
California State University, San Bernardino California State University, San Bernardino

CSUSB ScholarWorks CSUSB ScholarWorks

Theses Digitization Project John M. Pfau Library

2008

Pysafe: An interdisciplinary approach to interface design Pysafe: An interdisciplinary approach to interface design

Matthew Adam Richardson

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project

 Part of the Graphics and Human Computer Interfaces Commons

Recommended Citation Recommended Citation
Richardson, Matthew Adam, "Pysafe: An interdisciplinary approach to interface design" (2008). Theses
Digitization Project. 3439.
https://scholarworks.lib.csusb.edu/etd-project/3439

This Project is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has
been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks.
For more information, please contact scholarworks@csusb.edu.

https://scholarworks.lib.csusb.edu/
https://scholarworks.lib.csusb.edu/etd-project
https://scholarworks.lib.csusb.edu/library
https://scholarworks.lib.csusb.edu/etd-project?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F3439&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F3439&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.lib.csusb.edu/etd-project/3439?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F3439&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu

PYSAFE: AN INTERDISCIPLINARY APPROACH

TO INTERFACE DESIGN

A Project

Presented to the

Faculty of

California State University,

San Bernardino

In Partial Fulfillment

of the Requirements for the Degree

Master of Arts

in

Interdisciplinary Studies:

Interface Design

by
Matthew Adam Richardson

December 2008

PYSAFE: AN INTERDISCIPLINARY APPROACH

TO INTERFACE DESIGN

A Project

Presented to the

Faculty of

California State University,

San Bernardino

by

Matthew Adam Richardson

December 2008

Approved by:

Richard Botting, Cha
and Engineering

Date

David Turner, Computer Science and
Engineering

Kurt Collins, Art

© 2008 Matthew Adam Richardson

ABSTRACT

The need for designing software to work congruently

with people has been recognized for over forty years; yet

the field of Human-Computer Interaction is relatively new,

coming of age in the last twenty-five years or so. A rapid

maturation occurred, as designers and developers progressed

from basing interfaces around workflow analysis to

utilizing cognitive psychology to better account for the

needs of people. However, the quickening pace of

globalization has created a large hole in the design

process: making interfaces accessible to a worldwide

audience. The inclusion of cultural understanding and the

field of semiotics offer potential solutions to the problem

of creating better interfaces for all users, local and

global.

PySafe is the result of the development of an

application from the interface down, rather than from the

system up. Once a purpose was settled upon, an inventory

tracking system, design software was used to quickly

explore ideas and create a mock up. The mock up served as

a guide for the development of the user interface and

application logic.

iii

ACKNOWLEDGMENTS

I would like to thank Dr. Richard Botting for his

support, guidance, and sharing his wealth of knowledge; Dr.

David Turner for getting me up to speed in a field mostly

foreign to me; and Professor Kurt Collins for teaching me

how to see critically. Thanks also go to my family and

friends for their encouragement.

iv

To Natasha, Caitlyn, Lauren, and Georgia.

