^{-1} t_{1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0}^{-1} t_{1} t_{2} N$ and $N t_{0}^{-1} t_{1} t_{0}^{-1} N$ and $N t_{0}^{-1} t_{1} t_{2}^{-1} N$.
7. We next consider the double coset $N t_{0}^{-1} t_{1}^{-1} N$.

Let [$\overline{0} \overline{1}]$ denote the double coset $N t_{0}^{-1} t_{1}^{-1} N$.
Note that $N^{(\overline{\overline{0}} \overline{1})} \geq N^{\overline{0} \overline{1}}=\left\langle\left(\begin{array}{ll}2 & 3\end{array}\right)\right\rangle \cong S_{2}$. Therefore, $\left|N^{(\overline{0} \overline{1})}\right| \geq\left|S_{2}\right|=2$ and so, by Lemma 1.4, $\left|N t_{0}^{-1} t_{1}^{-1} N\right|=\frac{|N|}{\left|N^{(\overline{\mathrm{C}})}\right|} \leq \frac{24}{1}=12$.
Therefore, the double coset [$\overline{0} \overline{1}]$ has at most twelve distinct single cosets.
Now, $N^{(\overline{0} \overline{1})}$ has six orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2,3\},\{\overline{0}\},\{\overline{1}\}$, and $\{\overline{2}, \overline{3}\}$.

Therefore, there are at most six double cosets of the form $N w N$, where w is a word of length three given by $w=t_{0}^{-1} t_{1}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2\}: N t_{0}^{-1} t_{1}^{-1} t_{0} N, N t_{0}^{-1} t_{1}^{-1} t_{1} N$, $N t_{0}^{-1} t_{1}^{-1} t_{2} N, N t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{1}^{-1} N$, and $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} N$.

But note that $N t_{0}^{-1} t_{1}^{-1} t_{1} N=N t_{0}^{-1} e N=N t_{0}^{-1} N$ and $N t_{0}^{-1} t_{1}^{-1} t_{1}^{-1} N=N t_{0}^{-1} t_{1}^{-2} N=$ $N t_{0}{ }^{-1} t_{1} N$.

Moreover, by relation (7.2), (01)(2 3) $t_{0} t_{1} t_{0}=t_{0}^{-1} t_{1}^{-1} \Rightarrow\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{0} t_{1} t_{0} t_{0}=$ $t_{0}^{-1} t_{1}^{-1} t_{0} \Rightarrow(01)(23) t_{0} t_{1} t_{0}^{-1}=t_{0}^{-1} t_{1}^{-1} t_{0}$, which implies that $N t_{0} t_{1} t_{0}^{-1}=N t_{0}^{-1} t_{1}^{-1} t_{0}$, and which implies that $N t_{0} t_{1} t_{0}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{0} N$. Therefore, $N t_{0}^{-1} t_{1}^{-1} t_{0} N=$ $N t_{0} t_{1} t_{0}^{-1} N$. That is, $[\overline{0} \overline{1} 0]=[01 \overline{0}]$.
Likewise, by relation $(7.2),\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{0} t_{1} t_{0}=t_{0}^{-1} t_{1}^{-1} \Rightarrow\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{0} t_{1} t_{0} t_{0}^{-1}=$ $t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} \Rightarrow(01)(23) t_{0} t_{1}=t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}$, which implies that $N t_{0} t_{1}=N t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}$, and which implies that $N t_{0} t_{1} N=N t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} N$. Therefore, $N t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} N=$ $N t_{0} t_{1} N$. That is, $[\overline{0} \overline{1} \overline{0}]=[01]$.

Therefore, we conclude that there are two distinct double cosets of the form $N t_{0}^{-1} t_{1}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0}^{-1} t_{1}^{-1} t_{2} N$ and $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} N$.
8. We next consider the double coset $N t_{0} t_{1} t_{0}^{-1} N$.

Let [$01 \overline{0}]$ denote the double coset $N t_{0} t_{1} t_{0}^{-1} N$.
Note that $N^{(01 \overline{0})} \geq N^{01 \overline{0}}=\langle(23)\rangle \cong S_{2}$. Thus $\left|N^{(01)}\right| \geq\left|S_{2}\right|=2$ and so, by Lemma 1.4, $\left|N t_{0} t_{1} t_{0}^{-1} N\right|=\frac{|N|}{\left|N^{(010)}\right|} \leq \frac{24}{1}=12$.
Therefore, the double coset [$01 \overline{0}]$ has at most twelve distinct single cosets.
Now, $N^{(01 \overline{0})}$ has six orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2,3\},\{\overline{0}\},\{\overline{1}\}$, and $\{\overline{2}, \overline{3}\}$.

Therefore, there are at most six double cosets of the form $N w N$, where w is a word of length four given by $w=t_{0} t_{1} t_{0}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2\}$: $N t_{0} t_{1} t_{0}^{-1} t_{0} N, N t_{0} t_{1} t_{0}^{-1} t_{1} N$, $N t_{0} t_{1} t_{0}^{-1} t_{2} N, N t_{0} t_{1} t_{0}^{-1} t_{0}^{-1} N, N t_{0} t_{1} t_{0}^{-1} t_{1}^{-1} N$, and $N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} N$.

But note that $N t_{0} t_{1} t_{0}^{-1} t_{0} N=N t_{0} t_{1} e N=N t_{0} t_{1} N$ and, by relation (7.2),
$N t_{0} t_{1} t_{0}^{-1} t_{0}^{-1} N=N t_{0} t_{1} t_{0}^{-2} N=N t_{0} t_{1} t_{0} N=N t_{0}^{-1} t_{1}^{-1} N$.
Moreover, by relation (7.2), (01)(23) $t_{0} t_{1} t_{0}=t_{0}^{-1} t_{1}^{-1} \Rightarrow t_{1}\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{0} t_{1} t_{0}=$ $t_{1} t_{0}^{-1} t_{1}^{-1} \Rightarrow(01)(23)(01)(23) t_{1}(01)(23) t_{0} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{1}^{-1} \Rightarrow$ (01) (23) $t_{1}^{(01)(23)} t_{0} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{1}^{-1} \Rightarrow(01)(23) t_{0} t_{0} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{1}^{-1} \Rightarrow$ (0 1) (2 3) $t_{0}^{-1} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{1}^{-1} \Rightarrow t_{0}\left(\begin{array}{ll}0 & 1)(23)\end{array} t_{0}^{-1} t_{1} t_{0}=t_{0} t_{1} t_{0}^{-1} t_{1}^{-1} \Rightarrow\right.$
$(01)\left(\begin{array}{lll}2 & 3\end{array}\right)\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{0}(01)(23) t_{0}^{-1} t_{1} t_{0}=t_{0} t_{1} t_{0}^{-1} t_{1}^{-1} \Rightarrow(01)(23) t_{0}^{(01)(23)} t_{0}^{-1} t_{1} t_{0}=$ $t_{0} t_{1} t_{0}^{-1} t_{1}^{-1} \Rightarrow(01)(23) t_{1} t_{0}^{-1} t_{1} t_{0}=t_{0} t_{1} t_{0}^{-1} t_{1}^{-1} \Rightarrow(01)(23)\left[t_{0} t_{1}^{-1} t_{0} t_{1}\right]^{(01)}$
$=t_{0} t_{1} t_{0}^{-1} t_{1}^{-1} \Rightarrow(01)(23)(01)\left[t_{0} t_{1}^{-1} t_{0} t_{1}\right](01)=t_{0} t_{1} t_{0}^{-1} t_{1}^{-1} \Rightarrow\left(\begin{array}{ll}2 & 3\end{array}\right) t_{0} t_{1}^{-1} t_{0} t_{1}\left(\begin{array}{ll}0 & 1\end{array}\right)=$
$t_{0} t_{1} t_{0}^{-1} t_{1}^{-1}$, which implies that $N t_{0} t_{1}^{-1} t_{0} t_{1} N=N t_{0} t_{1} t_{0}^{-1} t_{1}^{-1} N$. Therefore, $N t_{0} t_{1} t_{0}^{-1} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{0} t_{1} N$. That is, $[01 \overline{0} \overline{1}]=[0 \overline{1} 01]$.

Therefore, we conclude that there are three distinct double cosets of the form $N t_{0} t_{1} t_{0}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1} t_{0}^{-1} t_{1} N$ and $N t_{0} t_{1} t_{0}^{-1} t_{2} N$ and $N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} N$.
9. We next consider the double coset $N t_{0} t_{1} t_{2} N$.

Let [012] denote the double coset $N t_{0} t_{1} t_{2} N$.
Note that $N^{(012)} \geq N^{012}=\langle e\rangle$. Thus $\left|N^{(012)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1} t_{2} N\right|=\frac{|N|}{\left|N^{(012)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [012] has at most twenty-four distinct single cosets.
Now, $N^{(012)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\},\{\overline{1}\}$, $\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length four given by $w=t_{0} t_{1} t_{2} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$: $N t_{0} t_{1} t_{2} t_{0} N$, $N t_{0} t_{1} t_{2} t_{1} N, N t_{0} t_{1} t_{2} t_{2} N, N t_{0} t_{1} t_{2} t_{3} N, N t_{0} t_{1} t_{2} t_{0}^{-1} N, N t_{0} t_{1} t_{2} t_{1}^{-1} N, N t_{0} t_{1} t_{2} t_{2}^{-1} N$, and $N t_{0} t_{1} t_{2} t_{3}^{-1} N$.
But note that $N t_{0} t_{1} t_{2} t_{2}^{-1} N=N t_{0} t_{1} e N=N t_{0} t_{1} N$ and $N t_{0} t_{1} t_{2} t_{2} N=N t_{0} t_{1} t_{2}^{2} N=$ $N t_{0} t_{1} t_{2}^{-1} N$.

Moreover, by relation (7.2), (01)(23) $t_{0} t_{1} t_{0}=t_{0}^{-1} t_{1}^{-1} \Rightarrow\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{0} t_{1} t_{0} t_{0}=$ $t_{0}^{-1} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{ll}0 & 1\end{array}\right)(23) t_{0} t_{1} t_{0}^{-1}=t_{0}^{-1} t_{1}^{-1} t_{0} \Rightarrow t_{2}\left(\begin{array}{ll}0 & 1)(23)\end{array} t_{0} t_{1} t_{0}^{-1}=t_{2} t_{0}^{-1} t_{1}^{-1} t_{0} \Rightarrow\right.$ (01)(23)(01)(23) $t_{2}(01)(23) t_{0} t_{1} t_{0}^{-1}=t_{2} t_{0}^{-1} t_{1}^{-1} t_{0} \Rightarrow(01)(23) t_{2}^{(01)(23)} t_{0} t_{1} t_{0}^{-1}=$ $\left.t_{2} t_{0}^{-1} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{3} t_{0} t_{1} t_{0}^{-1}=t_{2} t_{0}^{-1} t_{1}^{-1} t_{0} \Rightarrow\left[\left(\begin{array}{lll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{3} t_{0} t_{1} t_{0}^{-1}\right]^{(0} 12\right)=$ $\left[t_{2} t_{0}^{-1} t_{1}^{-1} t_{0}\right]^{(012)} \Rightarrow(12)\left(\begin{array}{ll}0 & 3\end{array} t_{3} t_{1} t_{2} t_{1}^{-1}=t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} \Rightarrow(12)\left(\begin{array}{ll}0 & 3\end{array}\right)\left[t_{0} t_{1} t_{2} t_{1}^{-1}\right]^{(03)}=\right.$ $t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} \Rightarrow(12)(03)(03)\left[t_{0} t_{1} t_{2} t_{1}^{-1}\right](03)=t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} \Rightarrow\left(\begin{array}{ll}1 & 2\end{array}\right) t_{0} t_{1} t_{2} t_{1}^{-1}(03)=$ $t_{0} t_{1}^{-1} t_{2}^{-1} t_{1}$, which implies that $N t_{0} t_{1} t_{2} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} N$. Therefore, $N t_{0} t_{1} t_{2} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} N$. That is, $[012 \overline{1}]=[0 \overline{1} \overline{2} \overline{1}]$.
Likewise, by relation (7.2), (01)(23) $t_{0} t_{1} t_{0}=t_{0}^{-1} t_{1}^{-1} \Rightarrow t_{2}\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{0} t_{1} t_{0}=$ $t_{2} t_{0}^{-1} t_{1}^{-1} \Rightarrow(01)(23)(01)(23) t_{2}(01)(23) t_{0} t_{1} t_{0}=t_{2} t_{0}^{-1} t_{1}^{-1} \Rightarrow$ (01)(23) $t_{2}^{(01)(23)} t_{0} t_{1} t_{0}=t_{2} t_{0}^{-1} t_{1}^{-1} \Rightarrow(01)(23) t_{3} t_{0} t_{1} t_{0}=t_{2} t_{0}^{-1} t_{1}^{-1} \Rightarrow$ $\left[\left(\begin{array}{lll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{3} t_{0} t_{1} t_{0}\right]^{(012)}=\left[t_{2} t_{0}^{-1} t_{1}^{-1}\right]^{\left(\begin{array}{ll}(12)\end{array}\right)} \Rightarrow\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}0 & 3\end{array}\right) t_{3} t_{1} t_{2} t_{1}=t_{0} t_{1}^{-1} t_{2}^{-1} \Rightarrow$
(1 2) (0 3) $\left[t_{0} t_{1} t_{2} t_{1}\right]^{(03)}=t_{0} t_{1}^{-1} t_{2}^{-1} \Rightarrow\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}0 & 3\end{array}\right)\left(\begin{array}{ll}0 & 3\end{array}\right)\left[t_{0} t_{1} t_{2} t_{1}\right]\left(\begin{array}{ll}0 & 3\end{array}\right)=t_{0} t_{1}^{-1} t_{2}^{-1} \Rightarrow$ (12) $t_{0} t_{1} t_{2} t_{1}(03)=t_{0} t_{1}^{-1} t_{2}^{-1}$, which implies that $N t_{0} t_{1} t_{2} t_{1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} N$. Therefore, $N t_{0} t_{1} t_{2} t_{1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} N$. That is, $[0121]=[0 \overline{1} \overline{2}]$.

Therefore, we conclude that there are four distinct double cosets of the form
$N t_{0} t_{1} t_{2} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1} t_{2} t_{0} N$ and $N t_{0} t_{1} t_{2} t_{0}^{-1} N$ and $N t_{0} t_{1} t_{2} t_{3} N$ and $N t_{0} t_{1} t_{2} t_{3}^{-1} N$.
10. We next consider the double coset $N t_{0} t_{1} t_{2}^{-1} N$.

Let [$01 \overline{2}$] denote the double coset $N t_{0} t_{1} t_{2}^{-1} N$.
Note that $N^{(01 \overline{2})} \geq N^{01 \overline{2}}=\langle e\rangle$. Thus $\left|N^{(01 \overline{2})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1} t_{2}^{-1} N\right|=\frac{|N|}{\left|N^{(012)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [012] has at most twenty-four distinct single cosets.
Moreover, $N^{(01 \overline{2})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length four given by $w=t_{0} t_{1} t_{2}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$: $N t_{0} t_{1} t_{2}^{-1} t_{0} N, N t_{0} t_{1} t_{2}^{-1} t_{1} N$, $N t_{0} t_{1} t_{2}^{-1} t_{2} N, N t_{0} t_{1} t_{2}^{-1} t_{3} N, N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} N, N t_{0} t_{1} t_{2}^{-1} t_{1}^{-1} N$, $N t_{0} t_{1} t_{2}^{-1} t_{2}^{-1} N$, and $N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} N$.
But note that $N t_{0} t_{1} t_{2}^{-1} t_{2} N=N t_{0} t_{1} e N=N t_{0} t_{1} N$ and $N t_{0} t_{1} t_{2}^{-1} t_{2}^{-1} N=N t_{0} t_{1} t_{2}^{-2} N$ $=N t_{0} t_{1} t_{2} N$.

Moreover, by relation (7.2), (0 1) (2 3) $t_{0} t_{1} t_{0}=t_{0}^{-1} t_{1}^{-1} \Rightarrow t_{1}\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{0} t_{1} t_{0}=$ $t_{1} t_{0}^{-1} t_{1}^{-1} \Rightarrow\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right)(01)(23) t_{1}\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{0} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{1}^{-1} \Rightarrow$
(0 1) (2 3) $t_{1}^{(01)(23)} t_{0} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{1}^{-1} \Rightarrow(01)(23) t_{0} t_{0} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{1}^{-1} \Rightarrow$
(0 1) (2 3) $t_{0}^{-1} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{1}^{-1} \Rightarrow t_{2}(01)(23) t_{0}^{-1} t_{1} t_{0}=t_{2} t_{1} t_{0}^{-1} t_{1}^{-1} \Rightarrow$
$(01)(23)(01)(23) t_{2}(01)(23) t_{0}^{-1} t_{1} t_{0}=t_{2} t_{1} t_{0}^{-1} t_{1}^{-1} \Rightarrow(01)(23) t_{2}^{(01)(23)} t_{0}^{-1} t_{1} t_{0}=$ $t_{2} t_{1} t_{0}^{-1} t_{1}^{-1} \Rightarrow(0.1)(23) t_{3} t_{0}^{-1} t_{1} t_{0}=t_{2} t_{1} t_{0}^{-1} t_{1}^{-1} \Rightarrow\left[\left(\begin{array}{ll}0 & 1)(23)\end{array} t_{3} t_{0}^{-1} t_{1} t_{0}\right]^{(02)}=\right.$ $\left[t_{2} t_{1} t_{0}^{-1} t_{1}^{-1}\right]^{(02)} \Rightarrow(12)(03) t_{3} t_{2}^{-1} t_{1} t_{2}=t_{0} t_{1} t_{2}^{-1} t_{1}^{-1} \Rightarrow(12)(03)\left[t_{0} t_{1}^{-1} t_{2} t_{1}\right]^{(12)(03)}=$ $t_{0} t_{1} t_{2}^{-1} t_{1}^{-1} \Rightarrow(12)(03)(12)(03)\left[t_{0} t_{1}^{-1} t_{2} t_{1}\right](12)(03)=t_{0} t_{1} t_{2}^{-1} t_{1}^{-1} \Rightarrow$ $e t_{0} t_{1}^{-1} t_{2} t_{1}(12)(03)=t_{0} t_{1} t_{2}^{-1} t_{1}^{-1}$, which implies that $N t_{0} t_{1}^{-1} t_{2} t_{1} N=N t_{0} t_{1} t_{2}^{-1} t_{1}^{-1} N$. Therefore, $N t_{0} t_{1} t_{2}^{-1} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{1} N$. That is, $[01 \overline{2} \overline{1}]=[0 \overline{1} 21]$.

Therefore, we conclude that there are five distinct double cosets of the form
$N t_{0} t_{1} t_{2}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1} t_{2}^{-1} t_{0} N, N t_{0} t_{1} t_{2}^{-1} t_{1} N, N t_{0} t_{1} t_{2}^{-1} t_{3} N$, $N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} N$, and $N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} N$.
11. We next consider the double coset $N t_{0} t_{1}^{-1} t_{0} N$.

Let [$0 \overline{10} 0$ d denote the double coset $N t_{0} t_{1}^{-1} t_{0} N$.
Note that $N^{(0 \overline{1} 0)} \geq N^{010}=\langle(23)\rangle \cong S_{2}$. Thus $\left|N^{(01)}\right| \geq\left|S_{2}\right|=2$ and so, by
Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{0} N\right|=\frac{|N|}{\left|N^{(010)}\right|} \leq \frac{24}{1}=12$.
Therefore, the double coset [$0 \overline{1} 0]$ has at most twelve distinct single cosets.
Moreover, $N^{\left({ }^{(01} 0\right)}$ has six orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2,3\},\{\overline{0}\},\{\overline{1}\}$, and $\{\overline{2}, \overline{3}\}$.

Therefore, there are at most six double cosets of the form $N w N$, where w is a word of length four given by $w=t_{0} t_{1}^{-1} t_{0} t_{i}^{ \pm 1}, i \in\{0,1,2\}: N t_{0} t_{1}^{-1} t_{0} t_{0} N, N t_{0} t_{1}^{-1} t_{0} t_{1} N$, $N t_{0} t_{1}^{-1} t_{0} t_{2} N, N t_{0} t_{1}^{-1} t_{0} t_{0}^{-1} N, N t_{0} t_{1}^{-1} t_{0} t_{1}^{-1} N$, and $N t_{0} t_{1}^{-1} t_{0} t_{2}^{-1} N$.

But note that $N t_{0} t_{1}^{-1} t_{0} t_{0}^{-1} N=N t_{0} t_{1}^{-1} e N=N t_{0} t_{1}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{0} t_{0} N=$ $N t_{0} t_{1}^{-1} t_{0}^{2} N=N t_{0} t_{1}^{-1} t_{0}^{-1} N$.
Moreover, with the help of the computer algebra system MAGMA (see [BCP97]), we know that (0 2) (1 3) $t_{3} t_{1}^{-1} t_{2} t_{1}^{-1}=t_{0} t_{1}^{-1} t_{0} t_{2}^{-1}$. Now, (0 2) (13) $\left.\begin{array}{l}1\end{array}\right) t_{3} t_{1}^{-1} t_{2} t_{1}^{-1}=$ $t_{0} t_{1}^{-1} t_{0} t_{2}^{-1} \Rightarrow(02)(13)\left[t_{0} t_{1}^{-1} t_{2} t_{1}^{-1}\right]^{(03)}=t_{0} t_{1}^{-1} t_{0} t_{2}^{-1} \Rightarrow(02)(13)(03)\left[t_{0} t_{1}^{-1} t_{2} t_{1}^{-1}\right](03)=$
$t_{0} t_{1}^{-1} t_{0} t_{2}^{-1} \Rightarrow\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) t_{0} t_{1}^{-1} t_{2} t_{1}^{-1}(03)=t_{0} t_{1}^{-1} t_{0} t_{2}^{-1}$, which implies that $N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{0} t_{2}^{-1} N$. That is, $[0 \overline{1} 0 \overline{2}]=[0 \overline{1} 2 \overline{1}]$.
Therefore, we conclude that there are three distinct double cosets of the form
$N t_{0} t_{1}^{-1} t_{0} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1}^{-1} t_{0} t_{1} N, N t_{0} t_{1}^{-1} t_{0} t_{1}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{0} t_{2} N$.
12. We next consider the double coset $N t_{0} t_{1}^{-1} t_{0}^{-1} N$.

Let [$0 \overline{1} \overline{0}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{0}^{-1} N$.
Note that $N^{(0 \overline{1} \overline{0})} \geq N^{0 \overline{1} \overline{0}}=\langle(23)\rangle \cong S_{2}$. Thus $\left|N^{(01)}\right| \geq\left|S_{2}\right|=2$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{0}^{-1} N\right|=\frac{|N|}{\left|N^{(010)}\right|} \leq \frac{24}{1}=12$.
Therefore, the double coset [$0 \overline{1} \overline{0}]$ has at most twelve distinct single cosets.

Moreover, $N^{(0 \overline{1} \overline{0})}$ has six orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2,3\},\{\overline{0}\},\{\overline{1}\}$, and $\{\overline{2}, \overline{3}\}$.

Therefore, there are at most six double cosets of the form $N w N$, where w is a word of length four given by $w=t_{0} t_{1}^{-1} t_{0}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2\}: N t_{0} t_{1}^{-1} t_{0}^{-1} t_{0} N, N t_{0} t_{1}^{-1} t_{0}^{-1} t_{1} N$, $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} N, N t_{0} t_{1}^{-1} t_{0}^{-1} t_{0}^{-1} N, N t_{0} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} N$, and $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} N$.

But note that $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{0} N=N t_{0} t_{1}^{-1} e N=N t_{0} t_{1}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{0}^{-1} N=$ $N t_{0} t_{1}^{-1} t_{0}^{-2} N=N t_{0} t_{1}^{-1} t_{0} N$.
Moreover, by relation (7.2), (01)(23) $t_{0} t_{1} t_{0}=t_{0}^{-1} t_{1}^{-1} \Rightarrow t_{1}\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{0} t_{1} t_{0}=$ $t_{1} t_{0}^{-1} t_{1}^{-1} \Rightarrow(01)(23)(01)(23) t_{1}(01)(23) t_{0} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{1}^{-1} \Rightarrow$
(01)(23) $t_{1}^{(01)(23)} t_{0} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{1}^{-1} \Rightarrow(01)(23) t_{0} t_{0} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{1}^{-1} \Rightarrow$
(01)(23) $t_{0}^{-1} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{1}^{-1} \Rightarrow(01)(23) t_{0}^{-1} t_{1} t_{0} t_{0}=t_{1} t_{0}^{-1} t_{1}^{-1} t_{0} \Rightarrow(01)(23) t_{0}^{-1} t_{1} t_{0}^{-1}$ $=t_{1} t_{0}^{-1} t_{1}^{-1} t_{0} \Rightarrow(01)(23)(01)(23) t_{0}^{-1} t_{1} t_{0}^{-1}=\left(\begin{array}{ll}0 & 1\end{array}\right)(23) t_{1} t_{0}^{-1} t_{1}^{-1} t_{0} \Rightarrow t_{0}^{-1} t_{1} t_{0}^{-1}=$ (01) (23) $t_{1} t_{0}^{-1} t_{1}^{-1} t_{0} \Rightarrow t_{0}^{-1} t_{1} t_{0}^{-1}=(01)(23)\left[t_{0} t_{1}^{-1} t_{0}^{-1} t_{1}\right]^{(01)} \Rightarrow t_{0}^{-1} t_{1} t_{0}^{-1}=$
(01) $\left.\begin{array}{ll}2 & 3\end{array}\right)\left(\begin{array}{ll}0 & 1\end{array}\right)\left[t_{0} t_{1}^{-1} t_{0}^{-1} t_{1}\right]\left(\begin{array}{ll}0 & 1\end{array}\right) \Rightarrow t_{0}^{-1} t_{1} t_{0}^{-1}=\left(\begin{array}{ll}2 & 3\end{array}\right) t_{0} t_{1}^{-1} t_{0}^{-1} t_{1}\left(\begin{array}{ll}0 & 1\end{array}\right)$, which implies that $N t_{0}^{-1} t_{1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{1} N$. Therefore, $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{1} N=N t_{0}^{-1} t_{1} t_{0}^{-1} N$. That is, $[0 \overline{1} \overline{0} \overline{1}]=[\overline{0} 1 \overline{0}]$.

Similarly, by relation (7.2), (0 1) (2 3) $t_{0} t_{1} t_{0}=t_{0}^{-1} t_{1}^{-1} \Rightarrow t_{1}\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{0} t_{1} t_{0}=$ $t_{1} t_{0}^{-1} t_{1}^{-1} \Rightarrow(01)(23)(01)(23) t_{1}(01)(23) t_{0} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{1}^{-1} \Rightarrow$ (01)(23) $t_{1}^{(01)(23)} t_{0} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{1}^{-1} \Rightarrow(01)(23) t_{0} t_{0} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{1}^{-1} \Rightarrow$
(01)(23) $t_{0}^{-1} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{1}^{-1} \Rightarrow(01)(23) t_{0}^{-1} t_{1} t_{0} t_{0}^{-1}=t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} \Rightarrow(01)(23) t_{0}^{-1} t_{1}$ $=t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} \Rightarrow\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right)\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{0}^{-1} t_{1}=\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} \Rightarrow t_{0}^{-1} t_{1}=$ (01)(23) $t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} \Rightarrow t_{0}^{-1} t_{1}=(01)(23)\left[t_{0} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1}\right]^{(01)} \Rightarrow t_{0}^{-1} t_{1}=$
(0 1) (2 3) (0 1) $\left[t_{0} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1}\right]\left(\begin{array}{ll}0 & 1\end{array}\right) \Rightarrow t_{0}^{-1} t_{1}=\left(\begin{array}{ll}2 & 3\end{array}\right) t_{0} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1}\left(\begin{array}{ll}0 & 1\end{array}\right)$, which implies that $N t_{0}^{-1} t_{1} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} N$. Therefore, $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} N=N t_{0}^{-1} t_{1} N$. That is, $[0 \overline{1} \overline{0} \overline{1}]=[\overline{0} 1]$.

Therefore, we conclude that there are two distinct double cosets of the form
$N t_{0} t_{1}^{-1} t_{0}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} N$ and $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} N$.
13. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2} N$.

Let [012] denote the double coset $N t_{0} t_{1}^{-1} t_{2} N$.

Note that $N^{(0 \overline{1} 2)} \geq N^{0 \overline{1} 2}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} 2)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2} N\right|=\frac{|N|}{\left|N^{(0 \overline{1} 2)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} 2]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} 2)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length four given by $w=t_{0} t_{1}^{-1} t_{2} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}: N t_{0} t_{1}^{-1} t_{2} t_{0} N, N t_{0} t_{1}^{-1} t_{2} t_{1} N$, $N t_{0} t_{1}^{-1} t_{2} t_{2} N, N t_{0} t_{1}^{-1} t_{2} t_{3} N, N t_{0} t_{1}^{-1} t_{2} t_{0}^{-1} N, N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} N$, $N t_{0} t_{1}^{-1} t_{2} t_{2}^{-1} N$, and $N t_{0} t_{1}^{-1} t_{2} t_{3}^{-1} N$.
But note that $N t_{0} t_{1}^{-1} t_{2} t_{2}^{-1} N=N t_{0} t_{1}^{-1} e N=N t_{0} t_{1}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{2} t_{2} N=$ $N t_{0} t_{1}^{-1} t_{2}^{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} N$.

Therefore, we conclude that there are six distinct double cosets of the form
$N t_{0} t_{1}^{-1} t_{2} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1}^{-1} t_{2} t_{0} N, N t_{0} t_{1}^{-1} t_{2} t_{1} N, N t_{0} t_{1}^{-1} t_{2} t_{3} N$, $N t_{0} t_{1}^{-1} t_{2} t_{0}^{-1} N, N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} N$, and $N t_{0} t_{1}^{-1} t_{2} t_{3}^{-1} N$.
14. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} N$.

Let $[0 \overline{1} \overline{2}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} N$.
Note that $N^{(0 \overline{1} \overline{2})} \geq N^{0 \overline{1} \overline{2}}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{2})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2}^{-1} N\right|=\frac{|N|}{\left|N^{(012)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} \overline{2}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} \overline{2})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length four given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}: N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} N$, $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{2} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1}^{-1} N$, $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{2}^{-1} N$, and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} N$.

But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{2} N=N t_{0} t_{1}^{-1} e N=N t_{0} t_{1}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{2}^{-1} N=$ $N t_{0} t_{1}^{-1} t_{2}^{-2} N=N t_{0} t_{1}^{-1} t_{2} N$.

Moreover, by relation (7.2), (01)(2 3) $t_{0} t_{1} t_{0}=t_{0}^{-1} t_{1}^{-1} \Rightarrow\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{0} t_{1} t_{0} t_{0}^{-1}=$ $t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} \Rightarrow\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{0} t_{1}=t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} \Rightarrow\left[\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{0} t_{1}\right]^{\left(\begin{array}{lll}2\end{array}\right)}=\left[t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}\right]^{\left(\begin{array}{ll}1 & 2\end{array}\right)}$
$\Rightarrow(12)(03) t_{1} t_{2}=t_{1}^{-1} t_{2}^{-1} t_{1}^{-1} \Rightarrow t_{0}(12)(03) t_{1} t_{2}=t_{0} t_{1}^{-1} t_{2}^{-1} t_{1}^{-1} \Rightarrow$
 $t_{0} t_{1}^{-1} t_{2}^{-1} t_{1}^{-1} \Rightarrow(12)(03) t_{3} t_{1} t_{2}=t_{0} t_{1}^{-1} t_{2}^{-1} t_{1}^{-1} \Rightarrow(12)(03)\left[t_{0} t_{1} t_{2}\right]^{(03)}=t_{0} t_{1}^{-1} t_{2}^{-1} t_{1}^{-1}$ $\Rightarrow(12)(03)(03)\left[t_{0} t_{1} t_{2}\right](03)=t_{0} t_{1}^{-1} t_{2}^{-1} t_{1}^{-1} \Rightarrow(12) t_{0} t_{1} t_{2}(03)=t_{0} t_{1}^{-1} t_{2}^{-1} t_{1}^{-1}$, which implies that $N t_{0} t_{1} t_{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1}^{-1} N$. Therefore, $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1}^{-1} N=N t_{0} t_{1} t_{2} N$. That is, $[0 \overline{1} \overline{2} \overline{1}]=[012]$.

Therefore, we conclude that there are five distinct double cosets of the form $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} N$, $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} N$, and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} N$.
15. We next consider the double coset $N t_{0}^{-1} t_{1} t_{0}^{-1} N$.

Let [$\overline{0} 1 \overline{0}]$ denote the double coset $N t_{0}^{-1} t_{1} t_{0}^{-1} N$.
Note that $N^{(\overline{0} 1 \overline{0})} \geq N^{\overline{0} 1 \overline{0}}=\langle(23)\rangle \cong S_{2}$. Therefore, $\left|N^{(01)}\right| \geq\left|S_{2}\right|=2$ and so, by Lemma 1.4, $\left|N t_{0}^{-1} t_{1} t_{0}^{-1} N\right|=\frac{|N|}{\left|N^{(010)}\right|} \leq \frac{24}{1}=12$.
Therefore, the double coset $[\overline{0} 1 \overline{0}]$ has at most twelve distinct single cosets.
Moreover, $N^{(\overline{0} 1 \overline{0})}$ has six orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2,3\},\{\overline{0}\},\{\overline{1}\}$, and $\{\overline{2}, \overline{3}\}$.

Therefore, there are at most six double cosets of the form $N w N$, where w is a word of length four given by $w=t_{0}^{-1} t_{1} t_{0}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2\}: N t_{0}^{-1} t_{1} t_{0}^{-1} t_{0} N, N t_{0}^{-1} t_{1} t_{0}^{-1} t_{1} N$, $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2} N, N t_{0}^{-1} t_{1} t_{0}^{-1} t_{0}^{-1} N, N t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1} N$, and $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} N$.
But note that $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{0} N=N t_{0}^{-1} t_{1} e N=N t_{0}^{-1} t_{1} N$ and, by relation (7.2),
$N t_{0}^{-1} t_{1} t_{0}^{-1} t_{0}^{-1} N=N t_{0}^{-1} t_{1} t_{0}^{-2} N=N t_{0}^{-1} t_{1} t_{0} N=N t_{0} t_{1}^{-1} t_{0}^{-1} N$.
Moreover, by relation (7.2), (01)(2 3) $t_{0} t_{1} t_{0}=t_{0}^{-1} t_{1}^{-1} \Rightarrow t_{1}\left(\begin{array}{ll}(0)\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{0} t_{1} t_{0}=$ $t_{1} t_{0}^{-1} t_{1}^{-1} \Rightarrow(01)(23)(01)(23) t_{1}(01)(23) t_{0} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{1}^{-1} \Rightarrow$
(01)(23) $t_{1}^{(01)\left({ }^{2} 3\right)} t_{0} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{1}^{-1} \Rightarrow(01)(23) t_{0} t_{0} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{1}^{-1} \Rightarrow$
(01)(23) $t_{0}^{-1} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{1}^{-1} \Rightarrow t_{0}^{-1}(01)(23) t_{0}^{-1} t_{1} t_{0}=t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1} \Rightarrow$
(01) (23) (01) (23) $t_{0}^{-1}(01)(23) t_{0}^{-1} t_{1} t_{0}=t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1} \Rightarrow$
(01) (23) ($\left.t_{0}^{-1}\right)^{(01)(23)} t_{0}^{-1} t_{1} t_{0}=t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1} \Rightarrow(01)(23) t_{1}^{-1} t_{0}^{-1} t_{1} t_{0}=t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1}$.

Similarly, by relation (7.2), (011$)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{0} t_{1} t_{0}=t_{0}^{-1} t_{1}^{-1} \Rightarrow\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{0} t_{1} t_{0} t_{1}^{-1}=$ $t_{0}^{-1} t_{1}^{-1} t^{-1} \Rightarrow\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{0} t_{1} t_{0} t_{1}^{-1}=t_{0}^{-1} t_{1} \Rightarrow\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{0} t_{1} t_{0} t_{1}^{-1} t_{0}=t_{0}^{-1} t_{1} t_{0} \Rightarrow$
$t_{1}^{-1}(01)(23) t_{0} t_{1} t_{0} t_{1}^{-1} t_{0}=t_{1}^{-1} t_{0}^{-1} t_{1} t_{0} \Rightarrow(01)(23)(01)(23) t_{1}^{-1}(01)(23) t_{0} t_{1} t_{0} t_{1}^{-1} t_{0}=$ $t_{1}^{-1} t_{0}^{-1} t_{1} t_{0} \Rightarrow(01)(23)\left(t_{1}^{-1}\right)^{(01)(23)} t_{0} t_{1} t_{0} t_{1}^{-1} t_{0}=t_{1}^{-1} t_{0}^{-1} t_{1} t_{0} \Rightarrow$ (01)(23) $t_{0}^{-1} t_{0} t_{1} t_{0} t_{1}^{-1} t_{0}=t_{1}^{-1} t_{0}^{-1} t_{1} t_{0} \Rightarrow(01)(23) t_{1} t_{0} t_{1}^{-1} t_{0}=t_{1}^{-1} t_{0}^{-1} t_{1} t_{0} \Rightarrow$ $(01)(23)(01)(23) t_{1} t_{0} t_{1}^{-1} t_{0}=(01)(23) t_{1}^{-1} t_{0}^{-1} t_{1} t_{0} \Rightarrow t_{1} t_{0} t_{1}^{-1} t_{0}=$
$\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{1}^{-1} t_{0}^{-1} t_{1} t_{0}$. Since $(01)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{1}^{-1} t_{0}^{-1} t_{1} t_{0}=t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1}$ and $t_{1} t_{0} t_{1}^{-1} t_{0}=$ (0 1) (2 3) $t_{1}^{-1} t_{0}^{-1} t_{1} t_{0}$, we conclude that $t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1}=t_{1} t_{0} t_{1}^{-1} t_{0}$. Now, $t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1}=$ $t_{1} t_{0} t_{1}^{-1} t_{0} \Rightarrow t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1}=\left[t_{0} t_{1} t_{0}^{-1} t_{1}\right]^{(01)} \Rightarrow t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1}=\left(\begin{array}{ll}0 & 1\end{array}\right) t_{0} t_{1} t_{0}^{-1} t_{1}\left(\begin{array}{ll}0 & 1\end{array}\right)$, which implies that $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1} N=N t_{0} t_{1} t_{0}^{-1} t_{1} N$. Therefore, $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1} N=$ $N t_{0} t_{1} t_{0}^{-1} t_{1} N$. That is, $[\overline{0} 1 \overline{0} \overline{1}]=[01 \overline{0} 1]$.

Therefore, we conclude that there are three distinct double cosets of the form
$N t_{0}^{-1} t_{1} t_{0}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0}^{-1} t_{1} t_{0}^{-1} t_{1} N, N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2} N$, and $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} N$.
16. We next consider the double coset $N t_{0}^{-1} t_{1} t_{2} N$.

Let [$\overline{0} 12$] denote the double coset $N t_{0}^{-1} t_{1} t_{2} N$.
Note that $N^{(\overline{0} 12)} \geq N^{\overline{0} 12}=\langle e\rangle$. Therefore, $\left|N^{(\overline{0} 12)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0}^{-1} t_{1} t_{2} N\right|=\frac{|N|}{\left|N^{(012)}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [$\overline{0} 12]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{0} 12)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length four given by $w=t_{0}^{-1} t_{1} t_{2} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$: $N t_{0}^{-1} t_{1} t_{2} t_{0} N, N t_{0}^{-1} t_{1} t_{2} t_{1} N$, $N t_{0}^{-1} t_{1} t_{2} t_{2} N, N t_{0}^{-1} t_{1} t_{2} t_{3} N, N t_{0}^{-1} t_{1} t_{2} t_{0}^{-1} N, N t_{0}^{-1} t_{1} t_{2} t_{1}^{-1} N$, $N t_{0}^{-1} t_{1} t_{2} t_{2}^{-1} N$, and $N t_{0}^{-1} t_{1} t_{2} t_{3}^{-1} N$.
But note that $N t_{0}^{-1} t_{1} t_{2} t_{2}^{-1} N=N t_{0}^{-1} t_{1} e N=N t_{0}^{-1} t_{1} N$ and $N t_{0}^{-1} t_{1} t_{2} t_{2} N=$ $N t_{0}^{-1} t_{1} t_{2}^{2} N=N t_{0}^{-1} t_{1} t_{2}^{-1} N$.
Moreover, by relation (7.2), (01)(2 3) $t_{0} t_{1} t_{0}=t_{0}^{-1} t_{1}^{-1} \Rightarrow t_{2}^{-1}\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{0} t_{1} t_{0}=$ $t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} \Rightarrow(01)(23)(01)(23) t_{2}^{-1}(01)(23) t_{0} t_{1} t_{0}=t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} \Rightarrow$ $(01)(23)\left(t_{2}^{-1}\right)^{(01)(23)} t_{0} t_{1} t_{0}=t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} \Rightarrow(01)(23) t_{3}^{-1} t_{0} t_{1} t_{0}=t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} \Rightarrow$ $\left[\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{3}^{-1} t_{0} t_{1} t_{0}\right]^{(012)}=\left[t_{2}^{-1} t_{0}^{-1} t_{1}^{-1}\right]^{(012)} \Rightarrow(12)(03) t_{3}^{-1} t_{1} t_{2} t_{1}=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} \Rightarrow$ (12) (03) $\left[t_{0}^{-1} t_{1} t_{2} t_{1}\right]^{(03)}=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} \Rightarrow(12)(03)(03)\left[t_{0}^{-1} t_{1} t_{2} t_{1}\right](03)=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} \Rightarrow$
(12) $t_{0}^{-1} t_{1} t_{2} t_{1}(03)=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1}$, which implies that $N t_{0}^{-1} t_{1} t_{2} t_{1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} N$. Therefore, $N t_{0}^{-1} t_{1} t_{2} t_{1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} N$. That is, $[\overline{0} 121]=[\overline{0} \overline{1} \overline{2}]$.
Similarly, by relation (7.2), (01)(23) $t_{0} t_{1} t_{0}=t_{0}^{-1} t_{1}^{-1} \Rightarrow t_{2}^{-1}\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{0} t_{1} t_{0}=$ $t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} \Rightarrow(01)(23)(01)(23) t_{2}^{-1}(01)(23) t_{0} t_{1} t_{0}=t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} \Rightarrow$
$\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right)\left(t_{2}^{-1}\right)^{(01)(23)} t_{0} t_{1} t_{0}=t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} \Rightarrow(01)(23) t_{3}^{-1} t_{0} t_{1} t_{0}=t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} \Rightarrow$ $\left[\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{3}^{-1} t_{0} t_{1} t_{0}\right]^{(012)}=\left[t_{2}^{-1} t_{0}^{-1} t_{1}^{-1}\right]^{(012)} \Rightarrow(12)(03) t_{3}^{-1} t_{1} t_{2} t_{1}=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} \Rightarrow$
(1 2) (0 3) $t_{3}^{-1} t_{1} t_{2} t_{1} t_{1}=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} \Rightarrow\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}0 & 3\end{array}\right) t_{3}^{-1} t_{1} t_{2} t_{1}^{-1}=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} \Rightarrow$ (1 2) (0 3) $\left[\begin{array}{ll}-1\end{array} t_{1} t_{2} t_{1}^{-1}\right]^{(03)}=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} \Rightarrow\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}0 & 3\end{array}\right)\left(\begin{array}{ll}0 & 3\end{array}\right)\left[\begin{array}{ll}-1\end{array} t_{1} t_{2} t_{1}^{-1}\right]\left(\begin{array}{ll}0 & 3\end{array}\right)=$ $t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} \Rightarrow(12) t_{0}^{-1} t_{1} t_{2} t_{1}^{-1}(03)=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1}$, which implies that $N t_{0}^{-1} t_{1} t_{2} t_{1}^{-1} N$ $=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} N$. Therefore, $N t_{0}^{-1} t_{1} t_{2} t_{1}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} N$. That is, $[\overline{0} 12 \overline{1}]=$ [$\overline{0} \overline{1} \overline{2} 1]$.

Therefore, we conclude that there are four distinct double cosets of the form $N t_{0}^{-1} t_{1} t_{2} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0}^{-1} t_{1} t_{2} t_{0} N, N t_{0}^{-1} t_{1} t_{2} t_{3} N, N t_{0}^{-1} t_{1} t_{2} t_{0}^{-1} N$, and $N t_{0}^{-1} t_{1} t_{2} t_{3}^{-1} N$.
17. We next consider the double coset $N t_{0}^{-1} t_{1} t_{2}^{-1} N$.

Let $[\overline{0} 1 \overline{2}]$ denote the double coset $N t_{0}^{-1} t_{1} t_{2}^{-1} N$.
Note that $N^{(\overline{0} 1 \overline{2})} \geq N^{\overline{0} 1 \overline{2}}=\langle e\rangle$. Thus $\left|N^{(\overline{0} 1 \overline{2})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0}^{-1} t_{1} t_{2}^{-1} N\right|=\frac{|N|}{\left|N^{(\overline{012})}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset $[\overline{0} 1 \overline{2}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{0} 1 \overline{2})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.
Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length four given by $w=t_{0}^{-1} t_{1} t_{2}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}: N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0} N$, $N t_{0}^{-1} t_{1} t_{2}^{-1} t_{1} N, N t_{0}^{-1} t_{1} t_{2}^{-1} t_{2} N, N t_{0}^{-1} t_{1} t_{2}^{-1} t_{3} N, N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} N, N t_{0}^{-1} t_{1} t_{2}^{-1} t_{1}^{-1} N$, $N t_{0}^{-1} t_{1} t_{2}^{-1} t_{2}^{-1} N$, and $N t_{0}^{-1} t_{1} t_{2}^{-1} t_{3}^{-1} N$.
But note that $N t_{0}^{-1} t_{1} t_{2}^{-1} t_{2} N=N t_{0}^{-1} t_{1} e N=N t_{0}^{-1} t_{1} N$ and $N t_{0}^{-1} t_{1} t_{2}^{-1} t_{2}^{-1} N=$ $N t_{0}^{-1} t_{1} t_{2}^{-2} N=N t_{0}^{-1} t_{1} t_{2} N$.
Moreover, with the help of MAGMA, we know that (01)(23) $t_{3}^{-1} t_{1} t_{3}^{-1} t_{2}=t_{0}^{-1} t_{1} t_{2}^{-1} t_{1}$.
Now, (01)(23) $t_{3}^{-1} t_{1} t_{3}^{-1} t_{2}=t_{0}^{-1} t_{1} t_{2}^{-1} t_{1} \Rightarrow(01)(23)\left[t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}\right]^{(03)}=t_{0}^{-1} t_{1} t_{2}^{-1} t_{1} \Rightarrow$
(0 1) (2 3) (03) $\left[t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}\right](03)=t_{0}^{-1} t_{1} t_{2}^{-1} t_{1} \Rightarrow(0231) t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}(03)=t_{0}^{-1} t_{1} t_{2}^{-1} t_{1}$, which implies that $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2} N=N t_{0}^{-1} t_{1} t_{2}^{-1} t_{1} N$. That is, $[\overline{0} 1 \overline{2} 1]=[\overline{0} 1 \overline{0} 2]$.
Similarly, by relation (7.2), (01)(2 3) $t_{0} t_{1} t_{0}=t_{0}^{-1} t_{1}^{-1} \Rightarrow t_{1}\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{0} t_{1} t_{0}=$ $t_{1} t_{0}^{-1} t_{1}^{-1} \Rightarrow(01)(23)(01)(23) t_{1}(01)(23) t_{0} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{1}^{-1} \Rightarrow$
(01)(23) $t_{1}^{(01)(23)} t_{0} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{1}^{-1} \Rightarrow(01)(23) t_{0} t_{0} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{1}^{-1} \Rightarrow$
(01)(23) $t_{0}^{-1} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{1}^{-1} \Rightarrow t_{2}^{-1}(01)(23) t_{0}^{-1} t_{1} t_{0}=t_{2}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1} \Rightarrow$
(01) (23) (01) (23) $t_{2}^{-1}(01)(23) t_{0}^{-1} t_{1} t_{0}=t_{2}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1} \Rightarrow$
(01)(23) $\left(t_{2}^{-1}\right)^{(01)(23)} t_{0}^{-1} t_{1} t_{0}=t_{2}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1} \Rightarrow(01)(23) t_{3}^{-1} t_{0}^{-1} t_{1} t_{0}=t_{2}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow\left[(01)(23) t_{3}^{-1} t_{0}^{-1} t_{1} t_{0}\right]^{(02)}=\left[t_{2}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1}\right]^{(02)} \Rightarrow(12)(03) t_{3}^{-1} t_{2}^{-1} t_{1} t_{2}=$ $t_{0}^{-1} t_{1} t_{2}^{-1} t_{1}^{-1} \Rightarrow(12)(03)\left[t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}\right]^{(03)(12)}=t_{0}^{-1} t_{1} t_{2}^{-1} t_{1}^{-1} \Rightarrow$
(1 2) (0 3) (1 2) (03) $\left[t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}\right](12)(03)=t_{0}^{-1} t_{1} t_{2}^{-1} t_{1}^{-1} \Rightarrow e t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}(12)(03)=$ $t_{0}^{-1} t_{1} t_{2}^{-1} t_{1}^{-1}$, which implies that $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} N=N t_{0}^{-1} t_{1} t_{2}^{-1} t_{1}^{-1} N$. Therefore, $N t_{0}^{-1} t_{1} t_{2}^{-1} t_{1}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} N$. That is, $[\overline{0} 1 \overline{2} \overline{1}]=[\overline{0} \overline{1} 21]$.
Therefore, we conclude that there are four distinct double cosets of the form
$N t_{0}^{-1} t_{1} t_{2}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0} N, N t_{0}^{-1} t_{1} t_{2}^{-1} t_{3} N$,
$N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} N$, and $N t_{0}^{-1} t_{1} t_{2}^{-1} t_{3}^{-1} N$.
18. We next consider the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2} N$.

Let [$\overline{0} \overline{1} 2]$ denote the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2} N$.
Note that $N^{(\overline{0} \overline{1} 2)} \geq N^{\overline{0} \overline{1} 2}=\langle e\rangle$. Thus $\left|N^{(\overline{0} \overline{1} 2)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0}^{-1} t_{1}^{-1} t_{2} N\right|=\frac{|N|}{\left|N^{(\overline{1} \overline{1})}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$[\overline{1} \overline{1} 2]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{0} \overline{1} 2)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length four given by $w=t_{0}^{-1} t_{1}^{-1} t_{2} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$: $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{0} N$, $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} N, N t_{0}^{-1} t_{1}^{-1} t_{2} t_{2} N, N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} N, N t_{0}^{-1} t_{1}^{-1} t_{2} t_{0}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} N$, $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{2}^{-1} N$, and $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3}^{-1} N$.
But note that $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{2}^{-1} N=N t_{0}^{-1} t_{1}^{-1} e N=N t_{0}^{-1} t_{1}^{-1} N$ and $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{2} N=$ $N t_{0}^{-1} t_{1}^{-1} t_{2}^{2} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} N$.
Moreover, by relation (7.2), (01)(2 3) $t_{0} t_{1} t_{0}=t_{0}^{-1} t_{1}^{-1} \Rightarrow\left(\begin{array}{lll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{0} t_{1} t_{0} t_{2}=$
$t_{0}^{-1} t_{1}^{-1} t_{2} \Rightarrow\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{0} t_{1} t_{0} t_{2} t_{0}=t_{0}^{-1} t_{1}^{-1} t_{2} t_{0} \Rightarrow\left(\begin{array}{ll}0 & 1\end{array}\right)(23)\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{0} t_{1} t_{0} t_{2} t_{0}=$ $(01)(23) t_{0}^{-1} t_{1}^{-1} t_{2} t_{0} \Rightarrow t_{0} t_{1} t_{0} t_{2} t_{0}=\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{0}^{-1} t_{1}^{-1} t_{2} t_{0}$. Similarly, by relation (7.2), (01) (2 3) $t_{0} t_{1} t_{0}=t_{0}^{-1} t_{1}^{-1} \Rightarrow t_{2}\left(\begin{array}{ll}(0)\end{array}\right)\left(\begin{array}{ll}2 & 3)\end{array} t_{0} t_{1} t_{0}=t_{2} t_{0}^{-1} t_{1}^{-1} \Rightarrow\right.$
$\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right)\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{lll}2 & 3\end{array}\right) t_{2}\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{0} t_{1} t_{0}=t_{2} t_{0}^{-1} t_{1}^{-1} \Rightarrow\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{2}^{(01)(23)} t_{0} t_{1} t_{0}=$ $t_{2} t_{0}^{-1} t_{1}^{-1} \Rightarrow\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{3} t_{0} t_{1} t_{0}=t_{2} t_{0}^{-1} t_{1}^{-1} \Rightarrow t_{1}\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{3} t_{0} t_{1} t_{0}=t_{1} t_{2} t_{0}^{-1} t_{1}^{-1} \Rightarrow$ $(01)(23)(01)(23) t_{1}(01)(23) t_{3} t_{0} t_{1} t_{0}=t_{1} t_{2} t_{0}^{-1} t_{1}^{-1} \Rightarrow(01)(23) t_{1}^{(01)(23)} t_{3} t_{0} t_{1} t_{0}=$ $t_{1} t_{2} t_{0}^{-1} t_{1}^{-1} \Rightarrow\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{0} t_{3} t_{0} t_{1} t_{0}=t_{1} t_{2} t_{0}^{-1} t_{1}^{-1} \Rightarrow\left[\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{0} t_{3} t_{0} t_{1} t_{0}\right]^{(123)}=$ $\left[t_{1} t_{2} t_{0}^{-1} t_{1}^{-1}\right]^{(123)} \Rightarrow(02)(13) t_{0} t_{1} t_{0} t_{2} t_{0}=t_{2} t_{3} t_{0}^{-1} t_{2}^{-1} \Rightarrow$
$(02)(13)(02)(13) t_{0} t_{1} t_{0} t_{2} t_{0}=\left(\begin{array}{ll}0 & 2\end{array}\right)(13) t_{2} t_{3} t_{0}^{-1} t_{2}^{-1} \Rightarrow t_{0} t_{1} t_{0} t_{2} t_{0}=$
$\left(\begin{array}{lll}0 & 2\end{array}\right)\left(\begin{array}{ll}1 & 3\end{array}\right) t_{2} t_{3} t_{0}^{-1} t_{2}^{-1}$. Since $t_{0} t_{1} t_{0} t_{2} t_{0}=\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{0}^{-1} t_{1}^{-1} t_{2} t_{0}$ and $t_{0} t_{1} t_{0} t_{2} t_{0}=$ (0 2) (13) $t_{2} t_{3} t_{0}^{-1} t_{2}^{-1}$, we conclude that (01)(23) $t_{0}^{-1} t_{1}^{-1} t_{2} t_{0}=t_{0} t_{1} t_{0} t_{2} t_{0}=$
(0 2) (1 3) $t_{2} t_{3} t_{0}^{-1} t_{2}^{-1}$; that is, $\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{0}^{-1} t_{1}^{-1} t_{2} t_{0}=\left(\begin{array}{ll}0 & 2\end{array}\right)\left(\begin{array}{ll}1 & 3\end{array}\right) t_{2} t_{3} t_{0}^{-1} t_{2}^{-1}$. Now, $(01)(23) t_{0}^{-1} t_{1}^{-1} t_{2} t_{0}=(02)(13) t_{2} t_{3} t_{0}^{-1} t_{2}^{-1} \Rightarrow(01)(23) t_{0}^{-1} t_{1}^{-1} t_{2} t_{0}=$ $(02)(13)\left[t_{0} t_{1} t_{2}^{-1} t_{0}^{-1}\right]^{(02)(13)} \Rightarrow(01)(23) t_{0}^{-1} t_{1}^{-1} t_{2} t_{0}=$ $(02)(13)(02)(13)\left[t_{0} t_{1} t_{2}^{-1} t_{0}^{-1}\right](02)(13) \Rightarrow(01)(23) t_{0}^{-1} t_{1}^{-1} t_{2} t_{0}=$ $e t_{0} t_{1} t_{2}^{-1} t_{0}^{-1}(02)(13)$, which implies that $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{0} N=N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} N$. Therefore, $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{0} N=N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} N$. That is, $[\overline{0} \overline{1} 20]=[01 \overline{2} \overline{0}]$.

Therefore, we conclude that there are five distinct double cosets of the form
$N t_{0}^{-1} t_{1}^{-1} t_{2} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} N, N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} N$, $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{0}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} N$, and $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3}^{-1} N$.
19. We next consider the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} N$.

Let [$\overline{0} \overline{1} \overline{2}]$ denote the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} N$.
Note that $N^{(\overline{\overline{0}} \overline{2} \overline{2})} \geq N^{\overline{0} \overline{1} \overline{2}}=\langle e\rangle$. Thus $\left|N^{(\overline{0} \overline{1} \overline{2})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} N\right|=\frac{|N|}{\left|N^{(\overline{1} \overline{2})}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$\overline{0} \overline{1} \overline{2}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{0} \overline{1} \overline{2})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length four given by $w=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}: N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} N$, $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{2} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} N$, $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{2}^{-1} N$, and $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} N$.

But note that $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{2} N=N t_{0}^{-1} t_{1}^{-1} e N=N t_{0}^{-1} t_{1}^{-1} N$ and $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{2}^{-1} N=$ $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-2} N=N t_{0}^{-1} t_{1}^{-1} t_{2} N$.

Moreover, by relation (7.2), (01)(23) $t_{0} t_{1} t_{0}=t_{0}^{-1} t_{1}^{-1} \Rightarrow t_{2}^{-1}\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{0} t_{1} t_{0}=$ $t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} \Rightarrow(01)(23)(01)(23) t_{2}^{-1}(01)(23) t_{0} t_{1} t_{0}=t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} \Rightarrow$
$(01)(23)\left(t_{2}^{-1}\right)^{(01)(23)} t_{0} t_{1} t_{0}=t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} \Rightarrow(01)(23) t_{3}^{-1} t_{0} t_{1} t_{0}=t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} \Rightarrow$ (0 1) (2 3) $t_{3}^{-1} t_{0} t_{1} t_{0} t_{0}^{-1}=t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} \Rightarrow\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{3}^{-1} t_{0} t_{1}=t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} \Rightarrow$ $\left[\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{3}^{-1} t_{0} t_{1}\right]^{\left(\begin{array}{ll}1 & 2\end{array}\right)}=\left[t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}\right]^{(012)} \Rightarrow(12)(03) t_{3}^{-1} t_{1} t_{2}=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1}^{-1}$ $\Rightarrow(12)(03)\left[t_{0}^{-1} t_{1} t_{2}\right]^{(03)}=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1}^{-1} \Rightarrow(12)(03)(03)\left[t_{0}^{-1} t_{1} t_{2}\right](03)=$ $t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1}^{-1} \Rightarrow(12) t_{0}^{-1} t_{1} t_{2}(03)=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1}^{-1}$, which implies that $N t_{0}^{-1} t_{1} t_{2} N=$ $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1}^{-1} N$. Therefore, $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1}^{-1} N=N t_{0}^{-1} t_{1} t_{2} N$. That is, $[\overline{0} \overline{1} \overline{2} \overline{1}]=$ [012].

Therefore, we conclude that there are five distinct double cosets of the form
$N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} N$,
$N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} N$, and $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} N$.
20. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2} t_{0} N$.

Let [$0 \overline{1} 20$] denote the double coset $N t_{0} t_{1}^{-1} t_{2} t_{0} N$.
Note that $N^{(0 \overline{1} 20)} \geq N^{0 \overline{1} 20}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} 20)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2} t_{0} N\right|=\frac{|N|}{\left|N^{(0 \overline{1} 20)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} 20]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} 20)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length five given by $w=t_{0} t_{1}^{-1} t_{2} t_{0} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2} e N=N t_{0} t_{1}^{-1} t_{2} N$ and $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{0} N=$ $N t_{0} t_{1}^{-1} t_{2} t_{0}^{2} N=N t_{0} t_{1}^{-1} t_{2} t_{0}^{-1} N$.
Moreover, by relation (7.2), (01)(2 3) $t_{0} t_{1} t_{0}=t_{0}^{-1} t_{1}^{-1} \Rightarrow t_{2}^{-1}\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{0} t_{1} t_{0}=$ $t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} \Rightarrow(01)(23)(01)(23) t_{2}^{-1}(01)(23) t_{0} t_{1} t_{0}=t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} \Rightarrow$
(01)(23) $\left(t_{2}^{-1}\right)^{(01)(23)} t_{0} t_{1} t_{0}=t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} \Rightarrow(01)(23) t_{3}^{-1} t_{0} t_{1} t_{0}=t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} \Rightarrow$ $t_{0}\left(\begin{array}{ll}0 & 1\end{array}\right)(23) t_{3}^{-1} t_{0} t_{1} t_{0}=t_{0} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} \Rightarrow\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right)\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{0}\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{3}^{-1} t_{0} t_{1} t_{0}=$ $t_{0} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} \Rightarrow(01)(23) t_{0}^{(01)(23)} t_{3}^{-1} t_{0} t_{1} t_{0}=t_{0} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} \Rightarrow(01)(23) t_{1} t_{3}^{-1} t_{0} t_{1} t_{0}=$
$t_{0} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} \Rightarrow\left[(01)(23) t_{1} t_{3}^{-1} t_{0} t_{1} t_{0}\right]^{(12)}=\left[t_{0} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1}\right]^{(12)} \Rightarrow(02)(13) t_{2} t_{3}^{-1} t_{0} t_{2} t_{0}$
$=t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} \Rightarrow\left(\begin{array}{ll}0 & 2\end{array}\right)\left(\begin{array}{ll}1 & 3\end{array}\right)\left[t_{0} t_{1}^{-1} t_{2} t_{0} t_{2}\right]^{(02)(13)}=t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} \Rightarrow$
$(02)(13)(02)(13)\left[t_{0} t_{1}^{-1} t_{2} t_{0} t_{2}\right](02)(13)=t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} \Rightarrow e t_{0} t_{1}^{-1} t_{2} t_{0} t_{2}(02)(13)=$ $t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1}$, which implies that $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{2} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} N$. Therefore, $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{2} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} N$. That is, $[0 \overline{1} 202]=[0 \overline{1} \overline{0} \overline{2}]$.

Similarly, with the help of MAGMA, we know that (02)(13) $t_{3} t_{1}^{-1} t_{2}^{-1} t_{3}=$ $t_{0} t_{1}^{-1} t_{2} t_{0} t_{2}^{-1}$. Now, (02)(13) $t_{3} t_{1}^{-1} t_{2}^{-1} t_{3}=t_{0} t_{1}^{-1} t_{2} t_{0} t_{2}^{-1} \Rightarrow$ $(02)(13)\left[t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}\right]^{(03)}=t_{0} t_{1}^{-1} t_{2} t_{0} t_{2}^{-1} \Rightarrow(02)(13)(03) t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}(03)=$ $t_{0} t_{1}^{-1} t_{2} t_{0} t_{2}^{-1} \Rightarrow\left(\begin{array}{lll}1 & 3 & 2\end{array}\right) t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}(03)=t_{0} t_{1}^{-1} t_{2} t_{0} t_{2}^{-1}$, which implies that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{2}^{-1} N$. That is, $[0 \overline{1} 20 \overline{2}]=[0 \overline{1} \overline{2} 0]$.

Therefore, we conclude that there are four distinct double cosets of the form
$N t_{0} t_{1}^{-1} t_{2} t_{0} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} N, N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} N$,
$N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} N$, and $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} N$.
21. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2} t_{0}^{-1} N$.

Let [$0 \overline{1} 2 \overline{0}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2} t_{0}^{-1} N$.
Now, with the help of MAGMA, we know that the following right cosets, or single cosets, are equivalent: $N t_{0} t_{1}^{-1} t_{2} t_{0}^{-1}=N t_{1} t_{2}^{-1} t_{3} t_{1}^{-1}=N t_{2} t_{3}^{-1} t_{0} t_{2}^{-1}=N t_{3} t_{0}^{-1} t_{1} t_{3}^{-1}$. That is, in terms of our short-hand notation,

$$
0 \overline{1} 2 \overline{0} \sim 1 \overline{2} 3 \overline{1} \sim 2 \overline{3} 0 \overline{2} \sim 3 \overline{0} 1 \overline{1}
$$

By conjugating the equivalence relation above with the elements of S_{4}, we determine that the following single cosets are equivalent in the double coset [0120]:

$$
\begin{array}{ll}
0 \overline{1} 2 \overline{0} \sim 1 \overline{2} 3 \overline{1} \sim 2 \overline{3} 0 \overline{2} \sim 30 \overline{0} \overline{3}, & 10 \overline{2} \overline{1} \sim 0 \overline{2} 3 \overline{0} \sim 2 \overline{3} 12 \sim 3 \overline{1} 0 \overline{3}, \\
2 \overline{1} 0 \overline{2} \sim 1 \overline{0} 3 \overline{1} \sim 0 \overline{3} 2 \overline{0} \sim 3 \overline{2} 1 \overline{3}, & 3 \overline{1} 2 \overline{3} \sim 1 \overline{2} 0 \overline{1} \sim 2 \overline{0} 3 \overline{2} \sim 0 \overline{3} 1 \overline{0}, \\
0 \overline{2} 10 \overline{0} \sim 2 \overline{1} 3 \overline{2} \sim 1 \overline{3} 0 \overline{1} \sim 3 \overline{0} 2 \overline{3}, & 0 \overline{1} 3 \overline{0} \sim 1 \overline{3} 2 \overline{1} \sim 3 \overline{2} 0 \overline{3} \sim 2 \overline{0} 1 \overline{2}
\end{array}
$$

Since each of the twenty-four single cosets has four names, the double coset [$0 \overline{1} 2 \overline{0}]$ must have at most six distinct single cosets.

An alternative approach for determining the order of the double coset is as follows: We note that $N^{(0 \overline{1} 2 \overline{0})} \geq N^{0 \overline{1} 2 \overline{0}}=\langle e\rangle$. In fact, by with the help of MAGMA,
we know that $N\left(t_{0} t_{1}^{-1} t_{2} t_{0}^{-1}\right)^{(0123)}=N t_{1} t_{2}^{-1} t_{3} t_{1}^{-1}=N t_{0} t_{1}^{-1} t_{2} t_{0}^{-1}$ implies that $\left(\begin{array}{llll}0 & 1 & 2 & 3\end{array}\right) \in N^{(01 \overline{1} 2 \overline{0})}$. Therefore, $\left(\begin{array}{llll}0 & 1 & 2 & 3\end{array}\right) \in N^{(0 \overline{1} 2 \overline{0})}$, and so $N^{(0 \overline{1} 2 \overline{0})} \geq\left\langle\left(\begin{array}{llll}0 & 1 & 2 & 3\end{array}\right)\right\rangle$. That is, $\left|N^{(0 \overline{1} 2 \overline{0})}\right| \geq|((0123)\rangle|=4$ and so, by Lemma $1,4,\left|N t_{0} t_{1}^{-1} t_{2} t_{0}^{-1} N\right|=$ $\frac{|N|}{\left|N^{(012 \overline{0})}\right|} \leq \frac{24}{4}=6$.
Therefore, as we concluded earlier, the double coset [$0 \overline{1} 2 \overline{0}]$, as we noted earlier, must have at most six distinct single cosets.

Moreover, $N^{(0 \overline{1} 2 \overline{0})}$ has two orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0,1,2,3\}$ and $\{\overline{0}, \overline{1}, \overline{2}, \overline{3}\}$.
Therefore, there are at most two double cosets of the form $N w N$, where w is a word of length five given by $w=t_{0} t_{1}^{-1} t_{2} t_{0}^{-1} t_{i}^{ \pm 1}, i=0: N t_{0} t_{1}^{-1} t_{2} t_{0}^{-1} t_{0} N$ and $N t_{0} t_{1}^{-1} t_{2} t_{0}^{-1} t_{0}^{-1} N$.
But note that $N t_{0} t_{1}^{-1} t_{2} t_{0}^{-1} t_{0} N=N t_{0} t_{1}^{-1} t_{2} e N=N t_{0} t_{1}^{-1} t_{2} N$ and $N t_{0} t_{1}^{-1} t_{2} t_{0}^{-1} t_{0}^{-1} N$ $=N t_{0} t_{1}^{-1} t_{2} t_{0}^{-2} N=N t_{0} t_{1}^{-1} t_{2} t_{0} N$.

Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0} t_{1}^{-1} t_{2} t_{0}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
22. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2} t_{1} N$.

Let [0121] denote the double coset $N t_{0} t_{1}^{-1} t_{2} t_{1} N$.
Note that $N^{(0 \overline{1} 21)} \geq N^{0 \overline{1} 21}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} 21)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2} t_{1} N\right|=\frac{|N|}{\left|N^{(0121)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [0121] has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} 21)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length five given by $w=t_{0} t_{1}^{-1} t_{2} t_{1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2} e N=N t_{0} t_{1}^{-1} t_{2} N$ and $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{1} N=$ $N t_{0} t_{1}^{-1} t_{2} t_{1}^{2} N=N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} N$.
Moreover, with the help of MAGMA, we know that (023) $t_{0} t_{3}^{-1} t_{2} t_{0} t_{1}^{-1}=t_{0} t_{1}^{-1} t_{2}^{-1} t_{1}$. Now, (02 3) $t_{0} t_{3}^{-1} t_{2} t_{0} t_{1}^{-1}=t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} \Rightarrow\left(\begin{array}{ll}0 & 2\end{array}\right)\left[t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1}\right]^{(13)}=t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} \Rightarrow$ (023)(13) $t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1}(13)=t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} \Rightarrow(0231) t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1}(13)=t_{0} t_{1}^{-1} t_{2}^{-1} t_{1}$, which implies that $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0} N$. That is, $[0 \overline{1} 210]=[0 \overline{1} 20 \overline{3}]$.

Similarly, by relation (7.2), (01)(23) $t_{0} t_{1} t_{0}=t_{0}^{-1} t_{1}^{-1} \Rightarrow t_{0}^{-1}\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{0} t_{1} t_{0}=$ $t_{0}^{-1} t_{0}^{-1} t_{1}^{-1} \Rightarrow(01)(23)(01)(23) t_{0}^{-1}(01)(23) t_{0} t_{1} t_{0}=t_{0} t_{1}^{-1} \Rightarrow$ $\left(\begin{array}{ll}0 & 1)(23)\left(t_{0}^{-1}\right)^{(01)(23)} t_{0} t_{1} t_{0}=t_{0} t_{1}^{-1} \Rightarrow(01)(23) t_{1}^{-1} t_{0} t_{1} t_{0}=t_{0} t_{1}^{-1} \Rightarrow, ~\end{array}\right.$ $t_{2}\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{1}^{-1} t_{0} t_{1} t_{0}=t_{2} t_{0} t_{1}^{-1} \Rightarrow\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right)\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{2}\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{1}^{-1} t_{0} t_{1} t_{0}=$ $t_{2} t_{0} t_{1}^{-1} \Rightarrow(01)(23) t_{2}^{(01)(23)} t_{1}^{-1} t_{0} t_{1} t_{0}=t_{2} t_{0} t_{1}^{-1} \Rightarrow(01)(23) t_{3} t_{1}^{-1} t_{0} t_{1} t_{0}=t_{2} t_{0} t_{1}^{-1} \Rightarrow$ $\left[\left(\begin{array}{lll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{3} t_{1}^{-1} t_{0} t_{1} t_{0}\right]^{(012)}=\left[t_{2} t_{0} t_{1}^{-1}\right]^{(012)} \Rightarrow(12)(03) t_{3} t_{2}^{-1} t_{1} t_{2} t_{1}=t_{0} t_{1} t_{2}^{-1} \Rightarrow$ (12) (03) $\left[t_{0} t_{1}^{-1} t_{2} t_{1} t_{2}\right]^{(12)(03)}=t_{0} t_{1} t_{2}^{-1} \Rightarrow(12)(03)(12)(03)\left[t_{0} t_{1}^{-1} t_{2} t_{1} t_{2}\right](12)(03)$ $=t_{0} t_{1} t_{2}^{-1} \Rightarrow e t_{0} t_{1}^{-1} t_{2} t_{1} t_{2}(12)(03)=t_{0} t_{1} t_{2}^{-1}$, which implies that $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{2} N=$ $N t_{0} t_{1} t_{2}^{-1} N$. Therefore, $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{2} N=N t_{0} t_{1} t_{2}^{-1} N$. That is, [01212] $=[01 \overline{2}]$.
Similarly, by relation (7.2), (01)(23) $t_{0} t_{1} t_{0}=t_{0}^{-1} t_{1}^{-1} \Rightarrow t_{0}^{-1}\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{0} t_{1} t_{0}=$ $t_{0}^{-1} t_{0}^{-1} t_{1}^{-1} \Rightarrow(01)(23)(01)(23) t_{0}^{-1}(01)(23) t_{0} t_{1} t_{0}=t_{0} t_{1}^{-1} \Rightarrow$
$(01)(23)\left(t_{0}^{-1}\right)^{(01)(23)} t_{0} t_{1} t_{0}=t_{0} t_{1}^{-1} \Rightarrow(01)(23) t_{1}^{-1} t_{0} t_{1} t_{0}=t_{0} t_{1}^{-1} \Rightarrow$ $t_{2}\left(\begin{array}{lll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{1}^{-1} t_{0} t_{1} t_{0}=t_{2} t_{0} t_{1}^{-1} \Rightarrow\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right)\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{2}\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{1}^{-1} t_{0} t_{1} t_{0}=$ $t_{2} t_{0} t_{1}^{-1} \Rightarrow(01)(23) t_{2}^{(01)(23)} t_{1}^{-1} t_{0} t_{1} t_{0}=t_{2} t_{0} t_{1}^{-1} \Rightarrow(01)(23) t_{3} t_{1}^{-1} t_{0} t_{1} t_{0}=t_{2} t_{0} t_{1}^{-1} \Rightarrow$ $\left[\left(\begin{array}{lll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{3} t_{1}^{-1} t_{0} t_{1} t_{0}\right]^{(012)}=\left[t_{2} t_{0} t_{1}^{-1}\right]^{(012)} \Rightarrow\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}0 & 3\end{array}\right) t_{3} t_{2}^{-1} t_{1} t_{2} t_{1}=t_{0} t_{1} t_{2}^{-1} \Rightarrow$ (12) (03) $\left[t_{0} t_{1}^{-1} t_{2} t_{1} t_{2}\right]^{(12)(03)}=t_{0} t_{1} t_{2}^{-1} \Rightarrow(12)(03)(12)(03)\left[t_{0} t_{1}^{-1} t_{2} t_{1} t_{2}\right](12)(03)$ $=t_{0} t_{1} t_{2}^{-1} \Rightarrow e t_{0} t_{1}^{-1} t_{2} t_{1} t_{2}(12)(03)=t_{0} t_{1} t_{2}^{-1} \Rightarrow t_{0} t_{1}^{-1} t_{2} t_{1} t_{2}(12)(03) t_{1}=t_{0} t_{1} t_{2}^{-1} t_{1} \Rightarrow$ $t_{0} t_{1}^{-1} t_{2} t_{1} t_{2}(12)(03) t_{1}(12)(03)(12)(03)=t_{0} t_{1} t_{2}^{-1} t_{1} \Rightarrow$
$\left.\left.t_{0} t_{1}^{-1} t_{2} t_{1} t_{2} t_{1}^{1} 2\right)\left(\begin{array}{ll}0 & 3) \\ (12)\end{array}\right)_{0} 3\right)=t_{0} t_{1} t_{2}^{-1} t_{1} \Rightarrow t_{0} t_{1}^{-1} t_{2} t_{1} t_{2} t_{2}\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}0 & 3\end{array}\right)=t_{0} t_{1} t_{2}^{-1} t_{1} \Rightarrow$ $e t_{0} t_{1}^{-1} t_{2} t_{1} t_{2}^{-1}(12)(03)=t_{0} t_{1} t_{2}^{-1} t_{1}$, which implies that $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{2}^{-1} N=$ $N t_{0} t_{1} t_{2}^{-1} t_{1} N$. Therefore, $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{2}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{1} N$. That is, $[0 \overline{1} 21 \overline{2}]=$ [012 1].

Therefore, we conclude that there are three distinct double cosets of the form
$N t_{0} t_{1}^{-1} t_{2} t_{1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} N, N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} N$, and $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} N$.
23. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} N$.

Let $[0 \overline{1} 2 \overline{1}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} N$.
Note that $N^{(0 \overline{1} 2 \overline{1})} \geq N^{0 \overline{1} 2 \overline{1}}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{2} \overline{1})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} N\right|=\frac{|N|}{\left|N^{(\overline{0} \overline{2} \overline{1})}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} 2 \overline{1}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(012 \overline{1})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$,
$\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.
Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length five given by $w=t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{1} N=N t_{0} t_{1}^{-1} t_{2} e N=N t_{0} t_{1}^{-1} t_{2} N$ and $N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{1}^{-1} N$ $=N t_{0} t_{1}^{-1} t_{2} t_{1}^{-2} N=N t_{0} t_{1}^{-1} t_{2} t_{1} N$.
Moreover, with the help of MAGMA, we know that (02)(13) $t_{3} t_{1}^{-1} t_{2} t_{1}^{-1}=t_{0} t_{1}^{-1} t_{0} t_{2}^{-1}$.
Now, (0 2) (13) $t_{3} t_{1}^{-1} t_{2} t_{1}^{-1}=t_{0} t_{1}^{-1} t_{0} t_{2}^{-1} \Rightarrow(02)(13) t_{3} t_{1}^{-1} t_{2} t_{1}^{-1} t_{2}=t_{0} t_{1}^{-1} t_{0} t_{2}^{-1} t_{2} \Rightarrow$ (02) (13) $t_{3} t_{1}^{-1} t_{2} t_{1}^{-1} t_{2}=t_{0} t_{1}^{-1} t_{0} \Rightarrow(02)(13)\left[t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{2}\right]^{(03)}=t_{0} t_{1}^{-1} t_{0} \Rightarrow$ (02) (13) (03) $\left[t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{2}\right]\left(\begin{array}{ll}0 & 3\end{array}\right)=t_{0} t_{1}^{-1} t_{0} \Rightarrow\left(\begin{array}{lll}0 & 1 & 3\end{array}\right) t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{2}\left(\begin{array}{ll}0 & 3\end{array}\right)=t_{0} t_{1}^{-1} t_{0}$, which implies that $N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{2} N=N t_{0} t_{1}^{-1} t_{0} N$. That is, $[0 \overline{2} 2 \overline{1} 2]=[0 \overline{1} 0]$.

Similarly, with the help of MAGMA, we know that (02)(13) $t_{3} t_{1}^{-1} t_{2} t_{1}^{-1}=t_{0} t_{1}^{-1} t_{0} t_{2}^{-1}$. Now, (0 2) (1 3) $t_{3} t_{1}^{-1} t_{2} t_{1}^{-1}=t_{0} t_{1}^{-1} t_{0} t_{2}^{-1} \Rightarrow(02)(13) t_{3} t_{1}^{-1} t_{2} t_{1}^{-1} t_{2}=t_{0} t_{1}^{-1} t_{0} t_{2}^{-1} t_{2} \Rightarrow$ (0 2) (13) $t_{3} t_{1}^{-1} t_{2} t_{1}^{-1} t_{2}=t_{0} t_{1}^{-1} t_{0} \Rightarrow(02)(13)\left[t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{2}\right]^{(03)}=t_{0} t_{1}^{-1} t_{0} \Rightarrow$ (0 2) (13) (03) $\left[t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{2}\right](03)=t_{0} t_{1}^{-1} t_{0} \Rightarrow(0132) t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{2}(03)=t_{0} t_{1}^{-1} t_{0} \Rightarrow$ (013 2) $t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{2}(03) t_{2}=t_{0} t_{1}^{-1} t_{0} t_{2} \Rightarrow\left(\begin{array}{lll}0 & 1 & 3\end{array}\right) t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{2}\left(\begin{array}{ll}0 & 3\end{array}\right) t_{2}(03)(03)=$ $t_{0} t_{1}^{-1} t_{0} t_{2} \Rightarrow(0132) t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{2} t_{2}^{(03)}(03)=t_{0} t_{1}^{-1} t_{0} t_{2} \Rightarrow(0132) t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{2} t_{2}(03)$ $=t_{0} t_{1}^{-1} t_{0} t_{2} \Rightarrow\left(\begin{array}{ll}0 & 1\end{array} 32\right) t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{2}^{-1}(03)=t_{0} t_{1}^{-1} t_{0} t_{2}$, which implies that
$N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{0} t_{2} N$. That is, $[0 \overline{1} 2 \overline{1} \overline{2}]=[0 \overline{1} 02]$.
Therefore, we conclude that there are four distinct double cosets of the form
$N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0} N, N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}^{-1} N$, $N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{3} N$, and $N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{3}^{-1} N$.
24. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2} t_{3} N$.

Let [0123] denote the double coset $N t_{0} t_{1}^{-1} t_{2} t_{3} N$.
Note that $N^{(0 \overline{1} 23)} \geq N^{0 \overline{1} 23}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} 23)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2} t_{3} N\right|=\frac{|N|}{\left|N^{(0123)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [0123] has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} 23)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length five given by $w=t_{0} t_{1}^{-1} t_{2} t_{3} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2} e N=N t_{0} t_{1}^{-1} t_{2} N$ and $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{3} N=$ $N t_{0} t_{1}^{-1} t_{2} t_{3}^{2} N=N t_{0} t_{1}^{-1} t_{2} t_{3}^{-1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{0} N=$ $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} N, N t_{0} t_{1}^{-1} t_{2} t_{3} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} N$, and $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1}^{-1} N=$ $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} N$.
Finally, by relation (7.2), (01)(23) $t_{0} t_{1} t_{0}=t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow t_{2}^{-1}\left(\begin{array}{ll}0 & 1) \\ (23) & 3\end{array} t_{0} t_{1} t_{0}=t_{2}^{-1} t_{0}^{-1} t_{1}^{-1}\right.$
$\Rightarrow\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right)\left(\begin{array}{ll}0 & 1\end{array}\right)(23) t_{2}^{-1}(01)(23) t_{0} t_{1} t_{0}=t_{2}^{-1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right)\left(t_{2}^{-1}\right)^{(01)(23)} t_{0} t_{1} t_{0}=t_{2}^{-1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23) t_{3}^{-1} t_{0} t_{1} t_{0}=t_{2}^{-1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow t_{3}\left(\begin{array}{ll}01) & (23)\end{array} t_{3}^{-1} t_{0} t_{1} t_{0}=t_{3} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1}\right.$
$\Rightarrow(01)(23)(01)(23) t_{3}(01)(23) t_{3}^{-1} t_{0} t_{1} t_{0}=t_{3} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23) t_{3}^{(01)(23)} t_{3}^{-1} t_{0} t_{1} t_{0}=t_{3} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23) t_{2} t_{3}^{-1} t_{0} t_{1} t_{0}=t_{3} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1}$
$\left.\Rightarrow\left[\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{2} t_{3}^{-1} t_{0} t_{1} t_{0}\right]^{(0} 2113\right)=\left[t_{3} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1}\right]^{\left(\begin{array}{llll}2 & 1 & 1\end{array}\right)}$
$\Rightarrow(01)(23) t_{1} t_{0}^{-1} t_{2} t_{3} t_{2}=t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1}$
$\Rightarrow(01)(23)\left[t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}\right]^{(01)}=t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1}$
$\Rightarrow\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right)\left(\begin{array}{ll}0 & 1\end{array}\right)\left[t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}\right](01)=t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1}$
$\Rightarrow(23) t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}(01)=t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1}$, which implies that
$N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} N$. That is, $[0 \overline{1} 232]=[0 \overline{1} \overline{\overline{3}}]$.
Therefore, we conclude that there are two distinct double cosets of the form
$N t_{0} t_{1}^{-1} t_{2} t_{3} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} N$ and $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} N$.
25. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2} t_{3}^{-1} N$.

Let [$0 \overline{1} 2 \overline{3}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2} t_{3}^{-1} N$.
Now, with the help of MAGMA, we know that that the following right cosets, or single cosets, are equivalent: $N t_{0} t_{1}^{-1} t_{2} t_{3}^{-1}=N t_{1} t_{3}^{-1} t_{2} t_{0}^{-1}=N t_{3} t_{0}^{-1} t_{2} t_{1}^{-1}$.

That is, in terms of our short-hand notation,

$$
0 \overline{1} 2 \overline{3} \sim 1 \overline{3} 2 \overline{0} \sim 3 \overline{0} 2 \overline{1}
$$

By conjugating the equivalence relation above with the elements of S_{4}, we determine
that the following single cosets are equivalent in the double coset [$0 \overline{1} 2 \overline{3}]$:

$$
\begin{gathered}
0 \overline{1} 2 \overline{3} \sim 1 \overline{3} 2 \overline{0} \sim 30 \overline{0} 2 \overline{1}, \quad 1 \overline{0} 2 \overline{3} \sim 0 \overline{3} 2 \overline{1} \sim 3 \overline{1} 2 \overline{0}, \quad 2 \overline{1} 0 \overline{3} \sim 1 \overline{3} 0 \overline{2} \sim 3 \overline{2} 0 \overline{1}, \\
0 \overline{1} 3 \overline{2} \sim 1 \overline{2} 3 \overline{0} \sim 2 \overline{0} 3 \overline{1}, \quad 0 \overline{2} 1 \overline{3} \sim 2 \overline{3} 1 \overline{0} \sim 3 \overline{0} 1 \overline{2}, \quad 1 \overline{2} 0 \overline{3} \sim 2 \overline{3} 0 \overline{1} \sim 3 \overline{1} 0 \overline{2}, \\
2 \overline{0} 1 \overline{3} \sim 0 \overline{3} 1 \overline{2} \sim 3 \overline{2} 1 \overline{0}, \quad 2 \overline{1} 3 \overline{0} \sim 1 \overline{0} 3 \overline{2} \sim 0 \overline{2} 3 \overline{1}
\end{gathered}
$$

Since each of the twenty-four single cosets has three names, the double coset [$0 \overline{1} 2 \overline{3}]$ must have at most eight distinct single cosets.

An alternative approach for determining the order of the double coset is as follows: We note that $N^{(0 \overline{1} 2 \overline{3})} \geq N^{0 \overline{1} 2 \overline{3}}=\langle e\rangle$. In fact, with the help of MAGMA, we know that, $N\left(t_{0} t_{1}^{-1} t_{2} t_{3}^{-1}\right)^{\left(\begin{array}{ll}1 & 1\end{array}\right)}=N t_{1} t_{3}^{-1} t_{2} t_{0}^{-1}=N t_{0} t_{1}^{-1} t_{2} t_{3}^{-1}$ implies that ($\left.\begin{array}{lll}0 & 1 & 3\end{array}\right) \in$ $N^{(0 \overline{1} 2 \overline{3})}$. Therefore, $\left(\begin{array}{lll}0 & 1 & 3\end{array}\right) \in N^{(0 \overline{1} 2 \overline{3})}$, and so $N^{(0 \overline{1} 2 \overline{3})} \geq\left\langle\left(\begin{array}{lll}0 & 1 & 3\end{array}\right)\right\rangle$. Thus $\left|N^{(0 \overline{1} \overline{3})}\right| \geq$ $\left\lvert\,\left\langle\left(\begin{array}{lll}0 & 1 & 3)\end{array}\right\rangle\right|=3\right.$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2} t_{3}^{-1} N\right|=\frac{|N|}{\left|N^{(0 \hat{2} 23)}\right|} \leq \frac{24}{3}=8$.
Therefore, as we concluded earlier, the double coset $[0 \overline{1} 2 \overline{3}]$ has at most eight distinct single cosets.

Moreover, $N^{(0 \overline{1} 2 \overline{3})}$ has four orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0,1,3\},\{2\},\{\overline{0}, \overline{1}, \overline{3}\}$, and $\{\overline{2}\}$.

Therefore, there are at most four double cosets of the form $N w N$, where w is a word of length five given by $w=t_{0} t_{1}^{-1} t_{2} t_{3}^{-1} t_{i}^{ \pm 1}, i \in\{2,3\}: N t_{0} t_{1}^{-1} t_{2} t_{3}^{-1} t_{2} N$, $N t_{0} t_{1}^{-1} t_{2} t_{3}^{-1} t_{3} N, N t_{0} t_{1}^{-1} t_{2} t_{3}^{-1} t_{2}^{-1} N$, and $N t_{0} t_{1}^{-1} t_{2} t_{3}^{-1} t_{3}^{-1} N$.
But note that $N t_{0} t_{1}^{-1} t_{2} t_{3}^{-1} t_{3} N=N t_{0} t_{1}^{-1} t_{2} e N=N t_{0} t_{1}^{-1} t_{2} N$ and $N t_{0} t_{1}^{-1} t_{2} t_{3}^{-1} t_{3}^{-1} N$ $=N t_{0} t_{1}^{-1} t_{2} t_{3}^{-2} N=N t_{0} t_{1}^{-1} t_{2} t_{3} N$.

Moreover, with the help of MAGMA, we know that (01)(23) $t_{3}^{-1} t_{1} t_{3}^{-1} t_{2}=t_{0}^{-1} t_{1} t_{2}^{-1} t_{1}$.
Now, (01)(2 3) $t_{3}^{-1} t_{1} t_{3}^{-1} t_{2}=t_{0}^{-1} t_{1} t_{2}^{-1} t_{1}$
$\Rightarrow t_{3}(01)(23) t_{3}^{-1} t_{1} t_{3}^{-1} t_{2}=t_{3} t_{0}^{-1} t_{1} t_{2}^{-1} t_{1}$
$\Rightarrow(01)(23)(01)(23) t_{3}(01)(23) t_{3}^{-1} t_{1} t_{3}^{-1} t_{2}=t_{3} t_{0}^{-1} t_{1} t_{2}^{-1} t_{1}$
$\Rightarrow(01)(23) t_{3}^{(01)(23)} t_{3}^{-1} t_{1} t_{3}^{-1} t_{2}=t_{3} t_{0}^{-1} t_{1} t_{2}^{-1} t_{1}$
$\Rightarrow(01)(23) t_{2} t_{3}^{-1} t_{1} t_{3}^{-1} t_{2}=t_{3} t_{0}^{-1} t_{1} t_{2}^{-1} t_{1}$
$\Rightarrow\left[\left(\begin{array}{lll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{2} t_{3}^{-1} t_{1} t_{3}^{-1} t_{2}\right]^{\left(\begin{array}{lll}0 & 3 & 1\end{array}\right)}=\left[t_{3} t_{0}^{-1} t_{1} t_{2}^{-1} t_{1}\right]^{\left(\begin{array}{llll}0 & 3 & 1\end{array}\right)}$
$\Rightarrow(01)(23) t_{0} t_{1}^{-1} \cdot t_{2} t_{1}^{-1} t_{0}=t_{1} t_{3}^{-1} t_{2} t_{0}^{-1} t_{2}$
$\Rightarrow(01)(23)(01)(23) t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}=(01)(23) t_{1} t_{3}^{-1} t_{2} t_{0}^{-1} t_{2}$
$\Rightarrow t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}=(01)(23) t_{1} t_{3}^{-1} t_{2} t_{0}^{-1} t_{2}$
$\Rightarrow t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}=\left(\begin{array}{ll}0 & 1\end{array}\right)(23)\left[t_{0} t_{1}^{-1} t_{2} t_{3}^{-1} t_{2}\right]^{(013)}$
$\Rightarrow t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}=\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right)\left(\begin{array}{lll}0 & 3 & 1\end{array}\right) t_{0} t_{1}^{-1} t_{2} t_{3}^{-1} t_{2}\left(\begin{array}{ll}0 & 1\end{array}\right)$
$\Rightarrow t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}=\left(\begin{array}{ll}0 & 2\end{array}\right) t_{0} t_{1}^{-1} t_{2} t_{3}^{-1} t_{2}\left(\begin{array}{ll}0 & 1\end{array}\right)$, which implies that
$N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0} N=N t_{0} t_{1}^{-1} t_{2} t_{3}^{-1} t_{2} N$. That is, [0 $\left.\overline{1} 2 \overline{3} 2\right]=[0 \overline{1} 2 \overline{1} 0]$.
Therefore, we conclude that there is one distinct double coset of the form
$N t_{0} t_{1}^{-1} t_{2} t_{3}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1}^{-1} t_{2} t_{3}^{-1} t_{2}^{-1} N$.
26. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} N$.

Let [$0 \overline{1} \overline{2} 0]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} N$.
Note that $N^{(0 \overline{1} \overline{2} 0)} \geq N^{0 \overline{1} \overline{2} 0}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{2})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} N\right|=\frac{|N|}{\left|N^{(0 \overline{1} \overline{2})}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} \overline{2} 0]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{2} \overline{2})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length five given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} e N=N t_{0} t_{1}^{-1} t_{2}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{0} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} N$.

Moreover, with the help of MAGMA, we know that, $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{2} N=N t_{0} t_{1}^{-1} t_{2} t_{0} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} N$.

Therefore, we conclude that there are four distinct double cosets of the form
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} N$, $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} N$, and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3}^{-1} N$.
27. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} N$.

Let $[0 \overline{1} \overline{2} \overline{0}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} N$.
Note that $N^{(0 \overline{1} \overline{2} \overline{0})} \geq N^{0 \overline{1} \overline{1} \overline{0}}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{2} \overline{0})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4,
$\left|N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} N\right|=\frac{|N|}{\left|N^{(0120)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset $[0 \overline{1} \overline{2} \overline{0}]$ has at most twenty-four distinct single cosets.

Moreover, $N^{(0 \overline{1} \overline{2} \overline{0})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length five given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{0} N=N t_{0} t_{1}^{-1} t_{2}^{-1} e N=N t_{0} t_{1}^{-1} t_{2}^{-1} N$ and
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} N$.
Moreover, by relation (7.2), (01)(23) $t_{0} t_{1} t_{0}=t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow\left(\begin{array}{ll}0 & 1\end{array}\right)(23) t_{0} t_{1} t_{0} t_{0}^{-1}=t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}$
$\Rightarrow(01)(23) t_{0} t_{1}=t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}$.
$\Rightarrow t_{2}^{-1}(01)(23) t_{0} t_{1}=t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}$
$\Rightarrow(01)(23)(01)(23) t_{2}^{-1}(01)(23) t_{0} t_{1}=t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}$
$\Rightarrow(01)\left(\begin{array}{ll}2 & 3\end{array}\right)\left(t_{2}^{-1}\right)^{(01)(23)} t_{0} t_{1}=t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}$
$\Rightarrow(01)(23) t_{3}^{-1} t_{0} t_{1}=t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}$
$\Rightarrow t_{1}(01)(23) t_{3}^{-1} t_{0} t_{1}=t_{1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}$
$\Rightarrow(01)(23)(01)(23) t_{1}(01)(23) t_{3}^{-1} t_{0} t_{1}=t_{1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}$
$\Rightarrow(01)(23) t_{1}^{(01)(23)} t_{3}^{-1} t_{0} t_{1}=t_{1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}$
$\Rightarrow(01)(23) t_{0} t_{3}^{-1} t_{0} t_{1}=t_{1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}$
$\Rightarrow\left[\left(\begin{array}{lll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{0} t_{3}^{-1} t_{0} t_{1}\right]^{(021)}=\left[t_{1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1}\right]^{(021)}$
$\Rightarrow(02)(13) t_{2} t_{3}^{-1} t_{2} t_{0}=t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2}^{-1}$
$\Rightarrow(02)(13)\left[t_{0} t_{1}^{-1} t_{0} t_{2}\right]^{(02)(13)}=t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2}^{-1}$
$\Rightarrow(02)(13)(02)(13)\left[t_{0} t_{1}^{-1} t_{0} t_{2}\right](02)(13)=t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2}^{-1}$
$\Rightarrow e t_{0} t_{1}^{-1} t_{0} t_{2}(02)(13)=t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2}^{-1}$, which implies that
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{0} t_{2} N$. That is, $[0 \overline{1} \overline{2} \overline{0} \overline{2}]=[0 \overline{1} 02]$.
Therefore, we conclude that there are five distinct double cosets of the form
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} N$,
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} N$,
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} N$, and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} N$.
28. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} N$.

Let [$0 \overline{1} \overline{2} 1]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} N$.
Note that $N^{(0 \overline{1} \overline{2} 1)} \geq N^{0 \overline{1} \overline{2} 1}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{2} 1)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} N\right|=\frac{|N|}{\left|N^{(0 \overline{1} 1)}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [0 $\overline{1} \overline{2} 1]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} \overline{1} 1)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length five given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} e N=N t_{0} t_{1}^{-1} t_{2}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1}^{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{2} N=N t_{0} t_{1}^{-1} t_{0} t_{2} N$.
Therefore, we conclude that there are five distinct double cosets of the form
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} N$, $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0}^{-1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{2}^{-1} N$, and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} N$.
29. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} N$.

Let $[0 \overline{1} \overline{2} 3]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} N$.
Note that $N^{(0 \overline{1} \overline{2} 3)} \geq N^{0 \overline{1} \overline{2} 3}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{2} 3)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} N\right|=\frac{|N|}{\mid N^{(0 \overline{1} \overline{2} 3)}} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} \overline{2} 3]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} \overline{2} 3)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length five given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} e N=N t_{0} t_{1}^{-1} t_{2}^{-1} N$ and
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{3} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} N$.
Moreover, by relation (7.2), (01)(23) $t_{0} t_{1} t_{0}=t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow t_{1}\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{0} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23)(01)(23) t_{1}(01)(23) t_{0} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23) t_{1}^{(01)(23)} t_{0} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow\left(\begin{array}{ll}0 & 1\end{array}\right)(23) t_{0} t_{0} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23) t_{0}^{-1} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow t_{3}^{-1}(01)(23) t_{0}^{-1} t_{1} t_{0}=t_{3}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1}$

$$
\begin{aligned}
& \Rightarrow(01)(23)(01)(23) t_{3}^{-1}(01)(23) t_{0}^{-1} t_{1} t_{0}=t_{3}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1} \\
& \Rightarrow(01)(23)\left(t_{3}^{-1}\right)^{(01)(23)} t_{0}^{-1} t_{1} t_{0}=t_{3}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1} \\
& \Rightarrow(01)(23) t_{2}^{-1} t_{0}^{-1} t_{1} t_{0}=t_{3}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1} \\
& \Rightarrow t_{2}(01)(23) t_{2}^{-1} t_{0}^{-1} t_{1} t_{0}=t_{2} t_{3}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1} \\
& \Rightarrow(01)(23)(01)(23) t_{2}(01)(23) t_{2}^{-1} t_{0}^{-1} t_{1} t_{0}=t_{2} t_{3}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1} \\
& \Rightarrow(01)(23) t_{2}^{(01)(23)} t_{2}^{-1} t_{0}^{-1} t_{1} t_{0}=t_{2} t_{3}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1} \\
& \Rightarrow(01)(23) t_{3} t_{2}^{-1} t_{0}^{-1} t_{1} t_{0}=t_{2} t_{3}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1} \\
& \Rightarrow\left[\left(\begin{array}{lll}
0 & 1
\end{array}\right)\left(\begin{array}{ll}
2 & 3
\end{array}\right) t_{3} t_{2}^{-1} t_{0}^{-1} t_{1} t_{0}\right]^{\left(\begin{array}{llll}
(& 3 & 1
\end{array}\right)}=\left[t_{2} t_{3}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1}\right]^{\left(\begin{array}{llll}
(& 3 & 1 & 2
\end{array}\right)} \\
& \Rightarrow(01)(23) t_{1} t_{0}^{-1} t_{3}^{-1} t_{2} t_{3}=t_{0} t_{1}^{-1} t_{2} t_{3}^{-1} t_{2}^{-1} \\
& \Rightarrow(01)(23)\left[t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2}\right]^{(01)(23)}=t_{0} t_{1}^{-1} t_{2} t_{3}^{-1} t_{2}^{-1} \\
& \Rightarrow(01)(23)(01)(23)\left[t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2}\right](01)(23)=t_{0} t_{1}^{-1} t_{2} t_{3}^{-1} t_{2}^{-1} \\
& \Rightarrow e t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2}(01)(23)=t_{0} t_{1}^{-1} t_{2} t_{3}^{-1} t_{2}^{-1} \text {, which implies that } \\
& N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2} N=N t_{0} t_{1}^{-1} t_{2} t_{3}^{-1} t_{2}^{-1} N \text {. That is, }[0 \overline{1} \overline{2} 32]=[0 \overline{1} 2 \overline{3} \overline{2}] \text {. }
\end{aligned}
$$

Therefore, we conclude that there are five distinct double cosets of the form
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0}^{-1} N$,
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1}^{-1} N$, and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2}^{-1} N$.
30. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} N$.

Let $[0 \overline{1} \overline{2} \overline{3}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} N$.
Note that $N^{(0 \overline{1} \overline{2} \overline{3})} \geq N^{0 \overline{1} \overline{2} \overline{3}}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{2} \overline{3})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} N\right|=\frac{|N|}{\left|N^{(0123)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset $[0 \overline{1} \overline{2} \overline{3}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} \overline{2} \overline{3})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length five given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{3} N=N t_{0} t_{1}^{-1} t_{2}^{-1} e N=N t_{0} t_{1}^{-1} t_{2}^{-1} N$ and
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} N$.
Moreover, by relation (7.2), (01)(23) $t_{0} t_{1} t_{0}=t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23) t_{0} t_{1} t_{0} t_{0}=t_{0}^{-1} t_{1}^{-1} t_{0}$
$\Rightarrow(01)(23) t_{0} t_{1} t_{0}^{-1}=t_{0}^{-1} t_{1}^{-1} t_{0}$

$$
\begin{aligned}
& \Rightarrow t_{3}^{-1}\left(\begin{array}{ll}
0 & 1
\end{array}\right)(23) t_{0} t_{1} t_{0}^{-1}=t_{3}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0} \\
& \Rightarrow(01)(23)(01)(23) t_{3}^{-1}(01)(23) t_{0} t_{1} t_{0}^{-1}=t_{3}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0} \\
& \Rightarrow(01)(23)\left(t_{3}^{-1}\right)^{(01)(23)} t_{0} t_{1} t_{0}^{-1}=t_{3}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0} \\
& \Rightarrow(01)(23) t_{2}^{-1} t_{0} t_{1} t_{0}^{-1}=t_{3}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0} \\
& \Rightarrow t_{2}(01)(23) t_{2}^{-1} t_{0} t_{1} t_{0}^{-1}=t_{2} t_{3}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0} \\
& \Rightarrow(01)(23)(01)(23) t_{2}(01)(23) t_{2}^{-1} t_{0} t_{1} t_{0}^{-1}=t_{2} t_{3}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0} \\
& \Rightarrow(01)(23) t_{2}^{(01)(23)} t_{2}^{-1} t_{0} t_{1} t_{0}^{-1}=t_{2} t_{3}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0} \\
& \Rightarrow(01)(23) t_{3} t_{2}^{-1} t_{0} t_{1} t_{0}^{-1}=t_{2} t_{3}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0} \\
& \left.\left.\Rightarrow\left[\left(\begin{array}{lll}
0 & 1
\end{array}\right)\left(\begin{array}{ll}
2 & 3
\end{array}\right) t_{3} t_{2}^{-1} t_{0} t_{1} t_{0}^{-1}\right]^{(0} 2113\right)=\left[t_{2} t_{3}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}\right]^{(0} 2113\right) \\
& \Rightarrow(01)(23) t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1}=t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{2} \\
& \Rightarrow(01)(23)(01)(23) t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1}=(01)(23) t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{2} \\
& \Rightarrow t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1}=(01)(23) t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{2} \\
& \Rightarrow t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1}=\left(\begin{array}{ll}
0 & 1
\end{array}\right)(23)\left[t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{2}\right]^{(01)} \\
& \Rightarrow t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1}=\left(\begin{array}{ll}
0 & 1
\end{array}\right)\left(\begin{array}{ll}
2 & 3
\end{array}\right)\left(\begin{array}{ll}
0 & 1
\end{array}\right)\left[t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{2}\right](01) \\
& \Rightarrow t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1}=(23) t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{2}(01) \text {, which implies that } \\
& N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{2} N \text {. That is, }[0 \overline{1} 23 \overline{2}]=[0 \overline{1} \overline{3} \overline{3} 2] \text {. }
\end{aligned}
$$

Similarly, by relation (7.2), (01)(23) $t_{0} t_{1} t_{0}=t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23) t_{0} t_{1} t_{0} t_{0}=t_{0}^{-1} t_{1}^{-1} t_{0}$
$\Rightarrow(01)(23) t_{0} t_{1} t_{0}^{-1}=t_{0}^{-1} t_{1}^{-1} t_{0}$
$\Rightarrow t_{3}^{-1}(01)(23) t_{0} t_{1} t_{0}^{-1}=t_{3}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}$
$\Rightarrow(01)(23)(01)(23) t_{3}^{-1}(01)(23) t_{0} t_{1} t_{0}^{-1}=t_{3}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}$
$\Rightarrow(01)(23)\left(t_{3}^{-1}\right)^{(01)(23)} t_{0} t_{1} t_{0}^{-1}=t_{3}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}$
$\Rightarrow(01)(23) t_{2}^{-1} t_{0} t_{1} t_{0}^{-1}=t_{3}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}$
$\Rightarrow t_{2}(01)(23) t_{2}^{-1} t_{0} t_{1} t_{0}^{-1}=t_{2} t_{3}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}$
$\Rightarrow(01)(23)(01)(23) t_{2}(01)(23) t_{2}^{-1} t_{0} t_{1} t_{0}^{-1}=t_{2} t_{3}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}$
$\Rightarrow(01)(23) t_{2}^{(01)(23)} t_{2}^{-1} t_{0} t_{1} t_{0}^{-1}=t_{2} t_{3}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}$
$\Rightarrow(01)(23) t_{3} t_{2}^{-1} t_{0} t_{1} t_{0}^{-1}=t_{2} t_{3}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}$
$\Rightarrow\left[\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{3} t_{2}^{-1} t_{0} t_{1} t_{0}^{-1}\right]^{\left(\begin{array}{llll}2 & 1 & 3\end{array}\right)}=\left[t_{2} t_{3}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}\right]^{\left(\begin{array}{llll}0 & 2 & 1 & 3\end{array}\right)}$
$\Rightarrow(01)(23) t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1}=t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{2}$
$\Rightarrow(01)(23)(01)(23) t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1}=(01)(23) t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{2}$
$\Rightarrow t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1}=(01)(23) t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{2}$
$\Rightarrow t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1}=\left(\begin{array}{ll}0 & 1\end{array}\right)(23)\left[t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{2}\right]^{(01)}$
$\Rightarrow t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1}=\left(\begin{array}{ll}0 & 1\end{array}\right)(23)(01)\left[t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{2}\right](01)$
$\Rightarrow t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1}=(23) t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{2}\left(\begin{array}{ll}0 & 1\end{array}\right)$
$\Rightarrow t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{2}=(23) t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{2}(01) t_{2}$
$\Rightarrow t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{2}=\left(\begin{array}{ll}2 & 3\end{array}\right) t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{2}\left(\begin{array}{ll}0 & 1\end{array}\right) t_{2}\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}0 & 1\end{array}\right)$
$\Rightarrow t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{2}=(23) t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{2} t_{2}^{(01)}(01)$
$\Rightarrow t_{0} t_{1}^{-1} t_{2} t_{3}=(23) t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{2} t_{2}(01)$
$\Rightarrow t_{0} t_{1}^{-1} t_{2} t_{3}=(23) t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{2}^{-1}(01)$, which implies that
$N t_{0} t_{1}^{-1} t_{2} t_{3} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{2}^{-1} N$. That is, $[0 \overline{1} 23]=$
[0 $0 \overline{1} \overline{2} \overline{3} \overline{2}]$.
Therefore, we conclude that there are four distinct double cosets of the form
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} N$, $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} N$, and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} N$.
31. We next consider the double coset $N t_{0} t_{1}^{-1} t_{0} t_{1} N$.

Let [0101] denote the double coset $N t_{0} t_{1}^{-1} t_{0} t_{1} N$.
Note that $N^{(0 \overline{1} 01)} \geq N^{0 \overline{1} 01}=\langle(23)\rangle \cong S_{2}$. Thus $\left|N^{(01)}\right| \geq\left|S_{2}\right|=2$ and so, by
Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{0} t_{1} N\right|=\frac{|N|}{\left|N^{(0 \overline{101})}\right|} \leq \frac{24}{1}=12$.
Therefore, the double coset [0101] has at most twelve distinct single cosets.
Moreover, $N^{(0 \overline{1} 01)}$ has six orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2,3\},\{\overline{0}\},\{\overline{1}\}$, and $\{\overline{2}, \overline{3}\}$.

Therefore, there are at most six double cosets of the form $N w N$, where w is a word of length five given by $w=t_{0} t_{1}^{-1} t_{0} t_{1} t_{i}^{ \pm 1}, i \in\{0,1,2\}$.
But note that $N t_{0} t_{1}^{-1} t_{0} t_{1} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{0} e N=N t_{0} t_{1}^{-1} t_{0} N$ and $N t_{0} t_{1}^{-1} t_{0} t_{1} t_{1} N=$ $N t_{0} t_{1}^{-1} t_{0} t_{1}^{2} N=N t_{0} t_{1}^{-1} t_{0} t_{1}^{-1} N$.
Moreover, by relation (7.2), (01)(23) $t_{0} t_{1} t_{0}=t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow t_{0}^{-1}(01)(23) t_{0} t_{1} t_{0}=t_{0}^{-1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow t_{0}^{-1}(01)(23) t_{0} t_{1} t_{0}=t_{0} t_{1}^{-1}$
$\Rightarrow\left(\begin{array}{lll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right)\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{0}^{-1}(01)(23) t_{0} t_{1} t_{0}=t_{0} t_{1}^{-1}$
$\Rightarrow\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right)\left(t_{0}^{-1}\right)^{(01)(23)} t_{0} t_{1} t_{0}=t_{0} t_{1}^{-1}$
$\Rightarrow(01)(23) t_{1}^{-1} t_{0} t_{1} t_{0}=t_{0} t_{1}^{-1}$
$\Rightarrow t_{1}\left(\begin{array}{ll}1 & 1) \\ (23)\end{array} t_{1}^{-1} t_{0} t_{1} t_{0}=t_{1} t_{0} t_{1}^{-1}\right.$

$$
\left.\begin{array}{l}
\Rightarrow\left(\begin{array}{ll}
0 & 1
\end{array}\right)\left(\begin{array}{ll}
2 & 3
\end{array}\right)\left(\begin{array}{ll}
0 & 1
\end{array}\right)\left(\begin{array}{ll}
2 & 3
\end{array}\right) t_{1}\left(\begin{array}{ll}
0 & 1
\end{array}\right)\left(\begin{array}{ll}
2 & 3
\end{array}\right) t_{1}^{-1} t_{0} t_{1} t_{0}=t_{1} t_{0} t_{1}^{-1} \\
\left.\Rightarrow\left(\begin{array}{ll}
0 & 1
\end{array}\right)\left(\begin{array}{lll}
2 & 3
\end{array}\right) t_{1}^{(0} 1\right)\left(\begin{array}{ll}
2 & 3
\end{array} t_{1}^{-1} t_{0} t_{1} t_{0}=t_{1} t_{0} t_{1}^{-1}\right. \\
\Rightarrow\left(\begin{array}{lll}
0 & 1
\end{array}\right)\left(\begin{array}{lll}
2 & 3
\end{array}\right) t_{0} t_{1}^{-1} t_{0} t_{1} t_{0}=t_{1} t_{0} t_{1}^{-1} \\
\Rightarrow\left(\begin{array}{lll}
0 & 1
\end{array}\right)\left(\begin{array}{lll}
2 & 3
\end{array}\right)\left(\begin{array}{ll}
0 & 1
\end{array}\right)\left(\begin{array}{ll}
2 & 3
\end{array}\right) t_{0} t_{1}^{-1} t_{0} t_{1} t_{0}=\left(\begin{array}{ll}
0 & 1
\end{array}\right)\left(\begin{array}{ll}
2 & 3
\end{array}\right) t_{1} t_{0} t_{1}^{-1} \\
\Rightarrow t_{0} t_{1}^{-1} t_{0} t_{1} t_{0}=\left(\begin{array}{ll}
0 & 1
\end{array}\right)\left(\begin{array}{ll}
2 & 3
\end{array}\right) t_{1} t_{0} t_{1}^{-1} \\
\Rightarrow t_{0} t_{1}^{-1} t_{0} t_{1} t_{0}=\left(\begin{array}{lll}
0 & 1
\end{array}\right)\left(\begin{array}{ll}
2 & 3
\end{array}\right)\left[t_{0} t_{1} t_{0}^{-1}\right]^{0}
\end{array}\right) .
$$

Similarly, by relation (7.2), (01)(23) $t_{0} t_{1} t_{0}=t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow t_{0}^{-1}\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{0} t_{1} t_{0}=t_{0}^{-1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow t_{0}^{-1}(01)(23) t_{0} t_{1} t_{0}=t_{0} t_{1}^{-1}$
$\Rightarrow(01)(23)(01)(23) t_{0}^{-1}(01)(23) t_{0} t_{1} t_{0}=t_{0} t_{1}^{-1}$
$\Rightarrow(01)(23)\left(t_{0}^{-1}\right)^{(01)(23)} t_{0} t_{1} t_{0}=t_{0} t_{1}^{-1}$
$\Rightarrow(01)(23) t_{1}^{-1} t_{0} t_{1} t_{0}=t_{0} t_{1}^{-1}$
$\Rightarrow t_{1}\left(\begin{array}{l}0\end{array}\right)(23) t_{1}^{-1} t_{0} t_{1} t_{0}=t_{1} t_{0} t_{1}^{-1}$
$\Rightarrow(01)(23)(01)(23) t_{1}\left(\begin{array}{ll}0 & 1\end{array}\right)(23) t_{1}^{-1} t_{0} t_{1} t_{0}=t_{1} t_{0} t_{1}^{-1}$
$\Rightarrow\left(\begin{array}{ll}0 & 1) \\ (23)\end{array} t_{1}^{(01)(23)} t_{1}^{-1} t_{0} t_{1} t_{0}=t_{1} t_{0} t_{1}^{-1}\right.$
$\Rightarrow(01)(23) t_{0} t_{1}^{-1} t_{0} t_{1} t_{0}=t_{1} t_{0} t_{1}^{-1}$
$\Rightarrow(01)(23)(01)(23) t_{0} t_{1}^{-1} t_{0} t_{1} t_{0}=(01)(23) t_{1} t_{0} t_{1}^{-1}$
$\Rightarrow t_{0} t_{1}^{-1} t_{0} t_{1} t_{0}=(01)(23) t_{1} t_{0} t_{1}^{-1}$
$\left.\Rightarrow t_{0} t_{1}^{-1} t_{0} t_{1} t_{0}=\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right)\left[t_{0} t_{1} t_{0}^{-1}\right]^{(1)} 1\right)$
$\Rightarrow t_{0} t_{1}^{-1} t_{0} t_{1} t_{0}=\left(\begin{array}{ll}0 & 1\end{array}\right)(23)(01)\left[t_{0} t_{1} t_{0}^{-1}\right]\left(\begin{array}{ll}0 & 1)\end{array}\right.$
$\Rightarrow t_{0} t_{1}^{-1} t_{0} t_{1} t_{0}=(23) t_{0} t_{1} t_{0}^{-1}(01)$
$\Rightarrow t_{0} t_{1}^{-1} t_{0} t_{1} t_{0} t_{0}=(23) t_{0} t_{1} t_{0}^{-1}\left(\begin{array}{ll}0 & 1)\end{array} t_{0}\right.$
$\Rightarrow t_{0} t_{1}^{-1} t_{0} t_{1} t_{0}^{-1}=\binom{2}{3} t_{0} t_{1} t_{0}^{-1}(01) t_{0}$
$\Rightarrow t_{0} t_{1}^{-1} t_{0} t_{1} t_{0}^{-1}=(23) t_{0} t_{1} t_{0}^{-1}(01) t_{0}(01)(01)$
$\Rightarrow t_{0} t_{1}^{-1} t_{0} t_{1} t_{0}^{-1}=\left(\begin{array}{ll}2 & 3\end{array}\right) t_{0} t_{1} t_{0}^{-1} t_{0}^{(01)}(01)$
$\Rightarrow t_{0} t_{1}^{-1} t_{0} t_{1} t_{0}^{-1}=(23) t_{0} t_{1} t_{0}^{-1} t_{1}(01)$, which implies that
$N t_{0} t_{1}^{-1} t_{0} t_{1} t_{0}^{-1} \dot{N}=N t_{0} t_{1} t_{0}^{-1} t_{1} N$. That is, $[0 \overline{1} 01 \overline{0}]=[01 \overline{0} 1]$.
Similarly, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{0} t_{1} t_{2} N=N t_{0} t_{1} t_{2}^{-1} t_{1} N$ and $N t_{0} t_{1}^{-1} t_{0} t_{1} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{2}^{-1} N$.

Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1}^{-1} t_{0} t_{1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
32. We next consider the double coset $N t_{0} t_{1}^{-1} t_{0} t_{1}^{-1} N$.

Let $[0 \overline{1} 0 \overline{1}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{0} t_{1}^{-1} N$.
Now, with the help of MAGMA, we know that that the following right cosets, or single cosets, are equivalent: $N t_{0} t_{1}^{-1} t_{0} t_{1}^{-1}=N t_{0} t_{2}^{-1} t_{0} t_{2}^{-1}=N t_{0} t_{3}^{-1} t_{0} t_{3}^{-1}$.

That is, in terms of our short-hand notation,

$$
0 \overline{1} 0 \overline{1} \sim 0 \overline{2} 0 \overline{2} \sim 0 \overline{3} 0 \overline{3} .
$$

By conjugating the equivalence relation above with the elements of S_{4}, we determine that the following single cosets are equivalent in the double coset [0두이]:

$$
\begin{array}{ll}
0 \overline{1} 0 \overline{1} \sim 0 \overline{2} 0 \overline{2} \sim 0 \overline{3} 0 \overline{3}, & 1 \overline{0} 10 \overline{0} \sim 1 \overline{2} 1 \overline{2} \sim 1 \overline{3} 1 \overline{3}, \\
2 \overline{1} 2 \overline{1} \sim 2 \overline{0} 2 \overline{0} \sim 2 \overline{3} 2 \overline{3}, & 3 \overline{1} 3 \overline{1} \sim 3 \overline{2} 3 \overline{2} \sim 3 \overline{0} 3 \overline{0}
\end{array}
$$

Since each of the twelve single cosets has three names, the double coset [$0 \overline{1} 0 \overline{1}]$ must have at most four distinct single cosets.

An alternative approach for determining the order of the double coset is as follows: We note that $N^{(0 \overline{0} 0 \overline{1})} \geq N^{0 \overline{1} 0 \overline{1}}=\langle(23)\rangle$. In fact, with the help of MAGMA, we know that $N\left(t_{0} t_{1}^{-1} t_{0} t_{1}^{-1}\right)^{(12)}=N t_{0} t_{2}^{-1} t_{0} t_{2}^{-1}=N t_{0} t_{1}^{-1} t_{0} t_{1}^{-1}$ implies that (12) $\in N^{(0 \overline{0} \overline{1})}$, and $N\left(t_{0} t_{1}^{-1} t_{0} t_{1}^{-1}\right)^{(13)}=N t_{0} t_{3}^{-1} t_{0} t_{3}^{-1}=N t_{0} t_{1}^{-1} t_{0} t_{1}^{-1}$ implies that (13) $\in N^{(0 \overline{1} 0 \overline{1})}$. Therefore, (1-1), (13) 13) $N^{(0 \overline{1} 0 \overline{1})}$, and so $N^{(0 \overline{0} 0 \overline{1})} \geq\left\langle\left(\begin{array}{ll}1 & 2\end{array}\right),\left(\begin{array}{ll}1 & 3\end{array}\right)\right\rangle \cong S_{3}$. Thus $\left|N^{(0 \overline{1} \overline{0} \overline{1})}\right| \geq\left|S_{3}\right|=6$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{0} t_{1}^{-1} N\right|=\frac{|N|}{\left|N^{(0 \overline{1} \overline{1})}\right|} \leq \frac{24}{6}=4$.
Therefore, as we concluded earlier, the double coset [$0 \overline{1} 0 \overline{1}]$ has at most four distinct single cosets.

Moreover, $N^{(0 \overline{0} 0 \overline{1})}$ has four orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1,2,3\},\{\overline{0}\}$, and $\{\overline{1}, \overline{2}, \overline{3}\}$.

Therefore, there are at most four double cosets of the form $N w N$, where w is a word of length five given by $w=t_{0} t_{1}^{-1} t_{0} t_{1}^{-1} t_{i}^{ \pm 1}, i \in\{0,1\}$.

But note that $N t_{0} t_{1}^{-1} t_{0} t_{1}^{-1} t_{1} N=N t_{0} t_{1}^{-1} t_{0} e N=N t_{0} t_{1}^{-1} t_{0} N$ and $N t_{0} t_{1}^{-1} t_{0} t_{1}^{-1} t_{1}^{-1} N$ $=N t_{0} t_{1}^{-1} t_{0} t_{1}^{-2} N=N t_{0} t_{1}^{-1} t_{0} t_{1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{0} t_{1}^{-1} t_{0}^{-1} N=$ $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{1} N$.

Therefore, we conclude that there is one distinct double coset of the form
$N t_{0} t_{1}^{-1} t_{0} t_{1}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1}^{-1} t_{0} t_{1}^{-1} t_{0} N$.
33. We next consider the double coset $N t_{0} t_{1}^{-1} t_{0} t_{2} N$.

Let [$0 \overline{1} 02$] denote the double coset $N t_{0} t_{1}^{-1} t_{0} t_{2} N$.
Note that $N^{(0 \overline{1} 02)} \geq N^{0 \overline{1} 02}=\langle e\rangle$. Thus $\left|N^{(0 \overline{0} 02)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{0} t_{2} N\right|=\frac{|N|}{\left|N^{(0 \overline{1} 02)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [0102] has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{10} 02)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length five given by $w=t_{0} t_{1}^{-1} t_{0} t_{2} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1}^{-1} t_{0} t_{2} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{0} e N=N t_{0} t_{1}^{-1} t_{0} N$ and $N t_{0} t_{1}^{-1} t_{0} t_{2} t_{2} N=$ $N t_{0} t_{1}^{-1} t_{0} t_{2}^{2} N=N t_{0} t_{1}^{-1} t_{0} t_{2}^{-1} N$.

Moreover, by relation (7.2), (01)(23) $t_{0} t_{1} t_{0}=t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow t_{3}^{-1}(01)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{0} t_{1} t_{0}=t_{3}^{-1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23)(01)(23) t_{3}^{-1}(01)(23) t_{0} t_{1} t_{0}=t_{3}^{-1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23)\left(t_{3}^{-1}\right)^{(01)(23)} t_{0} t_{1} t_{0}=t_{3}^{-1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23) t_{2}^{-1} t_{0} t_{1} t_{0}=t_{3}^{-1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow t_{1}\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array} t_{2}^{-1} t_{0} t_{1} t_{0}=t_{1} t_{3}^{-1} t_{0}^{-1} t_{1}^{-1}\right.$
$\Rightarrow(01)(23)(01)(23) t_{1}\left(\begin{array}{ll}0 & 1\end{array}\right)(23) t_{2}^{-1} t_{0} t_{1} t_{0}=t_{1} t_{3}^{-1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23) t_{1}^{(01)(23)} t_{2}^{-1} t_{0} t_{1} t_{0}=t_{1} t_{3}^{-1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23) t_{0} t_{2}^{-1} t_{0} t_{1} t_{0}=t_{1} t_{3}^{-1} t_{0}^{-1} t_{1}^{-1}$

$\Rightarrow(02)(13) t_{2} t_{3}^{-1} t_{2} t_{0} t_{2}=t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1}$
$\Rightarrow\left(\begin{array}{ll}0 & 2\end{array}\right)\left(\begin{array}{ll}13\end{array}\right)\left[t_{0} t_{1}^{-1} t_{0} t_{2} t_{0}\right]^{(02)(13)}=t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1}$
$\Rightarrow(02)(13)(02)(13)\left[t_{0} t_{1}^{-1} t_{0} t_{2} t_{0}\right](02)(13)=t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1}$
$\Rightarrow e t_{0} t_{1}^{-1} t_{0} t_{2} t_{0}(02)(13)=t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1}$, which implies that
$N t_{0} t_{1}^{-1} t_{0} t_{2} t_{0} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} N$. That is, $[0 \overline{1} 020]=[0 \overline{1} \overline{2} \overline{0}]$.

Similarly, relation (7.2), (01)(23) $t_{0} t_{1} t_{0}=t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow t_{3}^{-1}(01)(23) t_{0} t_{1} t_{0}=t_{3}^{-1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow\left(\begin{array}{ll}0 & 1\end{array}\right)(23)(01)(23) t_{3}^{-1}(01)(23) t_{0} t_{1} t_{0}=t_{3}^{-1} t_{0}^{-1} t_{1}^{-1}$
$\left.\Rightarrow\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right)\left(t_{3}^{-1}\right)^{(01)(2)} 3\right) t_{0} t_{1} t_{0}=t_{3}^{-1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23) t_{2}^{-1} t_{0} t_{1} t_{0}=t_{3}^{-1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow t_{1}(01)(23) t_{2}^{-1} t_{0} t_{1} t_{0}=t_{1} t_{3}^{-1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23)(01)(23) t_{1}(01)(23) t_{2}^{-1} t_{0} t_{1} t_{0}=t_{1} t_{3}^{-1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23) t_{1}^{(01)(23)} t_{2}^{-1} t_{0} t_{1} t_{0}=\dot{t}_{1} t_{3}^{-1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23) t_{0} t_{2}^{-1} t_{0} t_{1} t_{0}=t_{1} t_{3}^{-1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow\left[\left(\begin{array}{lll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{0} t_{2}^{-1} t_{0} t_{1} t_{0}\right]^{\left(\begin{array}{lll}2 & 3 & 3\end{array}\right)}=\left[t_{1} t_{3}^{-1} t_{0}^{-1} t_{1}^{-1}\right]_{\left(\begin{array}{llll}0 & 2 & 3 & 1\end{array}\right)} \begin{array}{lll}(0)\end{array}$
$\Rightarrow(02)(13) t_{2} t_{3}^{-1} t_{2} t_{0} t_{2}=t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1}$
$\Rightarrow(02)(13)\left[t_{0} t_{1}^{-1} t_{0} t_{2} t_{0}\right]^{(02)(13)}=t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1}$
$\Rightarrow\left(\begin{array}{ll}0 & 2\end{array}\right)(13)(02)(13)\left[t_{0} t_{1}^{-1} t_{0} t_{2} t_{0}\right](02)(13)=t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1}$
$\Rightarrow e t_{0} t_{1}^{-1} t_{0} t_{2} t_{0}(02)(13)=t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1}$
$\Rightarrow e t_{0} t_{1}^{-1} t_{0} t_{2} t_{0}(02)(13) t_{2}=t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2}$
$\Rightarrow e t_{0} t_{1}^{-1} t_{0} t_{2} t_{0}(02)(13) t_{2}(02)(13)(02)(13)=t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2}$
$\Rightarrow e t_{0} t_{1}^{-1} t_{0} t_{2} t_{0} t_{2}^{(02)(13)}(02)(13)=t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2}$
$\Rightarrow e t_{0} t_{1}^{-1} t_{0} t_{2} t_{0} t_{0}(02)(13)=t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2}$
$\Rightarrow e t_{0} t_{1}^{-1} t_{0} t_{2} t_{0}^{-1}(02)(13)=t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2}$, which implies that
$N t_{0} t_{1}^{-1} t_{0} t_{2} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} N$. That is, $[0 \overline{1} 02 \overline{0}]=[0 \overline{1} \overline{2} \overline{2} 2]$.
Similarly, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{0} t_{2} t_{1} N=$
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{2}^{-1} N, N t_{0} t_{1}^{-1} t_{0} t_{2} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} N$, and $N t_{0} t_{1}^{-1} t_{0} t_{2} t_{3}^{-1} N=$
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2}^{-1} N$.
Therefore, we conclude that there is one distinct double coset of the form $N t_{0} t_{1}^{-1} t_{0} t_{2} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1}^{-1} t_{0} t_{2} t_{3} N$.
34. We next consider the double coset $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} N$.

Let $[0 \overline{1} \overline{0} 2]$ denote the double coset $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} N$.
Note that $N^{(0 \overline{1} \overline{0} 2)} \geq N^{0 \overline{1} \overline{0} 2}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{0} 2)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} N\right|=\frac{|N|}{\left|N^{(01 \bar{O})}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} \overline{0} 2]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{10} 2)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$,
$\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.
Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length five given by $w=t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{0}^{-1} e N=N t_{0} t_{1}^{-1} t_{0}^{-1} N$ and
$N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{2} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{2} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{0} N=$
$N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{3}^{-1} N, N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} N, N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{1} N=$ $N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} N$, and $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{1}^{-1} N=N t_{0}^{-1} t_{1} t_{2} t_{0}^{-1} N$.
Therefore, we conclude that there are two distinct double cosets of the form
$N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} N$ and $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} N$.
35. We next consider the double coset $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} N$.

Let [$0 \overline{1} \overline{0} \overline{2} \overline{2}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} N$.
Note that $N^{(0 \overline{1} \bar{o} \overline{2})} \geq N^{0 \overline{1} \overline{0} \overline{2}}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{0} \overline{2})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} N\right|=\frac{|N|}{\left|N^{(0 \overline{1} \overline{\overline{2}})}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} \overline{0} \overline{2}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} \overline{0} \overline{2})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length five given by $w=t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{2} N=N t_{0} t_{1}^{-1} t_{0}^{-1} e N=N t_{0} t_{1}^{-1} t_{0}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-2} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{0} N=$ $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} N$ and $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} N$.
Therefore, we conclude that there are four distinct double cosets of the form
$N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1} N, N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} N$, $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{3} N$, and $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} N$.
36. We next consider the double coset $N t_{0} t_{1} t_{2} t_{0} N$.

Let [0120] denote the double coset $N t_{0} t_{1} t_{2} t_{0} N$.

Note that $N^{(0120)} \geq N^{0120}=\langle e\rangle$. Thus $\left|N^{(0120)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1} t_{2} t_{0} N\right|=\frac{|N|}{\left|N^{(0120)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [0120] has at most twenty-four distinct single cosets.
Moreover, $N^{(0120)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length five given by $w=t_{0} t_{1} t_{2} t_{0} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1} t_{2} t_{0} t_{0}^{-1} N=N t_{0} t_{1} t_{2} e N^{\prime}=N t_{0} t_{1} t_{2} N$ and $N t_{0} t_{1} t_{2} t_{0} t_{0} N=$ $N t_{0} t_{1} t_{2} t_{0}^{2} N=N t_{0} t_{1} t_{2} t_{0}^{-1} N$.

Moreover, by relation (7.2), (01)(23) $t_{0} t_{1} t_{0}=t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow t_{2}(01)(23) t_{0} t_{1} t_{0}=t_{2} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23)(01)(23) t_{2}(01)(23) t_{0} t_{1} t_{0}=t_{2} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23) t_{2}^{(01)(23)} t_{0} t_{1} t_{0}=t_{2} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23) t_{3} t_{0} t_{1} t_{0}=t_{2} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow t_{0}(01)(23) t_{3} t_{0} t_{1} t_{0}=t_{0} t_{2} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23)(01)(23) t_{0}(01)(23) t_{3} t_{0} t_{1} t_{0}=t_{0} t_{2} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow\left(\begin{array}{ll}0 & 1)(23)\end{array} t_{0}^{(01)(23)} t_{3} t_{0} t_{1} t_{0}=t_{0} t_{2} t_{0}^{-1} t_{1}^{-1}\right.$
$\Rightarrow(01)(23) t_{1} t_{3} t_{0} t_{1} t_{0}=t_{0} t_{2} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow\left[\left(\begin{array}{ll}0 & 1)(23)\end{array} t_{1} t_{3} t_{0} t_{1} t_{0}\right]^{(12)}=\left[t_{0} t_{2} t_{0}^{-1} t_{1}^{-1}\right]^{(12)}\right.$
$\Rightarrow(02)(13) t_{2} t_{3} t_{0} t_{2} t_{0}=t_{0} t_{1} t_{0}^{-1} t_{2}^{-1}$
$\Rightarrow(02)(13)\left[t_{0} t_{1} t_{2} t_{0} t_{2}\right]^{(02)(13)}=t_{0} t_{1} t_{0}^{-1} t_{2}^{-1}$
$\Rightarrow(02)(13)(02)(13)\left[t_{0} t_{1} t_{2} t_{0} t_{2}\right](02)(13)=t_{0} t_{1} t_{0}^{-1} t_{2}^{-1}$
$\Rightarrow e t_{0} t_{1} t_{2} t_{0} t_{2}(02)(13)=t_{0} t_{1} t_{0}^{-1} t_{2}^{-1}$, which implies that
$N t_{0} t_{1} t_{2} t_{0} t_{2} N=N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} N$. That is, [01202] $=[01 \overline{0} \overline{2}]$.
Therefore, we conclude that there are five distinct double cosets of the form
$N t_{0} t_{1} t_{2} t_{0} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1} t_{2} t_{0} t_{1} N, N t_{0} t_{1} t_{2} t_{0} t_{1}^{-1} N$,
$N t_{0} t_{1} t_{2} t_{0} t_{2}^{-1} N, N t_{0} t_{1} t_{2} t_{0} t_{3} N$, and $N t_{0} t_{1} t_{2} t_{0} t_{3}^{-1} N$.
37. We next consider the double coset $N t_{0} t_{1} t_{2} t_{0}^{-1} N$.

Let [$012 \overline{0}]$ denote the double coset $N t_{0} t_{1} t_{2} t_{0}^{-1} N$.
Note that $N^{(012 \overline{0})} \geq N^{012 \overline{0}}=\langle e\rangle$. Thus $\left|N^{(012 \overline{0})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4,
$\left|N t_{0} t_{1} t_{2} t_{0}^{-1} N\right|=\frac{|N|}{\left|N^{(012 \overline{2})}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$012 \overline{0}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(012 \overline{0})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length five given by $w=t_{0} t_{1} t_{2} t_{0}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{0} N=N t_{0} t_{1} t_{2} e N=N t_{0} t_{1} t_{2} N$ and $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{0}^{-1} N=$ $N t_{0} t_{1} t_{2} t_{0}^{-2} N=N t_{0} t_{1} t_{2} t_{0} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{1}^{-1} N=$ $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} N$.

Therefore, we conclude that there are five distinct double cosets of the form
$N t_{0} t_{1} t_{2} t_{0}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1} t_{2} t_{0}^{-1} t_{1} N, N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2} N$, $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2}^{-1} N, N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3} N$, and $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} N$.
38. We next consider the double coset $N t_{0} t_{1} t_{2} t_{3} N$.

Let [0123] denote the double coset $N t_{0} t_{1} t_{2} t_{3} N$.
Note that $N^{(0123)} \geq N^{0123}=\langle e\rangle$. Thus $\left|N^{(0123)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1} t_{2} t_{3} N\right|=\frac{|N|}{\left|N^{(0123)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [0123] has at most twenty-four distinct single cosets.
Moreover, $N^{(0123)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length five given by $w=t_{0} t_{1} t_{2} t_{3} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}: N t_{0} t_{1} t_{2} t_{3} t_{0} N, N t_{0} t_{1} t_{2} t_{3} t_{1} N$, $N t_{0} t_{1} t_{2} t_{3} t_{2} N, N t_{0} t_{1} t_{2} t_{3} t_{3} N, N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} N, N t_{0} t_{1} t_{2} t_{3} t_{1}^{-1} N$,
$N t_{0} t_{1} t_{2} t_{3} t_{2}^{-1} N$, and $N t_{0} t_{1} t_{2} t_{3} t_{3}^{-1} N$.
But note that $N t_{0} t_{1} t_{2} t_{3} t_{3}^{-1} N=N t_{0} t_{1} t_{2} e N=N t_{0} t_{1} t_{2} N$ and $N t_{0} t_{1} t_{2} t_{3} t_{3} N=$ $N t_{0} t_{1} t_{2} t_{3}^{2} N=N t_{0} t_{1} t_{2} t_{3}^{-1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{2} t_{3} t_{1}^{-1} N=$ $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} N$.

And, similarly, by relation (7.2), (01)(23) $t_{0} t_{1} t_{0}=t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow t_{2}(01)(23) t_{0} t_{1} t_{0}=t_{2} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23)(01)(23) t_{2}(01)(23) t_{0} t_{1} t_{0}=t_{2} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{2}^{(01)(23)} t_{0} t_{1} t_{0}=t_{2} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23) t_{3} t_{0} t_{1} t_{0}=t_{2} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow t_{3}(01)(23) t_{3} t_{0} t_{1} t_{0}=t_{3} t_{2} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23)(01)(23) t_{3}\left(\begin{array}{ll}0 & 1)(23)\end{array} t_{3} t_{0} t_{1} t_{0}=t_{3} t_{2} t_{0}^{-1} t_{1}^{-1}\right.$
$\Rightarrow\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{3}^{(01)(23)} t_{3} t_{0} t_{1} t_{0}=t_{3} t_{2} t_{0}^{-1} t_{1}^{-1}$
$\left.\Rightarrow\left[\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{2} t_{3} t_{0} t_{1} t_{0}\right]^{(0} 2113\right)=\left[t_{3} t_{2} t_{0}^{-1} t_{1}^{-1}\right]^{\left(\begin{array}{llll}2 & 1 & 3\end{array}\right)}$
$\Rightarrow(01)(23) t_{1} t_{0} t_{2} t_{3} t_{2}=t_{0} t_{1} t_{2}^{-1} t_{3}^{-1}$
$\Rightarrow(01)(23)\left[t_{0} t_{1} t_{2} t_{3} t_{2}\right]^{(01)}=t_{0} t_{1} t_{2}^{-1} t_{3}^{-1}$

$\Rightarrow(23) t_{0} t_{1} t_{2} t_{3} t_{2}\left(\begin{array}{ll}0 & 1)\end{array}=t_{0} t_{1} t_{2}^{-1} t_{3}^{-1}\right.$, which implies that
$N t_{0} t_{1} t_{2} t_{3} t_{2} N=N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} N$. That is, [01232] $=[01 \overline{2} \overline{3}]$.
Therefore, we conclude that there are four distinct double cosets of the form
$N t_{0} t_{1} t_{2} t_{3} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1} t_{2} t_{3} t_{0} N, N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} N$,
$N t_{0} t_{1} t_{2} t_{3} t_{1} N$, and $N t_{0} t_{1} t_{2} t_{3} t_{2}^{-1} N$.
39. We next consider the double coset $N t_{0} t_{1} t_{2} t_{3}^{-1} N$.

Let [$012 \overline{3}]$ denote the double coset $N t_{0} t_{1} t_{2} t_{3}^{-1} N$.
Note that $N^{(012 \overline{3})} \geq N^{012 \overline{3}}=\langle e\rangle$. Thus $\left|N^{(012 \overline{3})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1} t_{2} t_{3}^{-1} N\right|=\frac{|N|}{\left|N^{(0123)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$012 \overline{3}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(012 \overline{3})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length five given by $w=t_{0} t_{1} t_{2} t_{3}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1} t_{2} t_{3}^{-1} t_{3} N=N t_{0} t_{1} t_{2} e N=N t_{0} t_{1} t_{2} N$ and $N t_{0} t_{1} t_{2} t_{3}^{-1} t_{3}^{-1} N=$ $N t_{0} t_{1} t_{2} t_{3}^{-2} N=N t_{0} t_{1} t_{2} t_{3} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{2} t_{3}^{-1} t_{1}^{-1} N=$ $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} N$.

Therefore, we conclude that there are five distinct double cosets of the form
$N t_{0} t_{1} t_{2} t_{3}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0} N, N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} N$, $N t_{0} t_{1} t_{2} t_{3}^{-1} t_{1} N, N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2} N$, and $N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2}^{-1} N$.
40. We next consider the double coset $N t_{0} t_{1} t_{2}^{-1} t_{0} N$.

Let [$012 \overline{2} 0]$ denote the double coset $N t_{0} t_{1} t_{2}^{-1} t_{0} N$.
Note that $N^{(01 \overline{2} 0)} \geq N^{01 \overline{2} 0}=\langle e\rangle$. Thus $\left|N^{(01 \overline{2} 0)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1} t_{2}^{-1} t_{0} N\right|=\frac{|N|}{\left|N^{(0120)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$01 \overline{2} 0]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(01 \overline{2} 0)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length five given by $w=t_{0} t_{1} t_{2}^{-1} t_{0} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1} t_{2}^{-1} t_{0} t_{0}^{-1} N=N t_{0} t_{1} t_{2}^{-1} e N=N t_{0} t_{1} t_{2}^{-1} N$ and $N t_{0} t_{1} t_{2}^{-1} t_{0} t_{0} N=$ $N t_{0} t_{1} t_{2}^{-1} t_{0}^{2} N=N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{2}^{-1} t_{0} t_{1}^{-1} N=$ $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{0}^{-1} N$.

And, similarly, by relation (7.2), (01)(23) $t_{0} t_{1} t_{0}=t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow t_{1}(01)(23) t_{0} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23)(01)(23) t_{1}(01)(23) t_{0} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23) t_{1}^{(01)(23)} t_{0} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23) t_{0} t_{0} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23) t_{0}^{-1} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow t_{2}(01)(23) t_{0}^{-1} t_{1} t_{0}=t_{2} t_{1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23)(01)(23) t_{2}(01)(23) t_{0}^{-1} t_{1} t_{0}=t_{2} t_{1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23) t_{2}^{(01)(23)} t_{0}^{-1} t_{1} t_{0}=t_{2} t_{1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23) t_{3} t_{0}^{-1} t_{1} t_{0}=t_{2} t_{1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow t_{0}(01)(23) t_{3} t_{0}^{-1} t_{1} t_{0}=t_{0} t_{2} t_{1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23)(01)(23) t_{0}(01)(23) t_{3} t_{0}^{-1} t_{1} t_{0}=t_{0} t_{2} t_{1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow\left(\begin{array}{ll}0 & 1)(23) t_{0}^{(01)(23)} t_{3} t_{0}^{1} t_{1} t_{0}=t_{0} t_{2} t_{1} t_{0}^{-1} t_{1}^{-1}, ~\end{array}\right.$
$\Rightarrow(01)(23) t_{1} t_{3} t_{0}^{-1} t_{1} t_{0}=t_{0} t_{2} t_{1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow\left[\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{1} t_{3} t_{0}^{-1} t_{1} t_{0}\right]^{(12)}=\left[t_{0} t_{2} t_{1} t_{0}^{-1} t_{1}^{-1}\right]^{(12)}$
$\Rightarrow(02)(13) t_{2} t_{3} t_{0}^{-1} t_{2} t_{0}=t_{0} t_{1} t_{2} t_{0}^{-1} t_{2}^{-1}$
$\Rightarrow(02)(13)\left[t_{0} t_{1} t_{2}^{-1} t_{0} t_{2}\right]^{(02)(13)}=t_{0} t_{1} t_{2} t_{0}^{-1} t_{2}^{-1}$
$\Rightarrow(02)(13)(02)(13)\left[t_{0} t_{1} t_{2}^{-1} t_{0} t_{2}\right](02)(13)=t_{0} t_{1} t_{2} t_{0}^{-1} t_{2}^{-1}$
$\Rightarrow e t_{0} t_{1} t_{2}^{-1} t_{0} t_{2}(02)(13)=t_{0} t_{1} t_{2} t_{0}^{-1} t_{2}^{-1}$, which implies that
$N t_{0} t_{1} t_{2}^{-1} t_{0} t_{2} N=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2}^{-1} N$. That is, $[01 \overline{2} 02]=[012 \overline{0} \overline{2}]$.
Finally, with the help of MAGMA, we know that $N t_{0} t_{1} t_{2}^{-1} t_{0} t_{2}^{-1} N=N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} N$ and $N t_{0} t_{1} t_{2}^{-1} t_{0} t_{3}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3}^{-1} N$.

Therefore, we conclude that there are two distinct double cosets of the form
$N t_{0} t_{1} t_{2}^{-1} t_{0} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1} t_{2}^{-1} t_{0} t_{1} N$ and $N t_{0} t_{1} t_{2}^{-1} t_{0} t_{3} N$.
41. We next consider the double coset $N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} N$.

Let [$01 \overline{2} \overline{0}]$ denote the double coset $N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} N$.
Note that $N^{(01 \overline{2} \overline{0})} \geq N^{01 \overline{2} \overline{0}}=\langle e\rangle$. Thus $\left|N^{(01 \overline{2} \overline{0})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} N\right|=\frac{|N|}{\left|N^{(0120)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$01 \overline{2} \overline{0}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(01 \overline{2} \overline{0})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length five given by $w=t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{0} N=N t_{0} t_{1} t_{2}^{-1} e N=N t_{0} t_{1} t_{2}^{-1} N$ and $N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{0}^{-1} N$ $=N t_{0} t_{1} t_{2}^{-1} t_{0}^{-2} N=N t_{0} t_{1} t_{2}^{-1} t_{0} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{2} N=$ $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{0}^{-1} N$ and $N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{2}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} N$.

Therefore, we conclude that there are four distinct double cosets of the form $N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1} N, N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} N$, $N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3} N$, and $N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} N$.
42. We next consider the double coset $N t_{0} t_{1} t_{2}^{-1} t_{1} N$.

Let [01 $\overline{2} 1]$ denote the double coset $N t_{0} t_{1} t_{2}^{-1} t_{1} N$.

Note that $N^{(01 \overline{2} 1)} \geq N^{01 \overline{2} 1}=\langle e\rangle$. Thus $\left|N^{(01 \overline{2} 1)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1} t_{2}^{-1} t_{1} N\right|=\frac{|N|}{\left|N^{(0121)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [01 $\overline{2} 1]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(01 \overline{1} 1)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length five given by $w=t_{0} t_{1} t_{2}^{-1} t_{1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1} t_{2}^{-1} t_{1} t_{1}^{-1} N=N t_{0} t_{1} t_{2}^{-1} e N=N t_{0} t_{1} t_{2}^{-1} N$ and $N t_{0} t_{1} t_{2}^{-1} t_{1} t_{1} N=$ $N t_{0} t_{1} t_{2}^{-1} t_{1}^{2} N=N t_{0} t_{1} t_{2}^{-1} t_{1}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{2}^{-1} t_{1} t_{2} N=$ $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{2}^{-1} N$ and $N t_{0} t_{1} t_{2}^{-1} t_{1} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{0} t_{1} N$.

Therefore, we conclude that there are four distinct double cosets of the form
$N t_{0} t_{1} t_{2}^{-1} t_{1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1} t_{2}^{-1} t_{1} t_{0} N, N t_{0} t_{1} t_{2}^{-1} t_{1} t_{0}^{-1} N$, $N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3} N$, and $N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3}^{-1} N$.
43. We next consider the double coset $N t_{0} t_{1} t_{2}^{-1} t_{3} N$.

Let [$01 \overline{2} 3]$ denote the double coset $N t_{0} t_{1} t_{2}^{-1} t_{3} N$.
Note that $N^{(01 \overline{2} 3)} \geq N^{01 \overline{1} 3}=\langle e\rangle$. Thus $\left|N^{(01 \overline{2} 3)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1} t_{2}^{-1} t_{3} N\right|=\frac{|N|}{\left|N^{(012)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [012 3] has at most twenty-four distinct single cosets.
Moreover, $N^{(01 \overline{2} 3)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length five given by $w=t_{0} t_{1} t_{2}^{-1} t_{3} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1} t_{2}^{-1} t_{3} t_{3}^{-1} N=N t_{0} t_{1} t_{2}^{-1} e N=N t_{0} t_{1} t_{2}^{-1} N$ and $N t_{0} t_{1} t_{2}^{-1} t_{3} t_{3} N=$ $N t_{0} t_{1} t_{2}^{-1} t_{3}^{2} N=N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{2}^{-1} t_{3} t_{0}^{-1} N=$ $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3}^{-1} N, N t_{0} t_{1} t_{2}^{-1} t_{3} t_{1}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{0}^{-1} N, N t_{0} t_{1} t_{2}^{-1} t_{3} t_{2} N=$ $N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2}^{-1} N$, and $N t_{0} t_{1} t_{2}^{-1} t_{3} t_{2}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{1} t_{0}^{-1} N$.

Therefore, we conclude that there are two distinct double cosets of the form
$N t_{0} t_{1} t_{2}^{-1} t_{3} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1} t_{2}^{-1} t_{3} t_{0} N$ and $N t_{0} t_{1} t_{2}^{-1} t_{3} t_{1} N$.
44. We next consider the double coset $N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} N$.

Let $[01 \overline{2} \overline{3}]$ denote the double coset $N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} N$.
Note that $N^{(01 \overline{2} \overline{3})} \geq N^{01 \overline{2} \overline{3}}=\langle e\rangle$. Thus $\left|N^{(01 \overline{2} \overline{3})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} N\right|=\frac{|N|}{\left|N^{(012 \overline{3})}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset $[01 \overline{2} \overline{3}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(01 \overline{2} \overline{3})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length five given by $w=t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{3} N=N t_{0} t_{1} t_{2}^{-1} e N=N t_{0} t_{1} t_{2}^{-1} N$ and $N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{3}^{-1} N$ $=N t_{0} t_{1} t_{2}^{-1} t_{3}^{-2} N=N t_{0} t_{1} t_{2}^{-1} t_{3} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} N=$ $N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} N$.

And, similarly, by relation (7.2), (01)(23) $t_{0} t_{1} t_{0}=t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23) t_{0} t_{1} t_{0} t_{0}=t_{0}^{-1} t_{1}^{-1} t_{0}$
$\Rightarrow(01)(23) t_{0} t_{1} t_{0}^{-1}=t_{0}^{-1} t_{1}^{-1} t_{0}$
$\Rightarrow t_{2}\left(\begin{array}{ll}1 & 1\end{array}\right)(23) t_{0} t_{1} t_{0}^{-1}=t_{2} t_{0}^{-1} t_{1}^{-1} t_{0}$
$\Rightarrow(01)(23)(01)(23) t_{2}(01)(23) t_{0} t_{1} t_{0}^{-1}=t_{2} t_{0}^{-1} t_{1}^{-1} t_{0}$
$\Rightarrow(01)(23) t_{2}^{(01)(23)} t_{0} t_{1} t_{0}^{-1}=t_{2} t_{0}^{-1} t_{1}^{-1} t_{0}$
$\Rightarrow(01)(23) t_{3} t_{0} t_{1} t_{0}^{-1}=t_{2} t_{0}^{-1} t_{1}^{-1} t_{0}$
$\Rightarrow t_{3}(01)(23) t_{3} t_{0} t_{1} t_{0}^{-1}=t_{3} t_{2} t_{0}^{-1} t_{1}^{-1} t_{0}$
$\Rightarrow(01)(23)(01)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{3}\left(\begin{array}{ll}0 & 1\end{array}\right)(23) t_{3} t_{0} t_{1} t_{0}^{-1}=t_{3} t_{2} t_{0}^{-1} t_{1}^{-1} t_{0}$
$\Rightarrow(01)(23) t_{3}^{(01)(23)} t_{3} t_{0} t_{1} t_{0}^{-1}=t_{3} t_{2} t_{0}^{-1} t_{1}^{-1} t_{0}$
$\Rightarrow(01)(23) t_{2} t_{3} t_{0} t_{1} t_{0}^{-1}=t_{3} t_{2} t_{0}^{-1} t_{1}^{-1} t_{0}$
$\left.\left.\Rightarrow\left[\left(\begin{array}{lll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{2} t_{3} t_{0} t_{1} t_{0}^{-1}\right]^{(0} 2 l l l l\right), ~ t_{3} t_{2} t_{0}^{-1} t_{1}^{-1} t_{0}\right]^{\left(\begin{array}{llll}2 & 2 & 1 & 3\end{array}\right)}$
$\Rightarrow(01)(23) t_{1} t_{0} t_{2} t_{3} t_{2}^{-1}=t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{2}$
$\Rightarrow(01)(23)\left[t_{0} t_{1} t_{2} t_{3} t_{2}^{-1}\right]^{(01)}=t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{2}$
$\Rightarrow\left(\begin{array}{ll}0 & 1\end{array}\right)(23)(01)\left[t_{0} t_{1} t_{2} t_{3} t_{2}^{-1}\right](01)=t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{2}$
$\Rightarrow(23) t_{0} t_{1} t_{2} t_{3} t_{2}^{-1}(01)=t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{2}$, which implies that
$N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{2} N=N t_{0} t_{1} t_{2} t_{3} t_{2}^{-1} N$. That is, $[01 \overline{2} \overline{3} 2]=[0123 \overline{2}]$.
Finally, by relation (7.2), (01)(23) $t_{0} t_{1} t_{0}=t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23) t_{0} t_{1} t_{0} t_{0}=t_{0}^{-1} t_{1}^{-1} t_{0}$
$\Rightarrow(01)(23) t_{0} t_{1} t_{0}^{-1}=t_{0}^{-1} t_{1}^{-1} t_{0}$
$\Rightarrow t_{2}(01)(23) t_{0} t_{1} t_{0}^{-1}=t_{2} t_{0}^{-1} t_{1}^{-1} t_{0}$
$\Rightarrow(01)(23)(01)(23) t_{2}(01)(23) t_{0} t_{1} t_{0}^{-1}=t_{2} t_{0}^{-1} t_{1}^{-1} t_{0}$
$\Rightarrow(01)(23) t_{2}^{(01)(23)} t_{0} t_{1} t_{0}^{-1}=t_{2} t_{0}^{-1} t_{1}^{-1} t_{0}$
$\Rightarrow(01)(23) t_{3} t_{0} t_{1} t_{0}^{-1}=t_{2} t_{0}^{-1} t_{1}^{-1} t_{0}$
$\Rightarrow t_{3}\left(\begin{array}{ll}01\end{array}\right)(23) t_{3} t_{0} t_{1} t_{0}^{-1}=t_{3} t_{2} t_{0}^{-1} t_{1}^{-1} t_{0}$
$\Rightarrow(01)\left(\begin{array}{ll}2 & 3\end{array}\right)(01)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{3}\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{3} t_{0} t_{1} t_{0}^{-1}=t_{3} t_{2} t_{0}^{-1} t_{1}^{-1} t_{0}$
$\Rightarrow(01)(23) t_{3}^{(01)(23)} t_{3} t_{0} t_{1} t_{0}^{-1}=t_{3} t_{2} t_{0}^{-1} t_{1}^{-1} t_{0}$
$\Rightarrow(01)(23) t_{2} t_{3} t_{0} t_{1} t_{0}^{-1}=t_{3} t_{2} t_{0}^{-1} t_{1}^{-1} t_{0}$
$\Rightarrow\left[(01)\left(\begin{array}{ll}2 & 3)\end{array} t_{2} t_{3} t_{0} t_{1} t_{0}^{-1}\right]^{(0213)}=\left[t_{3} t_{2} t_{0}^{-1} t_{1}^{-1} t_{0}\right]^{(0213}\right)$
$\Rightarrow(01)(23) t_{1} t_{0} t_{2} t_{3} t_{2}^{-1}=t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{2}$
$\Rightarrow(01)(23)\left[t_{0} t_{1} t_{2} t_{3} t_{2}^{-1}\right]^{(01)}=t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{2}$
$\Rightarrow(01)(23)(01)\left[t_{0} t_{1} t_{2} t_{3} t_{2}^{-1}\right](01)=t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{2}$
$\Rightarrow(23) t_{0} t_{1} t_{2} t_{3} t_{2}^{-1}(01)=t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{2}$
$\Rightarrow(23) t_{0} t_{1} t_{2} t_{3} t_{2}^{-1}(01) t_{2}=t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{2} t_{2}$
$\Rightarrow\left(\begin{array}{ll}2 & 3\end{array}\right) t_{0} t_{1} t_{2} t_{3} t_{2}^{-1}(01) t_{2}\left(\begin{array}{ll}(01)\end{array}\right)=t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{2}^{-1}$
$\Rightarrow(23) t_{0} t_{1} t_{2} t_{3} t_{2}^{-1} t_{2}^{(01)}(01)=t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{2}^{-1}$
$\Rightarrow(23) t_{0} t_{1} t_{2} t_{3} t_{2}^{-1} t_{2}(01)=t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{2}^{-1}$
$\Rightarrow(23) t_{0} t_{1} t_{2} t_{3}(01)=t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{2}^{-1}$, which implies that
$N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{2}^{-1} N=N t_{0} t_{1} t_{2} t_{3} N$. That is, $[01 \overline{2} \overline{3} \overline{2}]=[0123]$.
Therefore, we conclude that there are three distinct double cosets of the form $N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{0} N, N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1} N$, and $N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} N$.
45. We next consider the double coset $N t_{0} t_{1} t_{0}^{-1} t_{1} N$.

Let [$010 \overline{0} 1]$ denote the double coset $N t_{0} t_{1} t_{0}^{-1} t_{1} N$.
Note that $N^{(01 \overline{0} 1)} \geq N^{010 \overline{1} 1}=\langle(23)\rangle \cong S_{2}$. Thus $\left|N^{(01)}\right| \geq\left|S_{2}\right|=2$ and so, by Lemma 1.4, $\left|N t_{0} t_{1} t_{0}^{-1} t_{1} N\right|=\frac{|N|}{\left|N^{(0101)}\right|} \leq \frac{24}{1}=12$.

Therefore, the double coset [0101] has at most twelve distinct single cosets.
Moreover, $N^{(01 \overline{0} 1)}$ has six orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2,3\},\{\overline{0}\},\{\overline{1}\}$, and $\{\overline{2}, \overline{3}\}$.

Therefore, there are at most six double cosets of the form $N w N$, where w is a word of length five given by $w=t_{0} t_{1} t_{0}^{-1} t_{1} t_{i}^{ \pm 1}, i \in\{0,1,2\}$.
But note that $N t_{0} t_{1} t_{0}^{-1} t_{1} t_{1}^{-1} N=N t_{0} t_{1} t_{0}^{-1} e N=N t_{0} t_{1} t_{0}^{-1} N$ and $N t_{0} t_{1} t_{0}^{-1} t_{1} t_{1} N=$ $N t_{0} t_{1} t_{0}^{-1} t_{1}^{2} N=N t_{0} t_{1} t_{0}^{-1} t_{1}^{-1} N$.
Moreover, by relation (7.2), (01)(23) $t_{0} t_{1} t_{0}=t_{0}^{-1} t_{1}^{-1}$

$$
\begin{aligned}
& \Rightarrow t_{1}(01)(23) t_{0} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{1}^{-1} \\
& \Rightarrow(01)(23)(01)(23) t_{1}(01)(23) t_{0} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{1}^{-1} \\
& \Rightarrow(01)(23) t_{1}^{(01)(23)} t_{0} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{1}^{-1} \\
& \Rightarrow(01)(23) t_{0} t_{0} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{1}^{-1} \\
& \Rightarrow(01)(23) t_{0}^{-1} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{1}^{-1} \\
& \Rightarrow t_{0}^{-1}(01)(23) t_{0}^{-1} t_{1} t_{0}=t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1} \\
& \Rightarrow(01)(23)(01)(23) t_{0}^{-1}(01)(23) t_{0}^{-1} t_{1} t_{0}=t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1} \\
& \Rightarrow(01)(23)\left(t_{0}^{-1}\right)^{(01)(23)} t_{0}^{-1} t_{1} t_{0}=t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1} \\
& \Rightarrow(01)(23) t_{1}^{-1} t_{0}^{-1} t_{1} t_{0}=t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1} \text {. }
\end{aligned}
$$

Similarly, by relation (7.2), (01)(23) $t_{0} t_{1} t_{0}=t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23) t_{0} t_{1} t_{0} t_{1}^{-1}=t_{0}^{-1} t_{1}^{-1} t^{-1}$
$\Rightarrow\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{0} t_{1} t_{0} t_{1}^{-1}=t_{0}^{-1} t_{1}$
$\Rightarrow(01)(23) t_{0} t_{1} t_{0} t_{1}^{-1} t_{0}=t_{0}^{-1} t_{1} t_{0}$
$\Rightarrow t_{1}^{-1}(01)(23) t_{0} t_{1} t_{0} t_{1}^{-1} t_{0}=t_{1}^{-1} t_{0}^{-1} t_{1} t_{0}$
$\Rightarrow(01)(23)(01)(23) t_{1}^{-1}(01)(23) t_{0} t_{1} t_{0} t_{1}^{-1} t_{0}=t_{1}^{-1} t_{0}^{-1} t_{1} t_{0}$
$\Rightarrow(01)(23)\left(t_{1}^{-1}\right)^{(01)(23)} t_{0} t_{1} t_{0} t_{1}^{-1} t_{0}=t_{1}^{-1} t_{0}^{-1} t_{1} t_{0}$
$\Rightarrow(01)(23) t_{0}^{-1} t_{0} t_{1} t_{0} t_{1}^{-1} t_{0}=t_{1}^{-1} t_{0}^{-1} t_{1} t_{0}$
$\Rightarrow(01)(23) t_{1} t_{0} t_{1}^{-1} t_{0}=t_{1}^{-1} t_{0}^{-1} t_{1} t_{0}$
$\Rightarrow(01)(23)(01)(23) t_{1} t_{0} t_{1}^{-1} t_{0}=(01)(23) t_{1}^{-1} t_{0}^{-1} t_{1} t_{0}$
$\Rightarrow t_{1} t_{0} t_{1}^{-1} t_{0}=(01)(23) t_{1}^{-1} t_{0}^{-1} t_{1} t_{0}$.
Since (01) (23) $t_{1}^{-1} t_{0}^{-1} t_{1} t_{0}=t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1}$
and $t_{1} t_{0} t_{1}^{-1} t_{0}=\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{1}^{-1} t_{0}^{-1} t_{1} t_{0}$,
we conclude that $t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1}=t_{1} t_{0} t_{1}^{-1} t_{0}$.
Now, $t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1}=t_{1} t_{0} t_{1}^{-1} t_{0}$
$\Rightarrow t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1}=\left[t_{0} t_{1} t_{0}^{-1} t_{1}\right]^{(01)}$
$\Rightarrow t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1}=\left(\begin{array}{lll}0 & 1\end{array}\right) t_{0} t_{1} t_{0}^{-1} t_{1}\left(\begin{array}{ll}0 & 1\end{array}\right)$
$\Rightarrow t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1} t_{1}=\left(\begin{array}{ll}0 & 1)\end{array} t_{0} t_{1} t_{0}^{-1} t_{1}\left(\begin{array}{ll}0 & 1)\end{array} t_{1}\right.\right.$
$\Rightarrow t_{0}^{-1} t_{1} t_{0}^{-1}=\left(\begin{array}{ll}0 & 1\end{array}\right) t_{0} t_{1} t_{0}^{-1} t_{1}\left(\begin{array}{ll}0 & 1\end{array}\right) t_{1}\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}0 & 1\end{array}\right)$
$\Rightarrow t_{0}^{-1} t_{1} t_{0}^{-1}=\left(\begin{array}{ll}0 & 1) t_{0} t_{1} t_{0}^{-1} t_{1} t_{1}^{(01)}(01)\end{array}\right.$
$\Rightarrow t_{0}^{-1} t_{1} t_{0}^{-1}=(01) t_{0} t_{1} t_{0}^{-1} t_{1} t_{0}(01)$, which implies that
$N t_{0}^{-1} t_{1} t_{0}^{-1} N=N t_{0} t_{1} t_{0}^{-1} t_{1} t_{0} N$.
Therefore, $N t_{0}^{-1} t_{1} t_{0}^{-1} N=N t_{0} t_{1} t_{0}^{-1} t_{1} t_{0} N$. That is, $[01 \overline{0} 10]=[\overline{0} 1 \overline{0}]$.
Similarly, by relation (7.2), (01)(23) $t_{0} t_{1} t_{0}=t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow t_{1}\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{0} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23)(01)(23) t_{1}(01)(23) t_{0} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23) t_{1}^{(01)(23)} t_{0} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23) t_{0} t_{0} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23) t_{0}^{-1} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow t_{0}^{-1}(01)(23) t_{0}^{-1} t_{1} t_{0}=t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23)(01)(23) t_{0}^{-1}(01)(23) t_{0}^{-1} t_{1} t_{0}=t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23)\left(t_{0}^{-1}\right){ }^{(01)(23)} t_{0}^{-1} t_{1} t_{0}=t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23) t_{1}^{-1} t_{0}^{-1} t_{1} t_{0}=t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1}$.
Similarly, by relation (7.2), (01)(23) $t_{0} t_{1} t_{0}=t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23) t_{0} t_{1} t_{0} t_{1}^{-1}=t_{0}^{-1} t_{1}^{-1} t^{-1}$
$\Rightarrow(01)(23) t_{0} t_{1} t_{0} t_{1}^{-1}=t_{0}^{-1} t_{1}$
$\Rightarrow(01)(23) t_{0} t_{1} t_{0} t_{1}^{-1} t_{0}=t_{0}^{-1} t_{1} t_{0}$
$\Rightarrow t_{1}^{-1}(01)(23) t_{0} t_{1} t_{0} t_{1}^{-1} t_{0}=t_{1}^{-1} t_{0}^{-1} t_{1} t_{0}$
$\Rightarrow\left(\begin{array}{ll}0 & 1)(23)(01)(23)\end{array} t_{1}^{-1}(01)(23) t_{0} t_{1} t_{0} t_{1}^{-1} t_{0}=t_{1}^{-1} t_{0}^{-1} t_{1} t_{0}\right.$
$\Rightarrow(01)(23)\left(t_{1}^{-1}\right)^{(01)(23)} t_{0} t_{1} t_{0} t_{1}^{-1} t_{0}=t_{1}^{-1} t_{0}^{-1} t_{1} t_{0}$
$\Rightarrow(01)(23) t_{0}^{-1} t_{0} t_{1} t_{0} t_{1}^{-1} t_{0}=t_{1}^{-1} t_{0}^{-1} t_{1} t_{0}$
$\Rightarrow(01)(23) t_{1} t_{0} t_{1}^{-1} t_{0}=t_{1}^{-1} t_{0}^{-1} t_{1} t_{0}$
$\Rightarrow(01)(23)(01)(23) t_{1} t_{0} t_{1}^{-1} t_{0}=(01)(23) t_{1}^{-1} t_{0}^{-1} t_{1} t_{0}$
$\Rightarrow t_{1} t_{0} t_{1}^{-1} t_{0}=\left(\begin{array}{ll}0 & 1\end{array}\right)(23) t_{1}^{-1} t_{0}^{-1} t_{1} t_{0}$.
Since (01)(2 3) $t_{1}^{-1} t_{0}^{-1} t_{1} t_{0}=t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1}$
and $t_{1} t_{0} t_{1}^{-1} t_{0}=(01)(23) t_{1}^{-1} t_{0}^{-1} t_{1} t_{0}$,
we conclude that $t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1}=t_{1} t_{0} t_{1}^{-1} t_{0}$.

Now, $t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1}=t_{1} t_{0} t_{1}^{-1} t_{0}$
$\Rightarrow t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1}=\left[t_{0} t_{1} t_{0}^{-1} t_{1}\right]^{(01)}$
$\Rightarrow t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1}=\left(\begin{array}{ll}0 & 1\end{array}\right) t_{0} t_{1} t_{0}^{-1} t_{1}\left(\begin{array}{ll}0 & 1\end{array}\right)$
$\Rightarrow t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1} t_{1}=\left(\begin{array}{ll}0 & 1\end{array}\right) t_{0} t_{1} t_{0}^{-1} t_{1}\left(\begin{array}{ll}0 & 1\end{array}\right) t_{1}$
$\Rightarrow t_{0}^{-1} t_{1} t_{0}^{-1}=\left(\begin{array}{ll}0 & 1)\end{array} t_{0} t_{1} t_{0}^{-1} t_{1}\left(\begin{array}{ll}0 & 1\end{array}\right) t_{1}\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}0 & 1\end{array}\right)\right.$
$\Rightarrow t_{0}^{-1} t_{1} t_{0}^{-1}=\left(\begin{array}{ll}0 & 1\end{array}\right) t_{0} t_{1} t_{0}^{-1} t_{1} t_{1}^{(01)}\left(\begin{array}{ll}0 & 1\end{array}\right)$
$\Rightarrow t_{0}^{-1} t_{1} t_{0}^{-1}=\left(\begin{array}{ll}0 & 1) t_{0} t_{1} t_{0}^{-1} t_{1} t_{0}(01)\end{array}\right.$
$\Rightarrow t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}=(01) t_{0} t_{1} t_{0}^{-1} t_{1} t_{0}(01) t_{1}$
$\Rightarrow t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}=\left(\begin{array}{ll}0 & 1)\end{array} t_{0} t_{1} t_{0}^{-1} t_{1} t_{0}\left(\begin{array}{ll}0 & 1)\end{array} t_{1}\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}0 & 1\end{array}\right)\right.\right.$
$\Rightarrow t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}=\left(\begin{array}{ll}0 & 1\end{array}\right) t_{0} t_{1} t_{0}^{-1} t_{1} t_{0} t_{1}^{(01)}\left(\begin{array}{ll}0 & 1\end{array}\right)$
$\Rightarrow t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}=\left(\begin{array}{ll}0 & 1\end{array}\right) t_{0} t_{1} t_{0}^{-1} t_{1} t_{0} t_{0}\left(\begin{array}{ll}0 & 1\end{array}\right)$
$\Rightarrow t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}=\left(\begin{array}{ll}0 & 1\end{array}\right) t_{0} t_{1} t_{0}^{-1} t_{1} t_{0}^{-1}(01)$, which implies that
$N t_{0}^{-1} t_{1} t_{0}^{-1} t_{1} N=N t_{0} t_{1} t_{0}^{-1} t_{1} t_{0}^{-1} N$.
Therefore, $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{1} N=N t_{0} t_{1} t_{0}^{-1} t_{1} t_{0}^{-1} N$. That is, $[\overline{0} 1 \overline{0} 1]=[01 \overline{0} 1 \overline{0}]$.
Finally, with the help of MAGMA, we know that $N t_{0} t_{1} t_{0}^{-1} t_{1} t_{2} N=$
$N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2} N$ and $N t_{0} t_{1} t_{0}^{1} t_{1} t_{2}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} N$.
Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0} t_{1} t_{0}^{-1} t_{1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
46. We next consider the double coset $N t_{0} t_{1} t_{0}^{-1} t_{2} N$.

Let [010 2] denote the double coset $N t_{0} t_{1} t_{0}^{-1} t_{2} N$.
Note that $N^{(01 \overline{0} 2)} \geq N^{010 \overline{0} 2}=\langle e\rangle$. Thus $\left|N^{(01 \overline{0} 2)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1} t_{0}^{-1} t_{2} N\right|=\frac{|N|}{\left|N^{(0102)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$010 \overline{0} 2$] has at most twenty-four distinct single cosets.
Moreover, $N^{(01 \overline{0} 2)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length five given by $w=t_{0} t_{1} t_{0}^{-1} t_{2} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1} t_{0}^{-1} t_{2} t_{2}^{-1} N=N t_{0} t_{1} t_{0}^{-1} e N=N t_{0} t_{1} t_{0}^{-1} N$ and $N t_{0} t_{1} t_{0}^{-1} t_{2} t_{2} N=$ $N t_{0} t_{1} t_{0}^{-1} t_{2}^{2} N=N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{0}^{-1} t_{2} t_{0} N=$
$N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} N, N t_{0} t_{1} t_{0}^{-1} t_{2} t_{0}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3}^{-1} N$, and $N t_{0} t_{1} t_{0}^{-1} t_{2} t_{1}^{-1} N=$ $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{0}^{-1} N$.
Therefore, we conclude that there are three distinct double cosets of the form
$N t_{0} t_{1} t_{0}^{-1} t_{2} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1} t_{0}^{-1} t_{2} t_{1} N, N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3} N$, and $N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3}^{-1} N$.
47. We next consider the double coset $N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} N$.

Let [$01 \overline{0} \overline{2}]$ denote the double coset $N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} N$.
Note that $N^{(01 \overline{0} \overline{2})} \geq N^{01 \overline{0} \overline{2}}=\langle e\rangle$. Thus $\left|N^{(01 \overline{0} \overline{2})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} N\right|=\frac{|N|}{\left|N^{(010 \overline{2})}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$010 \overline{2} \overline{2}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(01 \overline{0} \overline{2})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length five given by $w=t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{2} N=N t_{0} t_{1} t_{0}^{-1} e N=N t_{0} t_{1} t_{0}^{-1} N$ and $N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{2}^{-1} N$ $=N t_{0} t_{1} t_{0}^{-1} t_{2}^{-2} N=N t_{0} t_{1} t_{0}^{-1} t_{2} N$.

Moreover, by relation (7.2), (01)(23) $t_{0} t_{1} t_{0}=t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23) t_{0} t_{1} t_{0} t_{0}=t_{0}^{-1} t_{1}^{-1} t_{0}$
$\Rightarrow(01)(23) t_{0} t_{1} t_{0}^{-1}=t_{0}^{-1} t_{1}^{-1} t_{0}$
$\Rightarrow t_{2}(01)(23) t_{0} t_{1} t_{0}^{-1}=t_{2} t_{0}^{-1} t_{1}^{-1} t_{0}$
$\Rightarrow(01)(23)(01)(23) t_{2}(01)(23) t_{0} t_{1} t_{0}^{-1}=t_{2} t_{0}^{-1} t_{1}^{-1} t_{0}$
$\Rightarrow\left(\begin{array}{ll}0 & 1)(23)\end{array} t_{2}^{(01)(23)} t_{0} t_{1} t_{0}^{-1}=t_{2} t_{0}^{-1} t_{1}^{-1} t_{0}\right.$
$\Rightarrow(01)(23) t_{3} t_{0} t_{1} t_{0}^{-1}=t_{2} t_{0}^{-1} t_{1}^{-1} t_{0}$
$\Rightarrow t_{0}(01)(23) t_{3} t_{0} t_{1} t_{0}^{-1}=t_{0} t_{2} t_{0}^{-1} t_{1}^{-1} t_{0}$
$\Rightarrow(01)(23)(01)(23) t_{0}(01)(23) t_{3} t_{0} t_{1} t_{0}^{-1}=t_{0} t_{2} t_{0}^{-1} t_{1}^{-1} t_{0}$
$\Rightarrow\left(\begin{array}{ll}0 & 1) \\ (23) & t_{0}^{(01)(23)} t_{3} t_{0} t_{1} t_{0}^{-1}=t_{0} t_{2} t_{0}^{-1} t_{1}^{-1} t_{0}, ~\end{array}\right.$
$\Rightarrow(01)(23) t_{1} t_{3} t_{0} t_{1} t_{0}^{-1}=t_{0} t_{2} t_{0}^{-1} t_{1}^{-1} t_{0}$
$\Rightarrow\left[\left(\begin{array}{ll}0 & 1) \\ (23) & \left.3) t_{1} t_{3} t_{0} t_{1} t_{0}^{-1}\right]^{(12)}=\left[t_{0} t_{2} t_{0}^{-1} t_{1}^{-1} t_{0}\right]^{(12)}, ~\end{array}\right.\right.$
$\Rightarrow(02)(13) t_{2} t_{3} t_{0} t_{2} t_{0}^{-1}=t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{0}$
$\Rightarrow\left(\begin{array}{ll}0 & 2\end{array}\right)\left(\begin{array}{ll}13\end{array}\right)\left[t_{0} t_{1} t_{2} t_{0} t_{2}^{-1}\right]^{(02)(13)}=t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{0}$
$\Rightarrow\left(\begin{array}{lll}0 & 2\end{array}\right)(13)(02)(13)\left[t_{0} t_{1} t_{2} t_{0} t_{2}^{-1}\right](02)(13)=t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{0}$
$\Rightarrow e t_{0} t_{1} t_{2} t_{0} t_{2}^{-1}(02)(13)=t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{0}$, which implies that
$N t_{0} t_{1} t_{2} t_{0} t_{2}^{-1} N=N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{0} N$. That is, $[01 \overline{0} \overline{2} 0]=[0120 \overline{2}]$.
Similarly, by relation (7.2), (01)(23) $t_{0} t_{1} t_{0}=t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23) t_{0} t_{1} t_{0} t_{0}=t_{0}^{-1} t_{1}^{-1} t_{0}$
$\Rightarrow(01)(23) t_{0} t_{1} t_{0}^{-1}=t_{0}^{-1} t_{1}^{-1} t_{0}$
$\Rightarrow t_{2}\left(\begin{array}{ll}0 & 1) \\ \text { (2 } & 3)\end{array} t_{0} t_{1} t_{0}^{-1}=t_{2} t_{0}^{-1} t_{1}^{-1} t_{0}\right.$
$\Rightarrow(01)(23)(01)(23) t_{2}(01)(23) t_{0} t_{1} t_{0}^{-1}=t_{2} t_{0}^{-1} t_{1}^{-1} t_{0}$
$\Rightarrow(01)(23) t_{2}^{(01)(23)} t_{0} t_{1} t_{0}^{-1}=t_{2} t_{0}^{-1} t_{1}^{-1} t_{0}$
$\Rightarrow(01)(23) t_{3} t_{0} t_{1} t_{0}^{-1}=t_{2} t_{0}^{-1} t_{1}^{-1} t_{0}$
$\Rightarrow t_{0}(01)(23) t_{3} t_{0} t_{1} t_{0}^{-1}=t_{0} t_{2} t_{0}^{-1} t_{1}^{-1} t_{0}$
$\Rightarrow(01)(23)(01)(23) t_{0}(01)(23) t_{3} t_{0} t_{1} t_{0}^{-1}=t_{0} t_{2} t_{0}^{-1} t_{1}^{-1} t_{0}$
$\Rightarrow(01)(23) t_{0}^{(01)(23)} t_{3} t_{0} t_{1} t_{0}^{-1}=t_{0} t_{2} t_{0}^{-1} t_{1}^{-1} t_{0}$
$\Rightarrow(01)(23) t_{1} t_{3} t_{0} t_{1} t_{0}^{-1}=t_{0} t_{2} t_{0}^{-1} t_{1}^{-1} t_{0}$
$\Rightarrow\left[\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{1} t_{3} t_{0} t_{1} t_{0}^{-1}\right]^{(12)}=\left[t_{0} t_{2} t_{0}^{-1} t_{1}^{-1} t_{0}\right]^{(12)}$
$\Rightarrow(02)(13) t_{2} t_{3} t_{0} t_{2} t_{0}^{-1}=t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{0}$
$\Rightarrow(02)(13)\left[t_{0} t_{1} t_{2} t_{0} t_{2}^{-1}\right]^{(02)(13)}=t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{0}$
$\Rightarrow\left(\begin{array}{ll}0 & 2\end{array}\right)\left(\begin{array}{ll}1 & 3\end{array}\right)\left(\begin{array}{ll}0 & 2\end{array}\right)(13)\left[t_{0} t_{1} t_{2} t_{0} t_{2}^{-1}\right](02)(13)=t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{0}$
$\Rightarrow e t_{0} t_{1} t_{2} t_{0} t_{2}^{-1}(02)(13)=t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{0}$
$\Rightarrow e t_{0} t_{1} t_{2} t_{0} t_{2}^{-1}(02)(13) t_{0}=t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{0} t_{0}$
$\Rightarrow e t_{0} t_{1} t_{2} t_{0} t_{2}^{-1}(02)(13) t_{0}(02)(13)(02)(13)=t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{0}^{-1}$
$\Rightarrow e t_{0} t_{1} t_{2} t_{0} t_{2}^{-1} t_{0}^{(02)(13)}(02)(13)=t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{0}^{-1}$
$\Rightarrow e t_{0} t_{1} t_{2} t_{0} t_{2}^{-1} t_{2}(02)(13)=t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{0}^{-1}$
$\Rightarrow e t_{0} t_{1} t_{2} t_{0}(02)(13)=t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{0}^{-1}$, which imples that
$N t_{0} t_{1} t_{2} t_{0} N=N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{0}^{-1} N$. That is, $[01 \overline{0} \overline{2} \overline{0}]=[0120]$.
Finally, with the help of MAGMA, we know that $N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{1} N=N t_{0} t_{1} t_{2}^{-1} t_{0} N$ and $N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} N=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2}^{-1} N$.

Therefore, we conclude that there are two distinct double cosets of the form
$N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3} N$ and $N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} N$.
48. We next consider the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{0}^{-1} N$.

Let $[\overline{1} \overline{1} 2 \overline{0}]$ denote the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{0}^{-1} N$.

Note that $N^{(\overline{0} \overline{1} 2 \overline{0})} \geq N^{\overline{0} \overline{1} 2 \overline{0}}=\langle e\rangle$. Thus $\left|N^{(\overline{0} \overline{1} 2 \overline{0})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0}^{-1} t_{1}^{-1} t_{2} t_{0}^{-1} N\right|=\frac{|N|}{\left|N^{(0120)}\right|} \leq \frac{24}{\bar{I}}=24$.
Therefore, the double coset $[\overline{0} \overline{1} 2 \overline{0}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{\overline{0}} \overline{1} 2 \overline{0})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length five given by $w=t_{0}^{-1} t_{1}^{-1} t_{2} t_{0}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{0}^{-1} t_{0} N=N t_{0}^{-1} t_{1}^{-1} t_{2} e N=N t_{0}^{-1} t_{1}^{-1} t_{2} N$ and
$N t_{0}^{-1} t_{1}^{-1} t_{2} t_{0}^{-1} t_{0}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{0}^{-2} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{0} N$.
Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{0}^{-1} t_{1} N=$
$N t_{0} t_{1} t_{2}^{-1} t_{0} N, N t_{0}^{-1} t_{1}^{-1} t_{2} t_{0}^{-1} t_{1}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{0} t_{1} N, N t_{0}^{-1} t_{1}^{-1} t_{2} t_{0}^{-1} t_{2} N=$
$N t_{0} t_{1} t_{0}^{-1} t_{2} N, N t_{0}^{-1} t_{1}^{-1} t_{2} t_{0}^{-1} t_{2}^{-1} N=N t_{0} t_{1} t_{0}^{-1} t_{2} t_{1} N, N t_{0}^{-1} t_{1}^{-1} t_{2} t_{0}^{-1} t_{3} N=$
$N t_{0} t_{1} t_{2}^{-1} t_{3} N$, and $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{0}^{-1} t_{3}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{3} t_{1} N$.
Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0}^{-1} t_{1}^{-1} t_{2} t_{0}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
49. We next consider the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} N$.

Let [$\overline{0} \overline{1} 21]$ denote the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} N$.
Note that $N^{(\overline{0} \overline{1} 21)} \geq N^{\overline{0} \overline{1} 21}=\langle e\rangle$. Thus $\left|N^{(\overline{0} \overline{1} 21)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} N\right|=\frac{|N|}{\left|N^{(\overline{1} \overline{121})}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$\overline{0} \overline{1} 21]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{0} \overline{1} 21)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length five given by $w=t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{1}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} e N=N t_{0}^{-1} t_{1}^{-1} t_{2} N$ and $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{2} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{2} N=N t_{0}^{-1} t_{1} t_{2}^{-1} N$ and $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{2}^{-1} N=N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2} N$.

Therefore, we conclude that there are four distinct double cosets of the form $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0} N, N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} N$, $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3} N$ and $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} N$.
50. We next consider the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} N$.

Let $[\overline{0} \overline{1} 2 \overline{1}]$ denote the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} N$.
Note that $N^{(\overline{0} \overline{1} 2 \overline{1})} \geq N^{\overline{0} \overline{1} 2 \overline{1}}=\langle e\rangle$. Thus $\left|N^{(\overline{0} \overline{1} 2 \overline{1})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} N\right|=\frac{|N|}{\left|N^{(\overline{0} \overline{1} \overline{1})}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$\overline{0} \overline{1} 2 \overline{1}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{0} \overline{1} 2 \overline{1})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length five given by $w=t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} t_{1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} e N=N t_{0}^{-1} t_{1}^{-1} t_{2} N$ and
$N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} t_{1}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-2} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} t_{2} N=$
$N t_{0} t_{1} t_{0}^{-1} t_{1} N, N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} t_{2}^{-1} N=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2} N, N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} t_{3} N=$
$N t_{0} t_{1} t_{2} t_{0} t_{2}^{-1} N$, and $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} t_{3}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3} N$.
Therefore, we conclude that there are two distinct double cosets of the form
$N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0} N$ and $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}^{-1} N$.
51. We next consider the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} N$.

Let [$\overline{0} \overline{1} 23]$ denote the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} N$.
Note that $N^{(\overline{0} \overline{1} 23)} \geq N^{\overline{0} \overline{1} 23}=\langle e\rangle$. Thus $\left|N^{(\overline{0} \overline{1} 23)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} N\right|=\frac{|N|}{\left|N^{(\overline{0} \overline{123})}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$\overline{0} \overline{1} 23]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{0} \overline{1} 23)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length five given by $w=t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{3}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} e N=N t_{0}^{-1} t_{1}^{-1} t_{2} N$ and $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{3} N$ $=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3}^{2} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{1}^{-1} N=$ $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} N$.

And, similarly, by relation (7.2), (01)(23) $t_{0} t_{1} t_{0}=t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow t_{2}^{-1}(01)(23) t_{0} t_{1} t_{0}=t_{2}^{-1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23)(01)(23) t_{2}^{-1}(01)(23) t_{0} t_{1} t_{0}=t_{2}^{-1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23)\left(t_{2}^{-1}\right)^{(01)(23)} t_{0} t_{1} t_{0}=t_{2}^{-1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23) t_{3}^{-1} t_{0} t_{1} t_{0}=t_{2}^{-1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow t_{3}^{-1}(01)(23) t_{3}^{-1} t_{0} t_{1} t_{0}=t_{3}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23)(01)(23) t_{3}^{-1}(01)(23) t_{3}^{-1} t_{0} t_{1} t_{0}=t_{3}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23)\left(t_{3}^{-1}\right)^{(01)(23)} t_{3}^{-1} t_{0} t_{1} t_{0}=t_{3}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23) t_{2}^{-1} t_{3}^{-1} t_{0} t_{1} t_{0}=t_{3}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow\left[(01)\left(\begin{array}{ll}2 & 3\end{array} t_{2}^{-1} t_{3}^{-1} t_{0} t_{1} t_{0}\right]^{\left(\begin{array}{lll}2 & 1 & 1\end{array}\right)}=\left[t_{3}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1}\right]^{\left(\begin{array}{lll}(1) & 1\end{array}\right)}\right.$
$\Rightarrow(01)(23) t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} t_{2}=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1}$
$\Rightarrow\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right)\left[t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{2}\right]^{(01)}=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1}$
$\Rightarrow\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right)\left(\begin{array}{ll}0 & 1\end{array}\right) t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{2}\left(\begin{array}{ll}0 & 1\end{array}\right)=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1}$
$\Rightarrow(23) t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{2}(01)=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1}$, which implies that
$N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{2} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} N$. That is, $[\overline{0} \overline{1} 232]=[\overline{0} \overline{1} \overline{2} \overline{3}]$.
Therefore, we conclude that there are four distinct double cosets of the form
$N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0} N, N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0}^{-1} N$,
$N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{1} N$ and $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} N$.
52. We next consider the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3}^{-1} N$.

Let $[\overline{0} \overline{1} 2 \overline{3}]$ denote the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3}^{-1} N$.
Note that $N^{(\overline{0} \overline{1} 2 \overline{3})} \geq N^{\overline{0} \overline{1} 2 \overline{3}}=\langle e\rangle$. Thus $\left|N^{(\overline{0} \overline{1} 2 \overline{3})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3}^{-1} N\right|=\frac{|N|}{\left|N^{(\overline{\overline{1} 23})}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset $[\overline{0} \overline{1} 2 \overline{3}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{0} \overline{1} 2 \overline{3})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a
word of length five given by $w=t_{0}^{-1} t_{1}^{-1} t_{2} t_{3}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3}^{-1} t_{3} N=N t_{0}^{-1} t_{1}^{-1} t_{2} e N=N t_{0}^{-1} t_{1}^{-1} t_{2} N$ and
$N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3}^{-1} t_{3}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3}^{-2} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} N$.
Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3}^{-1} t_{0} N=$
$N t_{0} t_{1} t_{2}^{-1} t_{3} N, N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3}^{-1} t_{0}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{3} t_{0} N, N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3}^{-1} t_{1} N=$
$N t_{0} t_{1} t_{2}^{-1} t_{0} N, N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3}^{-1} t_{1}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{0} t_{3} N, N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3}^{-1} t_{2} N=$ $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0} N$ and $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3}^{-1} t_{2}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2} N$.

Therefore, we conclude that there are no distinct double cosets of the form $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
53. We next consider the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} N$.

Let [$\overline{0} \overline{2} \overline{2} 0]$ denote the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} N$.
Note that $N^{(\overline{\overline{1}} \overline{2} 0)} \geq N^{\overline{0} \overline{1} \overline{1} 0}=\langle e\rangle$. Thus $\left|N^{(\overline{0} \overline{1} \overline{1} 0)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} N\right|=\frac{|N|}{\left|N^{(\overline{0} \overline{120})}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$\overline{0} \overline{1} \overline{2} 0]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{0} \overline{1} \overline{2} 0)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length five given by $w=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{0}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} e N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} N$ and $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{0} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{2} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{2} N=$
$N t_{0} t_{1} t_{0}^{-1} t_{2} t_{1} N$ and $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{2}^{-1} N$.
Therefore, we conclude that there are four distinct double cosets of the form
$N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} N$, $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} N$, and $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3}^{-1} N$.
54. We next consider the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} N$.

Let [$\overline{0} \overline{1} \overline{2} \overline{0}]$ denote the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} N$.
Note that $N^{(\overline{0} \overline{1} \overline{2} \overline{0})} \geq N^{\overline{0} \overline{1} \overline{2} \overline{0}}=\langle e\rangle$. Thus $\left|N^{(\overline{0} \overline{1} \overline{2} \overline{0})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} N\right|=\frac{|N|}{\left|N^{(01 \overline{2} \overline{2})}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [$\overline{0} \overline{1} \overline{2} \overline{0}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{0} \overline{1} \overline{2} \overline{0})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length five given by $w=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{0} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} e N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} N$ and $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{0}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-2} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} N$.

Moreover, by relation (7.1), (012) $t_{0} t_{2} t_{1} t_{0} t_{2}=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow\left(\begin{array}{lll}0 & 1 & 2\end{array}\right)\left[t_{0} t_{1} t_{2} t_{0} t_{1}\right]^{(12)}=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow\left(\begin{array}{lll}0 & 1 & 2\end{array}\right)(12) t_{0} t_{1} t_{2} t_{0} t_{1}(12)=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow\left(\begin{array}{ll}0 & 1\end{array}\right) t_{0} t_{1} t_{2} t_{0} t_{1}(12)=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1}$, which implies that
$N t_{0} t_{1} t_{2} t_{0} t_{1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} N$. That is, [$\left.\overline{0} \overline{1} \overline{2} \overline{0} \overline{1}\right]=[01201]$.
Similarly, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} N=$ $N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3}^{-1} N$ and $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2}^{-1} N=N t_{0} t_{1} t_{0}^{-1} t_{2} N$.

Therefore, we conclude that there are three distinct double cosets of the form $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} N$, and $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} N$.
55. We next consider the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} N$.

Let [$\overline{0} \overline{1} \overline{2} 1]$ denote the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} N$.
Note that $N^{(\overline{\overline{1}} \overline{2} \overline{2} 1)} \geq N^{\overline{0} \overline{1} \overline{2} 1}=\langle e\rangle$. Thus $\left|N^{(\overline{0} \overline{1} \overline{1} 1)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} N\right|=\frac{|N|}{\left|N^{(\overline{(\overline{1} 12})}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$\overline{0} \overline{1} \overline{2} 1]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{0} \overline{1} \overline{2} 1)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length five given by $w=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} t_{1}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} e N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} N$ and
$N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} t_{1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1}^{2} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1}^{-1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0}^{-1} N=$ $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} t_{2} N=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} t_{2}^{-1} N=$ $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} N$, and $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0}^{-1} N$.

Therefore, we conclude that there are two distinct double cosets of the form $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0} N$ and $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} N$.
56. We next consider the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} N$.

Let $[\overline{1} \overline{1} \overline{2} 3]$ denote the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} N$.
Note that $N^{(\overline{\overline{1}} \overline{2} \overline{2} 3)} \geq N^{\overline{0} \overline{1} \overline{2} 3}=\langle e\rangle$. Thus $\left|N^{(\overline{0} \overline{1} \overline{2} 3)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} N\right|=\frac{|N|}{\left|N^{(\overline{\overline{1}} \overline{2} 3)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$\overline{0} \overline{1} \overline{2} 3]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{0} \overline{1} \overline{2} 3)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length five given by $w=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{3}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} e N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} N$ and
$N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{3} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{2} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} N=$
$N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} N$, and $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3}^{-1} N$.
Therefore, we conclude that there are three distinct double cosets of the form
$N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2} N$, and $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2}^{-1} N$.
57. We next consider the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} N$.

Let $[\overline{0} \overline{1} \overline{2} \overline{3}]$ denote the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} N$.
 $\left|N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} N\right|=\frac{|N|}{\left|N^{(\overline{0} \overline{2} 3)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset $[\overline{0} \overline{1} \overline{2} \overline{3}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{0} \overline{\overline{2}} \overline{3} \overline{3})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length five given by $w=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{3} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} e N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} N$ and $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{3}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-2} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} N$.

Moreover, by relation (7.2), (01)(23) $t_{0} t_{1} t_{0}=t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow t_{2}^{-1}(01)(23) t_{0} t_{1} t_{0}=t_{2}^{-1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right)\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{2}^{-1}(01)(23) t_{0} t_{1} t_{0}=t_{2}^{-1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23)\left(t_{2}^{-1}\right)^{(01)(23)} t_{0} t_{1} t_{0}=t_{2}^{-1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23) t_{3}^{-1} t_{0} t_{1} t_{0}=t_{2}^{-1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow t_{3}^{-1}\left(\begin{array}{ll}0 & 1\end{array}\right)(23) t_{3}^{-1} t_{0} t_{1} t_{0}=t_{3}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23)(01)(23) t_{3}^{-1}(01)(23) t_{3}^{-1} t_{0} t_{1} t_{0}=t_{3}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23)\left(t_{3}^{-1}\right)^{(01)(23)} t_{3}^{-1} t_{0} t_{1} t_{0}=t_{3}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23) t_{2}^{-1} t_{3}^{-1} t_{0} t_{1} t_{0}=t_{3}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1}$

$\Rightarrow(01)(23) t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} t_{2}=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1}$
$\Rightarrow(01)(23)\left[t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{2}\right]^{(01)}=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1}$
$\Rightarrow(01)(23)(01) t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{2}(01)=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1}$
$\Rightarrow(23) t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{2}(01)=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1}$
$\Rightarrow(23) t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{2}(01) t_{2}=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{2}$
$\Rightarrow(23) t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{2}(01) t_{2}(01)(01)=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{2}$
$\Rightarrow(23) t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{2} t_{2}^{(01)}(01)=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{2}$
$\Rightarrow(23) t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{2} t_{2}(01)=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{2}$
$\Rightarrow(23) t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1}(01)=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{2}$, which implies that
$N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{2} N$. That is, $[\overline{0} \overline{1} \overline{2} \overline{3} 2]=[\overline{0} \overline{1} 23 \overline{2}]$.
Similarly, by relation (7.2), (01)(23) $t_{0} t_{1} t_{0}=t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow t_{2}^{-1}(01)(23) t_{0} t_{1} t_{0}=t_{2}^{-1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23)(01)(23) t_{2}^{-1}(01)(23) t_{0} t_{1} t_{0}=t_{2}^{-1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23)\left(t_{2}^{-1}\right)^{(01)(23)} t_{0} t_{1} t_{0}=t_{2}^{-1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23) t_{3}^{-1} t_{0} t_{1} t_{0}=t_{2}^{-1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow t_{3}^{-1}(01)(23) t_{3}^{-1} t_{0} t_{1} t_{0}=t_{3}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)\left(\begin{array}{ll}2 & 3\end{array}\right)\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{3}^{-1}(01)(23) t_{3}^{-1} t_{0} t_{1} t_{0}=t_{3}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23)\left(t_{3}^{-1}\right)^{(01)(23)} t_{3}^{-1} t_{0} t_{1} t_{0}=t_{3}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1}$

$$
\begin{aligned}
& \Rightarrow(01)(23) t_{2}^{-1} t_{3}^{-1} t_{0} t_{1} t_{0}=t_{3}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} \\
& \left.\Rightarrow\left[(01)(23) t_{2}^{-1} t_{3}^{-1} t_{0} t_{1} t_{0}\right]^{(0213)}=\left[t_{3}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1}\right]^{(0} 2113\right) \\
& \Rightarrow(01)(23) t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} t_{2}=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} \\
& \Rightarrow(01)(23)\left[t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{2}\right]^{(01)}=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} \\
& \Rightarrow(01)(23)(01) t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{2}(01)=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} \\
& \Rightarrow(23) t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{2}(01)=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} \\
& \Rightarrow(23) t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{2}(01) t_{2}^{-1}=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{2}^{-1} \\
& \Rightarrow(23) t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{2}(01) t_{2}^{-1}(01)(01)=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{2}^{-1} \\
& \Rightarrow(23) t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{2}\left(t_{2}^{-1}\right)^{(01)}(01)=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{2}^{-1} \\
& \Rightarrow(23) t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{2} t_{2}^{-1}(01)=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{2}^{-1} \\
& \Rightarrow(23) t_{0}^{-1} t_{1}^{-1} t_{2} t_{3}(01)=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{2}^{-1} \text {, which implies that } \\
& N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{2}^{-1} N \text {. That is, }[\overline{0} \overline{1} \overline{2} \overline{3} \overline{2}]=[\overline{0} \overline{1} 23] .
\end{aligned}
$$

Therefore, we conclude that there are four distinct double cosets of the form
$N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0} N$,
$N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} N$, and $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} N$.
58. We next consider the double coset $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{1} N$.

Let $[\overline{0} 1 \overline{0} 1]$ denote the double coset $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{1} N$.
Now, with the help of MAGMA, we know that (02)(13) $t_{3} t_{1}^{-1} t_{2} t_{1}^{-1}=t_{0} t_{1}^{-1} t_{0} t_{2}^{-1}$
$\Rightarrow t_{1}^{-1}(02)(13) t_{3} t_{1}^{-1} t_{2} t_{1}^{-1}=t_{1}^{-1} t_{0} t_{1}^{-1} t_{0} t_{2}^{-1}$
$\Rightarrow(02)(13)(02)(13) t_{1}^{-1}(02)(13) t_{3} t_{1}^{-1} t_{2} t_{1}^{-1}=t_{1}^{-1} t_{0} t_{1}^{-1} t_{0} t_{2}^{-1}$
$\Rightarrow(02)(13)\left(t_{1}^{-1}\right)^{(02)(13)} t_{3} t_{1}^{-1} t_{2} t_{1}^{-1}=t_{1}^{-1} t_{0} t_{1}^{-1} t_{0} t_{2}^{-1}$
$\Rightarrow(02)(13) t_{3}^{-1} t_{3} t_{1}^{-1} t_{2} t_{1}^{-1}=t_{1}^{-1} t_{0} t_{1}^{-1} t_{0} t_{2}^{-1}$
$\Rightarrow(02)(13) t_{1}^{-1} t_{2} t_{1}^{-1}=t_{1}^{-1} t_{0} t_{1}^{-1} t_{0} t_{2}^{-1}$
$\Rightarrow(02)(13) t_{1}^{-1} t_{2} t_{1}^{-1} t_{2}=t_{1}^{-1} t_{0} t_{1}^{-1} t_{0} t_{2}^{-1} t_{2}$
$\Rightarrow(02)(13) t_{1}^{-1} t_{2} t_{1}^{-1} t_{2}=t_{1}^{-1} t_{0} t_{1}^{-1} t_{0}$
$\Rightarrow\left[\left(\begin{array}{ll}0 & 2\end{array}\right)\left(\begin{array}{ll}1 & 3\end{array}\right) t_{1}^{-1} t_{2} t_{1}^{-1} t_{2}\right]^{(01)}=\left[t_{1}^{-1} t_{0} t_{1}^{-1} t_{0}\right]^{(01)}$
$\Rightarrow(12)(03) t_{0}^{-1} t_{2} t_{0}^{-1} t_{2}=t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}$
and, moreover, (12)(03) $t_{0}^{-1} t_{2} t_{0}^{-1} t_{2}=t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}$
$\Rightarrow\left[(12)(03) t_{0}^{-1} t_{2} t_{0}^{-1} t_{2}\right]^{(23)}=\left[t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}\right]^{(23)}$
$\Rightarrow(13)(02) t_{0}^{-1} t_{3} t_{0}^{-1} t_{3}=t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}$.
Therefore, since (12)(03) $t_{0}^{-1} t_{2} t_{0}^{-1} t_{2}=t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}$ and (13)(0 2) $t_{0}^{-1} t_{3} t_{0}^{-1} t_{3}=$
$t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}$, we have that (13)(02) $t_{0}^{-1} t_{3} t_{0}^{-1} t_{3}=t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}=\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}0 & 3\end{array}\right) t_{0}^{-1} t_{2} t_{0}^{-1} t_{2}$, and therefore the following right cosets, or single cosets, are equivalent: $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}$ $=N t_{0} t_{2}^{-1} t_{0} t_{2}^{-1}=N t_{0} t_{3}^{-1} t_{0} t_{3}^{-1}$.

That is, in terms of our short-hand notation,

$$
\overline{0} 1 \overline{0} 1 \sim \overline{0} 2 \overline{0} 2 \sim \overline{0} 3 \overline{0} 3 .
$$

By conjugating the equivalence relation above with the elements of S_{4}, we determine that the following single cosets are equivalent in the double coset [010 1$]$:

$$
\begin{array}{ll}
\overline{0} 1 \overline{0} 1 \sim \overline{0} 2 \overline{0} 2 \sim \overline{0} 3 \overline{0} 3, & \overline{1} 0 \overline{1} 0 \sim \overline{1} 2 \overline{1} 2 \sim \overline{1} 3 \overline{1} 3, \\
\overline{2} 1 \overline{2} 1 \sim \overline{2} 02 \overline{2} 0 \sim \overline{2} 3 \overline{2} 3, & \overline{3} 1 \overline{3} 1 \sim \overline{3} 2 \overline{3} 2 \sim \overline{3} 0 \overline{3} 0
\end{array}
$$

Since each of the twelve single cosets has three names, the double coset [$\overline{0} 1 \overline{0} 1]$ must have at most four distinct single cosets.

Moreover, $N^{(\overline{0} 1 \overline{1} \overline{1})}$ has four orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1,2,3\},\{\overline{0}\}$, and $\{\overline{1}, \overline{2}, \overline{3}\}$.

Therefore, there are at most four double cosets of the form $N w N$, where w is a word of length five given by $w=t_{0}^{-1} t_{1} t_{0}^{-1} t_{1} t_{i}^{ \pm 1}, i \in\{0,1\}$.

But note that $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{1} t_{1}^{-1} N=N t_{0}^{-1} t_{1} t_{0}^{-1} e N=N t_{0}^{-1} t_{1} t_{0}^{-1} N$ and $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{1} t_{1} N$ $=N t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}^{2} N=N t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1} N$.

Moreover, by relation (7.2), (01)(23) $t_{0} t_{1} t_{0}=t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow t_{1}\left(\begin{array}{ll}0 & 1\end{array}\right)(23) t_{0} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23)(01)(23) t_{1}(01)(23) t_{0} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{1}^{(01)(23)} t_{0} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23) t_{0} t_{0} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23) t_{0}^{-1} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow t_{0}^{-1}(01)(23) t_{0}^{-1} t_{1} t_{0}=t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23)(01)(23) t_{0}^{-1}(01)(23) t_{0}^{-1} t_{1} t_{0}=t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23)\left(t_{0}^{-1}\right)^{(01)(23)} t_{0}^{-1} t_{1} t_{0}=t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow\left(\begin{array}{ll}0 & 1\end{array}\right)(23) t_{1}^{-1} t_{0}^{-1} t_{1} t_{0}=t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1}$.
Similarly, by relation (7.2), (01)(23) $t_{0} t_{1} t_{0}=t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23) t_{0} t_{1} t_{0} t_{1}^{-1}=t_{0}^{-1} t_{1}^{-1} t^{-1}$

$$
\begin{aligned}
& \Rightarrow(01)(23) t_{0} t_{1} t_{0} t_{1}^{-1}=t_{0}^{-1} t_{1} \\
& \Rightarrow(01)(23) t_{0} t_{1} t_{0} t_{1}^{-1} t_{0}=t_{0}^{-1} t_{1} t_{0} \\
& \Rightarrow t_{1}^{-1}(01)(23) t_{0} t_{1} t_{0} t_{1}^{-1} t_{0}=t_{1}^{-1} t_{0}^{-1} t_{1} t_{0} \\
& \Rightarrow(01)(23)(01)\left(\begin{array}{ll}
2 & 3
\end{array}\right) t_{1}^{-1}(01)(23) t_{0} t_{1} t_{0} t_{1}^{-1} t_{0}=t_{1}^{-1} t_{0}^{-1} t_{1} t_{0} \\
& \Rightarrow(01)(23)\left(t_{1}^{-1}\right)^{(01)(23)} t_{0} t_{1} t_{0} t_{1}^{-1} t_{0}=t_{1}^{-1} t_{0}^{-1} t_{1} t_{0} \\
& \Rightarrow(01)(23) t_{0}^{-1} t_{0} t_{1} t_{0} t_{1}^{-1} t_{0}=t_{1}^{-1} t_{0}^{-1} t_{1} t_{0} \\
& \Rightarrow\left(\begin{array}{ll}
0 & 1)
\end{array}\left(\begin{array}{ll}
2 & 3
\end{array}\right) t_{1} t_{0} t_{1}^{-1} t_{0}=t_{1}^{-1} t_{0}^{-1} t_{1} t_{0}\right. \\
& \Rightarrow(01)(23)(01)(23) t_{1} t_{0} t_{1}^{-1} t_{0}=(01)(23) t_{1}^{-1} t_{0}^{-1} t_{1} t_{0} \\
& \Rightarrow t_{1} t_{0} t_{1}^{-1} t_{0}=(01)(23) t_{1}^{-1} t_{0}^{-1} t_{1} t_{0} \text {. } \\
& \text { Since (01) (23) } t_{1}^{-1} t_{0}^{-1} t_{1} t_{0}=t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1} \\
& \text { and } t_{1} t_{0} t_{1}^{-1} t_{0}=(01)(23) t_{1}^{-1} t_{0}^{-1} t_{1} t_{0} \text {, } \\
& \text { we conclude that } t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1}=t_{1} t_{0} t_{1}^{-1} t_{0} \text {. } \\
& \text { Now, } t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1}=t_{1} t_{0} t_{1}^{-1} t_{0} \\
& \Rightarrow t_{1} t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1}=t_{1} t_{1} t_{0} t_{1}^{-1} t_{0} \\
& \Rightarrow t_{1} t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1}=t_{1}^{-1} t_{0} t_{1}^{-1} t_{0} \\
& \Rightarrow t_{1} t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1} t_{1}=t_{1}^{-1} t_{0} t_{1}^{-1} t_{0} t_{1} \\
& \Rightarrow t_{1} t_{0}^{-1} t_{1} t_{0}^{-1}=t_{1}^{-1} t_{0} t_{1}^{-1} t_{0} t_{1} \\
& \Rightarrow\left[t_{1} t_{0}^{-1} t_{1} t_{0}^{-1}\right]^{(01)}=\left[t_{1}^{-1} t_{0} t_{1}^{-1} t_{0} t_{1}\right]^{(01)} \\
& \Rightarrow t_{0} t_{1}^{-1} t_{0} t_{1}^{-1}=t_{0}^{-1} t_{1} t_{0}^{-1} t_{1} t_{0} \text {, which implies that } \\
& N t_{0} t_{1}^{-1} t_{0} t_{1}^{-1} N=N t_{0}^{-1} t_{1} t_{0}^{-1} t_{1} t_{0} N \text {. That is, }[\overline{0} 10 \overline{0} 10]=[0 \overline{1} 0 \overline{1}] .
\end{aligned}
$$

Similarly, by relation (7.2), (01)(23) $t_{0} t_{1} t_{0}=t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow t_{1}(01)(23) t_{0} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow\left(\begin{array}{lll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right)\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{1}(01)(23) t_{0} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23) t_{1}^{(01)(23)} t_{0} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23) t_{0} t_{0} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23) t_{0}^{-1} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow t_{0}^{-1}(01)(23) t_{0}^{-1} t_{1} t_{0}=t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23)(01)(23) t_{0}^{-1}(01)(23) t_{0}^{-1} t_{1} t_{0}=t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23)\left(t_{0}^{-1}\right)^{(01)(23)} t_{0}^{-1} t_{1} t_{0}=t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23) t_{1}^{-1} t_{0}^{-1} t_{1} t_{0}=t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1}$.
Similarly, by relation (7.2), (01)(23) $t_{0} t_{1} t_{0}=t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array} t_{0} t_{1} t_{0} t_{1}^{-1}=t_{0}^{-1} t_{1}^{-1} t^{-1}\right.$
$\Rightarrow\left(\begin{array}{ll}0 & 1\end{array}\right)(23) t_{0} t_{1} t_{0} t_{1}^{-1}=t_{0}^{-1} t_{1}$
$\Rightarrow(01)(23) t_{0} t_{1} t_{0} t_{1}^{-1} t_{0}=t_{0}^{-1} t_{1} t_{0}$
$\Rightarrow t_{1}^{-1}(01)(23) t_{0} t_{1} t_{0} t_{1}^{-1} t_{0}=t_{1}^{-1} t_{0}^{-1} t_{1} t_{0}$
$\Rightarrow(01)\left(\begin{array}{ll}2 & 3\end{array}\right)\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{1}^{-1}(01)(23) t_{0} t_{1} t_{0} t_{1}^{-1} t_{0}=t_{1}^{-1} t_{0}^{-1} t_{1} t_{0}$
$\Rightarrow\left(\begin{array}{ll}0 & 1\end{array}\right)(23)\left(t_{1}^{-1}\right)^{(01)(23)} t_{0} t_{1} t_{0} t_{1}^{-1} t_{0}=t_{1}^{-1} t_{0}^{-1} t_{1} t_{0}$
$\Rightarrow(01)(23) t_{0}^{-1} t_{0} t_{1} t_{0} t_{1}^{-1} t_{0}=t_{1}^{-1} t_{0}^{-1} t_{1} t_{0}$
$\Rightarrow(01)(23) t_{1} t_{0} t_{1}^{-1} t_{0}=t_{1}^{-1} t_{0}^{-1} t_{1} t_{0}$
$\Rightarrow(01)(23)(01)(23) t_{1} t_{0} t_{1}^{-1} t_{0}=(01)(23) t_{1}^{-1} t_{0}^{-1} t_{1} t_{0}$
$\Rightarrow t_{1} t_{0} t_{1}^{-1} t_{0}=\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{1}^{-1} t_{0}^{-1} t_{1} t_{0}$.
Since (0 1) (2 3) $t_{1}^{-1} t_{0}^{-1} t_{1} t_{0}=t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1}$
and $t_{1} t_{0} t_{1}^{-1} t_{0}=(01)(23) t_{1}^{-1} t_{0}^{-1} t_{1} t_{0}$,
we conclude that $t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1}=t_{1} t_{0} t_{1}^{-1} t_{0}$.
Now, $t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1}=t_{1} t_{0} t_{1}^{-1} t_{0}$
$\Rightarrow t_{1} t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1}=t_{1} t_{1} t_{0} t_{1}^{-1} t_{0}$
$\Rightarrow t_{1} t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1}=t_{1}^{-1} t_{0} t_{1}^{-1} t_{0}$
$\Rightarrow t_{1} t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1} t_{1}=t_{1}^{-1} t_{0} t_{1}^{-1} t_{0} t_{1}$
$\Rightarrow t_{1} t_{0}^{-1} t_{1} t_{0}^{-1}=t_{1}^{-1} t_{0} t_{1}^{-1} t_{0} t_{1}$
$\Rightarrow\left[t_{1} t_{0}^{-1} t_{1} t_{0}^{-1}\right]^{(01)}=\left[t_{1}^{-1} t_{0} t_{1}^{-1} t_{0} t_{1}\right]^{(01)}$
$\Rightarrow t_{0} t_{1}^{-1} t_{0} t_{1}^{-1}=t_{0}^{-1} t_{1} t_{0}^{-1} t_{1} t_{0}$
$\Rightarrow t_{0} t_{1}^{-1} t_{0} t_{1}^{-1} t_{0}=t_{0}^{-1} t_{1} t_{0}^{-1} t_{1} t_{0} t_{0}$
$\Rightarrow t_{0} t_{1}^{-1} t_{0} t_{1}^{-1} t_{0}=t_{0}^{-1} t_{1} t_{0}^{-1} t_{1} t_{0}^{-1}$, which implies that
$N t_{0} t_{1}^{-1} t_{0} t_{1}^{-1} t_{0} N=N t_{0}^{-1} t_{1} t_{0}^{-1} t_{1} t_{0}^{-1} N$. That is, $[\overline{0} 1 \overline{0} 1 \overline{0}]=[0 \overline{1} 0 \overline{1} 0]$.
Therefore, we need not consider additional double coset of the form
$N t_{0}^{-1} t_{1} t_{0}^{-1} t_{1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
59. We next consider the double coset $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2} N$.

Let $[\overline{0} 1 \overline{0} 2]$ denote the double coset $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2} N$.
Note that $N^{(\overline{0} 1 \overline{0} 2)} \geq N^{\overline{0} 1 \overline{0} 2}=\langle e\rangle$. Thus $\left|N^{(\overline{0} 1 \overline{0} 2)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2} N\right|=\frac{|N|}{\left|N^{(\overline{0} 102)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$\overline{0} 10 \overline{0} 2]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{0} 1 \overline{0} 2)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length five given by $w=t_{0}^{-1} t_{1} t_{0}^{-1} t_{2} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2} t_{2}^{-1} N=N t_{0}^{-1} t_{1} t_{0}^{-1} e N=N t_{0}^{-1} t_{1} t_{0}^{-1} N$ and
$N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2} t_{2} N=N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{2} N=N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2} t_{0} N=$ $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} N$ and $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2} t_{1}^{-1} N=N t_{0}^{-1} t_{1} t_{2}^{-1} N$.
Therefore, we conclude that there are four distinct double cosets of the form
$N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2} t_{0}^{-1} N, N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2} t_{1} N$, $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2} t_{3} N$, and $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2} t_{3}^{-1} N$.
60. We next consider the double coset $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} N$.

Let $[\overline{0} 1 \overline{0} \overline{2}]$ denote the double coset $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} N$.
Note that $N^{(\overline{0} 1 \overline{0} \overline{2})} \geq N^{\overline{0} 1 \overline{0} \overline{0} \overline{2}}=\langle e\rangle$. Thus $\left|N^{(\overline{0} 1 \overline{0} \overline{2})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} N\right|=\frac{|N|}{\left|N^{(\overline{0} 1 \overline{\bar{\sigma}})}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset $[\overline{0} 1 \overline{0} \overline{2}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{0} 1 \overline{1} \overline{2})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.
Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length five given by $w=t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} t_{2} N=N t_{0}^{-1} t_{1} t_{0}^{-1} e N=N t_{0}^{-1} t_{1} t_{0}^{-1} N$ and $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} t_{2}^{-1} N=N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-2} N=N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2} N$.
Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} t_{0} N=$
$N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1} N, N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} t_{0}^{-1} N=N t_{0}^{-1} t_{1} t_{2} t_{0} N, N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} t_{1} N=$ $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} N$, and $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} N=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2} N$.
Therefore, we conclude that there are two distinct double cosets of the form $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3} N$ and $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} N$.
61. We next consider the double coset $N t_{0}^{-1} t_{1} t_{2} t_{0} N$.

Let [$\overline{0} 120$] denote the double coset $N t_{0}^{-1} t_{1} t_{2} t_{0} N$.
Note that $N^{(\overline{0} 120)} \geq N^{\overline{0} 120}=\langle e\rangle$. Thus $\left|N^{(\overline{0} 120)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0}^{-1} t_{1} t_{2} t_{0} N\right|=\frac{|N|}{\left|N^{(0120)}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [0120] has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{0} 120)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length five given by $w=t_{0}^{-1} t_{1} t_{2} t_{0} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0}^{-1} t_{1} t_{2} t_{0} t_{0}^{-1} N=N t_{0}^{-1} t_{1} t_{2} e N=N t_{0}^{-1} t_{1} t_{2} N$ and $N t_{0}^{-1} t_{1} t_{2} t_{0} t_{0} N=$ $N t_{0}^{-1} t_{1} t_{2} t_{0}^{2} N=N t_{0}^{-1} t_{1} t_{2} t_{0}^{-1} N$.

Moreover, by relation (7.2), (01)(23) $t_{0} t_{1} t_{0}=t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow t_{2}\left(\begin{array}{ll}0 & 1) \\ (23) & t_{0} t_{1} t_{0}=t_{2} t_{0}^{-1} t_{1}^{-1}, ~\end{array}\right.$
$\Rightarrow(01)(23)(01)(23) t_{2}(01)(23) t_{0} t_{1} t_{0}=t_{2} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23) t_{2}^{(01)(23)} t_{0} t_{1} t_{0}=t_{2} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23) t_{3} t_{0} t_{1} t_{0}=t_{2} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow t_{0}^{-1}\left(\begin{array}{ll}0 & 1)(23)\end{array} t_{3} t_{0} t_{1} t_{0}=t_{0}^{-1} t_{2} t_{0}^{-1} t_{1}^{-1}\right.$
$\Rightarrow\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right)\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{0}^{-1}\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{3} t_{0} t_{1} t_{0}=t_{0}^{-1} t_{2} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right)\left(t_{0}^{-1}\right)^{(01)(23)} t_{3} t_{0} t_{1} t_{0}=t_{0}^{-1} t_{2} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23) t_{1}^{-1} t_{3} t_{0} t_{1} t_{0}=t_{0}^{-1} t_{2} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow\left[\left(\begin{array}{ll}0 & 1) \\ (23) & 3\end{array} t_{1}^{-1} t_{3} t_{0} t_{1} t_{0}\right]^{(12)}=\left[t_{0}^{-1} t_{2} t_{0}^{-1} t_{1}^{-1}\right]^{(12)}\right.$
$\Rightarrow(02)(13) t_{2}^{-1} t_{3} t_{0} t_{2} t_{0}=t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1}$
$\Rightarrow(02)(13)\left[t_{0}^{-1} t_{1} t_{2} t_{0} t_{2}\right]^{(02)(13)}=t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1}$
$\Rightarrow(02)(13)(02)(13) t_{0}^{-1} t_{1} t_{2} t_{0} t_{2}(02)(13)=t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1}$
$\Rightarrow e t_{0}^{-1} t_{1} t_{2} t_{0} t_{2}(02)(13)=t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1}$, which implies that
$N t_{0}^{-1} t_{1} t_{2} t_{0} t_{2} N=N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} N$. That is, $[\overline{0} 1202]=[\overline{0} 1 \overline{0} \overline{2}]$.
Similarly, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1} t_{2} t_{0} t_{2}^{-1} N=$
$N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1} N$ and $N t_{0}^{-1} t_{1} t_{2} t_{0} t_{3} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} N$.
Therefore, we conclude that there are three distinct double cosets of the form $N t_{0}^{-1} t_{1} t_{2} t_{0} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0}^{-1} t_{1} t_{2} t_{0} t_{1} N, N t_{0}^{-1} t_{1} t_{2} t_{0} t_{1}^{-1} N$, and $N t_{0}^{-1} t_{1} t_{2} t_{0} t_{3}^{-1} N$.
62. We next consider the double coset $N t_{0}^{-1} t_{1} t_{2} t_{0}^{-1} N$.

Let $[\overline{0} 12 \overline{0}]$ denote the double coset $N t_{0}^{-1} t_{1} t_{2} t_{0}^{-1} N$.
Note that $N^{(\overline{0} 12 \overline{0})} \geq N^{\overline{0} 12 \overline{0}}=\langle e\rangle$. Thus $\left|N^{(\overline{0} 12 \overline{0})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4,
$\left|N t_{0}^{-1} t_{1} t_{2} t_{0}^{-1} N\right|=\frac{|N|}{\left|N^{(\overline{0} 12 \bar{O}}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$\overline{0} 12 \overline{0}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{0} 12 \overline{0})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length five given by $w=t_{0}^{-1} t_{1} t_{2} t_{0}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0}^{-1} t_{1} t_{2} t_{0}^{-1} t_{0} N=N t_{0}^{-1} t_{1} t_{2} e N=N t_{0}^{-1} t_{1} t_{2} N$ and $N t_{0}^{-1} t_{1} t_{2} t_{0}^{-1} t_{0}^{-1} N$ $=N t_{0}^{-1} t_{1} t_{2} t_{0}^{-2} N=N t_{0}^{-1} t_{1} t_{2} t_{0} N$.
Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1} t_{2} t_{0}^{-1} t_{1} N=$
$N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0} N, N t_{0}^{-1} t_{1} t_{2} t_{0}^{-1} t_{1}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} N, N t_{0}^{-1} t_{1} t_{2} t_{0}^{-1} t_{2} N=$
$N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} N, N t_{0}^{-1} t_{1} t_{2} t_{0}^{-1} t_{2}^{-1} N=N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} N, N t_{0}^{-1} t_{1} t_{2} t_{0}^{-1} t_{3} N=$
$N t_{0} t_{1} t_{2} t_{3}^{-1} t_{1} N$, and $N t_{0}^{-1} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1} N$.
Therefore, we conclude that there are no distinct double cosets of the form $N t_{0}^{-1} t_{1} t_{2} t_{0}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
63. We next consider the double coset $N t_{0}^{-1} t_{1} t_{2} t_{3} N$.

Let [0123] denote the double coset $N t_{0}^{-1} t_{1} t_{2} t_{3} N$.
Note that $N^{(\overline{0} 123)} \geq N^{\overline{0} 123}=\langle e\rangle$. Thus $\left|N^{(\overline{0} 123)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0}^{-1} t_{1} t_{2} t_{3} N\right|=\frac{|N|}{\left|N^{(0123)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$\overline{0} 123]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{0} 123)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.
Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length five given by $w=t_{0}^{-1} t_{1} t_{2} t_{3} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0}^{-1} t_{1} t_{2} t_{3} t_{3}^{-1} N=N t_{0}^{-1} t_{1} t_{2} e N=N t_{0}^{-1} t_{1} t_{2} N$ and $N t_{0}^{-1} t_{1} t_{2} t_{3} t_{3} N=$ $N t_{0}^{-1} t_{1} t_{2} t_{3}^{2} N=N t_{0}^{-1} t_{1} t_{2} t_{3}^{-1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1} t_{2} t_{3} t_{0}^{-1} N=$ $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0} N$.