TABLE OF CONTENTS

ABSTRACT ... iii

ACKNOWLEDGMENTS...................................... iv

LIST OF FIGURES...................................... vii

CHAPTER ONE: INTRODUCTION

Purpose... 1

Scope... 2

Definition of Terms............................. 2

Document Organization........................... 4

CHAPTER TWO: LITERATURE REVIEW

Introduction.................................... 5

A Brief History of Interface Design............. 7

The Current State of Interface Design........... 16

Globalization................................... 22

New Directions.................................. 27

Conclusion................. 39

CHAPTER THREE: INTERFACE DESIGN

Introduction.................................... 43

Mock-ups.. 44

Conclusion...................................... 54

CHAPTER FOUR: SOFTWARE DESIGN

Introduction.................................... 56

Pattern........... 59

Installation.................................... 68

Maintenance................ 73

CHAPTER FIVE: TESTING

Introduction.................................... 74

Methods... 7 4

Summary... 7 6

Future Work..................................... 77

CHAPTER SIX: CONCLUSIONS

Review.. 7 8

Future Work..................................... 80

APPENDIX A: SOURCE CODE.............................. 82

APPENDIX B: TEST CODE................................. 102

REFERENCES..107

vi

LIST OF FIGURES

Figure 1. Basic layout............................... 44

Figure 2. Dialog boxes............................... 45

Figure 3. Initial animation screen................... 4 6

Figure 4. The simulated search function............... 47

Figure 5. An early prototype........................ 57

Figure 6. Deployment diagram......................... 60

Figure 7. Initial Pysafe window...................... 63

Figure 8. PySafe list view........................... 64

Figure 9. PySafe edit view........................... 65

Figure 10. PySafe search view........................ 66

Figure 11. PySafe alert view......................... 67

vii

CHAPTER ONE

INTRODUCTION

Purpose

As interactive devices become more integrated with

daily life, the importance of effective design grows. In

order to produce well-designed applications, it is

necessary to know what is happening in interaction design

now, how it came to be, and where it may be going. The

field of human-computer interaction has seen many changes

in its brief history. From the initial encouragements to

make applications work like people work to the application

of semiotic theory to graphic elements, interaction

designers have sought to improve people's experience.

Because the design of an interface is very much an art, a

wide-array of opinions exists on what needs to be

considered in order to produce well-designed applications.

The purpose of this project is two-fold: examine the

prevailing wisdom of the interaction design field over the

past forty years and look at emerging perspectives, then

apply the established principles along with new trends in a

practical application.

1

Scope

To meet the goals of the purpose, the project consists

of a literature review and a working application. The

literature review covers approximately forty years of

material pertaining to the human-computer interaction

field, as well as exploring the effects of globalization on

future directions of interaction design. The application

is presented from the design of the graphical user

interface through software design and testing. PySafe is a

computer tracking system for inventory purposes, designed

with portability, extensibility, and internationalization

in mind.

Definition of Terms

Affordance: A cue that indicates how something is to be

used.

Activity-centered design (ACD): Design focused on the

collection of tasks used to produce a result.

Application Programming Interface (API): A set of

functions provided by some piece of software to support

requests made by other software.

Flash: Adobe Flash, animation software

(http://www.adobe.com).

2

http://www.adobe.com

Graphical User Interface (GUI): An interface composed of

windows, buttons, icons, and other visual metaphors.

HTTP: Hypertext Transfer Protocol, used for transferring

data over the Internet.

Human-computer interaction (HCI): Field of study interested

in how people interact with computers.

Inkscape: An open source vector drawing program

(http://www.inkscape.org).

Interaction Design: In the broadest sense, the design of

anything that a person has to give input to and receive

output from.

Internationalization (il8n): The process of making

software adaptable for use worldwide. The abbreviation is

derived from the number of letters between the first and

last letters.

Localization (llOn): The process of adding locale specific

details, such as language.

Media Access Control (MAC) address: A unique address

assigned to a network interface card. It provides a

convenient way of identifying a particular computer as no

two are supposed to be alike.

Persona: A fictional person representing a class of people

in the target audience, used as a design tool.

3

http://www.inkscape.org

Profile: Broader than a persona, it describes the audience

as a whole.

Python: Interpreted, object-oriented programming language.

Scenario: A. description of how a product will be used.

SSL: Secure Sockets Layer, a protocol used to establish

secure communication across the Internet.

Traceroute: A program that finds routers between the

client computer and a specified host.

User-centered design (UCD): Design focused on people

(users) and the tasks used to achieve a goal.

XML: Extensible Markup Language is a specification for

creating user-defined encodings of data.

Document Organization

A literature review is presented to provide historical

background and emerging ideas to be incorporated in the

project. Following that, an overview of the design process

is presented, beginning with the development of the

interface through graphic design software. Then the

software design and testing process is detailed. All of

the source code for the application is included in the

appendices.

4

CHAPTER TWO

LITERATURE REVIEW

Introduction

Human-computer interaction (HCI) is concerned with

that part of computing with which most people are familiar:

the stuff they need to use on their computer screen. In

the early 1970s emerged proponents of the importance of

designing an interface so that it presents a model that

matches the user's own model of how things should work;

however, the field is still coming into its own. In the

early to mid 1980s, developers and researchers began to

look at workflows and make observations, in order to make

improvements to the designs. By the late 1980s and early

1990s, researchers were incorporating cognitive psychology

to account for human limitations in their design processes.

Over the last ten years or so, the ideas of user-centered

and activity-centered design have become prominent.