And, by relation (7.2), (01)(23) $t_{0} t_{1} t_{0}=t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow t_{2}\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{0} t_{1} t_{0}=t_{2} t_{0}^{-1} t_{1}^{-1}$

$$
\begin{aligned}
& \Rightarrow(01)(23)(01)(23) t_{2}(01)(23) t_{0} t_{1} t_{0}=t_{2} t_{0}^{-1} t_{1}^{-1} \\
& \Rightarrow(01)(23) t_{2}^{(01)(23)} t_{0} t_{1} t_{0}=t_{2} t_{0}^{-1} t_{1}^{-1} \\
& \Rightarrow(01)(23) t_{3} t_{0} t_{1} t_{0}=t_{2} t_{0}^{-1} t_{1}^{-1} \\
& \Rightarrow t_{3}^{-1}(01)(23) t_{3} t_{0} t_{1} t_{0}=t_{3}^{-1} t_{2} t_{0}^{-1} t_{1}^{-1} \\
& \Rightarrow(01)(23)(01)(23) t_{3}^{-1}(01)(23) t_{3} t_{0} t_{1} t_{0}=t_{3}^{-1} t_{2} t_{0}^{-1} t_{1}^{-1} \\
& \Rightarrow(01)(23)\left(t_{3}^{-1}\right)^{(01)(23)} t_{3} t_{0} t_{1} t_{0}=t_{3}^{-1} t_{2} t_{0}^{-1} t_{1}^{-1} \\
& \Rightarrow(01)(23) t_{2}^{-1} t_{3} t_{0} t_{1} t_{0}=t_{3}^{-1} t_{2} t_{0}^{-1} t_{1}^{-1} \\
& \Rightarrow\left[\left(\begin{array}{lll}
0 & 1
\end{array}\right)\left(\begin{array}{ll}
2 & 3
\end{array}\right) t_{2}^{-1} t_{3} t_{0} t_{1} t_{0}\right]^{\left(\begin{array}{lll}
2 & 1 & 3
\end{array}\right)}=\left[t_{3}^{-1} t_{2} t_{0}^{-1} t_{1}^{-1}\right]^{\left(\begin{array}{llll}
2 & 1 & 3
\end{array}\right)} \\
& \Rightarrow\left(\begin{array}{ll}
0 & 1
\end{array}\right)\left(\begin{array}{ll}
2 & 3
\end{array}\right) t_{1}^{-1} t_{0} t_{2} t_{3} t_{2}=t_{0}^{-1} t_{1} t_{2}^{-1} t_{3}^{-1} \\
& \Rightarrow(01)(23)\left[t_{0}^{-1} t_{1} t_{2} t_{3} t_{2}\right]^{(01)}=t_{0}^{-1} t_{1} t_{2}^{-1} t_{3}^{-1} \\
& \Rightarrow(01)(23)(01) t_{0}^{-1} t_{1} t_{2} t_{3} t_{2}(01)=t_{0}^{-1} t_{1} t_{2}^{-1} t_{3}^{-1} \\
& \Rightarrow(23) t_{0}^{-1} t_{1} t_{2} t_{3} t_{2}(01)=t_{0}^{-1} t_{1} t_{2}^{-1} t_{3}^{-1} \text {, which implies that } \\
& N t_{0}^{-1} t_{1} t_{2} t_{3} t_{2} N=N t_{0}^{-1} t_{1} t_{2}^{-1} t_{3}^{-1} N \text {. That is, }[\overline{0} 1232]=[\overline{0} 1 \overline{2} \overline{3}] .
\end{aligned}
$$

Therefore, we conclude that there are four distinct double cosets of the form
$N t_{0}^{-1} t_{1} t_{2} t_{3} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0}^{-1} t_{1} t_{2} t_{3} t_{0} N, N t_{0}^{-1} t_{1} t_{2} t_{3} t_{1} N$,
$N t_{0}^{-1} t_{1} t_{2} t_{3} t_{1}^{-1} N$, and $N t_{0}^{-1} t_{1} t_{2} t_{3} t_{2}^{-1} N$.
64. We next consider the double coset $N t_{0}^{-1} t_{1} t_{2} t_{3}^{-1} N$.

Let $[\overline{0} 12 \overline{3}]$ denote the double coset $N t_{0}^{-1} t_{1} t_{2} t_{3}^{-1} N$.
Note that $N^{(\overline{0} 12 \overline{3})} \geq N^{\overline{0} 12 \overline{3}}=\langle e\rangle$. Thus $\left|N^{(\overline{0} 12 \overline{3})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0}^{-1} t_{1} t_{2} t_{3}^{-1} N\right|=\frac{|N|}{\left|N^{(0123)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$\overline{0} 12 \overline{3}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{0} 12 \overline{3})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length five given by $w=t_{0}^{-1} t_{1} t_{2} t_{3}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0}^{-1} t_{1} t_{2} t_{3}^{-1} t_{3} N=N t_{0}^{-1} t_{1} t_{2} e N=N t_{0}^{-1} t_{1} t_{2} N$ and $N t_{0}^{-1} t_{1} t_{2} t_{3}^{-1} t_{3}^{-1} N$ $=N t_{0}^{-1} t_{1} t_{2} t_{3}^{-2} N=N t_{0}^{-1} t_{1} t_{2} t_{3} N$.

Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1} t_{2} t_{3}^{-1} t_{0} N=$ $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0} N, N t_{0}^{-1} t_{1} t_{2} t_{3}^{-1} t_{1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} N, N t_{0}^{-1} t_{1} t_{2} t_{3}^{-1} t_{1}^{-1} N=$ $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} N$, and $N t_{0}^{-1} t_{1} t_{2} t_{3}^{-1} t_{2} N=N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3} N$.

Therefore, we conclude that there are two distinct double cosets of the form $N t_{0}^{-1} t_{1} t_{2} t_{3}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0}^{-1} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} N$ and $N t_{0}^{-1} t_{1} t_{2} t_{3}^{-1} t_{2}^{-1} N$.
65. We next consider the double coset $N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0} N$.

Let $[\overline{0} 1 \overline{2} 0]$ denote the double coset $N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0} N$.
Now, with the help of MAGMA, we know that that the following right cosets, or single cosets, are equivalent: $N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}=N t_{1}^{-1} t_{2} t_{3}^{-1} t_{1}=N t_{2}^{-1} t_{3} t_{0}^{-1} t_{2}$
$=N t_{3}^{-1} t_{0} t_{1}^{-1} t_{3}$.
That is, in terms of our short-hand notation,

$$
\overline{0} 1 \overline{2} 0 \sim \overline{1} 2 \overline{3} 1 \sim \overline{2} 3 \overline{0} 2 \sim \overline{3} 0 \overline{1} 3
$$

By conjugating the equivalence relation above with the elements of S_{4}, we determine that the following single cosets are equivalent in the double coset [$\overline{0} 1 \overline{2} 0]$:

$$
\begin{array}{ll}
\overline{0} 1 \overline{2} 0 \sim \overline{1} 2 \overline{3} 1 \sim \overline{2} 3 \overline{0} 2 \sim \overline{3} 0 \overline{1} 3, & \overline{1} 0 \overline{2} 1 \sim \overline{0} 2 \overline{3} 0 \sim \overline{2} 3 \overline{1} 2 \sim \overline{3} 1 \overline{0} 3, \\
\overline{2} 1 \overline{0} 2 \sim \overline{1} 0 \overline{3} 1 \sim \overline{0} 3 \overline{2} 0 \sim \overline{3} 2 \overline{1} 3, & \overline{3} 1 \overline{2} 3 \sim \overline{1} 2 \overline{0} 1 \sim \overline{2} 0 \overline{3} 2 \sim \overline{0} 3 \overline{1} 0, \\
\overline{0} 2 \overline{1} 0 \sim \overline{2} 1 \overline{3} 2 \sim \overline{1} 3 \overline{0} 1 \sim \overline{3} 0 \overline{2} 3, & \overline{0} 1 \overline{3} 0 \sim \overline{1} 3 \overline{2} 1 \sim \overline{3} 2 \overline{0} 3 \sim \overline{2} 0 \overline{1} 2
\end{array}
$$

Since each of the twenty-four single cosets has four names, the double coset [$\overline{0} 1 \overline{2} 0]$ must have at most six distinct single cosets.

Now, $N^{(\overline{0} 1 \overline{2} 0)}$ has two orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0,1,2,3\}$ and $\{\overline{0}, \overline{1}, \overline{2}, \overline{3}\}$.
Therefore, there are at most two double cosets of the form $N w N$, where w is a word of length five given by $w=t_{0}^{-1} t_{1} t_{2}^{-1} t_{0} t_{i}^{ \pm 1}, i=0$.
But note that $N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0} t_{0}^{-1} N=N t_{0}^{-1} t_{1} t_{2}^{-1} e N=N t_{0}^{-1} t_{1} t_{2}^{-1} N$ and $N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0} t_{0} N=N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{2} N=N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} N$.

Therefore, we conclude that there are no distinct double cosets of the form $N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
66. We next consider the double coset $N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} N$.

Let $[\overline{0} 1 \overline{2} \overline{0}]$ denote the double coset $N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} N$.
Note that $N^{(\overline{0} 1 \overline{2} \overline{0})} \geq N^{\overline{0} 12 \overline{2} \overline{0}}=\langle e\rangle$. Thus $\left|N^{(\overline{0} 1 \overline{1} \overline{0})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} N\right|=\frac{|N|}{\mid N^{(\overline{0} 1 \overline{1} \overline{0})}} \leq \frac{24}{1}=24$.

Therefore, the double coset [$\overline{0} 1 \overline{2} \overline{0}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{0} 1 \overline{2} \overline{0})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length five given by $w=t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} t_{0} N=N t_{0}^{-1} t_{1} t_{2}^{-1} e N=N t_{0}^{-1} t_{1} t_{2}^{-1} N$ and $N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} t_{0}^{-1} N=N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-2} N=N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0} N$.

Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} t_{2} N=$
$N t_{0}^{-1} t_{1} t_{2} t_{0}^{-1} N, N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} N$, and $N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3} N$
$=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} N$.
Therefore, we conclude that there are three distinct double cosets of the form
$N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1} N, N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} N$, and $N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} N$.
67. We next consider the double coset $N t_{0}^{-1} t_{1} t_{2}^{-1} t_{3} N$.

Let $[\overline{0} 1 \overline{2} 3]$ denote the double coset $N t_{0}^{-1} t_{1} t_{2}^{-1} t_{3} N$.
Now, with the help of MAGMA, we know that that the following right cosets, or single cosets, are equivalent: $N t_{0}^{-1} t_{1} t_{2}^{-1} t_{3}=N t_{1}^{-1} t_{3} t_{2}^{-1} t_{0}=N t_{3}^{-1} t_{0} t_{2}^{-1} t_{1}$.

That is, in terms of our short-hand notation,

$$
\overline{0} 1 \overline{2} 3 \sim \overline{1} 3 \overline{2} 0 \sim \overline{3} 0 \overline{2} 1
$$

By conjugating the equivalence relation above with the elements of S_{4}, we determine that the following single cosets are equivalent in the double coset [$01 \overline{2} 3]$:

$$
\begin{gathered}
\overline{0} 1 \overline{2} 3 \sim \overline{1} 3 \overline{2} 0 \sim \overline{3} 02 \overline{2} 1, \quad \overline{1} 02 \overline{2} 3 \sim \overline{0} 3 \overline{2} 1 \sim \overline{3} 1 \overline{2} 0, \quad \overline{2} 1 \overline{0} 3 \sim \overline{1} 3 \overline{0} 2 \sim \overline{3} 20 \overline{0}, \\
\overline{0} 1 \overline{3} 2 \sim \overline{1} 2 \overline{3} 0 \sim \overline{2} 0 \overline{3} 1, \quad \overline{0} 2 \overline{1} 3 \sim \overline{2} 3 \overline{1} 0 \sim \overline{3} 0 \overline{1} 2, \quad \overline{1} 2 \overline{0} 3 \sim \overline{2} 3 \overline{0} 1 \sim \overline{3} 1 \overline{0} 2, \\
\overline{2} 0 \overline{1} 3 \sim \overline{0} 3 \overline{1} 2 \sim \overline{3} 2 \overline{1} 0, \quad \overline{2} 1 \overline{3} 0 \sim \overline{1} 0 \overline{3} 2 \sim \overline{0} 2 \overline{3} 1
\end{gathered}
$$

Since each of the twenty-four single cosets has three names, the double coset [$\overline{0} 1 \overline{2} 3]$ must have at most eight distinct single cosets.

Now, $N^{(\overline{0} 1 \overline{2} 3)}$ has four orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0,1,3\},\{2\},\{\overline{0}, \overline{1}, \overline{3}\}$, and $\{\overline{2}\}$.

Therefore, there are at most four double cosets of the form $N w N$, where w is a word of length five given by $w=t_{0}^{-1} t_{1} t_{2}^{-1} t_{3} t_{i}^{ \pm 1}, i \in\{2,3\}$.

But note that $N t_{0}^{-1} t_{1} t_{2}^{-1} t_{3} t_{3}^{-1} N=N t_{0}^{-1} t_{1} t_{2}^{-1} e N=N t_{0}^{-1} t_{1} t_{2}^{-1} N$ and $N t_{0}^{-1} t_{1} t_{2}^{-1} t_{3} t_{3} N=N t_{0}^{-1} t_{1} t_{2}^{-1} t_{3}^{2} N=N t_{0}^{-1} t_{1} t_{2}^{-1} t_{3}^{-1} N$.

Moreover, by relation (7.2), (01)(23) $t_{0} t_{1} t_{0}=t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow t_{1}\left(\begin{array}{ll}0 & 1\end{array}\right)(23) t_{0} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right)\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{1}\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{0} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)\left(\begin{array}{ll}2 & 3) t_{1}^{(01)(23)} t_{0} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{1}^{-1}, ~\end{array}\right.$
$\Rightarrow(01)(23) t_{0} t_{0} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23) t_{0}^{-1} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow t_{2}(01)(23) t_{0}^{-1} t_{1} t_{0}=t_{2} t_{1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23)(01)(23) t_{2}(01)(23) t_{0}^{-1} t_{1} t_{0}=t_{2} t_{1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23) t_{2}^{(01)(23)} t_{0}^{-1} t_{1} t_{0}=t_{2} t_{1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23) t_{3} t_{0}^{-1} t_{1} t_{0}=t_{2} t_{1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow t_{3}^{-1}\left(\begin{array}{ll}0 & 1)(23)\end{array} t_{3} t_{0}^{-1} t_{1} t_{0}=t_{3}^{-1} t_{2} t_{1} t_{0}^{-1} t_{1}^{-1}\right.$
$\Rightarrow(01)(23)(01)(23) t_{3}^{-1}(01)(23) t_{3} t_{0}^{-1} t_{1} t_{0}=t_{3}^{-1} t_{2} t_{1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23)\left(t_{3}^{-1}\right)^{(01)(23)} t_{3} t_{0}^{-1} t_{1} t_{0}=t_{3}^{-1} t_{2} t_{1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23) t_{2}^{-1} t_{3} t_{0}^{-1} t_{1} t_{0}=t_{3}^{-1} t_{2} t_{1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow\left[\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{2}^{-1} t_{3} t_{0}^{-1} t_{1} t_{0}\right]^{(12)(03)}=\left[t_{3}^{-1} t_{2} t_{1} t_{0}^{-1} t_{1}^{-1}\right]^{(12)(03)}$
$\Rightarrow\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{1}^{-1} t_{0} t_{3}^{-1} t_{2} t_{3}=t_{0}^{-1} t_{1} t_{2} t_{3}^{-1} t_{2}^{-1}$
$\Rightarrow(01)(23)\left[t_{0}^{-1} t_{1} t_{2}^{-1} t_{3} t_{2}\right]^{(01)(23)}=t_{0}^{-1} t_{1} t_{2} t_{3}^{-1} t_{2}^{-1}$
$\Rightarrow(01)(23)(01)(23) t_{0}^{-1} t_{1} t_{2}^{-1} t_{3} t_{2}\left(\begin{array}{ll}0 & 1\end{array}\right)(23)=t_{0}^{-1} t_{1} t_{2} t_{3}^{-1} t_{2}^{-1}$
$\Rightarrow e t_{0}^{-1} t_{1} t_{2}^{-1} t_{3} t_{2}(01)(23)=t_{0}^{-1} t_{1} t_{2} t_{3}^{-1} t_{2}^{-1}$, which implies that
$N t_{0}^{-1} t_{1} t_{2}^{-1} t_{3} t_{2} N=N t_{0}^{-1} t_{1} t_{2} t_{3}^{-1} t_{2}^{-1} N$. That is, $[\overline{0} 1 \overline{2} 32]=[\overline{0} 12 \overline{3} \overline{2}]$.
Finally, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1} t_{2}^{-1} t_{3} t_{2}^{-1} N=$ $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2} t_{3}^{-1} N$.

Therefore, we conclude that there are no distinct double cosets of the form $N t_{0}^{-1} t_{1} t_{2}^{-1} t_{3} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
68. We next consider the double coset $N t_{0}^{-1} t_{1} t_{2}^{-1} t_{3}^{-1} N$.

Let $[\overline{0} 1 \overline{2} \overline{3}]$ denote the double coset $N t_{0}^{-1} t_{1} t_{2}^{-1} t_{3}^{-1} N$.

Note that $N^{(\overline{0} 1 \overline{2} \overline{3})} \geq N^{\overline{0} 1 \overline{2} \overline{3}}=\langle e\rangle$. Thus $\left|N^{(\overline{0} 1 \overline{2} \overline{3})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0}^{-1} t_{1} t_{2}^{-1} t_{3}^{-1} N\right|=\frac{|N|}{\left|N^{(0123)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset $[\overline{0} 1 \overline{2} \overline{3}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{0} 1 \overline{2} \overline{3})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length five given by $w=t_{0}^{-1} t_{1} t_{2}^{-1} t_{3}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0}^{-1} t_{1} t_{2}^{-1} t_{3}^{-1} t_{3} N=N t_{0}^{-1} t_{1} t_{2}^{-1} e N=N t_{0}^{-1} t_{1} t_{2}^{-1} N$ and $N t_{0}^{-1} t_{1} t_{2}^{-1} t_{3}^{-1} t_{3}^{-1} N=N t_{0}^{-1} t_{1} t_{2}^{-1} t_{3}^{-2} N=N t_{0}^{-1} t_{1} t_{2}^{-1} t_{3} N$.
Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1} t_{2}^{-1} t_{3}^{-1} t_{0} N=$
$N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} N, N t_{0}^{-1} t_{1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} N=N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1} N$, and
$N t_{0}^{-1} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1} N=N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} N$.
Similarly, by relation (7.2), (01)(23) $t_{0} t_{1} t_{0}=t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23) t_{0} t_{1} t_{0} t_{0}=t_{0}^{-1} t_{1}^{-1} t_{0}$
$\Rightarrow(01)(23) t_{0} t_{1} t_{0}^{-1}=t_{0}^{-1} t_{1}^{-1} t_{0}$
$\Rightarrow t_{2}(01)(23) t_{0} t_{1} t_{0}^{-1}=t_{2} t_{0}^{-1} t_{1}^{-1} t_{0}$
$\Rightarrow(01)(23)(01)(23) t_{2}(01)(23) t_{0} t_{1} t_{0}^{-1}=t_{2} t_{0}^{-1} t_{1}^{-1} t_{0}$
$\Rightarrow\left(\begin{array}{ll}0 & 1)(23) t_{2}^{(01)(23)} t_{0} t_{1} t_{0}^{-1}=t_{2} t_{0}^{-1} t_{1}^{-1} t_{0}\end{array}\right.$
$\Rightarrow(01)(23) t_{3} t_{0} t_{1} t_{0}^{-1}=t_{2} t_{0}^{-1} t_{1}^{-1} t_{0}$
$\Rightarrow t_{3}^{-1}(01)(23) t_{3} t_{0} t_{1} t_{0}^{-1}=t_{3}^{-1} t_{2} t_{0}^{-1} t_{1}^{-1} t_{0}$
$\Rightarrow(01)(23)(01)(23) t_{3}^{-1}(01)(23) t_{3} t_{0} t_{1} t_{0}^{-1}=t_{3}^{-1} t_{2} t_{0}^{-1} t_{1}^{-1} t_{0}$
$\Rightarrow(01)(23)\left(t_{3}^{-1}\right)^{(01)(23)} t_{3} t_{0} t_{1} t_{0}^{-1}=t_{3}^{-1} t_{2} t_{0}^{-1} t_{1}^{-1} t_{0}$
$\Rightarrow(01)(23) t_{2}^{-1} t_{3} t_{0} t_{1} t_{0}^{-1}=t_{3}^{-1} t_{2} t_{0}^{-1} t_{1}^{-1} t_{0}$

$\Rightarrow(01)(23) t_{1}^{-1} t_{0} t_{2} t_{3} t_{2}^{-1}=t_{0}^{-1} t_{1} t_{2}^{-1} t_{3}^{-1} t_{2}$
$\Rightarrow(01)(23)\left[t_{0}^{-1} t_{1} t_{2} t_{3} t_{2}^{-1}\right]^{(01)}=t_{0}^{-1} t_{1} t_{2}^{-1} t_{3}^{-1} t_{2}$
$\Rightarrow(01)(23)(01) t_{0}^{-1} t_{1} t_{2} t_{3} t_{2}^{-1}(01)=t_{0}^{-1} t_{1} t_{2}^{-1} t_{3}^{-1} t_{2}$
$\Rightarrow(23) t_{0}^{-1} t_{1} t_{2} t_{3} t_{2}^{-1}(01)=t_{0}^{-1} t_{1} t_{2}^{-1} t_{3}^{-1} t_{2}$, which implies that
$N t_{0}^{-1} t_{1} t_{2} t_{3} t_{2}^{-1} N=N t_{0}^{-1} t_{1} t_{2}^{-1} t_{3}^{-1} t_{2} N$. That is, $[\overline{0} 1 \overline{2} \overline{3} 2]=[\overline{0} 123 \overline{2}]$.
Finally, by relation (7.2), (01)(23) $t_{0} t_{1} t_{0}=t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23) t_{0} t_{1} t_{0} t_{0}=t_{0}^{-1} t_{1}^{-1} t_{0}$

$$
\begin{aligned}
& \Rightarrow(01)(23) t_{0} t_{1} t_{0}^{-1}=t_{0}^{-1} t_{1}^{-1} t_{0} \\
& \Rightarrow t_{2}\left(\begin{array}{ll}
0 & 1)
\end{array}(23) t_{0} t_{1} t_{0}^{-1}=t_{2} t_{0}^{-1} t_{1}^{-1} t_{0}\right. \\
& \Rightarrow(01)(23)(01)(23) t_{2}(01)(23) t_{0} t_{1} t_{0}^{-1}=t_{2} t_{0}^{-1} t_{1}^{-1} t_{0} \\
& \Rightarrow\left(\begin{array}{ll}
01
\end{array}\right)\left(\begin{array}{ll}
2 & 3
\end{array}\right) t_{2}^{(01)(23)} t_{0} t_{1} t_{0}^{-1}=t_{2} t_{0}^{-1} t_{1}^{-1} t_{0} \\
& \Rightarrow(01)(23) t_{3} t_{0} t_{1} t_{0}^{-1}=t_{2} t_{0}^{-1} t_{1}^{-1} t_{0} \\
& \Rightarrow t_{3}^{-1}(01)(23) t_{3} t_{0} t_{1} t_{0}^{-1}=t_{3}^{-1} t_{2} t_{0}^{-1} t_{1}^{-1} t_{0} \\
& \Rightarrow(01)(23)(01)(23) t_{3}^{-1}(01)(23) t_{3} t_{0} t_{1} t_{0}^{-1}=t_{3}^{-1} t_{2} t_{0}^{-1} t_{1}^{-1} t_{0} \\
& \Rightarrow(01)(23)\left(t_{3}^{-1}\right)^{(01)(23)} t_{3} t_{0} t_{1} t_{0}^{-1}=t_{3}^{-1} t_{2} t_{0}^{-1} t_{1}^{-1} t_{0} \\
& \Rightarrow(01)(23) t_{2}^{-1} t_{3} t_{0} t_{1} t_{0}^{-1}=t_{3}^{-1} t_{2} t_{0}^{-1} t_{1}^{-1} t_{0} \\
& \left.\left.\Rightarrow\left[\left(\begin{array}{lll}
0 & 1
\end{array}\right)\left(\begin{array}{ll}
2 & 3
\end{array}\right) t_{2}^{-1} t_{3} t_{0} t_{1} t_{0}^{-1}\right]^{(0} 2113\right)=\left[t_{3}^{-1} t_{2} t_{0}^{-1} t_{1}^{-1} t_{0}\right]^{(0} 2113\right) \\
& \Rightarrow(01)(23) t_{1}^{-1} t_{0} t_{2} t_{3} t_{2}^{-1}=t_{0}^{-1} t_{1} t_{2}^{-1} t_{3}^{-1} t_{2} \\
& \Rightarrow(01)(23)\left[t_{0}^{-1} t_{1} t_{2} t_{3} t_{2}^{-1}\right]^{(01)}=t_{0}^{-1} t_{1} t_{2}^{-1} t_{3}^{-1} t_{2} \\
& \Rightarrow(01)(23)(01) t_{0}^{-1} t_{1} t_{2} t_{3} t_{2}^{-1}(01)=t_{0}^{-1} t_{1} t_{2}^{-1} t_{3}^{-1} t_{2} \\
& \Rightarrow(23) t_{0}^{-1} t_{1} t_{2} t_{3} t_{2}^{-1}(01)=t_{0}^{-1} t_{1} t_{2}^{-1} t_{3}^{-1} t_{2} \\
& \Rightarrow(23) t_{0}^{-1} t_{1} t_{2} t_{3} t_{2}^{-1}(01) t_{2}=t_{0}^{-1} t_{1} t_{2}^{-1} t_{3}^{-1} t_{2} t_{2} \\
& \Rightarrow\left(\begin{array}{ll}
2 & 3
\end{array}\right) t_{0}^{-1} t_{1} t_{2} t_{3} t_{2}^{-1}\left(\begin{array}{ll}
0 & 1
\end{array}\right) t_{2}\left(\begin{array}{ll}
0 & 1
\end{array}\right)\left(\begin{array}{l}
0
\end{array}\right)=t_{0}^{-1} t_{1} t_{2}^{-1} t_{3}^{-1} t_{2}^{-1} \\
& \Rightarrow(23) t_{0}^{-1} t_{1} t_{2} t_{3} t_{2}^{-1} t_{2}^{(01)}(01)=t_{0}^{-1} t_{1} t_{2}^{-1} t_{3}^{-1} t_{2}^{-1} \\
& \Rightarrow(23) t_{0}^{-1} t_{1} t_{2} t_{3} t_{2}^{-1} t_{2}(01)=t_{0}^{-1} t_{1} t_{2}^{-1} t_{3}^{-1} t_{2}^{-1} \\
& \Rightarrow(23) t_{0}^{-1} t_{1} t_{2} t_{3}(01)=t_{0}^{-1} t_{1} t_{2}^{-1} t_{3}^{-1} t_{2}^{-1} \text {, which implies that } \\
& N t_{0}^{-1} t_{1} t_{2} t_{3} N=N t_{0}^{-1} t_{1} t_{2}^{-1} t_{3}^{-1} t_{2}^{-1} N \text {. That is, }[\overline{0} 1 \overline{2} \overline{3} \overline{2}]=[\overline{0} 123] .
\end{aligned}
$$

Therefore, we conclude that there is one distinct double coset of the form
$N t_{0}^{-1} t_{1} t_{2}^{-1} t_{3}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0}^{-1} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} N$.
69. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} N$.

Let [$0 \overline{1} 201]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} N$.
Note that $N^{(0 \overline{1} 201)} \geq N^{0 \overline{1} 201}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} 201)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} N\right|=\frac{|N|}{\left|N^{(0 \overline{1} 201)}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [01201] has at most twenty-four distinct single cosets.
Moreover, $N^{(01 \overline{201)}}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} e N=N t_{0} t_{1}^{-1} t_{2} t_{0} N$ and
$N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{2} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} N$.
Moreover, by relation (7.2), (01)(23) $t_{0} t_{1} t_{0}=t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow t_{2}(01)(23) t_{0} t_{1} t_{0}=t_{2} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23)(01)(23) t_{2}(01)(23) t_{0} t_{1} t_{0}=t_{2} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23) t_{2}^{(01)(23)} t_{0} t_{1} t_{0}=t_{2} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23) t_{3} t_{0} t_{1} t_{0}=t_{2} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow t_{0}^{-1}(01)(23) t_{3} t_{0} t_{1} t_{0}=t_{0}^{-1} t_{2} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23)(01)(23) t_{0}^{-1}(01)(23) t_{3} t_{0} t_{1} t_{0}=t_{0}^{-1} t_{2} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow\left(\begin{array}{ll}0 & 1)(23) \\ \hline\end{array} t_{0}^{-1}\right)^{(01)(23)} t_{3} t_{0} t_{1} t_{0}=t_{0}^{-1} t_{2} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23) t_{1}^{-1} t_{3} t_{0} t_{1} t_{0}=t_{0}^{-1} t_{2} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow t_{1}(01)(23) t_{1}^{-1} t_{3} t_{0} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{2} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23)(01)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{1}\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{1}^{-1} t_{3} t_{0} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{2} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)\left(\begin{array}{ll}2 & 3)\end{array} t_{1}^{(01)(23)} t_{1}^{-1} t_{3} t_{0} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{2} t_{0}^{-1} t_{1}^{-1}\right.$
$\Rightarrow(01)(23) t_{0} t_{1}^{-1} t_{3} t_{0} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{2} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow\left[\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{0} t_{1}^{-1} t_{3} t_{0} t_{1} t_{0}\right]^{(01)}=\left[t_{1} t_{0}^{-1} t_{2} t_{0}^{-1} t_{1}^{-1}\right]^{(01)}$
$\Rightarrow(01)(23) t_{1} t_{0}^{-1} t_{3} t_{1} t_{0} t_{1}=t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}^{-1}$
$\Rightarrow(01)(23)\left[t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}\right]^{(01)(23)}=t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}^{-1}$
$\Rightarrow(01)(23)(01)(23) t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}(01)(23)=t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}^{-1}$
$\Rightarrow e t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}(01)(23)=t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}^{-1}$, which implies that
$N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0} N=N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}^{-1} N$. That is, $[0 \overline{1} 2010]=[0 \overline{1} 2 \overline{1} \overline{0}]$.
Therefore, we conclude that there are five distinct double cosets of the form
$N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} N, N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{2} N$, $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{2}^{-1} N, N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{3} N$, and $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{3}^{-1} N$.
70. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} N$.

Let $[0 \overline{1} 20 \overline{1}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} N$.
Note that $N^{(0 \overline{1} 20 \overline{1})} \geq N^{0 \overline{1} 20 \overline{1}}=\langle e\rangle$. Thus $\left|N^{(0 \overline{2} 20 \overline{1})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} N\right|=\frac{|N|}{\left|N^{(0 \hat{1} 201)}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [$0 \overline{1} 20 \overline{1}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} 20 \overline{1})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} e N=N t_{0} t_{1}^{-1} t_{2} t_{0} N$ and $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-2} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{0} N=$
$N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} N, N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{3} N$, and $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{3}^{-1} N=$ $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0} N$.

Therefore, we conclude that there are three distinct double cosets of the form
$N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2} N, N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2}^{-1} N$, and $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{3} N$.
71. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} N$.

Let [01203] denote the double coset $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} N$.
Note that $N^{(0 \overline{1} 203)} \geq N^{0 \overline{1} 203}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} 203)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} N\right|=\frac{|N|}{\left|N^{(01203)}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [01203] has at most twenty-four distinct single cosets.
Moreover, $N^{(01 \overline{203)}}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} e N=N t_{0} t_{1}^{-1} t_{2} t_{0} N$ and $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} t_{3} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{2} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} t_{0} N=$ $N t_{0} t_{1}^{-1} t_{2} t_{3} N, N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} N$, and $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} t_{2}^{-1} N=$ $N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} N$.

Therefore, we conclude that there are three distinct double cosets of the form $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} t_{1} N, N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} t_{1}^{-1} N$, and $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} t_{2} N$.
72. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} N$.

Let $[0 \overline{1} 20 \overline{3}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} N$.

Note that $N^{(0 \overline{1} 20 \overline{3})} \geq N^{0 \overline{1} 20 \overline{3}}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} 20 \overline{3})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} N\right|=\frac{|N|}{\left.\mid N^{(012033}\right) \mid} \leq \frac{24}{1}=24$.

Therefore, the double coset [$0 \overline{1} 20 \overline{3}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{2} 20 \overline{3})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{3} N=N t_{0} t_{1}^{-1} t_{2} t_{0} e N=N t_{0} t_{1}^{-1} t_{2} t_{0} N$ and
$N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-2} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{0} N=$ $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{1} N$.

Therefore, we conclude that there are four distinct double cosets of the form
$N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1} N, N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1}^{-1} N$, $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{2} N$, and $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{2}^{-1} N$.
73. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} N$.

Let [$0 \overline{1} 21 \overline{0}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} N$.
Note that $N^{(0 \overline{1} 21 \overline{0})} \geq N^{0 \overline{1} 21 \overline{0}}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} 21 \overline{0})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} N\right|=\frac{|N|}{\left|N^{(\overline{\mathrm{O}} 21 \mathrm{O})}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [$0 \overline{1} 21 \overline{0}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} 21 \overline{0})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{0} N=N t_{0} t_{1}^{-1} t_{2} t_{1} e N=N t_{0} t_{1}^{-1} t_{2} t_{1} N$ and $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-2} \dot{N}=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{1}^{-1} N=$
$N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}^{-1} N, N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{2} N=N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1} N$, and $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{2}^{-1} N=$ $N t_{0} t_{1} t_{2}^{-1} t_{3} t_{1} N$.

Therefore, we conclude that there are three distinct double cosets of the form $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{1} N, N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3} N$, and $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3}^{-1} N$.
74. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} N$.

Let [01213] denote the double coset $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} N$.
Note that $N^{(0 \overline{1} 213)} \geq N^{0 \overline{1} 213}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} 213)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} N\right|=\frac{|N|}{\left|N^{(01213)}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [$0 \overline{1} 213]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{2} 213)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{1} e N=N t_{0} t_{1}^{-1} t_{2} t_{1} N$ and $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{3} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{2} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{1} N=N t_{0} t_{1}^{-1} t_{2} t_{3} N$ and $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} N$.

Therefore, we conclude that there are four distinct double cosets of the form $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0} N, N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0}^{-1} N$, $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{2} N$, and $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{2}^{-1} N$.
75. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} N$.

Let [$0 \overline{1} 21 \overrightarrow{3}$] denote the double coset $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} N$.
Note that $N^{(0 \overline{1} 21 \overline{3})} \geq N^{0 \overline{1} 21 \overline{3}}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} 21 \overline{3})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma $1.4,\left|N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} N\right|=\frac{|N|}{\left|N^{(01213)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} 21 \overline{3}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} 21 \overline{3})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{3} N=N t_{0} t_{1}^{-1} t_{2} t_{1} e N=N t_{0} t_{1}^{-1} t_{2} t_{1} N$ and
$N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-2} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{1} N=$
$N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} N, N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{3}^{-1} N, N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{2} N=$ $N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1} N$, and $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{2}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{0} t_{1} N$.

Therefore, we conclude that there are two distinct double cosets of the form $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0} N$ and $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0}^{-1} N$.
76. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0} N$.

Let $[0 \overline{1} 2 \overline{1} 0]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0} N$.
Now, with the help of MAGMA, we know that that the following right cosets, or single cosets, are equivalent: $N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}=N t_{1} t_{3}^{-1} t_{2} t_{3}^{-1} t_{1}=N t_{3} t_{0}^{-1} t_{2} t_{0}^{-1} t_{3}$.

That is, in terms of our short-hand notation,

$$
0 \overline{1} 2 \overline{1} 0 \sim 1 \overline{3} 2 \overline{3} 1 \sim 3 \overline{0} 2 \overline{0} 3 .
$$

By conjugating the equivalence relation above with the elements of S_{4}, we determine that the following single cosets are equivalent in the double coset [0 $\overline{1} 2 \overrightarrow{1} 0]$:

$$
\begin{array}{ll}
0 \overline{1} 2 \overline{1} 0 \sim 1 \overline{3} 2 \overline{3} 1 \sim 3 \overline{0} 2 \overline{0} 1, & 1 \overline{0} 2 \overline{0} 1 \sim 0 \overline{3} 2 \overline{3} 0 \sim 3 \overline{1} 2 \overline{1} 3, \\
2 \overline{1} 0 \overline{1} 2 \sim 1 \overline{3} 0 \overline{3} 1 \sim 3 \overline{2} 0 \overline{2} 3, & 0 \overline{1} 3 \overline{1} 0 \sim 1 \overline{2} 3 \overline{2} 1 \sim 2 \overline{0} 3 \overline{0} 2, \\
0 \overline{2} 1 \overline{2} 0 \sim 2 \overline{3} 1 \overline{3} 2 \sim 3 \overline{0} 1 \overline{0} 3, & 1 \overline{2} 0 \overline{2} 1 \sim 2 \overline{3} 0 \overline{3} 2 \sim 3 \overline{1} 0 \overline{1} 3, \\
2 \overline{0} 1 \overline{0} 2 \sim 0 \overline{3} 1 \overline{3} 0 \sim 3 \overline{2} 1 \overline{2} 3, & 2 \overline{1} 3 \overline{1} 2 \sim 10 \overline{0} 3 \overline{0} 1 \sim 0 \overline{2} 3 \overline{2} 0
\end{array}
$$

Since each of the twenty-four single cosets has three names, the double coset [$0 \overline{1} 2 \overline{1} 0$] must have at most eight distinct single cosets.
Moreover, $N^{(0 \overline{1} 2 \overline{1} 0)}$ has four orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0,1,3\},\{2\},\{\overline{0}, \overline{1}, \overline{3}\}$, and $\{\overline{2}\}$.

Therefore, there are at most four double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0} t_{i}^{ \pm 1}, i \in\{0,2\}$.

But note that $N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} e N=N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0} t_{0} N=N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}^{2} N=N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}^{-1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0} t_{2} N=$ $N t_{0} t_{1}^{-1} t_{2} t_{3}^{-1} t_{2}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{3}^{-1} N$.

Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
77. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}^{-1} N$.

Let [$0 \overline{1} 2 \overline{1} \overline{0}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}^{-1} N$.
Note the $N^{(0 \overline{1} 2 \overline{1} \overline{0})} \geq N^{0 \hat{1} 2 \overline{1} \overline{0}}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} 2 \overline{1} \overline{0})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma $1.4,\left|N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}^{-1} N\right|=\frac{|N|}{\left|N^{(0 \overline{1} 2 \overline{1} \bar{O})}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} 2 \overline{1} \overline{0}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} 2 \overline{1} \overline{0})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\tilde{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}^{-1} t_{0} N=N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} e N=N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}^{-1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}^{-2} N=N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}^{-1} t_{1} N=$
$N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} N, N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} N, N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}^{-1} t_{2} N=$
$N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} N, N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{0} t_{2} t_{3} N, N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}^{-1} t_{3} N=$ $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} N$, and $N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}^{-1} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{1} N$.

Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
78. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{3} N$.

Let [$0 \overline{1} 2 \overline{1} 3]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{3} N$.
Now, with the help of MAGMA, we know that that the following right cosets, or single cosets, are equivalent: $N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{3}=N t_{1} t_{0}^{-1} t_{3} t_{0}^{-1} t_{2}=N t_{2} t_{3}^{-1} t_{1} t_{3}^{-1} t_{0}=$ $N t_{3} t_{2}^{-1} t_{0} t_{2}^{-1} t_{1}$.

That is, in terms of our short-hand notation,

$$
0 \overline{1} 2 \overline{1} 3 \sim 1 \overline{0} 3 \overline{0} 2 \sim 2 \overline{3} 1 \overline{3} 0 \sim 3 \overline{2} 0 \overline{2} 1
$$

By conjugating the equivalence relation above with the elements of S_{4}, we determine that the following single cosets are equivalent in the double coset [$0 \overline{1} 2 \overline{1} 3]$:

$$
\begin{array}{ll}
0 \overline{1} 2 \overline{1} 3 \sim 10 \overline{0} 30 \overline{2} \sim 2 \overline{3} 1 \overline{3} 0 \sim 3 \overline{2} 0 \overline{2} 1, & 102 \overline{0} 3 \sim 0 \overline{1} 3 \overline{1} 2 \sim 2 \overline{3} 0 \overline{3} 1 \sim 3 \overline{2} 120, \\
2 \overline{1} 0 \overline{1} 3 \sim 1 \overline{2} 3 \overline{2} 0 \sim 0 \overline{3} 1 \overline{3} 2 \sim 3 \overline{0} 2 \overline{0} 1, & 3 \overline{1} 2 \overline{1} 0 \sim 1 \overline{3} 0 \overline{3} 2 \sim 2 \overline{0} 1 \overline{0} 3 \sim 0 \overline{2} 3 \overline{2} 1, \\
1 \overline{2} 0 \overline{2} 3 \sim 2 \overline{1} 3 \overline{1} 0 \sim 0 \overline{3} 2 \overline{3} 1 \sim 3 \overline{0} 10 \overline{0} 2, & 1 \overline{3} 2 \overline{3} 0 \sim 3 \overline{1} 0 \overline{1} 2 \sim 2 \overline{0} 3 \overline{0} 1 \sim 0 \overline{2} 1 \overline{2} 3
\end{array}
$$

Since each of the twenty-four single cosets has four names, the double coset [0 $\overline{1} 2 \overline{1} 3$] must have at most six distinct single cosets.

Moreover, $N^{(0 \overline{1} 2 \overline{1} 3)}$ has two orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0,1,2,3\}$ and $\{\overline{0}, \overline{1}, \overline{2}, \overline{3}\}$.
Therefore, there are at most two double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{3} t_{i}^{ \pm 1}, i=3$.

But note that $N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{3} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} e N=N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{3} t_{3} N=N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{3}^{2} N=N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{3}^{-1} N$.

Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{3} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
79. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{3}^{-1} N$.

Let [$0 \overline{1} 2 \overline{1} \overline{3}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{3}^{-1} N$.
Note that $N^{(0 \overline{1} 2 \overline{1} \overline{3})} \geq N^{0 \overline{1} 2 \overline{1} \overline{3}}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} 2 \overline{1} \overline{3})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{3}^{-1} N\right|=\frac{|N|}{\left|N^{(0 \overline{121} \overline{3})}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [$0 \overline{1} 2 \overline{1} \overline{3}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} 2 \overline{1} \overline{3})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{3}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{3}^{-1} t_{3} N=N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} e N=N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{3}^{-1} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{3}^{-2} N=N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{3} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{3}^{-1} t_{0} N=$ $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} N, N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{3}^{-1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} N, N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{3}^{-1} t_{1} N=$
$N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{1} N, N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{3}^{-1} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} N, N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{3}^{-1} t_{2} N=$ $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} N$, and $N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{3}^{-1} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} N$.

Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{3}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
80. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} N$.

Let [$0 \overline{1} 231]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} N$.
Note that $N^{(0 \overline{1} 231)} \geq N^{0 \overline{1} 231}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} 231)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma $1.4,\left|N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} N\right|=\frac{|N|}{\left|N^{(0 \overline{1} 231)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} 231]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(01 \overline{231})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{3} e N=N t_{0} t_{1}^{-1} t_{2} t_{3} N$ and $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{1} N=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1}^{2} N=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1}^{-1} N$.

Moreover, by relation (7.2), (01)(23) $t_{0} t_{1} t_{0}=t_{0}^{-1} t_{1}^{-1}$

$$
\begin{aligned}
& \Rightarrow t_{2}\left(\begin{array}{ll}
0 & 1)
\end{array}\left(\begin{array}{ll}
2 & 3
\end{array}\right) t_{0} t_{1} t_{0}=t_{2} t_{0}^{-1} t_{1}^{-1}\right. \\
& \Rightarrow(01)(23)(01)(23) t_{2}(01)(23) t_{0} t_{1} t_{0}=t_{2} t_{0}^{-1} t_{1}^{-1} \\
& \Rightarrow(01)(23) t_{2}^{(01)(23)} t_{0} t_{1} t_{0}=t_{2} t_{0}^{-1} t_{1}^{-1} \\
& \Rightarrow\left(\begin{array}{ll}
0 & 1)(23)
\end{array} t_{3} t_{0} t_{1} t_{0}=t_{2} t_{0}^{-1} t_{1}^{-1}\right. \\
& \Rightarrow t_{0}^{-1}(01)(23) t_{3} t_{0} t_{1} t_{0}=t_{0}^{-1} t_{2} t_{0}^{-1} t_{1}^{-1} \\
& \Rightarrow\left(\begin{array}{ll}
0 & 1
\end{array}\right)\left(\begin{array}{ll}
2 & 3
\end{array}\right)\left(\begin{array}{ll}
0 & 1
\end{array}\right)\left(\begin{array}{ll}
2 & 3
\end{array}\right) t_{0}^{-1}(01)(23) t_{3} t_{0} t_{1} t_{0}=t_{0}^{-1} t_{2} t_{0}^{-1} t_{1}^{-1} \\
& \Rightarrow(01)(23)\left(t_{0}^{-1}\right)^{(01)(23)} t_{3} t_{0} t_{1} t_{0}=t_{0}^{-1} t_{2} t_{0}^{-1} t_{1}^{-1} \\
& \Rightarrow(01)(23) t_{1}^{-1} t_{3} t_{0} t_{1} t_{0}=t_{0}^{-1} t_{2} t_{0}^{-1} t_{1}^{-1} \\
& \Rightarrow t_{3}\left(\begin{array}{ll}
0 & 1
\end{array}\right)\left(\begin{array}{ll}
2 & 3)
\end{array} t_{1}^{-1} t_{3} t_{0} t_{1} t_{0}=t_{3} t_{0}^{-1} t_{2} t_{0}^{-1} t_{1}^{-1}\right. \\
& \Rightarrow(01)(23)(01)(23) t_{3}(01)(23) t_{1}^{-1} t_{3} t_{0} t_{1} t_{0}=t_{3} t_{0}^{-1} t_{2} t_{0}^{-1} t_{1}^{-1} \\
& \Rightarrow(01)(23) t_{3}^{(01)(23)} t_{1}^{-1} t_{3} t_{0} t_{1} t_{0}=t_{3} t_{0}^{-1} t_{2} t_{0}^{-1} t_{1}^{-1} \\
& \Rightarrow(01)(23) t_{2} t_{1}^{-1} t_{3} t_{0} t_{1} t_{0}=t_{3} t_{0}^{-1} t_{2} t_{0}^{-1} t_{1}^{-1} \\
& \Rightarrow\left[\left(\begin{array}{ll}
0 & 1
\end{array}\right)\left(\begin{array}{ll}
2 & 3
\end{array}\right) t_{2} t_{1}^{-1} t_{3} t_{0} t_{1} t_{0}\right]^{\left(\begin{array}{lll}
0 & 1
\end{array}\right)}=\left[t_{3} t_{0}^{-1} t_{2} t_{0}^{-1} t_{1}^{-1}\right]^{\left(\begin{array}{lll}
(1)
\end{array}\right)} \\
& \Rightarrow(02)(13) t_{2} t_{3}^{-1} t_{0} t_{1} t_{3} t_{1}=t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{3}^{-1}
\end{aligned}
$$

$\Rightarrow\left(\begin{array}{ll}0 & 2)\end{array}\left(\begin{array}{ll}1 & 3\end{array}\right)\left[t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{3}\right]^{(02)(13)}=t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{3}^{-1}\right.$
$\Rightarrow(02)(13)(02)(13) t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{3}(02)(13)=t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{3}^{-1}$
$\Rightarrow e t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{3}(02)(13)=t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{3}^{-1}$, which implies that
$N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{3} N=N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{3}^{-1} N$. That is, $[0 \overline{1} 2313]=[0 \overline{1} 2 \overline{1} \overline{3}]$.
Similarly, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{3}^{-1} N=$
$N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{1} N$.
Therefore, we conclude that there are four distinct double cosets of the form
$N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{0} N, N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{0}^{-1} N$, $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{2} N$, and $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{2}^{-1} N$.
81. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} N$.

Let $[0 \overline{1} 23 \overline{2}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} N$.
Note that $N^{(0 \overline{1} 23 \overline{2})} \geq N^{0 \overline{1} 23 \overline{2}}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} 23 \overline{2})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} N\right|=\frac{|N|}{\left|N^{(01232)}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [$0 \overline{1} 23 \overline{2}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} 23 \overline{2})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{2} N=N t_{0} t_{1}^{-1} t_{2} t_{3} e N=N t_{0} t_{1}^{-1} t_{2} t_{3} N$ and $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-2} N=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{3} N=$ $N t_{0} t_{1}^{-1} t_{0} t_{2} t_{3} N$ and $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}^{-1} N$.
Therefore, we conclude that there are four distinct double cosets of the form $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{0} N, N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{0}^{-1} N$, $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{1} N$, and $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{1}^{-1} N$.
82. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2} t_{3}^{-1} t_{2}^{-1} N$.

Let $[0 \overline{1} 2 \overline{3} \overline{2}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2} t_{3}^{-1} t_{2}^{-1} N$.
Now, with the help of MAGMA, we know that that the following right cosets, or single cosets, are equivalent: $N t_{0} t_{1}^{-1} t_{2} t_{3}^{-1} t_{2}^{-1}=N t_{1} t_{3}^{-1} t_{2} t_{0}^{-1} t_{2}^{-1}=N t_{3} t_{0}^{-1} t_{2} t_{1}^{-1} t_{2}^{-1}$.

That is, in terms of our short-hand notation,

$$
0 \overline{1} 2 \overline{3} \overline{2} \sim 1 \overline{3} 2 \overline{0} \overline{2} \sim 3 \overline{0} 2 \overline{1} \overline{2}
$$

By conjugating the equivalence relation above with the elements of S_{4}, we determine that the following single cosets are equivalent in the double coset [$0 \overline{1} 2 \overline{3} \overline{2}]$:

$$
\begin{aligned}
& 0 \overline{1} 2 \overline{3} \overline{2} \sim 1 \overline{3} 2 \overline{0} \overline{2} \sim 3 \overline{0} 2 \overline{1} \overline{2} \quad 1 \overline{0} 2 \overline{3} \overline{2} \sim 0 \overline{3} 2 \overline{1} \overline{2} \sim 3 \overline{1} 2 \overline{0} \overline{2} \quad 2 \overline{1} 0 \overline{3} \overline{0} \sim 1 \overline{3} 0 \overline{2} \overline{0} \sim 3 \overline{2} 0 \overline{1} \overline{0} \\
& 1 \overline{2} 0 \overline{3} \overline{0} \sim 2 \overline{3} 0 \overline{1} \overline{0} \sim 3 \overline{1} 0 \overline{2} \overline{0} \quad 2 \overline{0} 1 \overline{3} \overline{1} \sim 0 \overline{3} 1 \overline{2} \overline{1} \sim 3 \overline{2} 1 \overline{0} \overline{1} \quad 0 \overline{2} 1 \overline{3} \overline{1} \sim 2 \overline{3} 1 \overline{0} \overline{1} \sim 3 \overline{0} 1 \overline{1} \overline{1} \\
& 0 \overline{1} 3 \overline{2} \overline{3} \sim 1 \overline{2} 30 \overline{3} \sim 2 \overline{0} 3 \overline{1} \overline{3} \quad 0 \overline{2} 3 \overline{1} \overline{3} \sim 2 \overline{1} 3 \overline{0} \overline{3} \sim 10 \overline{0} \overline{2} \overline{3}
\end{aligned}
$$

Since each of the twenty-four single cosets has three names, the double coset [$0 \overline{1} 2 \overline{3} \overline{2}]$ must have at most eight distinct single cosets.

Moreover, $N^{(0 \overline{1} 2 \overline{3} \overline{2})}$ has four orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0,1,3\},\{2\},\{\overline{0}, \overline{1}, \overline{3}\}$, and $\{\overline{2}\}$.

Therefore, there are at most four double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1}^{-1} t_{2} t_{3}^{-1} t_{2}^{-1} t_{i}^{ \pm 1}, i \in\{2,3\}$.

But note that $N t_{0} t_{1}^{-1} t_{2} t_{3}^{-1} t_{2}^{-1} t_{2} N=N t_{0} t_{1}^{-1} t_{2} t_{3}^{-1} e N=N t_{0} t_{1}^{-1} t_{2} t_{3}^{-1} N$ and
$N t_{0} t_{1}^{-1} t_{2} t_{3}^{-1} t_{2}^{-1} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{3}^{-1} t_{2}^{-2} N=N t_{0} t_{1}^{-1} t_{2} t_{3}^{-1} t_{2} N$.
Moreover, by relation (7.2), (01)(23) $t_{0} t_{1} t_{0}=t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow t_{1}\left(\begin{array}{l}0\end{array}\right)(23) t_{0} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23)(01)(23) t_{1}(01)(23) t_{0} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23) t_{1}^{(01)(23)} t_{0} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23) t_{0} t_{0} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23) t_{0}^{-1} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow t_{2}^{-1}(01)(23) t_{0}^{-1} t_{1} t_{0}=t_{2}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23)(01)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{2}^{-1}(01)(23) t_{0}^{-1} t_{1} t_{0}=t_{2}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23)\left(t_{2}^{-1}\right){ }^{(01)(23)} t_{0}^{-1} t_{1} t_{0}=t_{2}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23) t_{3}^{-1} t_{0}^{-1} t_{1} t_{0}=t_{2}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow t_{3}(01)(23) t_{3}^{-1} t_{0}^{-1} t_{1} t_{0}=t_{3} t_{2}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23)(01)(23) t_{3}(01)(23) t_{3}^{-1} t_{0}^{-1} t_{1} t_{0}=t_{3} t_{2}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23) t_{3}^{(01)(23)} t_{3}^{-1} t_{0}^{-1} t_{1} t_{0}=t_{3} t_{2}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23) t_{2} t_{3}^{-1} t_{0}^{-1} t_{1} t_{0}=t_{3} t_{2}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1}$

$$
\begin{aligned}
& \Rightarrow\left[\left(\begin{array}{ll}
0 & 1) \\
(23) & 3
\end{array} t_{2} t_{3}^{-1} t_{0}^{-1} t_{1} t_{0}\right]^{(03)(12)}=\left[t_{3} t_{2}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1}\right]^{(03)(12)}\right. \\
& \Rightarrow(01)(23) t_{1} t_{0}^{-1} t_{3}^{-1} t_{2} t_{3}=t_{0} t_{1}^{-1} t_{2} t_{3}^{-1} t_{2}^{-1} \\
& \Rightarrow(01)(23)\left[t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2}\right]^{(01)(23)}=t_{0} t_{1}^{-1} t_{2} t_{3}^{-1} t_{2}^{-1} \\
& \Rightarrow(01)(23)(01)(23) t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2}(01)(23)=t_{0} t_{1}^{-1} t_{2} t_{3}^{-1} t_{2}^{-1} \\
& \Rightarrow e t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2}(01)(23)=t_{0} t_{1}^{-1} t_{2} t_{3}^{-1} t_{2}^{-1} \\
& \Rightarrow e t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2}(01)(23) t_{3}=t_{0} t_{1}^{-1} t_{2} t_{3}^{-1} t_{2}^{-1} t_{3} \\
& \Rightarrow e t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2}(01)(23) t_{3}(01)(23)(01)(23)=t_{0} t_{1}^{-1} t_{2} t_{3}^{-1} t_{2}^{-1} t_{3} \\
& \Rightarrow e t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2} t_{3}^{(01)(23)}(01)(23)=t_{0} t_{1}^{-1} t_{2} t_{3}^{-1} t_{2}^{-1} t_{3} \\
& \Rightarrow e t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2} t_{2}(01)(23)=t_{0} t_{1}^{-1} t_{2} t_{3}^{-1} t_{2}^{-1} t_{3} \\
& \Rightarrow e t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2}^{-1}(01)(23)=t_{0} t_{1}^{-1} t_{2} t_{3}^{-1} t_{2}^{-1} t_{3} \text {, which implies that } \\
& N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{3}^{-1} t_{2}^{-1} t_{3} N \text {. That is, }[0 \overline{1} 2 \overline{3} \overline{2} 3]=[0 \overline{1} \overline{2} 3 \overline{2}] .
\end{aligned}
$$

Similarly, by relation (7.2), (01)(23) $t_{0} t_{1} t_{0}=t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow t_{1}(01)(23) t_{0} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23)(01)(23) t_{1}(01)(23) t_{0} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23) t_{1}^{(01)(23)} t_{0} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23) t_{0} t_{0} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23) t_{0}^{-1} t_{1} t_{0}=t_{1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow t_{2}^{-1}(01)(23) t_{0}^{-1} t_{1} t_{0}=t_{2}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23)(01)(23) t_{2}^{-1}(01)(23) t_{0}^{-1} t_{1} t_{0}=t_{2}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23)\left(t_{2}^{-1}\right)^{(01)(23)} t_{0}^{-1} t_{1} t_{0}=t_{2}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23) t_{3}^{-1} t_{0}^{-1} t_{1} t_{0}=t_{2}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow t_{3}\left(\begin{array}{l}0\end{array}\right)(23) t_{3}^{-1} t_{0}^{-1} t_{1} t_{0}=t_{3} t_{2}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow(01)(23)(01)(23) t_{3}\left(\begin{array}{ll}0 & 1\end{array}\right)(23) t_{3}^{-1} t_{0}^{-1} t_{1} t_{0}=t_{3} t_{2}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1}$
$\Rightarrow\left(\begin{array}{ll}0 & 1)(23) t_{3}^{(01)(23)} t_{3}^{-1} t_{0}^{-1} t_{1} t_{0}=t_{3} t_{2}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1}, ~\end{array}\right.$
$\Rightarrow(01)(23) t_{2} t_{3}^{-1} t_{0}^{-1} t_{1} t_{0}=t_{3} t_{2}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1}$
$\left.\Rightarrow\left[\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{2} t_{3}^{-1} t_{0}^{-1} t_{1} t_{0}\right]^{(03)(12)}=\left[t_{3} t_{2}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1}\right]^{(0)} 3\right)\left(\begin{array}{ll}1 & 2)\end{array}\right.$
$\Rightarrow(01)(23) t_{1} t_{0}^{-1} t_{3}^{-1} t_{2} t_{3}=t_{0} t_{1}^{-1} t_{2} t_{3}^{-1} t_{2}^{-1}$
$\Rightarrow(01)(23)\left[t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2}\right]^{(01)(23)}=t_{0} t_{1}^{-1} t_{2} t_{3}^{-1} t_{2}^{-1}$
$\Rightarrow(01)(23)(01)(23) t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2}(01)(23)=t_{0} t_{1}^{-1} t_{2} t_{3}^{-1} t_{2}^{-1}$
$\Rightarrow e t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2}(01)(23)=t_{0} t_{1}^{-1} t_{2} t_{3}^{-1} t_{2}^{-1}$
$\Rightarrow e t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2}(01)(23) t_{3}^{-1}=t_{0} t_{1}^{-1} t_{2} t_{3}^{-1} t_{2}^{-1} t_{3}^{-1}$
$\Rightarrow e t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2}(01)(23) t_{3}^{-1}(01)(23)(01)(23)=t_{0} t_{1}^{-1} t_{2} t_{3}^{-1} t_{2}^{-1} t_{3}^{-1}$
$\Rightarrow e t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2}\left(t_{3}^{-1}\right)^{(01)(23)}(01)(23)=t_{0} t_{1}^{-1} t_{2} t_{3}^{-1} t_{2}^{-1} t_{3}^{-1}$
$\Rightarrow e t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2} t_{2}^{-1}(01)(23)=t_{0} t_{1}^{-1} t_{2} t_{3}^{-1} t_{2}^{-1} t_{3}^{-1}$
$\Rightarrow e t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}\left(\begin{array}{ll}0 & 1)(23)\end{array}\right)=t_{0} t_{1}^{-1} t_{2} t_{3}^{-1} t_{2}^{-1} t_{3}^{-1}$, which implies that
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} N=N t_{0} t_{1}^{-1} t_{2} t_{3}^{-1} t_{2}^{-1} t_{3}^{-1} N$. That is, $[0 \overline{1} 2 \overline{3} \overline{2} \overline{3}]=[0 \overline{1} \overline{2} 3]$.
Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1}^{-1} t_{2} t_{3}^{-1} t_{2}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
83. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} N$.

Let [$0 \overline{1} \overline{2} 01]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} N$.
Note that $N^{(0 \overline{1} \overline{2} 01)} \geq N^{0 \overline{1} \overline{2} 01}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{2} 01)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} N\right|=\frac{|N|}{\left|N^{(0 \overline{1} 201)}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [$0 \overline{1} \overline{2} 01]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} \overline{2} 01)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.
Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} e N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} N$ and
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{0} N=$ $N t_{0} t_{1} t_{2} t_{3}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{0}^{-1} N=N t_{0} t_{1} t_{2} t_{3}^{-1} t_{1} N$.

Therefore, we conclude that there are four distinct double cosets of the form
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2}^{-1} N$, $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{3} N$, and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{3}^{-1} N$.
84. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} N$.

Let [$0 \overline{1} \overline{2} 0 \overline{1}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} N$.
Note that $N^{(0 \overline{1} \overline{2} \overline{1} \overline{1})} \geq N^{0 \overline{1} \overline{1} 0 \overline{1}}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{2} \hat{O} \overline{1})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma $1.4,\left|N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} N\right|=\frac{|N|}{\left|N^{(0 \overline{1} \overline{2} \overline{1})}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset $[0 \overline{1} \overline{2} 0 \overline{1}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} \overline{2} \overline{1} \overline{1})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} t_{1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} e N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} t_{0} N=$
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} t_{2} N=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} t_{2}^{-1} N=$
$N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{2} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} t_{3} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} N$, and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} t_{3}^{-1} N$ $=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0} N$.

Therefore, we conclude that there is one distinct double coset of the form
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} t_{0}^{-1} N$.
85. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} N$.

Let [$0 \overline{1} \overline{2} 03]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} N$.
Note that $N^{(0 \overline{1} \overline{2} 03)} \geq N^{0 \overline{1} \overline{2} 03}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{2} 03)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} N\right|=\frac{|N|}{\left|N^{(01203)}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [$0 \overline{1} \overline{2} 03]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} \overline{2} 03)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} e N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} t_{3} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3}^{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3}^{-1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} t_{0} N=$
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} t_{1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} t_{1}^{-1} N=$ $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} t_{2} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0} N$, and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} t_{2}^{-1} N=$ $N t_{0} t_{1} t_{2}^{-1} t_{0} t_{1} N$.

Therefore, we conclude that there is one distinct double coset of the form
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} t_{0}^{-1} N$.
86. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3}^{-1} N$.

Let $[0 \overline{1} \overline{2} 0 \overline{3}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3}^{-1} N$.

Note that $N^{(0 \overline{1} \overline{2} 0 \overline{3})} \geq N^{0 \overline{1} \overline{1} 0 \overline{3}}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \breve{2} 0 \overline{3})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3}^{-1} N\right|=\frac{|N|}{\left|N^{(01203)}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [$0 \overline{1} \overline{2} 0 \overline{3}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} \overline{2} 0 \overline{3})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3}^{-1} t_{3} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} e N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3}^{-1} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3}^{-2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3}^{-1} t_{0} N=$ $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3}^{-1} t_{0}^{-1} N=N t_{0}^{-1} t_{1} t_{2} t_{0} t_{3}^{-1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3}^{-1} t_{1} N=$ $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3}^{-1} t_{1}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3}^{-1} t_{2} N=$ $N t_{0} t_{1} t_{2} t_{3}^{-1} t_{1} N$, and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3}^{-1} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} t_{2} N$.

Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
87. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} N$.

Let [$0 \overline{1} \overline{2} \overline{0} 1]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} N$.
Note that $N^{(0 \overline{1} \overline{2} \overline{0} 1)} \geq N^{0 \overline{1} \overline{2} \overline{0} 1}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{2} \overline{0} 1)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} N\right|=\frac{|N|}{\left|N^{(01201)}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [$0 \overline{1} \overline{2} \overline{0} 1]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} \overline{2} \overline{0} 1)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} e N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{0} N=$ $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} t_{0}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} t_{0}^{-1} N$.

Therefore, we conclude that there are four distinct double cosets of the form
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{0}^{-1} N$,
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{2} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3} N$, and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3}^{-1} N$.
88. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} N$.

Let [$0 \overline{1} \overline{2} \overline{0} \overline{1}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} N$.
Note that $N^{(0 \overline{1} \overline{2} \bar{o} \overline{1})} \geq N^{0 \overline{1} \overline{2} \overline{0} \overline{1}}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{2} \bar{o} \overline{1})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} N\right|=\frac{|N|}{\left|N^{(0 \bar{i} \overline{\mathrm{I}} \mathrm{I})}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [$0 \overline{1} \overline{2} \overline{0} \overline{1}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{0} \overline{2} \overline{0} \overline{1})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overrightarrow{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} e N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} N$. Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} N=$ $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0} N$, and
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} N=N t_{0}^{-1} t_{1} t_{2} t_{0} t_{1} N$.
Therefore, we conclude that there are three distinct double cosets of the form
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0} N$, $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{3} N$, and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{3}^{-1} N$.
89. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} N$.

Let [$0 \overline{1} \overline{2} \overline{0} 2]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} N$.
Note that $N^{(0 \overline{1} \overline{2} \overline{0} 2)} \geq N^{0 \overline{1} \overline{2} \overline{0} 2}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{2} \overline{0} 2)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma $1.4,\left|N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} N\right|=\frac{|N|}{\left|N^{(0 \overline{1} \overline{2} \overline{2})}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} \overline{2} \overline{0} 2]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} \overline{2} \overline{0} 2)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} e N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2}^{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{0} t_{2} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{0} N=$ $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{3}^{-1} N$.

Therefore, we conclude that there are four distinct double cosets of the form
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{1} N$,
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{1}^{-1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{3} N$, and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} N$.
90. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} N$.

Let [$0 \overline{1} \overline{2} \overline{0} 3]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} N$.
Note that $N^{(0 \overline{1} \overline{2} \overline{0} 3)} \geq N^{0 \overline{1} \overline{2} \overline{0} 3}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{2} \overline{0} 3)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} N\right|=\frac{|N|}{\left|N^{(0 \overline{1} \overline{2} \overline{3})}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [$0 \overline{1} \overline{2} \overline{0} 3]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} \overline{2} \overline{0} 3)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} e N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{3} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{0} N=$ $N t_{0}^{-1} t_{1} t_{2} t_{0} t_{3}^{-1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0}^{-1} N$, and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{2}^{-1} N$ $=N t_{0} t_{1} t_{2} t_{3}^{-1} t_{1} N$.

Therefore, we conclude that there are three distinct double cosets of the form
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{0}^{-1} N$, $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{1} N$, and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{1}^{-1} N$.
91. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} N$.

Let $[0 \overline{1} \overline{2} \overline{0} \overline{3}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} N$.
Note that $N^{(0 \overline{1} \overline{2} \overline{0} \overline{3})} \geq N^{0 \overline{1} \overline{2} \overline{0} \overline{3}}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{2} \bar{o} \overline{3})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} N\right|=\frac{|N|}{\left|N^{(0 \overline{1} \overline{2} \overline{3})}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [$0 \overline{1} \overline{2} \overline{0} \overline{3}]$ has at most twenty-four distinct single cosets.

Moreover, $N^{(0 \overline{1} \overline{2} \overline{0} \overline{3})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

- But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{3} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} e N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{0}^{-1} N=$
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{2} N=N t_{0} t_{1} t_{2} t_{3} N$, and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{2}^{-1} N$
$=N t_{0} t_{1} t_{2} t_{3} t_{1} N$.
Therefore, we conclude that there are three distinct double cosets of the form
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{0} N$,
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1} N$, and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1}^{-1} N$.
92. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0} N$.

Let [$0 \overline{12} 10$] denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0} N$.
Note that $\dot{N}^{(0 \overline{1} \overline{2} 10)} \geq N^{0 \overline{1} \overline{2} 10}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{2} 10)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0} N\right|=\frac{|N|}{\left|N^{(01 \overline{2} 10)}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [$0 \overline{1} \overline{2} 10]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} \overline{1} 10)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} e N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0} t_{0} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0}^{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0}^{-1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0} t_{1} N=$
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0} N$,
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0} t_{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} t_{0}^{-1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0} t_{2}^{-1} N=$
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0} t_{3} N=N t_{0}^{-1} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} N$, and
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0} t_{3}^{-1} N=N t_{0}^{-1} t_{1} t_{2} t_{3}^{-1} N$.
Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0} t_{i}^{+1} N$, where $i \in\{0,1,2,3\}$.
93. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0}^{-1} N$.

Let $[0 \overline{1} \overline{2} 1 \overline{0}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0}^{-1} N$.
Note that $N^{(0 \overline{1} \overline{2} 1 \overline{0})} \geq N^{0 \overline{2} \overline{2} 1 \overline{0}}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{2} 1 \overline{0})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0}^{-1} N\right|=\frac{|N|}{\left|N^{(0 \overline{1} \overline{1} 10)}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset $[0 \overline{1} \overline{2} 1 \overline{0}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} \overline{1} 1 \overline{0})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0}^{-1} t_{0} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} e N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0}^{-1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0}^{-2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0}^{-1} t_{1} N=$ $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{3} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1} N=N t_{0} t_{1} t_{2} t_{3} t_{1} N$,
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0}^{-1} t_{2} N=N t_{0} t_{1} t_{2} t_{3}^{-1} t_{1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} N=$
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} N$, and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0}^{-1} t_{3} N=N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3} N$.
Therefore, we conclude that there is one distinct double coset of the form $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0}^{-1} t_{3}^{-1} N$.
94. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{2}^{-1} N$.

Let [$0 \overline{1} \overline{2} 1 \overline{2}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{2}^{-1} N$.
Note that $N^{(0 \overline{1} \overline{2} 1 \overline{1})} \geq N^{0 \overline{1} \overline{2} 1 \overline{2}}=\langle e\rangle$. Thus $\left|N^{((\overline{0} \overline{2} \overline{2} 1 \overline{2})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{2}^{-1} N\right|=\frac{|N|}{\left|N^{(01212)}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [$0 \overline{1} \overline{2} 1 \overline{2}]$ has at most twenty-four distinct single cosets. Moreover, $N^{(0 \overline{1} \overline{1} 1 \overline{2})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{2}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{2}^{-1} t_{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} e N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{2}^{-1} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{2}^{-2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{2} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{2}^{-1} t_{0} N=$
$N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{0}^{-1} N$,
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{2}^{-1} t_{1} N=N t_{0} t_{1}^{-1} t_{0} t_{1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{2}^{-1} t_{1}^{-1} N=$
$N t_{0} t_{1} t_{2}^{-1} t_{1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{2}^{-1} t_{3} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} N$, and
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{2}^{-1} t_{3}^{-1} N=N t_{0} t_{1} t_{0}^{-1} t_{2} t_{1} N$.
Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{2}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
95. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} N$.

Let $[0 \overline{1} \overline{2} 13]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} N$.
Note that $N^{(0 \overline{1} \overline{2} 13)} \geq N^{0 \overline{1} \overline{2} 13}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{2} 13)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma $1.4,\left|N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} N\right|=\frac{|N|}{\left|N^{(0 \overline{1} 13)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} \overline{2} 13]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} \overline{2} 13)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} e N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} t_{3} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3}^{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} t_{0} N=$
$N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} t_{0}^{-1} N=N t_{0}^{-1} t_{1} t_{2} t_{3}^{-1} N$,
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} t_{1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} t_{1}^{-1} N=$
$N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3}^{-1} N$, and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1}^{-1} N$.
Therefore, we conclude that there is one distinct double coset of the form $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} t_{2} N$.
96. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} N$.

Let $[0 \overline{1} \overline{2} 1 \overline{3}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} N$.
Note that $N^{(0 \overline{1} \overline{2} 1 \overline{3})} \geq N^{0 \overline{1} \overline{2} 1 \overline{3}}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{2} 1 \overline{3})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} N\right|=\frac{|N|}{\left|N^{(0 \overline{1} \overline{1} \overline{3})}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset $[0 \overline{1} \overrightarrow{2} 1 \overline{3}]$ has at most twenty-four distinct single cosets.

Moreover, $N^{(0 \overline{1} \overline{2} 1 \overline{3})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{3} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} e N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3}^{-2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{0} N=$
$N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{0}^{-1} N=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} N$,
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{1}^{-1} N=$
$N t_{0} t_{1} t_{2} t_{0} t_{1} N$, and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{2} N=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{1} N$.
Therefore, we conclude that there is one distinct double coset of the form
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{2}^{-1} N$.
97. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} N$.

Let $[0 \overline{1} \overline{2} 30]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} N$.
Note that $N^{(0 \overline{1} \overline{2} 30)} \geq N^{0 \overline{1} \overline{2} 30}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{2} 30)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma $1.4,\left|N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} N\right|=\frac{|N|}{\left|N^{(0 \overline{1} 20)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} \overline{2} 30]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} \overline{2} 30)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} e N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} t_{0} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0}^{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} t_{2}^{-1} N=$ $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} t_{3} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} N$, and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{0} N$.

Therefore, we conclude that there are three distinct double cosets of the form $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} t_{1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} t_{1}^{-1} N$, and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} t_{2} N$.
98. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0}^{-1} N$.

Let [$0 \overline{1} \overline{2} 3 \overline{0}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0}^{-1} N$.
Note that $N^{(0 \overline{1} \overline{2} 3 \overline{0})} \geq N^{0 \overline{1} \overline{2} \overline{3} \overline{0}}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{2} 3 \overline{0})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma $1.4,\left|N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0}^{-1} N\right|=\frac{|N|}{\left|N^{(01230)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} \overline{2} 3 \overline{0}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} \overline{2} \overline{0})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0}^{-1} t_{0} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} e N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0}^{-1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0}^{-2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0}^{-1} t_{1} N=$
$N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0}^{-1} t_{2} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} N$,
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0}^{-1} t_{2}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0}^{-1} t_{3} N=$
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{1} N$, and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0}^{-1} t_{3}^{-1} N=N t_{0}^{-1} t_{1} t_{2} t_{0} t_{1} N$.
Therefore, we conclude that there is one distinct double coset of the form
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0}^{-1} t_{1}^{-1} N$.
99. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} N$.

Let [01 $\overline{2} 31]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} N$.
Note that $N^{(0 \overline{1} \overline{2} \overline{2} 31)} \geq N^{0 \overline{1} \overline{2} 31}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{2} 31)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} N\right|=\frac{|N|}{\left|N^{(0 \overline{1} 231)}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [$0 \overline{1} \overline{2} 31]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} \overline{2} 31)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} e N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1}^{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1}^{-1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{2}^{-1} N=$ $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{2} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{3} N=N t_{0} t_{1} t_{2} t_{0}^{-1} N$, and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{3}^{-1} N=$ $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{1} N$.

Therefore, we conclude that there are three distinct double cosets of the form
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{0} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{0}^{-1} N$, and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{2} N$.
100. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1}^{-1} N$.

Let $[0 \overline{1} \overline{2} 3 \overline{1}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1}^{-1} N$.
Note that $N^{(0 \overline{1} \overline{2} 3 \overline{1})} \geq N^{0 \overline{1} \overline{2} 3 \overline{1}}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{2} \overline{2} \overline{1})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1}^{-1} N\right|=\frac{|N|}{\left|N^{(0 \overline{1} \overline{2} 3 \overline{1})}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [$0 \overline{1} \overline{2} 3 \overline{1}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} \overline{2} 3 \overline{1})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1}^{-1} t_{1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} e N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1}^{-1} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1}^{-2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1}^{-1} t_{0} N=$ $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1}^{-1} t_{0}^{-1} N=N t_{0}^{-1} t_{1} t_{2} t_{3} t_{1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1}^{-1} t_{2} N=$ $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1}^{-1} t_{2}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1}^{-1} t_{3} N=$ $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} N$, and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1}^{-1} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} t_{2} N$.

Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
101. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2}^{-1} N$.

Let $[0 \overline{1} \overline{2} 3 \overline{2}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2}^{-1} N$.
Note that $N^{(0 \overline{1} \overline{2} 3 \overline{2})} \geq N^{0 \overline{1} \overline{2} 3 \overline{2}}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{2} 3 \overline{2})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma $1.4,\left|N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2}^{-1} N\right|=\frac{|N|}{\left|N^{(0 \overline{1} \overline{2} \overline{2})}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} \overline{2} 3 \overline{2}]$ has at most twenty-four distinct single cosets.

Moreover, $N^{(0 \overline{0} \overline{2} 3 \overline{2})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2}^{-1} t_{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} e N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} N$ and
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2}^{-1} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2}^{-2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2}^{-1} t_{0} N=$
$N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2}^{-1} t_{0}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2}^{-1} t_{1} N=$ $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2}^{-1} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{2} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2}^{-1} t_{3} N$ $=N t_{0} t_{1}^{-1} t_{0} t_{2} N$, and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2}^{-1} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{0} t_{2} t_{3} N$.

Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
102. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0} N$.

Let $[0 \overline{1} \overline{2} \overline{3} 0]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0} N$.
Note that $N^{(0 \overline{1} \overline{2} \overline{3} 0)} \geq N^{0 \overline{1} \overline{2} \overline{3} 0}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{2} \overline{3} 0)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0} N\right|=\frac{|N|}{\left|N^{(0 \overline{1} \overline{2} \overline{3})}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [$0 \overline{1} \overline{2} \overline{3} 0]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} \overline{2} \overline{3})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} e N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0} t_{0} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0} t_{1} N=$
$N t_{0}^{-1} t_{1} t_{2} t_{3} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0} t_{1}^{-1} N=N t_{0}^{-1} t_{1} t_{2} t_{3} t_{0} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0} t_{2} N=$ $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} t_{1}^{-1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0} t_{3} N=N t_{0}^{-1} t_{1} t_{2} t_{0} t_{1} N$, and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0} t_{3}^{-1} N$ $=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} N$.

Therefore, we conclude that there is one distinct double coset of the form
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0} t_{2}^{-1} N$.
103. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} N$.

Let $[0 \overline{1} \overline{2} \overline{3} \overline{0}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} N$.
Note that $N^{(0 \overline{1} \overline{2} \bar{z} \overline{0})} \geq N^{0 \overline{1} \overline{2} \overline{3} \overline{0}}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{2} \overline{3} \overline{0})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} N\right|=\frac{|N|}{\left|N^{(0 \overline{1} 2 \overline{3})}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [$0 \overline{1} \overline{2} \overline{3} \overline{0}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} \overline{2} \overline{3} \overline{0})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{0} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} e N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{2} N=$ $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{3} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{3} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} t_{0}^{-1} N$, and
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} N$.
Therefore, we conclude that there are three distinct double cosets of the form
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{1} N$,
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{1}^{-1} N$, and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{2}^{-1} N$.
104. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} N$.

Let [$0 \overline{1} \overline{2} \overline{3} 1]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} N$.
Note that $N^{(0 \overline{1} \overline{2} \overline{3} 1)} \geq N^{0 \overline{1} \overline{2} \overline{3} 1}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{2} \overline{3} 1)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} N\right|=\frac{|N|}{\left|N^{(012 \overline{3} 1)}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [$0 \overline{1} \overline{2} \overline{3} 1]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} \overline{2} \overline{3} 1)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} e N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{0} N=$ $N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{2} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0}^{-1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{3} N=$ $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} t_{2} N$, and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{3}^{-1} N=N t_{0} t_{1} t_{0}^{-1} t_{2} t_{1} N$.

Therefore, we conclude that there are two distinct double cosets of the form $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{0}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{2}^{-1} N$.
105. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} N$.

Let $[0 \overline{1} \overline{2} \overline{3} \overline{1}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} N$.
Note that $N^{(0 \overline{1} \overline{2} \overline{\overline{1}} \overline{1})} \geq N^{0 \overline{1} \overline{2} \overline{3} \overline{1}}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{2} \overline{3} \overline{1})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} N\right|=\frac{|N|}{\left|N^{(01 \overline{2} \overline{1})}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [$0 \overline{1} \overline{2} \overline{3} \overline{1}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} \overline{2} \overline{3} \overline{1})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} e N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{0}^{-1} N=$ $N t_{0}^{-1} t_{1} t_{2} t_{3} t_{1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{3} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3}^{-1} N$, and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} N$.

Therefore, we conclude that there are three distinct double cosets of the form $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{0} N$, $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2} N$, and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2}^{-1} N$.
106. We next consider the double coset $N t_{0} t_{1}^{-1} t_{0} t_{1}^{-1} t_{0} N$.

Let $[0 \overline{1} 0 \overline{1} 0]$ denote the double coset $N t_{0} t_{1}^{-1} t_{0} t_{1}^{-1} t_{0} N$.
Now, with the help of MAGMA, we know that that the following right cosets, or single cosets, are equivalent: $N t_{0} t_{1}^{-1} t_{0} t_{1}^{-1} t_{0}=N t_{0} t_{2}^{-1} t_{0} t_{2}^{-1} t_{0}=N t_{0} t_{3}^{-1} t_{0} t_{3}^{-1} t_{0}=$ $N t_{1} t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}=N t_{1} t_{2}^{-1} t_{1} t_{2}^{-1} t_{1}=N t_{1} t_{3}^{-1} t_{1} t_{3}^{-1} t_{1}=N t_{2} t_{1}^{-1} t_{2} t_{1}^{-1} t_{2}=N t_{2} t_{0}^{-1} t_{2} t_{0}^{-1} t_{2}$ $=N t_{2} t_{3}^{-1} t_{2} t_{3}^{-1} t_{2}=N t_{3} t_{1}^{-1} t_{3} t_{1}^{-1} t_{3}=N t_{3} t_{2}^{-1} t_{3} t_{2}^{-1} t_{3}=N t_{3} t_{0}^{-1} t_{3} t_{0}^{-1} t_{3}$.

That is, in terms of our short-hand notation,

$$
\begin{aligned}
& 0 \overline{1} 0 \overline{1} 0 \sim 0 \overline{2} 0 \overline{2} 0 \sim 0 \overline{3} 0 \overline{3} 0 \sim 1 \overline{0} 1 \overline{0} 1 \sim 1 \overline{2} 1 \overline{2} 1 \sim 1 \overline{3} 1 \overline{3} 1 \sim \\
& 2 \overline{1} 2 \overline{1} 2 \sim 2 \overline{0} 2 \overline{0} 2 \sim 2 \overline{3} 2 \overline{3} 2 \sim 3 \overline{1} 3 \overline{1} 3 \sim 3 \overline{2} 3 \overline{2} 3 \sim 3 \overline{0} 3 \overline{0} 3 .
\end{aligned}
$$

Since each of the twelve single cosets has twelve names, the double coset [$0 \overline{1} 0 \overline{1} 0$] must have at most one distinct single coset.

An alternative approach for determining the order of the double coset is as follows: We note that $N^{(0 \overline{1} 0 \overline{1} 0)} \geq N^{0 \overline{1} 0 \overline{0} 0}=\langle(23)\rangle \cong S_{2}$. In fact, with the help of MAGMA, we know that $N\left(t_{0} t_{1}^{-1} t_{0} t_{1}^{-1} t_{0}\right)^{(01)}=N t_{1} t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}=N t_{0} t_{1}^{-1} t_{0} t_{1}^{-1} t_{0}$ implies that $(01) \in N^{(0 \overline{1} \overline{1} 0)}$, and $N\left(t_{0} t_{1}^{-1} t_{0} t_{1}^{-1} t_{0}\right)^{(02)}=N t_{2} t_{1}^{-1} t_{2} t_{1}^{-1} t_{2}=N t_{0} t_{1}^{-1} t_{0} t_{1}^{-1} t_{0}$ implies that $(02) \in N^{(0 \overline{0} 0 \overline{1} 0)}$, and $N\left(t_{0} t_{1}^{-1} t_{0} t_{1}^{-1} t_{0}\right)^{(03)}=N t_{3} t_{1}^{-1} t_{3} t_{1}^{-1} t_{3}=N t_{0} t_{1}^{-1} t_{0} t_{1}^{-1} t_{0}$ implies that $\left(\begin{array}{ll}0 & 3\end{array}\right) \in N^{(0 \overline{1} 0 \overline{1} 0)}$. Therefore, (01), ($\left.\begin{array}{l}0 \\ 2\end{array}\right),\left(\begin{array}{ll}0 & 3\end{array}\right) \in N^{(0 \hat{1} 0 \overline{1} 0)}$, and so
 $1.4,\left|N t_{0} t_{1}^{-1} t_{0} t_{1}^{-1} t_{0} N\right|=\frac{|N|}{\left|N^{(01010)}\right|} \leq \frac{24}{24}=1$.
Therefore, as we concluded earlier, the double coset [$0 \overline{1} 0 \overline{1} 0]$ has at most one distinct single coset.
Moreover, $N^{(0 \overline{1} \overline{1} 0)}$ has two orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0,1,2,3\}$ and $\{\overline{0}, \overline{1}, \overline{2}, \overline{3}\}$.
Therefore, there are at most two double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1}^{-1} t_{0} t_{1}^{-1} t_{0} t_{i}^{ \pm 1}, i=0$.
But note that $N t_{0} t_{1}^{-1} t_{0} t_{1}^{-1} t_{0} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{0} t 1^{-1} e N=N t_{0} t_{1}^{-1} t_{0} t_{1}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{0} t_{1}^{-1} t_{0} t_{0} N=N t_{0} t_{1}^{-1} t_{0} t_{1}^{-1} t_{0}^{2} N=N t_{0} t_{1}^{-1} t_{0} t_{1}^{-1} t_{0}^{-1} N=N t_{0}^{-1} t_{1} t_{0}^{-1} t_{1} N$.

Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1}^{-1} t_{0} t_{1}^{-1} t_{0} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
107. We next consider the double coset $N t_{0} t_{1}^{-1} t_{0} t_{2} t_{3} N$.

Let [$0 \overline{1} 023$] denote the double coset $N t_{0} t_{1}^{-1} t_{0} t_{2} t_{3} N$.
Note that $N^{(0 \overline{1} 023)} \geq N^{00 \overline{1} 023}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} 023)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma $1.4,\left|N t_{0} t_{1}^{-1} t_{0} t_{2} t_{3} N\right|=\frac{|N|}{\left|N^{(01023)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [0]023] has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1023)}}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1}^{-1} t_{0} t_{2} t_{3} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1}^{-1} t_{0} t_{2} t_{3} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{0} t_{2} e N=N t_{0} t_{1}^{-1} t_{0} t_{2} N$ and
$N t_{0} t_{1}^{-1} t_{0} t_{2} t_{3} t_{3} N=N t_{0} t_{1}^{-1} t_{0} t_{2} t_{3}^{2} N=N t_{0} t_{1}^{-1} t_{0} t_{2} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{0} t_{2} t_{3} t_{0}^{-1} N=$
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{0}^{-1} N, N t_{0} t_{1}^{-1} t_{0} t_{2} t_{3} t_{1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{2}^{-1} N, N t_{0} t_{1}^{-1} t_{0} t_{2} t_{3} t_{1}^{-1} N$
$=N t_{0} t_{1} t_{2} t_{0} t_{1}^{-1} N, N t_{0} t_{1}^{-1} t_{0} t_{2} t_{3} t_{2} N=N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}^{-1} N$, and $N t_{0} t_{1}^{-1} t_{0} t_{2} t_{3} t_{2}^{-1} N=$ $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} N$.

Therefore, we conclude that there is one distinct double coset of the form
$N t_{0} t_{1}^{-1} t_{0} t_{2} t_{3} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1}^{-1} t_{0} t_{2} t_{3} t_{0} N$.
108. We next consider the double coset $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} N$.

Let $[0 \overline{1} \overline{0} 23]$ denote the double coset $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} N$.
Note that $N^{(0 \overline{1} \overline{0} 23)} \geq N^{0 \overline{1} \overline{0} 23}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{0} 23)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} N\right|=\frac{|N|}{\left|N^{(01023)}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [$0 \overline{1} \overline{0} 23$] has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} \overline{0} 23)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} e N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} N$ and $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} t_{3} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3}^{2} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} t_{0}^{-1} N=$ $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{2}^{-1} N, N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} t_{1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{1} N$, and $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} t_{2} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} N$.

Therefore, we conclude that there are three distinct double cosets of the form $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} t_{0} N, N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} t_{1}^{-1} N$, and $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} t_{2}^{-1} N$.
109. We next consider the double coset $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} N$.

Let [$0 \overline{1} \overline{0} 2 \overline{3}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} N$.

Note that $N^{(0 \overline{1} \overline{0} 2 \overline{3})} \geq N^{0 \overline{1} \overline{0} 2 \overline{3}}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{0} 2 \overline{3})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} N\right|=\frac{|N|}{\left|N^{(0 \overline{1} \overline{02})}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [$0 \overline{1} \overline{0} 2 \overline{3}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(01 \overline{0} \overline{2} \overline{3})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{3} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} e N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} N$ and $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3}^{-2} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{0} N=$
$N t_{0} t_{1} t_{2} t_{0}^{-1} t_{1} N, N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2} N, N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{1} N$ $=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3} N$, and $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{2} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{3} N$.
Therefore, we conclude that there are two distinct double cosets of the form
$N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{1}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{2}^{-1} N$.
110. We next consider the double coset $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1} N$.

Let [$0 \overline{1} \overline{0} \overline{2} 1]$ denote the double coset $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1} N$.
Note that $N^{(0 \overline{1} \overline{0} \overline{2} 1)} \geq N^{0 \overline{1} \overline{0} \overline{2} 1}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{0} \overline{2} 1)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma $1.4,\left|N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1} N\right|=\frac{|N|}{\left|N^{(0 \overline{1021})}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} \overline{0} \overline{2} 1]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{0} \overline{0} \overline{2} 1)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} e N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1} t_{1} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{1}^{2} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{1}^{-1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1} t_{0} N=$ $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{2}^{-1} N, N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0} N$, $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1} t_{2} N=N t_{0}^{-1} t_{1} t_{2} t_{0} N$, and $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1} t_{2}^{-1} N=N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} N$.

Therefore, we conclude that there are two distinct double cosets of the form
$N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1} t_{3} N$ and
$N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} N$.
111. We next consider the double coset $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} N$.

Let [$0 \overline{1} \overline{0} \overline{2} \overline{1} \overline{1}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} N$.
Note that $N^{(0 \overline{1} \overline{0} \overline{1} \overline{1})} \geq N^{0 \overline{1} \overline{0} \overline{2} \overline{1}}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{0} \overline{2} \overline{1})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} N\right|=\frac{|N|}{\left|N^{(01021)}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [$0 \overline{1} \overline{0} \overline{2} \overline{1}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{0} \overline{0} \overline{2} \overline{1})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} t_{1} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} e N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1}^{-2} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} t_{0}^{-1} N=$
$N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0} N, N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} t_{2} N=N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2} t_{0}^{-1} N, N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} t_{2}^{-1} N$
$=N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2} N$, and $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} t_{3} N=N t_{0}^{-1} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} N$.
Therefore, we conclude that there are two distinct double cosets of the form
$N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} t_{0} N$ and $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} t_{3}^{-1} N$.
112. We next consider the double coset $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{3} N$.

Let [$0 \overline{1} \overline{0} \overline{2} 3]$ denote the double coset $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{3} N$.
Note that $N^{(0 \overline{0} \overline{0} \overline{2} 3)} \geq N^{0 \overline{1} \overline{0} \overline{2} 3}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{0} \overline{2} 3)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{3} N\right|=\frac{|N|}{\left|N^{(0 \overline{\bar{T}} \overline{2} 3)}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [$0 \overline{1} \overline{0} \overline{2} 3]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} \overline{0} \overline{2} 3)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{3} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{3} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} e N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{3} t_{3} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{3}^{2} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{3} t_{0} N=$
$N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2}^{-1} N, N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{3} t_{0}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3}^{-1} N$,
$N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{3} t_{1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} t_{1} N, N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{3} t_{1}^{-1} N=$
$N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} N, N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{3} t_{2} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{2}^{-1} N$, and
$N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{3} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} N$.
Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{3} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
113. We next consider the double coset $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} N$.

Let $[0 \overline{1} \overline{0} \overline{2} \overline{3}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} N$.
Note that $N^{(0 \overline{1} \overline{0} \overline{2} \overline{3})} \geq N^{0 \overline{1} \overline{0} \overline{2} \overline{3}}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{0} \overline{2} \overline{3})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} N\right|=\frac{|N|}{\left|N^{(0 \overline{0} \overline{0} \overline{3})}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset $[0 \overline{1} \overline{0} \overline{2} \overline{3}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} \overline{0} \overline{2} \overline{3})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{3} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} e N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-2} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{3} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0} N=$
$N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{0} N, N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2} N$,
$N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{3}^{-1} N, N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{2} N=$
$N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} t_{2}^{-1} N$, and $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} N$.
Therefore, we conclude that there is one distinct double coset of the form
$N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} N$.
114. We next consider the double coset $N t_{0} t_{1} t_{2} t_{0} t_{1} N$.

Let [01201] denote the double coset $N t_{0} t_{1} t_{2} t_{0} t_{1} N$.

Note that $N^{(01201)} \geq N^{01201}=\langle e\rangle$. Thus $\left|N^{(01201)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma $1.4,\left|N t_{0} t_{1} t_{2} t_{0} t_{1} N\right|=\frac{|N|}{\left|N^{(01201)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [01201] has at most twenty-four distinct single cosets.
Moreover, $N^{(01201)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1} t_{2} t_{0} t_{1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1} t_{2} t_{0} t_{1} t_{1}^{-1} N=N t_{0} t_{1} t_{2} t_{0} e N=N t_{0} t_{1} t_{2} t_{0} N$ and $N t_{0} t_{1} t_{2} t_{0} t_{1} t_{1} N=$ $N t_{0} t_{1} t_{2} t_{0} t_{1}^{2} N=N t_{0} t_{1} t_{2} t_{0} t_{1}^{-1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{2} t_{0} t_{1} t_{0} N=$
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} N, N t_{0} t_{1} t_{2} t_{0} t_{1} t_{0}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0} N, N t_{0} t_{1} t_{2} t_{0} t_{1} t_{2} N=$ $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} N, N t_{0} t_{1} t_{2} t_{0} t_{1} t_{2}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} N$, and $N t_{0} t_{1} t_{2} t_{0} t_{1} t_{3}^{-1} N$ $=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2}^{-1} N$.

Therefore, we conclude that there is one distinct double coset of the form
$N t_{0} t_{1} t_{2} t_{0} t_{1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1} t_{2} t_{0} t_{1} t_{3} N$.
115. We next consider the double coset $N t_{0} t_{1} t_{2} t_{0} t_{1}^{-1} N$.

Let [01201] denote the double coset $N t_{0} t_{1} t_{2} t_{0} t_{1}^{-1} N$.
Note that $N^{(0120 \overline{1})} \geq N^{0120 \overline{1}}=\langle e\rangle$. Thus $\left|N^{(0120 \overline{1})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1} t_{2} t_{0} t_{1}^{-1} N\right|=\frac{|N|}{\left|N^{(01201)}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [01201] has at most twenty-four distinct single cosets.
Moreover, $N^{(01201)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1} t_{2} t_{0} t_{1}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1} t_{2} t_{0} t_{1}^{-1} t_{1} N=N t_{0} t_{1} t_{2} t_{0} e N=N t_{0} t_{1} t_{2} t_{0} N$ and $N t_{0} t_{1} t_{2} t_{0} t_{1}^{-1} t_{1}^{-1} N$ $=N t_{0} t_{1} t_{2} t_{0} t_{1}^{-2} N=N t_{0} t_{1} t_{2} t_{0} t_{1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{2} t_{0} t_{1}^{-1} t_{0} N=$ $N t_{0} t_{1}^{-1} t_{0} t_{2} t_{3} N, N t_{0} t_{1} t_{2} t_{0} t_{1}^{-1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{2}^{-1} N, N t_{0} t_{1} t_{2} t_{0} t_{1}^{-1} t_{2}^{-1} N=$
$N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} N, N t_{0} t_{1} t_{2} t_{0} t_{1}^{-1} t_{3} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{2}^{-1} N$, and $N t_{0} t_{1} t_{2} t_{0} t_{1}^{-1} t_{3}^{-1} N$ $=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3} N$.

Therefore, we conclude that there is one distinct double coset of the form $N t_{0} t_{1} t_{2} t_{0} t_{1}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1} t_{2} t_{0} t_{1}^{-1} t_{2} N$.
116. We next consider the double coset $N t_{0} t_{1} t_{2} t_{0} t_{2}^{-1} N$.

Let [01202] denote the double coset $N t_{0} t_{1} t_{2} t_{0} t_{2}^{-1} N$.
Note that $N^{(0120 \overline{2})} \geq N^{0120 \overline{2}}=\langle e\rangle$. Thus $\left|N^{(0120 \overline{2})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1} t_{2} t_{0} t_{2}^{-1} N\right|=\frac{|N|}{\left|N^{(01202)}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [0120 $\overline{2}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0120 \overline{2})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1} t_{2} t_{0} t_{2}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1} t_{2} t_{0} t_{2}^{-1} t_{2} N=N t_{0} t_{1} t_{2} t_{0} e N=N t_{0} t_{1} t_{2} t_{0} N$ and $N t_{0} t_{1} t_{2} t_{0} t_{2}^{-1} t_{2}^{-1} N$ $=N t_{0} t_{1} t_{2} t_{0} t_{2}^{-2} N=N t_{0} t_{1} t_{2} t_{0} t_{2} N=N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{2} t_{0} t_{2}^{-1} t_{0} N=$
$N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3} N, N t_{0} t_{1} t_{2} t_{0} t_{2}^{-1} t_{0}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} N, N t_{0} t_{1} t_{2} t_{0} t_{2}^{-1} t_{1} N=$
$N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{2} N, N t_{0} t_{1} t_{2} t_{0} t_{2}^{-1} t_{1}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3}^{-1} N, N t_{0} t_{1} t_{2} t_{0} t_{2}^{-1} t_{3} N$
$=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{2} N$, and $N t_{0} t_{1} t_{2} t_{0} t_{2}^{-1} t_{3}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{1} t_{0}^{-1} N$.
Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1} t_{2} t_{0} t_{2}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
117. We next consider the double coset $N t_{0} t_{1} t_{2} t_{0} t_{3} N$.

Let [01203] denote the double coset $N t_{0} t_{1} t_{2} t_{0} t_{3} N$.
Note that $N^{(01203)} \geq N^{01203}=\langle e\rangle$. Thus $\left|N^{(01203)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1} t_{2} t_{0} t_{3} N\right|=\frac{|N|}{\left|N^{(01203)}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [01203] has at most twenty-four distinct single cosets.
Moreover, $N^{(01203)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1} t_{2} t_{0} t_{3} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1} t_{2} t_{0} t_{3} t_{3}^{-1} N=N t_{0} t_{1} t_{2} t_{0} e N=N t_{0} t_{1} t_{2} t_{0} N$ and $N t_{0} t_{1} t_{2} t_{0} t_{3} t_{3} N$ $=N t_{0} t_{1} t_{2} t_{0} t_{3}^{2} N=N t_{0} t_{1} t_{2} t_{0} t_{3}^{-1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{2} t_{0} t_{3} t_{0} N=$
$N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} N, N t_{0} t_{1} t_{2} t_{0} t_{3} t_{1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3}^{-1} N, N t_{0} t_{1} t_{2} t_{0} t_{3} t_{1}^{-1} N=$ $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0} N$, and $N t_{0} t_{1} t_{2} t_{0} t_{3} t_{2}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} N$.

Therefore, we conclude that there are two distinct double cosets of the form
$N t_{0} t_{1} t_{2} t_{0} t_{3} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1} t_{2} t_{0} t_{3} t_{0}^{-1} N$ and $N t_{0} t_{1} t_{2} t_{0} t_{3} t_{2} N$.
118. We next consider the double coset $N t_{0} t_{1} t_{2} t_{0} t_{3}^{-1} N$.

Let [$0120 \overline{3}$] denote the double coset $N t_{0} t_{1} t_{2} t_{0} t_{3}^{-1} N$.
Note that $N^{(0120 \overline{3})} \geq N^{0120 \overline{3}}=\langle e\rangle$. Thus $\left|N^{(0120 \overline{3})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1} t_{2} t_{0} t_{3}^{-1} N\right|=\frac{|N|}{\left|N^{(01203)}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [0120 $\overline{3}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0120 \overline{3})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.
Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1} t_{2} t_{0} t_{3}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1} t_{2} t_{0} t_{3}^{-1} t_{3} N=N t_{0} t_{1} t_{2} t_{0} e N=N t_{0} t_{1} t_{2} t_{0} N$ and $N t_{0} t_{1} t_{2} t_{0} t_{3}^{-1} t_{3}^{-1} N$ $=N t_{0} t_{1} t_{2} t_{0} t_{3}^{-2} N=N t_{0} t_{1} t_{2} t_{0} t_{3} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{2} t_{0} t_{3}^{-1} t_{1} N=$ $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2} N, N t_{0} t_{1} t_{2} t_{0} t_{3}^{-1} t_{1}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} N, N t_{0} t_{1} t_{2} t_{0} t_{3}^{-1} t_{2} N=$ $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} t_{2} N$, and $N t_{0} t_{1} t_{2} t_{0} t_{3}^{-1} t_{2}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{0} t_{3} N$.
Therefore, we conclude that there are two distinct double cosets of the form
$N t_{0} t_{1} t_{2} t_{0} t_{3}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1} t_{2} t_{0} t_{3}^{-1} t_{0} N$ and $N t_{0} t_{1} t_{2} t_{0} t_{3}^{-1} t_{0}^{-1} N$.
119. We next consider the double coset $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{1} N$.

Let [012 $\overline{0} 1$] denote the double coset $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{1} N$.
Note that $N^{(0120 \overline{1} 1)} \geq N^{012 \overline{0} 1}=\langle e\rangle$. Thus $\left|N^{(0120 \overline{1})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1} t_{2} t_{0}^{-1} t_{1} N\right|=\frac{|N|}{\left|N^{(01201)}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [012 $\overline{0} 1]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(012 \overline{0} 1)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\bar{I}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1} t_{2} t_{0}^{-1} t_{1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{1} t_{1}^{-1} N=N t_{0} t_{1} t_{2} t_{0}^{-1} e N=N t_{0} t_{1} t_{2} t_{0}^{-1} N$ and
$N t_{0} t_{1} t_{2} t_{0}^{-1} t_{1} t_{1} N=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{1}^{2} N=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{1} t_{0} N=$
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{2}^{-1} N, N t_{0} t_{1} t_{2} t_{0}^{-1} t_{1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} N, N t_{0} t_{1} t_{2} t_{0}^{-1} t_{1} t_{2} N=$
$N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{2} N, N t_{0} t_{1} t_{2} t_{0}^{-1} t_{1} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} N, N t_{0} t_{1} t_{2} t_{0}^{-1} t_{1} t_{3} N=$ $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2} N$, and $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{1} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} N$.

Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0} t_{1} t_{2} t_{0}^{-1} t_{1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
120. We next consider the double coset $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2} N$.

Let [012 $\overline{0} 2$] denote the double coset $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2} N$.
Note that $N^{(012 \overline{0} 2)} \geq N^{012 \overline{0} 2}=\langle e\rangle$. Thus $\left|N^{(012 \overline{0} 2)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2} N\right|=\frac{|N|}{\left|N^{(01202)}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [012 $\overline{0} 2]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(01202)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1} t_{2} t_{0}^{-1} t_{2} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2} t_{2}^{-1} N=N t_{0} t_{1} t_{2} t_{0}^{-1} e N=N t_{0} t_{1} t_{2} t_{0}^{-1} N$ and
$N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2} t_{2} N=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2}^{2} N=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2} t_{0} N=$ $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} N, N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2} t_{0}^{-1} N=N t_{0} t_{1} t_{0}^{-1} t_{1} N, N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2} t_{1}^{-1} N=$ $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2}^{-1} N, N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2} t_{3} N=N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} N$, and $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2} t_{3}^{-1} N$ $=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} N$.

Therefore, we conclude that there is one distinct double coset of the form $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2} t_{1} N$.
121. We next consider the double coset $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2}^{-1} N$.

Let $[012 \overline{0} \overline{2}]$ denote the double coset $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2}^{-1} N$.
Note that $N^{(012 \overline{0} \overline{2})} \geq N^{012 \bar{\alpha} \overline{2}}=\langle e\rangle$. Thus $\left|N^{(012 \bar{\alpha} \overline{2})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2}^{-1} N\right|=\frac{|N|}{\left|N^{(012 \overline{\bar{O}})}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [0120$\overline{2}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(012 \overline{0} \overline{2})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1} t_{2} t_{0}^{-1} t_{2}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2}^{-1} t_{2} N=N t_{0} t_{1} t_{2} t_{0}^{-1} e N=N t_{0} t_{1} t_{2} t_{0}^{-1} N$ and
$N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2}^{-1} t_{2}^{-1} N=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2}^{-2} N=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2}^{-1} t_{0} N=$
$N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} N, N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2}^{-1} t_{0}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{0} N, N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2}^{-1} t_{3} N=$ $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} t_{2} N$, and $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} N=N t_{0}^{-1} t_{1} t_{2} t_{3} t_{1}^{-1} N$.

Therefore, we conclude that there are two distinct double cosets of the form
$N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2}^{-1} t_{1} N$ and $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} N$.
122. We next consider the double coset $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3} N$.

Let [0120̄3] denote the double coset $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3} N$.
Note that $N^{(012 \overline{0} 3)} \geq N^{012 \overline{0} 3}=\langle e\rangle$. Thus $\left|N^{(012 \overline{0} 3)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma $1.4,\left|N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3} N\right|=\frac{|N|}{\left|N^{(01203)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [0120 3$]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(012 \overline{0} 3)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1} t_{2} t_{0}^{-1} t_{3} t_{i}^{t 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3} t_{3}^{-1} N=N t_{0} t_{1} t_{2} t_{0}^{-1} e N=N t_{0} t_{1} t_{2} t_{0}^{-1} N$ and $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3} t_{3} N=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{2} N=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3} t_{0} N=$
$N t_{0} t_{1} t_{2} t_{0} t_{3}^{-1} t_{0}^{-1} N, N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} N, N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3} t_{1} N=$ $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{1}^{-1} N, \dot{N} t_{0} t_{1} t_{2} t_{0}^{-1} t_{3} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} N, N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3} t_{2} N$ $=N t_{0}^{-1} t_{1} t_{2} t_{3} t_{1} N$, and $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1}^{-1} N$.

Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
123. We next consider the double coset $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} N$.

Let [0120̄̄3] denote the double coset $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} N$.
Note that $N^{(012 \overline{0} \overline{3})} \geq N^{012 \overline{0} \overline{3}}=\langle e\rangle$. Thus $\left|N^{(012 \overline{0} \overline{3})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} N\right|=\frac{|N|}{\left|N^{(01203)}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [$012 \overline{0} \overline{3}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(012 \overline{0} \overline{3})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{3} N=N t_{0} t_{1} t_{2} t_{0}^{-1} e N=N t_{0} t_{1} t_{2} t_{0}^{-1} N$ and
$N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{3}^{-1} N=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-2} N=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{0}^{-1} N=$ $N t_{0} t_{1} t_{2} t_{3} t_{0} N, N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{1}^{-1} N=N t_{0}^{-1} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} N, N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{2} N=$ $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} N$, and $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{2}^{-1} N=N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3} N$.

Therefore, we conclude that there are two distinct double cosets of the form $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{0} N$ and $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{1} N$.
124. We next consider the double coset $N t_{0} t_{1} t_{2} t_{3} t_{0} N$.

Let [01230] denote the double coset $N t_{0} t_{1} t_{2} t_{3} t_{0} N$.
Note that $N^{(01230)} \geq N^{01230}=\langle e\rangle$. Thus $\left|N^{(01230)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1} t_{2} t_{3} t_{0} N\right|=\frac{|N|}{\left|N^{(01230)}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [01230] has at most twenty-four distinct single cosets.

Moreover, $N^{(01230)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1} t_{2} t_{3} t_{0} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1} t_{2} t_{3} t_{0} t_{0}^{-1} N=N t_{0} t_{1} t_{2} t_{3} e N=N t_{0} t_{1} t_{2} t_{3} N$ and $N t_{0} t_{1} t_{2} t_{3} t_{0} t_{0} N=$ $N t_{0} t_{1} t_{2} t_{3} t_{0}^{2} N=N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{2} t_{3} t_{0} t_{1} N=$
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} t_{1}^{-1} N, N t_{0} t_{1} t_{2} t_{3} t_{0} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{2} N, N t_{0} t_{1} t_{2} t_{3} t_{0} t_{3} N=$ $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} N$, and $N t_{0} t_{1} t_{2} t_{3} t_{0} t_{3}^{-1} N=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{0} N$.

Therefore, we conclude that there are two distinct double cosets of the form
$N t_{0} t_{1} t_{2} t_{3} t_{0} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1} t_{2} t_{3} t_{0} t_{2} N$ and $N t_{0} t_{1} t_{2} t_{3} t_{0} t_{2}^{-1} N$.
125. We next consider the double coset $N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} N$.

Let [$0123 \overline{0}]$ denote the double coset $N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} N$.
Note that $N^{(0123 \overline{0})} \geq N^{0123 \overline{0}}=\langle e\rangle$. Thus $\left|N^{(0123 \overline{0})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} N\right|=\frac{|N|}{\left.\mid N^{(01230}\right)} \leq \frac{24}{1}=24$.

Therefore, the double coset [01230̄] has at most twenty-four distinct single cosets.
Moreover, $N^{(0123 \overline{0})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} t_{0} N=N t_{0} t_{1} t_{2} t_{3} e N=N t_{0} t_{1} t_{2} t_{3} N$ and
$N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} t_{0}^{-1} N=N t_{0} t_{1} t_{2} t_{3} t_{0}^{-2} N=N t_{0} t_{1} t_{2} t_{3} t_{0} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} t_{1} N=$ $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} t_{1} N, N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} t_{1}^{-1} N=N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1} N$, and $N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} t_{2} N$ $=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{3} N$.

Therefore, we conclude that there are three distinct double cosets of the form $N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} t_{2}^{-1} N, N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} t_{3} N$, and $N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} t_{3}^{-1} N$.
126. We next consider the double coset $N t_{0} t_{1} t_{2} t_{3} t_{1} N$.

Let [01231] denote the double coset $N t_{0} t_{1} t_{2} t_{3} t_{1} N$.
Note that $N^{(01231)} \geq N^{01231}=\langle e\rangle$. Thus $\left|N^{(01231)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma $1.4,\left|N t_{0} t_{1} t_{2} t_{3} t_{1} N\right|=\frac{|N|}{\left|N^{(01231)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [01231] has at most twenty-four distinct single cosets.
Moreover, $N^{(01231)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1} t_{2} t_{3} t_{1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1} t_{2} t_{3} t_{1} t_{1}^{-1} N=N t_{0} t_{1} t_{2} t_{3} e N=N t_{0} t_{1} t_{2} t_{3} N$ and $N t_{0} t_{1} t_{2} t_{3} t_{1} t_{1} N=$ $N t_{0} t_{1} t_{2} t_{3} t_{1}^{2} N=N t_{0} t_{1} t_{2} t_{3} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{2} t_{3} t_{1} t_{0}^{-1} N=$ $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} N, N t_{0} t_{1} t_{2} t_{3} t_{1} t_{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2}^{-1} N, N t_{0} t_{1} t_{2} t_{3} t_{1} t_{2}^{-1} N=$ $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{0} N, N t_{0} t_{1} t_{2} t_{3} t_{1} t_{3} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0}^{-1} N$, and $N t_{0} t_{1} t_{2} t_{3} t_{1} t_{3}^{-1} N$ $=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{3} N$.

Therefore, we conclude that there is one distinct double coset of the form $N t_{0} t_{1} t_{2} t_{3} t_{1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1} t_{2} t_{3} t_{1} t_{0} N$.
127. We next consider the double coset $N t_{0} t_{1} t_{2} t_{3} t_{2}^{-1} N$.

Let [0123 $\overline{2}]$ denote the double coset $N t_{0} t_{1} t_{2} t_{3} t_{2}^{-1} N$.
Note that $N^{(0123 \overline{2})} \geq N^{0123 \overline{2}}=\langle e\rangle$. Thus $\left|N^{(0123 \overline{2})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1} t_{2} t_{3} t_{2}^{-1} N\right|=\frac{|N|}{\left|N^{(0123 \overline{2})}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [0123 $\overline{2}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0123 \overline{2})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1} t_{2} t_{3} t_{2}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1} t_{2} t_{3} t_{2}^{-1} t_{2} N=N t_{0} t_{1} t_{2} t_{3} e N=N t_{0} t_{1} t_{2} t_{3} N$ and $N t_{0} t_{1} t_{2} t_{3} t_{2}^{-1} t_{2}^{-1} N$ $=N t_{0} t_{1} t_{2} t_{3} t_{2}^{-2} N=N t_{0} t_{1} t_{2} t_{3} t_{2} N=N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{2} t_{3} t_{2}^{-1} t_{0} N=$ $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1} N, N t_{0} t_{1} t_{2} t_{3} t_{2}^{-1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0}^{-1} N, N t_{0} t_{1} t_{2} t_{3} t_{2}^{-1} t_{1} N=$
$N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0} N, N t_{0} t_{1} t_{2} t_{3} t_{2}^{-1} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3}^{-1} N, N t_{0} t_{1} t_{2} t_{3} t_{2}^{-1} t_{3} N=$ $N t_{0} t_{1} t_{2}^{-1} t_{1} t_{0} N$, and $N t_{0} t_{1} t_{2} t_{3} t_{2}^{-1} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{0}^{-1} N$.

Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1} t_{2} t_{3} t_{2}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
128. We next consider the double coset $N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0} N$.

Let [012 $\overline{3} 0$] denote the double coset $N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0} N$.
Note that $N^{(012 \overline{3} 0)} \geq N^{012 \overline{3} 0}=\langle e\rangle$. Thus $\left|N^{(012 \overline{3} 0)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0} N\right|=\frac{|N|}{\left|N^{(01230)}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [012 $\overline{3} 0]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(012 \overline{3} 0)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1} t_{2} t_{3}^{-1} t_{0} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0} t_{0}^{-1} N=N t_{0} t_{1} t_{2} t_{3}^{-1} e N=N t_{0} t_{1} t_{2} t_{3}^{-1} N$ and $N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0} t_{0} N=N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0}^{2} N=N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0} t_{1} N=$ $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0}^{-1} t_{1}^{-1} N, N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0}^{-1} N, N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0} t_{2} N=$ $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} N, N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0} t_{2}^{-1} N=N t_{0}^{-1} t_{1} t_{2} t_{0}^{-1} N, N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0} t_{3} N=$ $N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} t_{3}^{-1} N$, and $N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0} t_{3}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} N$.

Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
129. We next consider the double coset $N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} N$.

Let $[012 \overline{3} \overline{0}]$ denote the double coset $N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} N$.
Note that $N^{(012 \overline{3} \overline{0})} \geq N^{012 \overline{3} \overline{0}}=\langle e\rangle$. Thus $\left|N^{(012 \overline{3} \overline{0})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} N\right|=\frac{|N|}{\left|N^{(01230)}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [012 $\overline{3} \overline{0}]$ has at most twenty-four distinct single cosets. Moreover, $N^{(012 \overline{3} \overline{0})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} t_{0} N=N t_{0} t_{1} t_{2} t_{3}^{-1} e N=N t_{0} t_{1} t_{2} t_{3}^{-1} N$ and
$N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} t_{0}^{-1} N=N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0}^{-2} N=N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} t_{1}^{-1} N=$
$N t_{0} t_{1} t_{2}^{-1} t_{0} t_{3} N, N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} t_{2} N=N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} N, N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} t_{2}^{-1} N=$
$N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{0} N, N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} t_{3} N=N t_{0} t_{1} t_{2} t_{0} t_{3} t_{0}^{-1} N$, and $N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} t_{3}^{-1} N$
$=N t_{0} t_{1} t_{2} t_{0} t_{3} N$.
Therefore, we conclude that there is one distinct double coset of the form
$N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} t_{1} N$.
130. We next consider the double coset $N t_{0} t_{1} t_{2} t_{3}^{-1} t_{1} N$.

Let [012 $\overline{\overline{3}} 1]$ denote the double coset $N t_{0} t_{1} t_{2} t_{3}^{-1} t_{1} N$.
Note that $N^{(012 \overline{3} 1)} \geq N^{012 \overline{3} 1}=\langle e\rangle$. Thus $\left|N^{(012 \overline{3} 1)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma $1.4,\left|N t_{0} t_{1} t_{2} t_{3}^{-1} t_{1} N\right|=\frac{|N|}{\left|N^{(01231)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [012 $\overline{3} 1]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(012 \overline{3} 1)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1} t_{2} t_{3}^{-1} t_{1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1} t_{2} t_{3}^{-1} t_{1} t_{1}^{-1} N=N t_{0} t_{1} t_{2} t_{3}^{-1} e N=N t_{0} t_{1} t_{2} t_{3}^{-1} N$ and
$N t_{0} t_{1} t_{2} t_{3}^{-1} t_{1} t_{1} N=N t_{0} t_{1} t_{2} t_{3}^{-1} t_{1}^{2} N=N t_{0} t_{1} t_{2} t_{3}^{-1} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{2} t_{3}^{-1} t_{1} t_{0} N=$ $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} t_{2} N, N t_{0} t_{1} t_{2} t_{3}^{-1} t_{1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3}^{-1} N, N t_{0} t_{1} t_{2} t_{3}^{-1} t_{1} t_{2} N=$ $N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1} N, N t_{0} t_{1} t_{2} t_{3}^{-1} t_{1} t_{2}^{-1} N=N t_{0}^{-1} t_{1} t_{2} t_{0}^{-1} N, N t_{0} t_{1} t_{2} t_{3}^{-1} t_{1} t_{3} N=$ $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} N$, and $N t_{0} t_{1} t_{2} t_{3}^{-1} t_{1} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0}^{-1} N$.

Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1} t_{2} t_{3}^{-1} t_{1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
131. We next consider the double coset $N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2} N$.

Let [$012 \overline{3} 2$] denote the double coset $N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2} N$.

Note that $N^{(012 \overline{3} 2)} \geq N^{012 \overline{3} 2}=\langle e\rangle$. Thus $\left|N^{(012 \overline{3} 2)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2} N\right|=\frac{|N|}{\left|N^{(01232)}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [012 $\overline{3} 2]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(012 \overline{3} 2)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1} t_{2} t_{3}^{-1} t_{2} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2} t_{2}^{-1} N=N t_{0} t_{1} t_{2} t_{3}^{-1} e N=N t_{0} t_{1} t_{2} t_{3}^{-1} N$ and
$N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2} t_{2} N=N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2}^{2} N=N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2} t_{0} N=$
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} N, N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0} N, N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2} t_{1}^{-1} N$ $=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} N, N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2} t_{3} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{0}^{-1} N$, and $N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{2}^{-1} N$.
Therefore, we conclude that there is one distinct double coset of the form $N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2} t_{1} N$.
132. We next consider the double coset $N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2}^{-1} N$.

Let [$012 \overline{3} \overline{2}]$ denote the double coset $N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2}^{-1} N$.
Note that $N^{(012 \overline{3} \overline{2})} \geq N^{012 \overline{3} \overline{2}}=\langle e\rangle$. Thus $\left|N^{(012 \overline{3} \overline{2})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2}^{-1} N\right|=\frac{|N|}{\left|N^{(01232)}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [$012 \overline{3} \overline{2} \overline{2}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(012 \overline{3} \overline{2})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1} t_{2} t_{3}^{-1} t_{2}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2}^{-1} t_{2} N=N t_{0} t_{1} t_{2} t_{3}^{-1} e N=N t_{0} t_{1} t_{2} t_{3}^{-1} N$ and $N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2}^{-1} t_{2}^{-1} N=N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2}^{-2} N=N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2}^{-1} t_{0} N=$ $N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} N, N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2}^{-1} t_{1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0}^{-1} N, N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2}^{-1} t_{1}^{-1} N=$
$N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} N, N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2}^{-1} t_{3} N=N t_{0} t_{1} t_{2}^{-1} t_{1} t_{0}^{-1} N$, and $N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2}^{-1} t_{3}^{-1} N$ $=N t_{0} t_{1} t_{2}^{-1} t_{3} N$.

Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
133. We next consider the double coset $N t_{0} t_{1} t_{2}^{-1} t_{0} t_{1} N$.

Let [012 01$]$ denote the double coset $N t_{0} t_{1} t_{2}^{-1} t_{0} t_{1} N$.
Note that $N^{(01 \overline{2} 01)} \geq N^{01 \overline{2} 01}=\langle e\rangle$. Thus $\left|N^{(01 \overline{2} 01)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1} t_{2}^{-1} t_{0} t_{1} N\right|=\frac{|N|}{\left|N^{(01201)}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [01201] has at most twenty-four distinct single cosets.
Moreover, $N^{(01 \overline{2} 01)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1} t_{2}^{-1} t_{0} t_{1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1} t_{2}^{-1} t_{0} t_{1} t_{1}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{0} e N=N t_{0} t_{1} t_{2}^{-1} t_{0} N$ and
$N t_{0} t_{1} t_{2}^{-1} t_{0} t_{1} t_{1} N=N t_{0} t_{1} t_{2}^{-1} t_{0} t_{1}^{2} N=N t_{0} t_{1} t_{2}^{-1} t_{0} t_{1}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{0}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{2}^{-1} t_{0} t_{1} t_{0} N=$
$N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} N, N t_{0} t_{1} t_{2}^{-1} t_{0} t_{1} t_{0}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1} N, N t_{0} t_{1} t_{2}^{-1} t_{0} t_{1} t_{2} N=$
$N t_{0} t_{1} t_{2} t_{0} t_{1}^{-1} t_{2} N, N t_{0} t_{1} t_{2}^{-1} t_{0} t_{1} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{1}^{-1} N, N t_{0} t_{1} t_{2}^{-1} t_{0} t_{1} t_{3} N=$ $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} N$, and $N t_{0} t_{1} t_{2}^{-1} t_{0} t_{1} t_{3}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0} N$.

Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1} t_{2}^{-1} t_{0} t_{1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
134. We next consider the double coset $N t_{0} t_{1} t_{2}^{-1} t_{0} t_{3} N$.

Let [012̄03] denote the double coset $N t_{0} t_{1} t_{2}^{-1} t_{0} t_{3} N$.
Note that $N^{(012 \overline{2} 03)} \geq N^{01 \overline{2} 03}=\langle e\rangle$. Thus $\left|N^{(01 \overline{2} 03)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1} t_{2}^{-1} t_{0} t_{3} N\right|=\frac{|N|}{\left|N^{(01203)}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [$01 \overline{2} 03]$ has at most twenty-four distinct single cosets. Moreover, $N^{(01 \overline{2} 03)}$ has eight orbits on $T:=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1} t_{2}^{-1} t_{0} t_{3} t_{i}^{t 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1} t_{2}^{-1} t_{0} t_{3} t_{3}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{0} e N=N t_{0} t_{1} t_{2}^{-1} t_{0} N$ and
$N t_{0} t_{1} t_{2}^{-1} t_{0} t_{3} t_{3} N=N t_{0} t_{1} t_{2}^{-1} t_{0} t_{3}^{2} N=N t_{0} t_{1} t_{2}^{-1} t_{0} t_{3}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{2}^{-1} t_{0} t_{3} t_{0} N=$
$N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} N, N t_{0} t_{1} t_{2}^{-1} t_{0} t_{3} t_{0}^{-1} N=N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} t_{1} N, N t_{0} t_{1} t_{2}^{-1} t_{0} t_{3} t_{1} N=$
$N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} N, N t_{0} t_{1} t_{2}^{-1} t_{0} t_{3} t_{1}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3} N, N t_{0} t_{1} t_{2}^{-1} t_{0} t_{3} t_{2} N=$
$N t_{0} t_{1} t_{2} t_{0} t_{3}^{-1} N$, and $N t_{0} t_{1} t_{2}^{-1} t_{0} t_{3} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} t_{2} N$.
Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1} t_{2}^{-1} t_{0} t_{3} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
135. We next consider the double coset $N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1} N$.

Let [01 $\overline{2} \overline{0} 1]$ denote the double coset $N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1} N$.
Note that $N^{(01 \overline{2} \overline{0} 1)} \geq N^{01 \overline{2} \bar{O} 1}=\langle e\rangle$. Thus $\left|N^{(01 \overline{2} \bar{O} 1)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1} N\right|=\frac{|N|}{\left|N^{(01201)}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [01 $\overline{2} \overline{0} 1]$ has at most twenty-four distinct single cosets. Moreover, $N^{(01 \overline{2} \overline{0} 1)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{1}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} e N=N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} N$ and $N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{1} N=N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1}^{2} N=N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{0} N=$ $N t_{0} t_{1} t_{2}^{-1} t_{3} t_{1} N, N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} N, N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{2} N=$ $N t_{0} t_{1} t_{2}^{-1} t_{3} t_{0} N, N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{1}^{-1} N, N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3} N=$ $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{2}^{-1} N$, and $N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0} t_{2}^{-1} N$.

Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
136. We next consider the double coset $N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} N$.

Let [$01 \overline{2} \overline{0} \overline{1} \overline{1}]$ denote the double coset $N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} N$.

Note that $N^{(01 \overline{2} \overline{0} \overline{1})} \geq N^{012 \overline{2} \overline{0} \overline{1}}=\langle e\rangle$. Thus $\left|N^{(01 \overline{2} \overline{0} \overline{1})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} N\right|=\frac{|N|}{\left|N^{(01201)}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [$01 \overline{2} \overline{0} \overline{1}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(01 \overline{2} \bar{o} \overline{1})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{1} N=N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} e N=N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} N$ and
$N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{1}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-2} N=N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0} N=$
$N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{2}^{-1} N, N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{1} t_{0} N, N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{2} N=$ $N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2}^{-1} t_{0}^{-1} N, N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} N=N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2}^{-1} N$, and $N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{3}^{-1} N=N t_{0} t_{1} t_{2} t_{3} t_{0} t_{2}^{-1} N$.

Therefore, we conclude that there is one distinct double coset of the form
$N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{3} N$.
137. We next consider the double coset $N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3} N$.

Let [012 $\overline{0} 3]$ denote the double coset $N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3} N$.
Note that $N^{(01 \overline{2} \overline{0} 3)} \geq N^{01 \overline{2} \bar{O} 3}=\langle e\rangle$. Thus $\left|N^{(01 \overline{2} \overline{0} 3)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma $1.4,\left|N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3} N\right|=\frac{|N|}{\left|N^{(01203)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$01 \overline{2} \overline{0} 3]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(01 \overline{2} \overline{0} 3)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{3}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} e N=N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} N$ and $N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{3} N=N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3}^{2} N=N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{0} N=$ $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2} N, N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{3}^{-1} N, N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{1}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{1}^{-1} N, N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{2} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}^{-1} N$, and $N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{1}^{-1} N$.

Therefore, we conclude that there is one distinct double coset of the form $N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{1} N$.
138. We next consider the double coset $N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} N$.

Let $[01 \overline{2} \overline{0} \overline{3}]$ denote the double coset $N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} N$.
Note that $N^{(01 \overline{2} \overline{0} \overline{3})} \geq N^{01 \overline{2} \overline{0} \overline{3}}=\langle e\rangle$. Thus $\left|N^{(01 \overline{2} \overline{0} \overline{3})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} N\right|=\frac{|N|}{\left|N^{(01203)}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [01 $\overline{2} \overline{0} \overline{3}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(01 \overline{2} \overline{0} \overline{3})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{3} N=N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} e N=N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} N$ and $N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{3}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-2} N=N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{0}^{-1} N=$
$N t_{0} t_{1} t_{2}^{-1} t_{3} t_{0} N, N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} t_{1}^{-1} N, N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} N, N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{2} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3} N$, and $N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{2}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{0} t_{3} N$.

Therefore, we conclude that there is one distinct double coset of the form
$N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{0} N$.
139. We next consider the double coset $N t_{0} t_{1} t_{2}^{-1} t_{1} t_{0} N$.

Let $[01 \overline{2} 10]$ denote the double coset $N t_{0} t_{1} t_{2}^{-1} t_{1} t_{0} N$.
Note that $N^{(01 \overline{2} 10)} \geq N^{01 \overline{1} 10}=\langle e\rangle$. Thus $\left|N^{(01 \overline{1} 10)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1} t_{2}^{-1} t_{1} t_{0} N\right|=\frac{|N|}{\left|N^{(01210)}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [012 10] has at most twenty-four distinct single cosets.
Moreover, $N^{(01 \overline{2} 10)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1} t_{2}^{-1} t_{1} t_{0} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1} t_{2}^{-1} t_{1} t_{0} t_{0}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{1} e N=N t_{0} t_{1} t_{2}^{-1} t_{1} N$ and
$N t_{0} t_{1} t_{2}^{-1} t_{1} t_{0} t_{0} N=N t_{0} t_{1} t_{2}^{-1} t_{1} t_{0}^{2} N=N t_{0} t_{1} t_{2}^{-1} t_{1} t_{0}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{2}^{-1} t_{1} t_{0} t_{1} N=$
$N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} N, N t_{0} t_{1} t_{2}^{-1} t_{1} t_{0} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{2}^{-1} N, N t_{0} t_{1} t_{2}^{-1} t_{1} t_{0} t_{2} N$
$=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{0}^{-1} N, N t_{0} t_{1} t_{2}^{-1} t_{1} t_{0} t_{2}^{-1} N=N t_{0} t_{1} t_{2} t_{3} t_{2}^{-1} N, N t_{0} t_{1} t_{2}^{-1} t_{1} t_{0} t_{3} N$
$=N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2} t_{1} N$, and $N t_{0} t_{1} t_{2}^{-1} t_{1} t_{0} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{3}^{-1} N$.
Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1} t_{2}^{-1} t_{1} t_{0} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
140. We next consider the double coset $N t_{0} t_{1} t_{2}^{-1} t_{1} t_{0}^{1} N$.

Let [01210] denote the double coset $N t_{0} t_{1} t_{2}^{-1} t_{1} t_{0}^{-1} N$.
Note that $N^{(01 \overline{2} 1 \overline{0})} \geq N^{01 \overline{2} 1 \overline{0}}=\langle e\rangle$. Thus $\left|N^{(01 \overline{2} 1 \overline{0})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1} t_{2}^{-1} t_{1} t_{0}^{-1} N\right|=\frac{|N|}{\left|N^{(01210)}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [$01 \overline{2} 1 \overline{0}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(01 \overline{2} 1 \overline{0})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1} t_{2}^{-1} t_{1} t_{0}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1} t_{2}^{-1} t_{1} t_{0}^{-1} t_{0} N=N t_{0} t_{1} t_{2}^{-1} t_{1} e N=N t_{0} t_{1} t_{2}^{-1} t_{1} N$ and $N t_{0} t_{1} t_{2}^{-1} t_{1} t_{0}^{-1} t_{0}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{1} t_{0}^{-2} N=N t_{0} t_{1} t_{2}^{-1} t_{1} t_{0} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{2}^{-1} t_{1} t_{0}^{-1} t_{1} N=$ $N t_{0} t_{1} t_{2} t_{0} t_{2}^{-1} N, N t_{0} t_{1} t_{2}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{2} N, N t_{0} t_{1} t_{2}^{-1} t_{1} t_{0}^{-1} t_{2} N$
$=N t_{0} t_{1} t_{2}^{-1} t_{3} N, N t_{0} t_{1} t_{2}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} N=N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2}^{-1} N, N t_{0} t_{1} t_{2}^{-1} t_{1} t_{0}^{-1} t_{3} N$
$=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0} N$, and $N t_{0} t_{1} t_{2}^{-1} t_{1} t_{0}^{-1} t_{3}^{-1} N=N t_{0} t_{1} t_{2} t_{0} t_{3} t_{2} N$.
Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1} t_{2}^{-1} t_{1} t_{0}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
141. We next consider the double coset $N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3} N$.

Let [01 $\overline{2} 13$] denote the double coset $N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3} N$.

Note that $N^{(01 \overline{2} 13)} \geq N^{01 \overline{2} 13}=\langle e\rangle$. Thus $\left|N^{(01 \overline{2} 13)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3} N\right|=\frac{|N|}{\left|N^{(01213)}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [012 13] has at most twenty-four distinct single cosets.
Moreover, $N^{(01 \overline{2} 13)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1} t_{2}^{-1} t_{1} t_{3} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3} t_{3}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{1} e N=N t_{0} t_{1} t_{2}^{-1} t_{1} N$ and
$N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3} t_{3} N=N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3}^{2} N=N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3} t_{0}^{-1} N=$ $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{1} N, N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3} t_{1} N=N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} N, N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3} t_{1}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{2}^{-1} N, N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3} t_{2} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} N$, and $N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3} t_{2}^{-1} N$
$=N t_{0} t_{1} t_{2} t_{0} t_{2}^{-1} N$.
Therefore, we conclude that there is one distinct double coset of the form
$N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3} t_{0} N$.
142. We next consider the double coset $N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3}^{-1} N$.

Let $[01 \overline{2} 1 \overline{3}]$ denote the double coset $N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3}^{-1} N$.
Note that $N^{(01 \overline{2} 1 \overline{3})} \geq N^{01 \overline{2} 1 \overline{3}}=\langle e\rangle$. Thus $\left|N^{(01 \overline{2} 1 \overline{3})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma $1.4,\left|N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3}^{-1} N\right|=\frac{|N|}{\left|N^{(01213)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset $[01 \overline{2} 1 \overline{3}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(01 \overline{1} 1 \overline{3})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{3} N=N t_{0} t_{1} t_{2}^{-1} t_{1} e N=N t_{0} t_{1} t_{2}^{-1} t_{1} N$ and
$N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{3}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3}^{-2} N=N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{0} N=$ $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0} N, N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{1} N=N t_{0} t_{1} t_{2} t_{0} t_{2}^{-1} N, N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{1}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{2} N, N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{2} N=N t_{0} t_{1} t_{0}^{-1} t_{2} N$, and $N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{2}^{-1} N$
$=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} N$.
Therefore, we conclude that there is one distinct double coset of the form
$N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{0}^{-1} N$.
143. We next consider the double coset $N t_{0} t_{1} t_{2}^{-1} t_{3} t_{0} N$.

Let [01 $2 \overline{2} 30$ denote the double coset $N t_{0} t_{1} t_{2}^{-1} t_{3} t_{0} N$.
Note that $N^{(01 \overline{2} 30)} \geq N^{01 \overline{2} 30}=\langle e\rangle$. Thus $\left|N^{(01 \overline{2} 30)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1} t_{2}^{-1} t_{3} t_{0} N\right|=\frac{|N|}{\left|N^{(01230)}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [01 $\overline{2} 30]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(01 \overline{2} 30)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.
Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1} t_{2}^{-1} t_{3} t_{0} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1} t_{2}^{-1} t_{3} t_{0} t_{0}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{3} e N=N t_{0} t_{1} t_{2}^{-1} t_{3} N$ and
$N t_{0} t_{1} t_{2}^{-1} t_{3} t_{0} t_{0} N=N t_{0} t_{1} t_{2}^{-1} t_{3} t_{0}^{2} N=N t_{0} t_{1} t_{2}^{-1} t_{3} t_{0}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{2}^{-1} t_{3} t_{0} t_{1}^{-1} N=$
$N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2}^{-1} t_{1} N, N t_{0} t_{1} t_{2}^{-1} t_{3} t_{0} t_{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{1}^{-1} N, N t_{0} t_{1} t_{2}^{-1} t_{3} t_{0} t_{2}^{-1} N$
$=N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1} N, N t_{0} t_{1} t_{2}^{-1} t_{3} t_{0} t_{3} N=N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} N$, and $N t_{0} t_{1} t_{2}^{-1} t_{3} t_{0} t_{3}^{-1} N$
$=N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{0} N$.
Therefore, we conclude that there is one distinct double coset of the form
$N t_{0} t_{1} t_{2}^{-1} t_{3} t_{0} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1} t_{2}^{-1} t_{3} t_{0} t_{1} N$.
144. We next consider the double coset $N t_{0} t_{1} t_{2}^{-1} t_{3} t_{1} N$.

Let [01 $\overline{2} 31]$ denote the double coset $N t_{0} t_{1} t_{2}^{1} t_{3} t_{1} N$.
Note that $N^{(01 \overline{2} 31)} \geq N^{01 \overline{2} 31}=\langle e\rangle$. Thus $\left|N^{(01 \overline{2} 31)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1} t_{2}^{-1} t_{3} t_{1} N\right|=\frac{|N|}{\left|N^{(01231)}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [01 $\overline{2} 31]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(01 \overline{2} 31)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1} t_{2}^{-1} t_{3} t_{1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1} t_{2}^{-1} t_{3} t_{1} t_{1}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{3} e N=N t_{0} t_{1} t_{2}^{-1} t_{3} N$ and
$N t_{0} t_{1} t_{2}^{-1} t_{3} t_{1} t_{1} N=N t_{0} t_{1} t_{2}^{-1} t_{3} t_{1}^{2} N=N t_{0} t_{1} t_{2}^{-1} t_{3} t_{1}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{0}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{2}^{-1} t_{3} t_{1} t_{0} N=$
$N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} t_{2} N, N t_{0} t_{1} t_{2}^{-1} t_{3} t_{1} t_{0}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} N, N t_{0} t_{1} t_{2}^{-1} t_{3} t_{1} t_{2} N$
$=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{3} N, N t_{0} t_{1} t_{2}^{-1} t_{3} t_{1} t_{2}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0} N, N t_{0} t_{1} t_{2}^{-1} t_{3} t_{1} t_{3} N$
$=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} N$, and $N t_{0} t_{1} t_{2}^{-1} t_{3} t_{1} t_{3}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1} N$.
Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1} t_{2}^{-1} t_{3} t_{1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
145. We next consider the double coset $N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{0} N$.

Let $[01 \overline{2} \overline{3} 0]$ denote the double coset $N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{0} N$.
Note that $N^{(01 \overline{2} \overline{3} 0)} \geq N^{01 \overline{2} \overline{3} 0}=\langle e\rangle$. Thus $\left|N^{(01 \overline{2} \overline{3} 0)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{0} N\right|=\frac{|N|}{\left|N^{(01230)}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [$01 \overline{2} \overline{3} 0]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(01 \overline{2} \overline{3} 0)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{0} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{0} t_{0}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} e N=N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} N$ and
$N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{0} t_{0} N=N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{0}^{2} N=N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} N=N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{0} t_{1}^{-1} N=$
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} N, N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{0} t_{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1}^{-1} N$,
$N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{0} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{0}^{-1} N, N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{0} t_{3} N$
$=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2} N$, and $N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{0} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} t_{1}^{-1} N$.
Therefore, we conclude that there is one distinct double coset of the form
$N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{0} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{0} t_{1} N$.
146. We next consider the double coset $N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1} N$.

Let $[01 \overline{2} \overline{3} 1]$ denote the double coset $N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1} N$.

Note that $N^{(01 \overline{2} \overline{3} 1)} \geq N^{01 \overline{2} \overline{3} 1}=\langle e\rangle$. Thus $\left|N^{(012 \overline{2} \overline{3} 1)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1} N\right|=\frac{|N|}{\left|N^{(012 \overline{3} 1)}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [$01 \overline{2} \overline{3} 1]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(01 \overline{2} \overline{3} 1)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{1}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} e N=N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} N$ and $N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{1} N=N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{2} N=N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{0} N=$
$N t_{0}^{-1} t_{1} t_{2} t_{0}^{-1} N, N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{0}^{-1} N=N t_{0} t_{1} t_{2} t_{3}^{-1} t_{1} N, N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{2} N$
$=N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} t_{2}^{-1} N, N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{2}^{-1} N=N t_{0}^{-1} t_{1} t_{2} t_{3} t_{0} N, N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{3} N$
$=N t_{0} t_{1} t_{2}^{-1} t_{0} t_{1} N$, and $N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} N$.
Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
147. We next consider the double coset $N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} N$.

Let $[01 \overline{2} \overline{3} \overline{1}]$ denote the double coset $N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} N$.
Note that $N^{(012 \overline{2} \overline{3} \overline{1})} \geq N^{01 \overline{2} \overline{3} \overline{1}}=\langle e\rangle$. Thus $\left|N^{(01 \overline{2} \overline{3} \overline{1})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} N\right|=\frac{|N|}{\left|N^{(012 \overline{21})}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [$01 \overline{2} \overline{\overline{3}} \overline{1}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(01 \overline{2} \overline{3} \overline{1})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{1} N=N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} e N=N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} N$ and $N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{1}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-2} N=N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{0} N=$ $N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2}^{-1} N, N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{0}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0}^{-1} N, N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{3} N$ $=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{2}^{-1} N$, and $N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{3}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3} N$.

Therefore, we conclude that there are two distinct double cosets of the form
$N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2} N$ and
$N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2}^{-1} N$.
148. We next consider the double coset $N t_{0} t_{1} t_{0}^{-1} t_{2} t_{1} N$.

Let [010̄21] denote the double coset $N t_{0} t_{1} t_{0}^{-1} t_{2} t_{1} N$.
Note that $N^{(010 \overline{0} 1)} \geq N^{010 \overline{2} 21}=\langle e\rangle$. Thus $\left|N^{(010 \overline{0} 21)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1} t_{0}^{-1} t_{2} t_{1} N\right|=\frac{|N|}{\left|N^{(01021)}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [010 21$]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(010 \overline{2} 21)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1} t_{0}^{-1} t_{2} t_{1} t_{i}^{+1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1} t_{0}^{-1} t_{2} t_{1} t_{1}^{-1} N=N t_{0} t_{1} t_{0}^{-1} t_{2} e N=N t_{0} t_{1} t_{0}^{-1} t_{2} N$ and
$N t_{0} t_{1} t_{0}^{-1} t_{2} t_{1} t_{1} N=N t_{0} t_{1} t_{0}^{-1} t_{2} t_{1}^{2} N=N t_{0} t_{1} t_{0}^{-1} t_{2} t_{1}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{0}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{0}^{-1} t_{2} t_{1} t_{0} N=$ $N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} t_{3} N, N t_{0} t_{1} t_{0}^{-1} t_{2} t_{1} t_{0}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{3} t_{0} t_{1} N, N t_{0} t_{1} t_{0}^{-1} t_{2} t_{1} t_{2} N$
$=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{2}^{-1} N, N t_{0} t_{1} t_{0}^{-1} t_{2} t_{1} t_{2}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} N, N t_{0} t_{1} t_{0}^{-1} t_{2} t_{1} t_{3} N$
$=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} N$, and $N t_{0} t_{1} t_{0}^{-1} t_{2} t_{1} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} t_{2} N$.
Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0} t_{1} t_{0}^{-1} t_{2} t_{1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
149. We next consider the double coset $N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3} N$.

Let [010̄23] denote the double coset $N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3} N$.
Note that $N^{(010 \overline{0} 23)} \geq N^{010 \overline{0} 23}=\langle e\rangle$. Thus $\left|N^{(01 \overline{0} 23)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3} N\right|=\frac{|N|}{\left|N^{(01023)}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [010 23$]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(010 \overline{0} 23)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1} t_{0}^{-1} t_{2} t_{3} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3} t_{3}^{-1} N=N t_{0} t_{1} t_{0}^{-1} t_{2} e N=N t_{0} t_{1} t_{0}^{-1} t_{2} N$ and $N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3} t_{3} N=N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3}^{2} N=N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3}^{-1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3} t_{0} N=$
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{0}^{-1} N, N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} N, N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3} t_{1} N$
$=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{1}^{-1} N, N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3} t_{1}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} N$, and $N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3} t_{2} N=N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} N$.

Therefore, we conclude that there is one distinct double coset of the form
$N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3} t_{2}^{-1} N$.
150. We next consider the double coset $N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3}^{-1} N$.

Let $[010 \overline{2} 2 \overline{3}]$ denote the double coset $N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3}^{-1} N$.
Now, with the help of MAGMA, we know that that the following right cosets, or single cosets, are equivalent: $N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3}^{-1}=N t_{1} t_{3} t_{1}^{-1} t_{2} t_{0}^{-1}=N t_{3} t_{0} t_{3}^{-1} t_{2} t_{1}^{-1}$.

That is, in terms of our short-hand notation,

$$
010 \overline{0} 2 \overline{3} \sim 13 \overline{1} 2 \overline{0} \sim 30 \overline{3} 2 \overline{1}
$$

By conjugating the equivalence relation above with the elements of S_{4}, we determine that the following single cosets are equivalent in the double coset [$01 \overline{0} 2 \overline{3}]$:

$$
\begin{array}{ccc}
01 \overline{0} 2 \overline{3} \sim 13 \overline{1} 2 \overline{0} \sim 30 \overline{3} 2 \overline{1} & 10 \overline{1} 2 \overline{3} \sim 03 \overline{0} 2 \overline{1} \sim 313 \overline{3} 2 \overline{0} & 21 \overline{2} 0 \overline{3} \sim 13 \overline{1} 0 \overline{2} \sim 32 \overline{3} 0 \overline{1} \\
01 \overline{0} 3 \overline{2} \sim 12 \overline{1} 3 \overline{0} \sim 20 \overline{2} 3 \overline{1} & 02 \overline{0} 1 \overline{3} \sim 23 \overline{2} 1 \overline{0} \sim 30 \overline{3} 1 \overline{2} & 12 \overline{1} 0 \overline{3} \sim 23 \overline{2} 0 \overline{1} \sim 31 \overline{3} 0 \overline{2} \\
20 \overline{2} 1 \overline{3} \sim 03 \overline{0} 1 \overline{2} \sim 32 \overline{3} 1 \overline{0} \quad 21 \overline{2} 3 \overline{0} \sim 10 \overline{1} 3 \overline{2} \sim 02 \overline{0} 3 \overline{1}
\end{array}
$$

Since each of the twenty-four single cosets has three names, the double coset [$01 \overline{0} 2 \overline{3}]$ must have at most eight distinct single cosets.

Now, $N^{(01 \overline{0} 2 \overline{3})}$ has four orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0,1,3\},\{2\},\{\overline{0}, \overline{1}, \overline{3}\}$, and $\{\overline{2}\}$. Therefore, there are at most four double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{i}^{ \pm 1}, i \in\{2,3\}$.

But note that $N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{3} N=N t_{0} t_{1} t_{0}^{-1} t_{2} e N=N t_{0} t_{1} t_{0}^{-1} t_{2} N$ and $N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{3}^{-1} N=N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3}^{-2} N=N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{2} N=$ $N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3} N$.

Therefore, we conclude that there is one distinct double coset of the form $N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{2}^{-1} N$.
151. We next consider the double coset $N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3} N$.

Let [010̄2̄3] denote the double coset $N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3} N$.
Now, with the help of MAGMA, we know that that the following right cosets, or single cosets, are equivalent: $N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}=N t_{1} t_{3} t_{1}^{-1} t_{2}^{-1} t_{0}=N t_{3} t_{0} t_{3}^{-1} t_{2}^{-1} t_{1}$.

That is, in terms of our short-hand notation,

$$
01 \overline{0} \overline{2} 3 \sim 13 \overline{1} \overline{2} 0 \sim 30 \overline{3} \overline{2} 1
$$

By conjugating the equivalence relation above with the elements of S_{4}, we determine that the following single cosets are equivalent in the double coset [$01 \overline{0} \overline{2} 3]$:

$$
\begin{array}{ccc}
010 \overline{2} 3 \sim 13 \overline{1} \overline{2} 0 \sim 30 \overline{3} \overline{2} 1 & 10 \overline{1} \overline{2} 3 \sim 030 \overline{2} 1 \sim 31 \overline{3} \overline{2} 0 & 21 \overline{2} 03 \sim 13 \overline{1} 02 \sim 32 \overline{3} \overline{0} 1 \\
01 \overline{0} \overline{3} 2 \sim 12 \overline{1} \overline{3} 0 \sim 20 \overline{2} \overline{3} 1 & 02 \overline{1} \overline{1} 3 \sim 23 \overline{2} \overline{1} 0 \sim 30 \overline{3} \overline{1} 2 & 12 \overline{1} \overline{0} 3 \sim 23 \overline{2} \overline{0} 1 \sim 31 \overline{3} \overline{0} 2 \\
20 \overline{2} \overline{1} 3 \sim 030 \overline{1} 2 \sim 32 \overline{3} \overline{1} 0 \quad 21 \overline{2} \overline{3} 0 \sim 10 \overline{3} \overline{3} 2 \sim 02 \overline{0} \overline{3} 1
\end{array}
$$

Since each of the twenty-four single cosets has three names, the double coset [010$\overline{2} 3]$ must have at most eight distinct single cosets.

Now, $N^{(010 \overline{2} \overline{3})}$ has four orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0,1,3\},\{2\},\{\overline{0}, \overline{1}, \overline{3}\}$, and $\{\overline{2}\}$. Therefore, there are at most four double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3} t_{i}^{ \pm 1}, i \in\{2,3\}$.
But note that $N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3} t_{3}^{-1} N=N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} e N=N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} N$ and $N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3} t_{3} N=N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{2} N=N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3} t_{2} N=$ $N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{2}^{-1} N$ and $N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3} t_{2}^{-1} N=N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3}^{-1} N$.

Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
152. We next consider the double coset $N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} N$.

Let $[01 \overline{0} \overline{2} \overline{3}]$ denote the double coset $N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} N$.

Note that $N^{(010 \overline{0} \overline{2} \overline{3})} \geq N^{010 \overline{0} \bar{z} \overline{3}}=\langle e\rangle$. Thus $\left|N^{(01 \overline{0} \overline{2} \overline{3})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} N\right|=\frac{|N|}{\left|N^{(01 \overline{0} \tilde{3})}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [$01 \overline{0} \overline{2} \overline{3}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(010 \overline{0} \overline{3})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{3} N=N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} e N=N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} N$ and $N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{3}^{-1} N=N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-2} N=N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0} N=$
$N t_{0}^{-1} t_{1} t_{2} t_{3} t_{1}^{-1} N, N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} N=N t_{0} t_{1} t_{2} t_{0} t_{1}^{-1} N, N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} N$
$=N t_{0} t_{1} t_{2} t_{0} t_{1}^{-1} t_{2} N, N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{2} N=N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3} t_{2}^{-1} N$, and
$N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{2}^{-1} N=N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3} N$.
Therefore, we conclude that there is one distinct double coset of the form
$N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} N$.
153. We next consider the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0} N$.

Let [$\overline{0} \overline{1} 210]$ denote the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0} N$.
Note that $N^{(\overline{0} \overline{1} 210)} \geq N^{\overline{0} \overline{1} 210}=\langle e\rangle$. Thus $\left|N^{(\overline{0} \overline{1} 210)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma $1.4,\left|N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0} N\right|=\frac{|N|}{\left|N^{(\overline{0} 1210)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$\overline{0} \overline{1} 210]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{0} \overline{1} 210)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0} t_{0}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} e N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} N$ and $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0} t_{0} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0}^{2} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0} t_{1} N=$ $N t_{0} t_{1} t_{2}^{-1} t_{0} t_{1} N, N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} N, N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0} t_{2} N$ $=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} N$, and $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} t_{0} N$.

Therefore, we conclude that there are two distinct double cosets of the form $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0} t_{3} N$ and $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0} t_{3}^{-1} N$.
154. We next consider the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} N$.

Let [$\overline{0} \overline{1} 21 \overline{0}]$ denote the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} N$.
Note that $N^{(\overline{0} \overline{1} 21 \overline{0})} \geq N^{\overline{0} \overline{1} 21 \overline{0}}=\langle e\rangle$. Thus $\left|N^{(\overline{0} \overline{1} 21 \overline{0})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} N\right|=\frac{|N|}{\left|N^{(\overline{1} 1210)}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [$\overline{0} \overline{1} 21 \overline{0}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{0} 1 \overline{2} 21 \overline{0})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{0} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} e N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} N$ and $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{0}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0}^{-2} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0} N$.

Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{1} N=$
$N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3} t_{0} N, N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{1}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{0}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{2} N$ $=N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1} N$, and $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{2}^{-1} N=N t_{0}^{-1} t_{1} t_{2}^{-1} t_{3}^{-1} N$.

Therefore, we conclude that there are two distinct double cosets of the form
$N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3} N$ and $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3}^{-1} N$.
155. We next consider the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2} \dot{t}_{1} t_{3} N$.

Let [$\overline{0} \overline{1} 213]$ denote the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3} N$.
Note that $N^{(\overline{0} \overline{1} 213)} \geq N^{\overline{0} \overline{1} 213}=\langle e\rangle$. Thus $\left|N^{(\overline{0} \overline{1} 213)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3} N\right|=\frac{|N|}{\left|N^{(\overline{0} 1213)}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [$\overline{0} \overline{1} 213]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{0} \overline{1} 213)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3} t_{3}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} e N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} N$ and $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3} t_{3} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3}^{2} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3} t_{1} N=$
$N t_{0} t_{1} t_{2}^{-1} t_{0} t_{3} N, N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3} t_{1}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3} t_{2} N$
$=N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2} t_{3} N$, and $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} t_{3}^{-1} N$.
Therefore, we conclude that there are two distinct double cosets of the form $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0} N$ and $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0}^{-1} N$.
156. We next consider the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} N$.

Let $[\overline{0} \overline{1} 21 \overline{3}]$ denote the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} N$.
Note that $N^{(\overline{0} 121 \overline{3})} \geq N^{\overline{0} \overline{1} 21 \overline{3}}=\langle e\rangle$. Thus $\left|N^{(\overline{0} 1 \overline{1} 21 \overline{3})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma $1.4,\left|N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} N\right|=\frac{|N|}{\left|N^{(0 \overline{1} 213)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$[\overline{1} 21 \overline{3}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{0} \overline{1} 21 \overline{3})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{3} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} e N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} N$ and $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{3}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3}^{-2} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3} N$.

Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0}^{-1} N=$
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{2}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{1}^{-1} N$,
$N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{2} N, N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{2} N=$
$N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} N$, and $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{2}^{-1} N=N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} N$.
Therefore, we conclude that there is one distinct double coset of the form $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0} N$.
157. We next consider the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0} N$.

Let [$\overline{0} \overline{1} 2 \overline{1} 0]$ denote the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0} N$.
Note that $N^{(\overline{\overline{1}} 2 \overline{1} 0)} \geq N^{\overline{0} \overline{1} 2 \overline{1} 0}=\langle e\rangle$. Thus $\left|N^{(\overline{0} \overline{1} 2 \overline{1} 0)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma $1.4,\left|N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0} N\right|=\frac{|N|}{\left|N^{(\overline{\overline{1} 2 \overline{1} 0})}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [$\overline{0} \overline{1} 2 \overline{1} 0]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{0} \overline{1} 2 \overline{1} 0)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0} t_{0}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} e N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} N$ and $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0} t_{0} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}^{2} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0} t_{1} N=$ $N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{0}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0} t_{1}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0} t_{2} N$ $=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2} N, N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0} t_{2}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0} t_{3} N$ $=N t_{0} t_{1} t_{2} t_{0} t_{3} t_{2} N$, and $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0} t_{3}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{1} t_{0}^{-1} N$.

Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
158. We next consider the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}^{-1} N$.

Let $[\overline{0} \overline{1} 2 \overline{1} \overline{0}]$ denote the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}^{-1} N$.
Note that $N^{(\overline{0} \overline{1} 2 \overline{1} \overline{0})} \geq N^{\overline{0} \overline{1} 2 \overline{1} \overline{0}}=\langle e\rangle$. Thus $\left|N^{(\overline{0} \overline{1} 2 \overline{1} \overline{0})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}^{-1} N\right|=\frac{|N|}{\left|N^{(\overline{0} 12 \overline{1} \overline{1})}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [$\overline{0} \overline{1} 2 \overline{1} \overline{0}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{0} \overline{1} 2 \overline{1} \overline{0})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}^{-1} t_{0} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} e N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} N$ and $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}^{-1} t_{0}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}^{-2} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0} N$.
Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}^{-1} t_{1} N=$ $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{1}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3} N$, $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}^{-1} t_{2} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} N=$ $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2} t_{1} N$, and $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}^{-1} t_{3} N=N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2}^{-1} t_{0}^{-1} N$.

Therefore, we conclude that there is one distinct double coset of the form $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}^{-1} t_{3}^{-1} N$.
159. We next consider the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0} N$.

Let [$\overline{0} \overline{1} 230]$ denote the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0} N$.
Note that $N^{(\overline{\overline{1}} 230)} \geq N^{\overline{\overline{0}} \overline{1} 230}=\langle e\rangle$. Thus $\left|N^{(\overline{0} \overline{1} 230)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma $1.4,\left|N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0} N\right|=\frac{|N|}{\left|N^{(\overline{0} 1230)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$\overline{0} \overline{1} 230]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{\overline{0} 1} 230)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0} t_{0}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} e N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} N$ and $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0} t_{0} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0}^{2} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0} t_{1} N=$ $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0} t_{1}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} N$, $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0} t_{2} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0} t_{2}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{0} N, N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0} t_{3} N=N t_{0} t_{1} t_{2}^{-1} t_{3} t_{1} N$, and $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} t_{3} N$.

Therefore, we conclude that there are no distinct double cosets of the form $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
160. We next consider the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0}^{-1} N$.

Let [$\overline{0} \overline{1} 23 \overline{0}]$ denote the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0}^{-1} N$.
Note that $N^{(\overline{0} \overline{1} 23 \overline{0})} \geq N^{\overline{0} \overline{1} 23 \overline{0}}=\langle e\rangle$. Thus $\left|N^{(\overline{0} \overline{1} 23 \overline{0})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0}^{-1} N\right|=\frac{|N|}{\left|N^{(\overline{\overline{1} 230})}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [$\overline{0} \overline{1} 23 \overline{0}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{0} \overline{1} 23 \overline{0})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0}^{-1} t_{0} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} e N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} N$ and
$N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0}^{-1} t_{0}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0}^{-2} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0} N$.
Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0}^{-1} t_{1} N=$
$N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1} t_{3} N, N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0}^{-1} t_{1}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{0} t_{1} N, N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0}^{-1} t_{3} N$
$=N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} N$, and $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0}^{-1} t_{3}^{-1} N=N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2}^{-1} N$.
Therefore, we conclude that there are two distinct double cosets of the form $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0}^{-1} t_{2} N$ and $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0}^{-1} t_{2}^{-1} N$.
161. We next consider the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{1} N$.

Let $[\overline{0} \overline{1} 231]$ denote the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{1} N$.
Note that $N^{(\overline{\mathrm{O}} \mathrm{i} 231)} \geq N^{\overline{0} \overline{\mathrm{I}} 231}=\langle e\rangle$. Thus $\left|N^{(\overline{\mathrm{O}} \mathrm{i} 231)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{1} N\right|=\frac{|N|}{\left|N^{(\overline{0} 231)}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [$\overline{0} \overline{1} 231]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{0} \overline{1} 231)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{1} t_{1}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} e N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} N$ and $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{1} t_{1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{1}^{2} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} N$.
Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{1} t_{0} N=$
$N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{0} N, N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{1} t_{0}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2} N, N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{1} t_{2} N$ $=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{1} N, N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{1} t_{3} N=N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3} N$, and $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{1} t_{3}^{-1} N$ $=N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3} t_{0} N$.

Therefore, we conclude that there is one distinct double coset of the form $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{1} t_{2}^{-1} N$.
162. We next consider the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} N$.

Let [$\overline{0} \overline{1} 23 \overline{2}]$ denote the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} N$.
Note that $N^{(\overline{0} \overline{1} 23 \overline{2})} \geq N^{\overline{0} \overline{1} 23 \overline{2}}=\langle e\rangle$. Thus $\left|N^{(\overline{0} \overline{1} 23 \overline{2})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} N\right|=\frac{|N|}{\left|N^{(\overline{10} 23 \overline{2})}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [$\overline{0} \overline{1} 23 \overline{2}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{\overline{1}} \overline{2} 23 \overline{2})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{2} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} e N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} N$ and $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{2}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{2}^{-2} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{2} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{0} N=$ $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0} N, N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{0}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3}^{-1} N$, $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0} t_{3} N, N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{1}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{2}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{3} N=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2} t_{1} N$, and $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{3}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}^{-1} N$.

Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
163. We next consider the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} N$.

Let [$\overline{0} \overline{1} \overline{2} 01]$ denote the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} N$.
 1.4, $\left|N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} N\right|=\frac{|N|}{\mid N^{(0 \overline{1201)} \mid}} \leq \frac{24}{1}=24$.

Therefore, the double coset [$\overline{0} \overline{1} \overline{2} 01]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{0} \overline{1} \overline{2} 01)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{1}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} e N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} N$ and $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{2} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{0} N=$
$N t_{0}^{-1} t_{1} t_{2} t_{3}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2}^{-1} N$
$=N t_{0} t_{1} t_{2} t_{0} t_{3} t_{0}^{-1} N$, and $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{3} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0}^{-1} t_{3}^{-1} N$.

Therefore, we conclude that there are two distinct double cosets of the form
$N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2} N$ and
$N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{3}^{-1} N$.
164. We next consider the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} N$.

Let [$\overline{0} \overline{1} \overline{2} 0 \overline{1}]$ denote the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} N$.
Note that $N^{(\overline{0} \overline{1} \overline{2} \overline{0} \overline{1})} \geq N^{\overline{0} \overline{1} \overline{2} 0 \overline{1}}=\langle e\rangle$. Thus $\left|N^{(\overline{0} \overline{1} \overline{2} 0 \overline{1})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} N\right|=\frac{|N|}{\left|N^{(01201)}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [$[\overline{1} \overline{2} \overline{0} \overline{1}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{0} \overline{1} \overline{2} 0 \overline{1})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} t_{1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} e N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} N$ and $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} t_{1}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-2} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} t_{0} N=$
$N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} t_{2} N=N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} t_{2}^{-1} N$
$=N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} t_{3}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} t_{3} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{3} N$, and
$N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} t_{1} N$.
Therefore, we conclude that there is one distinct double coset of the form
$N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} t_{0}^{-1} N$.
165. We next consider the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} N$.

Let [$[\overline{1} \overline{1} \overline{2} 03]$ denote the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} N$.
Note that $N^{(\overline{\overline{1}} \overline{2} 03)} \geq N^{\overline{0} \overline{1} \overline{2} 03}=\langle e\rangle$. Thus $\left|N^{(\overline{\overline{0}} \overline{1} \overline{2} 03)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} N\right|=\frac{|N|}{\left|N^{(\overline{(0} \overline{1} 03)}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [$\overline{0} \overline{1} \overline{2} 03]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{0} \overline{1} \overline{2} 03)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} t_{3}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} e N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} N$ and $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} t_{3} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3}^{2} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} t_{0} N=$
$N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} t_{1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} t_{1}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} t_{2} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} t_{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2}^{-1} N$, and
$N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} t_{2}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0} N$.
Therefore, we conclude that there is one distinct double coset of the form
$N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} t_{0}^{-1} N$.
166. We next consider the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3}^{-1} N$.

Let $[\overline{0} \overline{1} \overline{2} 0 \overline{3}]$ denote the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3}^{-1} N$.
Note that $N^{(\overline{0} \overline{1} \overline{2} 0 \overline{3})} \geq N^{\overline{0} \overline{1} \overline{2} 0 \overline{3}}=\langle e\rangle$. Thus $\left|N^{(\overline{0} \overline{1} \overline{2} 0 \overline{3})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3}^{-1} N\right|=\frac{|N|}{\left|N^{(01203)}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [$[\overline{1} \overline{2} \overline{0} \overline{3}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{0} \overline{1} \overline{2} 0 \overline{3})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3}^{-1} t_{3} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} e N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} N$ and $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3}^{-1} t_{3}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3}^{-2} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} N$.
Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3}^{-1} t_{0} N=$
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{3} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3}^{-1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{0}^{-1} N$, $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3}^{-1} t_{1} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{3} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3}^{-1} t_{1}^{-1} N$ $=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3}^{-1} t_{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} N$, and $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3}^{-1} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} N$.

Therefore, we conclude that there are no distinct double cosets of the form $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
167. We next consider the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} N$.

Let $[\overline{0} \overline{1} \overline{2} \overline{0} 1]$ denote the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} N$.

Note that $N^{(\overline{\overline{0} 1} \overline{2} \overline{0} 1)} \geq N^{\overline{0} \overline{1} \overline{2} \overline{0} 1}=\langle e\rangle$. Thus $\left|N^{(\overline{0} \overline{\mathrm{O}} \overline{\mathrm{z}} \overline{0})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} N\right|=\frac{|N|}{\left|N^{(0 \hat{1} 201)}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [$\overline{0} \overline{1} \overline{2} \overline{0} 1]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{0} \overline{1} \overline{2} \overline{0})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{1}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} e N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} N$ and $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{2} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} N=N t_{0} t_{1} t_{2} t_{0} t_{1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{0} N=$
$N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} t_{0}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{0}^{-1} N=N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} N$,
$N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{2} N=N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{2}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{1}^{-1} N$, and $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0}^{-1} N$.
Therefore, we conclude that there is one distinct double coset of the form
$N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3}^{-1} N$.
168. We next consider the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} N$.

Let $[\overline{0} \overline{1} \overline{2} \overline{0} 3]$ denote the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} N$.
Note that $N^{(\overline{0} \overline{1} \overline{2} \overline{0} 3)} \geq N^{\overline{0} \overline{1} \overline{2} \overline{0} 3}=\langle e\rangle$. Thus $\left|N^{(\overline{0} \overline{1} \overline{2} \overline{0} 3)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} N\right|=\frac{|N|}{\left|N^{(\overline{(\overline{1} \overline{2} \overline{0}})}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [$\overline{0} \overline{1} \overline{2} \overline{0} 3]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{0} \overline{1} \overline{2} \overline{0} 3)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{3}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} e N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} N$ and $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{3} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{2} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{0} N=$ $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{0}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{1} N=N t_{0} t_{1} t_{2} t_{3} t_{1} N$,
$N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{1}^{-1} N=N t_{0} t_{1} t_{2} t_{3} t_{1} t_{0} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{2} N$
$=N t_{0} t_{1} t_{2}^{-1} t_{3} t_{1} N$, and $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} t_{2} N$.
Therefore, we conclude that there is one distinct double coset of the form $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{0}^{-1} N$.
169. We next consider the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} N$.

Let [$\overline{0} \overline{1} \overline{2} \overline{0} \overline{3}]$ denote the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} N$.
 1.4, $\left|N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} N\right|=\frac{|N|}{\left|N^{(01203)}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset $[\overline{0} \overline{1} \overline{2} \overline{0} \overline{3}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{0} \overline{1} \overline{2} \overline{0} \overline{3})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{3} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} e N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} N$ and $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{3}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-2} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} N$.
Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{0} N=$
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{0} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{0}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0} N$,
$N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{2} N$
$=N t_{0} t_{1} t_{2} t_{0} t_{3} N$, and $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{2}^{-1} N=N t_{0} t_{1} t_{2} t_{0} t_{3} t_{2} N$.
Therefore, we conclude that there is one distinct double coset of the form
$N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1}^{-1} N$.
170. We next consider the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0} N$.

Let [$[\overline{1} \overline{2} 10]$ denote the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0} N$.
Note that $N^{(\overline{0} \overline{1} \overline{2} 10)} \geq N^{\overline{0} \overline{1} \overline{2} 10}=\langle e\rangle$. Thus $\left|N^{(\overline{0} \overline{1} \overline{2} 10)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma $1.4,\left|N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0} N\right|=\frac{|N|}{\left|N^{(01210)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$\overline{0} \overline{1} \overline{2} 10]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{0} \overline{1} \overline{2} 10)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0} t_{0}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} e N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} N$ and
$N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0} t_{0} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0}^{2} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0} t_{1} N=$
$N t_{0} t_{1} t_{2} t_{0} t_{1} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0} t_{2} N$
$=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} t_{0}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0} t_{2}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} N$,
$N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0} t_{3} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} N$, and $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0} t_{3}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2}^{-1} N$.
Therefore, we conclude that there are no distinct double cosets of the form $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
171. We next consider the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} N$.

Let $[\overline{0} \overline{1} \overline{2} 13]$ denote the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} N$.
Note that $N^{(\overline{0} \overline{1} \overline{2} 13)} \geq N^{\overline{0} \overline{1} \overline{2} 13}=\langle e\rangle$. Thus $\left|N^{(\overline{0} \overline{1} \overline{2} 13)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} N\right|=\frac{|N|}{\left|N^{(\overline{1} \overline{1} 13)}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [$\overline{0} \overline{1} \overline{2} 13]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{0} \overline{1} \overline{2} 13)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} t_{3}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} e N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} N$ and $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} t_{3} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3}^{2} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0}^{-1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} t_{0} N=$
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{2} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} t_{1} N$
$=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} N$,
$N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} t_{2} N=N t_{0}^{-1} t_{1} t_{2} t_{0} t_{3}^{-1} N$, and $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} t_{2}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3}^{-1} N$.
Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
172. We next consider the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} N$.

Let [$\overline{0} \overline{1} \overline{2} 31]$ denote the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} N$.
Note that $N^{(\overline{0} \overline{1} \overline{2} 31)} \geq N^{\overline{0} \overline{1} \overline{2} 31}=\langle e\rangle$. Thus $\left|N^{(\overline{0} \overline{1} \overline{2} 31)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} N\right|=\frac{|N|}{\left|N^{(01231)}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [$\overline{0} \overline{1} \overline{2} 31]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{\overline{1}} \overline{2} 31)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{1}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} e N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} N$ and $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1}^{2} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3}^{-1} N$. Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{0}^{-1} N=$ $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{1} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{2} N=N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2}^{-1} t_{0}^{-1} N$, $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{3} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{3} N$ $=N t_{0}^{-1} t_{1} t_{2} t_{0}^{-1} N$, and $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{3}^{-1} N=N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0} N$.

Therefore, we conclude that there is one distinct double coset of the form $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{0} N$.
173. We next consider the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2} N$.

Let $[\overline{0} \overline{1} \overline{2} 32]$ denote the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2} N$.
Note that $N^{(\overline{\overline{1}} \overline{2} 32)} \geq N^{\overline{0} \overline{1} \overline{2} 32}=\langle e\rangle$. Thus $\left|N^{(\overline{0} \overline{1} \overline{2} 32)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2} N\right|=\frac{|N|}{\left|N^{(\overline{\overline{1}} \overline{1} 32)}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [$\overline{0} \overline{1} \overline{2} 32]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{0} \overline{1} \overline{2} 32)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2} t_{2}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} e N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} N$ and $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2} t_{2} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2}^{2} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2}^{-1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2} t_{0} N=$
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{3}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2} t_{0}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2} t_{1} N$
$=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{1} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2} t_{1}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{0} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2} t_{3} N$
$=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3}^{-1} N$, and $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2} t_{3}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0} N$.
Therefore, we conclude that there are no distinct double cosets of the form $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
174. We next consider the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2}^{-1} N$.

Let $[\overline{0} \overline{1} \overline{2} 3 \overline{2}]$ denote the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2}^{-1} N$.
 1.4, $\left|N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2}^{-1} N\right|=\frac{|N|}{\left|N^{(01232)}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [$\overline{0} \overline{1} \overline{2} 3 \overline{2}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{0} \overline{1} \overline{2} 3 \overline{2})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.
Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2}^{-1} t_{2} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} e N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} N$ and $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2}^{-1} t_{2}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2}^{-2} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2} N$.
Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2}^{-1} t_{0} N=$
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{1} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2}^{-1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1} t_{3} N$,
$N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2}^{-1} t_{1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{3} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2}^{-1} t_{1}^{-1} N$
$=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}^{-1} t_{3}^{-1} N$, and $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2}^{-1} t_{3}^{-1} N=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2} t_{1} N$.
Therefore, we conclude that there is one distinct double coset of the form $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2}^{-1} t_{3} N$.
175. We next consider the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0} N$.

Let $[\overline{0} \overline{1} \overline{2} \overline{3} 0]$ denote the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0} N$.
Note that $N^{(\overline{0} \overline{1} \overline{2} \overline{3} 0)} \geq N^{\overline{0} \overline{1} \overline{2} \overline{3} 0}=\langle e\rangle$. Thus $\left|N^{(\overline{0} \overline{1} \overline{2} \overline{3} 0)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0} N\right|=\frac{|N|}{\left|N^{(01230)}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset $[\overline{0} \overline{1} \overline{2} \overline{3} 0]$ has at most twenty-four distinct single cosets.

Moreover, $N^{(\overline{\overline{1}} \overline{2} \overline{3} 0)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0} t_{0}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} e N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} N$ and $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0} t_{0} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{2} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0} t_{1} N=$ $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{3} N$, $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0} t_{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} t_{0}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0} t_{2}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} t_{1} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0} t_{3} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{2} N$, and $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0} t_{3}^{-1} N=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} N$.

Therefore, we conclude that there are no distinct double cosets of the form $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
176. We next consider the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} N$.

Let $[\overline{0} \overline{1} \overline{2} \overline{3} \overline{0}]$ denote the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} N$.
Note that $N^{(\overline{\overline{0}} \overline{1} \overline{2} \overline{3} \overline{0})} \geq N^{\overline{0} \overline{1} \overline{2} \overline{3} \overline{0}}=\langle e\rangle$. Thus $\left|N^{(\overline{0} \overline{1} \overline{2} \overline{3} \overline{0})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0}^{-1} t_{1}^{-1}, t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} N\right|=\frac{|N|}{\left|N^{(\overline{1012 \bar{O}})}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [$\overline{0} \overline{1} \overline{2} \overline{3} \overline{0}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{0} \overline{1} \overline{2} \overline{0} \overline{0})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.
Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{0} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} e N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} N$ and $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{0}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-2} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0} N$.
Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{1} N=$
$N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} t_{3}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} t_{1}^{-1} N$,
$N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{2} N=N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{1} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{2}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{2}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{3} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} t_{0}^{-1} N$, and $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{3}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} N$.

Therefore, we conclude that there are no distinct double cosets of the form $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
177. We next consider the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} N$.

Let [$\overline{1} \overline{1} \overline{2} \overline{3} 1]$ denote the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} N$.
Note that $N^{(\overline{0} \overline{1} \overline{2} \overline{3} 1)} \geq N^{\overline{0} \overline{1} \overline{2} \overline{3} 1}=\langle e\rangle$. Thus $\left|N^{(\overline{0} \overline{1} \overline{2} \overline{3} 1)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} N\right|=\frac{|N|}{\left|N^{(01231)}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [$\overline{0} \overline{1} \overline{2} \overline{3} 1]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{0} \overline{1} \overline{2} \overline{3} 1)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{1}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} e N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} N$ and $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{2} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{0} N=$ $N t_{0}^{-1} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{2} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0}^{-1} t_{2}^{-1} N$, $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{3} N=N t_{0}^{-1} t_{1} t_{2} t_{0} t_{3}^{-1} N$, and $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{3}^{-1} N$ $=N t_{0}^{-1} t_{1} t_{2} t_{0} N$.

Therefore, we conclude that there are two distinct double cosets of the form
$N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{0}^{-1} N$ and $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{2}^{-1} N$.
178. We next consider the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} N$.

Let $[\overline{0} \overline{1} \overline{2} \overline{3} \overline{1}]$ denote the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} N$.
Note that $N^{(\overline{0} \overline{1} \overline{2} \overline{3} \overline{1})} \geq N^{\overline{0} \overline{1} \overline{2} \overline{3} \overline{1}}=\langle e\rangle$. Thus $\left|N^{(\overline{0} \overline{1} \overline{2} \overline{3} \overline{1})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma

Therefore, the double coset [$\overline{0} \overline{1} \overline{2} \overline{3} \overline{1}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{0} \overline{1} \overline{2} \bar{z} \overline{1})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} e N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} N$ and $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{1}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-2} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} N$. Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{0} N=$ $N t_{0} t_{1} t_{2} t_{0} t_{3}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2} N$, $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} t_{0}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2}^{-1} N$ $=N t_{0} t_{1} t_{2} t_{0} t_{1} t_{3} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{3} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} N$, and $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{3}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} N$.

Therefore, we conclude that there are no distinct double cosets of the form $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
179. We next consider the double coset $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2} t_{0}^{-1} N$.

Let $[\overline{0} 1 \overline{0} 2 \overline{0}]$ denote the double coset $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2} t_{0}^{1} N$.
Now, with the help of MAGMA, we know that that the following right cosets, or single cosets, are equivalent: $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2} t_{0}^{-1}=N t_{1}^{-1} t_{2} t_{1}^{-1} t_{3} t_{1}^{-1}=N t_{2}^{-1} t_{3} t_{2}^{-1} t_{0} t_{2}^{-1}=$ $N t_{3}^{-1} t_{0} t_{3}^{-1} t_{1} t_{3}^{-1}$.

That is, in terms of our short-hand notation,

$$
\overline{0} 1 \overline{0} 2 \overline{0} \sim \overline{1} 2 \overline{1} 3 \overline{1} \sim \overline{2} 3 \overline{2} 0 \overline{2} \sim \overline{3} 0 \overline{3} 1 \overline{3} .
$$

By conjugating the equivalence relation above with the elements of S_{4}, we determine that the following single cosets are equivalent in the double coset $[\overline{0} 1 \overline{0} 2 \overline{0}]$:

$$
\begin{array}{ll}
\overline{0} 1 \overline{0} 2 \overline{0} \sim \overline{1} 2 \overline{1} 3 \overline{1} \sim \overline{2} 3 \overline{2} 0 \overline{2} \sim \overline{3} 0 \overline{3} 1 \overline{3}, & \overline{1} 0 \overline{1} 2 \overline{1} \sim \overline{0} 22 \overline{0} 3 \overline{0} \sim \overline{2} 3 \overline{2} 1 \overline{2} \sim \overline{3} 1 \overline{3} 0 \overline{3}, \\
\overline{2} 1 \overline{2} 0 \overline{2} \sim \overline{1} 0 \overline{1} 3 \overline{1} \sim \overline{0} 3 \overline{0} 2 \overline{0} \sim \overline{3} 2 \overline{3} 1 \overline{3}, & \overline{3} 1 \overline{3} 2 \overline{3} \sim \overline{1} 2 \overline{1} 0 \overline{1} \sim \overline{2} 02 \overline{2} 3 \overline{2} \sim \overline{0} 3 \overline{0} 1 \overline{0}, \\
\overline{1} 312 \overline{1} \sim \overline{3} 2 \overline{3} 0 \overline{3} \sim \overline{2} 0 \overline{2} 1 \overline{2} \sim \overline{0} 10 \overline{0} 3 \overline{0}, & \overline{3} 2 \overline{3} \sim \overline{0} 2 \overline{0} 1 \overline{3} \sim \overline{2} 1 \overline{2} 3 \overline{2} \sim \overline{1} 3 \overline{1} 0 \overline{1}
\end{array}
$$

Since each of the twenty-four single cosets has four names, the double coset [$\overline{0} 1 \overline{0} 2 \overline{0}]$ must have at most six distinct single cosets.
Moreover, $N^{(\overline{0} 1 \overline{0} 2 \overline{0})}$ has two orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0,1,2,3\}$ and $\{\overline{0}, \overline{1}, \overline{2}, \overline{3}\}$.
Therefore, there are at most two double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0}^{-1} t_{1} t_{0}^{-1} t_{2} t_{0}^{-1} t_{i}^{ \pm 1}, i=0$.

But note that $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2} t_{0}^{-1} t_{0} N=N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2} e N=N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2} N$ and $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2} t_{0}^{-1} t_{0}^{-1} N=N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2} t_{0}^{-2} N=N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2} t_{0} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} N$.

Therefore, we conclude that there are no distinct double cosets of the form $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2} t_{0}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
180. We next consider the double coset $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2} t_{3} N$.

Let [$\overline{0} 1 \overline{0} 23]$ denote the double coset $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2} t_{3} N$.
Note that $N^{(\overline{0} 10 \overline{0} 23)} \geq N^{\overline{0} 10 \overline{0} 23}=\langle e\rangle$. Thus $\left|N^{(\overline{0} 10 \overline{0} 23)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2} t_{3} N\right|=\frac{|N|}{\left|N^{(\overline{0} 1023)}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [$\overline{0} 1 \overline{0} 23$] has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{0} 1 \overline{0} 23)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0}^{-1} t_{1} t_{0}^{-1} t_{2} t_{3} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2} t_{3} t_{3}^{-1} N=N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2} e N=N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2} N$ and $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2} t_{3} t_{3} N=N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2} t_{3}^{2} N=N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2} t_{3}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1} t_{0}^{1} t_{2} t_{3} t_{0} N=$ $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} t_{3}^{-1} N, N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2} t_{3} t_{0}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3} N, N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2} t_{3} t_{1} N$ $=N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} N, N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2} t_{3} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} t_{0} N$, $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2} t_{3} t_{2} N=N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} N$, and $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2} t_{3} t_{2}^{-1} N$ $=N t_{0}^{-1} t_{1} t_{2} t_{3} t_{2}^{-1} N$.

Therefore, we conclude that there are no distinct double cosets of the form $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2} t_{3} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
181. We next consider the double coset $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2} t_{3}^{-1} N$.

Let $[\overline{0} 1 \overline{0} 2 \overline{3}]$ denote the double coset $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2} t_{3}^{-1} N$.
Now, with the help of MAGMA, we know that that the following right cosets, or single cosets, are equivalent: $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2} t_{3}^{-1}=N t_{1}^{-1} t_{3} t_{1}^{-1} t_{2} t_{0}^{-1}=N t_{3}^{-1} t_{0} t_{3}^{-1} t_{2} t_{1}^{-1}$. That is, in terms of our short-hand notation,

$$
\overline{0} 1 \overline{0} 2 \overline{3} \sim \overline{1} 3 \overline{1} 2 \overline{0} \sim \overline{3} 0 \overline{3} 2 \overline{1} .
$$

By conjugating the equivalence relation above with the elements of S_{4}, we determine that the following single cosets are equivalent in the double coset [$\overline{0} 1 \overline{0} 2 \overline{3}]$:

$$
\overline{0} 1 \overline{0} 2 \overline{3} \sim \overline{1} 3 \overline{1} 2 \overline{0} \sim \overline{3} 0 \overline{3} 2 \overline{1}, \quad \overline{1} 0 \overline{1} 2 \overline{3} \sim \overline{0} 3 \overline{0} 2 \overline{1} \sim \overline{3} 1 \overline{3} 2 \overline{0}
$$

$$
\begin{array}{ll}
\overline{2} 1 \overline{2} 0 \overline{3} \sim \overline{1} 3 \overline{1} 0 \overline{2} \sim \overline{3} 2 \overline{3} 0 \overline{1}, & \overline{0} 3 \overline{2} \sim \overline{1} 2 \overline{1} 3 \overline{0} \sim \overline{2} 0 \overline{2} 3 \overline{1}, \\
\overline{0} 2 \overline{2} 1 \overline{3} \sim \overline{2} 33 \overline{2} 1 \overline{0} \sim \overline{3} 0 \overline{3} 1 \overline{2}, & \overline{1} 2 \overline{1} 0 \overline{3} \sim \overline{2} 3 \overline{2} 0 \overline{1} \sim \overline{3} 1 \overline{3} 0 \overline{2}, \\
\overline{2} 0 \overline{2} 1 \overline{3} \sim \overline{0} 3 \overline{0} 1 \overline{2} \sim \overline{3} 2 \overline{2} 1 \overline{0}, & \overline{2} 1 \overline{2} 3 \overline{0} \sim \overline{1} 0 \overline{1} 3 \overline{2} \sim \overline{0} 2 \overline{0} 3 \overline{1}
\end{array}
$$

Since each of the twenty-four single cosets has three names, the double coset [$\overline{0} 1 \overline{0} 2 \overline{3}]$ must have at most eight distinct single cosets.

Now, $N^{(\overline{0} 1 \overline{0} 2 \overline{3})}$ has four orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0,1,3\},\{2\},\{\overline{0}, \overline{1}, \overline{3}\}$, and $\{\overline{2}\}$. Therefore, there are at most four double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0}^{-1} t_{1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{i}^{ \pm 1}, i \in\{2,3\}$.

But note that $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{3} N=N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2} e N=N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2} N$ and $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{3}^{-1} N=N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2} t_{3}^{-2} N=N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2} t_{3} N$.

Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{2} N=$ $N t_{0}^{-1} t_{1} t_{2}^{-1} t_{3} N$ and $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{2}^{-1} N=N t_{0}^{-1} t_{1} t_{2} t_{3}^{-1} t_{2}^{-1} N$.

Therefore, we conclude that there are no distinct double cosets of the form $N t_{0}^{-1} t_{1} t_{0}^{-1} \dot{t}_{2} t_{3}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
182. We next consider the double coset $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3} N$.

Let $[\overline{0} 1 \overline{0} \overline{2} 3]$ denote the double coset $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3} N$.
Note that $N^{(\overline{0} 1 \overline{1} \overline{2} 3)} \geq N^{\overline{0} 1 \overline{0} \overline{2} 3}=\langle e\rangle$. Thus $\left|N^{(\overline{0} 10 \overline{0} \overline{2} 3)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma $1.4,\left|N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3} N\right|=\frac{|N|}{\left|N^{(01023)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset $[\overline{0} 1 \overline{0} \overline{2} 3]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{0} 1 \overline{0} \overline{2} 3)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3} t_{3}^{-1} N=N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} e N=N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} N$ and $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3} t_{3} N=N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{2} N=N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3} t_{0} N=$
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0}^{-1} t_{3}^{-1} N, N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0}^{-1} N$,
$N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3} t_{1} N=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} N, N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} N$,
$N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3} t_{2} N=N t_{0}^{-1} t_{1} t_{2} t_{3}^{-1} t_{2}^{-1} N$, and $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3} t_{2}^{-1} N$
$=N t_{0}^{-1} t_{1} t_{2} t_{3}^{-1} N$.
Therefore, we conclude that there are no distinct double cosets of the form $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
183. We next consider the double coset $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} N$.

Let $[\overline{0} 10 \overline{0} \overline{3} \overline{3}]$ denote the double coset $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} N$.
Note that $N^{(\overline{0} 1 \overline{1} \overline{2} \overline{3})} \geq N^{\overline{0} 10 \overline{0} \overline{2} \overline{3}}=\langle e\rangle$. Thus $\left|N^{(\overline{0} 10 \overline{0} \overline{2} \overline{3})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma
1.4, $\left|N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} N\right|=\frac{|N|}{\left|N^{(0102 \overline{3})}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [$\overline{0} 1 \overline{0} \overline{2} \overline{3}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{0} 1 \overline{0} \overline{2} \overline{3})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{3} N=N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} e N=N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} N$ and $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{3}^{-1} N=N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-2} N=N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3} N$.

Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0} N=$
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{0}^{-1} N, N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} N$,
$N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} t_{0}^{-1} N, N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{2} N$
$=N t_{0}^{-1} t_{1} t_{2} t_{3} t_{2}^{-1} N$, and $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{2}^{-1} N=N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2} t_{3} N$.
Therefore, we conclude that there is one distinct double coset of the form $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} N$.
184. We next consider the double coset $N t_{0}^{-1} t_{1} t_{2} t_{0} t_{1} N$.

Let [001201] denote the double coset $N t_{0}^{-1} t_{1} t_{2} t_{0} t_{1} N$.
Note that $N^{(\overline{0} 1201)} \geq N^{\overline{0} 1201}=\langle e\rangle$. Thus $\left|N^{(\overline{0} 1201)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0}^{-1} t_{1} t_{2} t_{0} t_{1} N\right|=\frac{|N|}{\left|N^{(01201)}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [$\overline{0} 1201]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{0} 1201)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0}^{-1} t_{1} t_{2} t_{0} t_{1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0}^{-1} t_{1} t_{2} t_{0} t_{1} t_{1}^{-1} N=N t_{0}^{-1} t_{1} t_{2} t_{0} e N=N t_{0}^{-1} t_{1} t_{2} t_{0} N$ and $N t_{0}^{-1} t_{1} t_{2} t_{0} t_{1} t_{1} N=N t_{0}^{-1} t_{1} t_{2} t_{0} t_{1}^{2} N=N t_{0}^{-1} t_{1} t_{2} t_{0} t_{1}^{-1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1} t_{2} t_{0} t_{1} t_{0} N=$
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0}^{-1} N, N t_{0}^{-1} t_{1} t_{2} t_{0} t_{1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{1} N, N t_{0}^{-1} t_{1} t_{2} t_{0} t_{1} t_{2} N$
$=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} N, N t_{0}^{-1} t_{1} t_{2} t_{0} t_{1} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0} N, N t_{0}^{-1} t_{1} t_{2} t_{0} t_{1} t_{3} N$
$=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} t_{0} N$, and $N t_{0}^{-1} t_{1} t_{2} t_{0} t_{1} t_{3}^{-1} N=N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} t_{1} N$.
Therefore, we conclude that there are no distinct double cosets of the form $N t_{0}^{-1} t_{1} t_{2} t_{0} t_{1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
185. We next consider the double coset $N t_{0}^{-1} t_{1} t_{2} t_{0} t_{1}^{-1} N$.

Let [$\overline{0} 120 \overline{1}]$ denote the double coset $N t_{0}^{-1} t_{1} t_{2} t_{0} t_{1}^{-1} N$.
Note that $N^{(\overline{0} 120 \overline{1})} \geq N^{\overline{0} 120 \overline{1}}=\langle e\rangle$. Thus $\left|N^{(\overline{0} 120 \overline{1})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0}^{-1} t_{1} t_{2} t_{0} t_{1}^{-1} N\right|=\frac{|N|}{\left|N^{(0120 \overline{\mathrm{I}})}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset $[\overline{0} 120 \overline{1}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{0} 120 \overline{1})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0}^{-1} t_{1} t_{2} t_{0} t_{1}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0}^{-1} t_{1} t_{2} t_{0} t_{1}^{-1} t_{1} N=N t_{0}^{-1} t_{1} t_{2} t_{0} e N=N t_{0}^{-1} t_{1} t_{2} t_{0} N$ and $N t_{0}^{-1} t_{1} t_{2} t_{0} t_{1}^{-1} t_{1}^{-1} N=N t_{0}^{-1} t_{1} t_{2} t_{0} t_{1}^{-2} N=N t_{0}^{-1} t_{1} t_{2} t_{0} t_{1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1} t_{2} t_{0} t_{1}^{-1} t_{0} N=$ $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2} t_{1} N, N t_{0}^{-1} t_{1} t_{2} t_{0} t_{1}^{-1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0}^{-1} t_{1}^{-1} N, N t_{0}^{-1} t_{1} t_{2} t_{0} t_{1}^{-1} t_{2} N$
$=N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} t_{2}^{-1} N, N t_{0}^{-1} t_{1} t_{2} t_{0} t_{1}^{-1} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0}^{-1} t_{3}^{-1} N$, and
$N t_{0}^{-1} t_{1} t_{2} t_{0} t_{1}^{-1} t_{3} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1}^{-1} N$.
Therefore, we conclude that there is one distinct double coset of the form $N t_{0}^{-1} t_{1} t_{2} t_{0} t_{1}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0}^{-1} t_{1} t_{2} t_{0} t_{1}^{-1} t_{3}^{-1} N$.
186. We next consider the double coset $N t_{0}^{-1} t_{1} t_{2} t_{0} t_{3}^{-1} N$.

Let $[\overline{0} 120 \overline{3}]$ denote the double coset $N t_{0}^{-1} t_{1} t_{2} t_{0} t_{3}^{-1} N$.

Note that $N^{(\overline{0} 120 \overline{3})} \geq N^{\overline{0} 120 \overline{3}}=\langle e\rangle$. Thus $\left|N^{(\overline{0} 120 \overline{3})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0}^{-1} t_{1} t_{2} t_{0} t_{3}^{-1} N\right|=\frac{|N|}{\left|N^{(\overline{0} 1203)}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset $[0120 \overline{3}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{0} 120 \overline{3})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0}^{-1} t_{1} t_{2} t_{0} t_{3}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0}^{-1} t_{1} t_{2} t_{0} t_{3}^{-1} t_{3} N=N t_{0}^{-1} t_{1} t_{2} t_{0} e N=N t_{0}^{-1} t_{1} t_{2} t_{0} N$ and $N t_{0}^{-1} t_{1} t_{2} t_{0} t_{3}^{-1} t_{3}^{-1} N=N t_{0}^{-1} t_{1} t_{2} t_{0} t_{3}^{-2} N=N t_{0}^{-1} t_{1} t_{2} t_{0} t_{3} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1} t_{2} t_{0} t_{3}^{-1} t_{0} N=$ $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{0}^{-1} N, N t_{0}^{-1} t_{1} t_{2} t_{0} t_{3}^{-1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} N, N t_{0}^{-1} t_{1} t_{2} t_{0} t_{3}^{-1} t_{1} N$ $=N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{0} N, N t_{0}^{-1} t_{1} t_{2} t_{0} t_{3}^{-1} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2} N, N t_{0}^{-1} t_{1} t_{2} t_{0} t_{3}^{-1} t_{2} N$ $=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3}^{-1} N$, and $N t_{0}^{-1} t_{1} t_{2} t_{0} t_{3}^{-1} t_{2}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} N$.
Therefore, we conclude that there are no distinct double cosets of the form $N t_{0}^{-1} t_{1} t_{2} t_{0} t_{3}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
187. We next consider the double coset $N t_{0}^{-1} t_{1} t_{2} t_{3} t_{0} N$.

Let [$\left[01230\right.$] denote the double coset $N t_{0}^{-1} t_{1} t_{2} t_{3} t_{0} N$.
Note that $N^{(\overline{0} 1230)} \geq N^{\overline{0} 1230}=\langle e\rangle$. Thus $\left|N^{(\overline{0} 1230)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma $1.4,\left|N t_{0}^{-1} t_{1} t_{2} t_{3} t_{0} N\right|=\frac{|N|}{\left|N^{(01230)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$\overline{0} 1230]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{0} 1230)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0}^{-1} t_{1} t_{2} t_{3} t_{0} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0}^{-1} t_{1} t_{2} t_{3} t_{0} t_{0}^{-1} N=N t_{0}^{-1} t_{1} t_{2} t_{3} e N=N t_{0}^{-1} t_{1} t_{2} t_{3} N$ and
$N t_{0}^{-1} t_{1} t_{2} t_{3} t_{0} t_{0} N=N t_{0}^{-1} t_{1} t_{2} t_{3} t_{0}^{2} N=N t_{0}^{-1} t_{1} t_{2} t_{3} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0} N$.
Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1} t_{2} t_{3} t_{0} t_{1} N=$
$N t_{0} t_{1} t_{2} t_{0} t_{1}^{-1} t_{2} N, N t_{0}^{-1} t_{1} t_{2} t_{3} t_{0} t_{2} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1} N, N t_{0}^{-1} t_{1} t_{2} t_{3} t_{0} t_{3} N$ $=N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1} N$, and $N t_{0}^{-1} t_{1} t_{2} t_{3} t_{0} t_{3}^{-1} N=N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} t_{2}^{-1} N$.

Therefore, we conclude that there are two distinct double cosets of the form $N t_{0}^{-1} t_{1} t_{2} t_{3} t_{0} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0}^{-1} t_{1} t_{2} t_{3} t_{0} t_{1}^{-1} N$ and $N t_{0}^{-1} t_{1} t_{2} t_{3} t_{0} t_{2}^{-1} N$.
188. We next consider the double coset $N t_{0}^{-1} t_{1} t_{2} t_{3} t_{1} N$.

Let [$\overline{0} 1231]$ denote the double coset $N t_{0}^{-1} t_{1} t_{2} t_{3} t_{1} N$.
Note that $N^{(\overline{0} 1231)} \geq N^{\overline{0} 1231}=\langle e\rangle$. Thus $\left|N^{(\overline{0} 1231)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma $1.4,\left|N t_{0}^{-1} t_{1} t_{2} t_{3} t_{1} N\right|=\frac{|N|}{\left|N^{(01231)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$\overline{0} 1231]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{0} 1231)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0}^{-1} t_{1} t_{2} t_{3} t_{1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0}^{-1} t_{1} t_{2} t_{3} t_{1} t_{1}^{-1} N=N t_{0}^{-1} t_{1} t_{2} t_{3} e N=N t_{0}^{-1} t_{1} t_{2} t_{3} N$ and $N t_{0}^{-1} t_{1} t_{2} t_{3} t_{1} t_{1} N=N t_{0}^{-1} t_{1} t_{2} t_{3} t_{1}^{2} N=N t_{0}^{-1} t_{1} t_{2} t_{3} t_{1}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1} t_{2} t_{3} t_{1} t_{0} N=$
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} N, N t_{0}^{-1} t_{1} t_{2} t_{3} t_{1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{0} N, N t_{0}^{-1} t_{1} t_{2} t_{3} t_{1} t_{2} N$
$=N t_{0} t_{1} t_{2} t_{0} t_{1} t_{3} N, N t_{0}^{-1} t_{1} t_{2} t_{3} t_{1} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} t_{1} N, N t_{0}^{-1} t_{1} t_{2} t_{3} t_{1} t_{3} N$
$=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1}^{-1} N$, and $N t_{0}^{-1} t_{1} t_{2} t_{3} t_{1} t_{3}^{-1} N=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3} N$.
Therefore, we conclude that there are no distinct double cosets of the form $N t_{0}^{-1} t_{1} t_{2} t_{3} t_{1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
189. We next consider the double coset $N t_{0}^{-1} t_{1} t_{2} t_{3} t_{1}^{-1} N$.

Let [$\overline{0} 123 \overline{1}]$ denote the double coset $N t_{0}^{-1} t_{1} t_{2} t_{3} t_{1}^{-1} N$.
Note that $N^{(\overline{0} 123 \overline{1})} \geq N^{\overline{0} 123 \overline{1}}=\langle e\rangle$. Thus $\left|N^{(\overline{0} 123 \overline{1})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0}^{-1} t_{1} t_{2} t_{3} t_{1}^{-1} N\right|=\frac{|N|}{\left|N^{(0123 i)}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [$\overline{0} 123 \overline{1}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{0} 123 \overline{1})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0}^{-1} t_{1} t_{2} t_{3} t_{1}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0}^{-1} t_{1} t_{2} t_{3} t_{1}^{-1} t_{1} N=N t_{0}^{-1} t_{1} t_{2} t_{3} e N=N t_{0}^{-1} t_{1} t_{2} t_{3} N$ and
$N t_{0}^{-1} t_{1} t_{2} t_{3} t_{1}^{-1} t_{1}^{-1} N=N t_{0}^{-1} t_{1} t_{2} t_{3} t_{1}^{-2} N=N t_{0}^{-1} t_{1} t_{2} t_{3} t_{1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1} t_{2} t_{3} t_{1}^{-1} t_{0} N=$
$N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} N, N t_{0}^{-1} t_{1} t_{2} t_{3} t_{1}^{-1} t_{0}^{-1} N=N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} N$,
$N t_{0}^{-1} t_{1} t_{2} t_{3} t_{1}^{-1} t_{2} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3}^{-1} N, N t_{0}^{-1} t_{1} t_{2} t_{3} t_{1}^{-1} t_{2}^{-1} N$
$=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3} N, N t_{0}^{-1} t_{1} t_{2} t_{3} t_{1}^{-1} t_{3} N=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2}^{-1} N$, and
$N t_{0}^{-1} t_{1} t_{2} t_{3} t_{1}^{-1} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} t_{2} N$.
Therefore, we conclude that there are no distinct double cosets of the form $N t_{0}^{-1} t_{1} t_{2} t_{3} t_{1}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
190. We next consider the double coset $N t_{0}^{-1} t_{1} t_{2} t_{3} t_{2}^{-1} N$.

Let $[\overline{0} 123 \overline{2}]$ denote the double coset $N t_{0}^{-1} t_{1} t_{2} t_{3} t_{2}^{-1} N$.
Note that $N^{(\overline{0} 123 \overline{2})} \geq N^{\overline{0} 123 \overline{2}}=\langle e\rangle$. Thus $\left|N^{(\overline{0} 123 \overline{2})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0}^{-1} t_{1} t_{2} t_{3} t_{2}^{-1} N\right|=\frac{|N|}{\left|N^{(01232)}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [$\overline{0} 123 \overline{2}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{0} 123 \overline{2})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0}^{-1} t_{1} t_{2} t_{3} t_{2}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0}^{-1} t_{1} t_{2} t_{3} t_{2}^{-1} t_{2} N=N t_{0}^{-1} t_{1} t_{2} t_{3} e N=N t_{0}^{-1} t_{1} t_{2} t_{3} N$ and
$N t_{0}^{-1} t_{1} t_{2} t_{3} t_{2}^{-1} t_{2}^{-1} N=N t_{0}^{-1} t_{1} t_{2} t_{3} t_{2}^{-2} N=N t_{0}^{-1} t_{1} t_{2} t_{3} t_{2} N=N t_{0}^{-1} t_{1} t_{2}^{-1} t_{3}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1} t_{2} t_{3} t_{2}^{-1} t_{0} N=$
$N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{3} N, N t_{0}^{-1} t_{1} t_{2} t_{3} t_{2}^{-1} t_{0}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2}^{-1} N$,
$N t_{0}^{-1} t_{1} t_{2} t_{3} t_{2}^{-1} t_{1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0}^{-1} t_{2} N, N t_{0}^{-1} t_{1} t_{2} t_{3} t_{2}^{-1} t_{3} N$
$=N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2} t_{3} N$, and $N t_{0}^{-1} t_{1} t_{2} t_{3} t_{2}^{-1} t_{3}^{-1} N=N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} N$.
Therefore, we conclude that there is one distinct double coset of the form $N t_{0}^{-1} t_{1} t_{2} t_{3} t_{2}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0}^{-1} t_{1} t_{2} t_{3} t_{2}^{-1} t_{1}^{-1} N$.
191. We next consider the double coset $N t_{0}^{-1} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} N$.

Let $[\overline{0} 12 \overline{3} \overline{0}]$ denote the double coset $N t_{0}^{-1} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} N$.

Note that $N^{(\overline{0} 12 \overline{3} \overline{0})} \geq N^{\overline{0} 12 \overline{3} \overline{0}}=\langle e\rangle$. Thus $\left|N^{(\overline{0} 12 \overline{3} \overline{0})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0}^{-1} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} N\right|=\frac{|N|}{\left.\mid N^{(\overline{0} 12 \overline{3} \overline{0}}\right)} \leq \frac{24}{1}=24$.

Therefore, the double coset $[\overline{0} 12 \overline{3} \overline{0}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{0} 12 \overline{3} \overline{0})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0}^{-1} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0}^{-1} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} t_{0} N=N t_{0}^{-1} t_{1} t_{2} t_{3}^{-1} e N=N t_{0}^{-1} t_{1} t_{2} t_{3}^{-1} N$ and
$N t_{0}^{-1} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} t_{0}^{-1} N=N t_{0}^{-1} t_{1} t_{2} t_{3}^{-1} t_{0}^{-2} N=N t_{0}^{-1} t_{1} t_{2} t_{3}^{-1} t_{0} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0} N$.
Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} t_{1} N=$
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} t_{1}^{-1} N, N t_{0}^{-1} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2} N$,
$N t_{0}^{-1} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} t_{2} N=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} N, N t_{0}^{-1} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} t_{2}^{-1} N=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{1} N$,
$N t_{0}^{-1} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} t_{3} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{0}^{-1} N$, and $N t_{0}^{-1} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} t_{3}^{-1} N$
$=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} \cdot t_{3}^{-1} t_{1} N$.
Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0}^{-1} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
192. We next consider the double coset $N t_{0}^{-1} t_{1} t_{2} t_{3}^{-1} t_{2}^{-1} N$.

Let $[\overline{0} 12 \overline{3} \overline{2}]$ denote the double coset $N t_{0}^{-1} t_{1} t_{2} t_{3}^{-1} t_{2}^{-1} N$.
Now, with the help of MAGMA, we know that that the following right cosets, or single cosets, are equivalent: $N t_{0}^{-1} t_{1} t_{2} t_{3}^{-1} t_{2}^{-1}=N t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{0}^{-1}=N t_{2}^{-1} t_{0} t_{1} t_{3}^{-1} t_{1}^{-1}$. That is, in terms of our short-hand notation,

$$
\overline{0} 12 \overline{3} \overline{2} \sim \overline{1} 20 \overline{3} \overline{0} \sim \overline{2} 01 \overline{3} \overline{1} .
$$

By conjugating the equivalence relation above with the elements of S_{4}, we determine that the following single cosets are equivalent in the double coset [$\overline{0} 12 \overline{3} \overline{2}]$:

$$
\begin{array}{ll}
\overline{0} 12 \overline{3} \overline{2} \sim \overline{1} 20 \overline{3} \overline{0} \sim \overline{2} 01 \overline{3} \overline{1}, & \overline{1} 02 \overline{3} \overline{2} \sim \overline{0} 21 \overline{3} \overline{1} \sim \overline{2} 10 \overline{3} \overline{0}, \\
\overline{3} 12 \overline{0} \overline{2} \sim \overline{1} 23 \overline{0} \overline{3} \sim \overline{2} 31 \overline{0} \overline{1}, & \overline{0} 32 \overline{1} \overline{2} \sim \overline{3} 20 \overline{1} \overline{0} \sim \overline{2} 03 \overline{1} \overline{3}, \\
\overline{0} 13 \overline{2} \overline{3} \sim \overline{1} 30 \overline{2} \overline{0} \sim \overline{3} 01 \overline{2} \overline{1}, & \overline{1} 32 \overline{0} \overline{2} \sim \overline{3} 21 \overline{0} \overline{1} \sim \overline{2} 13 \overline{0} \overline{3},
\end{array}
$$

$$
\overline{3} 02 \overline{1} \overline{2} \sim \overline{0} 23 \overline{1} \overline{3} \sim \overline{2} 30 \overline{1} \overline{0}, \quad \overline{3} 10 \overline{2} \overline{0} \sim \overline{1} 03 \overline{2} \overline{3} \sim \overline{0} 31 \overline{2} \overline{1}
$$

Since each of the twenty-four single cosets has three names, the double coset [$\overline{0} 12 \overline{3} \overline{2}]$ must have at most eight distinct single cosets.
Now, $N^{(\overline{0} 12 \overline{3} \overline{2})}$ has four orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0,1,2\},\{3\},\{\overline{0}, \overline{1}, \overline{2}\}$, and $\{\overline{3}\}$.
Therefore, there are at most four double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0}^{-1} t_{1} t_{2} t_{3}^{-1} t_{2}^{-1} t_{i}^{ \pm 1}, i \in\{2,3\}$.
But note that $N t_{0}^{-1} t_{1} t_{2} t_{3}^{-1} t_{2}^{-1} t_{2} N=N t_{0}^{-1} t_{1} t_{2} t_{3}^{-1} e N=N t_{0}^{-1} t_{1} t_{2} t_{3}^{-1} N$ and $N t_{0}^{-1} t_{1} t_{2} t_{3}^{-1} t_{2}^{-1} t_{2}^{-1} N=N t_{0}^{-1} t_{1} t_{2} t_{3}^{-1} t_{2}^{-2} N=N t_{0}^{-1} t_{1} t_{2} t_{3}^{-1} t_{2} N=N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3} N$.
Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1} t_{2} t_{3}^{-1} t_{2}^{-1} t_{3} N=$ $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2} t_{3}^{-1} N$ and $N t_{0}^{-1} t_{1} t_{2} t_{3}^{-1} t_{2}^{-1} t_{3}^{-1} N=N t_{0}^{-1} t_{1} t_{2}^{-1} t_{3} N$.

Therefore, we conclude that there are no distinct double cosets of the form $N t_{0}^{-1} t_{1} t_{2} t_{3}^{-1} t_{2}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
193. We next consider the double coset $N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1} N$.

Let $[\overline{0} 1 \overline{2} \overline{0} 1]$ denote the double coset $N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1} N$.
Note that $N^{(\overline{0} 1 \overline{2} \overline{0} 1)} \geq N^{\tilde{0} 1 \overline{2} \overline{0} 1}=\langle e\rangle$. Thus $\left|N^{(\overline{0} 1 \overline{2} \overline{0} 1)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1} N\right|=\frac{|N|}{\left|N^{(012 \overline{0} 1)}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [$\overline{0} 1 \overline{2} \overline{0} 1]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{0} 12 \overline{2} \overline{1} 1)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{1}^{-1} N=N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} e N=N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} N$ and $N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{1} N=N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1}^{2} N=N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{0} N=$ $N t_{0}^{-1} t_{1} t_{2}^{-1} t_{3}^{-1} N, N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{0}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} N, N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{2} N$
$=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{1}^{-1} N, N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{2}^{-1} N=N t_{0} t_{1} t_{2} t_{3} t_{1} t_{0} N$, $N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3} N=N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} N$, and $N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} t_{1} N$.

Therefore, we conclude that there are no distinct double cosets of the form $N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
194. We next consider the double coset $N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} N$.

Let $[\overline{0} 12 \overline{2} \overline{1} \overline{]}]$ denote the double coset $N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} N$.
Note that $N^{(\overline{0} 1 \overline{1} \overline{2} \overline{1} \overline{1})} \geq N^{\overline{0} 1 \overline{2} \overline{0} \overline{1}}=\langle e\rangle$. Thus $\left|N^{(\overline{0} 1 \overline{1} \overline{0} \overline{1})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0}^{-1} t_{1} t_{2}^{-1} \cdot t_{0}^{-1} t_{1}^{-1} N\right|=\frac{|N|}{\left|N^{(0 \overline{1} \overline{1} \overline{1})}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset $[\overline{0} 1 \overline{2} \overline{0} \overline{1}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{0} 1 \overline{1} \bar{o} \overline{1})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{1} N=N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} e N=N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} N$ and $N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{1}^{-1} N=N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-2} N=N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0} N=$
$N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} t_{0} N, N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} N=N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2} t_{3} N$,
$N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{2} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} N, N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} N$
$=N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} t_{3}^{-1} N, N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{3} N=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{2} N$, and
$N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{3}^{-1} N=N t_{0}^{-1} t_{1} t_{2} t_{3} t_{0} t_{2}^{-1} N$.
Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
195. We next consider the double coset $N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} N$.

Let $[\overline{0} 1 \overline{2} \overline{0} \overline{3}]$ denote the double coset $N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} N$.
Note that $N^{(\overline{0} 1 \overline{2} \overline{0} \overline{3})} \geq N^{\overline{0} 1 \overline{2} \bar{o} \overline{3}}=\langle e\rangle$. Thus $\left|N^{(\overline{0} 1 \overline{2} \overline{0} \overline{3})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} N\right|=\frac{|N|}{\left|N^{(012 \overline{2} \overline{3})}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset $[\overline{0} 1 \overline{2} \overline{0} \overline{3}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{0} 1 \overline{2} \overline{0} \overline{3})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{3} N=N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} e N=N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} N$ and
$N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{3}^{-1} N=N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-2} N=N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3} N$
$=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{0} N=$ $N t_{0}^{-1} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} N, N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{0}^{-1} N=N t_{0}^{-1} t_{1} t_{2}^{-1} t_{3}^{-1} N$,
$N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0} t_{2}^{-1} N, N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{3} N, N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{2} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} N$, and
$N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} t_{2} N$.
Therefore, we conclude that there are no distinct double cosets of the form $N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
196. We next consider the double coset $N t_{0}^{-1} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} N$.

Let $[\overline{0} 1 \overline{2} \overline{1} \overline{1}]$ denote the double coset $N t_{0}^{-1} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} N$.
Note that $N^{(\overline{0} 1 \overline{2} \overline{3} \overline{1})} \geq N^{\overline{0} 1 \overline{2} \overline{3} \overline{1}}=\langle e\rangle$. Thus $\left|N^{(\overline{0} 1 \overline{2} \overline{3} \overline{1})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0}^{-1} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} N\right|=\frac{|N|}{\left|N^{(0023 i)}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [$\overline{0} 1 \overline{2} \overline{3} \overline{1}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{0} 1 \overline{2} \overline{3} \overline{1})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length six given by $w=t_{0}^{-1} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0}^{-1} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{1} N=N t_{0}^{-1} t_{1} t_{2}^{-1} t_{3}^{-1} e N=N t_{0}^{-1} t_{1} t_{2}^{-1} t_{3}^{-1} N$ and $N t_{0}^{-1} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{1}^{-1} N=N t_{0}^{-1} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-2} N=N t_{0}^{-1} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1} N$ $=N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{0} N=$ $N t_{0} t_{1} t_{2} t_{0} t_{3}^{-1} t_{0}^{-1} N, N t_{0}^{-1} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} t_{1}^{-1} N$, $N t_{0}^{-1} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2} N=N t_{0} t_{1} t_{2} t_{3} t_{0} t_{2} N, N t_{0}^{-1} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2}^{-1} N$ $=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{3}^{-1} N, N t_{0}^{-1} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{3} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} t_{3}^{-1} N$, and $N t_{0}^{-1} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} N$.

Therefore, we conclude that there are no distinct double cosets of the form $N t_{0}^{-1} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
197. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} N$.

Let $[0 \overline{1} 201 \overline{0}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} N$.
Note that $N^{(0 \overline{1} 201 \overline{0})} \geq N^{0 \overline{1} 2010}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} 201 \overline{0})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} N\right|=\frac{|N|}{\left|N^{(0 \overline{12010})}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} 201 \overline{0}]$ has at most twenty-four distinct single cosets. Moreover, $N^{(0 \overline{1} 201 \overline{0})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} t_{0} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} e N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} N$ and $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-2} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0} N=N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}^{-1} N$. Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} t_{1} N=$ $N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{3}^{-1} N, N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} N$, and $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} t_{2} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} t_{0} N$.

Therefore, we conclude that there are three distinct double cosets of the form
$N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} N$, $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} t_{3} N$, and $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} t_{3}^{-1} N$.
198. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{2} N$.

Let [012012] denote the double coset $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{2} N$.
Note that $N^{(0 \overline{1} 2012)} \geq N^{0 \overline{1} 2012}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} 2012)}\right| \geq|\langle e\rangle|=1$ and so, by
Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{2} N\right|=\frac{|N|}{\left|N^{(012012)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [012012] has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} 2012)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{2} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{2} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} e N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} N$ and $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{2} t_{2} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{2}^{2} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{2}^{-1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{2} t_{0} N=$
$N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} N, N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{2} t_{0}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0} N$,
$N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{2} t_{1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} N, N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{2} t_{1}^{-1} N=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{1} N$,
$N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{2} t_{3} N=N t_{0} t_{1} t_{2} t_{3} t_{0} N$, and $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{2} t_{3}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} t_{1}^{-1} N$.
Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{2} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
199. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{2}^{-1} N$.

Let [012012] denote the double coset $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{2}^{-1} N$.
Note that $N^{(0 \overline{1} 201 \overline{2})} \geq N^{0 \overline{1} 201 \overline{2}}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} 201 \overline{2})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{2}^{-1} N\right|=\frac{|N|}{\left|N^{(012012)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} 201 \overline{2}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{2} 201 \overline{2})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{2}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{2}^{-1} t_{2} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} e N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} N$ and
$N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{2}^{-1} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{2}^{-2} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{2} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{2}^{-1} t_{0} N=$
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0} t_{2}^{-1} N, N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1} N, N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{2}^{-1} t_{1} N$
$=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} N, N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{2}^{-1} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} t_{0} N$, and $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{2}^{-1} t_{3} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} N$.
Therefore, we conclude that there is one distinct double coset of the form
$N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{2}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} N$.
200. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{3} N$.

Let [012013] denote the double coset $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{3} N$.
Note that $N^{(0 \overline{1} 2013)} \geq N^{0 \overline{1} 2013}=\langle e\rangle$. Thus $\left|N^{(0 i ̄ 2013)}\right| \geq|\langle e\rangle|=1$ and so, by
Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{3} N\right|=\frac{|N|}{\left|N^{(012013)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [012013] has at most twenty-four distinct single cosets.

Moreover, $N^{(0 \overline{1} 2013)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{3} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{3} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} e N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} N$ and
$N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{3} t_{3} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{3}^{2} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{3}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{3} t_{0} N=$
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{2}^{-1} N, N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{3} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} N$,
$N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{3} t_{1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{2} N, N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{3} t_{1}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{0} N, N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{3} t_{2} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{1} t_{2}^{-1} N$, and
$N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{3} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{0}^{-1} N$.
Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{3} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
201. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{3}^{-1} N$.

Let [$0 \overline{1} 201 \overline{3}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{3}^{-1} N$.
Note that $N^{(0 \overline{1} 201 \overline{3})} \geq N^{0 \overline{1} 201 \overline{3}}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} 201 \overline{3})}\right| \geq|\langle e\rangle|=1$ and so, by
Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{3}^{-1} N\right|=\frac{|N|}{\left|N^{(012013)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} 201 \overline{3}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} 201 \overline{3})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{3}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{3}^{-1} t_{3} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} e N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} N$ and
$N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{3}^{-1} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{3}^{-2} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{3} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{3}^{-1} t_{0} N=$ $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0} t_{2}^{-1} N, N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{3}^{-1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{1} N$, $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{3}^{-1} t_{1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} t_{3} N, N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{3}^{-1} t_{1}^{-1} N$
$=N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{3} N, N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{3}^{-1} t_{2} N=N t_{0}^{-1} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} N$, and
$N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{3}^{-1} t_{2}^{-1} N=N t_{0} t_{1} t_{2} t_{3} t_{0} t_{2} N$.

Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{3}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
202. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2} N$.

Let $[0 \overline{12012}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2} N$.
Note that $N^{(0 \overline{1} 20 \overline{1} 2)} \geq N^{0 \overline{1} 20 \overline{1} 2}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} 20 \overline{1} 2)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2} N\right|=\frac{|N|}{\left|N^{(012012)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset $[0 \overline{1} 20 \overline{1} 2]$ has at most twenty-four distinct single cosets. Moreover, $N^{(0 \overline{1} 201 \overline{2})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} e N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2} t_{2} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2}^{2} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2}^{-1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2} t_{0} N=$ $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{0}^{-1} N, N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{2}^{-1} N$, $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2} t_{1} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} t_{0} N, N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} N$ $=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} N, N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2} t_{3} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} N$, and $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2} t_{3}^{-1} N=N t_{0} t_{1} t_{2} t_{0} t_{3}^{-1} N$.

Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
203. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2}^{-1} N$.

Let $[0 \overline{1} 20 \overline{1} \overline{2}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2}^{-1} N$.

Note that $N^{(0 \overline{1} 20 \overline{1} \overline{2})} \geq N^{0 \overline{1} 20 \overline{1} \overline{2}}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} 201 \overline{1} \overline{2})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2}^{-1} N\right|=\frac{|N|}{\left|N^{(0 \overline{1} 20 \overline{1} \overline{1})}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} 20 \overline{1} \overline{2}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} 20 \overline{1} \overline{2})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2}^{-1} t_{2} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} e N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2}^{-1} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2}^{-2} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} N=$
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{2}^{-1} N, N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3}^{-1} N$,
$N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2}^{-1} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{3} N$, and $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0}^{-1} t_{3}^{-1} N$.
Therefore, we conclude that there are two distinct double cosets of the form
$N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} N$.
204. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{3} N$.

Let [012013] denote the double coset $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{3} N$.
Note that $N^{(0 \overline{1} 20 \overline{1} 3)} \geq N^{0 \overline{1} 201 \overline{1} 3}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} 20 i \overline{1} 3)}\right| \geq|\langle e\rangle|=1$ and so, by
Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{3} N\right|=\frac{|N|}{\left|N^{(012013)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} 2013]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} 201 \overline{1} 3)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{3} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{3} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} e N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{3} t_{3} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{3}^{2} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{3}^{-1} N=$ $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{3} t_{0} N=$ $N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} N, N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{3} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0} t_{2}^{-1} N$, $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{3} t_{1} N=N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{3} N, N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{3} t_{1}^{-1} N$ $=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0}^{-1} N, N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{3} t_{2} N=N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} t_{2}^{-1} N$, and $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{3} t_{2}^{-1} N=N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} N$.

Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{3} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
205. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} t_{1} N$.

Let [012031] denote the double coset $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} t_{1} N$.
Note that $N^{(0 \overline{1} 2031)} \geq N^{0 \overline{1} 2031}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} 2031)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} t_{1} N\right|=\frac{|N|}{\left|N^{(012031)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [012031] has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} 2031)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} t_{1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} t_{1} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} e N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} N$ and $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} t_{1} t_{1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} t_{1}^{2} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} t_{1}^{-1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} t_{1} t_{0} N=$ $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0} t_{3} N, N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} t_{1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{1}^{-1} N$, $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} t_{1} t_{2} N=N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1} N, N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} t_{1} t_{2}^{-1} N=N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} N$,
$N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} t_{1} t_{3} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0} N$, and $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} t_{1} t_{3}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} t_{0}^{-1} N$.
Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} t_{1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
206. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} t_{1}^{-1} N$.

Let [01203 $\overline{1}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} t_{1}^{-1} N$.
Note that $N^{(0 \overline{1} 203 \overline{1})} \geq N^{0 \overline{1} 203 \overline{1}}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} 203 \overline{1})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} t_{1}^{-1} N\right|=\frac{|N|}{\left|N^{(012031)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [012031] has at most twenty-four distinct single cosets. Moreover, $N^{(0 \overline{1} 203 \overline{1})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} t_{1}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} t_{1}^{-1} t_{1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} N N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} N$ and $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} t_{1}^{-1} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} t_{1}^{-2} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} t_{1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} t_{1}^{-1} t_{0} N=$ $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0} t_{2}^{-1} N, N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} t_{1}^{-1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0} N$, $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} t_{1}^{-1} t_{2} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} N, N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} t_{1}^{-1} t_{2}^{-1} N=$
$N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} N, N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} t_{1}^{-1} t_{3} N=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{2} N$, and
$N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} t_{1}^{-1} t_{3}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2}^{-1} N$.
Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} t_{1}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
207. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} t_{2} N$.

Let [$0 \overline{1} 2032]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} t_{2} N$.
Note that $N^{(0 \overline{1} 2032)} \geq N^{0 \overline{1} 2032}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} 2032)}\right| \geq|\langle e\rangle|=1$ and so, by
Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} t_{2} N\right|=\frac{|N|}{\left|N^{(012032)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} 2032]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} 2032)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} t_{2} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} t_{2} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} e N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} N$ and $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} t_{2} t_{2} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} t_{2}^{2} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} t_{2}^{-1} N=N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} t_{2} t_{0} N=$
$N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} N, N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} t_{2} t_{0}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{3} t_{1} N, N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} t_{2} t_{1} N$
$=N t_{0} t_{1} t_{2}^{-1} t_{0} t_{3} N, N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} t_{2} t_{1}^{-1} N=N t_{0} t_{1} t_{2} t_{0} t_{3}^{-1} N, N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} t_{2} t_{3} N$
$=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3}^{-1} N$, and $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} t_{2} t_{3}^{-1} N=N t_{0} t_{1} t_{2} t_{3}^{-1} t_{1} N$.
Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} t_{2} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
208. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1} N$.

Let [$0 \overline{1} 20 \overline{3} 1]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1} N$.
Note that $N^{(0 \overline{1} 20 \overline{3} 1)} \geq N^{0 \overline{1} 20 \overline{3} 1}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} 20 \overline{3} 1)}\right| \geq|\langle e\rangle|=1$ and so, by
Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1} N\right|=\frac{|N|}{\left|N^{(012031)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset $[0 \overline{1} 20 \overline{3} 1]$ has at most twenty-four distinct single cosets.

Moreover, $N^{(0 \overline{1} 20 \overline{3} 1)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} e N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1} t_{1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1}^{2} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1}^{-1} N$.
Moreover, with the help of MAGMA, we know that ' $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1} t_{0} N=$ $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0}^{-1} N, N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1} t_{0}^{-1} N=N t_{0} t_{1} t_{2} t_{3} t_{2}^{-1} N, N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1} t_{2} N$
$=N t_{0}^{-1} t_{1} t_{2} t_{3} t_{0} t_{2}^{-1} N, N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1} t_{2}^{-1} N=N t_{0}^{-1} t_{1} t_{2} t_{3} t_{0} N$, and
$N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1} t_{3} N=N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2}^{-1} N$.
Therefore, we conclude that there is one distinct double coset of the form
$N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1} t_{3}^{-1} N$.
209. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1}^{-1} N$.

Let $[0 \overline{1} 20 \overline{1} \overline{1}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1}^{-1} N$.
Note that $N^{(0 \overline{1} 20 \overline{3} \overline{1})} \geq N^{0 \overline{1} 20 \overline{3} \overline{1} \overline{1}}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} 20 \overline{3} \overline{1})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1}^{-1} N\right|=\frac{|N|}{\left|N^{(0 \overline{1} 20 \overline{1})}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} 20 \overline{3} \overline{1}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} 20 \overline{1} \overline{1})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1}^{-1} t_{1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} e N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1}^{-1} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1}^{-2} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1}^{-1} t_{0} N=$ $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3} N, N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1}^{-1} t_{2} N=N t_{0} t_{1} t_{2} t_{0} t_{1}^{-1} t_{2} N, N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1}^{-1} t_{3} N$ $=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{0} N$, and $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1}^{-1} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{3} N$.

Therefore, we conclude that there are two distinct double cosets of the form $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1}^{-1} t_{0}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1}^{-1} t_{3}^{-1} N$.
210. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{2} N$.

Let $[0 \overline{1} 20 \overline{3} 2]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{2} N$.
Note that $N^{(0 \overline{1} 20 \overline{3} 2)} \geq N^{0 \overline{1} 20 \overline{3} 2}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} 20 \overline{3} 2)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{2} N\right|=\frac{|N|}{\left|N^{(012032)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset $[0 \overline{1} 20 \overline{3} 2]$ has at most twenty-four distinct single cosets. Moreover, $N^{(0 \overline{1} 20 \overline{2} 2)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{2} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{2} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} e N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{2} t_{2} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{2}^{2} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{2}^{-1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{2} t_{0} N=$ $N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3}^{-1} N, N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{2} t_{0}^{-1} N=N t_{0} t_{1} t_{2} t_{0} t_{2}^{-1} N, N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{2} t_{1} N$ $=N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} N, N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{2} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{0}^{-1} N$, $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{2} t_{3} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} N$, and $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{2} t_{3}^{-1} N$ $=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{1}^{-1} N$.