In roughly those same ten years, the pace of

globalization has jumped tremendously. The massive

deployment of high-speed communications cable and the

economic pressure to find talent at a lower cost have

brought many disparate areas of the globe into closer

5

contact than ever before. Of course, this means that the

diversity of people using software has grown much faster

than designers have been able to keep up. It has only been

in the last four years or so that designers have been

applying cultural studies theories and semiotics as

possible strategies to close this gap in the human-computer

interaction field.

As businesses grow and expand into the emerging

foreign markets, the need to develop interfaces that

require zero to little customization for each locale will

become increasingly urgent. No one wants to spend time re

implementing the same graphical interface for each market,

especially when that costs money to pay for developer time.

Time that may be better spent on improvements for the next

version to be shipped. The upside of market expansion is

that interfaces for all users should improve as developers

take into account cultural issues as well as the cognitive-

and activity-related ones.

However, the decisions made by developers raise a lot

of questions. Where has HCI come from and where is it now?

What are the effects of globalization and how do they

affect HCI? What new directions are being explored to

6

create better interfaces? Is it possible to design once,

run everywhere?

A Brief History of Interface Design

To understand where the field is going, it is

important to know where it has come from. Advocacy of

user-centered design began" early on, with research in how

to deal with common problems such as error handling.

Afterward came the integration of cognitive psychology.

User-centered design is the most recent addition to the-

field.

Ted Nelson released the self-published Computer

Lib/Dream Machines, in June 1974. Actually two books in

one (Dream Machines being the second half, reversed to

Computer Lib), it outlined in a rather anarchic way

Nelson's thoughts on the computer industry, programming

languages, networks for sharing knowledge, hypertext,

payment of content producers, multimedia, and interfaces.

At a time when computing meant time-sharing and punch cards

for many people, his ideas on making interfaces usable by

people were truly remarkable.

Nelson defined interactive systems as anything that

responds to input (1987, 67). This definition broadly

7

covers computing in general, at least the way in which most

people will use a computer. Recognizing this, lists of

things and aphorisms to keep in mind while designing

software are presented throughout. The major themes are

conceptual clarity (Nelson, 1987, 25) and ease of use

(Nelson, 1987, 12) .

Along with the 'thirty thousand foot view' and

research-based works, is the practical application genre of

work. Drawing on research referenced from other sources,

this work provides the software developer with a quick way

of getting to the heart of the matter: applying the

principles derived from the study of human-computer

interaction. Mehlmann (1981) made a number of points

regarding the production of terminal-based business

software with an eye on making the workflow similar to the

non-computer based workflow.

Written for a programming audience, Mehlmann points

out that there are consequences for poor work (1981, 23).

Suggestions on how to work with limitations in mind include,

requiring as little manual entry as possible, eliminating

as many possible points of potential error as possible. To

create better software, the complexity of the system should

8

be confined to the background, away from anything the

person has to deal with (Mehlmann, 1981, 45).

In a case study of application development with a

focus on interface issues, Ledgard, Singer, and Whiteside

(1981) documented the process as completely as possible.

From discussions of design decisions to what worked and

why, and even what didn't work and why, the shift toward

accounting for the idiosyncrasies of people is illustrated

from the inside. Noting that a lack of consideration for

HCI results in fewer people using computers, the authors

considered everything from prompts to grammar and long-term

feedback to make improvements. An important insight that

seems to have informed the project they detailed is that

previously designed systems are not perfect (Ledgard,

Singer, and Whiteside 1981, 141). This immediately

suggests that design is a process, not a product, and

therefore is always short of the ideal. Some aspect can

always be improved.

Gilb and Weinberg (1984) dealt with issues of keyed

input and conducted research on how to reduce errors,

increase productivity, and improve working conditions.

While the specifics of their research may not be as

important today, keyed input being replaced by automatic

9

input whenever possible, many of the general concepts they

drew from their data are very much relevant. Steps to take

in error avoidance, such as defaults, implicit and explicit

data entry and input checking are explored in great detail.

As for improving working conditions, it is pointed out that

forcing people into strict work flows does not do anyone

any good, neither for programmer nor user (Gilb and

Weinberg, 1984, 180), and that people like to think, given

the chance (Gilb and Weinberg, 1984, 130) .