Therefore, we conclude that there are no distinct double cosets of the form.
$N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{2} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
211. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{2}^{-1} N$.

Let $[0 \overline{1} 20 \overline{3} \overline{2}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{2}^{-1} N$.
Note that $N^{(0 \overline{1} 20 \bar{z} \overline{2})} \geq N^{0 \overline{1} 20 \overline{3} \overline{2}}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} 20 \overline{3} \overline{2})}\right| \geq|\langle e\rangle|=1$ and so, by
Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{2}^{-1} N\right|=\frac{|N|}{\left|N^{(0 \hat{1} 2032)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset $[0 \overline{1} 20 \overline{3} \overline{2}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(01 \overline{2} 0 \overline{\overline{2}})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{2}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{2}^{-1} t_{2} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} e N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{2}^{-1} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{2}^{-2} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{2} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{2}^{-1} t_{0} N=$ $N t_{0} t_{1} t_{2}^{-1} t_{1} t_{0} N, N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{2}^{-1} t_{0}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} N, N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{2}^{-1} t_{1} N$
$=N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} N, N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{2}^{-1} t_{1}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{0}^{-1} N$, $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{2}^{-1} t_{3} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0} N$, and $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{2}^{-1} t_{3}^{-1} N$ $=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1} N$.

Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{2}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
212. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{1} N$.

Let [012101] denote the double coset $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{1} N$.
Note that $N^{(0 \overline{1} 21 \overline{0} 1)} \geq N^{0 \overline{1} 21 \overline{0} 1}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} 21 \overline{0} 1)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{1} N\right|=\frac{|N|}{\left|N^{(012101)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} 21 \overline{0} 1]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} 21 \overline{0} 1)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{1} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} e N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{1} t_{1} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{1}^{2} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{1}^{-1} N$ $=N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}^{-1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{1} t_{0} N=$
$N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} N, N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{3}^{-1} N, N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{1} t_{2} N$
$=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{0}^{-1} N, N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{1} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1} t_{3}^{-1} N$,
$N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{1} t_{3} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2} N$, and $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{1} t_{3}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2}^{-1} N$.
Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
213. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3} N$.

Let [01210̄3] denote the double coset $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3} N$.

Note that $N^{(0 \overline{1} 21 \overline{0} 3)} \geq N^{0 \overline{1} 210 \overline{0} 3}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} 21 \overline{0} 3)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3} N\right|=\frac{|N|}{\left|N^{(012103)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} 21 \overline{0} 3]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} 21 \overline{0} 3)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} e N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3} t_{3} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3}^{2} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3} t_{0} N=$
$N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1}^{-1} t_{0}^{-1} N, N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1}^{-1} N$,
$N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3} t_{1} N=N t_{0} t_{1} t_{2} t_{0} t_{1}^{-1} N, N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3} t_{1}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{2}^{-1} N, N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3} t_{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{0} N$, and
$N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3}^{-1} N$.
Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
214. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3}^{-1} N$.

Let $[0 \overline{1} 21 \overline{0} \overline{3}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3}^{-1} N$.
Note that $N^{(0 \overline{1} 21 \overline{0} \overline{3})} \geq N^{0 \overline{1} 21 \overline{0} \overline{3}}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} 21 \overline{0} \overline{3})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3}^{-1} N\right|=\frac{|N|}{\left|N^{(0 \overline{1} 21 \overline{0})}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} 211 \overline{0} \overline{3}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} 21 \overline{0} \overline{3})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3}^{-1} t_{3} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} e N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3}^{-1} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3}^{-2} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3}^{-1} t_{0} N=$
$N t_{0} t_{1} t_{2} t_{3} t_{2}^{-1} N, N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3}^{-1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0} N, N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3}^{-1} t_{1} N$
$=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{0} N, N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3}^{-1} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2}^{-1} N$,
$N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3}^{-1} t_{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1} N$, and $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3}^{-1} t_{2}^{-1} N$
$=N t_{0} t_{1} t_{2}^{-1} t_{3} t_{0} t_{1} N$.
Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
215. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0} N$.

Let [$0 \overline{1} 2130]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0} N$.
Note that $N^{(0 \overline{1} 2130)} \geq N^{0 \overline{1} 2130}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} 2130)}\right| \geq|\langle e\rangle|=1$ and so, by
Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0} N\right|=\frac{|N|}{\left|N^{(0 \overline{1} 1130)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [0̄12130] has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} 2130)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} e N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} N$ and $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0} t_{0} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0}^{2} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0} t_{1} N=$
$N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} N, N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{0}^{-1} N$,
$N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0} t_{2} N=N t_{0} t_{1} t_{2} t_{0} t_{3} N, N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3}^{-1} N$,
$N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0} t_{3} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3}^{-1} N$, and $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0} t_{3}^{-1} N$
$=N t_{0} t_{1} t_{2} t_{3} t_{2}^{-1} N$.
Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
216. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0}^{-1} N$.

Let $[0 \overline{1} 213 \overline{0}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0}^{-1} N$.
Note that $N^{(0 \overline{1} 213 \overline{0})} \geq N^{0 \overline{1} 213 \overline{0}}=\langle e\rangle$. Thus $\left|N^{(01 \overline{2} 213 \overline{3})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0}^{-1} N\right|=\frac{|N|}{\left|N^{(012130)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} 213 \overline{0}]$ has at most twenty-four distinct single cosets.

Moreover, $N^{(01 \overline{2} 213 \overline{0})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0}^{-1} t_{0} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} e N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} N$ and $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0}^{-1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0}^{-2} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0}^{-1} t_{1} N=$
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{2}^{-1} N, N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0}^{-1} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} N$,
$N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0}^{-1} t_{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1} N, N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0}^{-1} t_{2}^{-1} N$
$=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} t_{0}^{-1} N$, and $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0}^{-1} t_{3} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0} N$.
Therefore, we conclude that there is one distinct double coset of the form $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0}^{-1} t_{3}^{-1} N$.
217. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{2} N$.

Let [$0 \overline{1} 2132]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{2} N$.
Note that $N^{(0 \overline{1} 2132)} \geq N^{0 \overline{1} 2132}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} 2132)}\right| \geq|\langle e\rangle|=1$ and so, by
Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{2} N\right|=\frac{|N|}{\left|N^{(0121322)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} 2132$] has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} 2132)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{2} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{2} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} e N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} N$ and $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{2} t_{2} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{2}^{2} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{2}^{-1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{2} t_{0} N=$ $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}^{-1} t_{3}^{-1} N, N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{2} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{1}^{-1} N$, $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{2} t_{1} N=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} N, N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{2} t_{1}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} N, N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{2} t_{3} N=N t_{0} t_{1} t_{2}^{-1} t_{1} t_{0}^{-1} N$, and $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{2} t_{3}^{-1} N=N t_{0} t_{1} t_{2} t_{0} t_{2}^{-1} N$.

Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{2} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
218. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{2}^{-1} N$.

Let $[01213 \overline{2}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{2}^{-1} N$.
Note that $N^{(0 \overline{1} 213 \overline{2})} \geq N^{0 \overline{1} 213 \overline{2}}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} 213 \overline{2})}\right| \geq|\langle e\rangle|=1$ and so, by
Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{2}^{-1} N\right|=\frac{|N|}{\left|N^{(012132)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} 213 \overline{2}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} 213 \overline{2})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{2}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{2}^{-1} t_{2} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} e N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} N$ and $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{2}^{-1} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{2}^{-2} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{2} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{2}^{-1} t_{0} N=$ $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{3} N, N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{2}^{-1} t_{0}^{-1} N=N t_{0} t_{1} t_{2} t_{0} t_{3} t_{2} N$, $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{2}^{-1} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{0} N, N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{2}^{-1} t_{3} N=N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3} N$, and $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{2}^{-1} t_{3}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} N$.

Therefore, we conclude that there is one distinct double coset of the form
$N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{2}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{2}^{-1} t_{1} N$.
219. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0} N$.

Let $[0 \overline{1} 21 \overline{3} 0]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0} N$.
Note that $N^{(0 \overline{1} 21 \overline{3} 0)} \geq N^{0 \overline{1} 21 \overline{3} 0}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} 21 \overline{3} 0)}\right| \geq|\langle e\rangle|=1$ and so, by
Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0} N\right|=\frac{|N|}{\left|N^{(012130)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset $[0 \overline{1} 21 \overline{3} 0]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} 21 \overline{3} 0)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} e N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0} t_{0} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0}^{2} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{2}^{-1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0} t_{1} N=$ $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{2}^{-1} N, N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} t_{0}^{-1} N$,
$N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{0}^{-1} N, N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0} t_{3} N$
$=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0}^{-1} t_{3}^{-1} N$, and $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0}^{-1} N$.
Therefore, we conclude that there is one distinct double coset of the form $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0} t_{2} N$.
220. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0}^{-1} N$.

Let [$0 \overline{1} 21 \overline{3} \overline{0}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0}^{-1} N$.
Note that $N^{(0 \overline{1} 21 \overline{3} \overline{0})} \geq N^{0 \overline{1} 21 \overline{3} \overline{0}}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} 21 \overline{3} \overline{0})}\right| \geq|\langle e\rangle|=1$ and so, by
Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0}^{-1} N\right|=\frac{|N|}{\left|N^{(01213 \bar{O})}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset $[0 \overline{1} 21 \overline{3} \overline{0}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} 21 \overline{3} \overline{0})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and,$\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0}^{-1} t_{0} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} e N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0}^{-1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0}^{-2} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0}^{-1} t_{1} N=$
$N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{3} N, N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0}^{-1} t_{1}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{3} N$,
$N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0}^{-1} t_{2} N=N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} N, N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0}^{-1} t_{2}^{-1} N$
$=N t_{0} t_{1} t_{2} t_{3} t_{0} t_{2} N, N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0}^{-1} t_{3} N=N t_{0} t_{1} t_{2} t_{3} t_{2}^{-1} N$, and
$N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0}^{-1} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1} N$.
Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
221. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{0} N$.

Let [012310] denote the double coset $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{0} N$.
Note that $N^{(0 \overline{1} 2310)} \geq N^{0 \overline{1} 2310}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} 2310)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{0} N\right|=\frac{|N|}{\left|N^{(012310)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [012310] has at most twenty-four distinct single cosets.

Moreover, $N^{(0 \overline{1} 2310)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{0} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{0} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} e N=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} N$ and $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{0} t_{0} N=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{0}^{2} N=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{0}^{-1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{0} t_{1} N=$
$N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{2}^{-1} N, N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{0} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{2}^{-1} t_{1} N, N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{0} t_{2}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} t_{1}^{-1} N, N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{0} t_{3} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2} N$, and
$N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{0} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} N$.
Therefore, we conclude that there is one distinct double coset of the form $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{0} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{0} t_{2} N$.
222. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{0}^{-1} N$.

Let $[0 \overline{1} 231 \overline{0}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{0}^{-1} N$.
Note that $N^{(0 \overline{1} 231 \overline{0})} \geq N^{0 \overline{1} 231 \overline{0}}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} 231 \overline{0})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{0}^{-1} N\right|=\frac{|N|}{\left|N^{(012310)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} 231 \overline{0}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} 231 \overline{0})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{0}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{0}^{-1} t_{0} N=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} e N=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} N$ and $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{0}^{-1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{0}^{-2} N=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{0} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{0}^{-1} t_{1} N=$ $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{0}^{-1} N, N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{0}^{-1} t_{1}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} N$, $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{0}^{-1} t_{2} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} N, N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{0}^{-1} t_{2}^{-1} N$ $=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2} N, N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{0}^{-1} t_{3} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3}^{-1} N$, and $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{0}^{-1} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{3} N$.

Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{0}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
223. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{2} N$.

Let [$0 \overline{1} 2312]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{2} N$.
Note that $N^{(0 \overline{1} 2312)} \geq N^{0 \overline{1} 2312}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} 2312)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{2} N\right|=\frac{|N|}{\left|N^{(0 \ddot{2} 212)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} 2312]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{0} 2312)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{2} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{2} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} e N=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} N$ and
$N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{2} t_{2} N=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{2}^{2} N=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{2}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{2} t_{0} N=$ $N t_{0}^{-1} t_{1} t_{2} t_{3} t_{0} t_{2}^{-1} N, N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{2} t_{0}^{-1} N=N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} N, N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{2} t_{1} N$
$=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{1}^{-1} N, N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{2} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{2}^{-1} t_{1} N$,
$N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{2} t_{3} N=N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2}^{-1} N$, and $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{2} t_{3}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} t_{1}^{-1} N$.
Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{2} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
224. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{2}^{-1} N$.

Let $[0 \overline{1} 231 \overline{2}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{2}^{-1} N$.
Note that $N^{(0 \overline{1} 231 \overline{2})} \geq N^{0 \overline{1} 231 \overline{2}}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} 231 \overline{2})}\right| \geq|\langle e\rangle|=1$ and so, by
Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{2}^{-1} N\right|=\frac{|N|}{\left|N^{(012312)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} 231 \overline{2}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(01 \overline{2} 21 \overline{2})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{2}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{2}^{-1} t_{2} N=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} e N=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} N$ and $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{2}^{-1} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{2}^{-2} N=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{2} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{2}^{-1} t_{0} N=$ $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} N, N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{2}^{-1} t_{0}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{1} N$,
$N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{2}^{-1} t_{1} N=N t_{0} t_{1}^{-1} t_{0} t_{2} t_{3} t_{0} N, N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{2}^{-1} t_{1}^{-1} N$
$=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0} t_{3} N, N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{2}^{-1} t_{3} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} t_{0}^{-1} N$, and $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{2}^{-1} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0} N$.

Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{2}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
225. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{0} N$.

Let $[0 \overline{0} 23 \overline{2} 0]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{0} N$.
Note that $N^{(0 \overline{1} 23 \overline{2} 0)} \geq N^{0 \overline{1} 23 \overline{2} 0}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} 23 \overline{2} 0)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{0} N\right|=\frac{|N|}{\left|N^{(0 \overline{1} 23 \overline{2} 0)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} 23 \overline{2} 0]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} 232 \overline{0} 0)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{0} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{0} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} e N=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{0} t_{0} N=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{0}^{2} N=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{0}^{-1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{0} t_{1} N=$
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3} N, N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{0} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{3}^{-1} N$,
$N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{0} t_{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2}^{-1} N, N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{0} t_{2}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3}^{-1} N, N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{0} t_{3} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2}^{-1} N$, and
$N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{0} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{2}^{-1} N$.
Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{0} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
226. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{0}^{-1} N$.

Let $[0 \overline{1} 23 \overline{2} \overline{0}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{0}^{-1} N$.
Note that $N^{(0 \overline{1} 23 \overline{2} \overline{0})} \geq N^{0 \overline{1} 23 \overline{2} \overline{0}}=\langle e\rangle$. Thus $\left|N^{((\overline{0} 123 \overline{2} \bar{O})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{0}^{-1} N\right|=\frac{|N|}{\left|N^{(\overline{012} 2 \overline{2} \bar{O})}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [$0 \overline{1} 23 \overline{2} \overline{0}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(01 \overline{2} 2 \overline{2} \overline{0})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{0}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{0}^{-1} t_{0} N=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} e N=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} N$ and
$N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{0}^{-1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{0}^{-2} N=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{0} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{0}^{-1} t_{1} N=$
$N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{0} N, N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1}^{-1} N$,
$N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{0}^{-1} t_{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{2}^{-1} N, N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{0}^{-1} t_{2}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2} N, N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{0}^{-1} t_{3} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0} N$, and
$N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} N$.
Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{0}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
227. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{1} N$.

Let [$0 \overline{1} 23 \overline{2} 1]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{1} N$.
Note that $N^{(0 \overline{1} 23 \overline{2} 1)} \geq N^{0 \overline{1} 23 \overline{2} 1}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} 23 \overline{2} 1)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{1} N\right|=\frac{|N|}{\left|N^{(012321)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} 23 \overline{2} 1]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} 23 \overline{1} 1)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{1} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} e N=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{1} t_{1} N=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{1}^{2} N=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{1}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{1} t_{0} N=$ $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{1} t_{2}^{-1} N, N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{1} t_{0}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{1} N$,
$N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{1} t_{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{2}^{-1} N, N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{1} t_{2}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} t_{3}^{-1} N, N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{1} t_{3} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{3}^{-1} N$, and
$N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{1} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0} t_{2}^{-1} N$.

Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
228. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{1}^{-1} N$.

Let $[0 \overline{1} 23 \overline{2} \overline{1}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{1}^{-1} N$.
Note that $N^{(0 \overline{1} 23 \overline{2} \overline{1})} \geq N^{0 \overline{1} 23 \overline{2} \overline{1}}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} 23 \overline{2} \overline{1})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{1}^{-1} N\right|=\frac{|N|}{\left|N^{(0 \overline{1} 232 \overline{1})}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} 23 \overline{2} \overline{1}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} 23 \overline{1} \overline{1})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.
Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{1}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{1}^{-1} t_{1} N=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} e N=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{1}^{-1} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{1}^{-2} N=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{1}^{-1} t_{0} N=$ $N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3} N, N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{1}^{-1} t_{0}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{1} N$,
$N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{1}^{-1} t_{2} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{2}^{-1} t_{1} N, N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{1}^{-1} t_{2}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{2} N, N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{1}^{-1} t_{3} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} t_{1} N$, and
$N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{1}^{-1} t_{3}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0} t_{3} N$.
Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0} t_{1}^{-1}, t_{2} t_{3} t_{2}^{-1} t_{1}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
229. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2} N$.

Let [01 $\overline{2} 012]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2} N$.
Note that $N^{(0 \overline{1} \overline{2} 012)} \geq N^{0 \overline{1} \overline{2} 012}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{2} 012)}\right| \geq|\langle e\rangle|=1$ and so, by
Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2} N\right|=\frac{|N|}{\left|N^{(012012)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} \overline{2} 012$] has at most twenty-four distinct single cosets.
Moreover, $N^{(01 \overline{2} 012)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} e N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} N$ and
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2} t_{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2}^{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2} t_{0} N=$
$N t_{0}^{-1} t_{1} t_{2} t_{0} t_{3}^{-1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2} t_{0}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{0} N$,
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2} t_{1} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2} t_{1}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{0} N$, and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} t_{0} N$.
Therefore, we conclude that there is one distinct double coset of the form
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2} t_{3} N$.
230. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2}^{-1} N$.

Let [$0 \overline{1} \overline{2} 01 \overline{2}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2}^{-1} N$.
Note that $N^{(0 \overline{1} \overline{2} 01 \overline{2})} \geq N^{0 \overline{1} \overline{2} 01 \overline{2}}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{2} 01 \overline{2})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2}^{-1} N\right|=\frac{|N|}{\left|N^{(0 \overline{1} O 1 \overline{1})}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset $[0 \overline{1} \overline{2} 01 \overline{2}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} \overline{2} 01 \overline{2})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2}^{-1} t_{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} e N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2}^{-1} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2}^{-2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2}^{-1} t_{0} N=$
$N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} t_{3} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0}^{-1} t_{1}^{-1} N$, $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2}^{-1} t_{1} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2}^{-1} t_{1}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2}^{-1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2}^{-1} t_{3} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{2}^{-1} N$, and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{0} N$.
Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
231. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{3} N$.

Let $[0 \overline{1} \overline{2} 013]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{3} N$.

Now, with the help of MAGMA, we know that that the following right cosets, or single cosets, are equivalent: $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{3}=N t_{1} t_{0}^{-1} t_{3}^{-1} t_{1} t_{0} t_{2}$.

That is, in terms of our short-hand notation,

$$
0 \overline{1} \overline{2} 013 \sim 1 \overline{0} \overline{3} 102 .
$$

By conjugating the equivalence relation above with the elements of S_{4}, we determine that the following single cosets are equivalent in the double coset [0 $\overline{1} \overline{2} 013]$:

$0 \overline{1} \overline{2} 013 \sim 10 \overline{3} 102$,	$1 \overline{0} \overline{2} 103 \sim 0 \overline{1} 3012$,	$2 \overline{1} \overline{0} 213 \sim 1 \overline{2} \overline{3} 120$,
$3 \overline{1} 2310 \sim 1 \overline{3} \overline{0} 132$,	$0 \overline{2} \overline{1} 023 \sim 20 \overline{3} 3201$,	$0 \overline{3} \overline{2} 031 \sim 30 \overline{1} 302$,
$1 \overline{2} \overline{0} 123 \sim 2 \overline{1} \overline{3} 210$,	$2 \overline{0} \overline{1} 203 \sim 0 \overline{2} \overline{3} 021$,	$1 \overline{3} \overline{2} 130 \sim 3 \overline{1} 0{ }^{0} 312$,
$3 \overline{0} 2 \overline{2} 01 \sim 0 \overline{3} 1032$,	$2 \overline{3} \overline{0} 231 \sim 3 \overline{2} \overline{1} 320$,	$2 \overline{3} \overline{1} 230 \sim 3 \overline{2} \mathbf{0} 321$

Since each of the twenty-four single cosets has two names, the double coset [012013] must have at most twelve distinct single cosets.

An alternative approach for determining the order of the double coset is as follows: We note that $N^{(0 \overline{1} \overline{2} 013)} \geq N^{0 \overline{1} \overline{2} 013}=\langle e\rangle$. In fact, with the help of MAGMA, we know that $N\left(t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{3}\right)^{(01)(23)}=N t_{1} t_{0}^{-1} t_{3}^{-1} t_{1} t_{0} t_{2}=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{3}$ implies
 $|\langle(01)(23)\rangle|=2$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{3} N\right|=\frac{|N|}{\left|N^{(012013)}\right|} \leq \frac{24}{2}=$ 12.

Therefore, as we concluded earlier, the double coset [$0 \overline{1} \overline{2} 013]$ has at most twelve distinct single cosets.

Now, $N^{(0 \overline{1} \overline{2} 013)}$ has four orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0,1\},\{2,3\},\{\overline{0}, \overline{1}\}$, and $\{\overline{2}, \overline{3}\}$. Therefore, there are at most four double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{3} t_{i}^{ \pm 1}, i \in\{0,3\}$.

But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{3} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} e N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{3} t_{3} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{3}^{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{3}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{3} t_{0} N=$ $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{3} t_{1}^{-1} N=N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2}^{-1} t_{0}^{-1} N$.

Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{3} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
232. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{3}^{-1} N$.

Let $[0 \overline{1} \overline{2} 01 \overline{3}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{3}^{-1} N$.
Note that $N^{(0 \overline{1} \overline{2} 01 \overline{3})} \geq N^{0 \overline{1} \overline{2} 01 \overline{3}}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{2} 01 \overline{3})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{3}^{-1} N\right|=\frac{|N|}{\left|N^{(0 \overline{1} 01 \overline{3})}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset $[0 \overline{1} \overline{2} 01 \overline{3}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} \overline{2} 01 \overline{3})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{3}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{3}^{-1} t_{3} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} e N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{3}^{-1} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{3}^{-2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{3} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{3}^{-1} t_{0} N=$
$N t_{0} t_{1} t_{2}^{-1} t_{1} t_{0} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{3}^{-1} t_{0}^{-1} N=N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2} t_{1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{3}^{-1} t_{1} N$
$=N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{3}^{-1} t_{1}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2} N$,
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{3}^{-1} t_{2} N=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{0} N$, and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{3}^{-1} t_{2}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3} N$.
Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{3}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
233. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} t_{0}^{-1} N$.

Let [$0 \overline{1} \overline{2} 0 \overline{1} \overline{0}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} t_{0}^{-1} N$.
Note that $N^{(0 \overline{1} \overline{2} 0 \overline{1} \bar{O})} \geq N^{0 \overline{1} \overline{2} \bar{o} \overline{1} \bar{O}}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{2} 0 \overline{1} \overline{0} \bar{O})}\right| \geq|\langle e\rangle|=1$ and so, by
Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} t_{0}^{-1} N\right|=\frac{|N|}{\left.\mid N^{(0 \overline{1} 2010}\right) \mid} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} \overline{2} 0 \overline{1} \overline{0}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} \overline{2} 0 \overline{1} \overline{0})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} t_{0}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} t_{0}^{-1} t_{0} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} e N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} t_{0}^{-1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} t_{0}^{-2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} t_{0} N$
$=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} t_{0}^{-1} t_{1} N=$
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{0}^{-1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} N$,
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} N=N t_{0} t_{1} t_{2} t_{0} t_{3} t_{0}^{-1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} t_{0}^{-1} t_{3} N=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} N$, and
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} t_{0}^{-1} t_{3}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{0} N$.
Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} t_{0}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
234. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} t_{0}^{-1} N$.

Let [$0 \overline{1} \overline{2} 03 \overline{0}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} t_{0}^{-1} N$.
Note that $N^{(0 \overline{1} \overline{2} 03 \overline{0})} \geq N^{0 \overline{1} \overline{2} 03 \overline{0}}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{2} 03 \overline{0})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} t_{0}^{-1} N\right|=\frac{|N|}{\left|N^{(0 \overline{1} 203 \overline{3})}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} \overline{2} 03 \overline{0}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} 030 \overline{0})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} t_{0}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} t_{0}^{-1} t_{0} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} e N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} N$ and
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} t_{0}^{-1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} t_{0}^{-2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} t_{0} N$
$=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} t_{0}^{-1} t_{1} N=$ $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} t_{1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} t_{0}^{-1} t_{1}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0} N$,
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} t_{0}^{-1} t_{2} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} t_{0}^{-1} t_{2}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{2}^{-1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} t_{0}^{-1} t_{3} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} N$, and
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} t_{0}^{-1} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{2} N$.
Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} t_{0}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
235. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{0}^{-1} N$.

Let $[0 \overline{1} \overline{2} \overline{0} 1 \overline{0}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{0}^{-1} N$.

Note that $N^{(0 \overline{1} \overline{2} \bar{o} 1 \overline{0})} \geq N^{0 \overline{1} \overline{2} \overline{1} 1 \bar{o}}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{2} \overline{0} 1 \overline{0})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{0}^{-1} N\right|=\frac{|N|}{\left|N^{(0 \overline{1} \overline{2} 1 \overline{1} \overline{)}}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} \overline{2} \overline{0} 1 \overline{0}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} \overline{2} \overline{1} 1 \overline{0})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{0}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{0}^{-1} t_{0} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} e N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{0}^{-1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{0}^{-2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{0} N$ $=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} t_{0}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{0}^{-1} t_{1} N=$
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{2}^{-1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1} N=N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2} N$,
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{0}^{-1} t_{2} N=N t_{0} t_{1} t_{2} t_{0} t_{3}^{-1} t_{0} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} N$
$=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{0}^{-1} t_{3} N=N t_{0} t_{1} t_{2} t_{3} t_{2}^{-1} N$, and
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{0}^{-1} t_{3}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{1} t_{0} N$.
Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{0}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
236. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{2} N$.

Let [$0 \overline{1} \overline{2} \overline{0} 12]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{2} N$.
Note that $N^{(0 \overline{1} \overline{2} \bar{O} 12)} \geq N^{0 \overline{1} \overline{2} \overline{0} 12}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{2} \overline{0} 12)}\right| \geq|\langle e\rangle|=1$ and so, by
Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{2} N\right|=\frac{|N|}{\left|N^{(0 \overline{1} 012)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} \overline{2} \overline{0} 12]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} \overline{2} \overline{0} 12)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{2} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{2} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} e N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{2} t_{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{2}^{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{2}^{-1} N$ $=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} t_{0}^{-1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{2} t_{0} N=$ $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{2} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{1}^{-1} N$,
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{2} t_{1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2}^{-1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{2} t_{1}^{-1} N$
$=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{2} t_{3} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} N$, and
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{2} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{2} N$.
Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{2} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
237. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3} N$.

Let [$0 \overline{1} \overline{2} \overline{0} 13]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3} N$.
Note that $N^{(0 \overline{1} \overline{2} \overline{0} 13)} \geq N^{0 \overline{1} \overline{2} \overline{0} 13}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{2} \overline{0} 13)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3} N\right|=\frac{|N|}{\left|N^{(012013)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} \overline{2} \overline{0} 13]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} \overline{2} \overline{0} 13)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} e N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3} t_{3} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3}^{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3}^{-1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3} t_{0} N=$
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{3}^{-1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{0} N$,
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3} t_{1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1}^{-1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3} t_{1}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2} t_{3} N$, and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3} t_{2} N=N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{1} N$.
Therefore, we conclude that there is one distinct double coset of the form
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3} t_{2}^{-1} N$.
238. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3}^{-1} N$.

Let $[0 \overline{1} \overline{2} \overline{0} 1 \overline{3}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3}^{-1} N$.
Note that $N^{(0 \overline{1} \overline{2} \overline{0} 1 \overline{3})} \geq N^{0 \overline{1} \overline{2} \overline{0} 1 \overline{3}}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{2} \overline{0} 1 \overline{3})}\right| \geq|\langle e\rangle|=1$ and so, by
Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3}^{-1} N\right|=\frac{|N|}{\left|N^{(0 \overline{1} \overline{2} 1 \overline{1})}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} \overline{2} \overline{0} 1 \overline{3}]$ has at most twenty-four distinct single cosets.

Moreover, $N^{(0 \overline{1} \overline{2} \overline{0} 1 \overline{3})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3}^{-1} t_{3} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} e N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3}^{-1} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3}^{-2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3}^{-1} t_{0} N=$
$N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3}^{-1} t_{0}^{-1} N=N t_{0} t_{1} t_{2} t_{0} t_{3} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3}^{-1} t_{1} N$
$=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{3} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3}^{-1} t_{2} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3} N$, and
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3}^{-1} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{0} N$.
Therefore, we conclude that there is one distinct double coset of the form
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3}^{-1} t_{1}^{-1} N$.
239. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0} N$.

Let $[0 \overline{1} \overline{2} \overline{0} \overline{1} 0]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0} N$.
Note that $N^{(0 \overline{1} \overline{1} \bar{O} \overline{1} 0)} \geq N^{0 \overline{1} \overline{2} \overline{0} \overline{1} 0}=\langle e\rangle$. Thus $\left|N^{(\overline{0} \overline{1} \overline{2} \overline{1} \overline{1} 0)}\right| \geq|\langle e\rangle|=1$ and so, by
Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0} N\right|=\frac{|N|}{\left|N^{(0 \overline{1} \overline{2010})}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} \overline{2} \overline{0} \overline{1} 0]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} \overline{2} \overline{0} \overline{1} 0)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} e N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0} t_{0} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}^{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} N$ $=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0} t_{1} N=$ $N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} N$,
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0} t_{2} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0} t_{2}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{2}^{-1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0} t_{3} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{1} N$, and
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} N$.

Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1}, t_{0} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
240. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{3} N$.

Let [$0 \overline{1} \overline{2} \overline{0} \overline{1} 3]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{3} N$.
Note that $N^{(0 \overline{1} \overline{2} \overline{1} \overline{1} 3)} \geq N^{0 \overline{1} \overline{2} \overline{0} \overline{1} \overline{3}}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{2} \overline{0} \overline{1} 3)}\right| \geq|\langle e\rangle|=1$ and so, by
Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{3} N\right|=\frac{|N|}{\mid N^{(0 \overline{1} \overline{\bar{O} \overline{1} \overline{3}})}} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} \overline{2} \overline{0} \overline{1} 3]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} \overline{2} \bar{o} \overline{1} 3)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{3} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{3} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} e N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{3} t_{3} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{3}^{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{3}^{-1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{3} t_{0} N=$ $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{3} t_{0}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{3} t_{1} N$, $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{3} t_{1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3}^{-1} t_{1}^{-1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{3} t_{1}^{-1} N$ $=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3}^{-1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{3} t_{2} N=N t_{0} t_{1} t_{2} t_{0} t_{3} t_{2} N$, and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{3} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{2}^{-1} N$.

Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{3} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
241. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{3}^{-1} N$.

Let $[0 \overline{1} \overline{2} \overline{0} \overline{1} \overline{3}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{3}^{-1} N$.
Note that $N^{(0 \overline{1} \overline{1} \bar{O} \overline{1} \overline{3})} \geq N^{0 \overline{1} \overline{2} \overline{0} \overline{1} \overline{3} \overline{3}}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{2} \bar{o} \overline{1} \overline{3})}\right| \geq|\langle e\rangle|=1$ and so, by
Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{3}^{-1} N\right|=\frac{|N|}{\left|N^{(012013)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset $[0 \overline{1} \overline{2} \overline{0} \overline{1} \overline{3}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{0} \overline{2} \overline{0} \overline{1} \overline{3})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{3}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{3}^{-1} t_{3} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} e N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{3}^{-1} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{3}^{-2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{3} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{3}^{-1} t_{0} N=$ $N t_{0} t_{1} t_{2} t_{3} t_{1} t_{0} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{3}^{-1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1} t_{3} N$, $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{3}^{-1} t_{1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2} t_{3} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{3}^{-1} t_{1}^{-1} N$ $=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{3}^{-1} t_{2} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} N$, and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{3}^{-1} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} N$.

Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{3}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
242. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{1} N$.

Let $[0 \overline{1} \overline{2} \overline{0} 21]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{1} N$.
Note that $N^{(0 \overline{1} \overline{2} \overline{0} 21)} \geq N^{0 \overline{1} \overline{2} \overline{0} 21}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{2} 0 \overline{0} 21)}\right| \geq|\langle e\rangle|=1$ and so, by
Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{1} N\right|=\frac{|N|}{\left|N^{(0 \overline{1} 2021)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} \overline{2} \overline{0} 21]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} \overline{2} \overline{0} 21)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{1} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} e N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{1} t_{1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{1}^{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{1}^{-1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{1} t_{0} N=$
$N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0} N$,
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{1} t_{2} N=N t_{0}^{-1} t_{1} t_{2} t_{0} t_{1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{1} t_{2}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0}^{-1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{1} t_{3} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1} t_{3} N$, and
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{1} t_{3}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2}^{-1} N$.
Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
243. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{1}^{-1} N$.

Let $[0 \overline{1} \overline{2} \overline{0} 2 \overline{1}]$ denote the double $\operatorname{coset} N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{1}^{-1} N$.

Note that $N^{(0 \overline{1} \overline{2} \overline{0} 2 \overline{1})} \geq N^{0 \overline{1} \overline{2} \overline{2} 2 \overline{1}}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{2} \overline{0} 2 \overline{1})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{1}^{-1} N\right|=\frac{|N|}{\left|N^{(012021)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} \overline{2} \overline{0} 2 \overline{1}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} \overline{2} \overline{0} 2 \overline{1})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{1}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{1}^{-1} t_{1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} e N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{1}^{-1} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{1}^{-2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{1}^{-1} t_{0} N=$
$N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{2} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{1}^{-1} t_{0}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} N$,
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{1}^{-1} t_{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{0} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{1}^{-1} t_{2}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{0} t_{2} t_{3} t_{0} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{1}^{-1} t_{3} N=N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3} N$, and
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{1}^{-1} t_{3}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}^{-1} N$.
Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{1}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
244. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{3} N$.

Let [$0 \overline{1} \overline{2} \overline{0} 23]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{3} N$.
Note that $N^{(0 \overline{1} \overline{2} \overline{0} 23)} \geq N^{0 \overline{1} \overline{2} \overline{0} 23}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{2} \overline{0} 23)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{3} N\right|=\frac{|N|}{\left|N^{(0 \hat{1} \overline{2} 23)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} \overline{2} \overline{0} 23]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} \overline{2} \overline{0} 23)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{3} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{3} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} e N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{3} t_{3} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{3}^{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{3} t_{0} N=$ $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{0}^{-1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{3} t_{0}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3}^{-1} N$,
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{3} t_{1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}^{-1} t_{3}^{-1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{3} t_{1}^{-1} N$
$=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2}^{-1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{3} t_{2} N=N t_{0} t_{1} t_{2} t_{3} t_{1} N$, and
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{3} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0}^{-1} N$.
Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{3} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
245. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} N$.

Let [$0 \overline{1} \overline{2} \overline{0} 2 \overline{3}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} N$.
Note that $N^{(0 \overline{1} \overline{2} \overline{0} 2 \overline{3})} \geq N^{0 \overline{1} \overline{2} \overline{0} 2 \overline{3}}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{2} \overline{0} \overline{2} \overline{3})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} N\right|=\frac{|N|}{\left|N^{(0 \overline{1} \overline{2} 2 \overline{3})}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} \overline{2} \overline{0} 2 \overline{3}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} \overline{2} \overline{0} \bar{z} \overline{3})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.
Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{3} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} e N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{3}^{-2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{3} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{0} N=$
$N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} t_{0} N$,
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{1} N=N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{0} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{1}^{-1} N$
$=N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{0} t_{1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0} N$, and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{2}^{-1} N=N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2} N$.

Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{i}^{\not 1} N$, where $i \in\{0,1,2,3\}$.
246. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{0}^{-1} N$.

Let $[0 \overline{1} \overline{2} \overline{0} 3 \overline{0}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{0}^{-1} N$.
Note that $N^{(0 \overline{1} \overline{2} \bar{o} 3 \overline{0})} \geq N^{0 \overline{1} \overline{2} \bar{o} 3 \bar{o}}=\langle e\rangle$. Thus $\left|N^{(\overline{0} \overline{2} \overline{2} \overline{0} \overline{3} \overline{0})}\right| \geq|\langle e\rangle|=1$ and so, by
Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{0}^{-1} N\right|=\frac{|N|}{\left|N^{(012030)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} \overline{2} \overline{0} 3 \overline{0}]$ has at most twenty-four distinct single cosets.
 $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{0}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{0}^{-1} t_{0} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} e N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{0}^{-1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{0}^{-2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{0} N$ $=N t_{0}^{-1} t_{1} t_{2} t_{0} t_{3}^{-1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{0}^{-1} t_{1} N=$
$N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{2}^{-1} t_{1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{0}^{-1} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} t_{3} N$,
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{0}^{-1} t_{2} N=N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{0}^{-1} t_{2}^{-1} N$
$=N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{0}^{-1} t_{3} N=N t_{0} t_{1}^{-1} t_{0} t_{2} t_{3} N$, and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{0}^{-1} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{0} t_{2} t_{3} t_{0} N$.

Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} \cdot t_{3} t_{0}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
247. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{1} N$.

Let [$0 \overline{1} \overline{2} \overline{0} 31]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{1} N$.
Note that $N^{(0 \overline{1} \overline{1} \overline{0} 31)} \geq N^{0 \overline{1} \overline{2} \bar{o} 31}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{2} \bar{o} 31)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{1} N\right|=\frac{|N|}{\left|N^{(0 \overline{1} \overline{2} 31)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} \overline{2} \overline{0} 31]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} \overline{2} \overline{0} 31)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{1} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} e N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{1} t_{1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{1}^{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{1}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{1} t_{0} N=$ $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} t_{1}^{-1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} N$,
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{1} t_{2} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{1} t_{2}^{-1} N$
$=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{0} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{1} t_{3} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{3}^{-1} N$, and
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{1} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2} t_{3} N$.

Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
248. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{1}^{-1} N$.

Let $[0 \overline{1} \overline{2} \overline{0} 3 \overline{1}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{1}^{-1} N$.
Note that $N^{(0 \overline{1} \overline{1} \overline{0} 3 \overline{1})} \geq N^{0 \overline{1} \overline{2} \overline{0} 3 \overline{1}}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{2} \overline{0} 3 \overline{1})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{1}^{-1} N\right|=\frac{|N|}{\left|N^{(0 \overline{12031})}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} \overline{2} \overline{0} 3 \overline{1}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} \overline{2} \overline{0} 3 \overline{1})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{1}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{1}^{-1} t_{1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} e N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{1}^{-1} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{1}^{-2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{1}^{-1} t_{0} N=$
$N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{1}^{-1} t_{0}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{3} t_{0} N$,
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{1}^{-1} t_{2} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{2} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{1}^{-1} t_{2}^{-1} N$
$=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}^{-1} t_{3}^{-1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{1}^{-1} t_{3} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1} N$, and
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{1}^{-1} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3}^{-1} t_{1}^{-1} N$.
Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{1}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
249. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{0} N$.

Let $[0 \overline{1} \overline{2} \overline{0} \overline{3} 0]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{0} N$.
Note that $N^{(0 \overline{1} \overline{2} \overline{0} \overline{3} 0)} \geq N^{0 \overline{1} \overline{2} \bar{o} \overline{3} 0}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{2} \overline{0} \overline{3} 0)}\right| \geq|\langle e\rangle|=1$ and so, by
Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{0} N\right|=\frac{|N|}{\left|N^{(01 \bar{z} \overline{3} 0)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} \overline{2} \overline{0} \overline{3} 0]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} \overline{2} \overline{0} \overline{3} 0)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{0} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{0} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} e N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{0} t_{0} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{0}^{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{0}^{-1} N$ $=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{0} t_{1} N=$ $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{3} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{0} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1}^{-1} N$, $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{0} t_{2} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{0}^{-1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{0} t_{2}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} t_{3}^{-1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{0} t_{3} N=N t_{0} t_{1}^{-1} t_{0} t_{2} t_{3} t_{0} N$, and
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{0} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{1}^{-1} N$.
Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{0} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
250. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1} N$.

Let $[0 \overline{1} \overline{2} \overline{0} \overline{3} 1]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1} N$.
Note that $N^{(0 \overline{1} \overline{2} \overline{0} \overline{3} 1)} \geq N^{0 \overline{1} \overline{2} \overline{0} \overline{3} 1}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{2} \overline{0} \overline{3} 1)}\right| \geq|\langle e\rangle|=1$ and so, by
Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1} N\right|=\frac{|N|}{N^{(\overline{0} \overline{\overline{2}} \overline{\bar{O}} 1)} \mid} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} \overline{\overline{0}} \overline{\overline{3}} \overline{1} 1]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{0} \overline{2} \overline{0} \overline{3} 1)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1} t_{i}^{ \pm 1} ; i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} e N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1} t_{1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1}^{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1}^{-1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1} t_{0} N=$ $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} t_{0}^{-1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0}^{-1} N$, $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1} t_{2} N=N t_{0} t_{1} t_{2}^{-1} t_{3} t_{0} t_{1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1} t_{2}^{-1} N$ $=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3}^{-1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1} t_{3} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3}^{-1} t_{1}^{-1} N$, and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{1}^{-1} N$.

Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
251. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1}^{-1} N$.

Let $[0 \overline{1} \overline{2} \overline{0} \overline{\overline{1}} \overline{1}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1}^{-1} N$.
Note that $N^{(0 \overline{1} \overline{2} \overline{0} \overline{3} \overline{1})} \geq N^{0 \overline{1} \overline{2} \bar{o} \overline{3} \overline{1}}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{2} \bar{o} \overline{3} \overline{1} \overline{1})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1}^{-1} N\right|=\frac{|N|}{\mid N^{(0 \overline{1} \overline{\text { OTBII }})}} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} \overline{2} \overline{0} \overline{3} \overline{1}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} \overline{2} \overline{0} \overline{1} \overline{1})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1}^{-1} t_{1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} e N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1}^{-1} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1}^{-2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1}^{-1} t_{0}^{-1} N=$
$N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{1} t_{2}^{-1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2} N=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{0}^{-1} N$,
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{0} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1}^{-1} t_{3} N$
$=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2} t_{3} N$, and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1}^{-1} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3} N$.
Therefore, we conclude that there is one distinct double coset of the form
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1}^{-1} t_{0} N$.
252. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0}^{-1} t_{3}^{-1} N$.

Let $[0 \overline{1} \overline{2} 1 \overline{0} \overline{3}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0}^{-1} t_{3}^{-1} N$.
Note that $N^{(0 \overline{1} \overline{1} 1 \overline{0} \overline{3})} \geq N^{0 \overline{1} \overline{2} 1 \overline{0} \overline{3}}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{2} 1 \overline{0} \overline{3})}\right| \geq|\langle e\rangle|=1$ and so, by
Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0}^{-1} t_{3}^{-1} N\right|=\frac{|N|}{\left|N^{(0 \overline{1} 10 \overline{3})}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset $[0 \overline{1} \overline{1} 1 \overline{0} \overline{3}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(01 \overline{2} \overline{1} 1 \overline{3})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0}^{-1} t_{3}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0}^{-1} t_{3}^{-1} t_{3} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0}^{-1} e N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0}^{-1} t_{3}^{-1} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0}^{-1} t_{3}^{-2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0}^{-1} t_{3} N$ $=N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0}^{-1} t_{3}^{-1} t_{0} N=$ $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{3}^{-1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0}^{-1} t_{3}^{-1} t_{0}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} N$,
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0}^{-1} t_{3}^{-1} t_{1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2}^{-1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0}^{-1} t_{3}^{-1} t_{1}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0}^{-1} t_{3}^{-1} t_{2} N=N t_{0}^{-1} t_{1} t_{2} t_{0} t_{1}^{-1} N$, and
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0}^{-1} t_{3}^{-1} t_{2}^{-1} N=N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} t_{2}^{-1} N$.
Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0}^{-1} t_{3}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
253. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} t_{2} N$.

Let [$0 \overline{1} \overline{2} 132]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} t_{2} N$.
Note that $N^{(0 \overline{1} \overline{2} 132)} \geq N^{0 \overline{1} \overline{2} 132}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{2} 132)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} t_{2} N\right|=\frac{|N|}{\left|N^{(0 \overline{1} \overline{1} 132)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} \overline{2} 132]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} \overline{2} 132)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} t_{2} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} t_{2} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} e N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} t_{2} t_{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} t_{2}^{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} t_{2}^{-1} N$ $=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1}^{-1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} t_{2} t_{0} N=$
$N t_{0}^{-1} t_{1} t_{2} t_{3} t_{1}^{-1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} t_{2} t_{0}^{-1} N=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2}^{-1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} t_{2} t_{1} N$
$=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} t_{2} t_{3} N=N t_{0} t_{1} t_{0}^{-1} t_{2} t_{1} N$, and
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} t_{2} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} N$.
Therefore, we conclude that there is one distinct double coset of the form
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} t_{2} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} t_{2} t_{1}^{-1} N$.
254. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{2}^{-1} N$.

Let $[0 \overline{1} \overline{2} 1 \overline{3} \overline{2}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{2}^{-1} N$.
Note that $N^{(0 \overline{1} \overline{2} 1 \overline{3} \overline{2})} \geq N^{0 \overline{1} \overline{2} 1 \overline{3} \overline{2}}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{2} 1 \overline{3} \overline{2})}\right| \geq|\langle e\rangle|=1$ and so, by
Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{2}^{-1} N\right|=\frac{|N|}{\left|N^{(0 \overline{1} 1 \overline{3} \overline{2})}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset $[0 \overline{1} \overline{1} 1 \overline{3} \overline{2}]$ has at most twenty-four distinct single cosets. Moreover, $N^{(0 \overline{1} \overline{2} 1 \overline{3} \overline{2})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{2}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{2}^{-1} t_{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} e N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{2}^{-1} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{2}^{-2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{2} N$ $=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{2}^{-1} t_{0} N=$
$N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{2}^{-1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2}^{-1} N$, $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{2}^{-1} t_{1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} t_{0}^{-1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{2}^{-1} t_{3} N$
$=N t_{0} t_{1} t_{2} t_{0} t_{1}^{-1} N$, and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{2}^{-1} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{0} t_{2} t_{3} N$.
Therefore, we conclude that there is one distinct double coset of the form
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{2}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{2}^{-1} t_{1}^{-1} N$.
255. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} t_{1} N$.

Let [012 $\overline{2} 301]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} t_{1} N$.
Note that $N^{(0 \overline{1} \overline{2} 301)} \geq N^{0 \overline{1} \overline{2} 301}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{2} 301)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} t_{1} N\right|=\frac{|N|}{\left|N^{(0 \overline{1} \overline{2} 301)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} \overline{2} 301]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} \overline{2} 301)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} t_{1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} t_{1} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} e N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} t_{1} t_{1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} t_{1}^{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} t_{1}^{-1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} t_{1} t_{0} N=$ $N t_{0}^{-1} t_{1} t_{2} t_{3} t_{1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} t_{1} t_{0}^{-1} N=N t_{0} t_{1} t_{2} t_{0} t_{1} t_{3} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} t_{1} t_{2} N$ $=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} t_{1} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{3} N$, $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} t_{1} t_{3} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} t_{3}^{-1} N$, and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} t_{1} t_{3}^{-1} N$ $=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{0} N$.

Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} t_{1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
256. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} t_{1}^{-1} N$.

Let $[0 \overline{1} \overline{2} 30 \overline{1}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} t_{1}^{-1} N$.
Note that $N^{(0 \overline{1} \overline{2} 30 \overline{1})} \geq N^{0 \overline{1} \overline{2} 30 \overline{1}}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{2} \overline{2} 0 \overline{1})}\right| \geq|\langle e\rangle|=1$ and so, by
Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} t_{1}^{-1} N\right|=\frac{|N|}{\left|N^{(0 \overline{1} \overline{2} 0 \overline{1})}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} \overline{2} 30 \overline{1}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} \overline{2} 30 \overline{1})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} t_{1}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} t_{1}^{-1} t_{1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} e N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} t_{1}^{-1} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} t_{1}^{-2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} t_{1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} t_{1}^{-1} t_{0} N=$
$N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} t_{1}^{-1} t_{0}^{-1} N=N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} t_{3}^{-1} N$,
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{\prime} t_{0} t_{1}^{-1} t_{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} t_{1}^{-1} t_{2}^{-1} N$
$=N t_{0}^{-1} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} t_{1}^{-1} t_{3} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{2} N$, and
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} t_{1}^{-1} t_{3}^{-1} N=N t_{0} t_{1} t_{2} t_{3} t_{0} N$.
Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0} t_{1}^{-1} t_{2}^{-1}, t_{3} t_{0} t_{1}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
257. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} t_{2} N$.

Let [01 $\overline{2} 302]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} t_{2} N$.
Now, with the help of MAGMA, we know that that the following right cosets, or single cosets, are equivalent: $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} t_{2}=N t_{2} t_{1}^{-1} t_{0}^{-1} t_{3} t_{2} t_{0}$.
That is, in terms of our short-hand notation,

$$
0 \overline{1} \overline{2} 302 \sim 2 \overline{1} \overline{0} 320 .
$$

By conjugating the equivalence relation above with the elements of S_{4}, we determine that the following single cosets are equivalent in the double coset [01 $\overline{2} 302]$:

$$
0 \overline{1} \overline{2} 302 \sim 2 \overline{1} 0 \overline{0} 320, \quad 1 \overline{0} \overline{2} 312 \sim 2 \overline{1} \overline{1} 321, \quad 3 \overline{1} \overline{2} 032 \sim 2 \overline{1} \overline{3} 023,
$$

$$
\begin{array}{lll}
0 \overline{2} \overline{1} 302 \sim 1 \overline{2} \overline{0} 310, & 0 \overline{3} \overline{2} 102 \sim 2 \overline{3} \overline{0} 120, & 0 \overline{3} \overline{3} 203 \sim 3 \overline{1} \overline{0} 230, \\
1 \overline{3} \overline{2} 012 \sim 2 \overline{3} \overline{1} 021, & 3 \overline{0} \overline{2} 132 \sim 2 \overline{0} \overline{3} 123, & 0 \overline{2} \overline{3} 103 \sim 3 \overline{2} \overline{0} 130, \\
0 \overline{3} \overline{1} 201 \sim 1 \overline{3} \overline{0} 210, & 1 \overline{2} \overline{3} 013 \sim 3 \overline{2} \overline{1} 031, & 3 \overline{0} \overline{1} 231 \sim 1 \overline{0} \overline{3} 213
\end{array}
$$

Since each of the twenty-four single cosets has two names, the double coset [$0 \overline{1} \overline{2} 302$] must have at most twelve distinct single cosets.

Now, $N^{(01 \overline{2} 302)}$ has six orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0,2\},\{1\},\{3\},\{\overline{0}, \overline{2}\},\{\overline{1}\}$, and $\{\overline{3}\}$.

Therefore, there are at most six double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} t_{2} t_{i}^{ \pm 1}, i \in\{1,2,3\}$.

But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} t_{2} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} e N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} t_{2} t_{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} t_{2}^{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} t_{2}^{-1} N$ $=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} t_{2} t_{1} N=$
$N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} t_{2} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{2}^{-1} N$,
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} t_{2} t_{3} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1}^{-1} t_{0}^{-1} N$, and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} t_{2} t_{3}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3} t_{2}^{-1} N$.
Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} t_{2} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
258. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0}^{-1} t_{1}^{-1} N$.

Let $[01 \overline{2} 3 \overline{0} \overline{1}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0}^{-1} t_{1}^{-1} N$.
Note that' $N^{(0 \overline{1} \overline{2} 3 \overline{0} \overline{1})} \geq N^{0 \overline{1} \overline{2} 3 \overline{0} \overline{1}}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{2} 3 \overline{0} \overline{1})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0}^{-1} t_{1}^{-1} N\right|=\frac{|N|}{\left|N^{(0 \overline{1} \overline{2} \overline{3} \overline{1})}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} \overline{2} 3 \overline{0} \overline{1}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} \overline{2} 3 \overline{0} \overline{1})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0}^{-1} t_{1}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0}^{-1} t_{1}^{-1} t_{1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0}^{-1} e N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0}^{-1} t_{1}^{-1} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0}^{-1} t_{1}^{-2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0}^{-1} t_{1} N$ $=N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0}^{-1} t_{1}^{-1} t_{0} N=$
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} t_{2} t_{1}^{-1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{0} N$,
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0}^{-1} t_{1}^{-1} t_{2} N=N t_{0}^{-1} t_{1} t_{2} t_{0} t_{1}^{-1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} N$
$=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2} t_{1} N, N t_{0} t_{1 .}^{-1} t_{2}^{-1} t_{3} t_{0}^{-1} t_{1}^{-1} t_{3} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2}^{-1} N$, and
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0}^{-1} t_{1}^{-1} t_{3}^{-1} N=N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} t_{3} N$.
Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0}^{-1} t_{1}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
259. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{0} N$.

Let [01 $\overline{2} 310]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{0} N$.
Note that $N^{(0 \overline{1} \overline{2} 310)} \geq N^{0 \overline{1} \overline{2} 310}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{2} 310)}\right| \geq|\langle e\rangle|=1$ and so, by
Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{0} N\right|=\frac{|N|}{\left|N^{(0 \overline{12} 310)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} \overline{2} 310]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} \overline{2} 310)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{0} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{0} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} e N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{0} t_{0} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{0}^{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{0}^{-1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{0} t_{1} N=$
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0}^{-1} t_{1}^{-1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{0} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} t_{2} t_{1}^{-1} N$,
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{0} t_{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3}^{-1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{0} t_{2}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{0} t_{3} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0} N$, and
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{0} t_{3}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} N$.
Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{0} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
260. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{0}^{-1} N$.

Let [$0 \overline{1} \overline{2} 31 \overline{0}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{0}^{-1} N$.
Note that $N^{(0 \overline{1} \overline{2} 31 \overline{0})} \geq N^{0 \overline{1} \overline{2} 31 \overline{0}}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{2} 31 \overline{0})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{0}^{-1} N\right|=\frac{|N|}{\left|N^{(0 \overline{2} 210)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} \overline{2} 31 \overline{0}]$ has at most twenty-four distinct single cosets. Moreover, $N^{(0 \overline{1} \overline{2} 31 \overline{0})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{0}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{0}^{-1} t_{0} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} e N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{0}^{-1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{0}^{-2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{0} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{0}^{-1} t_{1} N=$ $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{0}^{-1} t_{1}^{-1} N=N t_{0} t_{1} t_{2} t_{0} t_{3}^{-1} t_{0}^{-1} N$, $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{0}^{-1} t_{2} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{3} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{0}^{-1} t_{2}^{-1} N$ $=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{1} t_{2}^{-1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{0}^{-1} t_{3} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{0}^{-1} N$, and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{0}^{-1} t_{3}^{-1} N=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2} t_{1} N$.

Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{0}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
261. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{2} N$.

Let [01 $\overline{2} 312]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{2} N$.
Now, with the help of MAGMA, we know that that the following right cosets, or single cosets, are equivalent: $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{2}=N t_{0} t_{2}^{-1} t_{1}^{-1} t_{3} t_{2} t_{1}$.

That is, in terms of our short-hand notation,

$$
0 \overline{1} \overline{2} 312 \sim 0 \overline{2} \overline{1} 321
$$

By conjugating the equivalence relation above with the elements of S_{4}, we determine that the following single cosets are equivalent in the double coset [0 $\overline{1} \overline{2} 312]$:

$$
\begin{array}{lll}
0 \overline{1} \overline{2} 312 \sim 0 \overline{2} \overline{1} 321, & 1 \overline{0} \overline{2} 302 \sim 1 \overline{2} 0 \overline{0} 320, & 2 \overline{1} \overline{0} 310 \sim 2 \overline{0} \overline{1} 301, \\
3 \overline{1} \overline{2} 012 \sim 3 \overline{2} \overline{1} 021, & 0 \overline{3} \overline{2} 132 \sim 0 \overline{2} \overline{3} 123, & 0 \overline{1} \overline{3} 213 \sim 0 \overline{3} \overline{1} 231,
\end{array}
$$

$$
\begin{array}{llrl}
1 \overline{3} \overline{2} 032 \sim 1 \overline{2} \overline{3} 023, & 3 \overline{0} \overline{2} 102 \sim 3 \overline{2} \overline{0} 120, & 2 \overline{1} \overline{3} 013 \sim 2 \overline{3} \overline{1} 031, \\
3 \overline{1} \overline{0} 210 \sim 3 \overline{0} \overline{1} 201, & 1 \overline{3} \overline{0} 230 \sim 1 \overline{0} \overline{3} 203, & 2 \overline{0} \overline{3} 103 \sim 2 \overline{3} \overline{0} 130
\end{array}
$$

Since each of the twenty-four single cosets has two names, the double coset [$0 \overline{1} \overline{2} 312$] must have at most twelve distinct single cosets.

Now, $N^{(01 \overline{2} 312)}$ has six orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1,2\},\{3\},\{\overline{0}\},\{\overline{1}, \overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most six double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{2} t_{i}^{ \pm 1}, i \in\{0,2,3\}$.

But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{2} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} e N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{2} t_{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{2}^{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{2}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{2} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{2} t_{0} N=$
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1}^{-1} t_{0} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{2} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0}^{-1} t_{3}^{-1} N$,
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{2} t_{3} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{2}^{-1} N$, and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{2} t_{3}^{-1} N$
$=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{3}^{-1} N$.
Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{2} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
262. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0} t_{2}^{-1} N$.

Let $[0 \overline{1} \overline{2} \overline{3} 0 \overline{2}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0} t_{2}^{-1} N$.
Note that $N^{(0 \overline{1} \overline{2} \overline{3} 0 \overline{2})} \geq N^{0 \overline{1} \overline{2} \overline{3} 0 \overline{2}}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{2} \overline{3} 0 \overline{2})}\right| \geq|\langle e\rangle|=1$ and so, by
Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0} t_{2}^{-1} N\right|=\frac{|N|}{\left|N^{(01 \overline{2} 30 \overline{2})}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} \overline{2} \overline{3} 0 \overline{2}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} \overline{2} \overline{3} \overline{0} \overline{2})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0} t_{2}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0} t_{2}^{-1} t_{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0} e N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0} t_{2}^{-1} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0} t_{2}^{-2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0} t_{2} N$ $=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} t_{1}^{-1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0} t_{2}^{-1} t_{0} N=$ $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0} t_{2}^{-1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{3}^{-1} N$, $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0} t_{2}^{-1} t_{1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{3} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0} t_{2}^{-1} t_{1}^{-1} N$
$=N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0} t_{2}^{-1} t_{3} N=N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1} N$, and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0} t_{2}^{-1} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{2}^{-1} N$.

Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0} t_{2}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
263. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{1} N$.

Let $[0 \overline{1} \overline{2} \overline{3} \overline{0} 1]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{1} N$.
Now, with the help of MAGMA, we know that that the following right cosets, or single cosets, are equivalent: $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{1}=N t_{0} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{0}^{-1} t_{2}=$ $N t_{0} t_{3}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}$.

That is, in terms of our short-hand notation,

$$
0 \overline{1} \overline{2} \overline{3} \overline{0} 1 \sim 0 \overline{2} \overline{3} \overline{1} \overline{0} 2 \sim 0 \overline{3} \overline{1} \overline{2} \overline{0} 3
$$

By conjugating the equivalence relation above with the elements of S_{4}, we determine that the following single cosets are equivalent in the double coset [0 $\overline{1} \overline{2} \overline{\overline{3}} \overline{0} 1]$:

$$
\begin{array}{ll}
0 \overline{1} \overline{2} \overline{3} \overline{0} 1 \sim 0 \overline{2} \overline{3} \overline{1} \overline{0} 2 \sim 0 \overline{3} \overline{1} \overline{2} 03, & 10 \overline{2} \overline{2} \overline{3} \overline{1} 0 \sim 1 \overline{2} \overline{3} \overline{0} \overline{1} 2 \sim 1 \overline{3} \overline{0} \overline{2} \overline{1} 3, \\
2 \overline{1} \overline{0} \overline{3} \overline{2} 1 \sim 2 \overline{0} \overline{3} \overline{1} \overline{1} 2 \sim 2 \overline{3} \overline{1} \overline{0} \overline{2} 3, & 3 \overline{1} \overline{2} \overline{0} \overline{3} 1 \sim 3 \overline{2} \overline{0} \overline{1} \overline{3} 2 \sim 3 \overline{0} \overline{1} \overline{2} \overline{3} 0, \\
0 \overline{1} \overline{3} \overline{2} \overline{0} 1 \sim 0 \overline{3} \overline{2} \overline{1} \overline{0} 3 \sim 0 \overline{2} \overline{1} \overline{3} 02, & 2 \overline{1} \overline{3} \overline{0} \overline{2} 1 \sim 2 \overline{3} 0 \overline{1} \overline{2} 3 \sim 2 \overline{0} \overline{1} \overline{3} \overline{2} 0, \\
3 \overline{1} \overline{2} \overline{3} \overline{1} 1 \sim 3 \overline{0} \overline{2} \overline{1} \overline{3} 0 \sim 3 \overline{2} \overline{1} \overline{0} \overline{3} 2, & 1 \overline{0} \overline{3} \overline{2} \overline{1} 0 \sim 1 \overline{3} \overline{2} \overline{0} \overline{1} 3 \sim 1 \overline{2} \overline{3} \overline{1} 2
\end{array}
$$

Since each of the twenty-four single cosets has three names, the double coset [$0 \overline{1} \overline{2} \overline{3} \overline{0} 1]$ must have at most eight distinct single cosets.

Now, $N^{(0 \overline{1} \overline{2} \overline{3} \overline{0} 1)}$ has four orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1,2,3\},\{\overline{0}\}$, and $\{\overline{1}, \overline{2}, \overline{3}\}$. Therefore, there are at most four double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{1} t_{i}^{ \pm 1}, i \in\{0,1\}$.
But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{1} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} e N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{1} t_{1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{1}^{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{1}^{-1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{1} t_{0} N=$ $N t_{0}^{-1} t_{1} t_{2} t_{3} t_{0} t_{1}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{2}^{-1} t_{1}^{-1} N$.

Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{1} t_{i}^{t 1} N$, where $i \in\{0,1,2,3\}$.
264. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{1}^{-1} N$.

Let [$0 \overline{1} \overline{2} \overline{3} \overline{0} \overline{1}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{1}^{-1} N$.
Note that $N^{(0 \overline{1} \overline{2} \overline{3} \overline{1} \overline{1})} \geq N^{0 \overline{1} \overline{2} \bar{z} \overline{0} \overline{1}}=\langle e\rangle$. Thus $\left|N^{(\overline{0} \overline{1} \overline{2} \bar{o} \overline{1} \overline{1})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{1}^{-1} N\right|=\frac{|N|}{\left|N^{(0 \overline{1} \overline{3} \overline{\mathrm{I}})}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} \overline{2} \overline{3} \overline{3} \overline{1}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} \overline{2} \overline{3} \overline{1} \overline{1})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{1}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{1}^{-1} t_{1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} e N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{1}^{-1} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{1}^{-2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0} N=$ $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} N=N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3} N$, $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{1}^{-1} t_{2} N=N t_{0} t_{1} t_{2}^{-1} t_{0} t_{1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} N$
$=N t_{0} t_{1} t_{2} t_{0} t_{1}^{-1} t_{2} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{1}^{-1} t_{3} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0} N$, and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{1}^{-1} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0} t_{2} N$.
Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{1}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
265. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{2}^{-1} N$.

Let $[0 \overline{1} \overline{2} \overline{3} \overline{0} \overline{2}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{2}^{-1} N$.
Note that $N^{(0 \overline{1} \overline{2} \bar{z} \bar{o} \overline{2})} \geq N^{0 \overline{1} \overline{2} \overline{3} \overline{0} \overline{2}}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{2} \overline{3} \overline{0} \overline{2})}\right| \geq|\langle e\rangle|=1$ and so, by
Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{2}^{-1} N\right|=\frac{|N|}{\left|N^{(0 \overline{1} \overline{3} \bar{Z} \overline{2})}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} \overline{2} \overline{\overline{3}} \overline{\overline{2}} \overline{\overline{2}}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} \overline{2} \overline{3} \overline{2} \overline{2})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{2}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{2}^{-1} t_{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} e N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{2}^{-1} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{2}^{-2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{2} N=$ $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{3} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{2}^{-1} t_{0} N=$
$N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} t_{3}^{-1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{2}^{-1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{1} N$,
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} N$
$=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{2}^{-1} t_{3} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} N$, and
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0} t_{3} N$.
Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{2}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
266. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{0}^{-1} N$.

Let $[0 \overline{1} \overline{2} \overline{3} 1 \overrightarrow{0}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{0}^{-1} N$.
Note that $N^{(0 \overline{1} \overline{2} \overline{3} 10 \overline{0})} \geq N^{0 \overline{1} \overline{2} \overline{2} 1 \overline{0} \overline{0}}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{2} \overline{3} 10 \overline{0})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{0}^{-1} N\right|=\frac{|N|}{\left|N^{(0 \overline{1} 210)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} \overline{2} \overline{3} 11 \overline{0}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(01 \overline{2} \overline{3} 1 \overline{0})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{0}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{0}^{-1} t_{0} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} e N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{0}^{-1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{0}^{-2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{0} N$ $=N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{0}^{-1} t_{1} N=$
$N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{0}^{-1} t_{2} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0} N$,
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0} t_{2} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{0}^{-1} t_{3} N$
$=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{2} N$, and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{0}^{-1} t_{3}^{-1} N=N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} N$.
Therefore, we conclude that there is one distinct double coset of the form
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{0}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1} N$.
267. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{2}^{-1} N$.

Let $[0 \overline{1} \overline{2} \overline{3} 1 \overline{2}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{2}^{-1} N$.
Note that $N^{(0 \overline{1} \overline{2} \overline{3} 1 \overline{2})} \geq N^{0 \overline{1} \overline{2} \overline{3} 1 \overline{2}}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{2} \overline{3} 1 \overline{2})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{2}^{-1} N\right|=\frac{|N|}{\left|N^{(0 \overline{2} \overline{2} 1 \overline{2})}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} \overline{2} \overline{3} 1 \overline{2}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} \overline{2} \overline{3} 1 \overline{2})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{2}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{2}^{-1} t_{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} e N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{2}^{-1} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{2}^{-2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{2} N$ $=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0}^{-1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{2}^{-1} t_{0} N=$
$N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} N=N t_{0} t_{1} t_{2} t_{0} t_{1}^{-1} N$,
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{2}^{-1} t_{1} N=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{0} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{2}^{-1} t_{1}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2}^{-1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{2}^{-1} t_{3} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2} N$, and
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{2}^{-1} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{0}^{-1} N$.
Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{2}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
268. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{0} N$.

Let $[0 \overline{1} \overline{2} \overline{3} \overline{1} 0]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{0} N$.
Now, with the help of MAGMA, we know that that the following right cosets, or single cosets, are equivalent: $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{0}=N t_{2} t_{1}^{-1} t_{3}^{-1} t_{0}^{-1} t_{1}^{-1} t_{2}=$ $N t_{3} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} t_{3}$.

That is, in terms of our short-hand notation,

$$
0 \overline{1} \overline{2} \overline{3} \overline{1} 0 \sim 2 \overline{1} \overline{3} \overline{0} \overline{1} 2 \sim 3 \overline{1} \overline{0} \overline{2} \overline{1} 3 .
$$

By conjugating the equivalence relation above with the elements of S_{4}, we determine that the following single cosets are equivalent in the double coset [$0 \overline{2} \overline{2} \overline{3} \overline{1} 0]$:

$$
0 \overline{1} \overline{2} \overline{3} \overline{1} 0 \sim 2 \overline{1} \overline{3} \overline{0} \overline{1} 2 \sim 3 \overline{1} \overline{0} \overline{2} \overline{1} 3, \quad 1 \overline{2} \overline{2} \overline{3} \overline{0} 1 \sim 2 \overline{0} \overline{3} \overline{1} \overline{0} 2 \sim 3 \overline{0} \overline{1} \overline{2} \overline{0} 3
$$

$$
\begin{array}{ll}
2 \overline{1} \overline{0} \overline{3} \overline{1} 2 \sim 0 \overline{1} \overline{3} \overline{2} \overline{1} 0 \sim 3 \overline{1} \overline{2} \overline{1} \overline{1} 3, & 0 \overline{1} \overline{3} \overline{2} \overline{2} 0 \sim 1 \overline{2} \overline{3} \overline{0} \overline{2} 1 \sim 3 \overline{2} \overline{0} \overline{1} \overline{2} 3, \\
0 \overline{3} \overline{2} \overline{1} \overline{3} 0 \sim 2 \overline{3} \overline{1} 0 \overline{0} 32 \sim 1 \overline{3} \overline{0} \overline{2} \overline{3} 1, & 0 \overline{3} \overline{1} \overline{2} 0 \sim 3 \overline{2} \overline{1} \overline{0} \overline{2} 3 \sim 1 \overline{2} \overline{0} \overline{3} \overline{2} 1, \\
0 \overline{3} \overline{1} \overline{2} \overline{3} 0 \sim 1 \overline{3} \overline{2} \overline{0} \overline{3} 1 \sim 2 \overline{3} \overline{0} \overline{1} \overline{3} 2, & 1 \overline{0} \overline{3} \overline{2} \overline{1} 1 \sim 3 \overline{2} \overline{1} \overline{0} 3 \sim 2 \overline{0} \overline{1} \overline{3} \overline{0} 2
\end{array}
$$

Since each of the twenty-four single cosets has three names, the double coset [$0 \overline{1} \overline{2} \overline{3} \overline{1} 0]$ must have at most eight distinct single cosets.

Now, $N^{(0 \overline{1} \overline{2} \overline{3} \overline{1} 0)}$ has four orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0,2,3\},\{1\},\{\overline{0}, \overline{2}, \overline{3}\}$, and \{1̄\}.

Therefore, there are at most four double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{0} t_{i}^{ \pm 1}, i \in\{0,1\}$.
But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{0} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} e N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{0} t_{0} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{0}^{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{0}^{-1} N$ $=N t_{0}^{-1} t_{1} t_{2} t_{3} t_{1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{0} t_{1} N=$ $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1} N$.

Therefore, we conclude that there is one distinct double coset of the form
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{0} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{0} t_{1}^{-1} N$.
269. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2} N$.

Let [$0 \overline{1} \overline{2} \overline{3} \overline{1} 2]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2} N$.
Note that $N^{(0 \overline{1} \overline{2} \overline{3} 12)} \geq N^{0 \overline{1} \overline{2} \overline{3} \overline{1} 2}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{2} \overline{3} \overline{1} 2)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2} N\right|=\frac{|N|}{\left|N^{(0 \overline{1} \overline{2} \overline{1} 2)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [0 $\overline{1} \overline{2} \overline{\overline{1}} \overline{1} 2]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{0} \overline{2} \overline{3} \overline{1} 2)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} e N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2} t_{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2}^{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2}^{-1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2} t_{0} N=$ $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2} t_{0}^{-1} N=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{1} N$,

$$
\begin{aligned}
& N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2} t_{1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2}^{-1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} N \\
& =N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2} t_{3} N=N t_{0}^{-1} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} N, \text { and } \\
& N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} t_{1}^{-1} N .
\end{aligned}
$$

Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
270. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2}^{-1} N$.

Let $[0 \overline{1} \overline{2} \overline{3} \overline{1} \overline{2}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2}^{-1} N$.
Note that $N^{(0 \overline{1} \overline{2} \overline{3} \overline{1} \overline{2})} \geq N^{0 \overline{1} \overline{2} \overline{\overline{1}} \overline{2} \overline{2}}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{2} \overline{\overline{1}} \overline{1} \overline{2})}\right| \geq|\langle e\rangle|=1$ and so, by
Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2}^{-1} N\right|=\frac{|N|}{\left|N^{(0 \overline{1} \overline{2} \overline{1} \overline{2})}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [0 $\overline{1} \overline{2} \overline{3} \overline{1} \overline{2}]$ has at most twenty-four distinct single cosets. Moreover, $N^{(0 \overline{1} \overline{2} \overline{1} \overline{2} \overline{2})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2}^{-1} t_{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} e N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2}^{-1} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2}^{-2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} N=$ $N t_{0} t_{1} t_{2} t_{0} t_{1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} N=N t_{0} t_{1} t_{2} t_{0} t_{1} t_{3} N$, $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3}^{-1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1}^{-1} N$ $=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{0} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} N=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{0} N$, and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} N=N t_{0} t_{1} t_{2} t_{3} t_{1} N$.

Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
271. We next consider the double coset $N t_{0} t_{1}^{-1} t_{0} t_{2} t_{3} t_{0} N$.

Let $[0 \overline{1} 0230]$ denote the double coset $N t_{0} t_{1}^{-1} t_{0} t_{2} t_{3} t_{0} N$.
Note that $N^{(0 \overline{1} 0230)} \geq N^{0 \overline{1} 0230}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} 0230)}\right| \geq|\langle e\rangle|=1$ and so, by
Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{0} t_{2} t_{3} t_{0} N\right|=\frac{|N|}{\left|N^{(010230)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} 0230$] has at most twenty-four distinct single cosets.

Moreover, $N^{(0 \overline{0} 0230)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{0} t_{2} t_{3} t_{0} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1}^{-1} t_{0} t_{2} t_{3} t_{0} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{0} t_{2} t_{3} e N=N t_{0} t_{1}^{-1} t_{0} t_{2} t_{3} N$ and
$N t_{0} t_{1}^{-1} t_{0} t_{2} t_{3} t_{0} t_{0} N=N t_{0} t_{1}^{-1} t_{0} t_{2} t_{3} t_{0}^{2} N=N t_{0} t_{1}^{-1} t_{0} t_{2} t_{3} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{0}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{0} t_{2} t_{3} t_{0} t_{1} N=$
$N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} N, N t_{0} t_{1}^{-1} t_{0} t_{2} t_{3} t_{0} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{0} t_{1}^{-1} N$,
$N t_{0} t_{1}^{-1} t_{0} t_{2} t_{3} t_{0} t_{2} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0} t_{3} N, N t_{0} t_{1}^{-1} t_{0} t_{2} t_{3} t_{0} t_{2}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{2}^{-1} N, N t_{0} t_{1}^{-1} t_{0} t_{2} t_{3} t_{0} t_{3} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{1}^{-1} N$, and
$N t_{0} t_{1}^{-1} t_{0} t_{2} t_{3} t_{0} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{0} N$.
Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0} t_{1}^{-1} t_{0} t_{2} t_{3} t_{0} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
272. We next consider the double coset $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} t_{0} N$.

Let $[0 \overline{1} \overline{0} 230]$ denote the double coset $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} t_{0} N$.
Note that $N^{(0 \overline{1} \overline{0} 230)} \geq N^{0 \overline{1} \overline{0} 230}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{0} 230)}\right| \geq|\langle e\rangle|=1$ and so, by
Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} t_{0} N\right|=\frac{|N|}{\left|N^{(010230)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} \overline{0} 230]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{0} \overline{0} 230)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} t_{0} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} t_{0} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{0}-1 t_{2} t_{3} e N=N t_{0} t_{1}^{-1} t_{0}-1 t_{2} t_{3} N$ and
$N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} t_{0} t_{0} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} t_{0}^{2} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} t_{0}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{2}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} t_{0} t_{1} N=$
$N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} t_{1} N, N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} t_{0} t_{1}^{-1} N=N t_{0}^{-1} t_{1} t_{2} t_{0} t_{1} N$,
$N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} t_{0} t_{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2} N, N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} t_{0} t_{2}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2} t_{3} N, N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} t_{0} t_{3} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} N$,
and $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} t_{0} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2} N$.

Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} t_{0} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
273. We next consider the double coset $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} t_{1}^{-1} N$.

Let [$0 \overline{1} \overline{0} 23 \overline{1}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} t_{1}^{-1} N$.
Note that $N^{(0 \overline{1} \overline{0} 23 \overline{1})} \geq N^{0 \overline{1} 0 \overline{0} 23 \overline{1}}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} 0 \overline{0} 23 \overline{1})}\right| \geq|\langle e\rangle|=1$ and so, by
Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} t_{1}^{-1} N\right|=\frac{|N|}{\left|N^{(0 \overline{1} \overline{0} 2 \overline{1})}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} \overline{0} 23 \overline{1}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} \overline{0} 23 \overline{1})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} t_{1}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} t_{1}^{-1} t_{1} N=N t_{0} t_{1}^{-1} t_{0}-1 t_{2} t_{3} e N=N t_{0} t_{1}^{-1} t_{0}-1 t_{2} t_{3} N$ and $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} t_{1}^{-1} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} t_{1}^{-2} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} t_{1} N$ $=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} t_{1}^{-1} t_{0} N=$
$N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} t_{3} N, N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} t_{1}^{-1} t_{0}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3} t_{0} N$,
$N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} t_{1}^{-1} t_{2} N=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{0} N, N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} t_{1}^{-1} t_{2}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{0} t_{2} N, N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} t_{1}^{-1} t_{3} N=N t_{0}^{-1} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} N$, and
$N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} t_{1}^{-1} t_{3}^{-1} N=N t_{0} t_{1} t_{2} t_{0} t_{3}^{-1} t_{0}^{-1} N$.
Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} t_{1}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
274. We next consider the double coset $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} t_{2}^{-1} N$.

Let $[0 \overline{1} \overline{0} 23 \overline{2}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} t_{2}^{-1} N$.
Now, with the help of MAGMA, we know that that the following right cosets, or single cosets, are equivalent: $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} t_{2}^{-1}=N t_{1} t_{0}^{-1} t_{1}^{-1} t_{3} t_{2} t_{3}^{-1}=N t_{2} t_{3}^{-1} t_{2}^{-1} t_{1} t_{0} t_{1}^{-1}$ $=N t_{3} t_{2}^{-1} t_{3}^{-1} t_{0} t_{1} t_{0}^{-1}$.
That is, in terms of our short-hand notation,

$$
0 \overline{1} \overline{0} 23 \overline{2} \sim 1 \overline{0} \overline{1} 32 \overline{3} \sim 2 \overline{3} \overline{2} 10 \overline{1} \sim 3 \overline{2} \overline{3} 01 \overline{0} .
$$

By conjugating the equivalence relation above with the elements of S_{4}, we determine that the following single cosets are equivalent in the double coset [010 232$]$:

$$
\begin{array}{ll}
0 \overline{1} \overline{0} 23 \overline{2} \sim 10 \overline{1} 32 \overline{3} \sim 2 \overline{3} \overline{2} 10 \overline{1} \sim 3 \overline{2} \overline{3} 01 \overline{0}, & 1 \overline{0} \overline{1} 232 \sim 0 \overline{1} \overline{0} 32 \overline{3} \sim 2 \overline{3} \overline{2} 01 \overline{0} \sim 3 \overline{2} \overline{3} 10 \overline{1}, \\
2 \overline{1} \overline{2} 03 \overline{0} \sim 1 \overline{2} \overline{1} 30 \overline{3} \sim 0 \overline{3} \overline{0} 12 \overline{1} \sim 3 \overline{0} \overline{3} 21 \overline{2}, & 3 \overline{1} \overline{3} 20 \overline{2} \sim 1 \overline{3} \overline{1} 02 \overline{0} \sim 2 \overline{0} \overline{2} 13 \overline{1} \sim 0 \overline{2} \overline{0} 31 \overline{3}, \\
0 \overline{2} 0 \overline{0} 13 \overline{1} \sim 2 \overline{0} \overline{2} 31 \overline{3} \sim 1 \overline{3} \overline{1} 20 \overline{2} \sim 3 \overline{1} \overline{3} 02 \overline{0}, & 0 \overline{3} \overline{0} 21 \overline{2} \sim 3 \overline{0} \overline{3} 12 \overline{1} \sim 2 \overline{1} \overline{2} 30 \overline{3} \sim 1 \overline{2} \overline{1} 03 \overline{0}
\end{array}
$$

Since each of the twenty-four single cosets has four names, the double coset [$0 \overline{1} \overline{0} 23 \overline{2}]$ must have at most six distinct single cosets.
Moreover, $N^{(0 \overline{1} \overline{0} 23 \overline{2})}$ has two orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0,1,2,3\}$ and $\{\overline{0}, \overline{1}, \overline{2}, \overline{3}\}$.
Therefore, there are at most two double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} t_{2}^{-1} t_{i}^{ \pm 1}, i=2$.
But note that $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} t_{2}^{-1} t_{2} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} e N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} N$ and $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} t_{2}^{-1} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} t_{2}^{-2} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} t_{2} N$ $=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} N$.

Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} t_{2}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
275. We next consider the double coset $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{1}^{-1} N$.

Let $[0 \overline{1} \overline{0} 2 \overline{3} \overline{1}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{1}^{-1} N$.
Note that $N^{(0 \overline{1} \overline{0} 2 \overline{3} \overline{1})} \geq N^{0 \overline{1} \overline{0} 2 \overline{3} \overline{1}}=\langle e\rangle$. Thus $\left|N^{(0 \overline{0} \overline{0} 2 \overline{3} \overline{1})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{1}^{-1} N\right|=\frac{|N|}{\left|N^{(01023 i)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} \overline{0} 2 \overline{3} \overline{1}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(01 \overline{0} \overline{0} \overline{1} \overline{1})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{1}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{1}^{-1} t_{1} N=N t_{0} t_{1}^{-1} t_{0}-1 t_{2} t_{3}^{-1} e N=N t_{0} t_{1}^{-1} t_{0}-1 t_{2} t_{3}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{1}^{-1} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{1}^{-2} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{1} N$ $=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{1}^{-1} t_{0} N=$ $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} t_{2} t_{1}^{-1} N, N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{1}^{-1} t_{0}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} t_{0}^{-1} N$, $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{1}^{-1} t_{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{2} N, N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{1}^{-1} t_{2}^{-1} N$ $=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} N, N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{1}^{-1} t_{3} N=N t_{0} t_{1} t_{2} t_{3} t_{1} t_{0} N$, and $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{1}^{-1} t_{3}^{-1} N=N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1} N$.

Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{1}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
276. We next consider the double coset $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{2}^{-1} N$.

Let $[0 \overline{1} \overline{0} 2 \overline{3} \overline{2}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{2}^{-1} N$.
Now, with the help of MAGMA, we know that that the following right cosets, or single cosets, are equivalent: $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{2}^{-1}=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{3} t_{2}^{-1} t_{3}^{-1}$.

That is, in terms of our short-hand notation,

$$
0 \overline{1} \overline{0} 2 \overline{3} \overline{2} \sim 0 \overline{1} \overline{0} 3 \overline{2} \overline{3} .
$$

By conjugating the equivalence relation above with the elements of S_{4}, we determine that the following single cosets are equivalent in the double coset [$0 \overline{1} \overline{0} 2 \overline{3} \overline{2}]$:

$$
\begin{array}{lll}
0 \overline{1} \overline{0} 2 \overline{3} \overline{2} \sim 0 \overline{1} 0 \overline{0} 3 \overline{3} \overline{3}, & 1 \overline{0} \overline{1} 2 \overline{3} \overline{2} \sim 1 \overline{0} \overline{1} 3 \overline{2} \overline{3}, & 2 \overline{1} \overline{2} 0 \overline{3} \overline{0} \sim 2 \overline{1} \overline{2} 3 \overline{0} \overline{3}, \\
3 \overline{1} \overline{3} 2 \overline{0} \overline{2} \sim 3 \overline{1} 302 \overline{0} \overline{0}, & 0 \overline{2} \overline{0} 1 \overline{3} \overline{1} \sim 02 \overline{2} 3 \overline{1} \overline{3}, & 0 \overline{3} 0 \overline{0} 2 \overline{1} \overline{2} \sim 0 \overline{3} \overline{0} 1 \overline{2} \overline{1}, \\
1 \overline{2} \overline{1} 0 \overline{3} \overline{0} \sim 1 \overline{2} \overline{1} 3 \overline{0} \overline{3}, & 2 \overline{0} \overline{2} 1 \overline{3} \overline{1} \sim 2 \overline{0} \overline{2} 3 \overline{1} \overline{3}, & 1 \overline{3} \overline{1} 2 \overline{0} \overline{2} \sim 1 \overline{3} \overline{1} 0 \overline{2} \overline{0}, \\
3 \overline{0} \overline{3} 2 \overline{1} \overline{2} \sim 3 \overline{0} \overline{3} 1 \overline{2} \overline{1}, & 3 \overline{2} \overline{3} 0 \overline{1} 0 \sim 3 \overline{2} \overline{3} 1 \overline{1} \overline{1}, & 2 \overline{3} \overline{2} 1 \overline{0} \overline{3} \sim 2 \overline{2} 0 \overline{1} \overline{0}
\end{array}
$$

Since each of the twenty-four single cosets has two names, the double coset [$0 \overline{1} \overline{0} 2 \overline{3} \overline{2}]$ must have at most twelve distinct single cosets.

Now, $N^{(0 \overline{1} \overline{0} 2 \overline{3} \overline{2})}$ has six orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2,3\},\{\overline{0}\},\{\overline{1}\}$, and $\{\overline{2}, \overline{3}\}$.

Therefore, there are at most six double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{2}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2\}$.
But note that $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{2}^{-1} t_{2} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} e N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{2}^{-1} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{2}^{-2} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{2} N$ $=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{3} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{2}^{-1} t_{0} N=$ $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{3}^{-1} N, N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{2}^{-1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{2} N$, $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{2}^{-1} t_{1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} t_{2} N$, and $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{2}^{-1} t_{1}^{-1} N$ $=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{1} N$.

Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{2}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
277. We next consider the double coset $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1} t_{3} N$.

Let $[0 \overline{1} \overline{0} \overline{2} 13]$ denote the double coset $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1} t_{3} N$.
Note that $N^{(0 \overline{1} \overline{0} \overline{2} 13)} \geq N^{0 \overline{1} \overline{0} \overline{2} 13}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{0} \overline{2} 13)}\right| \geq|\langle e\rangle|=1$ and so, by
Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1} t_{3} N\right|=\frac{|N|}{\left|N^{(0 \overline{0} \overline{0} 13)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} \overline{0} \overline{2} 13]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} \overline{0} \overline{2} 13)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1} t_{3} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1} t_{3} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{0}-1 t_{2}^{-1} t_{1} e N=N t_{0} t_{1}^{-1} t_{0}-1 t_{2}^{-1} t_{1} N$ and $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1} t_{3} t_{3} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1} t_{3}^{2} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1} t_{3} t_{0} N=$
$N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{0} t_{1} N, N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1} t_{3} t_{0}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0}^{-1} N$,
$N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1} t_{3} t_{1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{3}^{-1} N, N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1} t_{3} t_{1}^{-1} N$
$=N t_{0} t_{1} t_{2} t_{3} t_{1} t_{0} N, N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1} t_{3} t_{2} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2}^{-1} N$, and
$N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1} t_{3} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{1} N$.
Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1} t_{3} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
278. We next consider the double coset $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} N$.

Let $[0 \overline{1} \overline{0} \overline{2} 1 \overline{3}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} N$.
Note that $N^{(0 \overline{1} \overline{0} \overline{2} 1 \overline{3})} \geq N^{0 \overline{1} \overline{0} \overline{2} 1 \overline{3}}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{0} \overline{2} 1 \overline{3})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} N\right|=\frac{|N|}{\left|N^{(01010213)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset $[0 \overline{1} \overline{0} \overline{2} 1 \overline{3}]$ has at most twenty-four distinct single cosets.

Moreover, $N^{(0 \overline{1} \overline{0} \overline{2} 1 \overline{1})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{3} N=N t_{0} t_{1}^{-1} t_{0}-1 t_{2}^{-1} t_{1} e N=N t_{0} t_{1}^{-1} t_{0}-1 t_{2}^{-1} t_{1} N$ and $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1} t_{3}^{-2} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1} t_{3} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{0} N=$
$N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2} N, N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{0}^{-1} N=N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2} t_{1} N$,
$N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{1} N=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3} N, N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{1}^{-1} N$
$=N t_{0} t_{1} t_{2} t_{0} t_{3}^{-1} t_{0}^{-1} N, N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{2} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} N$, and
$N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{2}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} N$.
Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
279. We next consider the double coset $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} t_{0} N$.

Let [0 $\overline{1} \overline{0} \overline{2} \overline{1} 0]$ denote the double coset $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} t_{0} N$.
Note that $N^{(0 \overline{1} \overline{0} \overline{1} \overline{1} 0)} \geq N^{0 \overline{1} \bar{o} \overline{2} \overline{1} 0}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{0} \overline{2} 1 \overline{0})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} t_{0} N\right|=\frac{|N|}{\left|N^{(010210)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} \overline{0} \overline{2} \overline{1} 0]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} \overline{1} \overline{2} \overline{1} 0)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} t_{0} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} t_{0} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{0}-1 t_{2}^{-1} t_{1}^{-1} e N$
$=N t_{0} t_{1}^{-1} t_{0}-1 t_{2}^{-1} t_{1}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} t_{0} t_{0} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} t_{0}^{2} N$
$=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} t_{0}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} t_{0} t_{1} N=$
$N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} N, N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} t_{0} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} N$,
$N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} t_{0} t_{2} N=N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2} t_{3} N, N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} t_{0} t_{2}^{-1} N$
$=N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} N, N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} t_{0} t_{3} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1} t_{3}^{-1} N$, and $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} t_{0} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{2}^{-1} t_{1} N$.

Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} t_{0} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
280. We next consider the double coset $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} t_{3}^{-1} N$.

Let $[0 \overline{1} \overline{0} \overline{2} \overline{1} \overline{3}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} t_{3}^{-1} N$.
Note that $N^{(0 \overline{1} \overline{0} \overline{2} \overline{1} \overline{3})} \geq N^{0 \overline{1} \overline{0} \overline{1} \overline{1} \overline{3}}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{0} \overline{2} \overline{1} \overline{3})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} t_{3}^{-1} N\right|=\frac{|N|}{\left|N^{(0 \overline{\overline{1} \overline{1} \overline{1} \overline{3}})}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [0 $\overline{1} \overline{0} \overline{2} \overline{1} \overline{3}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} \overline{0} \overline{2} \overline{1} \overline{3})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} t_{3}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} t_{3}^{-1} t_{3} N=N t_{0} t_{1}^{-1} t_{0}-1 t_{2}^{-1} t_{1}^{-1} e N$
$=N t_{0} t_{1}^{-1} t_{0}-1 t_{2}^{-1} t_{1}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} t_{3}^{-1} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} t_{3}^{-2} N$
$=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} t_{3} N=N t_{0}^{-1} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} t_{3}^{-1} t_{0} N=$
$N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} t_{3}^{-1} N, N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} t_{3}^{-1} t_{0}^{-1} N=N t_{0} t_{1} t_{2} t_{0} t_{3}^{-1} t_{0} N$,
$N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} t_{3}^{-1} t_{1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{0} N, N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} t_{3}^{-1} t_{1}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} t_{1} N, N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} t_{3}^{-1} t_{2} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3} N$, and
$N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} t_{3}^{-1} t_{2}^{-1} N=N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2} t_{3} N$.
Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} t_{3}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
281. We next consider the double coset $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} N$.

Let $[01 \overline{1} \overline{0} \overline{2} \overline{3} 1]$ denote the double coset $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} N$.
Note that $N^{(0 \overline{1} \overline{0} \overline{2} \overline{3} 1)} \geq N^{0 \overline{1} \overline{0} \overline{2} \overline{3} 1}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{0} \overline{2} \overline{3} 1)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} N\right|=\frac{|N|}{\left|N^{(0 \overline{10} \overline{2} 1)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} \overline{0} \overline{2} \overline{3} 1]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} \overline{0} \overline{2} \overline{3} 1)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{0}-1 t_{2}^{-1} t_{3}^{-1} e N$
$=N t_{0} t_{1}^{-1} t_{0}-1 t_{2}^{-1} t_{3}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{1} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{2} N$
$=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{3}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{0} N=$
$N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} N, N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} t_{1}^{-1} N$,
$N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{2} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} N, N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{2}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{2}^{-1} N, N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{3} N=N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} t_{3}^{-1} N$, and
$N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{3}^{-1} N=N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} N$.
Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
282. We next consider the double coset $N t_{0} t_{1} t_{2} t_{0} t_{1} t_{3} N$.

Let [012013] denote the double coset $N t_{0} t_{1} t_{2} t_{0} t_{1} t_{3} N$.
Note that $N^{(012013)} \geq N^{012013}=\langle e\rangle$. Thus $\left|N^{(012013)}\right| \geq|\langle e\rangle|=1$ and so, by
Lemma 1.4, $\left|N t_{0} t_{1} t_{2} t_{0} t_{1} t_{3} N\right|=\frac{|N|}{\left|N^{(012013)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [012013] has at most twenty-four distinct single cosets.
Moreover, $N^{(012013)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1} t_{2} t_{0} t_{1} t_{3} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1} t_{2} t_{0} t_{1} t_{3} t_{3}^{-1} N=N t_{0} t_{1} t_{2} t_{0} t_{1} e N=N t_{0} t_{1} t_{2} t_{0} t_{1} N$ and
$N t_{0} t_{1} t_{2} t_{0} t_{1} t_{3} t_{3} N=N t_{0} t_{1} t_{2} t_{0} t_{1} t_{3}^{2} N=N t_{0} t_{1} t_{2} t_{0} t_{1} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{2} t_{0} t_{1} t_{3} t_{0} N=$
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} t_{1} N, N t_{0} t_{1} t_{2} t_{0} t_{1} t_{3} t_{0}^{-1} N=N t_{0}^{-1} t_{1} t_{2} t_{3} t_{1} N, N t_{0} t_{1} t_{2} t_{0} t_{1} t_{3} t_{1} N$
$=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} N, N t_{0} t_{1} t_{2} t_{0} t_{1} t_{3} t_{1}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} t_{0}^{-1} N$,
$N t_{0} t_{1} t_{2} t_{0} t_{1} t_{3} t_{2} N=N t_{0}^{-1} t_{1} t_{2} t_{3} t_{2}^{-1} t_{1}^{-1} N$, and $N t_{0} t_{1} t_{2} t_{0} t_{1} t_{3} t_{2}^{-1} N$
$=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0} N$.
Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0} t_{1} t_{2} t_{0} t_{1} t_{3} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
283. We next consider the double coset $N t_{0} t_{1} t_{2} t_{0} t_{1}^{-1} t_{2} N$.

Let [012012] denote the double coset $N t_{0} t_{1} t_{2} t_{0} t_{1}^{-1} t_{2} N$.
Note that $N^{(0120 \overline{1} 2)} \geq N^{0120 \overline{1} 2}=\langle e\rangle$. Thus $\left|N^{(01201 \overline{1} 2)}\right| \geq|\langle e\rangle|=1$ and so, by
Lemma 1.4, $\left|N t_{0} t_{1} t_{2} t_{0} t_{1}^{-1} t_{2} N\right|=\frac{|N|}{\left|N^{(0120 i ̄ ̀)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [012012] has at most twenty-four distinct single cosets.
Moreover, $N^{(01201 \overline{2})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1} t_{2} t_{0} t_{1}^{-1} t_{2} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1} t_{2} t_{0} t_{1}^{-1} t_{2} t_{2}^{-1} N=N t_{0} t_{1} t_{2} t_{0} t_{1}^{-1} e N=N t_{0} t_{1} t_{2} t_{0} t_{1}^{-1} N$ and
$N t_{0} t_{1} t_{2} t_{0} t_{1}^{-1} t_{2} t_{2} N=N t_{0} t_{1} t_{2} t_{0} t_{1}^{-1} t_{2}^{2} N=N t_{0} t_{1} t_{2} t_{0} t_{1}^{-1} t_{2}^{-1} N=N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{2} t_{0} t_{1}^{-1} t_{2} t_{0} N=$
$N t_{0}^{-1} t_{1} t_{2} t_{3} t_{0} t_{1}^{-1} N, N t_{0} t_{1} t_{2} t_{0} t_{1}^{-1} t_{2} t_{0}^{-1} N=N t_{0}^{-1} t_{1} t_{2} t_{3} t_{0} N$,
$N t_{0} t_{1} t_{2} t_{0} t_{1}^{-1} t_{2} t_{1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{1}^{-1} N, N t_{0} t_{1} t_{2} t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} N$
$=N t_{0} t_{1} t_{2}^{-1} t_{0} t_{1} N, N t_{0} t_{1} t_{2} t_{0} t_{1}^{-1} t_{2} t_{3} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1}^{-1} t_{2}^{-1} N$, and
$N t_{0} t_{1} t_{2} t_{0} t_{1}^{-1} t_{2} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1}^{-1} N$.
Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0} t_{1} t_{2} t_{0} t_{1}^{-1} t_{2} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
284. We next consider the double coset $N t_{0} t_{1} t_{2} t_{0} t_{3} t_{0}^{-1} N$.

Let [012030]] denote the double coset $N t_{0} t_{1} t_{2} t_{0} t_{3} t_{0}^{-1} N$.
Note that $N^{(012030 \overline{0})} \geq N^{012030}=\langle e\rangle$. Thus $\left|N^{(012030 \overline{0})}\right| \geq|\langle e\rangle|=1$ and so, by
Lemma 1.4, $\left|N t_{0} t_{1} t_{2} t_{0} t_{3} t_{0}^{-1} N\right|=\frac{|N|}{\left.\mid N^{(012030}\right) \mid} \leq \frac{24}{1}=24$.
Therefore, the double coset [012030] has at most twenty-four distinct single cosets.
Moreover, $N^{(01203 \overline{0})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1} t_{2} t_{0} t_{3} t_{0}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1} t_{2} t_{0} t_{3} t_{0}^{-1} t_{0} N=N t_{0} t_{1} t_{2} t_{0} t_{3} e N=N t_{0} t_{1} t_{2} t_{0} t_{3} N$ and
$N t_{0} t_{1} t_{2} t_{0} t_{3} t_{0}^{-1} t_{0}^{-1} N=N t_{0} t_{1} t_{2} t_{0} t_{3} t_{0}^{-2} N=N t_{0} t_{1} t_{2} t_{0} t_{3} t_{0} N$
$=N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{2} t_{0} t_{3} t_{0}^{-1} t_{1} N=$
$N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} N, N t_{0} t_{1} t_{2} t_{0} t_{3} t_{0}^{-1} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} t_{0}^{-1} N$,
$N t_{0} t_{1} t_{2} t_{0} t_{3} t_{0}^{-1} t_{2} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0}^{-1} N, N t_{0} t_{1} t_{2} t_{0} t_{3} t_{0}^{-1} t_{2}^{-1} N$
$=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1}^{-1} N, N t_{0} t_{1} t_{2} t_{0} t_{3} t_{0}^{-1} t_{3} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} N$, and
$N t_{0} t_{1} t_{2} t_{0} t_{3} t_{0}^{-1} t_{3}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2} N$.
Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0} t_{1} t_{2} t_{0} t_{3} t_{0}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
285. We next consider the double coset $N t_{0} t_{1} t_{2} t_{0} t_{3} t_{2} N$.

Let [012032] denote the double coset $N t_{0} t_{1} t_{2} t_{0} t_{3} t_{2} N$.
Note that the point stabilizer is $N^{012032}=\left\{n \in N \mid\left(t_{0} t_{1} t_{2} t_{0} t_{3} t_{2}\right)^{n}=t_{0} t_{1} t_{2} t_{0} t_{3} t_{2}\right\}=$ $\langle e\rangle$ and, moreover, that the coset stabilizer is $N^{(012032)} \geq N^{012032}=\langle e\rangle$. Thus $\left|N^{(012032)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1} t_{2} t_{0} t_{3} t_{2} N\right|=\frac{|N|}{\left|N^{(012032)}\right|} \leq \frac{24}{1}=$ 24.

Therefore, the double coset [012032] has at most twenty-four distinct single cosets. Moreover, $N^{(012032)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1} t_{2} t_{0} t_{3} t_{2} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1} t_{2} t_{0} t_{3} t_{2} t_{2}^{-1} N=N t_{0} t_{1} t_{2} t_{0} t_{3} e N=N t_{0} t_{1} t_{2} t_{0} t_{3} N$ and
$N t_{0} t_{1} t_{2} t_{0} t_{3} t_{2} t_{2} N=N t_{0} t_{1} t_{2} t_{0} t_{3} t_{2}^{2} N=N t_{0} t_{1} t_{2} t_{0} t_{3} t_{2}^{-1} N$
$=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{2} t_{0} t_{3} t_{2} t_{0} N=$
$N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} t_{1} N, N t_{0} t_{1} t_{2} t_{0} t_{3} t_{2} t_{0}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3} t_{0} N, N t_{0} t_{1} t_{2} t_{0} t_{3} t_{2} t_{1} N$
$=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{2}^{-1} N, N t_{0} t_{1} t_{2} t_{0} t_{3} t_{2} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{3} N$,
$N t_{0} t_{1} t_{2} t_{0} t_{3} t_{2} t_{3} N=N t_{0} t_{1} t_{2}^{-1} t_{1} t_{0}^{-1} N$, and $N t_{0} t_{1} t_{2} t_{0} t_{3} t_{2} t_{3}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0} N$.
Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0} t_{1} t_{2} t_{0} t_{3} t_{2} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
286. We next consider the double coset $N t_{0} t_{1} t_{2} t_{0} t_{3}^{-1} t_{0} N$.

Let [0120 $\overline{3} 0$] denote the double coset $N t_{0} t_{1} t_{2} t_{0} t_{3}^{-1} t_{0} N$.
Note that $N^{(0120 \overline{3} 0)} \geq N^{0120 \overline{3} 0}=\langle e\rangle$. Thus $\left|N^{(0120 \overline{3} 0)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1} t_{2} t_{0} t_{3}^{-1} t_{0} N\right|=\frac{|N|}{\left|N^{(012030)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0120 \overline{3} 0]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0120 \overline{3} 0)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1} t_{2} t_{0} t_{3}^{-1} t_{0} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1} t_{2} t_{0} t_{3}^{-1} t_{0} t_{0}^{-1} N=N t_{0} t_{1} t_{2} t_{0} t_{3}^{-1} e N=N t_{0} t_{1} t_{2} t_{0} t_{3}^{-1} N$ and $N t_{0} t_{1} t_{2} t_{0} t_{3}^{-1} t_{0} t_{0} N=N t_{0} t_{1} t_{2} t_{0} t_{3}^{-1} t_{0}^{2} N=N t_{0} t_{1} t_{2} t_{0} t_{3}^{-1} t_{0}^{-1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{2} t_{0} t_{3}^{-1} t_{0} t_{1} N=$
$N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{0}^{-1} N, N t_{0} t_{1} t_{2} t_{0} t_{3}^{-1} t_{0} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1} t_{3}^{-1} N$,
$N t_{0} t_{1} t_{2} t_{0} t_{3}^{-1} t_{0} t_{2} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} t_{3}^{-1} N, N t_{0} t_{1} t_{2} t_{0} t_{3}^{-1} t_{0} t_{2}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} t_{3}^{-1} N, N t_{0} t_{1} t_{2} t_{0} t_{3}^{-1} t_{0} t_{3} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2} N$, and
$N t_{0} t_{1} t_{2} t_{0} t_{3}^{-1} t_{0} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{0}^{-1} N$.
Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0} t_{1} t_{2} t_{0} t_{3}^{-1} t_{0} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
287. We next consider the double coset $N t_{0} t_{1} t_{2} t_{0} t_{3}^{-1} t_{0}^{-1} N$.

Let $[0120 \overline{3} \overline{0}]$ denote the double coset $N t_{0} t_{1} t_{2} t_{0} t_{3}^{-1} t_{0}^{-1} N$.
Note that $N^{(0120 \overline{\overline{0}} \overline{0})} \geq N^{0120 \overline{\bar{o}} \overline{0}}=\langle e\rangle$. Thus $\left|N^{(0120 \overline{3} \overline{0})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1} t_{2} t_{0} t_{3}^{-1} t_{0}^{-1} N\right|=\frac{|N|}{\left|N^{(012030)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0120 \overline{3} \overline{0}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0120 \overline{0} \overline{0})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1} t_{2} t_{0} t_{3}^{-1} t_{0}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1} t_{2} t_{0} t_{3}^{-1} t_{0}^{-1} t_{0} N=N t_{0} t_{1} t_{2} t_{0} t_{3}^{-1} e N=N t_{0} t_{1} t_{2} t_{0} t_{3}^{-1} N$ and $N t_{0} t_{1} t_{2} t_{0} t_{3}^{-1} t_{0}^{-1} t_{0}^{-1} N=N t_{0} t_{1} t_{2} t_{0} t_{3}^{-1} t_{0}^{-2} N=N t_{0} t_{1} t_{2} t_{0} t_{3}^{-1} t_{0} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{2} t_{0} t_{3}^{-1} t_{0}^{-1} t_{1} N=$ $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{0}^{-1} N, N t_{0} t_{1} t_{2} t_{0} t_{3}^{-1} t_{0}^{-1} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} N$, $N t_{0} t_{1} t_{2} t_{0} t_{3}^{-1} t_{0}^{-1} t_{2} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} t_{1}^{-1} N, N t_{0} t_{1} t_{2} t_{0} t_{3}^{-1} t_{0}^{-1} t_{2}^{-1} N$ $=N t_{0}^{-1} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} N, N t_{0} t_{1} t_{2} t_{0} t_{3}^{-1} t_{0}^{-1} t_{3} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} N$, and $N t_{0} t_{1} t_{2} t_{0} t_{3}^{-1} t_{0}^{-1} t_{3}^{-1} N=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3} N$.

Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1} t_{2} t_{0} t_{3}^{-1} t_{0}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
288. We next consider the double coset $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2} t_{1} N$.

Let [0120 21$]$ denote the double coset $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2} t_{1} N$.
Note that $N^{(0120 \overline{0} 21)} \geq N^{0120 \overline{21}}=\langle e\rangle$. Thus $\left|N^{(012 \overline{0} 21)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2} t_{1} N\right|=\frac{|N|}{\left|N^{(012021)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [0120 21$]$ has at most twenty-four distinct single cosets. Moreover, $N^{(012 \overline{0} 21)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1} t_{2} t_{0}^{-1} t_{2} t_{1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2} t_{1} t_{1}^{-1} N=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2} e N=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2} N$ and $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2} t_{1} t_{1} N=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2} t_{1}^{2} N=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2} t_{1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2} t_{1} t_{0} N=$
$N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}^{-1} N, N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2} t_{1} t_{0}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} N$,
$N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2} t_{1} t_{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{0}^{-1} N, N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2} t_{1} t_{2}^{-1} N$
$=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{0}^{-1} N, N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2} t_{1} t_{3} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0}^{-1} t_{1}^{-1} N$, and
$N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2} t_{1} t_{3}^{-1} N=N t_{0}^{-1} t_{1} t_{2} t_{0} t_{1}^{-1} N$.
Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2} t_{1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
289. We next consider the double coset $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2}^{-1} t_{1} N$.

Let $[012 \overline{0} \overline{2} 1]$ denote the double coset $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2}^{-1} t_{1} N$.
Note that $N^{(012 \overline{0} \overline{2} 1)} \geq N^{012 \bar{o} \overline{2} 1}=\langle e\rangle$. Thus $\left|N^{(012 \overline{0} \overline{2} 1)}\right| \geq|\langle e\rangle|=1$ and so, by
Lemma 1.4, $\left|N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2}^{-1} t_{1} N\right|=\frac{|N|}{\left|N^{(012 \overline{2} 1)}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [012 $\overline{0} \overline{2} 1]$ has at most.twenty-four distinct single cosets. Moreover, $N^{(012 \overline{0} \overline{2} 1)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.
Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1} t_{2} t_{0}^{-1} t_{2}^{-1} t_{1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2}^{-1} t_{1} t_{1}^{-1} N=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2}^{-1} e N=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2}^{-1} N$ and $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2}^{-1} t_{1} t_{1} N=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2}^{-1} t_{1}^{2} N=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2}^{-1} t_{1} t_{0} N=$
$N t_{0} t_{1} t_{2}^{-1} t_{3} t_{0} N, N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2}^{-1} t_{1} t_{0}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{3} t_{0} t_{1} N, N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2}^{-1} t_{1} t_{2} N$
$=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}^{-1} t_{3}^{-1} N, N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2}^{-1} t_{1} t_{2}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} t_{0}^{-1} N$,
$N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2}^{-1} t_{1} t_{3} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{2}^{-1} N$, and $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} N$
$=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0} N$.
Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2}^{-1} t_{1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
290. We next consider the double coset $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} N$.

Let $[012 \overline{0} \overline{2} \overline{1}]$ denote the double coset $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} N$.
Note that $N^{(012 \overline{0} \overline{2} \overline{1})} \geq N^{012 \overline{0} \overline{2} \overline{1}}=\langle e\rangle$. Thus $\left|N^{(012 \overline{0} \overline{2} \overline{1})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} N\right|=\frac{|N|}{\left|N^{(0120 \overline{1} 1)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$012 \overline{0} \overline{2} \overline{1}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(012 \overline{0} \overline{1} \overline{1})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.
Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1} t_{2} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} t_{1} N=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2}^{-1} e N=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2}^{-1} N$ and $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} t_{1}^{-1} N=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2}^{-1} t_{1}^{-2} N=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2}^{-1} t_{1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} t_{0} N=$ $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} N, N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{2} N$, $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} t_{2} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0} N, N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} t_{2}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{2} N, N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} t_{3} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{0} N$, and $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} t_{0}^{-1} N$.

Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
291. We next consider the double coset $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{0} N$.

Let $[012 \overline{0} \overline{3} 0]$ denote the double coset $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{0} N$.
Note that $N^{(012 \overline{0} \overline{3} 0)} \geq N^{012 \bar{o} \overline{3} 0}=\langle e\rangle$. Thus $\left|N^{(012 \bar{o} \overline{3} 0)}\right| \geq|\langle e\rangle|=1$ and so, by
Lemma 1.4, $\left|N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{0} N\right|=\frac{|N|}{\left|N^{(012 \overline{3} 0)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$012 \overline{0} \overline{3} 0]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(012 \overline{0} \overline{3} 0)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{0} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{0} t_{0}^{-1} N=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} e N=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} N$ and $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{0} t_{0} N=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{0}^{2} N=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{0}^{-1} N$
$=N t_{0} t_{1} t_{2} t_{3} t_{0} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{0} t_{1} N=$
$N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{2}^{-1} N, N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{0} t_{1}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3} N$,
$N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{0} t_{2} N=N t_{0} t_{1} t_{2} t_{3} t_{1} N, N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{0} t_{2}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2}^{-1} N, N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{0} t_{3} N=N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2} t_{1} N$, and $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{0} t_{3}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{3} t_{0} t_{1} N$.

Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{0} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
292. We next consider the double coset $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{1} N$.

Let [0120 $\overline{3} 1]$ denote the double coset $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{1} N$.
Now, with the help of MAGMA, we know that that the following right cosets, or single cosets, are equivalent: $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{1}=N t_{0} t_{2} t_{1} t_{0}^{-1} t_{3}^{-1} t_{2}$.

That is, in terms of our short-hand notation,

$$
012 \overline{0} \overline{3} 1 \sim 021 \overline{0} \overline{3} 2 .
$$

By conjugating the equivalence relation above with the elements of S_{4}, we determine that the following single cosets are equivalent in the double coset [0120 $\overline{3} 1]$:

$$
\begin{array}{lll}
012 \overline{0} \overline{3} 1 \sim 0210 \overline{3} 2, & 102 \overline{1} \overline{3} 0 \sim 120 \overline{1} \overline{3} 2, & 210 \overline{2} \overline{3} 1 \sim 201 \overline{2} \overline{3} 0, \\
312 \overline{3} \overline{0} 1 \sim 321 \overline{3} \overline{0} 2, & 032 \overline{0} \overline{1} 3 \sim 023 \overline{3} \overline{1} 2, & 013 \overline{0} \overline{2} 1 \sim 031 \overline{0} \overline{2} 3, \\
132 \overline{1} \overline{0} 3 \sim 123 \overline{1} 0,2, & 302 \overline{3} \overline{1} 0 \sim 320 \overline{3} \overline{1} 2, & 213 \overline{2} \overline{0} 1 \sim 231 \overline{2} \overline{0} 3, \\
310 \overline{3} \overline{2} 1 \sim 301 \overline{3} \overline{2} 0, & 130 \overline{1} \overline{2} 3 \sim 103 \overline{1} \overline{2} 0, & 203 \overline{2} 10 \sim 230 \overline{2} \overline{1} 3
\end{array}
$$

Since each of the twenty-four single cosets has two names, the double coset [012 $\overline{0} \overline{3} 1]$ must have at most twelve distinct single cosets.

Now, $N^{(012 \overline{0} \overline{3} 1)}$ has six orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1,2\},\{3\},\{\overline{0}\},\{\overline{1}, \overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most six double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{1} t_{i}^{ \pm 1}, i \in\{0,1,3\}$.

But note that $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{1} t_{1}^{-1} N=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} e N=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} N$ and $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{1} t_{1} N=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{1}^{2} N=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{1}^{-1} N$
$=N t_{0}^{-1} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{1} t_{3} N=$ $N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{2}^{-1} N$ and $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{1} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} t_{2} N$.

Therefore, we conclude that there are two distinct double cosets of the form
$N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{1} t_{0} N$ and
$N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{1} t_{0}^{-1} N$.
293. We next consider the double coset $N t_{0} t_{1} t_{2} t_{3} t_{0} t_{2} N$.

Let [012302] denote the double coset $N t_{0} t_{1} t_{2} t_{3} t_{0} t_{2} N$.
Note that $N^{(012302)} \geq N^{012302}=\langle e\rangle$. Thus $\left|N^{(012302)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1} t_{2} t_{3} t_{0} t_{2} N\right|=\frac{|N|}{\left|N^{(012302)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [012302] has at most twenty-four distinct single cosets.

Moreover, $N^{(012302)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1} t_{2} t_{3} t_{0} t_{2} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1} t_{2} t_{3} t_{0} t_{2} t_{2}^{-1} N=N t_{0} t_{1} t_{2} t_{3} t_{0} e N=N t_{0} t_{1} t_{2} t_{3} t_{0} N$ and
$N t_{0} t_{1} t_{2} t_{3} t_{0} t_{2} t_{2} N=N t_{0} t_{1} t_{2} t_{3} t_{0} t_{2}^{2} N=N t_{0} t_{1} t_{2} t_{3} t_{0} t_{2}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{2} t_{3} t_{0} t_{2} t_{0} N=$
$N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0}^{-1} N, N t_{0} t_{1} t_{2} t_{3} t_{0} t_{2} t_{0}^{-1} N=N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} N$,
$N t_{0} t_{1} t_{2} t_{3} t_{0} t_{2} t_{1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{3}^{-1} N, N t_{0} t_{1} t_{2} t_{3} t_{0} t_{2} t_{1}^{-1} N$
$=N t_{0}^{-1} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} N, N t_{0} t_{1} t_{2} t_{3} t_{0} t_{2} t_{3} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0} t_{3}^{-1} N$, and
$N t_{0} t_{1} t_{2} t_{3} t_{0} t_{2} t_{3}^{-1} N=N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} t_{2}^{-1} N$.
Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0} t_{1} t_{2} t_{3} t_{0} t_{2} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
294. We next consider the double coset $N t_{0} t_{1} t_{2} t_{3} t_{0} t_{2}^{-1} N$.

Let [01230 $\overline{2}]$ denote the double coset $N t_{0} t_{1} t_{2} t_{3} t_{0} t_{2}^{-1} N$.
Note that $N^{(01230 \overline{2})} \geq N^{01230 \overline{2}}=\langle e\rangle$. Thus $\left|N^{(01230 \overline{2})}\right| \geq|\langle e\rangle|=1$ and so, by
Lemma 1.4, $\left|N t_{0} t_{1} t_{2} t_{3} t_{0} t_{2}^{-1} N\right|=\frac{|N|}{\left|N^{(012302)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [012302] has at most twenty-four distinct single cosets.
Moreover, $N^{(01230 \overline{2})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1} t_{2} t_{3} t_{0} t_{2}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1} t_{2} t_{3} t_{0} t_{2}^{-1} t_{2} N=N t_{0} t_{1} t_{2} t_{3} t_{0} e N=N t_{0} t_{1} t_{2} t_{3} t_{0} N$ and
$N t_{0} t_{1} t_{2} t_{3} t_{0} t_{2}^{-1} t_{2}^{-1} N=N t_{0} t_{1} t_{2} t_{3} t_{0} t_{2}^{-2} N=N t_{0} t_{1} t_{2} t_{3} t_{0} t_{2} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{2} t_{3} t_{0} t_{2}^{-1} t_{0} N=$
$N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} N, N t_{0} t_{1} t_{2} t_{3} t_{0} t_{2}^{-1} t_{0}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{3} N$,
$N t_{0} t_{1} t_{2} t_{3} t_{0} t_{2}^{-1} t_{1} N=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{0} t_{2} N, N t_{0} t_{1} t_{2} t_{3} t_{0} t_{2}^{-1} t_{1}^{-1} N$
$=N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{1} N, N t_{0} t_{1} t_{2} t_{3} t_{0} t_{2}^{-1} t_{3} N=N t_{0}^{-1} t_{1} t_{2} t_{0} t_{1}^{-1} t_{3}^{-1} N$, and
$N t_{0} t_{1} t_{2} t_{3} t_{0} t_{2}^{-1} t_{3}^{-1} N=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{1} t_{0} N$.
Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0} t_{1} t_{2} t_{3} t_{0} t_{2}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
295. We next consider the double coset $N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} t_{2}^{-1} N$.

Let [01230̄̄$]$ denote the double coset $N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} t_{2}^{-1} N$.
Note that $N^{(0123 \overline{\overline{2}})} \geq N^{0123 \overline{0} \overline{2}}=\langle e\rangle$. Thus $\left|N^{(01230 \overline{2})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} t_{2}^{-1} N\right|=\frac{|N|}{\left|N^{(012302)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0123 \overline{0} \overline{2}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(01230 \overline{2})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} t_{2}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} t_{2}^{-1} t_{2} N=N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} e N=N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} N$ and
$N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} t_{2}^{-1} t_{2}^{-1} N=N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} t_{2}^{-2} N=N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} t_{2} N$
$=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{3} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} t_{2}^{-1} t_{0} N=$
$N t_{0}^{-1} t_{1} t_{2} t_{3} t_{0} N, N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} t_{2}^{-1} t_{0}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1} N, N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} t_{2}^{-1} t_{1} N$
$=N t_{0} t_{1} t_{2} t_{3} t_{0} t_{2} N, N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0} t_{3}^{-1} N$,
$N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} t_{2}^{-1} t_{3} N=N t_{0}^{-1} t_{1} t_{2} t_{0} t_{1}^{-1} t_{2}^{-1} N$, and $N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} N$
$=N t_{0}^{-1} t_{1} t_{2} t_{0} t_{1}^{-1} N$.
Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} t_{2}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
296. We next consider the double coset $N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} t_{3} N$.

Let [0123 $\overline{0} 3]$ denote the double coset $N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} t_{3} N$.
Note that $N^{(0123 \overline{0} 3)} \geq N^{0123 \overline{0} 3}=\langle e\rangle$. Thus $\left|N^{(0123 \overline{0} 3)}\right| \geq|\langle e\rangle|=1$ and so, by
Lemma 1.4, $\left|N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} t_{3} N\right|=\frac{|N|}{\left|N^{(012303)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0123 \overline{0} 3]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0123 \overline{0} 3)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} t_{3} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} t_{3} t_{3}^{-1} N=N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} e N=N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} N$ and $N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} t_{3} t_{3} N=N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} t_{3}^{2} N=N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} t_{3}^{-1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} t_{3} t_{0} N=$
$N t_{0} t_{1} t_{2}^{-1} t_{3} t_{0} t_{1} N, N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} t_{3} t_{0}^{-1} N=N t_{0} t_{1} t_{0}^{-1} t_{2} t_{1} N, N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} t_{3} t_{1} N$
$=N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{0}^{-1} N, N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} t_{3} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} N$,
$N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} t_{3} t_{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0}^{-1} t_{1}^{-1} N$, and $N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} t_{3} t_{2}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2}^{-1} N$.
Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} t_{3} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
297. We next consider the double coset $N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} t_{3}^{-1} N$.

Let [01230̄̄̄] denote the double coset $N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} t_{3}^{-1} N$.
Note that $N^{(0123 \overline{0} \overline{3})} \geq N^{0123 \overline{0} \overline{3}}=\langle e\rangle$. Thus $\left|N^{(0123 \overline{0} \overline{3})}\right| \geq|\langle e\rangle|=1$ and so, by
Lemma 1.4, $\left|N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} t_{3}^{-1} N\right|=\frac{|N|}{\left|N^{(012303)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0123 \overline{0} \overline{3}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0123 \overline{\overline{3}} \overline{3})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} t_{3}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} t_{3}^{-1} t_{3} N=N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} e N=N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} N$ and $N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} t_{3}^{-1} t_{3}^{-1} N=N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} t_{3}^{-2} N=N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} t_{3} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} t_{3}^{-1} t_{0} N=$ $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} N, N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} t_{3}^{-1} t_{0}^{-1} N=N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0} N$, $N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} t_{3}^{-1} t_{1} N=N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} N, N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} t_{3}^{-1} t_{1}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} N, N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} t_{3}^{-1} t_{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} t_{1}^{-1} N$, and $N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} t_{3}^{-1} t_{2}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} N$.

Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} t_{3}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
298. We next consider the double coset $N t_{0} t_{1} t_{2} t_{3} t_{1} t_{0} N$.

Let [012310] denote the double coset $N t_{0} t_{1} t_{2} t_{3} t_{1} t_{0} N$.

Note that $N^{(012310)} \geq N^{012310}=\langle e\rangle$. Thus $\left|N^{(012310)}\right| \geq|\langle e\rangle|=1$ and so, by
Lemma 1.4, $\left|N t_{0} t_{1} t_{2} t_{3} t_{1} t_{0} N\right|=\frac{|N|}{\left|N^{(012310)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [012310] has at most twenty-four distinct single cosets.
Moreover, $N^{(012310)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1} t_{2} t_{3} t_{1} t_{0} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1} t_{2} t_{3} t_{1} t_{0} t_{0}^{-1} N=N t_{0} t_{1} t_{2} t_{3} t_{1} e N=N t_{0} t_{1} t_{2} t_{3} t_{1} N$ and
$N t_{0} t_{1} t_{2} t_{3} t_{1} t_{0} t_{0} N=N t_{0} t_{1} t_{2} t_{3} t_{1} t_{0}^{2} N=N t_{0} t_{1} t_{2} t_{3} t_{1} t_{0}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{2} t_{3} t_{1} t_{0} t_{1} N=$
$N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1} N, N t_{0} t_{1} t_{2} t_{3} t_{1} t_{0} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{1}^{-1} N$,
$N t_{0} t_{1} t_{2} t_{3} t_{1} t_{0} t_{2} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3}^{-1} N, N t_{0} t_{1} t_{2} t_{3} t_{1} t_{0} t_{2}^{-1} N$
$=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0}^{-1} t_{2} N, N t_{0} t_{1} t_{2} t_{3} t_{1} t_{0} t_{3} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1} t_{3} N$, and
$N t_{0} t_{1} t_{2} t_{3} t_{1} t_{0} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{3}^{-1} N$.
Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0} t_{1} t_{2} t_{3} t_{1} t_{0} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
299. We next consider the double coset $N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} t_{1} N$.

Let [012 $\overline{3} \overline{0} 1]$ denote the double coset $N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} t_{1} N$.
Note that $N^{\left(012 \overline{3} 0 \bar{O}_{1}\right)} \geq N^{012 \overline{3} \overline{0} 1}=\langle e\rangle$. Thus $\left|N^{(012 \overline{3} \overline{0} 1)}\right| \geq|\langle e\rangle|=1$ and so, by
Lemma 1.4, $\left|N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} t_{1} N\right|=\frac{|N|}{\left|N^{(012301)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$012 \overline{3} \overline{0} 1]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(012 \overline{3} \overline{0} 1)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} t_{1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} t_{1} t_{1}^{-1} N=N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} e N=N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} N$ and $N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} t_{1} t_{1} N=N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} t_{1}^{2} N=N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} t_{1}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{0} t_{3} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} t_{1} t_{0} N=$ $N t_{0}^{-1} t_{1} t_{2} t_{0} t_{1} N, N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} t_{1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} t_{0} N$,
$N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} t_{1} t_{2} N=N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3} t_{0} N, N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} t_{1} t_{2}^{-1} N$
$=N t_{0} t_{1} t_{2} t_{0} t_{3} t_{2} N$, and $N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} t_{1} t_{3} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1}^{-1} N$.
Therefore, we conclude that there is one distinct double coset of the form $N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} t_{1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} t_{1} t_{3}^{-1} N$.
300. We next consider the double coset $N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2} t_{1} N$.

Let [012 $\overline{3} 21]$ denote the double coset $N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2} t_{1} N$.
Note that $N^{(012 \overline{3} 21)} \geq N^{012 \overline{3} 21}=\langle e\rangle$. Thus $\left|N^{(012 \overline{3} 21)}\right| \geq|\langle e\rangle|=1$ and so, by
Lemma 1.4, $\left|N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2} t_{1} N\right|=\frac{|N|}{\left|N^{(012321)}\right|} \leq \frac{24}{I}=24$.
Therefore, the double coset [$012 \overline{3} 21]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(012 \overline{3} 21)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1} t_{2} t_{3}^{-1} t_{2} t_{1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2} t_{1} t_{1}^{-1} N=N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2} e N=N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2} N$ and
$N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2} t_{1} t_{1} N=N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2} t_{1}^{2} N=N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2} t_{1}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2} t_{1} t_{0} N=$
$N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{0}^{-1} N, N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2} t_{1} t_{0}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{0} N$,
$N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2} t_{1} t_{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{3}^{-1} N, N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2} t_{1} t_{2}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{1} t_{0} N$,
$N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2} t_{1} t_{3} N=N t_{0} t_{1} t_{2}^{-1} t_{3} t_{0} t_{1} N$, and $N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2} t_{1} t_{3}^{-1} N$
$=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{0} N$.
Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2} t_{1} t_{i}^{ \pm \mathrm{I}} N$, where $i \in\{0,1,2,3\}$.
301. We next consider the double coset $N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2}^{-1} t_{0}^{-1} N$.

Let [$012 \overline{3} \overline{2} \overline{0}]$ denote the double coset $N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2}^{-1} t_{0}^{-1} N$.
Note that $N^{(012 \overline{3} \overline{2} \overline{0})} \geq N^{012 \overline{3} \overline{2} \overline{0}}=\langle e\rangle$. Thus $\left|N^{(012 \overline{3} \overline{2} \overline{0})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2}^{-1} t_{0}^{-1} N\right|=\frac{|N|}{\left|N^{(01232 \overline{2})}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$012 \overline{3} \overline{2} \overline{0} \overline{0}]$ has at most twenty-four distinct single cosets.

Moreover, $N^{(012 \overline{3} \overline{2} \overline{0})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1} t_{2} t_{3}^{-1} t_{2}^{-1} t_{0}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2}^{-1} t_{0}^{-1} t_{0} N=N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2}^{-1} e N=N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2}^{-1} N$ and $N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2}^{-1} t_{0}^{-1} t_{0}^{-1} N=N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2}^{-1} t_{0}^{-2} N=N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2}^{-1} t_{0} N$ $=N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} N=$
$N t_{0}^{-1} t_{1} t_{2} t_{0} t_{1}^{-1} t_{3}^{-1} N, N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} N=N t_{0}^{-1} t_{1} t_{2} t_{3} t_{2}^{-1} t_{1}^{-1} N$,
$N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{3} N, N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2}^{-1} N$
$=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} N, N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}^{-1} t_{3}^{-1} N$, and $N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}^{-1} N$.

Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2}^{-1} t_{0}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
302. We next consider the double coset $N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{3} N$.

Let [01 $\overline{2} \overline{0} \overline{1} 3]$ denote the double coset $N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{3} N$.
Note that $N^{(01 \overline{2} \overline{0} \overline{1} 3)} \geq N^{012 \overline{2} \overline{1} \overline{1} 3}=\langle e\rangle$. Thus $\left|N^{(01 \overline{2} \overline{0} \overline{1} 3)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{3} N\right|=\frac{|N|}{\left|N^{(012013)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$01 \overline{2} \overline{0} \overline{1} 3]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(01 \overline{2} \bar{o} \overline{1} 3)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{3} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{3} t_{3}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} e N=N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} N$ and $N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{3} t_{3} N=N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{3}^{2} N=N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{3}^{-1} N$
$=N t_{0} t_{1} t_{2} t_{3} t_{0} t_{2}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{3} t_{0} N=$
$N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0}^{-1} N, N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{3} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{3} N$, $N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{3} t_{1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{3}^{-1} N, N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{3} t_{1}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} t_{3} N, N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{3} t_{2} N$
$=N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2}^{-1} N$, and $N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{3} t_{2}^{-1} N=N t_{0}^{-1} t_{1} t_{2} t_{3} t_{2}^{-1} N$.
Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{3} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
303. We next consider the double coset $N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{1} N$.

Let [012 $\overline{0} 31]$ denote the double coset $N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{1} N$.
Note that $N^{(01 \overline{2} \overline{0} 31)} \geq N^{012 \overline{2} 0 \overline{31}}=\langle e\rangle$. Thus $\left|N^{(01 \overline{2} \bar{o} 31)}\right| \geq|\langle e\rangle|=1$ and so, by
Lemma 1.4, $\left|N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{1} N\right|=\frac{|N|}{\left|N^{(012031)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [01 $\overline{2} \overline{0} 31]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(01 \overline{2} \overline{0} 31)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{1} t_{1}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3} e N=N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3} N$ and $N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{1} t_{1} N=N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{1}^{2} N=N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{1}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{1}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{1} t_{0} N=$
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3} t_{2}^{-1} N, N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3} N$,
$N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{1} t_{2} N=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{2}^{-1} N, N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{1} t_{2}^{-1} N$
$=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} N, N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{1} t_{3} N=N t_{0} t_{1} t_{2} t_{3} t_{0} t_{2}^{-1} N$, and
$N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{1} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{0} t_{2} N$.
Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
304. We next consider the double coset $N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{0} N$.

Let [01 $\overline{2} \overline{0} \overline{3} 0]$ denote the double coset $N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{0} N$.
Note that $N^{(01 \overline{2} \bar{O} \overline{3} 0)} \geq N^{01 \overline{2} \overline{0} \overline{3} 0}=\langle e\rangle$. Thus $\left|N^{(012 \overline{2} \overline{0} \overline{3} 0)}\right| \geq|\langle e\rangle|=1$ and so, by
Lemma 1.4, $\left|N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{0} N\right|=\frac{|N|}{\left|N^{(01 \overline{2} \overline{\overline{3}} 0)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$01 \overline{2} \overline{0} \overline{3} 0]$ has at most twenty-four distinct single cosets.

Moreover, $N^{(01 \overline{2} \overline{0} \overline{3} 0)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{0} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{0} t_{0}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} e N=N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} N$ and $N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{0} t_{0} N=N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{0}^{2} N=N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{0}^{-1} N$ $=N t_{0} t_{1} t_{2}^{-1} t_{3} t_{0} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{0} t_{1} N=$
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2} N, N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{0} t_{1}^{-1} N=N t_{0}^{-1} t_{1} t_{2} t_{0} t_{3}^{-1} N$,
$N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{0} t_{2} N=N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} t_{1} t_{3}^{-1} N, N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{0} t_{2}^{-1} N$
$=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{2}^{-1} N, N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{0} t_{3} N=N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2} t_{1} N$, and
$N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{0} t_{3}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{0}^{-1} N$.
Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{0} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
305. We next consider the double coset $N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3} t_{0} N$.

Let [$01 \overline{2} 130]$ denote the double coset $N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3} t_{0} N$.
Note that $N^{(01 \overline{2} 130)} \geq N^{012 \overline{2} 130}=\langle e\rangle$. Thus $\left|N^{(012 \overline{2} 130)}\right| \geq|\langle e\rangle|=1$ and so, by
Lemma 1.4, $\left|N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3} t_{0} N\right|=\frac{|N|}{\left|N^{(012130)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$01 \overline{2} 130]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(01 \overline{2} 130)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1} t_{2}^{-1} t_{1} t_{3} t_{0} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3} t_{0} t_{0}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3} e N=N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3} N$ and
$N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3} t_{0} t_{0} N=N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3} t_{0}^{2} N=N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3} t_{0}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3} t_{0} t_{1} N=$
$N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} t_{1}^{-1} N, N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3} t_{0} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} t_{3} N$,
$N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3} t_{0} t_{2} N=N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{0}^{-1} N, N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3} t_{0} t_{2}^{-1} N$
$=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} N, N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3} t_{0} t_{3} N=N t_{0} t_{1} t_{2} t_{0} t_{3} t_{2} N$, and
$N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3} t_{0} t_{3}^{-1} N=N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} t_{1} N$.

Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3} t_{0} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
306. We next consider the double coset $N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{0}^{-1} N$.

Let $[01 \overline{2} 1 \overline{3} \overline{0}]$ denote the double coset $N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{0}^{-1} N$.
Note that $N^{(01 \overline{2} 1 \overline{1} \overline{0})} \geq N^{01 \overline{2} 1 \overline{3} \overline{0}}=\langle e\rangle$. Thus $\left|N^{(01 \overline{2} 1 \overline{1} \overline{0})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{0}^{-1} N\right|=\frac{|N|}{\left.\mid N^{[012130}\right)} \leq \frac{24}{1}=24$.
Therefore, the double coset $[01 \overline{2} 1 \overline{3} \overline{0}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(01 \overline{2} 1 \overline{\overline{0}})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{0}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{0}^{-1} t_{0} N=N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3}^{-1} e N=N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3}^{-1} N$ and $N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{0}^{-1} t_{0}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{0}^{-2} N=N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{0} N$ $=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{0}^{-1} t_{1} N=$ $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} N, N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{0}^{-1} t_{1}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3} t_{0} N$,
$N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{0}^{-1} t_{2} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} N, N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{0}^{-1} t_{2}^{-1} N$
$=N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} t_{3} N, N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{0}^{-1} t_{3} N=N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{0} N$, and
$N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{0}^{-1} t_{3}^{-1} N=N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2} t_{1} N$.
Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{0}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
307. We next consider the double coset $N t_{0} t_{1} t_{2}^{-1} t_{3} t_{0} t_{1} N$.

Let [01 $\overline{2} 301$] denote the double coset $N t_{0} t_{1} t_{2}^{-1} t_{3} t_{0} t_{1} N$.
Note that $N^{(012 \overline{2} 301)} \geq N^{01 \overline{2} 301}=\langle e\rangle$. Thus $\left|N^{(01 \overline{2} 301)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1} t_{2}^{-1} t_{3} t_{0} t_{1} N\right|=\frac{|N|}{\left|N^{(012301)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [01 $\overline{2} 301]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(01 \overline{2} 301)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1} t_{2}^{-1} t_{3} t_{0} t_{1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1} t_{2}^{-1} t_{3} t_{0} t_{1} t_{1}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{3} t_{0} e N=N t_{0} t_{1} t_{2}^{-1} t_{3} t_{0} N$ and
$N t_{0} t_{1} t_{2}^{-1} t_{3} t_{0} t_{1} t_{1} N=N t_{0} t_{1} t_{2}^{-1} t_{3} t_{0} t_{1}^{2} N=N t_{0} t_{1} t_{2}^{-1} t_{3} t_{0} t_{1}^{-1} N$
$=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2}^{-1} t_{1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{2}^{-1} t_{3} t_{0} t_{1} t_{0} N=$
$N t_{0} t_{1} t_{0}^{-1} t_{2} t_{1} N, N t_{0} t_{1} t_{2}^{-1} t_{3} t_{0} t_{1} t_{0}^{-1} N=N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} t_{3} N, N t_{0} t_{1} t_{2}^{-1} t_{3} t_{0} t_{1} t_{2} N$
$=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3}^{-1} N, N t_{0} t_{1} t_{2}^{-1} t_{3} t_{0} t_{1} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1} N$,
$N t_{0} t_{1} t_{2}^{-1} t_{3} t_{0} t_{1} t_{3} N=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{0} N$, and $N t_{0} t_{1} t_{2}^{-1} t_{3} t_{0} t_{1} t_{3}^{-1} N$
$=N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2} t_{1} N$.
Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1} t_{2}^{-1} t_{3} t_{0} t_{1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
308. We next consider the double coset $N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{0} t_{1} N$.

Let [01 $\overline{2} \overline{3} 01]$ denote the double coset $N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{0} t_{1} N$.
Now, with the help of MAGMA, we know that that the following right cosets, or single cosets, are equivalent: $N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{0} t_{1}=N t_{3} t_{2} t_{1}^{-1} t_{0}^{-1} t_{3} t_{2}$.

That is, in terms of our short-hand notation,

$$
01 \overline{2} \overline{3} 01 \sim 32 \overline{1} 0 \overline{0} 32 .
$$

By conjugating the equivalence relation above with the elements of S_{4}, we determine that the following single cosets are equivalent in the double coset [$01 \overline{2} \overline{3} 01$]:

$$
\begin{array}{lll}
01 \overline{2} \overline{3} 01 \sim 32 \overline{1} \overline{0} 32, & 10 \overline{2} \overline{3} 10 \sim 32 \overline{0} \overline{1} 32, & 21 \overline{3} \overline{3} 21 \sim 30 \overline{1} \overline{2} 30, \\
31 \overline{2} \overline{0} 31 \sim 02 \overline{1} \overline{3} 02, & 01 \overline{3} \overline{2} 01 \sim 23 \overline{1} \overline{0} 23, & 12 \overline{0} \overline{3} 12 \sim 30 \overline{2} \overline{1} 30, \\
20 \overline{1} \overline{3} 20 \sim 31 \overline{0} \overline{2} 31, & 13 \overline{2} \overline{0} 13 \sim 02 \overline{3} \overline{1} 02, & 10 \overline{3} \overline{2} 10 \sim 23 \overline{0} \overline{1} 23, \\
03 \overline{1} \overline{2} 03 \sim 21 \overline{3} \overline{0} 21, & 03 \overline{2} \overline{1} 03 \sim 12 \overline{3} \overline{0} 12, & 13 \overline{0} \overline{2} 13 \sim 20 \overline{3} \overline{1} 20
\end{array}
$$

Since each of the twenty-four single cosets has two names, the double coset [01 $\overline{2} \overline{3} 01]$ must have at most twelve distinct single cosets.

Now, $N^{(01 \overline{2} \overline{3} 01)}$ has four orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0,3\},\{1,2\},\{\overline{0}, \overline{3}\}$, and $\{\overline{1}, \overline{2}\}$.

Therefore, there are at most four double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{0} t_{1} t_{i}^{ \pm 1}, i \in\{0,1\}$.
But note that $N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{0} t_{1} t_{1}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{0} e N=N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{0} N$ and $N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{0} t_{1} t_{1} N=N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{0} t_{1}^{2} N=N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{0} t_{1}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{0} t_{1} t_{0} N=$ $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0}^{-1} N$ and $N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{0} t_{1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1} t_{3} N$.
Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{0} t_{1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
309. We next consider the double coset $N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2} N$.

Let [01 $\overline{2} \overline{3} \overline{1} 2]$ denote the double coset $N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2} N$.
Note that $N^{(012 \overline{3} \overline{1} 2)} \geq N^{01 \overline{2} \overline{3} \overline{1} 2}=\langle e\rangle$. Thus $\left|N^{(01 \overline{2} \overline{3} \overline{1} 2)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2} N\right|=\frac{|N|}{\left|N^{(01 \overline{1} \overline{3} \overline{1})}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$01 \overline{2} \overline{3} \overline{1} 2]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(01 \overline{2} \overline{3} 12)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2} t_{2}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} e N=N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} N$ and $N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2} t_{2} N=N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2}^{2} N=N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2} t_{0}^{-1} N=$
$N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0}^{-1} t_{2}^{-1} N, N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2} t_{1} N=N t_{0}^{-1} t_{1} t_{2} t_{3} t_{0} t_{2}^{-1} N$,
$N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2} N, N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2} t_{3} N$
$=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{1} t_{2}^{-1} N$, and $N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} N$.
Therefore, we conclude that there is one distinct double coset of the form
$N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2} t_{0} N$.
310. We next consider the double coset $N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2}^{-1} N$.

Let $[01 \overline{2} \overline{3} \overline{1} \overline{2}]$ denote the double coset $N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2}^{-1} N$.

Note that $N^{(01 \overline{2} \overline{3} \overline{1} \overline{2})} \geq N^{01 \overline{2} \overline{3} \overline{1} \overline{2}}=\langle e\rangle$. Thus $\left|N^{(01 \overline{2} \overline{3} \overline{1} \overline{2})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2}^{-1} N\right|=\frac{|N|}{\left|N^{(012312)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$01 \overline{2} \overline{3} \overline{1} \overline{2}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(01 \overline{2} \overline{3} \overline{1} \overline{2})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2}^{-1} t_{2} N=N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} e N=N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} N$ and $N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2}^{-1} t_{2}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2}^{-2} N=N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} N=$
$N t_{0}^{-1} t_{1} t_{2} t_{3} t_{2}^{-1} N, N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{3} N$,
$N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1} t_{3}^{-1} N, N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1} N, N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} t_{1}^{-1} N$, and
$N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{2} N$.
Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
311. We next consider the double coset $N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3} t_{2}^{-1} N$.

Let $[010 \overline{2} 23 \overline{2}]$ denote the double coset $N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3} t_{2}^{-1} N$.
Now, with the help of MAGMA, we know that that the following right cosets, or single cosets, are equivalent: $N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3} t_{2}^{-1}=N t_{0} t_{1} t_{0}^{-1} t_{3} t_{2} t_{3}^{-1}$.

That is, in terms of our short-hand notation,

$$
01 \overline{0} 23 \overline{2} \sim 010 \overline{0} 32 \overline{3} .
$$

By conjugating the equivalence relation above with the elements of S_{4}, we determine that the following single cosets are equivalent in the double coset [010 $23 \overline{2}]$:

$$
\begin{array}{lll}
010 \overline{0} 23 \overline{2} \sim 01 \overline{0} 32 \overline{3}, & 10 \overline{1} 23 \overline{2} \sim 10 \overline{1} 32 \overline{3}, & 21 \overline{2} 03 \overline{0} \sim 21 \overline{2} 30 \overline{3}, \\
31 \overline{3} 20 \overline{2} \sim 31 \overline{3} 02 \overline{0}, & 02 \overline{0} 13 \overline{1} \sim 02 \overline{0} 31 \overline{3}, & 03 \overline{0} 21 \overline{2} \sim 03 \overline{0} 12 \overline{1}, \\
12 \overline{1} 03 \overline{0} \sim 12 \overline{1} 30 \overline{3}, & 20 \overline{2} 13 \overline{1} \sim 20 \overline{2} 31 \overline{3}, & 13 \overline{1} 20 \overline{2} \sim 13 \overline{1} 02 \overline{0},
\end{array}
$$

$$
30 \overline{3} 21 \overline{2} \sim 30 \overline{3} 12 \overline{1}, \quad 23 \overline{2} 10 \overline{1} \sim 23 \overline{2} 01 \overline{0}, \quad 32 \overline{3} 01 \overline{0} \sim 32 \overline{3} 10 \overline{1}
$$

Since each of the twenty-four single cosets has two names, the double coset [010 $23 \overline{2}]$ must have at most twelve distinct single cosets.

Now, $N^{(01 \overline{0} 23 \overline{2})}$ has six orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2,3\},\{\overline{0}\},\{\overline{1}\}$, and $\{\overline{2}, \overline{3}\}$.

Therefore, there are at most six double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1} t_{0}^{-1} t_{2} t_{3} t_{2}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2\}$.

But note that $N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3} t_{2}^{-1} t_{2} N=N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3} e N=N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3} N$ and $N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3} t_{2}^{-1} t_{2}^{-1} N=N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3} t_{2}^{-2} N=N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3} t_{2} N=N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3} t_{2}^{-1} t_{0} N=$ $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1}^{-1} t_{0}^{-1} N, N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3} t_{2}^{-1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0}^{-1} t_{3}^{-1} N$, and $N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3} t_{2}^{-1} t_{1}^{-1} N=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{1} t_{0}^{-1} N$.

Therefore, we conclude that there is one distinct double coset of the form
$N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3} t_{2}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3} t_{2}^{-1} t_{1} N$.
312. We next consider the double coset $N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{2}^{-1} N$.

Let $[01 \overline{0} 2 \overline{3} \overline{2}]$ denote the double coset $N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{2}^{-1} N$.
Now, with the help of MAGMA, we know that that the following right cosets, or single cosets, are equivalent: $N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{2}^{-1}=N t_{1} t_{2} t_{1}^{-1} t_{0} t_{3}^{-1} t_{0}^{-1}$
$=N t_{2} t_{0} t_{2}^{-1} t_{1} t_{3}^{-1} t_{1}^{-1}=N t_{1} t_{3} t_{1}^{-1} t_{2} t_{0}^{-1} t_{2}^{-1}=N t_{3} t_{0} t_{3}^{-1} t_{2} t_{1}^{-1} t_{2}^{-1}=N t_{2} t_{1} t_{2}^{-1} t_{3} t_{0}^{-1} t_{3}^{-1}$
$=N t_{3} t_{1} t_{3}^{-1} t_{0} t_{2}^{-1} t_{0}^{-1}=N t_{0} t_{2} t_{0}^{-1} t_{3} t_{1}^{-1} t_{3}^{-1}=N t_{0} t_{3} t_{0}^{-1} t_{1} t_{2}^{-1} t_{1}^{-1}=N t_{1} t_{0} t_{1}^{-1} t_{3} t_{2}^{-1} t_{3}^{-1}$
$=N t_{2} t_{3} t_{2}^{-1} t_{0} t_{1}^{-1} t_{0}^{-1}=N t_{3} t_{2} t_{3}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1}$.
That is, in terms of our short-hand notation,

$$
\begin{aligned}
& 01 \overline{0} 2 \overline{3} \overline{2} \sim 12 \overline{1} 0 \overline{3} \overline{0} \sim 20 \overline{2} 1 \overline{3} \overline{1} \sim 13 \overline{1} 2 \overline{0} \overline{2} \sim 30 \overline{3} 2 \overline{1} \overline{2} \sim 21 \overline{2} 3 \overline{0} \overline{3} \\
& \sim 31 \overline{3} 0 \overline{2} \overline{0} \sim 02 \overline{0} 3 \overline{1} \overline{3} \sim 03 \overline{0} 1 \overline{2} \overline{1} \sim 10 \overline{1} 3 \overline{2} \overline{3} \sim 23 \overline{2} 0 \overline{1} \overline{0} \sim 32 \overline{3} 1 \overline{0} \overline{1} .
\end{aligned}
$$

By conjugating the equivalence relation above with the elements of S_{4}, we determine that the following single cosets are equivalent in the double coset [010 $2 \overline{3} \overline{2}]$:

$$
\begin{aligned}
& 01 \overline{0} 2 \overline{3} \overline{2} \sim 12 \overline{1} 0 \overline{3} \overline{0} \sim 20 \overline{2} 1 \overline{3} \overline{1} \sim 13 \overline{1} 2 \overline{2} \overline{2} \sim 30 \overline{3} 2 \overline{1} \overline{2} \sim 21 \overline{2} 30 \overline{3} \overline{3} \\
& \sim 31 \overline{3} 0 \overline{2} \overline{0} \sim 02 \overline{0} 3 \overline{1} \overline{3} \sim 03 \overline{0} 1 \overline{2} \overline{1} \sim 10 \overline{1} 3 \overline{2} \overline{3} \sim 23 \overline{2} 0 \overline{1} \overline{0} \sim 32 \overline{3} 1 \overline{0} \overline{1},
\end{aligned}
$$

$$
\begin{aligned}
& 1012 \overline{3} \overline{2} \sim 02 \overline{0} 1 \overline{3} \overline{1} \sim 21 \overline{2} 0 \overline{3} \overline{0} \sim 03 \overline{0} 2 \overline{1} \overline{2} \sim 31 \overline{3} 2 \overline{0} \overline{2} \sim 20 \overline{2} 3 \overline{1} \overline{3} \\
& \sim 30 \overline{3} 1 \overline{2} \overline{1} \sim 12 \overline{1} 3 \overline{0} \overline{3} \sim 13 \overline{1} 0 \overline{2} \overline{0} \sim 01 \overline{0} 3 \overline{2} \overline{3} \sim 23 \overline{2} 1 \overline{0} \overline{1} \sim 32 \overline{3} 0 \overline{1} \overline{0}
\end{aligned}
$$

Since each of the twenty-four single cosets has twelve names, the double coset [$010 \overline{0} 2 \overline{3} \overline{2}]$ must have at most two distinct single cosets.

An alternative approach for determining the order of the double coset is as follows: We note that $N^{(010 \overline{0} 2 \overline{3} \overline{2})} \geq N^{010 \overline{0} \overline{3} \overline{2}}=\langle e\rangle$. In fact, our relations tell us that $N\left(t_{0} t_{1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{2}^{-1}\right)^{(012)}=N t_{1} t_{2} t_{1}^{-1} t_{0} t_{3}^{-1} t_{0}^{-1}=N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{2}^{-1}$, which implies that (012) $1 \begin{aligned} & \text { l }\end{aligned} N^{(01012 \overline{3} \overline{2})}$, and moreover $N\left(t_{0} t_{1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{2}^{-1}\right)^{(01)(23)}$
$=N t_{1} t_{0} t_{1}^{-1} t_{3} t_{2}^{-1} t_{3}^{-1}=N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{2}^{-1}$, which implies that $(01)(23) \in N^{(010 \overline{0} \overline{3} \overline{2})}$. Therefore, $(012),(01)(23) \in N^{(010 \overline{2} \overline{3} \overline{2})}$, and so $N^{(010 \overline{2} \bar{z} \overline{2})} \geq\left\langle\left(\begin{array}{lll}0 & 1 & 2\end{array}\right),\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right)\right\rangle \cong$ A_{4}. Thus $\left|N^{(01 \overline{0} 2 \overline{3} \overline{2})}\right| \geq\left|A_{4}\right|=12$ and so, by Lemma 1.4, $\left|N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{2}^{-1} N\right|=\frac{|N|}{\left|N^{(010232)}\right|} \leq \frac{24}{12}=2$.
Therefore, as we concluded earlier, the double coset [010 $2 \overline{3} \overline{2}]$ has at most two distinct single cosets.
Now, $N^{(010 \overline{0} 2 \overline{2} \overline{2})}$ has two orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0,1,2,3\}$ and $\{\overline{0}, \overline{1}, \overline{2}, \overline{3}\}$.
Therefore, there are at most two double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{2}^{-1} t_{i}^{ \pm 1}, i=2$.

But note that $N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{2}^{-1} t_{2} N=N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3}^{-1} e N=N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3}^{-1} N$ and $N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{2}^{-1} t_{2}^{-1} N=N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{2}^{-2} N=N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{2} N$ $=N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3} N$.

Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{2}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
313. We next consider the double coset $N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} N$.

Let [010 $\overline{2} \overline{3} \overline{0} \overline{0}]$ denote the double coset $N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} N$.
Note that $N^{(01 \overline{0} \overline{2} \overline{3} \overline{0})} \geq N^{010 \overline{0} \overline{2} \overline{0} \overline{0}}=\langle e\rangle$. Thus $\left|N^{(01 \overline{0} \overline{2} \overline{3} \overline{0})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} N\right|=\frac{|N|}{\left|N^{(010230)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [010$\overline{2} \overline{3} \overline{0} \overline{]}$ has at most twenty-four distinct single cosets.

Moreover, $N^{(010 \overline{0} \overline{2} \overline{0} \overline{\overline{0}})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{0} N=N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} e N=N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} N$ and $N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{0}^{-1} N=N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-2} N=N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0} N$ $=N t_{0}^{-1} t_{1} t_{2} t_{3} t_{1}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{1} N=$
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{0} t_{1}^{-1} N, N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{0} t_{2} t_{3} t_{0} N$,
$N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{2} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1}^{-1} t_{2}^{-1} N, N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{2}^{-1} N$
$=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0} t_{3}^{-1} N, N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{3} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{0}^{-1} N$, and
$N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{2} N$.
Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
314. We next consider the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0} t_{3} N$.

Let [$\overline{0} 12103]$ denote the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0} t_{3} N$.
Note that $N^{(\overline{0} \overline{1} 2103)} \geq N^{\overline{0} \overline{1} 2103}=\langle e\rangle$. Thus $\left|N^{(\overline{0} \overline{1} 2103)}\right| \geq|\langle e\rangle|=1$ and so, by
Lemma 1.4, $\left|N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0} t_{3} N\right|=\frac{|N|}{\left|N^{(012103)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$\overline{0} \overline{1} 2103]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{\overline{0}} 2103)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0} t_{3} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0} t_{3} t_{3}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0} e N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0} N$ and $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0} t_{3} t_{3} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0} t_{3}^{2} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0} t_{3}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0} t_{3} t_{0} N=$
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{2}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0} t_{3} t_{0}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} N$,
$N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0} t_{3} t_{1} N=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{2}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0} t_{3} t_{1}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{0} t_{2} t_{3} t_{0} N, N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0} t_{3} t_{2} N=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{1}^{-1} N$, and
$N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0} t_{3} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3} t_{1} N$.

Therefore, we conclude that there are no distinct double cosets of the form $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0} t_{3} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
315. We next consider the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0} t_{3}^{-1} N$.

Let $[\overline{0} \overline{1} 210 \overline{3}]$ denote the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0} t_{3}^{-1} N$.
Note that $N^{(\overline{0} \overline{1} 210 \overline{3})} \geq N^{\overline{0} \overline{1} 210 \overline{3}}=\langle e\rangle$. Thus $\left|N^{(\overline{0} \overline{1} 210 \overline{3})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0} t_{3}^{-1} N\right|=\frac{|N|}{\left|N^{(0 \overline{1} 210 \overline{3})}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset $[\overline{0} \overline{1} 210 \overline{3}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{0} \overline{1} 210 \overline{3})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0} t_{3}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0} t_{3}^{-1} t_{3} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0} e N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0} N$ and $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0} t_{3}^{-1} t_{3}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0} t_{3}^{-2} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0} t_{3} N$.
Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0} t_{3}^{-1} t_{0} N=$
$N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3} N, N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0} t_{3}^{-1} t_{0}^{-1} N=N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3} t_{2}^{-1} t_{1} N$,
$N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0} t_{3}^{-1} t_{1} N=N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0} t_{3}^{-1} t_{1}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1}^{-1} t_{2}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0} t_{3}^{-1} t_{2} N=N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} t_{2}^{-1} N$, and
$N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0} t_{3}^{-1} t_{2}^{-1} N=N t_{0} t_{1} t_{2} t_{3} t_{0} t_{2} N$.
Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0} t_{3}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
316. We next consider the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3} N$.

Let [$\overline{0} \overline{1} 21 \overline{0} 3]$ denote the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3} N$.
Note that $N^{(\overline{0} \overline{1} 210 \overline{0} 3)} \geq N^{\overline{0} \overline{1} 21 \overline{0} 3}=\langle e\rangle$. Thus $\left|N^{(\overline{0} \overline{1} 210 \overline{0} 3)}\right| \geq|\langle e\rangle|=1$ and so, by
Lemma 1.4, $\left|N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3} N\right|=\frac{|N|}{\mid N^{(\overline{0112103)} \mid}} \leq \frac{24}{1}=24$.
Therefore, the double coset [$\overline{0} \overline{1} 21 \overline{0} 3]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{\overline{0}} \overline{2} 21 \overline{0} 3)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3} t_{3}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} e N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} N$ and
$N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3} t_{3} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3}^{2} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3} t_{0} N=$
$N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3} t_{2}^{-1} t_{1} N, N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3} t_{0}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0} t_{3}^{-1} N$,
$N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3} t_{1} N=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{0} N, N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3} t_{1}^{-1} N$
$=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{2}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3} t_{2} N=N t_{0}^{-1} t_{1} t_{2} t_{3} t_{1}^{-1} N$, and
$N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3} t_{2}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3}^{-1} N$.
Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
317. We next consider the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3}^{-1} N$.

Let $[\overline{0} \overline{1} 21 \overline{0} \overline{3}]$ denote the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3}^{-1} N$.
Note that $N^{(\overline{0} \overline{1} 21 \overline{0} \overline{3})} \geq N^{\overline{0} \overline{1} 21 \overline{0} \overline{3} \overline{3}}=\langle e\rangle$. Thus $\left|N^{(\overline{0} \overline{1} 21 \overline{0} \overline{3})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3}^{-1} N\right|=\frac{|N|}{\left|N^{(012103)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$\overline{0} \overline{1} 21 \overline{0} \overline{3}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{0} \mathrm{i} 21 \overline{0} \overline{3})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3}^{-1} t_{3} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} e N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} N$ and $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3}^{-1} t_{3}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3}^{-2} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3} N$.
Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3}^{-1} t_{0} N=$
$N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3}^{-1} t_{0}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0} N$,
$N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3}^{-1} t_{1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3}^{-1} t_{1}^{-1} N$
$=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3}^{-1} t_{2} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0}^{-1} t_{2} N$, and $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3}^{-1} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} t_{2} t_{1}^{-1} N$.

Therefore, we conclude that there are no distinct double cosets of the form $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
318. We next consider the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0} N$.

Let $[\overline{0} \overline{1} 2130]$ denote the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0} N$.

Note that $N^{(\overline{0} \overline{1} 2130)} \geq N^{\overline{0} \overline{1} 2130}$
$=\langle e\rangle$. Thus $\left|N^{(\overline{\overline{1}} 2130)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0} N\right|=$ $\frac{|N|}{\left|N^{(0 \overline{1} 2130)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$\overline{0} \overline{1} 2130]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{0} \overline{1} 2130)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0} t_{0}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3} e N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3} N$ and $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0} t_{0} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0}^{2} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0} t_{1} N=$
$N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2}^{-1} t_{1} N, N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0} t_{1}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{2}^{-1} N$,
$N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0} t_{2} N=N t_{0} t_{1} t_{2} t_{0} t_{1} t_{3} N, N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0} t_{2}^{-1} N$
$=N t_{0}^{-1} t_{1} t_{2} t_{3} t_{2}^{-1} t_{1}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0} t_{3} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3}^{-1} N$, and
$N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0} t_{3}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} N$.
Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
319. We next consider the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0}^{-1} N$.

Let [$[\overline{1} 213 \overline{0}]$ denote the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0}^{-1} N$.
Note that $N^{(\overline{0} \overline{1} 213 \overline{0})} \geq N^{\overline{0} \overline{1} 213 \overline{0}}=\langle e\rangle$. Thus $\left|N^{(\overline{0} \overline{1} 213 \overline{0})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0}^{-1} N\right|=\frac{|N|}{\left|N^{(012130)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset $[\overline{0} \overline{1} 213 \overline{0}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{0} \overline{1} 213 \overline{0})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0}^{-1} t_{0} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3} N N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3} N$ and $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0}^{-1} t_{0}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0}^{-2} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0} N$.

Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0}^{-1} t_{1} N=$
$N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0}^{-1} t_{1}^{-1} N=N t_{0} t_{1} t_{2} t_{0} t_{3} t_{0}^{-1} N$,
$N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0}^{-1} t_{2} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0}^{-1} t_{2}^{-1} N$
$=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} N, N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0}^{-1} t_{3} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0} N$, and
$N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0}^{-1} t_{3}^{-1} N=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{1} t_{0}^{-1} N$.
Therefore, we conclude that there are no distinct double cosets of the form $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
320. We next consider the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0} N$.

Let $[\overline{0} \overline{1} 21 \overline{3} 0]$ denote the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0} N$.
Note that $N^{(\overline{0} \overline{1} 21 \overline{3} 0)} \geq N^{\overline{0} \overline{1} 21 \overline{3} 0}=\langle e\rangle$. Thus $\left|N^{(\overline{0} \overline{1} 21 \overline{3} 0)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0} N\right|=\frac{|N|}{\left|N^{(\overline{(012130})}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset $[\overline{0} \overline{1} 21 \overline{3} 0]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{0} 1 \overline{1} 2 \overline{3} 0)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.
Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0} t_{0}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} e N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} N$ and $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0} t_{0} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0}^{2} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0}^{-1} N$ $=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{2}^{-1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0} t_{1} N=$ $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0} t_{2} N, N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{1}^{-1} N$,
$N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0} t_{2} N=N t_{0}^{-1} t_{1} t_{2} t_{3} t_{0} t_{2}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0} t_{2}^{-1} N$
$=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{0}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0} t_{3} N=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{1} t_{0}^{-1} N$, and $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0} t_{3}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0}^{-1} N$.

Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
321. We next consider the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}^{-1} t_{3}^{-1} N$.

Let $[\overline{0} \overline{1} 2 \overline{1} \overline{0} \overline{3}]$ denote the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}^{-1} t_{3}^{-1} N$.

Note that $N^{(\overline{0} \overline{1} 2 \overline{1} \overline{0} \overline{3})} \geq N^{\overline{0} \overline{1} 21 \overline{1} \overline{0} \overline{3}}=\langle e\rangle$. Thus $\left|N^{(\overline{0} \overline{1} 2 \overline{1} \overline{0} \overline{3})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}^{-1} t_{3}^{-1} N\right|=\frac{|N|}{\left|N^{(012103)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset $[\overline{0} \overline{1} 2 \overline{1} \overline{0} \overline{3}]$ has at most twenty-four distinct single cosets. Moreover, $N^{(\overline{0} 1 \overline{1} 2 \overline{1} \overline{\mathrm{~s}})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}^{-1} t_{3}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}^{-1} t_{3}^{-1} t_{3} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}^{-1} e N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}^{-1} N$ and $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}^{-1} t_{3}^{-1} t_{3}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}^{-1} t_{3}^{-2} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}^{-1} t_{3} N=$ $N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2}^{-1} t_{0}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}^{-1} t_{3}^{-1} t_{0} N=$ $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{1}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}^{-1} t_{3}^{-1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{2} N$,
$N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{3} N, N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}^{-1} t_{3}^{-1} t_{2} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} t_{0}^{-1} N$, and $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}^{-1} t_{3}^{-1} t_{2}^{-1} N=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2}^{-1} t_{1} N$.

Therefore, we conclude that there are no distinct double cosets of the form $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}^{-1} t_{3}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
322. We next consider the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0}^{-1} t_{2} N$.

Let $[\overline{0} \overline{1} 23 \overline{0} 2]$ denote the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0}^{-1} t_{2} N$.
Note that $N^{(\overline{0} \overline{1} 23 \overline{0} 2)} \geq N^{\overline{0} \overline{1} 23 \overline{0} 2}=\langle e\rangle$. Thus $\left|N^{(\overline{0} \overline{1} 23 \overline{0} 2)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0}^{-1} t_{2} N\right|=\frac{|N|}{\left|N^{(\overline{0} \overline{1} 3 \bar{O} 2)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$\overline{0} \overline{1} 23 \overline{0} 2]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{0} \overline{1} 23 \overline{0} 2)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0}^{-1} t_{2} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0}^{-1} t_{2} t_{2}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0}^{-1} e N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0}^{-1} N$ and $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0}^{-1} t_{2} t_{2} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0}^{-1} t_{2}^{2} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0}^{-1} t_{2}^{-1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0}^{-1} t_{2} t_{0} N=$
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} t_{2} t_{1}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0}^{-1} t_{2} t_{0}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3}^{-1} N$,
$N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0}^{-1} t_{2} t_{1} N=N t_{0} t_{1} t_{2} t_{3} t_{1} t_{0} N, N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0}^{-1} t_{2} t_{1}^{-1} N$
$=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0}^{-1} t_{2} t_{3} N=N t_{0}^{-1} t_{1} t_{2} t_{3} t_{2}^{-1} t_{1}^{-1} N$, and
$N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0}^{-1} t_{2} t_{3}^{-1} N=N t_{0}^{-1} t_{1} t_{2} t_{3} t_{2}^{-1} N$.
Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0}^{-1} t_{2} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
323. We next consider the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0}^{-1} t_{2}^{-1} N$.

Let $[\overline{0} \overline{1} 23 \overline{0} \overline{2}]$ denote the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0}^{-1} t_{2}^{-1} N$.
Note that $N^{(\overline{0} \overline{1} 23 \overline{0} \overline{2})} \geq N^{\overline{\overline{0}} 233 \overline{0} \overline{2}}=\langle e\rangle$. Thus $\left|N^{(\overline{\overline{1}} 233 \overline{0} \overline{2})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0}^{-1} t_{2}^{-1} N\right|=\frac{|N|}{\left|N^{(\overline{0} 12 \bar{O} \overline{\mathrm{Z}})}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$\overline{0} \overline{1} 23 \overline{0} \overline{2}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{\overline{1}} \overline{2} 23 \overline{0} \overline{2})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0}^{-1} t_{2}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0}^{-1} t_{2}^{-1} t_{2} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0}^{-1} e N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0}^{-1} N$ and $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0}^{-1} t_{2}^{-1} t_{2}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0}^{-1} t_{2}^{-2} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0}^{-1} t_{2} N$.
Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0}^{-1} t_{2}^{-1} t_{0} N=$
$N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{2}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0}^{-1} t_{2}^{-1} t_{0}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} N$,
$N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0}^{-1} t_{2}^{-1} t_{1} N=N t_{0}^{-1} t_{1} t_{2} t_{0} t_{1}^{-1} t_{3}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2} t_{3} N, N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0}^{-1} t_{2}^{-1} t_{3} N=N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2} N$, and
$N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2} t_{0} N$.
Therefore, we conclude that there are no distinct double cosets of the form $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0}^{-1} t_{2}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
324. We next consider the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{1} t_{2}^{-1} N$.

Let $[\overline{0} \overline{1} 231 \overline{2}]$ denote the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{1} t_{2}^{-1} N$.
Note that $N^{(\overline{0} \overline{1} 231 \overline{2})} \geq N^{\overline{0} \overline{1} 231 \overline{2}}=\langle e\rangle$. Thus $\left|N^{(\overline{0} \overline{1} 231 \overline{2})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{1} t_{2}^{-1} N\right|=\frac{|N|}{\left|N^{(012312)}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [$\overline{0} \overline{1} 231 \overline{2}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{0} \overline{1} 231 \overline{2})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{1} t_{2}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{1} t_{2}^{-1} t_{2} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{1} e N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{1} N$ and
$N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{1} t_{2}^{-1} t_{2}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{1} t_{2}^{-2} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{1} t_{2} N$
$=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{1} t_{2}^{-1} t_{0} N=$
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{1} t_{2}^{-1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1}^{-1} t_{0} N$,
$N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{1} t_{2}^{-1} t_{1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{0}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{1} t_{2}^{-1} t_{1}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{3} N, N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{1} t_{2}^{-1} t_{3} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} N$, and $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{1} t_{2}^{-1} t_{3}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2} N$.

Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{1} t_{2}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
325. We next consider the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2} N$.

Let $[\overline{0} \overline{1} \overline{2} 012]$ denote the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2} N$.
Note that $N^{(\overline{0} \overline{1} \overline{2} 012)} \geq N^{\overline{0} \overline{1} \overline{2} 012}=\langle e\rangle$. Thus $\left|N^{(\overline{0} \overline{1} \overline{2} 012)}\right| \geq|\langle e\rangle|=1$ and so, by
Lemma 1.4, $\left|N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2} N\right|=\frac{|N|}{\left|N^{(012012)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$\overline{0} \overline{1} \overline{2} 012]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{\overline{1}} \overline{2} 012)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2} t_{2}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} e N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} N$ and $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2} t_{2} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2}^{2} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2}^{-1} N$ $=N t_{0} t_{1} t_{2} t_{0} t_{3} t_{0}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2} t_{0} N=$ $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{0}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} N$,
$N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2} t_{1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{0}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2} t_{1}^{-1} N$
$=N t_{0} t_{1} t_{2} t_{0} t_{3}^{-1} t_{0} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2} t_{3} N=N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2} N$, and
$N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2} t_{3}^{-1} N=N t_{0}^{-1} t_{1} t_{2} t_{3} t_{0} t_{2}^{-1} N$.
Therefore, we conclude that there are no distinct double cosets of the form $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
326. We next consider the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{3}^{-1} N$.

Let $[\overline{0} \overline{1} \overline{2} 01 \overline{3}]$ denote the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{3}^{-1} N$.
Now, with the help of MAGMA, we know that that the following right cosets, or single cosets, are equivalent: $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{3}^{-1}=N t_{3}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{0}^{-1}$.

That is, in terms of our short-hand notation,

$$
\overline{0} \overline{1} \overline{2} 01 \overline{3} \sim \overline{3} \overline{2} \overline{2} 31 \overline{0} .
$$

By conjugating the equivalence relation above with the elements of S_{4}, we determine that the following single cosets are equivalent in the double coset [$\overline{0} \overline{1} \overline{2} 01 \overline{3}]$:
$\overline{0} \overline{1} \overline{2} 01 \overline{3} \sim \overline{3} \overline{1} \overline{2} 31 \overline{0}, \quad \overline{1} 0 \overline{2} 10 \overline{3} \sim \overline{3} \overline{0} \overline{2} 30 \overline{1}, \quad \overline{2} \overline{1} 0 \overline{0} 21 \overline{3} \sim \overline{3} \overline{1} 0 \overline{0} 31 \overline{2}, \quad \overline{0} \overline{2} \overline{1} 02 \overline{3} \sim \overline{3} \overline{2} \overline{1} 32 \overline{0}$,
$\overline{0} \overline{3} \overline{2} 03 \overline{1} \sim \overline{1} \overline{3} \overline{2} 13 \overline{0}, \quad \overline{0} \overline{1} \overline{3} 01 \overline{2} \sim \overline{2} \overline{1} \overline{3} 21 \overline{0}, \quad \overline{1} \overline{2} \overline{0} 12 \overline{3} \sim \overline{3} \overline{2} \overline{0} 32 \overline{1}, \quad \overline{2} \overline{0} \overline{1} 20 \overline{3} \sim \overline{3} \overline{0} \overline{1} 30 \overline{2}$,
$\overline{0} \overline{2} \overline{3} 02 \overline{1} \sim \overline{1} \overline{2} \overline{3} 12 \overline{0}, \quad \overline{0} \overline{3} \overline{1} 03 \overline{2} \sim \overline{2} \overline{1} \overline{1} 23 \overline{0}, \quad \overline{1} \overline{3} \overline{0} 13 \overline{2} \sim \overline{2} \overline{3} \overline{0} 23 \overline{1}, \quad \overline{2} \overline{0} \overline{3} 20 \overline{1} \sim \overline{1} 0 \overline{3} 10 \overline{2}$
Since each of the twenty-four single cosets has two names, the double coset [$\overline{0} \overline{1} \overline{2} 01 \overline{3}]$ must have at most twelve distinct single cosets.

Now, $N^{(\overline{0} \overline{1} \overline{2} 01 \overline{3})}$ has six orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0,3\},\{1\},\{2\},\{\overline{0}, \overline{3}\},\{\overline{1}\}$, and $\{\overline{2}\}$.

Therefore, there are at most six double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{3}^{-1} t_{i}^{ \pm 1}, i \in\{1,2,3\}$.
But note that $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{3}^{-1} t_{3} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} e N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} N$ and $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{3}^{-1} t_{3}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{3}^{-2} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{3} N$ $=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0}^{-1} t_{3}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{3}^{-1} t_{1} N=$ $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{2} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{3}^{-1} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{2}^{-1} N$,
$N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{3}^{-1} t_{2} N=N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3} t_{2}^{-1} t_{1} N$, and $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{3}^{-1} t_{2}^{-1} N$
$=N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2} t_{0} N$.
Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{3}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
327. We next consider the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} t_{0}^{-1} N$.

Let $[\overline{0} \overline{1} \overline{2} 0 \overline{1} \overline{0}]$ denote the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} t_{0}^{-1} N$.
Note that $N^{(\overline{0} \overline{1} \overline{2} O \overline{1} \overline{0})} \geq N^{\overline{0} \overline{1} \overline{2} \overline{0} \overline{1} \overline{0}}=\langle e\rangle$. Thus $\left|N^{(\overline{0} 1 \overline{2} \bar{O} \overline{1} \overline{0})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} t_{0}^{-1} N\right|=\frac{|N|}{\left|N^{(012010)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$\overline{0} \overline{1} \overline{2} 0 \overline{1} \overline{0}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{0} \overline{1} \overline{2} 0 \overline{1} \overline{0})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.
Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} t_{0}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} t_{0}^{-1} t_{0} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} e N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} N$ and $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} t_{0}^{-1} t_{0}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} t_{0}^{-2} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} t_{0} N=$ $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0} N$.
Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} t_{0}^{-1} t_{1} N=$
$N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} t_{0}^{-1} t_{1}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} N$,
$N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{1}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} t_{2} t_{1}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} t_{0}^{-1} t_{3} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{2}^{-1} t_{1}^{-1} N$, and $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} t_{0}^{-1} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{2}^{-1} N$.

Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} t_{0}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
328. We next consider the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} t_{0}^{-1} N$.

Let $[\overline{0} \overline{1} \overline{2} 03 \overline{0}]$ denote the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} t_{0}^{-1} N$.
Note that $N^{(\overline{0} \overline{1} \overline{2} 03 \overline{0})} \geq N^{\overline{0} \overline{1} \overline{2} 03 \overline{0}}=\langle e\rangle$. Thus $\left|N^{(\overline{0} \overline{1} \overline{2} 03 \overline{0})}\right| \geq|\langle e\rangle|=1$ and so, by
Lemma 1.4, $\left|N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} t_{0}^{-1} N\right|=\frac{|N|}{\left|N^{(012030)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$\overline{0} \overline{1} \overline{2} 03 \overline{0}]$ has at most twenty-four distinct single cosets.

Moreover, $N^{(\overline{0} \overline{1} \overline{2} 03 \overline{0})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} t_{0}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} t_{0}^{-1} t_{0} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} e N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} N$ and
$N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} t_{0}^{-1} t_{0}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} t_{0}^{-2} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} t_{0} N$
$=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} N$.
Moreover, with the help of MAGMA, we know that $\dot{N} t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} t_{0}^{-1} t_{1} N=$
$N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} t_{0}^{-1} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1} N$,
$N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} t_{0}^{-1} t_{2} N=N t_{0} t_{1} t_{2} t_{0} t_{1} t_{3} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} t_{0}^{-1} t_{2}^{-1} N$
$=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} t_{0}^{-1} t_{3} N=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2}^{-1} t_{1} N$, and
$N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} t_{0}^{-1} t_{3}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1} t_{0}^{-1} t_{3}^{-1} N$.
Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{3} t_{0}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
329. We next consider the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3}^{-1} N$.

Let $[\overline{0} \overline{1} \overline{2} \overline{0} 1 \overline{3}]$ denote the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3}^{-1} N$.
Note that $N^{(\overline{0} \overline{1} \overline{2} \overline{0} 1 \overline{3})} \geq N^{\overline{0} \overline{1} \overline{2} \overline{0} 1 \overline{3}}=\langle e\rangle$. Thus $\left|N^{(\overline{0} \overline{1} \overline{2} \overline{0} 1 \overline{3})}\right| \geq|\langle e\rangle|=1$ and so, by
Lemma 1.4, $\left|N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3}^{-1} N\right|=\frac{|N|}{\left|N^{(\overline{\overline{1}} \overline{\bar{O} 1 \overline{3}})}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset $[\overline{0} \overline{1} \overline{2} \overline{0} 1 \overline{3}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{0} \overline{1} \overline{2} \overline{0} 1 \overline{3})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3}^{-1} t_{3} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} e N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} N$ and $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3}^{-1} t_{3}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3}^{-2} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3} N=$ $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3}^{-1} t_{0} N=$
$N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0}^{-1} t_{2} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3}^{-1} t_{0}^{-1} N=N t_{0} t_{1} t_{2} t_{3} t_{1} t_{0} N$,
$N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3}^{-1} t_{1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{0} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3}^{-1} t_{1}^{-1} N$
$=N t_{0}^{-1} t_{1} t_{2} t_{3} t_{2}^{-1} t_{1}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3}^{-1} t_{2} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3} N$, and $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3}^{-1} t_{2}^{-1} N=N t_{0}^{-1} t_{1} t_{2} t_{3} t_{1}^{-1} N$.

Therefore, we conclude that there are no distinct double cosets of the form $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
330. We next consider the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{0}^{-1} N$.

Let $[\overline{0} \overline{1} \overline{2} \overline{0} 3 \overline{0}]$ denote the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{0}^{-1} N$.
Note that $N^{(\overline{0} \overline{1} \overline{2} \overline{0} 3 \overline{0})} \geq N^{\overline{\overline{0} 1} \overline{2} \overline{0} 3 \overline{0}}=\langle e\rangle$. Thus $\left|N^{(\overline{0} \overline{1} \overline{2} \overline{0} 3 \overline{0})}\right| \geq|\langle e\rangle|=1$ and so, by
Lemma 1.4, $\left|N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{0}^{-1} N\right|=\frac{|N|}{\left|N^{(\overline{0} \overline{1} \overline{0} 30)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$\overline{0} \overline{1} \overline{2} \overline{0} 3 \overline{0}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{0} \overline{1} \overline{2} \bar{o} \overline{3} \overline{0})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{0}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{0}^{-1} t_{0} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} e N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} N$ and $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{0}^{-1} t_{0}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{0}^{-2} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{0} N=$ $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{0}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{0}^{-1} t_{1} N=$
$N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} t_{3}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{0}^{-1} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{0} N$,
$N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{0}^{-1} t_{2} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1} t_{3}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{0}^{-1} t_{2}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{1} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{0}^{-1} t_{3} N=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2} t_{1} N$, and
$N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{0}^{-1} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{0}^{-1} N$.
Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{0}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
331. We next consider the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1}^{-1} N$.

Let $[\overline{0} \overline{1} \overline{2} \overline{0} \overline{3} \overline{1}]$ denote the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1}^{-1} N$.
Note that $N^{(\overline{0} \overline{1} \overline{2} \overline{0} \overline{1} \overline{1})} \geq N^{\overline{\overline{0} 1} \overline{2} \overline{0} \overline{3} \overline{1}}=\langle e\rangle$. Thus $\left|N^{(\overline{0} \overline{1} \overline{2} \overline{0} \overline{3} \overline{1})}\right| \geq|\langle e\rangle|=1$ and so, by
Lemma 1.4, $\left|N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1}^{-1} N\right|=\frac{|N|}{\left|N^{(012 \overline{1} \overline{3} \overline{1})}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$\overline{0} \overline{1} \overline{2} \overline{0} \overline{3} \overline{1}]$ has at most twenty-four distinct single cosets.

Moreover, $N^{(\overline{0} \overline{1} \overline{2} \overline{0} \overline{1} \overline{1})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1}^{-1} t_{1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} e N$ $=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} N$ and $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1}^{-1} t_{1}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1}^{-2} N$ $=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1}^{-1} t_{0} N=$ $N t_{0}^{-1} t_{1} t_{2} t_{0} t_{1}^{-1} t_{3}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1}^{-1} t_{0}^{-1} N=N t_{0}^{-1} t_{1} t_{2} t_{0} t_{1}^{-1} N$, $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2} N=N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} t_{1} t_{3}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2}^{-1} N$
$=N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} t_{1} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1}^{-1} t_{3} N=N t_{0} t_{1} t_{2} t_{0} t_{3} t_{0}^{-1} N$, and $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1}^{-1} t_{3}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0}^{-1} N$.

Therefore, we conclude that there are no distinct double cosets of the form $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
332. We next consider the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{0} N$.

Let $[\overline{0} \overline{1} \overline{2} 310]$ denote the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{0} N$.
Note that $N^{(\overline{0} \overline{1} \overline{2} 310)} \geq N^{\overline{\overline{1}} \overline{2} 310}=\langle e\rangle$. Thus $\left|N^{(\overline{\overline{1}} \overline{2} 310)}\right| \geq|\langle e\rangle|=1$ and so, by
Lemma 1.4, $\left|N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{0} N\right|=\frac{|N|}{\left|N^{(012310)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$\overline{0} \overline{1} \overline{2} 310]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{\overline{1}} \overline{2} 310)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{0} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{0} t_{0}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} e N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} N$ and $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{0} t_{0} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{0}^{2} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{0}^{-1} N$ $=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{0} t_{1} N=$ $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} t_{0}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{0} t_{1}^{-1} N=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} N$, $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{0} t_{2} N=N t_{0}^{-1} t_{1} t_{2} t_{3} t_{2}^{-1} t_{1}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{0} t_{2}^{-1} N$

$$
\begin{aligned}
& =N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{0} t_{3} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} t_{1} N, \text { and } \\
& N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{0} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} t_{3}^{-1} N
\end{aligned}
$$

Therefore, we conclude that there are no distinct double cosets of the form $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{0} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
333. We next consider the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{0}^{-1} N$.

Let $[\overline{0} \overline{1} \overline{2} \overline{3} 1 \overline{0}]$ denote the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{0}^{-1} N$.
Note that $N^{(\overline{0} \overline{1} \overline{2} \overline{3} 1 \overline{0})} \geq N^{\overline{\overline{1}} \overline{2} \overline{2} \overline{1} 1 \overline{0}}=\langle e\rangle$. Thus $\left|N^{(\overline{0} \overline{1} \overline{2} \overline{3} 1 \overline{0})}\right| \geq|\langle e\rangle|=1$ and so, by
Lemma 1.4, $\left|N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{0}^{-1} N\right|=\frac{|N|}{\mid N^{(\overline{\overline{(0} \overline{2} 1 \overline{0})} \mid}} \leq \frac{24}{1}=24$.
Therefore, the double coset [$\overline{0} \overline{1} \overline{2} \overline{3} 1 \overline{0}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{\left(\overline{\overline{1}} \overline{1} \overline{2} 1 \overline{1}_{1}\right)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{0}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{0}^{-1} t_{0} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} e N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} N$ and $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{0}^{-1} t_{0}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{0}^{-2} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{0} N=$ $N t_{0}^{-1} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{0}^{-1} t_{1} N=$
$N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1} t_{3}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1} N=N t_{0} t_{1} t_{2} t_{0} t_{3}^{-1} t_{0} N$,
$N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{0}^{-1} t_{2} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} N$
$=N t_{0}^{-1} t_{1} t_{2} t_{3} t_{0} t_{2}^{-1} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{0}^{-1} t_{3} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{2}^{-1} N$, and
$N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{0}^{-1} t_{3}^{-1} N=N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} N$.
Therefore, we conclude that there are no distinct double cosets of the form $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{0}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
334. We next consider the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{2}^{-1} N$.

Let $[\overline{0} \overline{1} \overline{2} \overline{3} 1 \overline{2}]$ denote the double coset $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{2}^{-1} N$.
Note that $N^{(\overline{0} \overline{1} \overline{2} \overline{3} 1 \overline{2})} \geq N^{\overline{0} 1 \overline{1} \bar{z} 1 \overline{2}}=\langle e\rangle$. Thus $\left|N^{(\overline{0} \overline{1} \overline{2} \overline{3} 1 \overline{2})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{2}^{-1} N\right|=\frac{|N|}{\left|N^{(\overline{0} \overline{1} \overline{2} 12 \overline{2})}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$\overline{0} \overline{1} \overline{2} \overline{3} 1 \overline{2}]$ has at most twenty-four distinct single cosets.

Moreover, $N^{(\overline{0} \overline{1} \overline{2} \overline{3} 1 \overline{2})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{2}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{2}^{-1} t_{2} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} e N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} N$ and $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{2}^{-1} t_{2}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{2}^{-2} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{2} N=$ $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0}^{-1} t_{2}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{2}^{-1} t_{0} N=$ $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} N=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{0} N$, $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{2}^{-1} t_{1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{2}^{-1} t_{1}^{-1} N$ $=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2}^{-1} t_{1} N, N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{2}^{-1} t_{3} N=N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{0} N$, and $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{2}^{-1} t_{3}^{-1} N=N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} t_{1} t_{3}^{-1} N$.

Therefore, we conclude that there are no distinct double cosets of the form $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{2}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
335. We next consider the double coset $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} N$.

Let $[\overline{0} 1 \overline{0} \overline{2} \overline{3} \overline{0}]$ denote the double coset $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} N$.
Note that $N^{(\overline{0} 1 \overline{0} \overline{2} \overline{3} \overline{0})} \geq N^{\overline{0} 1 \overline{0} \overline{2} \overline{3} \overline{0}}=\langle e\rangle$. Thus $\left|N^{(\overline{0} 110 \overline{0} \overline{3} \overline{0})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} N\right|=\frac{|N|}{\left|N^{(010230)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$\overline{0} 1 \overline{0} \overline{2} \overline{3} \overline{0}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{0} 1 \overline{0} \overline{2} \overline{3} \overline{0})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{0} N=N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} e N=N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} N$ and $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{0}^{-1} N=N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-2} N=N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0} N=$ $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{0}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{1} N=$
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1} N, N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{0}^{-1} N$, $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{2} N=N t_{0} t_{1} t_{2} t_{3} t_{0} t_{2} N, N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{2}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0}^{-1} N, N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{3} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{0}^{-1} N$, and $N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{2}^{-1} N$.
Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
336. We next consider the double coset $N t_{0}^{-1} t_{1} t_{2} t_{0} t_{1}^{-1} t_{3}^{-1} N$.

Let [$\overline{0} 120 \overline{1} \overline{3}]$ denote the double coset $N t_{0}^{-1} t_{1} t_{2} t_{0} t_{1}^{-1} t_{3}^{-1} N$.
Note that $N^{(\overline{0} 120 \overline{1} \overline{3})} \geq N^{\overline{0} 1201 \overline{3} \overline{3}}=\langle e\rangle$. Thus $\left|N^{(\overline{0} 120 \overline{1} \overline{3})}\right| \geq|\langle e\rangle|=1$ and so, by
Lemma 1.4, $\left|N t_{0}^{-1} t_{1} t_{2} t_{0} t_{1}^{-1} t_{3}^{-1} N\right|=\frac{|N|}{\left|N^{(012013)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$\overline{0} 120 \overline{1} \overline{3}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{0} 120 \overline{1} \overline{3})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0}^{-1} t_{1} t_{2} t_{0} t_{1}^{-1} t_{3}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0}^{-1} t_{1} t_{2} t_{0} t_{1}^{-1} t_{3}^{-1} t_{3} N=N t_{0}^{-1} t_{1} t_{2} t_{0} t_{1}^{-1} e N=N t_{0}^{-1} t_{1} t_{2} t_{0} t_{1}^{-1} N$ and $N t_{0}^{-1} t_{1} t_{2} t_{0} t_{1}^{-1} t_{3}^{-1} t_{3}^{-1} N=N t_{0}^{-1} t_{1} t_{2} t_{0} t_{1}^{-1} t_{3}^{-2} N=N t_{0}^{-1} t_{1} t_{2} t_{0} t_{1}^{-1} t_{3} N$ $=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1} t_{2} t_{0} t_{1}^{-1} t_{3}^{-1} t_{0} N=$ $N t_{0}^{-1} t_{1} t_{2} t_{3} t_{2}^{-1} t_{1}^{-1} N, N t_{0}^{-1} t_{1} t_{2} t_{0} t_{1}^{-1} t_{3}^{-1} t_{0}^{-1} N=N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2}^{-1} t_{0}^{-1} N$, $N t_{0}^{-1} t_{1} t_{2} t_{0} t_{1}^{-1} t_{3}^{-1} t_{1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2} t_{3} N, N t_{0}^{-1} t_{1} t_{2} t_{0} t_{1}^{-1} t_{3}^{-1} t_{1}^{-1} N$
$=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0}^{-1} t_{2}^{-1} N, N t_{0}^{-1} t_{1} t_{2} t_{0} t_{1}^{-1} t_{3}^{-1} t_{2} N=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{1} t_{0} N$, and $N t_{0}^{-1} t_{1} t_{2} t_{0} t_{1}^{-1} t_{3}^{-1} t_{2}^{-1} N=N t_{0} t_{1} t_{2} t_{3} t_{0} t_{2}^{-1} N$.

Therefore, we conclude that there are no distinct double cosets of the form $N t_{0}^{-1} t_{1} t_{2} t_{0} t_{1}^{-1} t_{3}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
337. We next consider the double coset $N t_{0}^{-1} t_{1} t_{2} t_{3} t_{0} t_{1}^{-1} N$.

Let [$\overline{0} 1230 \overline{1}]$ denote the double coset $N t_{0}^{-1} t_{1} t_{2} t_{3} t_{0} t_{1}^{-1} N$.
Now, with the help of MAGMA, we know that that the following right cosets, or single cosets, are equivalent: $N t_{0}^{-1} t_{1} t_{2} t_{3} t_{0} t_{1}^{-1}=N t_{0}^{-1} t_{2} t_{3} t_{1} t_{0} t_{2}^{-1}=N t_{0}^{-1} t_{3} t_{1} t_{2} t_{0} t_{3}^{-1}$.

That is, in terms of our short-hand notation,

$$
\overline{0} 1230 \overline{1} \sim \overline{0} 2310 \overline{2} \sim \overline{0} 3120 \overline{3} .
$$

By conjugating the equivalence relation above with the elements of S_{4}, we determine that the following single cosets are equivalent in the double coset [$\overline{0} 1230 \overline{1}]$:

$$
\begin{array}{ll}
\overline{0} 1230 \overline{1} \sim \overline{0} 2310 \overline{2} \sim \overline{0} 3120 \overline{3}, & \overline{1} 0231 \overline{0} \sim \overline{1} 2301 \overline{2} \sim \overline{1} 3021 \overline{3}, \\
\overline{2} 1032 \overline{1} \sim \overline{2} 0312 \overline{0} \sim \overline{2} 3102 \overline{3}, & \overline{3} 1203 \overline{1} \sim \overline{3} 2013 \overline{2} \sim \overline{3} 0123 \overline{0}, \\
\overline{0} 2130 \overline{2} \sim \overline{0} 1320 \overline{1} \sim \overline{0} 3210 \overline{3}, & \overline{1} 2031 \overline{2} \sim \overline{1} 0321 \overline{0} \sim \overline{1} 3201 \overline{3}, \\
\overline{2} 0132 \overline{0} \sim \overline{2} 1302 \overline{1} \sim \overline{2} 3012 \overline{3}, & \overline{3} 0213 \overline{0} \sim \overline{3} 2103 \overline{2} \sim \overline{3} 1023 \overline{1}
\end{array}
$$

Since each of the twenty-four single cosets has three names, the double coset [$\overline{0} 1230 \overline{1}]$ must have at most eight distinct single cosets.

Now, $N^{(\overline{0} 1230 \overline{1})}$ has four orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1,2,3\},\{\overline{0}\}$, and $\{\overline{1}, \overline{2}, \overline{3}\}$. Therefore, there are at most four double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0}^{-1} t_{1} t_{2} t_{3} t_{0} t_{1}^{-1} t_{i}^{ \pm 1}, i \in\{0,1\}$.

But note that $N t_{0}^{-1} t_{1} t_{2} t_{3} t_{0} t_{1}^{-1} t_{1} N=N t_{0}^{-1} t_{1} t_{2} t_{3} t_{0} e N=N t_{0}^{-1} t_{1} t_{2} t_{3} t_{0} N$ and
$N t_{0}^{-1} t_{1} t_{2} t_{3} t_{0} t_{1}^{-1} t_{1}^{-1} N=N t_{0}^{-1} t_{1} t_{2} t_{3} t_{0} t_{1}^{-2} N=N t_{0}^{-1} t_{1} t_{2} t_{3} t_{0} t_{1} N$
$=N t_{0} t_{1} t_{2} t_{0} t_{1}^{-1} t_{2} N$.
Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1} t_{2} t_{3} t_{0} t_{1}^{-1} t_{0} N=$ $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{2}^{-1} t_{1}^{-1} N$ and $N t_{0}^{-1} t_{1} t_{2} t_{3} t_{0} t_{1}^{-1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{1} N$.

Therefore, we conclude that there are no distinct double cosets of the form $N t_{0}^{-1} t_{1} t_{2} t_{3} t_{0} t_{1}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
338. We next consider the double coset $N t_{0}^{-1} t_{1} t_{2} t_{3} t_{0} t_{2}^{-1} N$.

Let $[\overline{0} 1230 \overline{2}]$ denote the double coset $N t_{0}^{-1} t_{1} t_{2} t_{3} t_{0} t_{2}^{-1} N$.
Note that $N^{(\overline{0} 1230 \overline{2})} \geq N^{\overline{0} 1230 \overline{2}}$
$=\langle e\rangle$. Thus $\left|N^{(\overline{0} 1230 \overline{2})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0}^{-1} t_{1} t_{2} t_{3} t_{0} t_{2}^{-1} N\right|=$ $\frac{|N|}{\left|N^{(\overline{0} 12302)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$\overline{0} 1230 \overline{2}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{0} 1230 \overline{2})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0}^{-1} t_{1} t_{2} t_{3} t_{0} t_{2}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0}^{-1} t_{1} t_{2} t_{3} t_{0} t_{2}^{-1} t_{2} N=N t_{0}^{-1} t_{1} t_{2} t_{3} t_{0} e N=N t_{0}^{-1} t_{1} t_{2} t_{3} t_{0} N$ and $N t_{0}^{-1} t_{1} t_{2} t_{3} t_{0} t_{2}^{-1} t_{2}^{-1} N=N t_{0}^{-1} t_{1} t_{2} t_{3} t_{0} t_{2}^{-2} N=N t_{0}^{-1} t_{1} t_{2} t_{3} t_{0} t_{2} N$ $=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1} t_{2} t_{3} t_{0} t_{2}^{-1} t_{0} N=$ $N t_{0}^{-1} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} N, N t_{0}^{-1} t_{1} t_{2} t_{3} t_{0} t_{2}^{-1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{2} N$, $N t_{0}^{-1} t_{1} t_{2} t_{3} t_{0} t_{2}^{-1} t_{1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{0}^{-1} N, N t_{0}^{-1} t_{1} t_{2} t_{3} t_{0} t_{2}^{-1} t_{1}^{-1} N$ $=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0} N, N t_{0}^{-1} t_{1} t_{2} t_{3} t_{0} t_{2}^{-1} t_{3} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2} N$, and $N t_{0}^{-1} t_{1} t_{2} t_{3} t_{0} t_{2}^{-1} t_{3}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2} N$.
Therefore, we conclude that there are no distinct double cosets of the form $N t_{0}^{-1} t_{1} t_{2} t_{3} t_{0} t_{2}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
339. We next consider the double coset $N t_{0}^{-1} t_{1} t_{2} t_{3} t_{2}^{-1} t_{1}^{-1} N$.

Let [$[0123 \overline{2} \overline{1}]$ denote the double coset $N t_{0}^{-1} t_{1} t_{2} t_{3} t_{2}^{-1} t_{1}^{-1} N$.
Note that $N^{(\overline{0} 123 \overline{2} \overline{1})} \geq N^{\overline{0} 123 \overline{1} \overline{1}}=\langle e\rangle$. Thus $\left|N^{(\overline{0} 123 \overline{1} \overline{1})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0}^{-1} t_{1} t_{2} t_{3} t_{2}^{-1} t_{1}^{-1} N\right|=\frac{|N|}{\left|N^{(01232 \overline{1})}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$\overline{0} 123 \overline{2} \overline{1}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(\overline{0} 123 \overline{1} \overline{1})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length seven given by $w=t_{0}^{-1} t_{1} t_{2} t_{3} t_{2}^{-1} t_{1}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0}^{-1} t_{1} t_{2} t_{3} t_{2}^{-1} t_{1}^{-1} t_{1} N=N t_{0}^{-1} t_{1} t_{2} t_{3} t_{2}^{-1} e N=N t_{0}^{-1} t_{1} t_{2} t_{3} t_{2}^{-1} N$ and $N t_{0}^{-1} t_{1} t_{2} t_{3} t_{2}^{-1} t_{1}^{-1} t_{1}^{-1} N=N t_{0}^{-1} t_{1} t_{2} t_{3} t_{2}^{-1} t_{1}^{-2} N=N t_{0}^{-1} t_{1} t_{2} t_{3} t_{2}^{-1} t_{1} N$ $=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0}^{-1} t_{2} N$.
Moreover, with the help of MAGMA, we know that $N t_{0}^{-1} t_{1} t_{2} t_{3} t_{2}^{-1} t_{1}^{-1} t_{0} N=$ $N t_{0} t_{1} t_{2} t_{3}^{-1} t_{2}^{-1} t_{0}^{-1} N, N t_{0}^{-1} t_{1} t_{2} t_{3} t_{2}^{-1} t_{1}^{-1} t_{0}^{-1} N=N t_{0}^{-1} t_{1} t_{2} t_{0} t_{1}^{-1} t_{3}^{-1} N$, $N t_{0}^{-1} t_{1} t_{2} t_{3} t_{2}^{-1} t_{1}^{-1} t_{2} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0} N, N t_{0}^{-1} t_{1} t_{2} t_{3} t_{2}^{-1} t_{1}^{-1} t_{2}^{-1} N$ $=N t_{0} t_{1} t_{2} t_{0} t_{1} t_{3} N, N t_{0}^{-1} t_{1} t_{2} t_{3} t_{2}^{-1} t_{1}^{-1} t_{3} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3}^{-1} N$, and $N t_{0}^{-1} t_{1} t_{2} t_{3} t_{2}^{-1} t_{1}^{-1} t_{3}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{0} N$.

Therefore, we conclude that there are no distinct double cosets of the form $N t_{0}^{-1} t_{1} t_{2} t_{3} t_{2}^{-1} t_{1}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
340. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} N$.

Let $[0 \overline{1} 201 \overline{0} \overline{2}]$ denote the double $\operatorname{coset} N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} N$.
Note that $N^{(0 \overline{1} 201 \overline{0} \overline{2})} \geq N^{0 \overline{1} 201 \overline{0} \overline{2}}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} 201 \overline{0} \overline{2})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} N\right|=\frac{|N|}{\left|N^{(0120102)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} 201 \overline{0} \overline{2}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} 201 \overline{0} \overline{2})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length eight given by $w=t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{2} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} e N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} t_{2}^{-2} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} t_{2} N$ $=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} t_{0} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{0} N=$ $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{2} N, N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{0}^{-1} N=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} N$, $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{0} N, N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{1} N, N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3} N=N t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} t_{3} N$, and $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{0}^{-1} N$.
Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
341. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} t_{3} N$.

Let $[0 \overline{1} 201 \overline{0} 3]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} t_{3} N$.
Note that $N^{(0 \overline{1} 2010 \bar{O} 3)} \geq N^{0 \overline{1} 2010 \bar{O} 3}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} 2010 \bar{O} 3)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} t_{3} N\right|=\frac{|N|}{\left|N^{(0 \overline{1} 201 \overline{0} 3)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} 201 \overline{0} 3]$ has at most twenty-four distinct single cosets. Moreover, $N^{(01 \overline{2010} 3)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.
Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length eight given by $w=t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} t_{3} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} t_{3} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} e N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{2}^{\prime} t_{0} t_{1} t_{0}^{-1} t_{3} t_{3} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} t_{3}^{2} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} t_{3}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} t_{3} t_{0} N=$
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{0}^{-1} N, N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} t_{3} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{2}^{-1} t_{1} N$,
$N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} t_{3} t_{1} N=N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{3} N, N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} t_{3} t_{1}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{3}^{-1} N, N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} t_{3} t_{2} N=N t_{0} t_{1} t_{2}^{-1} t_{1} t_{3} t_{0} N$, and
$N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} t_{3} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} t_{1}^{-1} N$.
Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} t_{3} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
342. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} t_{3}^{-1} N$.

Let $[0 \overline{1} 2010 \overline{3}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} t_{3}^{-1} N$.
Note that $N^{(0 \overline{1} 201 \overline{0} \overline{3})} \geq N^{0 \overline{1} 201 \overline{0} \overline{3}}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} 201 \overline{0} \overline{3})}\right| \geq|\langle e\rangle|=1$ and so, by
Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} t_{3}^{-1} N\right|=\frac{|N|}{\mid N^{(01201 \bar{O} \overline{3})}} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} 201 \overline{0} \overline{3}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} 201 \overline{0} \overline{3})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length eight given by $w=t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} t_{3}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} t_{3}^{-1} t_{3} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} e N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} t_{3}^{-1} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} t_{3}^{-2} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} t_{3} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} t_{3}^{-1} t_{0} N=$
$N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{1} N, N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} t_{3}^{-1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{2}^{-1} N$,
$N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} t_{3}^{-1} t_{1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{0} N, N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} t_{3}^{-1} t_{1}^{-1} N$
$=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{0}^{-1} N, N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} t_{3}^{-1} t_{2} N=N t_{0} t_{1} t_{2} t_{0} t_{3}^{-1} t_{0} N$, and
$N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} t_{3}^{-1} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} t_{3}^{-1} N$.
Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} t_{3}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
343. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} N$.

Let $[0 \overline{1} 201 \overline{2} \overline{3}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} N$.

Now, with the help of MAGMA, we know that that the following right cosets, or single cosets, are equivalent: $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{2}^{-1} t_{3}^{-1}=N t_{2} t_{3}^{-1} t_{0} t_{2} t_{3} t_{0}^{-1} t_{1}^{-1}$.

That is, in terms of our short-hand notation,

$$
0 \overline{1} 201 \overline{2} \overline{3} \sim 2 \overline{3} 023 \overline{0} \overline{1}
$$

By conjugating the equivalence relation above with the elements of S_{4}, we determine that the following single cosets are equivalent in the double coset [$0 \overline{1} 201 \overline{2} \overline{3}]$:

$0 \overline{1} 201 \overline{2} \overline{3} \sim 2 \overline{3} 0230 \overline{1}$,	$1 \overline{0} 210 \overline{2} \overline{3} \sim 2 \overline{3} 123 \overline{1} \overline{0}$,	$2 \overline{1} 0210 \overline{3} \overline{3} \sim 0 \overline{3} 203 \overline{2} \overline{1}$,
$3 \overline{1} 231 \overline{2} \overline{0} \sim 2 \overline{0} 320 \overline{3} \overline{1}$,	$0 \overline{2} 102 \overline{1} \overline{3} \sim 1 \overline{3} 013 \overline{0} \overline{2}$,	$0 \overline{1} 301 \overline{3} \overline{2} \sim 3 \overline{2} 032 \overline{0} \overline{1}$,
$1 \overline{2} 012 \overline{0} \overline{3} \sim 0 \overline{3} 103 \overline{1} \overline{2}$,	$2 \overline{0} 120 \overline{1} \overline{3} \sim 1 \overline{3} 213 \overline{2} \overline{0}$,	$3 \overline{0} 230 \overline{2} \overline{1} \sim 2 \overline{1} 321 \overline{3} \overline{0}$,
$3 \overline{1} 031 \overline{0} \overline{2} \sim 0 \overline{2} 302 \overline{3} \overline{1}$,	$1 \overline{2} 312 \overline{3} \overline{0} \sim 3 \overline{0} 130 \overline{1} \overline{2}$,	$1 \overline{0} 310 \overline{3} \overline{2} \sim 3 \overline{2} 132 \overline{1} \overline{0}$

Since each of the twenty-four single cosets has two names, the double coset [$0 \overline{1} 201 \overline{2} \overline{3}]$ must have at most twelve distinct single cosets.

Now, $N^{(0 \overline{1} 201 \overline{2} \overline{3})}$ has four orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0,2\},\{1,3\},\{\overline{0}, \overline{2}\}$, and $\{\overline{1}, \overline{3}\}$.

Therefore, there are at most four double cosets of the form $N w N$, where w is a word of length eight given by $w=t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{i}^{ \pm 1}, i \in\{0,3\}$.

But note that $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{3} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{2}^{-1} e N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{2}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{2}^{-1} t_{3}^{-2} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{2}^{-1} t_{3} N$ $=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{0} N=$ $N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2} N$ and $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{1} t_{2}^{-1} N$.

Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
344. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} N$.

Let [$0 \overline{1} 20 \overline{1} \overline{2} \overline{0}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} N$.
Note that $N^{(0 \overline{1} 20 \overline{1} \overline{\mathrm{~L}})} \geq N^{0 \overline{1} 20 \overline{1} \overline{\mathrm{O}} \overline{0}}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} 20 \overline{1} \overline{\mathrm{O}} \overline{\mathrm{O}})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} N\right|=\frac{|N|}{\left|N^{(0 \overline{1} 201 \overline{1} \bar{O})}\right|} \leq \frac{24}{1}=24$.

Therefore, the double coset [$0 \overline{1} 20 \overline{1} \overline{2} \overline{0}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{0} 20 \overline{1} \overline{2} \overline{0})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length eight given by $w=t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{0} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2}^{-1} e N$
$=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{0}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-2} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{2}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} N=$
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} t_{2} t_{1}^{-1} N, N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} t_{2} N$,
$N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2} N=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{0}^{-1} N, N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{2}^{-1} N$ $=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0} N, N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} t_{0}^{-1} N$, and $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} N=N t_{0} t_{1} t_{2} t_{0} t_{3} t_{0}^{-1} N$.

Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
345. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} N$.

Let $[0 \overline{1} 20 \overline{1} \overline{2} 3]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} N$.
Note that $N^{(0 \overline{1} 20 \overline{1} \overline{2} 3)} \geq N^{0 \overline{1} 20 \overline{1} \overline{2} 3}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} 20 \overline{1} \overline{2} 3)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} N\right|=\frac{|N|}{\left|N^{(0 \overline{1} 2 \overline{1} \overline{1} 3)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} 20 \overline{1} \overline{2} 3]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} 20 \overline{1} \overline{2} 3)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length eight given by $w=t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2}^{-1} e N$
$=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{3} N$
$=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{2} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{0}^{-1} t_{3}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} N=$ $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2} N, N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{0}^{-1} N$,
$N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{1}^{-1} N, N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{2} N, N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2} N=N t_{0} t_{1} t_{2} t_{0} t_{3}^{-1} t_{0}^{-1} N$, and
$N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{0}^{-1} N$.
Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
346. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1} t_{3}^{-1} N$.

Let $[0 \overline{1} 20 \overline{3} 1 \overline{3}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1} t_{3}^{-1} N$.
Note that $N^{(0 \overline{1} 20 \overline{3} 1 \overline{3})} \geq N^{0 \overline{1} 20 \overline{3} 1 \overline{3}}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} 20 \overline{3} 1 \overline{3})}\right| \geq|\langle e\rangle|=1$ and so, by
Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1} t_{3}^{-1} N\right|=\frac{|N|}{\left|N^{(0120313)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset $[0 \overline{1} 20 \overline{3} 1 \overline{3}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} 20 \overline{3} 1 \overline{3})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length eight given by $w=t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1} t_{3}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1} t_{3}^{-1} t_{3} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1} e N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1} N$ and $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1} t_{3}^{-1} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1} t_{3}^{-2} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1} t_{3} N$ $=N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1} t_{3}^{-1} t_{0} N=$ $N t_{0} t_{1} t_{2} t_{0} t_{3}^{-1} t_{0} N, N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1} t_{3}^{-1} t_{0}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{0}^{-1} N$, $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1} t_{3}^{-1} t_{1} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{1} N, N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1} t_{3}^{-1} t_{1}^{-1} N$ $=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{0}^{-1} N, N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1} t_{3}^{-1} t_{2} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{2}^{-1} t_{1} N$, and $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1} t_{3}^{-1} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} t_{0} N$.

Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1} t_{3}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
347. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1}^{-1} t_{0}^{-1} N$.

Let $[0 \overline{1} 20 \overline{3} \overline{1} \overline{0}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1}^{-1} t_{0}^{-1} N$.
Now, with the help of MAGMA, we know that that the following right cosets, or single cosets, are equivalent: $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1}^{-1} t_{0}^{-1}=N t_{1} t_{0}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0}^{-1} t_{1}^{-1}$.

That is, in terms of our short-hand notation,

$$
0 \overline{1} 20 \overline{3} \overline{1} \overline{0} \sim 10 \overline{0} 21 \overline{3} \overline{0} \overline{1}
$$

By conjugating the equivalence relation above with the elements of S_{4}, we determine that the following single cosets are equivalent in the double coset [$0 \overline{1} 20 \overline{3} \overline{1} \overline{0}]$:

$0 \overline{1} 20 \overline{3} \overline{1} \overline{0} \sim 1 \overline{0} 213 \overline{3} \overline{1} \overline{1}$,	$2 \overline{1} 02 \overline{3} \overline{1} \overline{2} \sim 1 \overline{2} 013 \overline{3} \overline{1}$,	$3 \overline{1} 23 \overline{0} \overline{1} \overline{3} \sim 1 \overline{3} 210 \overline{3} \overline{1}$,
$0 \overline{2} 10 \overline{3} \overline{2} \overline{0} \sim 2 \overline{0} 12 \overline{3} \overline{0} \overline{2}$,	$0 \overline{3} 20 \overline{1} \overline{3} \overline{0} \sim 3 \overline{0} 23 \overline{1} \overline{0} \overline{3}$,	$0 \overline{1} 30 \overline{2} \overline{1} \overline{0} \sim 1 \overline{0} 31 \overline{2} \overline{0} \overline{1}$,
$0 \overline{2} 30 \overline{1} \overline{2} \overline{0} \sim 2 \overline{0} 32 \overline{1} \overline{0} \overline{2}$,	$0 \overline{3} 10 \overline{2} \overline{3} \overline{0} \sim 3 \overline{0} 13 \overline{2} \overline{0} \overline{3}$,	$2 \overline{1} 32 \overline{0} \overline{1} \overline{2} \sim 1 \overline{2} 31 \overline{0} \overline{2} \overline{1}$,
$3 \overline{1} 03 \overline{2} \overline{1} \overline{3} \sim 1 \overline{3} 01 \overline{2} \overline{3} \overline{1}$,	$2 \overline{3} 12 \overline{0} \overline{3} \overline{2} \sim 3 \overline{2} 13 \overline{0} \overline{2} \overline{3}$,	$3 \overline{2} 03 \overline{1} \overline{2} \overline{3} \sim 2 \overline{3} 02 \overline{1} \overline{3} \overline{2}$

Since each of the twenty-four single cosets has two names, the double $\operatorname{coset}[0 \overline{1} 20 \overline{3} \overline{1} \overline{0}]$ must have at most twelve distinct single cosets.

Now, $N^{(0 \overline{1} 20 \overline{1} \overline{1} \overline{0})}$ has six orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0,1\},\{2\},\{3\},\{\overline{0}, \overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most six double cosets of the form $N w N$, where w is a word of length eight given by $w=t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1}^{-1} t_{0}^{-1} t_{i}^{ \pm 1}, i \in\{0,2,3\}$.
But note that $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1}^{-1} t_{0}^{-1} t_{0} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1}^{-1} e N$
$=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1}^{-1} t_{0}^{-1} t_{0}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1}^{-1} t_{0}^{-2} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1}^{-1} t_{0} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1}^{-1} t_{0}^{-1} t_{2} N=$ $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0}^{-1} t_{3}^{-1} N, N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} N=N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3} t_{2}^{-1} N$, $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1}^{-1} t_{0}^{-1} t_{3} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3} t_{2}^{-1} N$, and $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1}^{-1} t_{0}^{-1} t_{3}^{-1} N$ $=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} t_{2} N$.

Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1}^{-1} t_{0}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
348. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1}^{-1} t_{2}^{-1} N$.

Let $[0 \overline{1} 20 \overline{3} \overline{1} \overline{2}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1}^{-1} t_{2}^{-1} N$.
Now, with the help of MAGMA, we know that that the following right cosets, or single cosets, are equivalent: $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1}^{-1} t_{2}^{-1}=N t_{2} t_{3}^{-1} t_{0} t_{2} t_{1}^{-1} t_{3}^{-1} t_{0}^{-1}$.

That is, in terms of our short-hand notation,

$$
0 \overline{1} 20 \overline{3} \overline{1} \overline{2} \sim 2 \overline{3} 02 \overline{1} \overline{3} \overline{0} .
$$

By conjugating the equivalence relation above with the elements of S_{4}, we determine that the following single cosets are equivalent in the double coset [$0 \overline{1} 20 \overline{3} \overline{1} \overline{2}]$:

$0 \overline{1} 20 \overline{3} \overline{1} \overline{2} \sim 2 \overline{3} 02 \overline{1} \overline{3} \overline{0}$,	$1 \overline{0} 21 \overline{3} \overline{0} \overline{2} \sim 2 \overline{3} 12 \overline{0} \overline{3} \overline{1}$,	$2 \overline{1} 02 \overline{3} \overline{1} \overline{0} \sim 0 \overline{3} 20 \overline{3} \overline{2} \overline{2}$,
$3 \overline{1} 23 \overline{0} \overline{1} \overline{2} \sim 2 \overline{0} 32 \overline{1} \overline{0} \overline{3}$,	$0 \overline{2} 10 \overline{3} \overline{2} \overline{1} \sim 1 \overline{3} 01 \overline{2} \overline{3} \overline{0}$,	$0 \overline{1} 30 \overline{2} \overline{1} \overline{3} \sim 3 \overline{2} 03 \overline{1} \overline{2} \overline{0}$,
$0 \overline{2} 30 \overline{1} \overline{2} \overline{3} \sim 3 \overline{1} 03 \overline{2} \overline{1} \overline{0}$,	$0 \overline{3} 10 \overline{2} \overline{3} \overline{1} \sim 1 \overline{2} 01 \overline{3} \overline{2} \overline{0}$,	$2 \overline{1} 32 \overline{0} \overline{1} \overline{3} \sim 3 \overline{0} 23 \overline{1} \overline{0} \overline{2}$,
$2 \overline{0} 12 \overline{3} \overline{0} \overline{1} \sim 1 \overline{3} 210 \overline{3} \overline{3}$,	$10 \overline{0} 312 \overline{2} \overline{3} \sim 3 \overline{2} 13 \overline{0} \overline{2} \overline{1}$,	$12 \overline{2} 310 \overline{0} \overline{3} \sim 3 \overline{0} 13 \overline{2} \overline{0} \overline{1}$

Since each of the twenty-four single cosets has two names, the double coset [0 $\overline{1} 20 \overline{3} \overline{1} \overline{2}]$ must have at most twelve distinct single cosets.

Now, $N^{(0 \overline{1} 20 \overline{3} \overline{1} \overline{2})}$ has four orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0,2\},\{1,3\},\{\overline{0}, \overline{2}\}$, and $\{\overline{1}, \overline{3}\}$.

Therefore, there are at most four double cosets of the form $N w N$, where w is a word of length eight given by $w=t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1}^{-1} t_{2}^{-1} t_{i}^{ \pm 1}, i \in\{1,2\}$.
But note that $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1}^{-1} t_{2}^{-1} t_{2} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1}^{-1} e N$
$=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1}^{-1} t_{2}^{-1} t_{2}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1}^{-1} t_{2}^{-2} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1}^{-1} t_{2} N=N t_{0} t_{1} t_{2} t_{0} t_{1}^{-1} t_{2} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1} N=$ $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0} t_{3}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1}^{-1} t_{2}^{-1} t_{1}^{-1} N=N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} N$.
Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1}^{-1} t_{2}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
349. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0}^{-1} t_{3}^{-1} N$.

Let $[0 \overline{1} 213 \overline{0} \overline{3}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0}^{-1} t_{3}^{-1} N$.
Now, with the help of MAGMA, we know that that the following right cosets, or single cosets, are equivalent: $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0}^{-1} t_{3}^{-1}=N t_{3} t_{1}^{-1} t_{2} t_{1} t_{0} t_{3}^{-1} t_{0}^{-1}$.

That is, in terms of our short-hand notation,

$$
0 \overline{1} 213 \overline{0} \overline{3} \sim 3 \overline{1} 210 \overline{3} \overline{0} .
$$

By conjugating the equivalence relation above with the elements of S_{4}, we determine that the following single cosets are equivalent in the double coset [$0 \overline{1} 213 \overline{0} \overline{3}]$:

$$
\begin{array}{lll}
0 \overline{1} 213 \overline{0} \overline{3} \sim 3 \overline{1} 210 \overline{3} \overline{0}, & 1 \overline{0} 203 \overline{1} \overline{3} \sim 3 \overline{0} 201 \overline{3} \overline{1}, & 2 \overline{1} 013 \overline{2} \overline{3} \sim 3 \overline{1} 012 \overline{3} \overline{2}, \\
0 \overline{2} 123 \overline{0} \overline{3} \sim 3 \overline{2} 120 \overline{3} \overline{0}, & 0 \overline{3} 231 \overline{0} \overline{1} \sim 1 \overline{3} 230 \overline{1} \overline{0}, & 0 \overline{1} 312 \overline{0} \overline{2} \sim 2 \overline{1} 310 \overline{2} \overline{0}, \\
1 \overline{2} 023 \overline{3} \overline{3} \sim 3 \overline{2} 021 \overline{3} \overline{1}, & 2 \overline{0} 103 \overline{2} \overline{3} \sim 3 \overline{0} 102 \overline{3} \overline{2}, & 02 \overline{2} 3210 \overline{1} \overline{1} \sim 1 \overline{2} 320 \overline{1} \overline{0}, \\
0 \overline{3} 132 \overline{0} \overline{2} \sim 2 \overline{3} 130 \overline{2} \overline{0}, & 1 \overline{3} 032 \overline{1} \overline{2} \sim 2 \overline{3} 0311 \overline{2} \overline{1}, & 2 \overline{0} 301 \overline{2} \overline{1} \sim 1 \overline{0} 302 \overline{1} \overline{2}
\end{array}
$$

Since each of the twenty-four single cosets has two names, the double coset [012130̄ $\overline{3}]$ must have at most twelve distinct single cosets.

Now, $N^{(0 \overline{1} 213 \overline{3} \overline{3})}$ has six orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0,3\},\{1\},\{2\},\{\overline{0}, \overline{3}\},\{\overline{1}\}$, and $\{\overline{2}\}$.

Therefore, there are at most six double cosets of the form $N w N$, where w is a word of length eight given by $w=t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0}^{-1} t_{3}^{-1} t_{i}^{ \pm 1}, i \in\{1,2,3\}$.

But note that $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0}^{-1} t_{3}^{-1} t_{3} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0}^{-1} e N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0}^{-1} t_{3}^{-1} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0}^{-1} t_{3}^{-2} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0}^{-1} t_{3} N$ $=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0}^{-1} t_{3}^{-1} t_{1} N=$ $N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3} t_{2}^{-1} N, N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0}^{-1} t_{3}^{-1} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1}^{-1} t_{0}^{-1} N$,
$N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0}^{-1} t_{3}^{-1} t_{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{2} N$, and $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0}^{-1} t_{3}^{-1} t_{2}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1}^{-1} t_{0} N$.
Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0}^{-1} t_{3}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
350. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{2}^{-1} t_{1} N$.

Let $[0 \overline{1} 213 \overline{2} 1]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{2}^{-1} t_{1} N$.
Note that $N^{(0 \overline{1} 213 \overline{2} 1)} \geq N^{00 \overline{1} 213 \overline{2} 1}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} 213 \overline{2} 1)}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{2}^{-1} t_{1} N\right|=\frac{|N|}{\left|N^{(0 \overline{1} 21321)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} 213 \overline{2} 1]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} 213 \overline{2} 1)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length eight given by $w=t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{2}^{-1} t_{1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{2}^{-1} t_{1} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{2}^{-1} e N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{2}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{2}^{-1} t_{1} t_{1} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{2}^{-1} t_{1}^{2} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{2}^{-1} t_{1}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{0} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{2}^{-1} t_{1} t_{0} N=$
$N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1} t_{0}^{-1} t_{3} N, N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{2}^{-1} t_{1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{0}^{-1} N$,
$N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{2}^{-1} t_{1} t_{2} N=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} t_{0} N, N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{2}^{-1} t_{1} t_{2}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1} t_{3}^{-1} N, N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{2}^{-1} t_{1} t_{3} N=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{2} N$, and
$N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{2}^{-1} t_{1} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{2}^{-1} t_{1}^{-1} N$.
Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{2}^{-1} t_{1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
351. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0} t_{2} N$.

Let [$0 \overline{1} 21 \overline{3} 02]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0} t_{2} N$.
Now, with the help of MAGMA, we know that that the following right cosets, or single cosets, are equivalent: $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0} t_{2}=N t_{1} t_{0}^{-1} t_{3} t_{0} t_{2}^{-1} t_{1} t_{3}$.

That is, in terms of our short-hand notation,

$$
0 \overline{1} 21 \overline{3} 02 \sim 1 \overline{0} 30 \overline{2} 13 .
$$

By conjugating the equivalence relation above with the elements of S_{4}, we determine that the following single cosets are equivalent in the double coset [$0 \overline{1} 21 \overline{3} 02$]:

$$
\begin{array}{lll}
0 \overline{1} 21 \overline{3} 02 \sim 1 \overline{0} 30 \overline{2} 13, & 10 \overline{0} 20 \overline{3} 12 \sim 0 \overline{1} 31 \overline{2} 03, & 2 \overline{1} 01 \overline{3} 20 \sim 1 \overline{2} 320 \overline{1} 13, \\
3 \overline{1} 21 \overline{0} 32 \sim 1 \overline{3} 03 \overline{2} 10, & 0 \overline{2} 12 \overline{3} 01 \sim 2 \overline{0} 30 \overline{1} 23, & 0 \overline{3} 23 \overline{1} 02 \sim 3 \overline{0} 10 \overline{2} 31, \\
1 \overline{2} 02 \overline{3} 10 \sim 2 \overline{1} 31 \overline{0} 23, & 2 \overline{0} 10 \overline{3} 21 \sim 0 \overline{2} 32 \overline{1} 03, & 1 \overline{3} 23 \overline{0} 12 \sim 3 \overline{1} 01 \overline{2} 30, \\
3 \overline{0} 20 \overline{1} 32 \sim 0 \overline{3} 13 \overline{2} 01, & 2 \overline{3} 03 \overline{1} 20 \sim 3 \overline{2} 12 \overline{0} 31, & 2 \overline{3} 13 \overline{0} 21 \sim 3 \overline{2} 02 \overline{1} 30
\end{array}
$$

Since each of the twenty-four single cosets has two names, the double coset [$0 \overline{2} 21 \overline{3} 02$] must have at most twelve distinct single cosets.

Now, $N^{(0 \overline{1} 21 \overline{3} 02)}$ has four orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0,1\},\{2,3\},\{\overline{0}, \overline{1}\}$, and $\{\overline{2}, \overline{3}\}$.

Therefore, there are at most four double cosets of the form $N w N$, where w is a word of length eight given by $w=t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0} t_{2} t_{i}^{ \pm 1}, i \in\{0,2\}$.
But note that $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0} t_{2} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0} e N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0} N$ and $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0} t_{2} t_{2} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0} t_{2}^{2} N=N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0} t_{2}^{-1} N$ $=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{0}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0} t_{2} t_{0} N=$ $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{1}^{-1} N$, and $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0} t_{2} t_{0}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0} N$.

Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0} t_{2} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
352. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{0} t_{2} N$.

Let [0123102] denote the double coset $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{0} t_{2} N$.
Now, with the help of MAGMA, we know that that the following right cosets, or single cosets, are equivalent: $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{0} t_{2}=N t_{1} t_{0}^{-1} t_{3} t_{2} t_{0} t_{1} t_{3}$.