By the late 1980s, the cognitive psychologists had

entered the field. The constraints, mental and physical,

that people have to deal with are addressed and design

practices to take them into account are detailed

(Shneiderman, 1987). Ways of making things easer for

people to figure out, perceived affordances, and taking

advantage of knowledge in the head as well as putting some

knowledge in the world are explored as means of making more

effective interfaces.

Schneiderman notes that a model for software design

outlining four levels-conceptual model, semantic level

(where meanings are conveyed by input and output), syntax

level (specific commands), and the lexical level (device

dependencies)-compares with Norman's model for user

10

interaction-forming an intention, selecting an action,

executing the action, and evaluating the outcome

(Schneiderman, 1987, 46-47). To address the semantic level

of the model, designers employed positive and negative

examples of use as well as tied together new concepts to

previously held knowledge (Schneiderman, 1987, 49) .

Furthermore, tying structured semantic knowledge of

computer paradigms to things users already knew resulted in

better memory retention (Schneiderman, 1987, 50).

On the topic of preventing errors, Schneiderman

advocated the use of organization by function, providing

distinctive choices when presenting options, and making

actions reversible (1987, 69). The methods he presented

are the same as earlier researchers had drawn. Those

methods were also applied by future designers, as discussed

below. What is different about Schneiderman's analysis is

that his focus is slightly different from the earlier

perspective. That, basically, people make mistakes and the

software should take this into account. Instead, his view

is that when designers know users physical limitations,

such as visual perception fields, and their mental model

allows them to tailor the interface to meet the basic

elements of a good design. The criteria he provides for

11

evaluating an interface-and ditching the term 'user-

friendliness ’-are:

• Time to learn;

• Speed of performance;

• Rate of errors by user;

• Subjective satisfaction;

• Retention over time (Schneiderman, 1987, 73).

To underscore the importance of thinking outside of

the engineering box when designing for people, he quotes

Heckel as saying that thinking logically rather than

visually is not conducive to good design (Schneiderman,

1987, 198).

It is here that Norman picks up the study, not of

computer interfaces in particular, but of interactive

objects in general. Visual cues create the relationship

between what the user means to do and what can be done

within the interface (Norman, 2002, 8). Too few cues make

a device difficult to figure out, too many make it

confusing. A balance has to be struck that provides the

right amount of cues in order to facilitate the use of the

device. Norman called these cues affordances, real and

perceived properties of an object that indicate its use

(Norman, 2002, 9).

12

Providing a clear conceptual model is just as

important as affordances to the success of a design. The

principles of affordances, constraints, and mappings are

illustrated by contrasting scissors with a digital watch:

scissors have two holes, with a size constraint that makes

them suitable for fingers, whereas a digital watch may have

buttons on the side that do not map clearly to any

particular function. The conceptual model formed of the

scissors is clear, whereas the wearer of the watch is going

to find themselves mashing buttons (Norman, 2002, 12-13).

The conceptual model can be broken in to three parts;

the designer's model, the system image, and the user's

model. Ideally, the designer's model and the user's model

will match and everyone is happy. However, since the two

do not communicate directly, the system image (which is the

system, documentation, instructions and everything else

accompanying the product) must be formed in a way that

properly informs the user of the designer's concept or the

user may form an incorrect conceptual model.

The possible arrangements of a particular interface, a

good one anyway, are reduced by external and internal

constraints. Norman denotes the reasons for this as:

information being present in the world that can be combined

13

with previous knowledge to complete a task; a high degree

of precision is not necessary, given enough knowledge to

make the correct choice; natural constraints exist that

restrict possible actions, like a knob which must be

turned, not pulled; and cultural constraints exist that

govern acceptable behaviors (Norman, 2002, 55). With these

four conditions, people can figure out fairly quickly how

something is to be used without having prior knowledge of

the system, simply by taking advantage of what is presented

to them and what they bring to it.

Being human, designers of course experience pitfalls

in achieving their goals. The two major categories of

errors are mistakes, where the goal is incorrect but the

actions are correct for the goal, and 'slips' when the goal

is correct but an automatic or subconscious action is

incorrect for achieving the goal (Norman, 2002, 105).

Error detection built in to an interface can help alleviate

problems caused by taking the wrong action, but feedback

has to be given to the person so that the problem is

recognized. Care has to be taken with error detection and

correction, as people will come to rely on it (Norman,

2002, 114) .