That is, in terms of our short-hand notation,

$$
0 \overline{1} 23102 \sim 1 \overline{0} 32013
$$

By conjugating the equivalence relation above with the elements of S_{4}, we determine that the following single cosets are equivalent in the double coset [0123102]:

$$
\begin{array}{lll}
0 \overline{1} 23102 \sim 1 \overline{0} 32013, & 1 \overline{0} 23012 \sim 0 \overline{1} 32103, & 2 \overline{1} 03120 \sim 1 \overline{2} 30213, \\
3 \overline{1} 20132 \sim 1 \overline{3} 02310, & 0 \overline{2} 13201 \sim 2 \overline{0} 31023, & 0 \overline{3} 21302 \sim 3 \overline{0} 12031, \\
1 \overline{2} 03210 \sim 2 \overline{1} 30123, & 2 \overline{0} 13021 \sim 0 \overline{2} 31203, & 1 \overline{3} 20312 \sim 3 \overline{1} 02130, \\
3 \overline{0} 21032 \sim 0 \overline{3} 12301, & 2 \overline{3} 01320 \sim 3 \overline{2} 10231, & 1 \overline{3} 02310 \sim 3 \overline{1} 20132
\end{array}
$$

Since each of the twenty-four single cosets has two names, the double coset [0123102] must have at most twelve distinct single cosets.

Now, $N^{(0 \overline{1} 23102)}$ has four orbits on $\mathcal{T}=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0,1\},\{2,3\},\{\overline{0}, \overline{1}\}$, and $\{\overline{2}, \overline{3}\}$.

Therefore, there are at most four double cosets of the form $N w N$, where w is a word of length eight given by $w=t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{0} t_{2} t_{i}^{ \pm 1}, i \in\{0,2\}$.

But note that $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{0} t_{2} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{0} e N=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{0} N$ and $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{0} t_{2} t_{2} N=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{0} t_{2}^{2} N=N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{0} t_{2}^{-1} N$ $=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} t_{1}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{0} t_{2} t_{0} N=$ $N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{1} N$ and $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{0} t_{2} t_{0}^{-1} N=N t_{0} t_{1} t_{2} t_{3} t_{0} t_{2}^{-1} N$.

Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1}^{-1} t_{2} t_{3} t_{1} t_{0} t_{2} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
353. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2} t_{3} N$.

Let [$0 \overline{1} \overline{2} 0123]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2} t_{3} N$.
Note that $N^{(0 \overline{1} \overline{2} 0123)} \geq N^{0 \overline{1} \overline{2} 0123}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{2} 0123)}\right| \geq|\langle e\rangle|=1$ and so, by
Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2} t_{3} N\right|=\frac{|N|}{\left|N^{(0 \overline{1} 20123)}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [01 $\overline{2} 0123]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} \overline{2} 0123)}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length eight given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2} t_{3} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.

But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2} t_{3} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2} e N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2} t_{3} t_{3} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2} t_{3}^{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2} t_{3}^{-1} N$ $=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3} t_{0} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2} t_{3} t_{0} N=$
$N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0}^{-1} t_{2}^{-1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2} t_{3} t_{0}^{-1} N=N t_{0}^{-1} t_{1} t_{2} t_{0} t_{1}^{-1} t_{3}^{-1} N$,
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2} t_{3} t_{1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2} t_{3} t_{1}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{3}^{-1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2} t_{3} t_{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3} N$, and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2} t_{3} t_{2}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1}^{-1} N$.

Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{2} t_{3} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
354. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3} t_{2}^{-1} N$.

Let $[0 \overline{1} \overline{2} \overline{0} 13 \overline{2}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3} t_{2}^{-1} N$.

Now, with the help of MAGMA, we know that that the following right cosets, or single cosets, are equivalent: $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3} t_{2}^{-1}=N t_{1} t_{0}^{-1} t_{3}^{-1} t_{2}^{-1} t_{0} t_{1} t_{3}^{-1}$.

That is, in terms of our short-hand notation,

$$
0 \overline{1} \overline{2} \overline{0} 13 \overline{2} \sim 1 \overline{0} \overline{3} \overline{2} 01 \overline{3} .
$$

By conjugating the equivalence relation above with the elements of S_{4}, we determine that the following single cosets are equivalent in the double coset [$0 \overline{1} \overline{2} \overline{0} 13 \overline{3}]$:

$$
\begin{array}{lll}
0 \overline{1} \overline{2} \overline{0} 13 \overline{2} \sim 1 \overline{0} \overline{3} 2 \overline{2} 01 \overline{3}, & 1 \overline{0} \overline{2} \overline{3} 01 \overline{2} \sim 0 \overline{1} \overline{3} \overline{2} 10 \overline{3}, & 2 \overline{1} \overline{0} \overline{3} 12 \overline{0} \sim 1 \overline{2} \overline{3} \overline{0} 21 \overline{3}, \\
3 \overline{1} \overline{2} \overline{0} 13 \overline{2} \sim 1 \overline{3} \overline{0} \overline{2} 310, & 0 \overline{2} \overline{1} \overline{3} 20 \overline{\overline{1}} \sim 2 \overline{0} \overline{3} 102 \overline{3}, & 0 \overline{3} \overline{2} \overline{1} 30 \overline{2} \sim 3 \overline{0} \overline{1} \overline{2} 03 \overline{1}, \\
1 \overline{2} \overline{0} \overline{3} 21 \overline{0} \sim 2 \overline{1} \overline{3} \overline{0} 12 \overline{3}, & 2 \overline{0} \overline{1} \overline{3} 02 \overline{1} \sim 0 \overline{2} \overline{3} \overline{1} 20 \overline{3}, & 1 \overline{3} \overline{2} 031 \overline{2} \sim 3 \overline{1} \overline{2} \overline{2} 13 \overline{0}, \\
3 \overline{0} \overline{2} \overline{1} 03 \overline{2} \sim 0 \overline{3} \overline{1} \overline{2} 30 \overline{1}, & 2 \overline{3} \overline{0} \overline{1} 32 \overline{0} \sim 3 \overline{2} \overline{1} 23 \overline{1}, & 1 \overline{3} \overline{2} 31 \overline{0} \sim 3 \overline{1} \overline{2} \overline{0} 13 \overline{2}
\end{array}
$$

Since each of the twenty-four single cosets has two names, the double coset [$0 \overline{1} \overline{2} \overline{0} 13 \overline{2}]$ must have at most twelve distinct single cosets.

Now, $N^{(0 \overline{1} \overline{2} \overline{0} 13 \overline{2})}$ has six orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0,2\},\{1\},\{3\},\{\overline{0}, \overline{2}\},\{\overline{1}\}$, and $\{\overline{3}\}$.

Therefore, there are at most six double cosets of the form $N w N$, where w is a word of length eight given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3} t_{2}^{-1} t_{i}^{ \pm 1}, i \in\{1,2,3\}$.
But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3} t_{2}^{-1} t_{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3} e N$
$=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3} t_{2}^{-1} t_{2}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3} t_{2}^{-2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3} t_{2} N=N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3} t_{2}^{-1} t_{1} N=$
$N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{1} t_{0} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3} t_{2}^{-1} t_{3} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0} t_{2} N$,
and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3} t_{2}^{-1} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} t_{1}^{-1} t_{0}^{-1} N$.
Therefore, we conclude that there is one distinct double coset of the form
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3} t_{2}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}: N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3} t_{2}^{-1} t_{1}^{-1} N$.
355. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3}^{-1} t_{1}^{-1} N$.

Let [$0 \overline{1} \overline{2} \overline{0} 1 \overline{3} \overline{1}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3}^{-1} t_{1}^{-1} N$.
Now, with the help of MAGMA, we know that that the following right cosets, or single cosets, are equivalent: $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3}^{-1} t_{1}^{-1}=N t_{2} t_{3}^{-1} t_{0}^{-1} t_{2}^{-1} t_{3} t_{1}^{-1} t_{3}^{-1}$.

That is, in terms of our short-hand notation,

$$
0 \overline{1} \overline{2} \overline{0} 1 \overline{3} \overline{1} \sim 2 \overline{3} \overline{2} \overline{2} 3 \overline{1} \overline{3} .
$$

By conjugating the equivalence relation above with the elements of S_{4}, we determine that the following single cosets are equivalent in the double coset [$0 \overline{1} \overline{2} \overline{0} 1 \overline{3} \overline{1}]$:

$$
\begin{array}{lll}
0 \overline{1} \overline{2} \overline{0} 1 \overline{3} \overline{1} \sim 2 \overline{3} 0 \overline{2} 33 \overline{1} \overline{3}, & 10 \overline{2} \overline{1} 0 \overline{3} \overline{0} \sim 2 \overline{3} \overline{1} \overline{2} 30 \overline{3}, & 2 \overline{1} \overline{0} \overline{2} 1 \overline{3} \overline{1} \sim 0 \overline{3} \overline{2} 03 \overline{1} \overline{3}, \\
3 \overline{1} \overline{2} \overline{3} 1 \overline{0} \overline{1} \sim 2 \overline{0} \overline{3} \overline{2} 0 \overline{1} \overline{0}, & 0 \overline{2} \overline{1} \overline{0} 2 \overline{3} \overline{2} \sim 1 \overline{3} \overline{0} \overline{1} 3 \overline{2} \overline{3}, & 0 \overline{1} \overline{3} \overline{0} 1 \overline{2} \overline{1} \sim 3 \overline{2} \overline{0} \overline{3} 2 \overline{1} \overline{2}, \\
1 \overline{2} \overline{0} \overline{1} 2 \overline{3} \overline{2} \sim 0 \overline{3} \overline{1} 0 \overline{0} 3 \overline{3}, & 2 \overline{0} \overline{1} \overline{2} 0 \overline{3} \overline{0} \sim 1 \overline{3} \overline{2} \overline{1} 30 \overline{3}, & 3 \overline{0} \overline{2} \overline{3} 0 \overline{1} \overline{0} \sim 2 \overline{1} \overline{3} \overline{2} 1 \overline{0} \overline{1}, \\
3 \overline{1} \overline{0} \overline{3} 1 \overline{2} \overline{1} \sim 0 \overline{2} \overline{3} \overline{0} 2 \overline{1} \overline{2}, & 1 \overline{0} \overline{3} \overline{1} 0 \overline{2} \overline{0} \sim 3 \overline{2} \overline{1} \overline{3} 2 \overline{0} \overline{2}, & 1 \overline{2} \overline{3} \overline{1} 2 \overline{0} \overline{2} \sim 3 \overline{0} \overline{1} 30 \overline{2} \overline{0}
\end{array}
$$

Since each of the twenty-four single cosets has two names, the double coset [$0 \overline{1} \overline{2} \overline{0} 1 \overline{3} \overline{1}]$ must have at most twelve distinct single cosets.

Now, $N^{(0 \overline{1} 2 \overline{2} 1 \overline{3} \overline{1})}$ has four orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0,2\},\{1,3\},\{\overline{0}, \overline{2}\}$, and $\{\overline{1}, \overline{3}\}$.

Therefore, there are at most four double cosets of the form $N w N$, where w is a word of length eight given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3}^{-1} t_{1}^{-1} t_{i}^{ \pm 1}, i \in\{0,1\}$.
But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3}^{-1} t_{1}^{-1} t_{1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3}^{-1} e N$
$=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3}^{-1} t_{1}^{-1} t_{1}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3}^{-1} t_{1}^{-2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3}^{-1} t_{1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1}^{-1} t_{3} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3}^{-1} t_{1}^{-1} t_{0} N=$ $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{1}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3}^{-1} t_{1}^{-1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1} N$.
Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3}^{-1} t_{1}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
356. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1}^{-1} t_{0} N$.

Let [0 $\overline{1} \overline{2} \overline{0} \overline{3} \overline{1} 0]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1}^{-1} t_{0} N$.
Now, with the help of MAGMA, we know that that the following right cosets, or single cosets, are equivalent: $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1}^{-1} t_{0}=N t_{2} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2}$.

That is, in terms of our short-hand notation,

$$
0 \overline{1} \overline{2} \overline{0} \overline{3} \overline{1} 0 \sim 2 \overline{1} \overline{0} \overline{2} \overline{1} \overline{1} 2 .
$$

By conjugating the equivalence relation above with the elements of S_{4}, we determine that the following single cosets are equivalent in the double coset [$0 \overline{1} \overline{2} \overline{0} \overline{3} \overline{1} 0]$:

$$
\begin{array}{lll}
0 \overline{1} \overline{2} \overline{0} \overline{3} \overline{1} 0 \sim 2 \overline{1} \overline{0} \overline{2} \overline{3} \overline{1} 2, & 1 \overline{0} \overline{2} \overline{1} \overline{3} \overline{0} 1 \sim 2 \overline{0} \overline{1} \overline{2} \overline{3} 0,2, & 3 \overline{1} \overline{2} \overline{3} \overline{0} \overline{1} 3 \sim 2 \overline{1} \overline{3} \overline{2} \overline{0} \overline{1} 2, \\
0 \overline{2} \overline{1} \overline{0} \overline{3} \overline{2} 0 \sim 12 \overline{2} \overline{0} \overline{1} \overline{3} \overline{2} 1, & 0 \overline{3} \overline{2} \overline{0} \overline{1} \overline{3} 0 \sim 2 \overline{3} \overline{0} \overline{2} \overline{1} \overline{3} 2, & 0 \overline{1} \overline{3} \overline{0} \overline{2} \overline{1} 0 \sim 3 \overline{1} \overline{0} \overline{3} \overline{2} \overline{1} 2, \\
1 \overline{3} \overline{2} \overline{1} \overline{0} \overline{3} 1 \sim 2 \overline{3} \overline{1} \overline{2} \overline{0} \overline{3} 2, & 3 \overline{0} \overline{2} \overline{3} \overline{1} \overline{0} 3 \sim 2 \overline{0} \overline{3} \overline{2} \overline{1} 02, & 02 \overline{3} \overline{3} \overline{1} \overline{1} \overline{2} 0 \sim 3 \overline{2} \overline{0} \overline{3} \overline{1} \overline{2} 3, \\
0 \overline{3} \overline{1} \overline{0} 2 \overline{2} 0 \sim 1 \overline{3} \overline{0} \overline{2} \overline{3} \overline{1} 1, & 1 \overline{2} \overline{3} \overline{1} \overline{0} \overline{2} 1 \sim 3 \overline{2} \overline{1} \overline{3} \overline{2} 3, & 3 \overline{0} \overline{1} \overline{3} 2 \overline{0} 3 \sim 1 \overline{0} \overline{3} \overline{1} \overline{0} \overline{1} 1
\end{array}
$$

Since each of the twenty-four single cosets has two names, the double coset [$0 \overline{1} \overline{2} \overline{0} \overline{3} \overline{1} 0]$ must have at most twelve distinct single cosets.
Now, $N^{(0 \overline{1} \overline{2} \overline{\overline{1}} \overline{1} 0)}$ has six orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0,2\},\{1\},\{3\},\{\overline{0}, \overline{2}\},\{\overline{1}\}$, and $\{\overline{3}\}$.

Therefore, there are at most six double cosets of the form $N w N$, where w is a word of length eight given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1}^{-1} t_{0} t_{i}^{ \pm 1}, i \in\{0,1,3\}$.

But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1}^{-1} t_{0} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1}^{-1} e N$
$=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1}^{-1} t_{0} t_{0} N$
$=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1}^{-1} t_{0}^{2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1}^{-1} t_{0}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{1} t_{2}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1}^{-1} t_{0} t_{1} N=$
$N t_{0} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0}^{-1} t_{3}^{-1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1}^{-1} t_{0} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{2} N$,
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1}^{-1} t_{0} t_{3} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1}^{-1} t_{0} t_{1}^{-1} N$, and
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1}^{-1} t_{0} t_{3}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2} t_{0} N$.
Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1}^{-1} t_{0} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
357. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} t_{2} t_{1}^{-1} N$.

Let $[0 \overline{1} \overline{2} 132 \overline{1}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} t_{2} t_{1}^{-1} N$.
Note that $N^{(0 \overline{1} \overline{2} 132 \overline{1})} \geq N^{0 \overline{1} \overline{2} 132 \overline{1}}=\langle e\rangle$. Thus $\left|N^{(0 \overline{1} \overline{1} 132 \overline{1})}\right| \geq|\langle e\rangle|=1$ and so, by Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} t_{2} t_{1}^{-1} N\right|=\frac{|N|}{\left|N^{(0 \overline{1} 1232 \overline{1})}\right|} \leq \frac{24}{1}=24$.
Therefore, the double coset [$0 \overline{1} \overline{2} 132 \overline{1}]$ has at most twenty-four distinct single cosets.
Moreover, $N^{(0 \overline{1} \overline{2} 132 \overline{1})}$ has eight orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2\},\{3\},\{\overline{0}\}$, $\{\overline{1}\},\{\overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most eight double cosets of the form $N w N$, where w is a word of length eight given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} t_{2} t_{1}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,2,3\}$.
But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} t_{2} t_{1}^{-1} t_{1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} t_{2} e N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} t_{2} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} t_{2} t_{1}^{-1} t_{1}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} t_{2} t_{1}^{-2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} t_{2} t_{1} N$ $=N t_{0} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} t_{2} t_{1}^{-1} t_{0} N=$
$N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3}^{-1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} t_{2} t_{1}^{-1} t_{0}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0}^{-1} t_{2} N$,
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} t_{2} t_{1}^{-1} t_{2} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} t_{0}^{-1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} t_{2} t_{1}^{-1} t_{2}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{1}^{-1} N, N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} t_{2} t_{1}^{-1} t_{3} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{1} t_{0} N$,
and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} t_{2} t_{1}^{-1} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0}^{-1} t_{1}^{-1} N$.
Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3} t_{2} t_{1}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
358. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{2}^{-1} t_{1}^{-1} N$.

Let $[0 \overline{1} \overline{2} 1 \overline{3} \overline{2} \overline{1}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{2}^{-1} t_{1}^{-1} N$.
Now, with the help of MAGMA, we know that that the following right cosets, or single cosets, are equivalent: $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{2}^{-1} t_{1}^{-1}=N t_{1} t_{2}^{-1} t_{0}^{-1} t_{2} t_{3}^{-1} t_{0}^{-1} t_{2}^{-1}$ $=N t_{2} t_{0}^{-1} t_{1}^{-1} t_{0} t_{3}^{-1} t_{1}^{-1} t_{0}^{-1}$.
That is, in terms of our short-hand notation,

$$
0 \overline{2} \overline{2} 1 \overline{3} \overline{2} \overline{1} \sim 1 \overline{2} \overline{0} 2 \overline{3} \overline{0} \overline{2} \sim 2 \overline{0} \overline{1} 0 \overline{3} \overline{1} \overline{0}
$$

By conjugating the equivalence relation above with the elements of S_{4}, we determine that the following single cosets are equivalent in the double coset [$0 \overline{1} \overline{2} 1 \overline{3} \overline{2} \overline{1}]$:

$$
\begin{array}{ll}
0 \overline{1} \overline{2} 1 \overline{3} \overline{2} \overline{1} \sim 1 \overline{2} \overline{0} 2 \overline{3} \overline{0} \overline{2} \sim 2 \overline{0} \overline{1} 03 \overline{1} \overline{0}, & 10 \overline{2} 0 \overline{3} \overline{2} \overline{0} \sim 0 \overline{2} \overline{1} 2 \overline{3} \overline{1} \overline{2} \sim 2 \overline{1} \overline{0} 1 \overline{3} \overline{0} \overline{1}, \\
2 \overline{1} \overline{0} 1 \overline{3} \overline{0} \overline{1} \sim 1 \overline{0} \overline{2} 0 \overline{3} \overline{2} \overline{0} \sim 0 \overline{2} \overline{1} 2 \overline{3} \overline{1} \overline{2}, & 3 \overline{1} \overline{2} 1 \overline{0} \overline{2} \overline{1} \sim 1 \overline{2} \overline{3} 2 \overline{0} \overline{3} \overline{2} \sim 2 \overline{3} \overline{1} 3 \overline{0} \overline{1} \overline{3}, \\
0 \overline{3} \overline{2} 3 \overline{1} \overline{2} \overline{3} \sim 3 \overline{2} \overline{0} 2 \overline{1} \overline{0} \overline{2} \sim 2 \overline{0} \overline{3} 0 \overline{1} \overline{3} \overline{0}, & 0 \overline{1} \overline{3} 1 \overline{2} \overline{3} \overline{1} \sim 1 \overline{3} \overline{3} 3 \overline{2} \overline{0} \overline{3} \sim 3 \overline{0} \overline{1} 0 \overline{2} \overline{1} \overline{0}, \\
1 \overline{3} 3 \overline{0} \overline{2} \overline{3} \sim 3 \overline{2} \overline{1} 2 \overline{0} \overline{1} \overline{2} \sim 2 \overline{1} \overline{3} 00 \overline{3} \overline{1}, & 3 \overline{0} \overline{2} 0 \overline{1} \overline{2} \overline{0} \sim 02 \overline{3} 2 \overline{1} \overline{3} \overline{1} \sim 2 \overline{3} \overline{3}
\end{array}
$$

Since each of the twenty-four single cosets has three names, the double coset [$0 \overline{1} \overline{2} 1 \overline{3} \overline{2} \overline{1}]$ must have at most eight distinct single cosets.

Now, $N^{(0 \overline{1} \overline{2} 1 \overline{3} \overline{1} \overline{1})}$ has four orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0,1,2\},\{3\},\{\overline{0}, \overline{1}, \overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most four double cosets of the form $N w N$, where w is a word of length eight given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{2}^{-1} t_{1}^{-1} t_{i}^{ \pm 1}, i \in\{1,3\}$.

But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{2}^{-1} t_{1}^{-1} t_{1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{2}^{-1} e N$
$=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{2}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{2}^{-1} t_{1}^{-1} t_{1}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{2}^{-1} t_{1}^{-2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{2}^{-1} t_{1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1}^{-1} t_{0}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{2}^{-1} t_{1}^{-1} t_{3} N=$ $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} t_{1} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{2}^{-1} t_{1}^{-1} t_{3}^{-1} N=N t_{0}^{-1} t_{1} t_{2} t_{3} t_{0} t_{1}^{-1} N$.

Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{1} t_{3}^{-1} t_{2}^{-1} t_{1}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
359. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1} N$.

Let $[0 \overline{1} \overline{2} \overline{3} 1 \overline{0} \overline{1}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1} N$.
Now, with the help of MAGMA, we know that that the following right cosets, or single cosets, are equivalent: $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1}=N t_{0} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2} t_{0}^{-1} t_{2}^{-1}$ $=N t_{0} t_{3}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3} t_{0}^{-1} t_{3}^{-1}$.

That is, in terms of our short-hand notation,

$$
0 \overline{1} \overline{2} \overline{3} 1 \overline{0} \overline{1} \sim 0 \overline{2} \overline{3} \overline{1} 2 \overline{0} \overline{2} \sim 0 \overline{3} \overline{1} \overline{2} 3 \overline{0} \overline{3} .
$$

By conjugating the equivalence relation above with the elements of S_{4}, we determine that the following single cosets are equivalent in the double coset [$0 \overline{1} \overline{2} \overline{3} 1 \overline{0} \overline{1}]$:

$$
\begin{aligned}
& 0 \overline{1} \overline{2} \overline{3} 1 \overline{0} \overline{1} \sim 0 \overline{2} \overline{3} \overline{1} 2 \overline{0} \overline{2} \sim 0 \overline{3} \overline{1} \overline{2} 3 \overline{0} \overline{3}, \quad 1 \overline{0} \overline{2} \overline{3} 0 \overline{1} \overline{0} \sim 1 \overline{2} \overline{3} \overline{2} 2 \overline{1} \overline{2} \sim 1 \overline{3} \overline{0} \overline{2} 3 \overline{1} \overline{3}, \\
& 2 \overline{1} 0 \overline{3} 1 \overline{2} \overline{1} \sim 2 \overline{0} \overline{3} \overline{1} 0 \overline{2} \overline{0} \sim 2 \overline{3} \overline{1} 0 \overline{0} 3 \overline{2} \overline{3}, \quad 3 \overline{1} \overline{2} \overline{0} 1 \overline{3} \overline{1} \sim 3 \overline{2} \overline{0} \overline{1} 2 \overline{3} \overline{2} \sim 3 \overline{0} \overline{1} \overline{2} 0 \overline{3} \overline{0}, \\
& 0 \overline{2} \overline{1} \overline{3} 2 \overline{0} \overline{2} \sim 0 \overline{1} \overline{3} \overline{2} 1 \overline{0} \overline{1} \sim 0 \overline{3} \overline{2} \overline{1} 3 \overline{0} \overline{3}, \quad 1 \overline{2} \overline{0} \overline{3} 2 \overline{1} \overline{2} \sim 1 \overline{0} \overline{3} \overline{2} 0 \overline{1} \overline{0} \sim 1 \overline{3} \overline{2} \overline{0} 3 \overline{1} \overline{3}, \\
& 2 \overline{0} \overline{1} \overline{3} 0 \overline{2} \overline{0} \sim 2 \overline{1} \overline{3} \overline{0} 1 \overline{2} \overline{1} \sim 2 \overline{3} \overline{0} \overline{1} 3 \overline{2} \overline{3}, \quad 3 \overline{0} \overline{2} \overline{1} 0 \overline{3} \overline{0} \sim 3 \overline{2} \overline{1} \overline{2} 2 \overline{3} \overline{2} \sim 3 \overline{1} \overline{0} \overline{2} 1 \overline{3} \overline{1}
\end{aligned}
$$

Since each of the twenty-four single cosets has three names, the double coset [$0 \overline{1} \overline{2} \overline{3} 1 \overline{0} \overline{1}]$ must have at most eight distinct single cosets.
Now, $N^{(0 \overline{1} \overline{2} \overline{3} 1 \overline{0} \overline{1})}$ has four orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1,2,3\},\{\overline{0}\}$, and $\{\overline{1}, \overline{2}, \overline{3}\}$.

Therefore, there are at most four double cosets of the form $N w N$, where w is a word of length eight given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{0}^{1} t_{1}^{-1} t_{i}^{ \pm 1}, i \in\{0,1\}$.

But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1} t_{1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{0}^{-1} e N$
$=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{0}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1} t_{1}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{0}^{-1} t_{1}^{-2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{0}^{-1} t_{1} N=N t_{0}^{-1} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1} t_{0} N=$ $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{0} t_{1}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{0} N$.

Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
360. We next consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{0} t_{1}^{-1} N$.

Let $[01 \overline{2} \overline{3} \overline{1} \overline{0} \overline{1}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{0} t_{1}^{-1} N$.
Now, with the help of MAGMA, we know that that the following right cosets, or single cosets, are equivalent: $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{0} t_{1}^{-1}=N t_{2} t_{1}^{-1} t_{3}^{-1} t_{0}^{-1} t_{1}^{-1} t_{2} t_{1}^{-1}$ $=N t_{3} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1}^{-1} t_{3} t_{1}^{-1}$.

That is, in terms of our short-hand notation,

$$
0 \overline{1} \overline{3} \overline{1} \overline{1} 0 \overline{1} \sim 2 \overline{1} \overline{3} \overline{0} \overline{1} 2 \overline{1} \sim 3 \overline{1} \overline{0} \overline{2} \overline{1} 3 \overline{1} .
$$

By conjugating the equivalence relation above with the elements of S_{4}, we determine that the following single cosets are equivalent in the double coset [$0 \overline{1} \overline{2} \overline{3} \overline{1} 0 \overline{1}]$:

$$
\begin{aligned}
& 0 \overline{1} \overline{2} \overline{3} \overline{1} 0 \overline{1} \sim 2 \overline{1} \overline{3} \overline{0} \overline{1} 2 \overline{1} \sim 3 \overline{1} \overline{0} \overline{2} \overline{1} 3 \overline{1}, \quad 1 \overline{0} \overline{3} \overline{3} \overline{0} 1 \overline{0} \sim 2 \overline{0} \overline{3} \overline{1} \overline{0} 2 \overline{0} \sim 3 \overline{0} \overline{1} \overline{2} \overline{0} 3 \overline{0}, \\
& 2 \overline{1} \overline{0} \overline{3} \overline{1} 2 \overline{1} \sim 0 \overline{1} \overline{3} \overline{2} \overline{1} 0 \overline{1} \sim 3 \overline{1} 2 \overline{0} \overline{1} 3 \overline{1}, \quad 3 \overline{1} \overline{2} \overline{1} \overline{1} 3 \overline{1} \sim 2 \overline{1} 0 \overline{3} \overline{1} 2 \overline{1} \sim 0 \overline{1} \overline{3} \overline{2} \overline{1} 0 \overline{1}, \\
& 0 \overline{2} \overline{1} \overline{3} \overline{2} 0 \overline{2} \sim 1 \overline{2} \overline{3} \overline{0} \overline{2} 1 \overline{2} \sim 3 \overline{2} 0 \overline{1} \overline{1} \overline{2} 3 \overline{2}, \quad 0 \overline{3} \overline{1} \overline{1} \overline{3} 0 \overline{3} \sim 2 \overline{3} \overline{1} \overline{0} \overline{3} 2 \overline{3} \sim 1 \overline{3} \overline{0} \overline{2} \overline{3} 1 \overline{1}, \\
& 1 \overline{2} \overline{3} \overline{3} \overline{2} 1 \overline{2} \sim 0 \overline{2} \overline{3} \overline{1} \overline{2} 0 \overline{2} \sim 3 \overline{2} \overline{1} \overline{0} \overline{2} 3 \overline{2}, \quad 2 \overline{0} \overline{1} \overline{3} \overline{0} 2 \overline{0} \sim 1 \overline{0} \overline{3} \overline{2} \overline{0} 10 \overline{0} \sim 3 \overline{0} \overline{2} \overline{1} \overline{0} 3 \overline{0}
\end{aligned}
$$

Since each of the twenty-four single cosets has three names, the double coset [$0 \overline{1} \overline{2} \overline{3} \overline{1} 0 \overline{1}]$ must have at most eight distinct single cosets.

Now, $N^{(0 \overline{1} \overline{2} \overline{3} 10 \overline{1})}$ has four orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0,2,3\},\{1\},\{\overline{0}, \overline{2}, \overline{3}\}$, and $\{\overline{1}\}$.

Therefore, there are at most four double cosets of the form $N w N$, where w is a word of length eight given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{0} t_{1}^{-1} t_{i}^{ \pm 1}, i \in\{0,1\}$.

But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{0} t_{1}^{-1} t_{1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{0} e N$
$=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{0} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{0} t_{1}^{-1} t_{1}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{0} t_{1}^{-2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{0} t_{1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{0} t_{1}^{-1} t_{0} N=$
$N t_{0} t_{1}^{-1} t_{0} t_{2} t_{3} t_{0} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{0} t_{1}^{-1} t_{0}^{-1} N=N t_{0} t_{1} t_{0}^{-1} t_{2}^{-1} t_{3}^{-1} t_{0}^{-1} N$.
Therefore, we conclude that there are no distinct double cosets of the form
$N t_{0} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{0} t_{1}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
361. We next consider the double coset $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{1} t_{0} N$.

Let $[012 \overline{0} \overline{3} 10]$ denote the double coset $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{1} t_{0} N$.
Now, with the help of MAGMA, we know that that the following right cosets, or single cosets, are equivalent: $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{1} t_{0}=N t_{0} t_{2} t_{1} t_{0}^{-1} t_{3}^{-1} t_{2} t_{0}$.

That is, in terms of our short-hand notation,

$$
012 \overline{0} \overline{3} 10 \sim 0210 \overline{0} \overline{3} 20
$$

By conjugating the equivalence relation above with the elements of S_{4}, we determine that the following single cosets are equivalent in the double coset [012 $\overline{0} \overline{3} 10]$:

$$
\begin{array}{lll}
012 \overline{0} \overline{3} 10 \sim 021 \overline{0} \overline{3} 20, & 102 \overline{1} \overline{3} 01 \sim 120 \overline{1} \overline{3} 21, & 210 \overline{2} \overline{3} 12 \sim 201 \overline{2} \overline{3} 02, \\
312 \overline{3} \overline{0} 13 \sim 321 \overline{3} \overline{0} 23, & 032 \overline{0} \overline{1} 30 \sim 023 \overline{0} \overline{1} 20, & 013 \overline{0} \overline{2} 10 \sim 031 \overline{0} \overline{2} 30, \\
132 \overline{1} \overline{0} 31 \sim 123 \overline{1} \overline{0} 21, & 302 \overline{3} \overline{1} 03 \sim 320 \overline{3} \overline{1} 23, & 213 \overline{2} \overline{0} 12 \sim 231 \overline{2} \overline{0} 32, \\
310 \overline{3} \overline{2} 13 \sim 301 \overline{3} \overline{2} 03, & 130 \overline{1} \overline{2} 31 \sim 103 \overline{1} \overline{2} 01, & 203 \overline{2} \overline{1} 02 \sim 230 \overline{2} \overline{1} 32
\end{array}
$$

Since each of the twenty-four single cosets has two names, the double coset [012 $\overline{0} \overline{3} 10$] must have at most twelve distinct single cosets.

Now, $N^{(012 \overline{0} \overline{3} 10)}$ has six orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1,2\},\{3\},\{\overline{0}\},\{\overline{1}, \overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most six double cosets of the form $N w N$, where w is a word of length eight given by $w=t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{1} t_{0} t_{i}^{ \pm 1}, i \in\{0,1,3\}$.
But note that $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{1} t_{0} t_{0}^{-1} N=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{1} e N$
$=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{1} N$ and $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{1} t_{0} t_{0} N$
$=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{1} t_{0}^{2} N=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{1} t_{0}^{-1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{1} t_{0} t_{1} N=$
$N t_{0} t_{1} t_{2} t_{3} t_{0} t_{2}^{-1} N, N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{1} t_{0} t_{1}^{-1} N=N t_{0}^{-1} t_{1} t_{2} t_{0} t_{1}^{-1} t_{3}^{-1} N$,
$N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{1} t_{0} t_{3} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3} t_{2}^{-1} t_{1}^{-1} N$, and
$N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{1} t_{0} t_{3}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3} t_{2}^{-1} N$.
Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{1} t_{0} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
362. We next consider the double coset $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{1} t_{0}^{-1} N$.

Let [012 $\overline{0} \overline{3} 1 \overline{0}]$ denote the double coset $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{1} t_{0}^{-1} N$.
Now, with the help of MAGMA, we know that that the following right cosets, or single cosets, are equivalent: $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{1} t_{0}^{-1}=N t_{0} t_{2} t_{1} t_{0}^{-1} t_{3}^{-1} t_{2} t_{0}^{-1}$.

That is, in terms of our short-hand notation,

$$
012 \overline{0} \overline{3} 1 \overline{0} \sim 021 \overline{0} \overline{3} 2 \overline{0} .
$$

By conjugating the equivalence relation above with the elements of S_{4}, we determine that the following single cosets are equivalent in the double coset [$012 \overline{0} \overline{\overline{3}} 1 \overline{0}]$:

$$
\begin{array}{lll}
012 \overline{0} \overline{3} 1 \overline{0} \sim 021 \overline{0} \overline{3} 2 \overline{0}, & 102 \overline{1} \overline{3} 0 \overline{1} \sim 120 \overline{1} \overline{3} 2 \overline{1}, & 210 \overline{2} \overline{3} 1 \overline{2} \sim 201 \overline{2} \overline{3} 0 \overline{2}, \\
312 \overline{3} \overline{0} 1 \overline{3} \sim 321 \overline{3} \overline{0} 2 \overline{3}, & 032 \overline{0} \overline{1} 3 \overline{0} \sim 023 \overline{0} \overline{1} 2 \overline{0}, & 013 \overline{0} \overline{2} 1 \overline{0} \sim 031 \overline{0} \overline{2} 3 \overline{0}, \\
132 \overline{1} \overline{0} 3 \overline{1} \sim 123 \overline{1} \overline{0} 2 \overline{1}, & 302 \overline{3} \overline{1} 0 \overline{3} \sim 320 \overline{3} \overline{1} 2 \overline{3}, & 213 \overline{2} \overline{0} 1 \overline{2} \sim 231 \overline{2} \overline{0} 3 \overline{3}, \\
310 \overline{3} \overline{2} 1 \overline{3} \sim 301 \overline{3} \overline{2} 0 \overline{3}, & 130 \overline{1} \overline{2} 3 \overline{1} \sim 103 \overline{1} \overline{2} 0 \overline{1}, & 203 \overline{2} \overline{1} 0 \overline{2} \sim 230 \overline{2} \overline{1} 3 \overline{2}
\end{array}
$$

Since each of the twenty-four single cosets has two names, the double coset [012 $\overline{0} \overline{3} 1 \overline{0}]$ must have at most twelve distinct single cosets.
Now, $N^{(012 \overline{0} \overline{3} 1 \overline{0})}$ has six orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1,2\},\{3\},\{\overline{0}\},\{\overline{1}, \overline{2}\}$, and $\{\overline{3}\}$.

Therefore, there are at most six double cosets of the form $N w N$, where w is a word of length eight given by $w=t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{1} t_{0}^{-1} t_{i}^{ \pm 1}, i \in\{0,1,3\}$.
But note that $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{1} t_{0}^{-1} t_{0} N=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{1} e N=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{1} N$ and $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{1} t_{0}^{-1} t_{0}^{-1} N=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{1} t_{0}^{-2} N=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{1} t_{0} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{1} t_{0}^{-1} t_{1} N=$ $N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3} t_{0}^{-1} N, N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{1} t_{0}^{-1} t_{1}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{3}^{-1} t_{0} N$,
$N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{1} t_{0}^{-1} t_{3} N=N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3} t_{2}^{-1} N$, and $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{1} t_{0}^{-1} t_{3}^{-1} N$
$=N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3} t_{2}^{-1} t_{1} N$.
Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{1} t_{0}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
363. We next consider the double coset $N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} t_{1} t_{3}^{-1} N$.

Let $[012 \overline{3} \overline{0} 1 \overline{3}]$ denote the double coset $N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} t_{1} t_{3}^{-1} N$.
Now, with the help of MAGMA, we know that that the following right cosets, or single cosets, are equivalent: $N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} t_{1} t_{3}^{-1}=N t_{3} t_{2} t_{1} t_{0}^{-1} t_{3}^{-1} t_{2} t_{0}^{-1}$.

That is, in terms of our short-hand notation,

$$
012 \overline{3} \overline{0} 1 \overline{3} \sim 321 \overline{0} \overline{3} 2 \overline{0} .
$$

By conjugating the equivalence relation above with the elements of S_{4}, we determine that the following single cosets are equivalent in the double coset [$012 \overline{3} \overline{0} 1 \overline{3}]$:

$$
\begin{array}{lll}
012 \overline{3} 0131 \sim 3210 \overline{3} 2 \overline{0}, & 102 \overline{3} \overline{1} 0 \overline{3} \sim 320 \overline{1} \overline{3} 2 \overline{1}, & 210 \overline{3} \overline{2} 1 \overline{3} \sim 301 \overline{2} \overline{3} 0 \overline{2}, \\
312 \overline{0} \overline{3} 1 \overline{0} \sim 021 \overline{3} \overline{0} 2 \overline{3}, & 032 \overline{1} \overline{0} 3 \overline{1} \sim 123 \overline{3} \overline{1} 2 \overline{0}, & 013 \overline{2} \overline{0} 1 \overline{2} \sim 231 \overline{0} \overline{2} 3 \overline{0}, \\
120 \overline{3} 12 \overline{3} \sim 302 \overline{1} \overline{3} 0 \overline{1}, & 201 \overline{3} \overline{2} 0 \overline{3} \sim 310 \overline{2} \overline{3} 1 \overline{2}, & 132 \overline{0} \overline{1} 3 \overline{0} \sim 023 \overline{1} \overline{0} 2 \overline{1}, \\
031 \overline{2} 0 \overline{0} 3 \overline{2} \sim 213 \overline{0} \overline{2} 1 \overline{0}, & 103 \overline{2} \overline{1} 0 \overline{2} \sim 230 \overline{1} \overline{2} 3 \overline{1}, & 130 \overline{2} \overline{1} 3 \overline{2} \sim 203 \overline{1} \overline{2} 0 \overline{1}
\end{array}
$$

Since each of the twenty-four single cosets has two names, the double coset [012 $\overline{3} \overline{0} 1 \overline{3}]$ must have at most twelve distinct single cosets.

Now, $N^{(012 \overline{3} \overline{0} 1 \overline{3})}$ has four orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0,3\},\{1,2\},\{\overline{0}, \overline{3}\}$, and $\{\overline{1}, \overline{2}\}$.

Therefore, there are at most four double cosets of the form $N w N$, where w is a word of length eight given by $w=t_{0} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} t_{1} t_{3}^{-1} t_{i}^{ \pm 1}, i \in\{1,3\}$.

But note that $N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} t_{1} t_{3}^{-1} t_{3} N=N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} t_{1} e N=N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} t_{1} N$ and $N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} t_{1} t_{3}^{-1} t_{3}^{-1} N=N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} t_{1} t_{3}^{-2} N=N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} t_{1} t_{3} N$ $=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} t_{1} t_{3}^{-1} t_{1} N=$ $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} t_{1} t_{2}^{-1} N$ and $N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} t_{1} t_{3}^{-1} t_{1}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{0} N$.

Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1} t_{2} t_{3}^{-1} t_{0}^{-1} t_{1} t_{3}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
364. We next consider the double coset $N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2} t_{0} N$.

Let [$01 \overline{2} \overline{3} \overline{1} 20]$ denote the double coset $N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2} t_{0} N$.
Now, with the help of MAGMA, we know that that the following right cosets, or single cosets, are equivalent: $N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2} t_{0}=N t_{2} t_{1} t_{0}^{-1} t_{3}^{-1} t_{1}^{-1} t_{0} t_{2}$.

That is, in terms of our short-hand notation,

$$
01 \overline{2} \overline{3} \overline{1} 20 \sim 21 \overline{0} \overline{\overline{1}} \overline{1} 02 .
$$

By conjugating the equivalence relation above with the elements of S_{4}, we determine that the following single cosets are equivalent in the double coset [$01 \overline{2} \overline{3} \overline{1} 20]$:

$$
\begin{array}{lll}
01 \overline{2} \overline{3} \overline{1} 20 \sim 21 \overline{0} \overline{3} \overline{1} 02, & 10 \overline{2} \overline{3} \overline{0} 21 \sim 201 \overline{3} \overline{0} 12, & 12 \overline{3} \overline{0} \overline{2} 31 \sim 32 \overline{1} \overline{0} \overline{2} 13, \\
31 \overline{2} \overline{0} \overline{1} 23 \sim 21 \overline{3} \overline{0} \overline{1} 32, & 02 \overline{1} \overline{3} \overline{2} 10 \sim 12 \overline{0} \overline{3} \overline{2} 01, & 03 \overline{2} \overline{1} \overline{3} 20 \sim 23 \overline{0} \overline{1} \overline{3} 02, \\
01 \overline{3} \overline{2} \overline{1} 30 \sim 31 \overline{0} \overline{2} \overline{1} 03, & 13 \overline{2} \overline{0} \overline{3} 21 \sim 23 \overline{1} \overline{0} \overline{3} 12, & 30 \overline{2} \overline{1} \overline{0} 23 \sim 20 \overline{3} \overline{1} \overline{0} 32, \\
02 \overline{3} \overline{1} \overline{2} 30 \sim 32 \overline{1} \overline{1} \overline{2} 03, & 03 \overline{1} \overline{2} \overline{3} 10 \sim 13 \overline{0} \overline{2} \overline{3} 01, & 103 \overline{2} \overline{0} 31 \sim 30 \overline{1} \overline{2} \overline{0} 13
\end{array}
$$

Since each of the twenty-four single cosets has two names, the double coset [01 $\overline{2} \overline{3} \overline{1} 20$] must have at most twelve distinct single cosets.

Now, $N^{(01 \overline{2} \overline{3} \overline{1} 20)}$ has six orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0,2\},\{1\},\{3\},\{\overline{0}, \overline{2}\},\{\overline{1}\}$, and $\{\overline{3}\}$.

Therefore, there are at most six double cosets of the form $N w N$, where w is a word of length eight given by $w=t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2} t_{0} t_{i}^{ \pm 1}, i \in\{0,1,3\}$.

But note that $N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2} t_{0} t_{0}^{-1} N=N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2} e N$
$=N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2} N$ and $N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2} t_{0} t_{0} N$
$=N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2} t_{0}^{2} N=N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2} t_{0}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{3} t_{0}^{-1} t_{2}^{-1} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2} t_{0} t_{1} N=$ $N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{3}^{-1} N, N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2} t_{0} t_{1}^{-1} N=N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3} t_{2}^{-1} t_{1} N$, $N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2} t_{0} t_{3} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1}^{-1} t_{0} N$, and $N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2} t_{0} t_{3}^{-1} N$ $=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3} t_{2}^{-1} t_{1}^{-1} N$.

Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2} t_{0} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
365. We next consider the double coset $N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3} t_{2}^{-1} t_{1} N$.

Let $[010 \overline{0} 23 \overline{2} 1]$ denote the double coset $N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3} t_{2}^{-1} t_{1} N$.
Now, with the help of MAGMA, we know that that the following right cosets, or single cosets, are equivalent: $N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3} t_{2}^{-1} t_{1}=N t_{0} t_{1} t_{0}^{-1} t_{3} t_{2} t_{3}^{-1} t_{1}$.

That is, in terms of our short-hand notation,

$$
010 \overline{0} 23 \overline{2} 1 \sim 010 \overline{0} 2 \overline{3} 1 .
$$

By conjugating the equivalence relation above with the elements of S_{4}, we determine that the following single cosets are equivalent in the double coset [010 $23 \overline{2} 1]$:

$$
\begin{array}{lll}
010232 \overline{2} 1 \sim 010 \overline{0} 32 \overline{3} 1, & 10 \overline{1} 232 \overline{2} 0 \sim 10 \overline{1} 32 \overline{3} 0, & 212 \overline{2} 03 \overline{0} 1 \sim 21 \overline{2} 303 \overline{3} 1, \\
31 \overline{3} 20 \overline{2} 1 \sim 31 \overline{3} 02 \overline{0} 1, & 02 \overline{0} 13 \overline{1} 2 \sim 02 \overline{0} 31 \overline{3} 2, & 03 \overline{0} 21 \overline{2} 3 \sim 03 \overline{0} 12 \overline{1} 3, \\
12 \overline{1} 030 \overline{2} 2 \sim 12 \overline{1} 30 \overline{3} 2, & 20 \overline{2} 13 \overline{1} 0 \sim 20 \overline{2} 31 \overline{3} 0, & 13 \overline{1} 20 \overline{2} 3 \sim 13 \overline{1} 02 \overline{0} 3, \\
30 \overline{3} 21 \overline{2} 0 \sim 30 \overline{3} 12 \overline{1} 0, & 23 \overline{2} 01 \overline{0} 3 \sim 23 \overline{2} 10 \overline{1} 3, & 32 \overline{3} 010 \overline{0} 2 \sim 32 \overline{3} 10 \overline{1} 2
\end{array}
$$

Since each of the twenty-four single cosets has two names, the double coset [010 $23 \overline{2} 1]$ must have at most twelve distinct single cosets.

Now, $N^{(01 \overline{0} 23 \overline{2} 1)}$ has six orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0\},\{1\},\{2,3\},\{\overline{0}\},\{\overline{1}\}$, and $\{\overline{2}, \overline{3}\}$.

Therefore, there are at most six double cosets of the form $N w N$, where w is a word of length eight given by $w=t_{0} t_{1} t_{0}^{-1} t_{2} t_{3} t_{2}^{-1} t_{1} t_{i}^{ \pm 1}, i \in\{0,1,2\}$.

But note that $N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3} t_{2}^{-1} t_{1} t_{1}^{-1} N=N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3} t_{2}^{-1} e N=N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3} t_{2}^{-1} N$ and $N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3} t_{2}^{-1} t_{1} t_{1} N=N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3} t_{2}^{-1} t_{1}^{2} N=N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3} t_{2}^{-1} t_{1}^{-1} N$ $=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{1} t_{0}^{-1} N$.

Moreover, with the help of MAGMA, we know that $N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3} t_{2}^{-1} t_{1} t_{0} N=$
$N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2} t_{0} N, N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3} t_{2}^{-1} t_{1} t_{0}^{-1} N=N t_{0}^{-1} t_{1}^{-1} t_{2}^{-1} t_{0} t_{1} t_{3}^{-1} N$, $N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3} t_{2}^{-1} t_{1} t_{2} N=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0} t_{3}^{-1} N$, and $N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3} t_{2}^{-1} t_{1} t_{2}^{-1} N$ $=N t_{0}^{-1} t_{1}^{-1} t_{2} t_{1} t_{0}^{-1} t_{3} N$.

Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1} t_{0}^{-1} t_{2} t_{3} t_{2}^{-1} t_{1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$.
366. We finally consider the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3} t_{2}^{-1} t_{1}^{-1} N$.

Let $[0 \overline{1} \overline{2} \overline{0} 13 \overline{2} \overline{1}]$ denote the double coset $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3} t_{2}^{-1} t_{1}^{-1} N$.
Now, with the help of MAGMA, we know that that the following right cosets, or single cosets, are equivalent: $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3} t_{2}^{-1} t_{1}^{-1}=N t_{2} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1} t_{3} t_{0}^{-1} t_{1}^{-1}$ $=N t_{0} t_{3}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{1} t_{2}^{-1} t_{3}^{-1}=N t_{2} t_{3}^{-1} t_{0}^{-1} t_{2}^{-1} t_{3} t_{1} t_{0}^{-1} t_{3}^{-1}$.

That is, in terms of our short-hand notation,

$$
0 \overline{1} \overline{2} \overline{0} 13 \overline{2} \overline{1} \sim 2 \overline{1} \overline{0} \overline{2} 13 \overline{0} \overline{1} \sim 0 \overline{3} \overline{2} \overline{0} 31 \overline{2} \overline{3} \sim 2 \overline{3} \overline{0} \overline{2} 310 \overline{0} \overline{3} .
$$

By conjugating the equivalence relation above with the elements of S_{4}, we determine that the following single cosets are equivalent in the double coset [$0 \overline{1} \overline{2} \overline{0} 13 \overline{2} \overline{1}]$:

$$
\begin{aligned}
& 0 \overline{1} \overline{2} \overline{0} 13 \overline{2} \overline{1} \sim 2 \overline{1} \overline{0} \overline{2} 13 \overline{0} \overline{1} \sim 0 \overline{3} \overline{2} \overline{0} 31 \overline{2} \overline{3} \sim 2 \overline{3} \overline{0} \overline{2} 31 \overline{0} \overline{3}, \\
& 1 \overline{0} \overline{1} \overline{1} 03 \overline{2} \overline{0} \sim 2 \overline{0} \overline{1} \overline{2} 03 \overline{1} \overline{0} \sim 1 \overline{3} \overline{1} \overline{1} 30 \overline{2} \overline{3} \sim 2 \overline{3} \overline{1} \overline{2} 30 \overline{1} \overline{3}, \\
& 3 \overline{2} \overline{2} \overline{3} 10 \overline{2} \overline{1} \sim 2 \overline{1} \overline{3} \overline{2} 10 \overline{3} \overline{1} \sim 3 \overline{0} \overline{2} \overline{3} 01 \overline{2} \overline{0} \sim 2 \overline{0} \overline{3} \overline{2} 01 \overline{3} \overline{0}, \\
& 0 \overline{1} \overline{1} \overline{0} 23 \overline{1} \overline{2} \sim 1 \overline{2} \overline{0} \overline{1} 230 \overline{2} \overline{2} \sim 0 \overline{3} \overline{1} 0 \overline{3} 2 \overline{1} \overline{3} \sim 1 \overline{3} \overline{0} \overline{1} 32 \overline{0} \overline{3}, \\
& 0 \overline{3} \overline{3} \overline{0} 12 \overline{3} \overline{1} \sim 3 \overline{1} \overline{0} \overline{3} 12 \overline{0} \overline{1} \sim 0 \overline{2} \overline{3} \overline{0} 21 \overline{3} \overline{2} \sim 3 \overline{2} \overline{0} \overline{3} 21 \overline{0} \overline{2}, \\
& 1 \overline{0} \overline{3} \overline{1} 02 \overline{3} \overline{0} \sim 3 \overline{0} \overline{1} \overline{3} 02 \overline{1} \overline{0} \sim 1 \overline{2} \overline{3} \overline{1} 20 \overline{3} \overline{2} \sim 3 \overline{1} \overline{3} 20 \overline{1} \overline{2}
\end{aligned}
$$

Since each of the twenty-four single cosets has four names, the double coset [$01 \overline{1} \overline{2} \overline{0} 13 \overline{2} \overline{1}]$ must have at most six distinct single cosets.

An alternative approach for determining the order of the double coset is as follows: We note that $N^{(0 \overline{1} \overline{2} \overline{0} 13 \overline{2} \overline{1})} \geq N^{0 \overline{1} \overline{2} \overline{0} 13 \overline{2} \overline{1}}=\langle e\rangle$. But, with the help of MAGMA, we know that $N\left(t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3} t_{2}^{-1} t_{1}^{-1}\right)^{(02)}=N t_{2} t_{1}^{-1} t_{0}^{-1} t_{2}^{-1} t_{1} t_{3} t_{0}^{-1} t_{1}^{-1}$
$=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3} t_{2}^{-1} t_{1}^{-1}$ implies that (02) $\in N^{(0 \overline{1} \overline{2} \bar{O} 13 \overline{2} \overline{1})}$, and
$N\left(t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3} t_{2}^{-1} t_{1}^{-1}\right)^{(13)}=N t_{0} t_{3}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3} t_{1} t_{2}^{-1} t_{3}^{-1}=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3} t_{2}^{-1} t_{1}^{-1}$ implies that $\left(\begin{array}{ll}1 & 3\end{array}\right) \in N^{(0 \overline{1} \overline{2} \overline{0} 13 \overline{1} \overline{1})}$. Therefore, $\left(\begin{array}{ll}0 & 2\end{array}\right),\left(\begin{array}{ll}1 & 3\end{array}\right) \in N^{(0 \overline{1} \overline{2} \overline{0} 13 \overline{2} \overline{1})}$, and so $N^{(0 \overline{1} \overline{2} \overline{1} 13 \overline{2} \overline{1})} \geq\left\langle\left(\begin{array}{ll}0 & 2\end{array}\right),\left(\begin{array}{ll}1 & 3\end{array}\right)\right\rangle$. Thus $\left|N^{(0 \overline{1} \overline{2} \bar{O} 13 \overline{2} \overline{1})}\right| \geq \left\lvert\,\left\langle\left(\begin{array}{ll}0 & \left.2),\left(\begin{array}{ll}1 & 3\end{array}\right)\right\rangle \mid=4 \text { and so, by }\end{array}\right.\right.\right.$ Lemma 1.4, $\left|N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3} t_{2}^{-1} t_{1}^{-1} N\right|=\frac{|N|}{\mid N^{(0 \overline{1} \overline{2} \overline{132} \overline{1})}} \leq \frac{24}{4}=6$.

Therefore, as we concluded earlier, the double coset [0 $\overline{1} \overline{2} \overline{0} 13 \overline{2} \overline{1}]$ has at most six distinct single cosets.

Now, $N^{(0 \overline{1} \overline{2} \overline{0} 13 \overline{2} \overline{1})}$ has four orbits on $T=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}:\{0,2\},\{1,3\},\{\overline{0}, \overline{2}\}$, and $\{\overline{1}, \overline{3}\}$.

Therefore, there are at most four double cosets of the form $N w N$, where w is a word of length nine given by $w=t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3} t_{2}^{-1} t_{1}^{-1} t_{i}^{ \pm 1}, i \in\{0,1\}$.
But note that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3} t_{2}^{-1} t_{1}^{-1} t_{1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3} t_{2}^{-1} e N$ $=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3} t_{2}^{-1} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3} t_{2}^{-1} t_{1}^{-1} t_{1}^{-1} N$
$=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3} t_{2}^{-1} t_{1}^{-2} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3} t_{2}^{-1} t_{1} N=N t_{0} t_{1} t_{2} t_{0}^{-1} t_{3}^{-1} t_{1} t_{0} N$.
Moreover, with the help of MAGMA, we know that $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3} t_{2}^{-1} t_{1}^{-1} t_{0} N=$ $N t_{0} t_{1} t_{2}^{-1} t_{3}^{-1} t_{1}^{-1} t_{2} t_{0} N$ and $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3} t_{2}^{-1} t_{1}^{-1} t_{0}^{-1} N=N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{3}^{-1} t_{1}^{-1} t_{0} N$. Therefore, we conclude that there are no distinct double cosets of the form $N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3} t_{2}^{-1} t_{1}^{-1} t_{i}^{ \pm 1} N$, where $i \in\{0,1,2,3\}$. In fact, since neither of the double cosets

$$
\begin{aligned}
& N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3} t_{2}^{-1} t_{1}^{-1} t_{0} N \\
& N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3} t_{2}^{-1} t_{1}^{-1} t_{1} N \\
& N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3} t_{2}^{-1} t_{1}^{-1} t_{0}^{-1} N \\
& N t_{0} t_{1}^{-1} t_{2}^{-1} t_{0}^{-1} t_{1} t_{3} t_{2}^{-1} t_{1}^{-1} t_{1}^{-1} N
\end{aligned}
$$

is distinct, there are no distict double cosets of the form $N w N$, where w is a word of length nine or greater, in G. Our manual double coset enumeration of G over S_{4} is therefore complete.

In total, therefore, there are at most 366 distinct double cosets of N in G and at most 7920 distinct right (single) cosets of N in G.

Double Cosets of N in G. Below, in our short-form notation, we list the 366 distinct double cosets of N in G, along with the names of equivalent double cosets. The first name listed for each double coset will be considered its cannonical name:

1. $[*]$
2. $[0]$
3. [0] $]$
4. $[01]=[\overline{0} \overline{1} \overline{0}]$
5. [01]
6. $[\overline{0} 1]=[0 \overline{1} \overline{0} \overline{1}]$
7. $[\overline{0} \overline{1}]=[010]$
8. $[01 \overline{0}]=[\overline{0} \overline{1} 0]=[0 \overline{1} 010]$
9. $[012]=[0 \overline{1} \overline{2} \overline{1}]$
10. $[01 \overline{2}]=[0 \overline{1} 212]$
11. $[0 \overline{1} 0]=[0 \overline{1} 2 \overline{1} 2]=[0 \overline{1} 0 \overline{1} 2]$
12. $[0 \overline{1} \overline{0}]=[\overline{0} 10]$
13. $[0 \overline{1} 2]=[0 \overline{1} 2 \overline{0} 1]=[0 \overline{1} 2 \overline{0} 2]=[0 \overline{1} 2 \overline{0} 3]=[0 \overline{1} 2 \overline{3} 0]=[0 \overline{1} 2 \overline{3} 1]$
14. $[0 \overline{1} \overline{2}]=[0121]$
15. $[\overline{0} 1 \overline{0}]=[0 \overline{1} \overline{0} 1]=[01 \overline{0} 10]=[\overline{0} 1 \overline{0} 1 \overline{2}]$
16. $[\overline{0} 12]=[\overline{0} \overline{1} \overline{2} \overline{1}]$
17. $[\overline{0} 1 \overline{2}]=[\overline{0} \overline{1} 212]=[\overline{0} 1 \overline{0} 2 \overline{1}]=[\overline{0} 1 \overline{2} 0 \overline{1}]=[\overline{0} 1 \overline{2} 0 \overline{2}]=[\overline{0} 1 \overline{2} 0 \overline{3}]=[\overline{0} 1 \overline{2} 3 \overline{0}]=[\overline{0} 1 \overline{2} 3 \overline{1}]$
18. $[\overline{0} \overline{1} 2]=[01 \overline{2} \overline{0} \overline{2}]$
19. $[\overline{0} \overline{1} \overline{2}]=[\overline{0} 121]$
20. $[0 \overline{1} 20]=[0 \overline{1} 2 \overline{0} \overline{1}]=[0 \overline{1} 2 \overline{2} \overline{2}]=[0 \overline{1} 2 \overline{0} \overline{3}]=[0 \overline{2} \overline{2} 2]=[0 \overline{1} \overline{0} \overline{2} \overline{0}]$
21. $[0 \overline{12} \overline{0}]$
22. $[0 \overline{1} 21]=[01 \overline{2} \overline{1}]=[0 \overline{2} 20 \overline{3} \overline{0}]$
23. $[0 \overline{1} 2 \overline{1}]=[0 \overline{1} 0 \overline{2}]=[0 \overline{1} 2 \overline{1} 0 \overline{1}]=[0 \overline{1} 2 \overline{1} 0 \overline{3}]=[0 \overline{1} 2 \overline{1} 3 \overline{0}]=[0 \overline{1} 2 \overline{1} 3 \overline{1}]=[0 \overline{1} 2 \overline{1} 3 \overline{2}]$
24. $[0 \overline{1} 23]=[0 \overline{1} 2 \overline{3} \overline{0}]=[0 \overline{1} 2 \overline{3} \overline{1}]=[0 \overline{1} \overline{2} \overline{3} \overline{2}]=[0 \overline{1} 20 \overline{1} \overline{0}]=[0 \overline{1} 2030]=[0 \overline{1} 2131]$
25. $[0 \overline{1} 2 \overline{3}]=[0 \overline{1} 2 \overline{1} 0 \overline{2}]$
26. $[0 \overline{1} \overline{2} 0]=[0 \overline{1} 20 \overline{2}]=[0 \overline{1} \overline{0} \overline{2} 0]$
27. $[0 \overline{1} \overline{2} \overline{0}]=[0 \overline{1020}]$
28. $[0 \overline{1} \overline{2} 1]=[012 \overline{1}]=[0 \overline{1} 02 \overline{1}]$
29. $[0 \overline{1} \overline{2} 3]=[0 \overline{1} 2 \overline{3} \overline{2} \overline{0}]=[0 \overline{1} 2 \overline{3} \overline{2} \overline{1}]=[0 \overline{1} 2 \overline{3} \overline{2} \overline{3}]$
30. $[0 \overline{1} \overline{2} \overline{3}]=[0 \overline{2} 232]$
31. $[0 \overline{1} 01]=[01 \overline{0} \overline{1}]=[0 \overline{1} 0 \overline{1} \overline{2}]=[01 \overline{2} 1 \overline{2}]=[0 \overline{1} \overline{2} 1 \overline{2} 1]$
32. $[0 \overline{1} 0 \overline{1}]=[\overline{0} 1 \overline{0} 10]=[0 \overline{1} 0 \overline{1} 0 \overline{1}]=[0 \overline{1} 0 \overline{1} 0 \overline{2}]=[0 \overline{1} 0 \overline{1} 0 \overline{3}]$
33. $[0 \overline{1} 02]=[0 \overline{1} 2 \overline{1} \overline{2}]=[0 \overline{1} \overline{2} \overline{0} \overline{2}]=[0 \overline{1} \overline{2} 12]=[0 \overline{1} \overline{2} 3 \overline{2} 3]$
34. $[0 \overline{1} \overline{0} 2]=[\overline{0} 12 \overline{0} 2]=[\overline{0} 1 \overline{2} \overline{0} \overline{2}]=[0 \overline{1} 2 \overline{1} \overline{3} \overline{2}]=[0 \overline{1} \overline{2} \overline{0} 20]$
35. $[0 \overline{1} \overline{0} \overline{2}]=[0 \overline{1} 202]=[0 \overline{1} \overline{2} 0 \overline{2}]$
36. $[0120]=[010 \overline{2} \overline{0}]$
37. $[012 \overline{0}]=[0 \overline{1} 2313]$
38. $[0123]=[01 \overline{2} \overline{3} \overline{2}]=[0 \overline{1} \overline{2} \overline{0} \overline{3} 2]$
39. $[012 \overline{3}]=[0 \overline{1} \overline{2} 010]$
40. $[01 \overline{2} 0]=[01 \overline{0} \overline{2} 1]=[\overline{0} \overline{1} 2 \overline{0} 1]=[\overline{0} \overline{1} 2 \overline{3} 1]=[012 \overline{2} \overline{2} \overline{0}]$
41. $[01 \overline{2} \overline{0}]=[\overline{0} \overline{1} 20]$
42. $[01 \overline{2} 1]=[0 \overline{1} 21 \overline{2}]=[0 \overline{1} 012]=[0 \overline{1} \overline{2} 1 \overline{2} \overline{1}]$
43. $[01 \overline{2} 3]=[\overline{0} \overline{1} 2 \overline{0} 3]=[\overline{0} \overline{1} 2 \overline{3} 0]=[012 \overline{3} \overline{2} \overline{3}]=[01 \overline{2} 1 \overline{0} 2]$
44. $[01 \overline{2} \overline{3}]=[01232]=[012 \overline{3} \overline{0} 2]$
45. $[01011]=[\overline{0} 1 \overline{0} \overline{1}]=[0 \overline{1} 01 \overline{0}]=[\overline{0} \overline{1} 2 \overline{1} 2]=[0 \overline{0} \overline{0} 12]=[012 \overline{0} 2 \overline{0}]$
46. $[01 \overline{0} 2]=[\overline{0} \overline{1} 2 \overline{0} 2]=[\overline{0} \overline{1} \overline{2} \overline{0} \overline{2}]=[01 \overline{2} 1 \overline{3} 2]=[01 \overline{0} 2 \overline{3} 0]=[01 \overline{0} 2 \overline{3} 1]$
47. $[01 \overline{0} \overline{2}]=[01202]=[01 \overline{2} 0 \overline{2}]=[012 \overline{0} \overline{2} 0]=[01 \overline{0} \overline{2} 3 \overline{0}]=[01 \overline{0} \overline{2} 3 \overline{1}]$
48. $[\overline{0} \overline{1} 2 \overline{0}]=[01 \overline{2} 0 \overline{1}]=[01 \overline{2} \overline{0} 2]=[01 \overline{2} 3 \overline{1}]=[0102 \overline{1}]$
49. $[\overline{0} \overline{1} 21]=[\overline{0} 1 \overline{2} \overline{1}]=[\overline{0} 1 \overline{0} 21]$
50. $[\overline{0} \overline{1} 2 \overline{1}]=[01 \overline{0} 1 \overline{2}]=[0120 \overline{2} \overline{0}]=[012 \overline{0} 20]=[01 \overline{2} 132]$
51. $[\overline{0} \overline{1} 23]=[\overline{0} \overline{1} \overline{2} \overline{3} \overline{2}]=[0 \overline{1} \overline{2} 031]$
52. $[\overline{0} \overline{1} 2 \overline{3}]=[01 \overline{2} 0 \overline{3}]=[01 \overline{2} 3 \overline{0}]=[\overline{0} \overline{1} 2 \overline{1} 0 \overline{2}]=[\overline{0} \overline{1} \overline{2} 323]$
53. $[\overline{0} \overline{1} \overline{2} 0]=[0 \overline{1} \overline{2} 1 \overline{2} 3]=[01 \overline{0} 21 \overline{2}]$
54. $[\overline{0} \overline{1} \overline{2} \overline{0}]=[01 \overline{0} 20]=[012012]=[01 \overline{2} 1 \overline{3} \overline{2}]$
55. $[\overline{0} \overline{1} \overline{2} 1]=[\overline{0} 12 \overline{1}]=[\overline{0} 1 \overline{0} \overline{2} 1]=[0 \overline{1} \overline{2} 3 \overline{0} 2]=[0 \overline{1} \overline{2} 3 \overline{1} 2]=[012 \overline{0} 2 \overline{3}]$
56. $[\overline{0} \overline{1} \overline{2} 3]=[0 \overline{1} \overline{2} 0 \overline{1} 3]=[0 \overline{1} \overline{2} 0 \overline{3} 1]=[\overline{0} \overline{1} 230 \overline{1}]$
57. $[\overline{0} \overline{1} \overline{2} \overline{3}]=[\overline{1} \overline{1} 232]$
58. $[\overline{0} 1 \overline{0} 1]=[0 \overline{1} 0 \overline{1} \overline{0}]=[01 \overline{0} 1 \overline{0}]=[0 \overline{1} 0 \overline{1} 01]=[0 \overline{1} 0 \overline{1} 02]=[0 \overline{1} 0 \overline{1} 03]$
59. $[\overline{0} 1 \overline{0} 2]=[\overline{0} 1 \overline{2} 1]=[\overline{0} \overline{1} 21 \overline{2}]=[0 \overline{1} \overline{0} \overline{2} \overline{2} \overline{2}]=[\overline{0} 1 \overline{0} 2 \overline{0} 1]=[\overline{0} 1 \overline{0} 2 \overline{0} 2]=[\overline{0} 1 \overline{0} 2 \overline{0} 3]=[\overline{0} 1 \overline{0} 2 \overline{3} 0]$ $=[\overline{0} 1 \overline{0} 2 \overline{3} 1]$
60. $[\overline{0} 1 \overline{0} \overline{2}]=[\overline{0} \overline{1} \overline{2} 1 \overline{2}]=[\overline{0} 1202]=[0 \overline{1} \overline{2} \overline{2} 1 \overline{2}]=[012 \overline{0} 23]$
61. $[\overline{0} 120]=[\overline{0} 1 \overline{0} \overline{2} \overline{0}]=[0 \overline{1} \overline{0} \overline{2} 12]=[\overline{0} \overline{1} \overline{2} \overline{3} 1 \overline{3}]$
62. $[\overline{0} 12 \overline{0}]=[0 \overline{1} \overline{0} 2 \overline{1}]=[\overline{0} 1 \overline{2} \overline{0} 2]=[012 \overline{3} 0 \overline{2}]=[012 \overline{3} 1 \overline{2}]=[01 \overline{2} \overline{3} 10]=[\overline{0} \overline{1} \overline{2} 313]$
63. $[0 \overline{0} 123]=[\overline{0} 1 \overline{2} \overline{3} \overline{2}]=[0 \overline{1} \overline{2} \overline{3} 01]$
64. $[\overline{0} 12 \overline{3}]=[0 \overline{1} \overline{2} 10 \overline{3}]=[0 \overline{1} \overline{2} 13 \overline{0}]=[\overline{0} \overline{1} \overline{2} 010]=[\overline{0} 1 \overline{0} \overline{2} 3 \overline{2}]=[\overline{0} 12 \overline{3} \overline{2} 0]=[\overline{0} 12 \overline{3} \overline{2} 1]$
65. [$\overline{0} 1 \overline{2} 0]$
66. $[\overline{0} 1 \overline{2} \overline{0}]=[0 \overline{1} \overline{0} 21]=[\overline{0} 12 \overline{0} \overline{2}]=[\overline{0} 1 \overline{2} 01]=[\overline{0} 1 \overline{2} 02]=[\overline{0} 1 \overline{2} 03]=[\overline{0} \overline{1} 21 \overline{3} \overline{2}]$
67. $[\overline{0} 1 \overline{2} 3]=[\overline{0} 1 \overline{0} 2 \overline{3} 2]=[\overline{0} 12 \overline{3} \overline{2} \overline{3}]$
68. $[\overline{0} 1 \overline{2} \overline{3}]=[\overline{0} 1232]=[\overline{0} 1 \overline{2} 30]=[\overline{0} 1 \overline{2} 31]=[\overline{0} \overline{1} 21 \overline{0} \overline{2}]=[\overline{0} 12 \overline{2} \overline{1} 10]=[\overline{0} 1 \overline{2} \overline{0} \overline{3} \overline{0}]$
69. $[0 \overline{1} 201]=[0 \overline{1} 2 \overline{1} \overline{1} \overline{1}]$
70. $[0 \overline{1} 20 \overline{1}]=[0 \overline{1} 230]=[0 \overline{1} 213 \overline{1}]=[\overline{\overline{1}} \overline{2} \overline{3} 01]$
71. $[0 \overline{1} 203]=[0 \overline{1} 23 \overline{1}]=[\overline{0} 1 \overline{2} \overline{0} \overline{3} 2]$
72. $[0 \overline{1} 20 \overline{3}]=[0 \overline{1} 210]$
73. $[0 \overline{1} 21 \overline{0}]=[0 \overline{1} 20 \overline{3} 0]=[0 \overline{1} 2 \overline{1} \overline{0} 3]=[01 \overline{2} 313]=[01 \overline{2} \overline{1} 1 \overline{0}]$
74. $[0 \overline{1} 213]=[0 \overline{1} 23 \overline{0}]=[0 \overline{1} 20 \overline{1} 0]$
75. $[0 \overline{1} 21 \overline{3}]=[0 \overline{1} 2 \overline{1} \overline{3} 0]=[01 \overline{2} \overline{3} 1 \overline{3}]=[01 \overline{2} 010]=[0 \overline{1} 201 \overline{0} \overline{1}]$
76. $[0 \overline{1} 2 \overline{1} 0]=[0 \overline{1} 2 \overline{3} 2]$
77. $[0 \overline{1} 2 \overline{1} \overline{0}]=[0 \overline{1} 2010]=[0 \overline{1} 21 \overline{0} \overline{1}]=[0 \overline{1} 2 \overline{1} 01]=[0 \overline{1} 2 \overline{1} 03]=[0 \overline{1} 23 \overline{2} \overline{3} \overline{3}]=[0 \overline{1} 0232]$
78. [0̄̄21̄3]
79. $[0 \overline{1} 2 \overline{1} \overline{3}]=[0 \overline{1} \overline{0} 20]=[0 \overline{1} 21 \overline{3} \overline{1}]=[0 \overline{1} 2 \overline{1} 30]=[0 \overline{1} 2 \overline{1} 31]=[0 \overline{1} 2 \overline{1} 32]=[0 \overline{1} 2313]$

$$
=[0 \overline{1} \overline{2} \overline{0} 2 \overline{0}]=[0 \overline{1} 201 \overline{0} 1]=[0 \overline{1} 21 \overline{0} 1 \overline{0}]
$$

80. $[0 \overline{1} 231]=[0 \overline{1} 203 \overline{0}]=[0 \overline{1} 2 \overline{1} \overline{1} \overline{1}]=[0 \overline{1} 21 \overline{1} 10]$
81. $[0 \overline{1} 23 \overline{2}]=[0 \overline{1} \overline{2} \overline{3} 2]=[0 \overline{1} 2 \overline{1} \overline{0} 2]=[0 \overline{1} 023 \overline{2} \overline{2}]$
82. $[0 \overline{1} 2 \overline{3} \overline{2} \overline{]}=[0 \overline{1} \overline{2} 32]=[0 \overline{1} 2 \overline{1} 02]$
83. $[0 \overline{1} 2 \overline{2} 01]=[012 \overline{1} \overline{1}]=[0 \overline{1} \overline{2} 013 \overline{2}]$
84. $[0 \overline{1} \overline{2} 0 \overline{1} \overline{1}]=[\overline{1} \overline{1} \overline{2} 3 \overline{0}]=[0 \overline{1} \overline{2} 10 \overline{2}]=[012 \overline{0} 1 \overline{2}]=[\overline{0} \overline{1} 2301]=[0 \overline{1} 20121]$
85. $[0 \overline{1} \overline{2} 03]=[\overline{1} \overline{1} 23 \overline{1}]=[0 \overline{1} \overline{2} \overline{3} \overline{0} \overline{3}]=[012 \overline{0} 013]=[0 \overline{1} 210 \overline{1}]$
86. $[0 \overline{1} \overline{2} 0 \overline{3}]=[\overline{0} \overline{1} \overline{2} 3 \overline{1}]=[012 \overline{3} 1 \overline{0}]=[\overline{0} \overline{1} \overline{2} 13 \overline{2}]=[\overline{0} 120 \overline{3} 2]=[0 \overline{1} 20323]$
87. $[0 \overline{1} \overline{2} \overline{2} 1]=[0 \overline{1} \overline{2} 0 \overline{1} \overline{0} \overline{1}]=[0 \overline{1} \overline{2} 03 \overline{0} 3]$
88. $[0 \overline{1} \overline{2} \overline{1} \overline{1}]=[0 \overline{1} \overline{2} 101]=[0 \overline{1} \overline{2} \overline{3} 0 \overline{3}]=[\overline{0} 12012]$
89. $[0 \overline{1} \overline{2} \overline{0} 2]=[0 \overline{1} 02 \overline{0}]=[0 \overline{1} \overline{0} 2 \overline{0}]=[0 \overline{1} 2 \overline{3} \overline{3} 2]$
90. $[0 \overline{1} \overline{2} \overline{0} 3]=[0 \overline{1} \overline{2} 1 \overline{2} \overline{2}]=[012 \overline{3} 13]=[\overline{0} 120 \overline{3} \overline{0}]$
91. $[0 \overline{1} \overline{2} \overline{\mathrm{O}} \overline{3}]=[0123 \overline{1}]=[0 \overline{1} \overline{2} 303]$
92. $[0 \overline{1} \overline{2} 10]=[\overline{0} 12 \overline{3} 0]=[0 \overline{1} \overline{2} 0 \overline{1} 0]=[0 \overline{1} \overline{2} \overline{0} \overline{1} \overline{0}]$
93. $[0 \overline{1} \overline{2} 1 \overline{0}]=[0 \overline{1} \overline{2} \overline{0} 32]=[012 \overline{3} 1 \overline{3}]=[012313]=[\overline{0} 1 \overline{0} \overline{2} 3 \overline{0}]=[0 \overline{1} \overline{2} \overline{0} 233 \overline{2}]$
94. $[0 \overline{1} \overline{2} 1 \overline{2} \bar{z}]=[0 \overline{1} 01 \overline{2}]=[0 \overline{1} 021]=[01 \overline{2} 12]=[\overline{0} \overline{1} \overline{2} 0 \overline{2}]=[012 \overline{3} 2 \overline{3}]=[01 \overline{0} 212]=[0 \overline{1} \overline{2} \overline{0} 1 \overline{0} 1]$
95. $[0 \overline{1} \overline{2} 13]=[\overline{0} 12 \overline{3} 1]=[0 \overline{1} \overline{2} 3 \overline{1} 3]=[0 \overline{1} \overline{2} \overline{3} \overline{1} \overline{3} \overline{3}]=[\overline{1} \overline{1} \overline{2} 01 \overline{0}]=[\overline{0} \overline{1} \overline{2} 0 \overline{3} 2]$
96. $[0 \overline{1} \overline{2} 1 \overline{3}]=[012010]=[012 \overline{0} 1 \overline{0}]=[012 \overline{0} \overline{3} 2]=[\overline{0} \overline{1} \overline{2} 10 \overline{1}]=[\overline{0} 10 \overline{0} 3 \overline{1}]$
97. $[0 \overline{1} \overline{2} 30]=[0 \overline{1} \overline{2} \overline{0} \overline{3} \overline{0} \overline{0}]=[\overline{0} \overline{1} \overline{2} 031]=[0 \overline{1} \overline{2} 302 \overline{0}]$
98. $[0 \overline{1} \overline{2} 3 \overline{0}]=[\overline{0} \overline{1} \overline{2} 1 \overline{3}]=[012 \overline{3} 0 \overline{1}]=[\overline{0} 12010]=[0 \overline{1} \overline{2} \overline{0} 21 \overline{2}]$
99. $[0 \overline{1} \overline{2} 31]=[012 \overline{0} \overline{1}]=[0 \overline{1} \overline{2} \overline{0} 123]=[0 \overline{1} \overline{2} 312 \overline{1} \overline{1}]$
100. $[0 \overline{1} \overline{2} 3 \overline{1}]=[\overline{0} \overline{1} \overline{2} 1 \overline{0}]=[0 \overline{1} \overline{2} 13 \overline{2}]=[012 \overline{0} 3 \overline{2} \overline{\overline{2}}]=[\overline{0} 12313]$
101. $[0 \overline{1} \overline{2} 3 \overline{2}]=[0 \overline{1} 02 \overline{3}]=[0 \overline{1} 2 \overline{3} \overline{2} 0]=[0 \overline{1} 2 \overline{3} \overline{2} 1]=[0 \overline{1} 2 \overline{2} \overline{2} 3]=[\overline{1} \overline{1} \overline{2} 032]=[\overline{1} \overline{1} \overline{2} 10 \overline{3}]$
$=[\overline{0} \overline{1} \overline{2} 13 \overline{0}]=[0 \overline{1} \overline{2} \overline{0} 121]$
102. $[0 \overline{1} \overline{2} \overline{3} 0]=[\overline{0} 123 \overline{0}]=[0 \overline{1} \overline{2} \overline{\mathrm{O}} \overline{\mathrm{I}} 2]=[\overline{0} 1201 \overline{2}]=[0 \overline{1} 203 \overline{1} \overline{0}]$
103. $[0 \overline{1} \overline{2} \overline{3} \overline{0} \overline{0}]=[0 \overline{1} \overline{2} 030]=[0 \overline{1} 2013 \overline{0} \overline{]}]=[0 \overline{1} \overline{2} \overline{3} \overline{0} 1 \overline{3}]=[0 \overline{1} \overline{2} \overline{3} \overline{0} 1 \overline{2}]$
104. $[0 \overline{1} \overline{2} \overline{3} 1]=[01 \overline{0} 213]=[01 \overline{0} 23 \overline{0}]=[0 \overline{1} 213 \overline{0} \overline{1}]=[0 \overline{1} \overline{2} 132 \overline{3}]$
105. $[0 \overline{1} \overline{2} \overline{3} \overline{1}]=[0 \overline{1} \overline{2} 131]=[\overline{1} \overline{2} \overline{2} 0 \overline{2} \overline{2} \overline{\bar{c}}]=[\overline{0} 12310]=[0 \overline{1} \overline{2} \overline{3} \overline{1} 0 \overline{2}]=[0 \overline{1} \overline{2} \overline{1} \overline{1} 0 \overline{3}]$
106. $[0 \overline{1} 0 \overline{1} 0]=[\overline{0} 10 \overline{1} \overline{0}]$
107. $[0 \overline{1} 023]=[0 \overline{1} 2 \overline{1} \overline{0} \overline{2}]=[0 \overline{1} 23 \overline{2} 3]=[0 \overline{1} \overline{2} 3 \overline{2} \bar{z}]=[0120 \overline{1} 0]=[0 \overline{1} \overline{2} \overline{0} 3 \overline{0} 3]=[0 \overline{1} \overline{2} 1 \overline{3} \bar{z} \bar{z}]$
108. $[0 \overline{1} \overline{0} 23]=[0 \overline{1} \overline{0} \overline{2} \bar{z} \bar{z}]=[0 \overline{1} 201 \overline{2} 1]=[0 \overline{1} \overline{2} \overline{0} 310]]=[0 \overline{1} \overline{0} 233 \overline{2} 0]=[0 \overline{1} \overline{0} 23 \overline{2} 1]=[0 \overline{1} \overline{0} 23 \overline{2} 3]$
109. $[0 \overline{1} \overline{0} 2 \overline{3} \overline{3}]=[0 \overline{1} \overline{0} \overline{2} 3 \overline{2} \bar{z}]=[012 \overline{0} 1 \overline{3} \overline{3}]=[012 \overline{0} 3 \overline{1}]=[0 \overline{\overline{2}} \overline{3} \overline{1} 20]=[0 \overline{1} 0 \overline{2} \overline{3} \overline{2} 3]$
110. $[0 \overline{1} \overline{0} \overline{2} 1]=[\overline{1} 1 \overline{1} \overline{2} 0]=[\overline{0} 120 \overline{2}]=[0 \overline{1} 20 \overline{3} \overline{2} \overline{3}]=[0 \overline{1} \overline{2} \overline{0} \overline{1} 02]$
111. $[0 \overline{1} \overline{0} \overline{2} \overline{1}]=[\overline{0} 1 \overline{0} 20]=[\overline{0} \overline{1} 2102]=[\overline{0} 1 \overline{0} 2 \overline{0} \overline{2}]=[\overline{0} 1 \overline{0} 2 \overline{0} \overline{3} \overline{3}]=[\overline{0} 1 \overline{0} 2 \overline{0} \overline{1} \overline{1}]=[\overline{0} 1 \overline{2} \overline{3} \overline{1} \overline{3}]$
112. $[0 \overline{1} \overline{0} \overline{2} 3]=[0 \overline{1} \overline{0} 2 \overline{2} 2]=[\overline{0} \overline{1} \overline{2} 0 \overline{1} 3]=[\overline{0} \overline{1} \overline{2} 0 \overline{3} 1]=[0 \overline{1} 20 \overline{1} \overline{2} \overline{1} \overline{1}]=[0 \overline{1} \overline{2} 301 \overline{2}]=[0 \overline{1} \overline{0} 2 \bar{z} \bar{z} \bar{z}]$
113. $[0 \overline{1} \overline{0} \overline{2} \overline{3}]=[0 \overline{1} \overline{0} 232]=[0 \overline{2} 2310 \overline{3} \overline{3}]=[0 \overline{1} \overline{2} 0121]=[0 \overline{1} \overline{0} 232 \overline{2} \overline{0}]=[0 \overline{1} \overline{2} 23 \overline{2} \overline{1}]=[0 \overline{1} \overline{0} 23 \overline{2} \overline{3}]$
114. $[01201]=[\overline{0} \overline{1} \overline{2} \overline{0} \overline{1}]=[0 \overline{1} \overline{2} 1 \overline{3} \overline{1}]=[\overline{0} 1 \overline{2} 101]=[0 \overline{1} \overline{2} \overline{3} \overline{1} \overline{2} 0]$
115. $[0120 \overline{1}]=[0 \overline{1023} \overline{1}]=[01 \overline{2} \overline{2} \overline{3} 1]=[0 \overline{1} 210 \overline{0} 31]=[0 \overline{1} \overline{2} 1 \overline{3} \overline{2} 3]=[0 \overline{2} \overline{2} \overline{3} 1 \overline{2} \overline{0}]$
116. $[0120 \overline{2}]=[01 \overline{0} \overline{2} 0]=[\overline{0} 12 \overline{1} \overline{3} 3]=[01 \overline{2} 1 \overline{1} 1]=[01 \overline{2} 13 \overline{2}]=[01 \overline{2} 1 \overline{3} 1]=[0 \overline{1} 20 \overline{3} 2 \overline{0}]$ $=[0 \overline{2} 2132 \overline{3}]$
117. $[01203]=[012 \overline{3} \overline{0} \overline{3}]=[\overline{0} \overline{1} \overline{2} \overline{0} \overline{3} 2]=[0 \overline{1} 21302]=[0 \overline{1} \overline{2} \overline{0} 1 \overline{3} \overline{0}]$
118. $[0120 \overline{3}]=[01 \overline{2} 032]=[\overline{0} \overline{1} \overline{2} \overline{3} \overline{1} 0]=[0 \overline{1} 20 \overline{1} 2 \overline{3}]=[0 \overline{1} 2032 \overline{1}]$
119. $[012 \overline{\mathrm{O}} \mathrm{T}]=[0 \overline{2} \overline{2} 0 \overline{1} 2]=[0 \overline{2} \overline{2} 31 \overline{3}]=[0 \overline{1} \overline{1} 1 \overline{3} 2]=[0 \overline{1} \overline{0} 2 \overline{3} 0]=[0 \overline{1} 2012 \overline{1}]=[0 \overline{1} \overline{2} \overline{3} \overline{1} 2 \overline{0}]$
120. $[012 \overline{0} 2]=[010 \overline{0} 12]=[\overline{0} \overline{1} 2 \overline{1} \overline{2}]=[\overline{0} \overline{1} \overline{2} 12]=[\overline{1} 1 \overline{0} \overline{2} \overline{1}]=[\overline{0} \overline{1} \overline{2} 3 \overline{2} 3]$
121. $[012 \overline{0} \overline{2}]=[01 \overline{2} 02]=[01 \overline{0} \overline{\overline{1}} \overline{1}]=[\overline{0} 123 \overline{1} 3]=[0 \overline{1} \overline{2} 132 \overline{0}]$
122. $[012 \overline{0} 3]=[0 \overline{1} \overline{2} 3 \overline{1} 10]=[0 \overline{1} \overline{0} 2 \overline{3} 1]=[\overline{0} 1231 \overline{3}]=[0 \overline{1} \overline{0} \overline{2} 1 \overline{3} 1]=[0120 \overline{3} \overline{0} \overline{3}]$
123. $[012 \overline{0} \overline{3}]=[0 \overline{2} \overline{2} 1 \overline{3} \overline{0}]=[012303]=[\overline{0} 1 \overline{0} \overline{2} 31]=[\overline{0} 12 \overline{3} \overline{0} 2]=[012 \overline{0} \overline{3} 1 \overline{1}]$
124. $[01230]=[012 \overline{0} \overline{\bar{O}} \overline{0}]=[0 \overline{1} 20123] \stackrel{=}{=}[0 \overline{1} \overline{2} 30 \overline{1} \overline{3}]$
125. $[0123 \overline{0}]=[\overline{0} 1 \overline{2} \overline{0} 13]=[0 \overline{1} 20 \overline{1} 3 \overline{2}]=[0 \overline{1} 2031 \overline{2}]$
126. $[01231]=[0 \overline{1} \overline{2} \overline{0} \bar{z} \overline{2} \bar{z}]=[0 \overline{1} \overline{2} 1 \overline{0} \overline{1}]=[\overline{0} \overline{1} \overline{2} \bar{O} 31]=[0 \overline{1} \overline{2} 0 \overline{2} 32]=[0 \overline{1} \overline{2} \overline{3} \overline{1} \overline{2} \overline{3}]=[012 \overline{0} \overline{3} 02]$
127. $[0123 \overline{2} \overline{\bar{c}}=[01 \overline{2} \overline{3} 2]=[01 \overline{2} 10 \overline{2}]=[0 \overline{1} 20 \overline{3} 1 \overline{0}]=[0 \overline{1} 21 \overline{0} \overline{3} 0]=[0 \overline{1} 2130 \overline{3}]=[0 \overline{1} 21 \overline{3} \overline{0} 3]$ $=[0 \overline{1} \overline{2} \overline{0} 1 \overline{0} 3]$
128. $[012 \overline{3} 0]=[\overline{0} 12 \overline{0} 1]=[0 \overline{1} \overline{2} 3 \overline{0} 1]=[\overline{0} \overline{1} \overline{2} \overline{1} \overline{2} 2]=[\overline{0} \overline{2} \overline{2} 31 \overline{3}]=[0123 \overline{0} \overline{3} \overline{0}]$
129. $[012 \overline{3} \overline{0}]=[01 \overline{2} \overline{3} \overline{0}]=[012030]=[01 \overline{2} 030]$
130. $[012 \overline{3} 1]=[\overline{0} 12 \overline{0} 3]=[0 \overline{1} \overline{2} 01 \overline{0}]=[\overline{1} \overline{1} \overline{2} 3 \overline{2}]=[0 \overline{1} \overline{2} 0 \overline{3} 2]=[0 \overline{1} \overline{2} 1 \overline{0} 2]=[01 \overline{2} \overline{3} 1 \overline{0}]$
$=[0 \overline{1} 2032 \overline{3}]$
131. $[012 \overline{2} 2]=[0 \overline{1} \overline{2} 1 \overline{2} 0]=[0 \overline{1} \overline{2} \overline{0} 1 \overline{0} \overline{1}]=[0 \overline{1} \overline{2} \overline{0} \overline{1} 01]=[0 \overline{1} \overline{2} \overline{0} 2 \overline{3} \overline{2}]=[0 \overline{1} \overline{0} \overline{2} 1 \overline{3} 0]$
132. $[012 \overline{3} \overline{2}]=[01 \overline{2} 32]=[01 \overline{2} \overline{0} \overline{1} \overline{2}]=[01 \overline{2} 1 \overline{0} \overline{2}]=[01 \overline{2} \overline{3} \overline{1} 0]=[\overline{0} \overline{1} 23 \overline{0} \overline{3}]$
133. $[01 \overline{2} 01]=[\overline{1} \overline{1} 2 \overline{0} \overline{1}]=[0 \overline{1} 21 \overline{3} \overline{2}]=[0 \overline{1} \overline{2} 03 \bar{z}]=[01 \overline{2} \overline{3} 13]=[\overline{0} \overline{1} 2101]=[0 \overline{1} \bar{z} \overline{3} \overline{0} \overline{1} 2]$ $=[0120 \overline{1} 2 \overline{1}]$
134. $[01 \overline{2} 03]=[\overline{1} \overline{1} 2 \overline{3} \overline{1}]=[0120 \overline{3} \overline{2}]=[012 \overline{3} \overline{0} \overline{1}]=[01 \overline{2} \overline{\mathrm{O}} \overline{\bar{z}} \overline{2}]=[\overline{0} \overline{1} 2131]=[0 \overline{1} 20321]$
135. $[01 \overline{2} \overline{0} 1]=[0 \overline{1} 21 \overline{0} 2]=[01 \overline{2} 30 \overline{2}]=[01 \overline{2} 31 \overline{3} \overline{3}]=[0 \overline{1} 201 \overline{2} \overline{0}]=[0 \overline{1} \overline{2} \overline{0} 3 \overline{1} 0]=[0 \overline{1} \bar{z} \overline{3} 0 \overline{2} 3]$
136. $[01 \overline{2} \overline{\overline{0}} \overline{1}]=[012 \overline{3} \overline{2} 0]=[01 \overline{2} 101]=[0 \overline{1} 20 \overline{3} \overline{2} \overline{0} \overline{0}]=[01230 \overline{2} 0]$
137. $[01 \overline{2} \overline{0} 3]=[\overline{0} \overline{1} 2 \overline{1} \overline{0} \overline{1}]=[\overline{0} \overline{1} \overline{2} 32 \overline{0}]=[0 \overline{1} 232 \overline{2} \overline{1} 0]=[0 \overline{1} \overline{2} 01 \overline{3} 1]=[0 \overline{1} \overline{2} \overline{0} 2 \overline{1} 3]$
138. $[01 \overline{2} \overline{0} \overline{3}]=[01 \overline{2} 031]=[01 \overline{2} 303]=[\overline{1} \overline{1} 213 \overline{1}]=[0 \overline{1} 203 \overline{1} \overline{2}]=[0 \overline{1} \overline{\overline{2}} \overline{3} 10]$
139. $[01 \overline{2} 10]=[0123 \overline{2} 3]=[01 \overline{2} \overline{0} \overline{1} \overline{0}]=[0 \overline{1} 20 \overline{3} \overline{2} 0]=[0 \overline{1} \overline{2} 01 \overline{3} 0]=[0 \overline{1} \overline{2} \overline{0} 1 \overline{0} \overline{3}]=[012 \overline{3} 21 \overline{2}]$
140. $[01 \overline{2} 1 \overline{0}]=[01 \overline{2} 3 \overline{2}]=[0120 \overline{2} \overline{3}]=[012 \overline{3} \overline{2} 3]=[\overline{0} \overline{1} 2 \overline{1} 0 \overline{3}]=[0 \overline{1} 21323]=[0120323]$
141. $[01 \overline{2} 13]=[\overline{0} \overline{1} 2 \overline{1} \overline{3}]=[0120 \overline{2} 0]=[01 \overline{2} \overline{\overline{3}} \overline{3} \overline{3} \overline{3}]=[\overline{0} \overline{1} 2313]=[0 \overline{1} 213 \overline{2} 3]$
142. $[01 \overline{2} 1 \overline{3}]=[01 \overline{0} 2 \overline{2}]=[\overline{0} \overline{1} \overline{2} \overline{0} 2]=[0120 \overline{2} \overline{1}]=[\overline{0} \overline{1} 2 \overline{1} 0 \overline{1}]=[0 \overline{1} 203 \overline{3} 20]$
143. $[01 \overline{2} 30]=[\overline{0} \overline{1} 2 \overline{3} \overline{0}]=[01 \overline{2} \overline{0} 12]=[01 \overline{2} \overline{0} \overline{3} \overline{0}]=[0 \overline{1} \overline{2} \overline{0} 3 \overline{1} \overline{0}]=[012 \overline{0} \overline{2} 10]$
144. $[01 \overline{2} 31]=[\overline{0} \overline{1} 2 \overline{0} \overline{3}]=[0 \overline{1} 21 \overline{0} \overline{2}]=[01 \overline{2} \overline{0} 10]=[\overline{0} \overline{1} 2303]=[\overline{0} \overline{1} \overline{2} \overline{0} 32]=[0 \overline{1} 2032 \overline{0}]$ $=[0 \overline{1} \overline{2} \overline{0} \overline{1} 3 \overline{0}]$
145. $[01 \overline{2} \overline{3} 0]=[012 \overline{3} \overline{0} \overline{2} \overline{\overline{2}}]=[\overline{0} \overline{1} 2310]=[\overline{0} \overline{2} \overline{2} 32 \overline{1} \overline{1}]=[0 \overline{1} 23 \overline{2} \overline{0} 1]=[0 \overline{1} \overline{2} \overline{0} 2 \overline{3} 1]=[0 \overline{1} \overline{2} \overline{0} \overline{3} \overline{1} \overline{2}]$ $=[01 \overline{2} \overline{3} 01 \overline{2}]$
146. $[01 \overline{2} \bar{z} \overline{1}]=[\overline{0} 12 \overline{0} \overline{3}]=[0 \overline{1} 21 \overline{3} 2]=[012 \overline{3} 12]=[01 \overline{2} 01 \overline{0}]=[0 \overline{0} 12303]=[0123 \overline{0} \overline{2} \overline{0}]$
147. $[01 \overline{2} \overline{3} \overline{1}]=[012 \overline{2} \overline{2} \overline{1}]=[01 \overline{2} 131]=[\overline{0} \overline{1} 23 \overline{0} 3]=[0 \overline{1} 2132 \overline{2} \overline{3}]$
148. $[01 \overline{0} 21]=[\overline{0} 12 \overline{0} \overline{2}]=[\overline{0} \overline{1} \overline{2} 02]=[0 \overline{1} \overline{2} 1 \overline{2} \overline{3}]=[0 \overline{1} \overline{2} \overline{3} 1 \overline{3}]=[0 \overline{1} \overline{2} 1323]=[01230 \overline{0} \overline{0} \overline{]}]$
$=[012 \overline{2} 3010]$
149. $[010 \overline{0} 23]=[0 \overline{1} \overline{2} \bar{z} 10]=[01 \overline{0} 2 \overline{3} \overline{0}]=[01 \overline{0} 2 \overline{3} \overline{1}]=[01 \overline{0} \overline{2} \overline{3} \overline{2}]=[\overline{0} \overline{1} \overline{2} \overline{1} 12]=[0 \overline{1} \overline{2} \overline{3} \overline{0} \overline{1} \overline{0}]$ $=[01 \overline{0} 23 \overline{2} 3]$
150. $[01 \overline{0} 2 \overline{3}]=[01 \overline{0} \overline{2} 3 \overline{2} \overline{\bar{c}}]=[010 \overline{0} 2 \bar{z} \overline{2} 0]=[01 \overline{0} 2 \overline{3} \overline{2} 1]=[010 \overline{2} 2 \overline{3} \overline{2} 3]$
151. $[01 \overline{0} \overline{2} 3]=[010 \overline{0} \overline{3} 2]=[010 \overline{0} 2 \overline{3} \overline{2} \overline{0}]=[01 \overline{0} 2 \overline{3} \overline{2} \overline{1}]=[010 \overline{2} 2 \overline{3} \overline{2} \overline{3}]$
152. $[01 \overline{0} \overline{2} \overline{3}]=[0120 \overline{1} \overline{2}]=[01 \overline{0} 232]=[01 \overline{0} \overline{2} 30]=[01 \overline{0} \overline{2} 31]=[\overline{0} 123 \overline{1} \overline{0}]=[01 \overline{0} 23 \overline{2} \overline{3}]$
153. $[\overline{0} \overline{1} 210]=[0 \overline{1} \overline{2} 032]=[0 \overline{1} \overline{0} \overline{2} \overline{1} \overline{0}]=[01 \overline{2} 01 \overline{3}]$
154. $[\overline{0} \overline{1} 21 \overline{0}]=[0 \overline{0} 1 \overline{2} \overline{3} 0]=[\overline{0} 1 \overline{2} \overline{0} 1 \overline{0}]=[01 \overline{2} 130 \overline{2}]=[01 \overline{2} 1 \overline{3} \overline{0} 1]$
155. $[\overline{0} \overline{1} 213]=[01 \overline{2} 03 \overline{1}]=[01 \overline{2} \overline{0} \overline{3} 2]=[0 \overline{0} 1 \overline{0} 23 \overline{0}]=[0 \overline{1} \overline{2} \overline{1} \overline{1} \overline{3} 2]$
156. $[\overline{0} \overline{1} 21 \overline{3}]=[\overline{0} 1 \overline{2} \overline{0} 3]=[0 \overline{1} 20 \overline{3} 23]=[0 \overline{1} \overline{0} 2 \overline{1} \overline{0}]=[0 \overline{1} \overline{2} \overline{3} \overline{2} \overline{2} 1]$
157. $[\overline{0} \overline{1} 2 \overline{1} 0]=[\overline{1} \overline{1} 2 \overline{3} 2]=[01 \overline{2} 1 \overline{0} 3]=[01 \overline{2} 1 \overline{3} 0]=[\overline{0} \overline{1} \overline{2} 32 \overline{3}]=[012032 \overline{3}]$
158. $[\overline{0} \overline{1} 2 \overline{1} \overline{0}]=[01 \overline{2} \overline{0} 32]=[\overline{0} \overline{1} 23 \overline{3} \overline{3}]=[0 \overline{2} \overline{2} \overline{0} 2 \overline{1} \overline{3}]=[012 \overline{0} 210]=[012 \overline{3} \overline{2} \overline{0} \overline{3}]$
159. $[\overline{0} \overline{1} 230]=[\overline{0} \overline{2} \overline{2} 30]=[0 \overline{1} \overline{2} 0 \overline{1} \overline{3}]=[01 \overline{2} 31 \overline{2}]=[\overline{0} \overline{1} \overline{2} \overline{0} \overline{3} \overline{0}]=[0 \overline{1} \overline{2} \overline{0} \overline{1} 30]=[0 \overline{1} \overline{2} 3103]$
160. $[\overline{0} \overline{1} 23 \overline{0}]=[012 \overline{3} \overline{2} 1]=[01 \overline{2} \overline{3} \overline{1} \overline{0}]=[0 \overline{1} \overline{0} \overline{2} 13 \overline{0}]=[01 \overline{2} \overline{3} 010]=[01 \overline{2} \overline{3} 013]$
161. $[\overline{0} \overline{1} 231]=[0 \overline{1} \overline{2} 03 \overline{1}]=[01 \overline{2} 13 \overline{0}]=[01 \overline{2} \overline{3} 0 \overline{3}]=[\overline{0} \overline{1} \overline{2} 321]=[0 \overline{1} 23 \overline{2} 1 \overline{0}]$
162. $[\overline{0} \overline{1} 23 \overline{2}]=[\overline{0} \overline{1} \overline{2} \overline{3} 2]=[\overline{0} \overline{1} 2 \overline{1} \overline{0} 2]=[0 \overline{1} \overline{2} \overline{3} \overline{0} \overline{2} 3]=[012 \overline{0} 21 \overline{0}]=[\overline{0} \overline{1} 2103 \overline{0}]=[\overline{0} \overline{1} 21 \overline{0} \overline{3} 0]$ $=[\overline{0} \overline{1} 2130 \overline{3}]$
163. $[\overline{0} \overline{1} \overline{2} 01]=[\overline{0} 12 \overline{3} \overline{1}]=[0 \overline{1} \overline{2} 130]=[0 \overline{1} \overline{2} 1 \overline{0} \overline{3} \overline{0}]=[01203 \overline{0} 3]=[\overline{0} \overline{1} \overline{2} 01 \overline{3} 0]$
164. $[\overline{0} \overline{1} \overline{2} 0 \overline{1}]=[0 \overline{1} \overline{0} \overline{2} 3 \overline{1}]=[012 \overline{3} 0 \overline{3}]=[\overline{0} \overline{1} \overline{2} 10 \overline{2}]=[0 \overline{1} \overline{2} 3012]=[0123 \overline{0} \overline{3} 0]$
165. $[\overline{0} \overline{1} \overline{2} 03]=[0 \overline{1} \overline{2} 30 \overline{2}]=[0 \overline{1} \overline{2} 3 \overline{2} \overline{0}]=[\overline{0} \overline{1} \overline{2} 103]=[\overline{0} \overline{1} \overline{2} \overline{3} \overline{0} \overline{3}]=[0 \overline{1} \overline{2} 3020]$
166. $[\overline{0} \overline{1} \overline{2} 0 \overline{3}]=[0 \overline{1} \overline{1} 13 \overline{1}]=[0 \overline{1} \overline{0} \overline{2} 3 \overline{0}]=[0 \overline{1} \overline{2} \overline{3} \overline{1} 3]=[0 \overline{1} 20 \overline{1} \overline{1} 1]=[0 \overline{1} 231 \overline{0} 3]=[0 \overline{1} \overline{2} \overline{0} 23 \overline{0}]$
167. $[\overline{0} \overline{1} \overline{2} \overline{0} 1]=[01201 \overline{2}]=[01 \overline{0} 23 \overline{1}]=[\overline{0} 1 \overline{0} \overline{2} \overline{3} 1]=[0 \overline{1} \overline{2} \overline{3} \overline{0} \overline{1} 0]=[\overline{0} \overline{1} 213 \overline{0} \overline{2}]=[\overline{0} \overline{1} \overline{2} 0 \overline{1} \overline{0} \overline{1}]$
168. $[\overline{0} \overline{1} \overline{2} \overline{0} 3]=[01231 \overline{0}]=[01 \overline{2} 31 \overline{0}]=[0 \overline{2} 20320]=[0 \overline{1} 231 \overline{0} \overline{1}]$
169. $[\overline{0} \overline{1} \overline{2} \overline{0} \overline{3}]=[01203 \overline{2}]=[\overline{0} \overline{1} 2302]=[0 \overline{2} \overline{2} 310 \overline{3}]=[\overline{0} \overline{1} 21 \overline{0} \overline{3} \overline{1}]$
170. $[\overline{0} \overline{1} \overline{2} 10]=[0 \overline{1} \overline{2} 1 \overline{3} 1]=[0 \overline{1} \overline{2} 3 \overline{1} \overline{2}]=[0 \overline{1} \overline{2} 3 \overline{2} 0]=[01201 \overline{0}]=[\overline{0} \overline{1} \overline{2} 03 \overline{2}]=[\overline{0} \overline{1} \overline{2} 0 \overline{1} 0]$
171. $[\overline{0} \overline{1} \overline{2} 13]=[0 \overline{1} \overline{2} 0 \overline{3} 0]=[0 \overline{2} \overline{2} 3 \overline{0} \overline{2}]=[0 \overline{1} \overline{2} 3 \overline{2} 1]=[\overline{0} \overline{1} \overline{2} \overline{3} \overline{1} \overline{3}]=[\overline{0} 120 \overline{3} \overline{2} \overline{\overline{2}}]=[0 \overline{2} \overline{2} \overline{0} 12 \overline{1}]$
$=[0 \overline{1} \overline{0} \overline{2} 1 \overline{3} 2]$
172. $[0 \overline{0} \overline{2} \overline{2} 31]=[\overline{0} 12 \overline{0} \overline{1}]=[0 \overline{1} \overline{2} 0 \overline{3} \overline{1}]=[012 \overline{3} 02]=[0 \overline{1} \overline{2} 0130]=[0 \overline{1} \overline{2} 0131]=[0 \overline{1} \overline{2} \overline{0} 312]$
$=[012 \overline{3} \overline{2} \overline{0} \overline{2}]$
173. $[\overline{0} \overline{1} \overline{2} 32]=[\overline{0} \overline{1} 2 \overline{3} \overline{2}]=[01 \overline{2} \overline{0} 30]=[01 \overline{2} \overline{3} 03]=[\overline{0} \overline{1} 2 \overline{1} 02]=[\overline{0} \overline{1} 231 \overline{0}]=[0 \overline{1} \overline{2} 01 \overline{3} \overline{1}]$
174. $[\overline{0} \overline{1} \overline{2} 3 \overline{2}]=[012 \overline{0} 2 \overline{1}]=[0 \overline{1} \overline{2} \overline{0} 21 \overline{3}]=[0 \overline{1} \overline{2} \overline{0} 23 \overline{1}]=[0 \overline{1} \overline{2} \overline{2} 132]=[\overline{0} \overline{1} 2 \overline{1} \overline{0} \overline{3} 1]$.
175. $[\overline{0} \overline{1} \overline{2} \overline{3} 0]=[0 \overline{1} 20 \overline{1} \overline{3}]=[0 \overline{1} 2012 \overline{0}]=[0 \overline{1} 20313]=[0 \overline{1} 203 \overline{0} \overline{1}]=[012 \overline{0} \overline{2} \overline{1} 2]$
176. $[\overline{0} \overline{1} \overline{2} \overline{3} \overline{0}]=[\overline{0} \overline{1} \overline{2} 030]=[0 \overline{1} 231 \overline{2} 0]=[0 \overline{1} \overline{2} 30 \overline{1} 0]=[0123 \overline{0} \overline{3} \overline{2}]=[01 \overline{2} \overline{0} 31 \overline{2}]$
177. $[\overline{0} \overline{1} \overline{2} \overline{3} 1]=[\overline{0} 1203]=[\overline{0} 12 \overline{3} \overline{0} \overline{3}]=[\overline{0} \overline{1} 230 \overline{2} \overline{0}]$
178. $[\overline{0} \overline{1} \overline{2} \overline{3} \overline{1}]=[0120 \overline{3} \overline{1}]=[\overline{0} \overline{1} \overline{2} 131]=[0 \overline{1} 20123]=[0 \overline{1} \overline{0} \overline{2} 1 \overline{3} \overline{2}]=[0120131]=[\overline{0} \overline{1} \overline{2} 03 \overline{0} \overline{2}]$
179. $[\overline{0} 1 \overline{0} 2 \overline{0}]=[0 \overline{1} 0 \overline{2} \overline{1} 2]$
180. $[0 \overline{0} 1 \overline{0} 23]=[\overline{0} \overline{1} 2132]=[\overline{0} 1 \overline{0} 2 \overline{3} \overline{0}]=[\overline{0} 1 \overline{0} 2 \overline{3} \overline{1}]=[\overline{0} 1 \overline{0} \overline{2} \overline{3} \overline{2}]=[\overline{0} 123 \overline{2} 3]=[\overline{0} 1 \overline{2} \overline{0} \overline{1} \overline{0}]$
$=[0 \overline{1} \overline{0} \overline{2} \overline{1} 02]=[0 \overline{1} \overline{0} \overline{2} \overline{1} \overline{3} \overline{2}]$
181. $[\overline{0} 1 \overline{0} 2 \overline{2}]=[\overline{0} 1 \overline{2} 32 \overline{2}]=[\overline{0} 12 \overline{2} \overline{2} 3]$
182. $[\overline{0} 1 \overline{0} \overline{2} 3]=[\overline{0} 12 \overline{3} 2]=[0 \overline{1} \overline{2} 10 \overline{0} 3]=[0 \overline{1} \overline{2} 1 \overline{3} 0]=[012 \overline{0} \overline{3} \overline{2}]=[\overline{0} 12 \overline{3} \overline{2} \overline{0}]=[\overline{0} 12 \overline{3} \overline{2} \overline{1}]$
183. $[\overline{0} 1 \overline{0} \overline{2} \overline{3}]=[\overline{0} \overline{1} \overline{2} \overline{0} 1 \overline{0}]=[\overline{0} 1 \overline{0} 232]=[\overline{0} 123 \overline{2} \overline{3}]=[0 \overline{1} \overline{2} \overline{0} 3 \overline{0} \overline{2}]=[\overline{0} \overline{1} \overline{2} 01 \overline{1} \overline{0} 1]$
184. $[\overline{0} 1201]=[0 \overline{1} \overline{2} \overline{1} \overline{1} \overline{2} \overline{\bar{c}}]=[0 \overline{1} \overline{2} 3 \overline{0} \overline{3} \overline{3}]=[01 \overline{2} \overline{3} 03]=[0 \overline{1} \overline{2} \overline{0} 212]=[0 \overline{1} \overline{0} 230 \overline{1}]=[012 \overline{3} \overline{0} 10]$
185. $\cdot[\overline{0} 120 \overline{1}]=[0 \overline{1} \overline{2} 1 \overline{0} \overline{3} 2]=[0 \overline{1} \overline{2} 3 \overline{0} \overline{2} 1]=[012 \overline{0} 21 \overline{3}]=[0123 \overline{\overline{2}} \overline{3}]=[\overline{0} \overline{1} \overline{2} \overline{0} \overline{3} \overline{1} \overline{0}]$
186. $[\overline{0} 120 \overline{3}]=[0 \overline{2} \overline{2} 0 \overline{3} \overline{0}]=[0 \overline{1} \overline{2} \overline{0} 30]=[\overline{0} \overline{1} \overline{2} \overline{3} 13]=[\overline{0} \overline{1} \overline{2} 132]=[0 \overline{1} 23 \overline{2} \overline{1} 0]=[01 \overline{2} \overline{0} \overline{3} 0 \overline{1}]$
187. $[\overline{0} 1230]=[0 \overline{1} \overline{2} \overline{3} 0 \overline{1}]=[01 \overline{2} \overline{3} 1 \overline{2}]=[0 \overline{1} 20 \overline{3} 1 \overline{2}]=[0120 \overline{1} 2 \overline{0}]=[0123 \overline{0} \overline{2} 0]=[\overline{0} 1230 \overline{1} 2]$ $=[\overline{0} 1230 \overline{1} 3]$
188. $[\overline{0} 1231]=[0 \overline{1} \overline{2} 3 \overline{1} \overline{0}]=[0 \overline{1} \overline{2} \overline{3} \overline{1} \overline{0} \overline{0}]=[012 \overline{0} 32]=[01 \overline{2} 3010]=[0 \overline{1} \overline{2} \overline{3} \overline{1} 02]=[0 \overline{1} \overline{2} \overline{3} \overline{1} 03]$ $=[012013 \overline{0}]$
189. $[\overline{0} 123 \overline{1}]=[012 \overline{0} \overline{2} \overline{3}]=[01 \overline{0} \overline{2} \overline{3} 0]=[0 \overline{1} \overline{2} 1320]=[\overline{0} \overline{1} \overline{2} \overline{0} 1 \overline{3} \overline{2} \bar{z}]=[\overline{0} \overline{1} 210 \overline{0} 32]$
190. $[\overline{0} 123 \overline{2}]=[\overline{0} 1 \overline{2} \overline{3} 2]=[\overline{0} 1 \overline{0} 23 \overline{2}]=[\overline{0} 1 \overline{0} \overline{2} \overline{3} 2]=[01 \overline{2} \overline{0} \overline{1} 3 \overline{2}]=[01 \overline{2} \overline{3} \overline{1} \overline{2} 0]=[\overline{0} \overline{1} 23 \overline{0} 2 \overline{3}]$
191. $[\overline{0} 12 \overline{2} \overline{0} \overline{0}]=[0 \overline{1} \overline{2} 103]=[012 \overline{0} \overline{\overline{1}} \overline{1}]=[\overline{0} \overline{1} \overline{2} \overline{3} 10]=[0 \overline{1} \overline{2} 301 \overline{2} \overline{2}]=[0 \overline{1} \overline{2} \overline{3} \overline{1} 23]=[012 \overline{0} \overline{3} 12]$
192. $[\overline{0} 12 \overline{3} \overline{2} \overline{2}]=[\overline{0} 1 \overline{2} 32]=[\overline{0} 1 \overline{0} 2 \overline{3} \overline{2}]=[\overline{0} 1 \overline{0} \overline{2} 32]$
193. $[\overline{0} 1 \overline{2} \overline{0} 1]=[\overline{0} 1 \overline{2} \overline{3} \overline{0}]=[0123 \overline{0} \overline{1}]=[\overline{0} \overline{1} 21 \overline{0} 2]=[0 \overline{1} 20312]=[0 \overline{0} \overline{0} 2 \overline{3} \overline{1} \overline{3}]=[0123101]$
194. $[\overline{0} 1 \overline{2} \overline{\mathrm{O}} \overline{1}]=[\overline{0} 1 \overline{0} 231]=[0 \overline{1} 2312 \overline{0}]=[0 \overline{1} \overline{0} \overline{2} \overline{1} 0 \overline{2}]=[0 \overline{1} \overline{0} \overline{2} \overline{3} 1 \overline{3}]=[0123 \overline{0} \overline{3} 1]=[\overline{0} 1230 \overline{2} 0]$
195. $[\overline{0} 12 \overline{2} \overline{3} \overline{3}]=[\overline{0} 1 \overline{2} \overline{3} 1]=[0 \overline{1} 203 \overline{2}]=[\overline{0} \overline{1} 21 \overline{3} 2]=[0 \overline{1} 20 \overline{1} 30]=[0 \overline{1} \overline{2} \overline{3} 0 \overline{1} \overline{1}]$
196. $[\overline{0} 1 \overline{2} \overline{3} \overline{1} \overline{1}]=[0 \overline{1} \overline{0} \overline{2} \overline{1} 3]=[\overline{0} 1 \overline{2} \overline{0} \overline{3} 0]=[0 \overline{1} 201 \overline{3} 2]=[0 \overline{1} \overline{0} 23 \overline{1} 3]=[0120 \overline{3} \overline{0} \overline{2}]=[012302 \overline{1}]$
197. $[0 \overline{1} 2010 \overline{0}]=[0 \overline{1} 21 \overline{3} 1]=[0 \overline{1} 2 \overline{1} \overline{0} 1]=[0 \overline{1} 2 \overline{1} \overline{1} \overline{0} \overline{0}]=[0 \overline{1} \overline{0} \overline{2} \overline{1} 0 \overline{1}]$
198. $[0 \overline{1} 2012]=[0 \overline{1} \overline{2} 0 \overline{1} \overline{2}]=[012 \overline{0} 12]=[01230 \overline{1}]=[\overline{0} \overline{1} \overline{2} \overline{3} 03]=[0 \overline{1} \overline{2} 30 \overline{1} 3]=[012 \overline{0} \overline{2} \overline{1} \overline{2}]$
199. $[0 \overline{1} 201 \overline{2}]=[0 \overline{1} \overline{0} 23 \overline{0}]=[01 \overline{2} \overline{0} 13]=[0 \overline{1} \overline{2} \overline{3} 0 \overline{2} \overline{3}]=[0 \overline{1} \overline{0} \overline{2} \overline{3} 1 \overline{2} \bar{z}]=[0 \overline{1} 201 \overline{2} \overline{3} 1]$
200. $[0 \overline{1} 2013]=[0 \overline{1} \overline{2} \overline{3} \overline{0} \overline{2}]=[0 \overline{1} 20 \overline{3} \overline{1} \overline{3}]=[0 \overline{1} \overline{2} \overline{0} \overline{3} 01]=[0 \overline{1} \overline{2} 310 \overline{0} 2]=[\overline{0} \overline{1} 231 \overline{2} \overline{1}]$
201. $[0 \overline{1} 201 \overline{3}]=[\overline{0} \overline{1} \overline{2} \overline{3} \overline{1} \overline{2}]=[0 \overline{1} 23 \overline{2} 13]=[0 \overline{1} \overline{2} \bar{z} 0 \overline{2} \overline{0}]=[0123021]=[01 \overline{2} \overline{1} \overline{1} 31]=[0 \overline{1} 2010 \overline{3} \overline{1}]$
202. $[0 \overline{1} 20 \overline{1} 2]=[0120 \overline{3} 1]=[\overline{0} 1 \overline{1} \overline{2} \overline{1} \overline{1} \overline{0}]=[0 \overline{1} 232 \overline{0} \overline{0} \overline{2}]=[0 \overline{1} \overline{2} \overline{0} 2 \overline{3} 0]=[0 \overline{1} \overline{1} \overline{3} 1 \overline{2} 3]=[0 \overline{1} \overline{0} 230 \overline{3}]$
203. $[0 \overline{1} 20 \overline{1} \overline{2}]=[0 \overline{1} \overline{0} \overline{2} 30]=[\overline{0} \overline{1} \overline{2} 0 \overline{3} \overline{1}]=[0 \overline{1} \overline{2} 1 \overline{0} \overline{3} 1]=[0 \overline{1} \overline{2} 1 \overline{3} \overline{2} \overline{2}]$
204. $[0 \overline{1} 20 \overline{1} 3]=[\overline{0} 1 \overline{2} \overline{0} \overline{3} \overline{1}]=[\overline{0} \overline{1} \overline{2} \overline{3} 0 \overline{1} \overline{1}]=[0123 \overline{0} 2]=[0 \overline{1} 21 \overline{3} \overline{0} 1]=[0 \overline{1} \overline{2} \overline{3} 0 \overline{2} 1]=[01 \overline{2} \overline{0} \overline{1} 3 \overline{0}]$
205. $[0 \overline{1} 2031]=[\overline{0} 1 \overline{2} \overline{0} 1 \overline{3}]=[\overline{0} \overline{1} \overline{2} \overline{3} 0 \bar{z}]=[0123 \overline{0} 1]=[0 \overline{1} 23 \overline{2} \overline{1} 3]=[0 \overline{1} \overline{2} 03 \overline{0} 1]=[\overline{0} \overline{1} 2103 \overline{2}]$
206. $[0 \overline{1} 203 \overline{1}]=[01 \overline{2} \overline{0} \overline{3} 1]=[0 \overline{1} \overline{2} \overline{3} 02]=[0 \overline{1} 2312 \overline{3}]=[0 \overline{1} \overline{0} \overline{2} \overline{3} 1 \overline{0}]=[01 \overline{1} \overline{3} \overline{1} \overline{2} 3]$
207. $[0 \overline{1} 2032]=[\overline{0} 1 \overline{2} \overline{0} \overline{3} \overline{2}]=[\overline{0} \overline{1} \overline{2} \overline{0} 3 \overline{2}]=[01 \overline{2} 310]=[01 \overline{2} 03 \overline{2}]=[012 \overline{3} 10]=[0120 \overline{3} 2]$
$=[0 \overline{1} \overline{2} 0 \overline{3} \overline{2}]$
208. $[0 \overline{1} 20 \overline{3} 1]=[0123 \overline{2} 0]=[\overline{0} 12302]=[0 \overline{1} 21 \overline{3} \overline{0} \overline{3}]=[01 \overline{2} \overline{3} \overline{1} \overline{1} \overline{1}]$
209. $[0 \overline{1} 20 \overline{3} \overline{1}]=[0 \overline{1} 20131]=[0 \overline{1} 21 \overline{0} 3 \overline{0}]=[0 \overline{1} \overline{0} \overline{\mathrm{~B}} 0 \overline{1}]=[0120 \overline{1} 2 \overline{3}]=[0 \overline{1} 20 \overline{3} \overline{1} \overline{0} 1]$ $=[0 \overline{1} 20 \overline{3} \overline{2} \overline{2} 0]$
210. $[0 \overline{1} 20 \overline{3} 2]=[0120 \overline{2} 1]=[01 \overline{2} 1 \overline{1} \overline{1}]=[\overline{0} \overline{1} 21 \overline{3} \overline{1}]=[0 \overline{1} \overline{2} \overline{0} 2 \overline{1} 0]=[0 \overline{1} \overline{2} \overline{3} 1 \overline{0} 3]=[01 \overline{0} \overline{2} \overline{\overline{0}} \overline{3} \overline{3}]$
211. $[0 \overline{1} 20 \overline{3} \overline{2}]=[0 \overline{1} \overline{0} \overline{2} 10]=[01 \overline{2} 10 \overline{1}]=[01 \overline{2} \overline{1} \overline{1} 0]=[0 \overline{1} \overline{2} \overline{0} \overline{1} 0 \overline{2}]=[\overline{0} \overline{1} \overline{2} \overline{3} 10 \overline{0}]=[\overline{0} 1 \overline{0} \overline{2} \overline{3} \overline{0} \overline{3}]$
212. $[0 \overline{1} 21 \overline{0} 1]=[0 \overline{1} 2 \overline{1} \overline{0} 3]=[0 \overline{1} 2 \overline{1} \overline{3} 1]=[0 \overline{2} 231 \overline{3}]=[0 \overline{1} \overline{2} 01 \overline{2} 1]=[0 \overline{1} \overline{2} \overline{3} \overline{1} 2 \overline{1}]=[\overline{0} \overline{1} \overline{2} \overline{0} 3 \overline{0} \overline{2}]$ $=[0 \overline{1} 20 \overline{3} 1 \overline{3} 1]$
213. $[0 \overline{1} 21 \overline{0} 3]=[0120 \overline{1} \overline{3}]=[0 \overline{120} 2 \overline{3} \overline{1} 0]=[0 \overline{1} \overline{2} \overline{0} 1 \overline{3} 2]=[0 \overline{1} \overline{2} 310 \overline{2}]=[0 \overline{1} \overline{2} \overline{3} 1 \overline{2} 0]=[0 \overline{1} 20 \overline{3} \overline{1} \overline{0} \overline{1}]$
214. $[0 \overline{1} 21 \overline{0} \overline{3}]=[0123 \overline{2} \overline{1}]=[0 \overline{1} 21303]=[0123 \overline{2} 0 \overline{2}]=[0 \overline{1} \overline{2} \overline{0} \overline{3} 1 \overline{2}]=[0 \overline{1} \overline{2} \overline{1} \overline{1} \overline{2} 1]=[01 \overline{2} 3012]$
215. $[0 \overline{1} 2130]=[0123 \overline{2} 1]=[01203 \overline{1}]=[0 \overline{1} 21 \overline{0} \overline{3} \overline{0}]=[0 \overline{1} 23 \overline{2} \overline{0} 3]=[0 \overline{1} \overline{2} \overline{0} 1 \overline{3} 0]=[0 \overline{1} 20 \overline{1} \overline{2} \overline{0} \overline{2}]$
216. $[0 \overline{1} 213 \overline{0}]=[0 \overline{1} \overline{2} \overline{3} 12]=[0 \overline{1} 21 \overline{3} 0 \overline{3}]=[0 \overline{1} \overline{2} \overline{0} \overline{3} 1 \overline{0}]=[\overline{0} \overline{1} \overline{2} 03 \overline{0} 1]=[0 \overline{1} 213 \overline{0} \overline{3} 0]$
217. $[0 \overline{1} 2132]=[0120 \overline{2} 3]=[01 \overline{2} 1 \overline{0} \overline{1}]=[0 \overline{1} \overline{2} \overline{0} 3 \overline{1} 2]=[012 \overline{0} \overline{2} \overline{1} \overline{0}]=[0 \overline{1} 2 \overline{1} \overline{0} \overline{3} \overline{0}]=[0 \overline{1} 201 \overline{0} \overline{2} 0]$
218. $[0 \overline{1} 213 \overline{2}]=[01 \overline{2} 13 \overline{1}]=[01 \overline{2} \overline{3} \overline{1} 3]=[0 \overline{1} 23101]=[0 \overline{1} \overline{2} \overline{1} \overline{1} 3 \overline{2}]=[0120321]$
219. $[0 \overline{1} 21 \overline{3} 0]=[0 \overline{1} 213 \overline{0} 3]=[0 \overline{1} 231 \overline{2} \overline{3}]=[01 \overline{2} 03 \overline{0} 2]=[0 \overline{1} \overline{2} \overline{3} 1 \overline{0} 2]=[0 \overline{1} 213 \overline{0} \overline{3} \overline{0}]$
$=[0 \overline{1} 21 \overline{3} 02 \overline{3}]$
220. $[0121 \overline{3} \overline{0}]=[0123 \overline{2} \overline{0}]=[0 \overline{1} 20 \overline{1} 3 \overline{1}]=[0 \overline{1} 20 \overline{3} 10]=[0123020]=[01 \overline{2} \overline{0} \overline{1} 30]=[\overline{0} 1 \overline{0} \overline{2} \overline{3} \overline{0} \overline{2} \overline{ }]$
221. $[0 \overline{1} 2310]=[0 \overline{1} \overline{0} \overline{2} \overline{3} 0]=[0 \overline{1} 213 \overline{2} \overline{1}]=[0 \overline{1} \overline{2} 012 \overline{1}]=[0 \overline{1} \overline{0} 23 \overline{1} 2]=[0 \overline{1} 23102 \overline{3}]$
222. $[0 \overline{1} 231 \overline{0}]=[\overline{0} \overline{1} \overline{2} 0 \overline{3} \overline{0}]=[\overline{0} \overline{1} \overline{2} \overline{0} 30]=[0 \overline{2} \overline{2} \overline{0} 230]=[\overline{0} \overline{1} \overline{2} 0120]=[0 \overline{1} 20 \overline{2} \overline{2} 3 \overline{0}]$
223. $[0 \overline{1} 2312]=[\overline{0} 1 \overline{2} \overline{0} \overline{1} 3]=[0 \overline{1} 203 \overline{1} 3]=[0 \overline{1} 23 \overline{2} \overline{1} \overline{2}]=[01 \overline{2} \overline{\overline{1}} \overline{2} \overline{3} \overline{3}]=[01230 \overline{2} \overline{0}]=[0 \overline{1} 213 \overline{2} 13]$
224. $[0 \overline{1} 231 \overline{2}]=[\overline{0} \overline{1} \overline{2} \overline{3} \overline{0} \overline{2}]=[0 \overline{1} 21 \overline{3} 01]=[0 \overline{1} \overline{2} 03 \overline{0} \overline{2}]=[0 \overline{1} 0230 \overline{2}]=[01 \overline{2} \overline{0} 312]=[0 \overline{1} 21031]$
225. $[0 \overline{1} 23 \overline{2} 0]=[0 \overline{1} 21 \overline{0} \overline{3} 1]=[0 \overline{1} \overline{2} 01 \overline{2} \overline{3}]=[0 \overline{1} \overline{2} 01 \overline{3} 2]=[0 \overline{1} \overline{2} \overline{0} 13 \overline{0}]=[0 \overline{1} \overline{2} \overline{3} 1 \overline{2} 1]=[0 \overline{1} \overline{2} \overline{3} \overline{1} \overline{2} \overline{1}]$
226. $[0 \overline{1} 23 \overline{2} \overline{0}]=[01 \overline{2} \overline{3} 0 \overline{2}]=[0 \overline{2} 20 \overline{1} 20]=[0 \overline{1} 2130 \overline{1}]=[0 \overline{1} \overline{2} \overline{0} \overline{\overline{1}} \overline{1} 2]=[0 \overline{1} \overline{2} \overline{3} 1 \overline{2} \overline{3}]=[0 \overline{1} 20 \overline{1} \overline{2} \overline{0} 2]$
227. $[0 \overline{1} 23 \overline{2} 1]=[\overline{0} \overline{1} 2312]=[0 \overline{1} 201 \overline{3} \overline{0}]=[0 \overline{1} \overline{2} \overline{3} \overline{0} \overline{2} \overline{0}]=[0 \overline{2} \overline{2} \overline{3} 0 \overline{2} 0]=[0 \overline{1} 201 \overline{0} \overline{3} 0]$
228. $[0 \overline{1} 23 \overline{2} \overline{1}]=[01 \overline{2} \overline{0} 3 \overline{1}]=[0 \overline{1} 2031 \overline{0}]=[0 \overline{1} 23121]=[\overline{0} \overline{1} 21032]=[0 \overline{1} 213 \overline{2} 1 \overline{3}]$
229. $[0 \overline{1} \overline{2} 012]=[0 \overline{1} \overline{0} \overline{2} \overline{3} \overline{0}]=[\overline{0} 120 \overline{3} \overline{1}]=[0 \overline{1} 23103]=[0 \overline{1} \overline{0} 2302]=[01 \overline{2} \overline{0} \overline{3} 01]$
230. $[0 \overline{1} \overline{2} 01 \overline{2}]=[0 \overline{1} 21 \overline{0} 1 \overline{3}]=[0 \overline{1} 23 \overline{2} 03]=[0 \overline{1} \overline{2} \overline{3} 1 \overline{2} \overline{1}]=[0 \overline{1} \overline{2} \overline{3} \overline{1} 21]=[0 \overline{1} \overline{2} 3 \overline{0} \overline{2} 3]=[0123 \overline{0} 3 \overline{2}]$
231. $[0 \overline{1} \overline{2} 013]=[\overline{1} \overline{1} \overline{2} 31 \overline{2}]=[012 \overline{3} \overline{2} \overline{0} 2]$
232. $[0 \overline{1} \overline{2} 01 \overline{3}]=[01 \overline{2} \overline{0} 3 \overline{0}]=[01 \overline{2} 10 \overline{3}]=[\overline{0} \overline{1} \overline{2} 320]=[0 \overline{1} 23 \overline{2} 0 \overline{1}]=[0 \overline{1} \overline{2} 0132]=[0 \overline{1} \overline{2} \overline{0} 130]$
$=[012 \overline{3} 212]$
233. $[0 \overline{1} \overline{2} 0 \overline{1} \overline{0}]=[0 \overline{1} \overline{2} \overline{0} 10]=[0 \overline{1} \overline{2} 102]=[01203 \overline{0} \overline{1}]=[012 \overline{0} \overline{2} \overline{1} \overline{3}]=[\overline{0} \overline{1} \overline{2} 3101]=[0 \overline{1} 201 \overline{2} \overline{0} 3]$
234. $[0 \overline{1} \overline{2} 03 \overline{0}]=[0 \overline{1} \overline{2} \overline{0} 1 \overline{2}]=[0 \overline{1} \overline{2} \overline{3} \overline{0} 3]=[\overline{0} \overline{1} \overline{2} \overline{3} 02]=[0 \overline{1} 2031 \overline{3}]=[0 \overline{1} 21 \overline{3} 0 \overline{1}]=[0 \overline{1} 231 \overline{2} 3]$
235. $[0 \overline{1} \overline{2} \overline{1} 1 \overline{0}]=[0 \overline{1} \overline{2} 1 \overline{2} \overline{0}]=[012 \overline{3} 23]=[0123 \overline{2} \overline{3}]=[01 \overline{2} 102]=[0 \overline{2} \overline{2} 0 \overline{1} \overline{0} 1]=[0120 \overline{3} 0 \overline{3}]$ $=[\overline{1} \overline{2} \overline{2} 0121]$
236. $[0 \overline{1} \overline{2} \overline{0} 12]=[0 \overline{1} \overline{2} 31 \overline{2}]=[0 \overline{1} \overline{2} 3 \overline{2} \overline{1}]=[\overline{0} \overline{1} \overline{2} 130]=[0 \overline{1} \overline{2} 03 \overline{0} \overline{3}]=[0 \overline{1} \overline{2} 3121]=[0 \overline{1} \overline{0} 2 \overline{3} \overline{1} 2]$ $=[0 \overline{1} 20 \overline{1} \overline{2} 3 \overline{1}]$
237. $[0 \overline{1} \overline{2} \overline{0} 13]=[0 \overline{1} 23 \overline{2} 01]=[0 \overline{1} \overline{2} 01 \overline{3} \overline{2}]=[0 \overline{1} \overline{2} \overline{0} \overline{3} \overline{1} \overline{3}]=[01 \overline{2} \overline{0} 31 \overline{0}]=[0 \overline{1} \overline{2} 01232]$ $=[0 \overline{1} \overline{2} \overline{0} 13 \overline{2} 0]$
238. $[0 \overline{1} \overline{2} \overline{0} 1 \overline{3}]=[012031]=[0 \overline{1} 21 \overline{0} 3 \overline{2}]=[0 \overline{1} 2130 \overline{2}]=[0 \overline{1} \overline{2} \overline{1} \overline{1} 3 \overline{1}]=[0 \overline{1} \overline{2} 3102]=[0 \overline{1} \overline{2} \overline{0} 1 \overline{3} \overline{1} 3]$
239. $[0 \overline{1} \overline{2} \overline{0} \overline{1} 0]=[0 \overline{1} \overline{2} 10 \overline{1}]=[0 \overline{1} \overline{0} \overline{2} 1 \overline{0}]=[012 \overline{3} 2 \overline{0}]=[0 \overline{1} 20 \overline{3} \overline{2} 3]=[0 \overline{1} \overline{2} \overline{0} 21 \overline{0}]=[0 \overline{1} \overline{2} \overline{0} 2 \overline{3} 2]$ $=[0 \overline{1} 2010 \overline{2} 1]$
240. $[0 \overline{1} \overline{2} \overline{0} \overline{1} 3]=[01 \overline{2} 312]=[\overline{0} \overline{1} 230 \overline{3}]=[0 \overline{1} 213 \overline{2} 0]=[0 \overline{1} \overline{2} \overline{0} 1 \overline{3} 1]=[012032 \overline{1}]=[0 \overline{1} \overline{2} \overline{1} 1 \overline{3} \overline{1} \overline{3}]$
241. $[0 \overline{1} \overline{2} \overline{0} \overline{1} \overline{3}]=[0 \overline{1} \overline{2} \overline{2} \overline{3} \overline{1}]=[0 \overline{1} \overline{2} \overline{0} 313]=[0 \overline{1} \overline{0} \overline{2} 131]=[012310 \overline{3}]=[0 \overline{1} \overline{2} 0123 \overline{1}]$
242. $[0 \overline{1} \overline{2} \overline{0} 21]=[0 \overline{1} \overline{2} 3 \overline{0} 3]=[\overline{0} \overline{2} \overline{2} 3 \overline{2} 0]=[\overline{0} 1201 \overline{0}]=[0 \overline{1} \overline{2} \overline{0} \overline{1} 03]=[0 \overline{1} \overline{0} \overline{2} 13 \overline{2}]=[0 \overline{1} 201 \overline{0} \overline{2} \overline{1}]$
243. $[0 \overline{1} \overline{2} \overline{0} 2 \overline{1}]=[01 \overline{2} \overline{0} 3 \overline{2}]=[\overline{0} \overline{1} 2 \overline{1} \overline{0} 1]=[\overline{0} \overline{1} 21 \overline{3} 1]=[0 \overline{1} 20 \overline{3} 2 \overline{3}]=[0 \overline{1} \overline{2} \overline{0} \overline{3} 0 \overline{3}]=[0 \overline{1} 02303]$
244. $[0 \overline{1} \overline{2} \overline{0} 23]=[0 \overline{1} \overline{2} 1 \overline{0} 1]=[01231 \overline{3}]=[\overline{0} \overline{1} \overline{2} 3 \overline{2} 1]=[\overline{0} \overline{1} \overline{2} 0 \overline{3} 0]=[0 \overline{1} 231 \overline{0} \overline{3}]=[\overline{1} \overline{1} 2 \overline{1} \overline{0} \overline{3} \overline{1}]$
245. $[0 \overline{1} \overline{2} \overline{0} 2 \overline{3}]=[012 \overline{3} 20]=[01 \overline{2} \overline{3} 0 \overline{1}]=[0 \overline{1} 20 \overline{1} 2 \overline{1}]=[0 \overline{1} \overline{2} \overline{0} \overline{1} 0 \overline{1}]=[01 \overline{0} 2303]=[01 \overline{2} \overline{3} 012]$
246. $[0 \overline{1} \overline{2} \overline{0} 3 \overline{0}]=[0 \overline{1} 023 \overline{0}]=[\overline{0} 1 \overline{0} \overline{2} \overline{3} 0]=[\overline{0} 120 \overline{3} 0]=[0 \overline{1} 201 \overline{0} 30]=[0 \overline{1} 213 \overline{2} 1 \overline{0}]$
247. $[0 \overline{1} \overline{2} \overline{0} 31]=[0 \overline{1} \overline{0} 231]=[\overline{0} \overline{1} \overline{2} 31 \overline{0}]=[0 \overline{2} \overline{2} \overline{1} \overline{1} \overline{3} \overline{1}]=[0 \overline{1} \overline{2} 01231]$
248. $[01 \overline{2} \overline{0} 3 \overline{1}]=[01 \overline{2} \overline{0} 1 \overline{2}]=[01 \overline{2} 302]=[0 \overline{1} 2132 \overline{0}]=[0 \overline{1} \overline{2} \overline{0} \overline{3} 1 \overline{3}]=[\overline{0} \overline{1} 2 \overline{1} \overline{0} \overline{3} 0]=[0 \overline{1} \overline{2} \overline{0} 1 \overline{3} \overline{1} 0]$ $=[0 \overline{1} \overline{2} \overline{0} 1 \overline{3} \overline{1} 2]$
249. $[0 \overline{1} \overline{2} \overline{0} \overline{3} 0]=[0 \overline{1} \overline{2} 30 \overline{3}]=[0 \overline{1} 2013 \overline{1}]=[0 \overline{1} 20 \overline{3} \overline{1} 3]=[0 \overline{1} \overline{2} \overline{0} 2 \overline{1} 2]=[0 \overline{1} 0230 \overline{3}]=[\overline{0} \overline{1} \overline{0} \overline{0} 3 \overline{0} \overline{1}]$ $=[0 \overline{1} 2010 \overline{0} 1]$
250. $[0 \overline{1} \overline{2} \overline{0} \overline{3} 1]=[0 \overline{1} 21 \overline{0} \overline{3} 2]=[0 \overline{1} 213 \overline{0} 2]=[0 \overline{1} \overline{2} \overline{0} 3 \overline{1} 3]=[01 \overline{2} 301 \overline{2}]=[\overline{0} \overline{1} \overline{2} 03 \overline{0} \overline{1}]=[0 \overline{1} \overline{2} \overline{0} 1 \overline{3} \overline{1} \overline{0}]$ $=[0 \overline{1} \overline{2} \overline{0} 1 \overline{3} \overline{1} \overline{2}]$
251. $[01 \overline{1} \overline{0} \overline{3} \overline{1} \overline{1}]=[01 \overline{2} \overline{3} 02]=[0 \overline{1} 23 \overline{2} \overline{0} \overline{1}]=[0 \overline{1} \overline{2} \overline{0} 131]=[\overline{0} \overline{1} 231 \overline{2} 0]=[0 \overline{1} \overline{2} 0123 \overline{2}]=[0 \overline{1} \overline{2} \overline{0} \overline{3} \overline{1} 0 \overline{2}]$
252. $[0 \overline{1} \overline{2} 1 \overline{0} \overline{3}]=[\overline{0} \overline{1} \overline{2} 013]=[\overline{0} 1 \overline{0} \overline{2} 30]=[\overline{0} 120 \overline{1} \overline{2}]=[0 \overline{1} 20 \overline{1} \overline{2} \overline{3}]=[0123 \overline{0} \overline{2} 3]=[\overline{0} \overline{1} \overline{2} 01 \overline{3} \overline{0}]$
253. $[0 \overline{1} \overline{2} 132]=[0 \overline{2} \overline{2} \overline{3} 13]=[0 \overline{1} \overline{2} 3 \overline{1} \overline{3}]=[012 \overline{0} \overline{2} 3]=[01 \overline{0} 21 \overline{3}]=[\overline{0} 123 \overline{1} \overline{3}]=[0 \overline{1} 20 \overline{1} \overline{2} \overline{0} \overline{1}]$
254. $[0 \overline{1} \overline{2} 1 \overline{3} \overline{2}]=[0 \overline{1} 0231]=[0120 \overline{1} \overline{0}]=[012 \overline{0} 10]=[0 \overline{1} 20 \overline{1} \overline{2} 0]=[\overline{0} \overline{1} \overline{2} 0 \overline{1} \overline{0} \overline{3}]=[0 \overline{1} \overline{2} 1 \overline{3} \overline{2} \overline{1} 0]$ $=[0 \overline{1} \overline{2} 1 \overline{3} \overline{2} \overline{1} 2]$
255. $[0 \overline{1} \overline{2} 301]=[0 \overline{1} \overline{0} \overline{2} 31]=[\overline{0} \overline{1} \overline{2} 0 \overline{1} \overline{3}]=[\overline{0} 1231 \overline{2}]=[0 \overline{1} \overline{0} \overline{2} \overline{1} \overline{3} \overline{1}]=[0120130]=[\overline{0} \overline{1} \overline{2} 3103]$
256. $[0 \overline{1} \overline{2} 30 \overline{1}]=[012301]=[\overline{0} \overline{1} \overline{2} \overline{3} \overline{0} \overline{1}]=[\overline{0} 12 \overline{3} \overline{0} 1]=[0 \overline{1} 2012 \overline{3}]=[0 \overline{1} \overline{2} \overline{3} \overline{1} 2 \overline{3}]=[0123 \overline{0} \overline{3} 2]$
257. $[01 \overline{2} 302]=[\overline{0} \overline{1} \overline{2} 03 \overline{1}]=[01 \overline{0} 2 \overline{3} \overline{2} 1]=[012 \overline{0} \overline{3} 1 \overline{3}]=[0 \overline{1} 20 \overline{3} \overline{1} \overline{0} \overline{3}]=[0 \overline{1} \overline{2} \overline{0} 13 \overline{2} 3]$
258. $[0 \overline{1} \overline{2} 3 \overline{0} \overline{1}]=[012 \overline{3} 01]=[\overline{0} 120 \overline{1} \overline{0}]=[0 \overline{1} \overline{2} 01 \overline{2} \overline{0}]=[0 \overline{1} \overline{2} 3101]=[012 \overline{0} 213]=[0123 \overline{0} 32]$ $=[0 \overline{1} \overline{2} 132 \overline{1} \overline{3}]$
259. $[01 \overline{2} 310]=[\overline{0} \overline{1} \overline{2} 30 \overline{2}]=[\overline{0} \overline{1} \overline{2} \overline{0} \overline{3} 0]=[0 \overline{1} 21 \overline{0} 32]=[0 \overline{1} \overline{2} \overline{0} 1 \overline{3} \overline{2}]=[0 \overline{1} \overline{2} 3 \overline{0} \overline{2} \overline{0}]=[0 \overline{1} \overline{2} 132 \overline{1} 3]$
260. $[0 \overline{1} \overline{2} 31 \overline{0}]=[0 \overline{1} 2013 \overline{2}]=[0120 \overline{3} \overline{0} 1]=[012 \overline{0} 212]=[\overline{0} \overline{1} 231 \overline{2} 1]=[\overline{0} \overline{1} \overline{2} \overline{0} 3 \overline{0} \overline{3}]=[0 \overline{2} 20 \overline{1} \overline{2} 3 \overline{2}]$
261. $[0 \overline{1} \overline{2} 312]=[0 \overline{1} \overline{2} \overline{0} 12 \overline{3}]=[0 \overline{1} \overline{0} 2 \overline{3} \overline{2} \overline{0}]=[\overline{0} \overline{1} \overline{2} 01 \overline{3} 1]=[0 \overline{1} 213 \overline{0} \overline{3} 2]=[0 \overline{1} \overline{2} \overline{0} \overline{3} \overline{1} 0 \overline{1}]$
262. $[0 \overline{1} \overline{2} \overline{3} 0 \overline{2}]=[01 \overline{2} \overline{0} 1 \overline{3}]=[\overline{0} 1 \overline{2} \overline{0} \overline{3} 1]=[0 \overline{1} 201 \overline{2} 0]=[0 \overline{1} 201 \overline{3} 0]=[0 \overline{1} 20 \overline{1} 3 \overline{0}]=[0 \overline{1} 203 \overline{1} 0]$
$=[0 \overline{1} 23 \overline{2} 1 \overline{3}]$
263. $[0 \overline{1} \overline{2} \overline{3} \overline{0} 1]=[\overline{0} 1230 \overline{1} \overline{0}]=[0 \overline{1} \overline{2} 1 \overline{3} \overline{2} \overline{1} 3]$
264. $[0 \overline{1} \overline{2} \overline{3} \overline{0} \overline{1}]=[01 \overline{2} 01 \overline{2}]=[01 \overline{0} 231]=[\overline{0} \overline{1} \overline{2} \overline{0} 1 \overline{2}]=[0 \overline{1} \overline{2} \overline{3} \overline{0} 12]=[0 \overline{1} \overline{2} \overline{3} \overline{0} 13]=[0120 \overline{1} 21]$ $=[\overline{0} \overline{1} 21 \overline{3} 0 \overline{1}]=[0 \overline{1} 21 \overline{3} 020]=[0 \overline{1} 21 \overline{3} 021]$
265. $[0 \overline{1} \overline{2} \overline{3} \overline{0} \overline{2}]=[\overline{0} \overline{1} 21 \overline{3} \overline{0}]=[\overline{0} \overline{1} 23 \overline{1} \overline{1}]=[0 \overline{1} 20130]=[0 \overline{1} 23 \overline{2} 12]=[\overline{0} \overline{1} 21030]=[0 \overline{1} 201 \overline{0} \overline{3} \overline{0}]$
266. $[0 \overline{1} \overline{2} \overline{3} 1 \overline{0}]=[01 \overline{0} 230]=[0 \overline{1} 20 \overline{3} 2 \overline{1}]=[0 \overline{1} 21 \overline{3} 0 \overline{2}]=[01 \overline{2} \bar{z} \overline{3} \overline{0} 3]=[\overline{0} 1 \overline{0} \overline{2} \overline{3} \overline{0} \overline{1}]=[0 \overline{1} 21 \overline{3} 023]$ $=[0 \overline{1} \overline{2} \overline{3} 1 \overline{0} \overline{1} 3]=[0 \overline{1} \overline{2} \overline{3} 1 \overline{0} \overline{1} 2]$
267. $[0 \overline{1} \overline{2} \overline{3} 1 \overline{2}]=[0120 \overline{1} 3]=[0 \overline{1} 20 \overline{1} 2 \overline{0}]=[0 \overline{1} 21 \overline{0} 3 \overline{1}]=[0 \overline{1} 213 \overline{0} 1]=[0 \overline{1} 23 \overline{2} 0 \overline{3}]=[0 \overline{1} 23 \overline{2} \overline{0} 2]$ $=[0 \overline{2} \overline{2} 01 \overline{2} 3]$
268. $[0 \overline{1} \overline{2} \overline{3} \overline{1} 0]=[\overline{0} 1231 \overline{0}]=[0 \overline{1} \overline{2} \overline{3} 1 \overline{0} \overline{1} \overline{0}]$
269. $[0 \overline{1} \overline{2} \overline{3} \overline{1} 2]=[0 \overline{1} \overline{0} 2 \overline{3} \overline{0}]=[012 \overline{0} 13]=[\overline{0} 12 \overline{3} \overline{0} \overline{1}]=[0 \overline{1} 21 \overline{0} 13]=[0 \overline{1} \overline{2} 01 \overline{2} \overline{1}]=[0 \overline{1} \overline{2} 30 \overline{1} 2]$
270. $[0 \overline{1} \overline{2} \overline{3} \overline{1} \overline{2} \overline{2}]=[01201 \overline{3}]=[012312]=[0 \overline{1} 21 \overline{0} \overline{\overline{1}} \overline{1}]=[0 \overline{1} 23 \overline{2} 02]=[012 \overline{0} \overline{3} 0 \overline{2}]$
271. $[0 \overline{1} 0230]=[0 \overline{1} 2312 \overline{2} 1]=[0 \overline{1} \overline{0} 2 \overline{1} \overline{2}]=[0 \overline{1} \overline{2} \overline{0} \overline{3} 03]=[0 \overline{1} \overline{0} \overline{0} 3 \overline{0} \overline{3}]=[01 \overline{0} \overline{2} \overline{3} \overline{0} \overline{1}]=[\overline{0} \overline{1} 2103 \overline{1}]$ $=[0 \overline{1} \overline{2} \overline{3} \overline{1} 0 \overline{1} 0]=[0 \overline{1} \overline{2} \overline{3} \overline{1} 0 \overline{2} 2]=[0 \overline{1} \overline{2} \overline{3} \overline{1} 0 \overline{1} 3]$
272. $[0 \overline{1} \overline{0} 230]=[\overline{0} 12013]=[0 \overline{1} 201 \overline{1} \overline{1}]=[0 \overline{2} 20 \overline{1} 21]=[0 \overline{1} \overline{2} 012 \overline{3}]=[0 \overline{1} \overline{2} \overline{0} 2 \overline{3} \overline{0}]=[012 \overline{3} \overline{0} 1 \overline{0}]$
273. $[0 \overline{1} \overline{0} 23 \overline{1}]=[\overline{0} 1 \overline{2} \overline{3} \overline{1} \overline{0}]=[0 \overline{1} 2310 \overline{2}]=[0 \overline{1} \overline{2} \overline{0} 310]=[0120 \overline{3} \overline{0} 2]=[01 \overline{2} 1301]=[0 \overline{1} 201 \overline{0} 3 \overline{2}]$ $=[0 \overline{1} 231023]$
274. $[0 \overline{1} \overline{0} 23 \overline{2}]=[0 \overline{1} \overline{0} \overline{2} \overline{3} 2]$
275. $[0 \overline{1} \overline{0} 2 \overline{3} \overline{1}]=[012 \overline{0} 31]=[\overline{0} 1 \overline{2} \overline{0} 12]=[0 \overline{1} \overline{2} \overline{1} 12 \overline{0}]=[012310 \overline{1}]=[\overline{0} \overline{1} \overline{2} 0 \overline{1} \overline{0} 2]=[0 \overline{1} 20 \overline{1} \overline{2} 31]$
$=[0 \overline{1} \overline{2} 132 \overline{1} \overline{2}]$
276. $[0 \overline{1} \overline{0} 2 \overline{3} \overline{2}]=[0 \overline{1} \overline{0} \overline{2} 32]=[0 \overline{1} \overline{2} 302 \overline{1}]=[0 \overline{1} \overline{2} 3123]=[012 \overline{0} \overline{3} 13]=[\overline{0} \overline{1} \overline{2} 01 \overline{3} \overline{1} \overline{1}]$
277. $[0 \overline{1} \overline{0} \overline{2} 13]=[\overline{0} \overline{1} 23 \overline{0} 1]=[\overline{0} \overline{1} \overline{2} 3 \overline{2} \overline{0}]=[0 \overline{1} \overline{2} \overline{0} \overline{1} \overline{3} \overline{0}]=[0 \overline{1} \overline{2} \overline{2} 213]=[0123103]=[01 \overline{2} \overline{3} 01 \overline{0}]$ $=[01 \overline{2} \overline{3} 01 \overline{3}]$
278. $[0 \overline{1} \overline{0} \overline{2} 1 \overline{3}]=[012 \overline{0} 3 \overline{0}]=[012 \overline{3} 2 \overline{1}]=[\overline{0} \overline{1} \overline{2} \overline{3} \overline{1} 3]=[\overline{0} \overline{1} \overline{2} 13 \overline{1}]=[0120 \overline{3} \overline{0} 3]$
279. $[0 \overline{1} \overline{0} \overline{2} \overline{1} 0]=[\overline{0} \overline{1} 210 \overline{2}]=[\overline{0} 1 \overline{0} 23 \overline{1}]=[\overline{0} 1 \overline{2} \overline{1} \overline{1} 0]=[0 \overline{1} 201 \overline{0} 2]=[0 \overline{1} 20 \overline{3} 1 \overline{3} \overline{2}]=[0 \overline{1} 213 \overline{2} 12]$
280. $[0 \overline{1} \overline{0} \overline{2} \overline{1} \overline{3}]=[\overline{0} \overline{1} 213 \overline{2}]=[\overline{0} 1 \overline{0} 230]=[\overline{0} 1 \overline{2} \overline{3} \overline{1} 3]=[0 \overline{1} \overline{2} 3013]=[0120 \overline{3} 02]=[\overline{0} \overline{1} \overline{2} 310 \overline{3}]$ $=[0 \overline{1} 201 \overline{0} \overline{3} \overline{2}]$
281. $[0 \overline{1} \overline{0} \overline{2} \overline{3} 1]=[01 \overline{2} \overline{0} \overline{1} \overline{1}]=[011 \overline{2} \overline{1} \overline{1} 2]=[0 \overline{1} 201 \overline{2} 3]=[0 \overline{1} 203 \overline{1} 2]=[0 \overline{1} \overline{2} \overline{0} \overline{1} \overline{3} 2]=[0 \overline{1} \overline{2} \overline{0} \overline{1} \overline{3} \overline{2}]$ $=[0123 \overline{0} \overline{3} \overline{1}]=[0 \overline{1} 2012 \overline{2} \overline{1} \overline{1}]$
282. $[012013]=[\overline{0} \overline{1} \overline{2} \overline{3} \overline{1} \overline{2} \overline{\bar{c}}]=[\overline{0} 12312]=[0 \overline{1} \overline{2} 3010 \overline{0}]=[0 \overline{1} \overline{2} \overline{\overline{1}} \overline{1} \overline{2} \overline{0}]=[\overline{0} \overline{1} 21302]=[\overline{0} \overline{1} \overline{1} 03 \overline{0} 2]$ $=[\overline{0} 123 \overline{2} \overline{2} \overline{2}]$
283. $[0120 \overline{1} 2]=[01 \overline{2} 012]=[01 \overline{0} \overline{2} \overline{3} \overline{1}]=[\overline{0} 12301]=[0 \overline{1} 20 \overline{3} 12]=[0 \overline{1} \overline{2} \overline{3} \overline{1} \overline{1} \overline{2}]=[\overline{0} 1230 \overline{1} \overline{2}]$
$=[\overline{0} 1230 \overline{1} \overline{3}]=[0 \overline{1} 20 \overline{3} \overline{1} \overline{2} \overline{0}]$
284. $[01203 \overline{0}]=[012 \overline{3} \overline{0} 3]=[\overline{0} \overline{1} \overline{2} 01 \overline{2}]=[0 \overline{1} \overline{2} 0 \overline{1} \overline{0} 2]=[\overline{0} \overline{1} 213 \overline{0} \overline{1}]=[\overline{0} \overline{1} \overline{2} \overline{0} \overline{3} \overline{1} 3]=[0 \overline{1} 201 \overline{2} \overline{0} \overline{0} \overline{3}]$
285. $[012032]=[01 \overline{2} 1 \overline{0} \bar{z}]=[\overline{0} \overline{1} 2 \overline{1} 03]=[\overline{0} \overline{1} \overline{2} \overline{0} \overline{3} \overline{2}]=[0 \overline{1} 213 \overline{2} \overline{0}]=[0 \overline{1} \overline{2} \overline{0} \overline{1} 32]=[012 \overline{3} \overline{0} 1 \overline{2}]$ $=[012 \overline{2} 1303]$
286. $[0120 \overline{3} 0]=[0 \overline{1} \overline{2} \overline{0} 1 \overline{0} 2]=[0 \overline{1} \overline{0} \overline{2} \overline{1} \overline{3} \overline{0}]=[\overline{0} \overline{1} \overline{2} 012 \overline{1} \overline{1}]=[\overline{0} \overline{1} \overline{2} \overline{3} 1 \overline{0} \overline{1}]=[0 \overline{1} 201 \overline{0} \overline{3} 2]$
$=[0 \overline{1} 20 \overline{3} 1 \overline{3} 0]$
287. $[0120 \overline{3} \overline{0}]=[012 \overline{0} 30]=[\overline{0} 1 \overline{2} \overline{1} \overline{1} 0]=[0 \overline{1} \overline{2} 31 \overline{0} \overline{1}]=[0 \overline{1} \overline{0} 23 \overline{1} \overline{3}]=[0 \overline{1} \overline{0} \overline{2} 1 \overline{3} \overline{1}]=[0 \overline{1} 201 \overline{2} 32]$
288. $[0120021]=[\overline{0} \overline{1} 23 \overline{2} 3]=[\overline{0} \overline{1} 2 \overline{1} \overline{0} \overline{2}]=[\overline{0} \overline{1} \overline{2} 3 \overline{2} \overline{3}]=[\overline{0} 120 \overline{1} 0]=[0 \overline{1} \overline{2} 3 \overline{0} \overline{2} \overline{1}]=[0 \overline{1} \overline{2} 31 \overline{0} \overline{3}]$ $=[\overline{0} \overline{2} \overline{2} \overline{0} 3 \overline{0} 3]$
289. $[012 \overline{0} \overline{2} 1]=[01 \overline{2} 30 \overline{1}]=[\overline{0} \overline{1} 21301]=[\overline{0} \overline{1} 2 \overline{1} \overline{0} \bar{z} \overline{2} \overline{2}]=[\overline{0} \overline{2} \overline{2} 03 \overline{0} 3]=[\overline{0} \overline{1} \overline{2} \bar{z} 1 \overline{2} \overline{1}]$
290. $[012 \overline{0} \overline{2} \overline{1}]=[\overline{0} \overline{1} \overline{2} \overline{3} 0 \overline{3}]=[0 \overline{1} 20120]=[0 \overline{1} 21321]=[0 \overline{1} \overline{2} 0 \overline{1} \overline{0} 3]=[\overline{0} \overline{1} \overline{2} 310 \overline{1}]=[0 \overline{1} 201 \overline{0} \overline{2} \overline{0}]$
291. $[012 \overline{3} \overline{3} 0]=[01230 \overline{3}]=[01231 \overline{2}]=[0 \overline{1} \overline{2} \overline{3} \overline{1} \overline{2} 3]=[012 \overline{3} 21 \overline{3}]=[01 \overline{3} 3013]=[\overline{0} \overline{1} 21 \overline{0} 31]$
$=[\overline{0} \overline{1} \overline{2} \overline{3} 1 \overline{2} \overline{0}]$
292. $[012 \overline{0} \overline{3} 1]=[\overline{0} 12 \overline{3} \overline{0} \overline{2}]=[0 \overline{1} \overline{2} 3021]=[0 \overline{1} \overline{0} 2 \bar{z} \overline{2} \overline{1}]$
293. $[012302]=[\overline{0} 1 \overline{2} \overline{3} \overline{1} 2]=[0 \overline{1} 201 \overline{3} \overline{2}]=[0 \overline{1} 21 \overline{3} \overline{0} \overline{2} \overline{2}]=[0123 \overline{0} \overline{2} 1]=[\overline{1} \overline{1} 210 \overline{3} \overline{2}]=[\overline{0} 1 \overline{0} \overline{2} \bar{z} \overline{0} \overline{0} 2]$
294. $[01230 \overline{2}]=[01 \overline{2} \overline{1} \overline{1} \overline{3}]=[01 \overline{2} \overline{0} 313]=[\overline{0} 120 \overline{1} \overline{3} \bar{z}]=[0 \overline{1} 23102 \overline{0}]=[0 \overline{1} 23102 \overline{1}]$
$=[012 \overline{0} \overline{3} 101]=[012 \overline{0} \overline{3} 102]$
295. $[0123 \overline{0} \overline{2}]=[01 \overline{2} \overline{3} 12]=[\overline{0} 120 \overline{1} 2]=[\overline{0} 1230 \overline{3}]=[0 \overline{1} 20 \overline{1} 32]=[0 \overline{2} \overline{2} 1 \overline{0} \bar{z} \overline{2} \overline{\overline{2}}]=[012302 \overline{3}]$
$=[\overline{0} \overline{2} 210 \overline{3} 2]$
296. $[0123 \overline{0} 3]=[01 \overline{0} 210]=[0 \overline{1} \overline{2} 01 \overline{2} 0]=[0 \overline{1} \overline{2} 3 \overline{0} \overline{2} \overline{3}]=[01 \overline{2} 1 \overline{3} \overline{0} \overline{2}]=[01 \overline{2} 301 \overline{0}]=[0 \overline{1} 201 \overline{0} \overline{2} 3]$
297. $[0123 \overline{0} \overline{3}]=[012 \overline{3} 03]=[\overline{0} \overline{1} \overline{2} 0 \overline{1} \overline{2}]=[\overline{0} \overline{1} \overline{2} \overline{3} \overline{0} 1]=[\overline{0} 1 \overline{2} \overline{0} \overline{1} \overline{2}]=[0 \overline{1} \overline{2} 30 \overline{1} \overline{0}]=[0 \overline{1} \overline{0} \overline{2} \overline{3} 13]$
 $=[\overline{0} \overline{1} \overline{2} \overline{0} 1 \overline{3} \overline{0}]$
298. $[012 \overline{3} \overline{0} 1]=[01 \overline{2} 03 \overline{0} \overline{\bar{u}}]=[\overline{0} 1201 \overline{3}]=[0 \overline{1} \overline{0} 2301]=[0120320]=[01 \overline{2} 130 \overline{3}]=[\overline{0} \overline{1} \overline{2} \overline{0} \overline{3} \overline{1} \overline{2}]$
$=[012 \overline{3} \overline{0} 1 \overline{3} 0]$
299. $[012 \overline{3} 21]=[01 \overline{2} 103]=[0 \overline{1} \overline{2} 01 \overline{3} \overline{0}]=[0 \overline{1} \bar{O} \overline{2} 1 \overline{3} \overline{0}]=[012 \overline{0} \overline{3} 03]=[01 \overline{2} \overline{0} \overline{3} 03]=[01 \overline{2} 1 \overline{3} \overline{0} \overline{3}]$ $=[01 \overline{2} 301 \overline{3}]$
300. $[012 \overline{3} \overline{2} \overline{0}]=[01 \overline{2} \overline{0} \overline{1} 2]=[\overline{0} \overline{1} 2 \overline{1} \overline{0} 3]=[\overline{0} \overline{1} \overline{2} 312]=[0 \overline{1} \overline{2} 013 \overline{0}]=[0 \overline{2} \overline{2} 013 \overline{1} \overline{1}]=[\overline{0} 120 \overline{\overline{3}} \overline{0}]$
$=[\overline{0} 123 \overline{2} \overline{1} 0]$
301. $[01 \overline{2} \overline{0} \overline{1} 3]=[\overline{0} 123 \overline{2} 0]=[0 \overline{1} 201 \overline{3} \overline{1}]=[0 \overline{1} 20 \overline{1} 31]=[0 \overline{1} 21 \overline{3} \overline{0} \overline{1}]=[01230 \overline{2} \overline{0}]=[01 \overline{2} \overline{3} \overline{1} \overline{2} \overline{0}]$ $=[0 \overline{1} 2010 \overline{0} 31]$
302. $[01 \overline{2} \overline{0} 31]=[\overline{0} \overline{1} \overline{2} \overline{3} \overline{0} 2]=[0 \overline{1} 231 \overline{2} \overline{0}]=[0 \overline{1} \overline{2} \overline{0} 132]=[01230 \overline{2} \overline{1}]=[0 \overline{1} 23 \overline{2} \overline{1} \overline{0}]=[0 \overline{1} 231020]$ $=[0 \overline{1} 231021]=[0 \overline{1} \overline{2} \overline{0} 13 \overline{2} \overline{0}]$
303. $[01 \overline{2} \overline{0} \overline{3} 0]=[01 \overline{2} 30 \overline{3}]=[\overline{0} 120 \overline{3} 1]=[0 \overline{1} \overline{2} 012 \overline{0}]=[012 \overline{3} 21 \overline{0}]=[01 \overline{2} 1 \overline{3} \overline{0} 3]=[\overline{0} \overline{1} \overline{2} \overline{3} 1 \overline{2} 3]$
304. $[01 \overline{2} 130]=[\overline{0} \overline{1} 21 \overline{0} 1]=[\overline{0} \overline{1} 231 \overline{3}]=[0 \overline{1} \overline{0} 23 \overline{1} \overline{0}]=[012032 \overline{0}]=[012 \overline{3} \overline{0} 12]=[01 \overline{2} 1 \overline{3} \overline{0} \overline{1}]$ $=[012010 \overline{3} 32]$
305. $[01 \overline{2} 1 \overline{3} \overline{0}]=[\overline{0} \overline{1} 21 \overline{0} \overline{1} \overline{1}]=[\overline{0} \overline{1} 2 \overline{1} 01]=[0123 \overline{0} 31]=[012 \overline{3} 210]=[01 \overline{2} \overline{0} \overline{3} 0 \overline{3}]=[01 \overline{2} 1302]$ $=[0 \overline{1} 201 \overline{0} \overline{2} \overline{3}]$
306. $[01 \overline{2} 301]=[01 \overline{0} 21 \overline{0}]=[0 \overline{1} 21 \overline{0} \overline{3} \overline{2}]=[01 \overline{2} \overline{0} \overline{3} 12]=[012 \overline{0} \overline{2} 1 \overline{0}]=[012 \overline{0} \overline{3} 0 \overline{3}]=[0123 \overline{0} 30]$ $=[012 \overline{3} 213]$
307. $[01 \overline{2} \overline{3} 01]=[\overline{0} \overline{1} 23 \overline{0} \overline{1}]=[0 \overline{1} \overline{2} \overline{2} 2 \overline{3} \overline{1}]=[0 \overline{1} \overline{0} \overline{2} 130]$
308. $[01 \overline{2} \overline{3} \overline{1} 2]=[\overline{0} \overline{1} 23 \overline{0} \overline{2} 3]=[\overline{0} \overline{1} 231 \overline{2} \overline{3}]=[\overline{0} \overline{1} \overline{2} 0123]=[\overline{0} 1230 \overline{2} \overline{3}]=[0 \overline{1} 201 \overline{2} \overline{3} 0]$ $=[0 \overline{1} 201 \overline{2} \overline{3} 2]=[01 \overline{2} \overline{3} \overline{1} 20 \overline{2}]$
309. $[01 \overline{2} \overline{3} \overline{1} \overline{2}]=[\overline{0} 123 \overline{2} \overline{0}]=[0 \overline{1} 203 \overline{1} \overline{3}]=[0 \overline{1} 20 \overline{3} 13]=[0 \overline{1} 23123]=[01 \overline{2} \overline{0} \overline{1} 32]$
310. $[010 \overline{0} 23 \overline{2}]=[01 \overline{0} \overline{2} \overline{3} 2]=[0 \overline{1} 20 \overline{3} \overline{1} \overline{0} \overline{2}]=[0 \overline{1} 213 \overline{0} \overline{3} 1]=[012 \overline{0} \overline{3} 1 \overline{0} 3]$
311. $[010 \overline{0} 2 \overline{3} \overline{2}]=[01 \overline{0} \overline{2} 32]$
312. $[010 \overline{0} \overline{3} \overline{3} \overline{0}]=[\overline{0} 123 \overline{1} 0]=[0 \overline{1} 20 \overline{3} 21]=[0 \overline{1} \overline{2} \overline{3} 1 \overline{0} \overline{3}]=[0 \overline{1} 02301]=[\overline{0} \overline{1} 210 \overline{3} 1]=[0 \overline{1} 20 \overline{3} \overline{1} \overline{2} \overline{1}]$ $=[0 \overline{1} 20 \overline{3} \overline{1} \overline{2} \overline{3}]=[0 \overline{1} \overline{2} \overline{\overline{1}} \overline{1} 0 \overline{1} \overline{0}]=[0 \overline{1} \overline{2} \overline{3} \overline{1} 0 \overline{1} \overline{2}]=[0 \overline{1} \overline{2} \overline{3} \overline{1} 0 \overline{1} \overline{3} \overline{3}]$
313. $[\overline{\overline{1}} 12103]=[\overline{0} \overline{1} 23 \overline{2} 1]=[0 \overline{1} 20310]=[0 \overline{1} 231 \overline{2} \overline{1}]=[0 \overline{1} 23 \overline{2} \overline{1} \overline{3}]=[0 \overline{1} \overline{2} \overline{3} \overline{0} \overline{2} \overline{3}]=[0 \overline{1} 02302]$
314. $[\overline{0} \overline{1} 210 \overline{3}]=[0123023]=[0123 \overline{0} \overline{2} \overline{1}]=[01 \overline{0} \overline{2} \overline{3} \overline{0} \overline{2}]=[\overline{0} \overline{1} 21 \overline{0} 3 \overline{0}]=[0 \overline{1} 20 \overline{1} \overline{2} \overline{2} 1]$
$=[0 \overline{2} 20 \overline{3} \overline{1} \overline{2} 3]=[01 \overline{0} 23 \overline{2} 12]=[010 \overline{2} 23 \overline{2} 13]$
315. $[\overline{0} \overline{1} 21 \overline{0} 3]=[\overline{0} 123 \overline{1} \overline{2}]=[012 \overline{0} \overline{3} 0 \overline{1}]=[\overline{0} \overline{1} 210 \overline{3} 0]=[\overline{0} \overline{1} \overline{2} \overline{0} 1 \overline{3} 2]=[\overline{0} \overline{1} \overline{3} \overline{3} 1 \overline{2} 0]=[01 \overline{0} 23 \overline{2} 1 \overline{2}]$ $=[01 \overline{0} 23 \overline{2} 1 \overline{3}]$
316. $[\overline{0} \overline{1} 21 \overline{0} \overline{3}]=[\overline{0} \overline{1} 23 \overline{2} \overline{0}]=[\overline{0} \overline{1} \overline{2} \overline{0} \overline{3} 1]=[\overline{0} \overline{1} 21303]=[\overline{0} \overline{1} 23 \overline{0} 2 \overline{0}]=[0 \overline{1} \overline{2} 132 \overline{1} 0]$
317. $[\overline{0} \overline{1} 2130]=[\dot{\overline{0}} \overline{2} 23 \overline{2} 0]=[012013 \overline{2}]=[012 \overline{0} \overline{2} 1 \overline{3}]=[\overline{0} \overline{1} 21 \overline{0} \overline{3} \overline{0}]=[\overline{0} \overline{1} \overline{2} \overline{3} 1 \overline{2} 1]=[\overline{0} 123 \overline{2} \overline{1} 2]$
318. $[\overline{0} 1213 \overline{0}]=[\overline{0} \overline{1} \overline{2} \overline{0} 13]=[01203 \overline{0} 2]=[\overline{0} \overline{1} 21 \overline{3} 0 \overline{3}]=[\overline{0} \overline{1} \overline{2} \overline{0} \overline{3} \overline{1} \overline{3}]=[012 \overline{0} \overline{3} 10 \overline{0} 1]=[012 \overline{0} \overline{3} 1 \overline{0} 2]$
319. $[\overline{0} \overline{1} 21 \overline{3} 0]=[0 \overline{1} \overline{2} \overline{3} \overline{0} \overline{1} 3]=[0 \overline{1} \overline{2} \overline{3} \overline{0} \overline{2} \overline{1}]=[\overline{0} \overline{1} 213 \overline{0} 3]=[\overline{0} \overline{1} \overline{2} \overline{3} 1 \overline{0} 2]=[\overline{0} 1230 \overline{2} \overline{1}]=[0 \overline{1} 21 \overline{3} 02 \overline{0}]$ $=[0121 \overline{3} 02 \overline{1}]=[012 \overline{0} \overline{3} 1 \overline{1} \overline{1}]=[012 \overline{0} \overline{3} 1 \overline{0} \overline{2}]$
320. $[\overline{0} \overline{1} 2 \overline{1} \overline{0} \overline{3}]=[\overline{0} \overline{1} \overline{2} 3 \overline{2} \overline{1}]=[0 \overline{1} 21320]=[0 \overline{1} \overline{2} \overline{0} 3 \overline{1} \overline{2}]=[0 \overline{1} \overline{2} 0 \overline{2} 31]=[012 \overline{0} \overline{2} 12]=[012 \overline{3} \overline{2} \overline{0} 2]$ $=[\overline{0} \overline{1} \overline{2} 03 \overline{0} \overline{3}]$
321. $[\overline{0} \overline{1} 23 \overline{0} 2]=[\overline{0} 123 \overline{2} 1]=[012310 \overline{2}]=[\overline{0} \overline{1} 21 \overline{0} \overline{3} 2]=[\overline{0} \overline{1} \overline{2} \overline{0} 1 \overline{3} 0]=[0 \overline{1} \overline{2} 132 \overline{1} \overline{0}]$
322. $[\overline{0} \overline{1} 23 \overline{0} \overline{2}]=[\overline{0} \overline{1} \overline{2} \overline{3} 12]=[01 \overline{2} \overline{3} \overline{1} 2 \overline{0}]=[\overline{0} 120 \overline{1} \overline{3} \overline{1}]=[0 \overline{1} \overline{2} 01230]=[01 \overline{2} \overline{\overline{1}} \overline{1} 202]$
323. $[\overline{0} \overline{1} 231 \overline{2}]=[0 \overline{1} 20132]=[0 \overline{1} 23 \overline{2} 10]=[0 \overline{1} \overline{\mathrm{O}} \overline{3} \overline{1} \overline{0} \overline{0}]=[0 \overline{1} \overline{2} 31 \overline{0} \overline{2}]=[01 \overline{2} \overline{3} \overline{1} 23]=[0 \overline{1} 201 \overline{2} \overline{3} \overline{0}]$ $=[0 \overline{1} 201 \overline{2} \overline{3} \overline{2}]=[0 \overline{1} \overline{2} \overline{0} \overline{3} \overline{1} 02]$
324. $[\overline{0} \overline{1} \overline{2} 012]=[0 \overline{1} 231 \overline{0} \overline{2}]=[0 \overline{2} \overline{2} \overline{0} 1 \overline{0} \overline{2}]=[01203 \overline{0} \overline{3}]=[0120 \overline{3} 03]=[01 \overline{2} \overline{3} \overline{1} 2 \overline{1}]=[\overline{0} 1230 \overline{2} 3]$ $=[0 \overline{1} 20 \overline{1} \overline{2} 30]$
325. $[\overline{0} \overline{1} \overline{2} 01 \overline{3}]=[0 \overline{1} \overline{2} 1 \overline{0} \overline{3} 0]=[0 \overline{1} \overline{2} 312 \overline{3}]=[0 \overline{1} \overline{0} 2 \overline{3} \overline{2} 0]=[01 \overline{2} \overline{3} \overline{1} 201]=[01 \overline{0} 23 \overline{2} 1 \overline{0}]$
326. $[\overline{0} \overline{1} \overline{2} 0 \overline{1} \overline{0}]=[\overline{0} \overline{1} \overline{2} \overline{0} 10]=[\overline{0} \overline{1} \overline{2} 102]=[\overline{0} 1 \overline{0} \overline{2} \overline{3} \overline{1}]=[0 \overline{1} \overline{2} 1 \overline{3} \overline{2} 1]=[01 \overline{0} 2 \overline{3} \overline{1} \overline{0}]=[0 \overline{1} \overline{2} 132 \overline{1} 2]$ $=[0 \overline{1} \overline{2} 1 \overline{3} \overline{2} \overline{1} \overline{0}]=[0 \overline{1} \overline{2} 1 \overline{3} \overline{2} \overline{1} \overline{2}]$
327. $[\overline{0} \overline{1} \overline{2} 03 \overline{0}]=[\overline{0} \overline{1} \overline{2} \overline{3} \overline{0} 3]=[\overline{0} \overline{1} \overline{2} \overline{3} \overline{1} 2]=[0 \overline{1} 213 \overline{0} \overline{2}]=[0 \overline{1} \overline{2} \overline{0} \overline{3} 10]=[012013 \overline{1}]=[012 \overline{0} \overline{2} 1 \overline{2}]$ $=[\overline{0} \overline{1} 2 \overline{1} \overline{0} \overline{3} 2]$
328. $[\overline{0} \overline{1} \overline{2} \overline{0} 1 \overline{3}]=[\overline{0} 123 \overline{1} 2]=[0123102]=[\overline{0} \overline{1} 210 \overline{0} \overline{2}]=[\overline{0} \overline{1} 213 \overline{0} 2]=[\overline{0} \overline{1} 23 \overline{0} 2 \overline{1}]=[\overline{0} \overline{1} \overline{2} 310 \overline{2}]$ $=[\overline{0} 123 \overline{2} \overline{1} 3]$
329. $[\overline{0} \overline{1} \overline{2} \overline{0} 3 \overline{0}]=[0 \overline{1} 21 \overline{0} 12]=[0 \overline{1} 231 \overline{0} 1]=[0 \overline{1} \overline{\mathrm{O}} \overline{3} 02]=[0 \overline{1} \overline{2} 31 \overline{0} 3]=[012 \overline{0} 21 \overline{2}]=[0 \overline{1} 201 \overline{0} \overline{3} \overline{1}]$ $=[0 \overline{1} 20 \overline{3} 1 \overline{3} \overline{1}]$
330. $[\overline{0} \overline{1} \overline{2} \overline{0} \overline{3} \overline{1}]=[\overline{0} 120 \overline{1} 3]=[01203 \overline{0} \overline{2}]=[012 \overline{3} \overline{0} 13]=[\overline{0} \overline{1} 21 \overline{0} \overline{3} 1]=[\overline{0} \overline{1} 213 \overline{0} 1]=[012 \overline{3} \overline{0} 1 \overline{3} \overline{0}]$
331. $[\overline{0} \overline{1} \overline{2} 310]=[0 \overline{1} \overline{2} 0 \overline{1} \overline{0} \overline{3}]=[01 \overline{2} \overline{0} 31 \overline{2}]=[01 \overline{2} 301 \overline{3}]=[0 \overline{1} \overline{2} \overline{1} \overline{1} \overline{3} 1]=[012 \overline{0} \overline{2} \overline{1} 3]=[\overline{0} \overline{1} \overline{2} \overline{0} 1 \overline{3} 1]$ $=[\overline{0} 1232 \overline{2} \overline{1} \overline{3}]$
332. $[\overline{0} \overline{1} \overline{2} \overline{3} 1 \overline{0}]=[\overline{0} 12 \overline{3} \overline{0} 3]=[0 \overline{1} 20 \overline{3} \overline{2} \overline{1}]=[0120 \overline{3} 01]=[\overline{0} \overline{1} 21 \overline{3} 0 \overline{2}]=[\overline{0} 1 \overline{0} \overline{2} \overline{3} \overline{0} 3]=[\overline{0} 1230 \overline{2} 1]$ $=[0 \overline{1} 20 \overline{3} 1 \overline{3} \overline{0}]$
333. $[\overline{0} \overline{1} \overline{2} \overline{3} 1 \overline{2}]=[012 \overline{0} \overline{2} 13]=[012 \overline{0} \overline{3} 01]=[01 \overline{2} \overline{0} \overline{3} 0 \overline{2}]=[\overline{0} \overline{1} 21 \overline{0} 3 \overline{1}]=[\overline{0} \overline{1} 2130 \overline{1}]=[\overline{0} \overline{1} 23 \overline{0} \overline{2} 0]$ $=[012 \overline{3} \overline{0} 1 \overline{3} 1]=[012 \overline{3} \overline{0} 1 \overline{3} 2]$
334. $[\overline{0} 1 \overline{0} \overline{2} \overline{3} \overline{0}]=[0 \overline{1} 20 \overline{3} \overline{2} 1]=[0 \overline{1} 21 \overline{3} \overline{0} 2]=[0 \overline{1} \overline{2} \overline{0} 3 \overline{0} 2]=[0 \overline{1} \overline{2} \overline{3} 1 \overline{0} 1]=[012302 \overline{0}]=[\overline{0} \overline{1} \overline{2} \overline{3} 1 \overline{0} \overline{3}]$ $=[0 \overline{1} \overline{2} \overline{3} 1 \overline{0} \overline{1} \overline{2}]=[0 \overline{1} \overline{2} \overline{3} 1 \overline{0} \overline{1} \overline{3}]$
335. $[\overline{0} 120 \overline{1} \overline{3}]=[01230 \overline{2} 3]=[012 \overline{3} \overline{2} \overline{0} 1]=[\overline{0} \overline{1} 233 \overline{0} \overline{1} 1]=[\overline{0} 123 \overline{2} \overline{1} \overline{0}]=[\overline{0} \overline{1} \overline{2} \overline{0} \overline{3} \overline{1} 0]=[0 \overline{1} \overline{2} 0123 \overline{0}]$ $=[012 \overline{0} \overline{3} 10 \overline{1}]=[012 \overline{0} \overline{3} 10 \overline{2}]$
336. $[\overline{0} 1230 \overline{1}]=[0 \overline{1} \overline{2} \overline{3} \overline{0} 10]=[0120 \overline{1} 20]=[0 \overline{1} \overline{2} 1 \overline{3} \overline{2} \overline{1} \overline{3}]$
337. $[\overline{0} 1230 \overline{2}]=[\overline{0} 1 \overline{2} \overline{0} \overline{1} \overline{3}]=[0 \overline{1} 20 \overline{3} 12]=[0 \overline{1} 23120]=[01 \overline{2} \overline{3} \overline{1} 21]=[\overline{0} \overline{1} 21 \overline{3} 02]=[\overline{1} \overline{2} 012 \overline{3}]$ $=[\overline{0} \overline{1} \overline{2} \overline{3} 1 \overline{0} \overline{2}]$
338. $[\overline{0} 123 \overline{2} \overline{1}]=[0120132]=[012 \overline{3} \overline{2} \overline{0} \overline{1}]=[\overline{0} \overline{1} 2130 \overline{2}]=[\overline{0} \overline{1} \overline{2} \overline{1} 1 \overline{3} \overline{1}]=[\overline{0} \overline{1} 23 \overline{0} 23]=[\overline{0} \overline{1} \overline{2} 3102]$ $=[\overline{0} 120 \overline{1} \overline{3} 0]$
339. $[0 \overline{1} 201 \overline{0} \overline{2}]=[0 \overline{1} 2132 \overline{1}]=[0 \overline{1} \overline{2} \overline{0} \overline{1} 0 \overline{3}]=[0 \overline{1} \overline{2} \overline{0} 210]=[0 \overline{1} \overline{0} \overline{2} \overline{1} 01]=[0123 \overline{0} 3 \overline{1}]$ $=[012 \overline{2} \overline{2} \overline{1} 0]=[01 \overline{2} 1 \overline{3} \overline{0} 2]$
340. $[0 \overline{1} 201 \overline{0} 3]=[0 \overline{1} 201 \overline{3} 1]=[0 \overline{1} \overline{2} \overline{0} 3 \overline{0} \overline{1}]=[0 \overline{1} \overline{0} 23 \overline{1} 0]=[01 \overline{2} 130 \overline{1}]=[01 \overline{2} \overline{0} \overline{1} 3 \overline{1}]$ $=[0 \overline{1} 213 \overline{2} 10]$
341. $[0 \overline{1} 201 \overline{0} \overline{3}]=[0 \overline{1} 23 \overline{2} 1 \overline{2}]=[0 \overline{1} \overline{2} \overline{3} \overline{3} 0 \overline{2}]=[0 \overline{1} \overline{2} \overline{3} \overline{0} \overline{2} 0]=[0 \overline{1} \overline{0} \overline{2} \overline{1} \overline{3} 0]=[0120 \overline{3} 0 \overline{2}]=[\overline{1} \overline{1} \overline{2} \overline{0} 3 \overline{0} 1]$
342. $[0 \overline{1} 201 \overline{2} \overline{3}]=[0 \overline{1} \overline{2} \overline{3} 12]=[01 \overline{2} \overline{3} \overline{1} 2 \overline{3}]=[\overline{0} \overline{1} 231 \overline{2} 3]$
343. $[0 \overline{1} 20 \overline{1} \overline{2} \overline{0}]=[0 \overline{1} 23 \overline{2} \overline{\overline{3}} \overline{\bar{c}}]=[0 \overline{1} 21301]=[0 \overline{1} \overline{2} 0 \overline{1} \overline{0} \overline{2}]=[0 \overline{1} \overline{2} 1321]=[0 \overline{2} \overline{2} 1 \overline{3} \overline{2} 0]=[01203 \overline{0} 1]$
344. $[0 \overline{1} 20 \overline{1} \overline{2} 3]=[0 \overline{1} 231 \overline{0} 2]=[0 \overline{1} \overline{2} \overline{0} 120]=[0 \overline{1} \overline{2} 1 \overline{0} \overline{3} \overline{1}]=[0 \overline{1} \overline{2} 31 \overline{0} 1]=[0 \overline{1} \overline{0} 2 \overline{3} \overline{1} \overline{2}]$

$$
=[0120 \overline{3} \overline{0} \overline{1}]=[\overline{0} \overline{1} \overline{2} 012 \overline{0}]
$$

346. $[0 \overline{1} 20 \overline{3} 1 \overline{3}]=[0 \overline{1} 21 \overline{0} 1 \overline{2}]=[0 \overline{1} \overline{0} \overline{1} \overline{1} 03]=[0120 \overline{3} 0 \overline{1}]=[01 \overline{2} \overline{3} \overline{1} \overline{2} 1]=[\overline{0} \overline{1} \overline{2} \overline{0} 3 \overline{0} 2]$
$=[\overline{0} \overline{1} \overline{2} \overline{3} 1 \overline{0} 1]=[0 \overline{1} 213 \overline{2} 1 \overline{2}]$
347. $[0 \overline{1} 20 \overline{3} \overline{1} \overline{0}]=[0 \overline{1} 21 \overline{0} 30]=[0 \overline{1} \overline{2} 3023]=[01 \overline{0} 23 \overline{2} 0]=[0 \overline{1} 213 \overline{0} \overline{3} \overline{1}]=[0 \overline{1} \overline{2} \overline{0} 13 \overline{2} \overline{3}]$
348. $[0 \overline{1} 20 \overline{3} \overline{1} \overline{2}]=[0120 \overline{1} 23]=[01 \overline{0} \overline{2} \overline{3} \overline{0} 2]=[\overline{0} \overline{1} 210 \overline{3} \overline{1}]$
349. $[0 \overline{1} 213 \overline{0} \overline{3}]=[0 \overline{1} 21 \overline{3} 03]=[0 \overline{1} \overline{2} 312 \overline{0}]=[01 \overline{0} 23 \overline{2} \overline{0}]=[0 \overline{1} 20 \overline{3} \overline{1} \overline{0} 2]=[0 \overline{1} \overline{2} \overline{0} \overline{3} \overline{1} 01]$
350. $[0 \overline{1} 213 \overline{2} 1]=[0 \overline{1} 2310 \overline{1}]=[0 \overline{1} 2312 \overline{1}]=[0 \overline{1} 23 \overline{2} \overline{1} 2]=[0 \overline{1} \overline{2} \overline{0} 3 \overline{1} 1]=[0 \overline{1} \overline{0} \overline{2} \overline{1} 0 \overline{3}]$

$$
=[0 \overline{1} 201 \overline{0} 3 \overline{0}]=[0 \overline{1} 20 \overline{3} 1 \overline{3} 2]
$$

351. $[0 \overline{1} 21 \overline{3} 02]=[0 \overline{1} \overline{2} \overline{3} \overline{0} \overline{1} \overline{3}]=[0 \overline{1} \overline{2} \overline{3} 1 \overline{0} \overline{2}]=[\overline{0} \overline{1} 21 \overline{3} 01]$
352. $[0 \overline{1} 23102]=[0 \overline{1} 0 \overline{2} 3 \overline{1} \overline{2}]=[01230 \overline{2} 1]=[01 \overline{2} \overline{0} 31 \overline{3}]$
353. $[0 \overline{1} \overline{2} 0123]=[0 \overline{1} \overline{2} \overline{0} 13 \overline{1}]=[0 \overline{1} \overline{2} \overline{0} \overline{1} \overline{3} 1]=[0 \overline{1} \overline{2} \overline{0} 31 \overline{3}]=[0 \overline{1} \overline{2} \overline{0} \overline{3} \overline{1} 3]=[0 \overline{1} \overline{0} 230 \overline{2}]$
$=[\overline{0} \overline{1} 23 \overline{0} \overline{2} \overline{1}]=[0 \overline{0} 120 \overline{1} \overline{3} 1]$
354. $[0 \overline{1} \overline{2} \overline{0} 13 \overline{2}]=[0 \overline{1} \overline{2} 302 \overline{3}]=[01 \overline{2} 0 \overline{3} 310]=[0 \overline{1} 20 \overline{3} \overline{1} \overline{0} 3]=[012 \overline{0} \overline{3} 10 \overline{3}]=[0 \overline{1} \overline{2} \overline{0} 13 \overline{2} \overline{1} 3]$
355. $[0 \overline{1} \overline{2} \overline{0} 1 \overline{3} \overline{1}]=[0 \overline{1} \overline{2} \overline{1} \overline{1} 31]=[0 \overline{1} \overline{2} \overline{0} 3 \overline{1} \overline{3}]=[0 \overline{1} \overline{2} \overline{0} \overline{3} 13]$
356. $[0 \overline{1} \overline{2} \overline{0} \overline{3} \overline{1} 0]=[0 \overline{1} \overline{2} 3120]=[\overline{0} \overline{1} 231 \overline{2} \overline{0}]=[0 \overline{1} 213 \overline{0} \overline{3} \overline{2}]=[01 \overline{2} \overline{3} \overline{1} 203]=[0 \overline{1} \overline{2} \overline{1} 13 \overline{2} \overline{1} \overline{0}]$ $=[0 \overline{2} \overline{2} \overline{0} 13 \overline{2} \overline{1} \overline{2}]$
357. $[0 \overline{1} \overline{2} 132 \overline{1}]=[0 \overline{1} \overline{2} 310 \overline{1}]=[0 \overline{1} \overline{2} 3 \overline{0} \overline{2} 0]=[0 \overline{1} \overline{0} 2 \overline{3} \overline{1} 0]=[\overline{0} \overline{1} 21 \overline{0} \overline{3} \overline{2}]=[\overline{0} \overline{1} 23 \overline{0} 20]$ $=[\overline{0} \overline{1} \overline{2} 0 \overline{1} \overline{0} \overline{2}]=[0 \overline{1} 201 \overline{2} \overline{0} \overline{1} 1]$
358. $[0 \overline{1} \overline{2} 1 \overline{3} \overline{2} \overline{1}]=[0 \overline{1} \overline{2} \overline{3} \overline{0} 1 \overline{0}]=[\overline{0} \overline{1} \overline{2} 0 \overline{1} \overline{0} 3]=[\overline{0} 1230 \overline{1} 0]$
359. $[0 \overline{1} \overline{2} \overline{3} 1 \overline{0} \overline{1}]=[0 \overline{1} \overline{2} \overline{3} \overline{1} 01]=[\overline{0} 1 \overline{0} \overline{2} \overline{3} \overline{0} 1]$
360. $[0 \overline{1} \overline{2} \overline{3} \overline{1} 0 \overline{1}]=[0 \overline{1} 0230 \overline{1}]=[01 \overline{0} \overline{2} \overline{3} \overline{0} 1]=[0 \overline{1} \overline{2} \overline{3} 1 \overline{0} \overline{1} 0]$
361. $[012 \overline{0} \overline{3} 10]=[01230 \overline{2} \overline{3}]=[\overline{0} 120 \overline{1} \overline{3} 2]=[0 \overline{1} \overline{2} \overline{0} 13 \overline{2} 1]=[0 \overline{1} \overline{2} \overline{0} 13 \overline{2} \overline{1} \overline{3}]$
362. $[012 \overline{0} \overline{3} 1 \overline{0}]=[010 \overline{0} 23 \overline{2} \overline{1}]=[\overline{0} 1213 \overline{0} \overline{3}]=[\overline{0} \overline{1} 21 \overline{3} 03]$
363. $[012 \overline{3} \overline{0} 1 \overline{3}]=[01 \overline{2} \overline{0} \overline{3} 02]=[\overline{0} \overline{1} \overline{2} \overline{3} 1 \overline{2} \overline{3}]=[\overline{0} \overline{1} \overline{2} \overline{0} \overline{3} \overline{1} 2]$
364. $[01 \overline{2} \overline{3} \overline{1} 20]=[\overline{0} \overline{1} 23 \overline{0} \overline{2} \overline{3}]=[\overline{0} \overline{1} \overline{2} 01 \overline{3} \overline{2}]=[0 \overline{1} \overline{2} \overline{0} \overline{3} \overline{1} 0 \overline{3}]=[01 \overline{0} 23 \overline{2} 10]=[0 \overline{1} \overline{2} \overline{0} 13 \overline{2} \overline{1} 0]$ $=[0 \overline{1} \overline{2} 013 \overline{2} \overline{1} 2]$
365. $[010 \overline{0} 23 \overline{2} 1]=[\overline{0} \overline{1} 210 \overline{3} \overline{0}]=[\overline{0} \overline{1} 210 \overline{0} 30]=[\overline{0} \overline{1} \overline{2} 01 \overline{3} 2]=[012 \overline{0} \overline{3} 1 \overline{0} \overline{3}]=[01 \overline{2} \overline{3} \overline{1} 20 \overline{1}]$
366. $[0 \overline{1} \overline{2} \overline{0} 13 \overline{2} \overline{1}]=[0 \overline{1} \overline{2} \overline{0} \overline{3} \overline{1} 03]=[012 \overline{0} \overline{3} 103]=[01 \overline{2} \overline{3} \overline{1} 20 \overline{3}]$

7.3 Cayley Diagram of G Over S_{4}

The Cayley diagram of G over S_{4} is sketched broadiy in Figures 7.1 and 7.2 and illustrated in detail in Figures 7.3 through 7.17. In Figures 7.1 and 7.2, the labels Z, A, B, $\mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}$, and H indicate the double cosets represented by words of length $0,1,2$, $3,4,5,6,7$, and 8 letters, respectively. Likewise, in Figures 7.3 through 7.17, the label Z1 denotes the double coset represented by a word of length zero, the labels A1 and A2 denote the double cosets represented by words of length one, the labels B1,...,B4 denote the double cosets represented by words of length two, the labels $\mathrm{C} 1, \ldots, \mathrm{C} 12$ denote the double cosets represented by words of length three, the labels D1,...,D49 denote the double cosets represented by words of length four, the labels E1,...,E128 denote the double cosets represented by words of length five, the labels F1,...F143 denote the double cosets represented by words of length six, the labels G1,...,G26 denote the double cosets represented by words of length seven, and the label H 1 denotes the double coset represented by a word of length eight. For a more detailed explanation of the meaning of the component parts of a Cayley diagram, see Section 2.3.

Figure 7.1: A Rough Sketch of the Cayley Diagram of G Over S_{4}

Figure 7.2: Our Breakdown of the Cayley Diagram of G Over S_{4}

Figure 7.3: Section of the Cayley Diagram of G Over S_{4} Depicting Right Cosets with Words of Length $0,1,2$, and 3

Figure 7.4: Section of the Cayley Diagram of G Over S_{4} Depicting Right Cosets with Words of Length 4

Figure 7.5: Section of the Cayley Diagram of G Over S_{4} Depicting Right Cosets with Words of Length 4

Figure 7.6: Section of the Cayley Diagram of G Over S_{4} Depicting Right Cosets with Words of Length 5

Figure 7.7: Section of the Cayley Diagram of G Over S_{4} Depicting Right Cosets with Words of Length 5

Figure 7.8: Section of the Cayley Diagram of G Over S_{4} Depicting Right Cosets with Words of Length 5

Figure 7.9: Section of the Cayley Diagram of G Over S_{4} Depicting Right Cosets with Words of Length 5

Figure 7.10: Section of the Cayley Diagram of G Over S_{4} Depicting Right Cosets with Words of Length 5

Figure 7.11: Section of the Cayley Diagram of G Over S_{4} Depicting Right Cosets with Words of Length 6

Figure 7.12: Section of the Cayley Diagram of G Over S_{4} Depicting Right Cosets with Words of Length 6

Figure 7.13: Section of the Cayley Diagram of G Over S_{4} Depicting Right Cosets with Words of Length 6

Figure 7.14: Section of the Cayley Diagram of G Over S_{4} Depicting Right Cosets with Words of Length 6

Figure 7.15: Section of the Cayley Diagram of G Over S_{4} Depicting Right Cosets with Words of Length 6

Figure 7.16: Section of the Cayley Diagram of G Over S_{4} Depicting Right Cosets with Words of Length 6

Figure 7.17: Section of the Cayley Diagram of G Over S_{4} Depicting Right Cosets with Words of Length 7 and 8

7.4 Action of the Symmetric Generators and the Generators of S_{4} on the Right Cosets of G Over S_{4}

Let X denote the set of all (7920) distinct right cosets of N in G. We define a mapping $\phi: G \longrightarrow S_{X}$ so that ϕ maps a generator $g \in G$ to its action (by right multiplication) on X. That is, we define ϕ so that $\phi(g)=\widehat{\phi}(g): X \rightarrow X$. By way of the process described in Subsection 1.4.3, we may find the action $\phi(t) \sim \phi\left(t_{0}\right)$ of the symmetric generator $t \sim t_{0}$ on the set of right cosets of N in G, the action $\phi(x) \sim \phi\left(\left(\begin{array}{lll}0 & 1 & 2\end{array} 3\right)\right.$) of the generator $x \sim\left(\begin{array}{ll}0 & 1\end{array} 23\right)$ on the set of right cosets of N in G, and the action $\phi(y) \sim \phi((23))$ of the generator $y \sim(23)$ on the set of right cosets of N in G. Since there are 7920 right cosets of N in G, these actions may be written as permutations on 7920 letters. With the help of MAGMA (see [BCP97]), we have labeled each of the 7920 right cosets with a number between 1 and 7920 .

Having labeled each of the 7920 right cosets, we may write the action $\phi(t) \sim \phi\left(t_{0}\right)$ of the symmetric generator $t \sim t_{0}$ on the right cosets of N in G as a permutation on 7920 letters:
$\phi(t) \sim \phi\left(t_{0}\right)=(123)(4910)(51112)(61415)(71617)(81819)(132829)(204344)$ $(213346) \cdots(790779187909)(790879107919)(791379207914)$.

Similarly, having labeled each of the 7920 right cosets, we may also write the action $\phi(x) \sim \phi\left(\left(\begin{array}{lll}0 & 1 & 2\end{array}\right)\right)$ of the generator $x \sim\left(\begin{array}{lll}0 & 1 & 2\end{array}\right)$ on the right cosets of N in G as a permutation on 7920 letters:
$\phi(x) \sim \phi((0123))=(2485)(36137)(9204221)(10224723)(11245325)(12265727)$ $(14306631) \cdots(7851786479097880)(79157916)(7917791879207919)$.

Finally, having labeled each of the 7920 right cosets, we may write the action $\phi(y) \sim$ $\phi((23))$ of the generator $y \sim(23)$ on the right cosets of N in G as a permutation on 7920 letters:
$\phi(y) \sim \phi((23))=(58)(713)(1118)(1219)(1628)(1729)(2038)(2145)(2240)(2350)$
$(3062) \cdots(79047913)(79057911)(79127914)(79157917)(79167920)$.

7.5 Proof of Isomorphism between G and $\operatorname{Aut}\left(M_{12}\right)$

We now demonstrate that $G \cong \operatorname{Aut}\left(M_{12}\right)$.

Proof. To prove that $G \cong \operatorname{Aut}\left(M_{12}\right)$, we must first show that $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of G and that $|G|=|\langle\phi(x), \phi(y), \phi(t)\rangle|=190080$ (from which we can conclude $G \cong\langle\phi(x), \phi(y), \phi(t)\rangle)$, and we must next show that $\langle\phi(x), \phi(y), \phi(t)\rangle \cong$ $\operatorname{Aut}\left(M_{12}\right)$ (from which we can conclude $\operatorname{Aut}\left(M_{12}\right)$ is a homomorphic image of G and $G \cong$ $\left.\operatorname{Aut}\left(M_{12}\right)\right)$.

We first show $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a homomorphic image of G and $|G|=|\langle\phi(x), \phi(y), \phi(t)\rangle|=190080$. From our construction of G using manual double coset enumeration of \bar{G} over S_{4}, illustrated by the Cayley Diagram in Figures 7.1 through 7.17, we concluded that group G defined by the symmetric presentation must contain a homomorphic image of $N \cong S_{4}$ whose index [$\left.G: N\right]$ is at most 7920:

$$
\begin{aligned}
& {[G: N]=} \frac{|N|}{\left|N_{[*]}^{(*)}\right|}+\frac{|N|}{\left|N^{(0)}\right|}+\frac{|N|}{\left|N^{(\overline{0})}\right|}+\frac{|N|}{\left|N^{(01)}\right|}+\frac{|N|}{\left|N^{(0 \overline{1})}\right|}+\frac{|N|}{\left|N^{(\overline{\overline{0}})}\right|}+\frac{|N|}{\left|N^{(\overline{0} 1)}\right|} \\
&+\frac{|N|}{\left|N^{(0 \overline{1} 0)}\right|}+\frac{|N|}{\left|N^{(0 \overline{1} 2)}\right|}+\frac{|N|}{\left|N^{(0 \overline{1} \overline{2})}\right|}+\cdots+\frac{|N|}{\left|N^{(0 \overline{1} \overline{2} \overline{1} 13 \overline{1} \overline{1})}\right|} \leq \\
& \frac{24}{24}+ \frac{24}{6}+\frac{24}{6}+\frac{24}{2}+\frac{24}{2}+\frac{24}{2}+\frac{24}{2}+\frac{24}{2}+\frac{24}{1}+\frac{24}{1}+\cdots+\frac{24}{4}= \\
& 1+4+4+12+12+12+12+12+24+24+\cdots+6=7920 .
\end{aligned}
$$

That is, $[G: N]=\frac{|G|}{|N|} \leq 7920$. Since the index of N in G is at most 7920, and since $|G|=\frac{|G|}{|N|} \cdot|N|$, the order of the homomorphic image group G is at most 190080:

$$
|G|=\frac{|G|}{|N|} \cdot|N| \leq 7920 \cdot|N|=7920 \cdot 24=190080 \Rightarrow|G| \leq 190080
$$

We now consider $\langle\phi(x), \phi(y), \phi(t)\rangle$. Note that $\langle\phi(x), \phi(y), \phi(t)\rangle$ is a group generated by the permutation representations of the generators x, y, and t and, as such, it is a subgroup of the symmetric group S_{7920} acting on the seven thousand, nine hundred twenty right cosets of N in G. Let $G_{1}=\langle\phi(x), \phi(y), \phi(t)\rangle$. Now, G_{1} is a homomorphic
image of G and, therefore, $G_{1} \leq G$ and $\left|G_{1}\right| \leq|G|$. Moreover, it is easily verified that $\left|G_{1}\right|=190080$. Therefore, $|G| \geq\left|G_{1}\right|=190080$. Therefore, $190080 \leq|G| \leq 190080$. That is, $|G|=190080$, and so, since G_{1} is a homomorphic image of G and $|G|=\left|G_{1}\right|$, we conclude $G \cong G_{1}=\langle\phi(x), \phi(y), \phi(t)\rangle$. Moreover, with the help of MAGMA (see [BCP97]), we know that the elements $c=\phi\left(y^{x^{2}} t^{x^{3}} t t^{x} t^{x} t^{x^{3}} t^{x^{3}}\right)$ and $d=\phi\left(\left(x y^{x^{2}}\right) t t^{x} t^{x} t^{x^{3}} t^{x^{3}} t^{x^{2}} t t^{x^{3}}\right)$ in G_{1} satisfy the following known presentation of $\operatorname{Aut}\left(M_{12}\right)$, or $M_{12}: 2$:

$$
\left\langle c, d \mid c^{2}=d^{3}=(c d)^{12}=(c d)^{5}[c, d]\left(c d^{-1}\right)^{3} c d\left[c, d^{-1}\right]^{2} c d c d\left(c d^{-1}\right)^{3}\left[c, d^{-1}\right]=e\right\rangle
$$

Therefore, $M_{12}: 2 \leq G_{1}$. But $\left|M_{12}: 2\right|=\left|G_{1}\right|=190080$. Hence, $G_{1} \cong M_{12}: 2$, that is, $G_{1} \cong \operatorname{Aut}\left(M_{12}\right)$. Finally, since $G \cong G_{1}$, we conclude $G \cong \operatorname{Aut}\left(M_{12}\right)$.

7.6 Converting an Element of G from its Permutation Representation to its Symmetric Representation

To illustrate how a permutation representation of an element of $\operatorname{Aut}\left(M_{12}\right)$ on 7920 letters may be converted to its symmetric representation form, we consider the following example:

Example 7.1. Let $g \in G \cong \operatorname{Aut}\left(M_{12}\right)$ and let $p=\phi(g)=$
$\phi\left(\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right)\right) \phi\left(t_{0}\right) \phi\left(t_{1}^{-1}\right) \phi\left(t_{2}\right) \phi\left(t_{1}^{-1}\right) \phi\left(t_{3}^{-1}\right)$ be the permutation representation of g on 7920 letters. Then $N^{p}=N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{3}^{-1}$. Moreover, since $N^{p}=N p$ and $N^{p}=$ $N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{3}^{-1}$, we have that $N p=N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{3}^{-1}$. Now, $N p=N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{3}^{-1}$ implies that $p \in N t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{3}^{-1}$ which implies that $p \sim \pi t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{3}^{-1}$ for some $\pi \in N \cong S_{4}$ or, more precisely, $p=\phi\left(\pi t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{3}^{-1}\right)=\phi(\pi) \phi\left(t_{0}\right) \phi\left(t_{1}^{-1}\right) \phi\left(t_{2}\right) \phi\left(t_{1}^{-1}\right) \phi\left(t_{3}^{-1}\right)$ for some $\pi \in N \cong S_{4}$.

To determine $\pi \in N \cong S_{4}$, we note first that

$$
\begin{gathered}
p=\phi(\pi) \phi\left(t_{0}\right) \phi\left(t_{1}^{-1}\right) \phi\left(t_{2}\right) \phi\left(t_{1}^{-1}\right) \phi\left(t_{3}^{-1}\right) \Rightarrow \\
p\left(\phi\left(t_{3}^{-1}\right)\right)^{-1}\left(\phi\left(t_{1}^{-1}\right)\right)^{-1}\left(\phi\left(t_{2}\right)\right)^{-1}\left(\phi\left(t_{1}^{-1}\right)\right)^{-1}\left(\phi\left(t_{0}\right)\right)^{-1}=\phi(\pi) \Rightarrow \\
p \phi\left(\left(t_{3}^{-1}\right)^{-1}\right) \phi\left(\left(t_{1}^{-1}\right)^{-1}\right) \phi\left(t_{2}^{-1}\right) \phi\left(\left(t_{1}^{-1}\right)^{-1}\right) \phi\left(t_{0}^{-1}\right)=\phi(\pi) \Rightarrow
\end{gathered}
$$

$$
p \phi\left(t_{3}\right) \phi\left(t_{1}\right) \phi\left(t_{2}^{-1}\right) \phi\left(t_{1}\right) \phi\left(t_{0}^{-1}\right)=\phi(\pi)
$$

We then calculate the action of $\pi \sim \phi(\pi)=p \phi\left(t_{3}\right) \phi\left(t_{1}\right) \phi\left(t_{2}^{-1}\right) \phi\left(t_{1}\right) \phi\left(t_{0}^{-1}\right)$ on the symmetric generators $\left\{t_{i} \mid i \in\{0,1,2,3\}\right\}$. The element $\pi \sim \phi(\pi)=p \phi\left(t_{3}\right) \phi\left(t_{1}\right) \phi\left(t_{2}^{-1}\right) \phi\left(t_{1}\right) \phi\left(t_{0}^{-1}\right)$ acts on the right cosets $N t_{0}, N t_{1}, N t_{2}$, and $N t_{3}$ via the mapping $\phi: G \longrightarrow S_{X}$ defined by $\phi(\pi, N w)=N w^{\pi}$. By this mapping, the element $\phi(\pi)$ acts as (01)(23) on the right cosets $N t_{0}, N t_{1}, N t_{2}$, and $N t_{3}$, and so $\phi(\pi)$ is the permutation representation of $\pi=\left(\begin{array}{ll}0 & 1\end{array}\right)(23) \in S_{4}$ on 7920 letters. Therefore, $\pi=\left(\begin{array}{ll}0 & 1\end{array}\right)(23)$ and $w=t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{3}^{-1}$, and so the symmetric representation of g is $(01)(23) t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{3}^{-1}$.

With the computer algebra system MAGMA (see [BCP97]), we can use a similar algorithm to convert $g \in G \cong \operatorname{Aut}\left(M_{12}\right)$ from its permutation representation $p=$
 MAGMA code for this algorithm is provided below:
$\mathrm{G}<\mathrm{x}, \mathrm{y}, \mathrm{t}>:=\operatorname{Group}<\mathrm{x}, \mathrm{y}, \mathrm{t} \mid \mathrm{x}^{\wedge} 4, \mathrm{y}^{\wedge} 2,\left(\mathrm{y}^{*} \mathrm{x}\right)^{\wedge} 3, \mathrm{t}^{\wedge} 3,(\mathrm{t}, \mathrm{y}),\left(\mathrm{t}^{\wedge} \mathrm{x}, \mathrm{y}\right),\left(\mathrm{y}^{*} \mathrm{x}^{*} \mathrm{t}\right)^{\wedge}(10)$, $\left(\left(\mathrm{x}^{\wedge} 2^{*} \mathrm{y}\right)^{\wedge} 2^{*} \mathrm{t}\right)^{\wedge} 5>$;
$\mathrm{f}, \mathrm{G} 1, \mathrm{k}:=\operatorname{Coset} \operatorname{Action}(\mathrm{G}, \mathrm{sub}<\mathrm{G} \mid \mathrm{x}, \mathrm{y}>$);
S4:=SymmetricGroup(4); xx:=S4!(1,2,3,4); yy:=S4!(2,3);N:=sub<S4|xx,yy>;
$\mathrm{IN}:=\mathrm{sub}<\mathrm{G} 1 \mid \mathrm{f}(\mathrm{x}), \mathrm{f}(\mathrm{y})>$;
prodim := function ($\mathrm{pt}, \mathrm{Q}, \mathrm{I}$)
/* Return the image of pt under permutations Q[I] applied sequentially. */
$\mathrm{v}:=\mathrm{pt}$;
for i in I do $\mathrm{v}:=\mathrm{v}^{\wedge}(\mathrm{Q}[\mathrm{i}])$; end for; return v ; end function;
ts $:=\left[\left(t^{\wedge}\left(x^{\wedge}\right)\right) @ f: i\right.$ in [1.. 4]];
cst $:=[$ null : i in [1 .. 7920]] where null is [Integers() |];
ConvertPermutationToSymmetric:= function(G1,N,p)
$\mathrm{ww}:=\operatorname{cst}[1 \wedge \mathrm{p}]$;
$\mathrm{tt}:=\mathrm{p}^{*} \&^{*}[\mathrm{G} 1 \mid \mathrm{ts}[\mathrm{ww}[\# \mathrm{ww}-1+1]]: \mathrm{i}$ in [1 .. \#ww]];
$\mathrm{zz}:=\mathrm{N}!\left[\operatorname{rep} \mathrm{j}: \mathrm{j}\right.$ in $[1 . .4] \mid\left(1^{\wedge} \mathrm{ts}[\mathrm{i}]\right)^{\wedge} \mathrm{tt}$ eq $1^{\wedge} \operatorname{ts}[\mathrm{j}]: \mathrm{i}$ in $\left.[1 . .4]\right] ;$
return $<\mathrm{zz}, \mathrm{ww}>$; end function;
$\mathrm{p}:=\mathrm{f}\left(\left(\mathrm{x}^{\wedge} 2^{*} \mathrm{y}\right)^{\wedge} 2\right)^{*} \mathrm{f}(\mathrm{t})^{*} \mathrm{f}\left(\left(\mathrm{t}^{\wedge} \mathrm{x}\right)^{\wedge}(-1)\right)^{*} \mathrm{f}\left(\mathrm{t}^{\wedge}\left(\mathrm{x}^{\wedge} 2\right)\right) * \mathrm{f}\left(\left(\mathrm{t}^{\wedge} \mathrm{x}\right)^{\wedge}(-1)\right)^{*} \mathrm{f}\left(\left(\mathrm{t}^{\wedge}\left(\mathrm{x}^{\wedge} 3\right)\right)^{\wedge}(-1)\right) ;$
ConvertPermutationToSymmetric(G1,N,p);
Note that the elements $x \sim\left(\begin{array}{ll}0 & 1\end{array} 23\right)$ and $y \sim(23)$ in this algorithm act on the right cosets N in G via the mapping $f: G \longrightarrow G 1$ defined by $f(x, N w)=N w^{x}$, and the
symmetric generators $t_{0} \sim t, t_{1}^{-1} \sim\left(t^{x}\right)^{-1}, t_{2} \sim t^{x^{2}}$, and $t_{3}^{-1} \sim\left(t^{x^{3}}\right)^{-1}$ act on the right cosets of N in G via the mapping $f: G \longrightarrow G 1$ defined by $f\left(t_{i}, N w\right)=N w t_{i}$. For this reason, in this case, the permutation representation of g on 7920 letters is given by $p=f(g)=f\left(\left(x^{2} y\right)^{2}\right) f(t) f\left(\left(t^{x}\right)^{-1}\right) f\left(t^{x^{2}}\right) f\left(\left(t^{x}\right)^{-1}\right) f\left(\left(t^{x^{3}}\right)^{-1}\right)$. With the help of MAGMA (see [BCP97]), we find $\pi=(01)(23) \sim\left(x^{2} y\right)^{2}$ and $w=t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{3}^{-1} \sim$ $t\left(t^{x}\right)^{-1} t^{x^{2}}\left(t^{x}\right)^{-1}\left(t^{x^{3}}\right)^{-1}$, and so we determine, as before, that the symmetric representation of g is $g=(01)(23) t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{3}^{-1} \sim\left(x^{2} y\right)^{2} t\left(t^{x}\right)^{-1} t^{x^{2}}\left(t^{x}\right)^{-1}\left(t^{x^{3}}\right)^{-1}$.

7.7 Converting an Element of G from its Symmetric Representation to its Permutation Representation

To illustrate how an element of $\operatorname{Aut}\left(M_{12}\right)$ in symmetric representation form may be converted to its permutation representation on 7920 letters, we consider the following example:

Example 7.2. Let $g \in G \cong \operatorname{Aut}\left(M_{12}\right)$ have the symmetric representation $g=\left(\begin{array}{ll}0 & 1\end{array}\right)(23) t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{3}^{-1}$. To determine the permutation representation $p=\phi(g)$ of g, we first calculate the action of $\pi=(01)(23)$ on the right cosets of N in G. The element $\pi=\left(\begin{array}{ll}0 & 1\end{array}\right)(23)$ acts on the right cosets N in G via the mapping $\phi: G \longrightarrow S_{X}$ defined by $\phi(\pi, N w)=N w^{\pi}$ In this sense, $\phi(\pi)$ is the permutation representation of π on 7920 letters.

We next calculate: the action of the symmetric generator t_{0} on the right cosets of N in G, the action of the symmetric generator t_{1}^{-1} on the right cosets of N in G, the action of the symmetric generator t_{2} on the right cosets of N in G, and the action of the symmetric generator t_{3}^{-1} on the right cosets of N in G. The symmetric generators $\left\{t_{i}^{ \pm 1} \mid i \in\{0,1,2,3\}\right\}$ act on the right cosets of N in G via the mapping $\phi: G \longrightarrow S_{X}$ defined by $\phi\left(t_{i}, N w\right)=N w t_{i}$. In this sense, $\phi\left(t_{0}\right), \phi\left(t_{1}^{-1}\right), \phi\left(t_{2}\right)$, and $\phi\left(t_{3}^{-1}\right)$ are the permutation representations of t_{0}, t_{1}^{-1}, t_{2}, and t_{3}^{-1} on 7920 letters, respectively. The permutation representation of $g=\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{3}^{-1}$ is therefore $p=\phi(g)=\phi\left(\left(\begin{array}{ll}0 & 1) \\ (23))\end{array}\right)\left(t_{0}\right) \phi\left(t_{1}^{-1}\right) \phi\left(t_{2}\right) \phi\left(t_{1}^{-1}\right) \phi\left(t_{3}^{-1}\right)\right.$.

With the computer algebra system MAGMA (see [BCP97]), we can use a similar algorithm to convert $g \in G \cong \operatorname{Aut}\left(M_{12}\right)$ from its symmetric representation $g=$ (0 1)(23) $t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{3}^{-1}$ to its permutation representation $p=\phi(g)$. The MAGMA code for this algorithm is provided below:
$\mathrm{S} 4:=$ SymmetricGroup(4); xx:=S4!(1,2,3,4); yy:=S4!(2,3); N:=sub<S4| xx,yy>;
NN $<x, y>:=$ Group $<x, y \mid x^{\wedge} 4, y^{\wedge} 2,\left(y^{*} x\right)^{\wedge} 3>;$
Sch:=SchreierSystem(NN,sub<NN—Id(NN)>);
ArrayP:=[Id(N): i in [1..24]];
for i in $[2 . .24]$ do $\mathrm{P}:=[\operatorname{Id}(\mathrm{N}): 1$ in $[1 . . \# \operatorname{Sch}[\mathrm{i}]]] ;$
for j in $[1 . . \# S c h[i]]$ do if Eltseq(Sch[i])[j] eq 1 then $P[j]:=x x$; end if;
for j in $[1 . . \# S c h[i]]$ do if Eltseq(Sch[i]) [j] eq -1 then $P[j]:=x x \wedge(-1)$; end if;
if Eltseq(Sch[i])[j] eq 2 then $P[j]:=y y ;$ end if; end for;
$\mathrm{PP}:=\operatorname{Id}(\mathrm{N})$; for k in $[1 . . \# \mathrm{P}]$ do $\mathrm{PP}:=\mathrm{PP} * \mathrm{P}[\mathrm{k}]$; end for; ArrayP $[\mathrm{i}]:=\mathrm{PP}$; end for; end for; for i in $[1 . .24]$ do if ArrayP[i] eq $\mathrm{N}!(4,1)(2,3)$ then print $\operatorname{Sch}[\mathrm{i}]$; end if; end for;
$>\left(x^{\wedge} 2 * y\right)^{\wedge} 2$
$G<x, y, t>:=G r o u p<x, y, t \mid x^{\wedge} 4, y^{\wedge} 2,\left(y^{*} x\right)^{\wedge} 3, t^{\wedge} 3,(t, y),\left(t^{\wedge} x, y\right),\left(y^{*} x^{*} t\right)^{\wedge}(10)$,
$\left(\left(\mathrm{x}^{\wedge} 2^{*} \mathrm{y}\right)^{\wedge} 2^{*} \mathrm{t}\right)^{\wedge} 5>$;
$\mathrm{f}, \mathrm{G} 1, \mathrm{k}:=\operatorname{Coset}$ Action(G,sub<G| $\mathrm{x}, \mathrm{y}>$);
$\mathrm{IN}:=\operatorname{sub}<\mathrm{G} 1 \mid \mathrm{f}(\mathrm{x}), \mathrm{f}(\mathrm{y})>$;
$\mathrm{f}\left(\left(\mathrm{x}^{\wedge} 2^{*} \mathrm{y}\right)^{\wedge} 2\right)^{*} \mathrm{f}(\mathrm{t})^{*} \mathrm{f}\left((\mathrm{t} \wedge \mathrm{x})^{\wedge}(-1)\right)^{*}\left(\mathrm{t}\left(\mathrm{x}^{\wedge} 2\right)\right)^{*} \mathrm{f}\left((\mathrm{t} \wedge \mathrm{x})^{\wedge}(-1)\right)^{*} \mathrm{f}\left(\left(\mathrm{t} \wedge\left(\mathrm{x}^{\wedge} 3\right)\right)^{\wedge}(-1)\right) ;$
Note that the element $\pi=\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) \sim\left(x^{2} y\right)^{2}$ in this algorithm acts on the right cosets N in G via the mapping $f: G \longrightarrow G 1$ defined by $f(\pi, N w)=N w^{\pi}$, and the symmetric generators $t_{0} \sim t, t_{1}^{-1} \sim\left(t^{x}\right)^{-1}, t_{2} \sim t^{x^{2}}$, and $t_{3}^{-1} \sim\left(t^{x^{3}}\right)^{-1}$ act on the right cosets of N in G via the mapping $f: G \longrightarrow G 1$ defined by $f\left(t_{i}, N w\right)=N w t_{i}$. In this sense, $f\left(\left(x^{2} y\right)^{2}\right)$ is the permutation representation of $\pi \sim\left(x^{2} y\right)^{2}$ on 7920 letters, and $f(t), f\left(\left(t^{x}\right)^{-1}\right), f\left(t^{x^{2}}\right)$, and $f\left(\left(t^{x^{3}}\right)^{-1}\right)$ are the permutation representations of $t_{0} \sim$ $t, t_{1}^{-1} \sim\left(t^{x}\right)^{-1}, t_{2} \sim t^{x^{2}}$, and $t_{3}^{-1} \sim\left(t^{x^{3}}\right)^{-1}$, respectively. The permutation representation of $g=(01)(23) t_{0} t_{1}^{-1} t_{2} t_{1}^{-1} t_{3}^{-1} \sim\left(x^{2} y\right)^{2} t\left(t^{x}\right)^{-1} t^{x^{2}}\left(t^{x}\right)^{-1}\left(t^{x^{3}}\right)^{-1}$ is therefore $p=f(g)=f\left(\left(x^{2} y\right)^{2}\right) f(t) f\left(\left(t^{x}\right)^{-1}\right) f\left(t^{x^{2}}\right) f\left(\left(t^{x}\right)^{-1}\right) f\left(\left(t^{x^{3}}\right)^{-1}\right)$.

Bibliography

[BCP97] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma Algebra System. I. The User Language. Journal of Symbolic Computation. 1997.
[CH96] R. T. Curtis and Z. Hasan. Symmetric Representation of the Elements of the Janko Group J_{1}. Journal of Symbolic Computation. 1996.
[CHB96] R. T. Curtis, A. M. A. Hammas, and J. N. Bray. A Systematic Approach to Symmetric Presentations I: Involutory Generators. Mathematical Proceedings of the Cambridge Philosophical Society. 1996.
[Con71] J. H. Conway. Three Lectures on Exceptional Groups. Finite Simple Groups. Academic Press, London, 1971.
[Cur07] R. T. Curtis. Symmetric Generation of Groups: With Applications to Many of the Sporatic Simple Finite Groups. Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 2007.
[HK06] Z. Hasan and A. Kasouha. Symmetric Representation of the Elements of Finite Groups. Retrieved from eprint arXiv:math/0612042, 2006.
[HN05] Z. Hasan and B. Nguyen. Construction of $J_{3}: 2$. Unpublished, 2005.
[Rot95] Joseph J. Rotman. An Introduction to the Theory of Groups. Springer-Verlag, New York, 1995.