14

One of the most important things that Norman has to

say in designing for people is that designers are not

normal people and that there is no substitute for

interacting with the intended users. The complexity and

variability of human thought, emotion, culture, belief,

etc., are really beyond the grasp of one person (Norman,

2002, 155). To do so would be to deny one's own biases and

perceptions and assert that the role of the user can be

assumed. Later, Norman will discuss this more and clarify

his position, which is not that all of a designer's design

has to be derived from analyzing the user, but that failing

to account for the audience's specificities is going to

result in a missed goal.

It is pretty apparent that the study of HCI, from the

idealist (Nelson) through the developers (Ledgard) to the

cognitive psychologists (Schneiderman and Norman) was

evolutionary. The importance of this conclusion is that

HCI is truly an interdisciplinary field, with important

contributions coming from many areas. However, the current

paradigm, arising in the mid-1990s, has taken too much to

heart the study of users and analyzing the task domain, at

the expense of making interfaces too focused.

15

The Current State of Interface Design

So, with the progression of the first half of the

development of HCI behind us, it's time to take a look at

the second half. Broadly, there are four approaches to

interaction design: user-centered, activity-centered,

systems, and genius (Saffer, 2007,30).

User-centered design is focused on the needs and goals

of the users of the proposed software. 'Personas' are

detailed representations of people in the target audience.

They are developed through interviewing a cross-section of

audience to determine skill-levels, tasks that need to be

accomplished, and work flows (Tidwell, 2006, 7). While not

representing any one particular real person a persona is a

highly detailed fictional person, complete with some

biographical detail, for example, children, hobbies, etc.

The other components of defining the user base are profiles

and scenarios: a description of a range of attributes,

such as position or age, and how the person will use the

product, respectively (Courage and Baxter, 2005, 41). The

process involves determining user requirements, testing

effectiveness, and using an iterative design cycle (Courage

and Baxter, 2005, 4).

16

Users can often be considered co-designers, being

incorporated in the process at each step of the way. A

benefit, and no small one, is a huge investment in the

success of the project on the part of one of the major

stakeholders: the user. Important insights can be had by

utilizing the institutional knowledge of people familiar

with workflows, business rules and peculiarities of the

environment.

However, there is also a large risk in designing the

system to suit the biases of a subset of the total users.

Great care has to be taken in the selection of

collaborators to avoid this trap. It also shifts some of

the responsibility of the design to people who are not

trained in the field and may result in inappropriate

concessions to please the testers.

User-centered design has been around for some time and

has many adherents. Either through use of abstractions

like personas or through the use of a subset of the target

audience as participants in the design process, it is

certainly an established means of designing with the person

in mind.

Activity-centered design, on the other hand, seems to

be the upstart (Norman, 2005). Whereas UCD focuses on

17

users and the tasks they undertake to achieve some goal,

activity-centered design focuses more on the collection of

tasks that are undertaken to produce a result. Since it is

a newer development, it is discussed further below.

Systems design is the least humanized method of

interaction design. It is an analytical method of

approaching a design problem, with distinct components that

the designer is responsible for producing. The goals of

people are not discounted but are taken into consideration

in the context of the system: the goal in this model is

the system goal, which may be taken from user goals

(Saffer, 2007, 36). Design in general is fraught with

uncertainties and this method provides a rigid framework as

a means of eliminating that. However, it would appear to

be a throwback to the days when systems were engineered and

people had to accommodate the system.

The fourth method is genius design (Saffer, 2007, 41) .

One designer is responsible for producing the object, from

concept to completion. From the designer's perspective,

this approach has some real advantages, namely artistic

freedom and an easier workflow (no committees or teams to

deal with). An experienced designer may be able to

develop a product that is revolutionary, drawing upon years

18

of experience on other projects. Nevertheless, the flip

side is also true: design without consultation may result

in a huge flop. Apple, Inc., practices this method with

many of its consumer items and thus has seen both huge

successes and huge failures. The aversion to design by

committee is not new, Nelson advocated a chief designer

with absolute power (1987, 72) as a way of ensuring

conceptual integrity. Interestingly, Apple also follows a

user-centered approach in its Human Interface Guidelines,

suggesting that the company stays at the fore of the field

by hiding their designs until ready to reveal, while at the

same time enforcing standards on third party vendors.

There are, of course, other methods of interaction

design. One is simply to make a product look pretty after

everything else has been said and done. Consumer

electronics, sadly, often fall into this category: the

DVD/VHS player, remote controls, and alarm clock that are

used daily often leave much to be desired. Strictly

speaking, this is window dressing and. not interaction

design. There are so many constraints on the product at

the final stages of completion that the designer has very

little influence over important aspects such as features,

input methods, work flows and so on.

19

Another method is to skip the designer and let the

programmers take care of it. Spolsky suggests that the

only thing usability testing is good for is reminding the

programmers that they are not writing for themselves (2001,

100) .' What is really fortunate about his usability testing

approach is the fact that he has compiled a good set of

axioms from previous work in the field: make the system

image fit the user's mental model (2001, 6); options mean

decisions (2001, 18); know that affordances help, bad

metaphors hinder; and make things work acceptably under the

worst conditions and better under normal conditions (2001,

59). Spolsky's book is really a fantastic primer on design

for programmers; however, toward the end of the work he

asserts that, given the rules and axioms he has introduced,

using professional designers is a waste of money (2001,

101) . The unfortunate message delivered by an otherwise

good book is that a set of recipes is all that is required

to produce a good interface.

In what can be viewed as a counter to Spolsky's

assertion, Schneiderman (1987, 391) set forth the

following: > ■

• Design is a process, it is not a state and cannot be

adequately represented statically.

20

• The design process is non-hierarchical; it is

neither strictly bottom-up nor strictly top-down.

• The process is radically transformational; it

involves the development of partial and interim

solutions that may ultimately play no role in the

final design.

• Design intrinsically involves the discovery of new

goals.

Despite the copious work being done in the HCI field,

it would seem that the tradition begun in the mid-1950s

with industrial design has remained out of scope for

software engineers (Saffer, 2007, 31). The disconnect

between engineers and designers may lie in the notion of

design as a problem solving process, with an implication

that the problem has a right or wrong solution (Lowgren and

Stolterman, 2004, 9), whereas Schneiderman argues that it

is a process in which the results are more successful or

less successful, but without a single 'correct' solution.

Lowgren and Stolterman state that the process is not

predictable, there are too many variables involved-people,

resources, conditions-to be able to determine an outcome

(Lowgren and Stolterman, 2004, 9) .

21

The design activity encompasses many aspects. It is

an ethical activity in that the decisions made in the

design affect people and their actions. It is an aesthetic

activity in the sense that the forms created add to our

constructed world and how we experience it. What may

become most important'are the political and ideological

aspects. Each designer brings their own perspective on

humanity and society, and the influence of design on

people's lives makes these political and ideological ideas

tangible (Lowgren and Stolterman, 2004, 10).

Globalization

To some, the term 'globalization' denotes a growing

global economy, with countries exchanging goods and

services at a level not seen before. To others, it is the

new word for imperialism, where the richest nations get

richer by taking advantage of the less privileged. For

this discussion, the definition provided by

www.globalizationl01.org will be used:

Globalization is a process of interaction and

integration among the people, companies, and

governments of different nations, a process

driven by international trade and investment and

22

http://www.globalizationl01.org

aided by information technology. This process

has effects on the environment, on culture, on

political systems, on economic development and

prosperity, and on human physical well being in

societies around the world.

Clearly, there are many issues and many opinions

revolving around this topic. The aspect of globalization

important to our discussion is that the' interaction among

diverse cultures is becoming more commonplace, through

personal and economic avenues, and this is going to have a

profound effect on interpersonal and international

relations, business, and the growth of technology.

Friedman (2009, 9-10) maintains that there have been

three eras of globalization. The first is demarcated by

the discovery of the Americas, lasting until 1800. This

period is characterized as being one of power and force,

with nations expanding and seeking to build empires. The

second period starts in 1800 and ends in 2000, a time of

multinational corporations seeking power and fortune. The

third, the current era, begins around 2000 and is when,

Friedman argues, the individual has the ability to compete

on a global scale. The convergence of wide spread use of

personal computers, high-speed data communications

23

networks, and work flow software has enabled a much wider

spectrum of people to engage each other and markets than in

the previous eras. Of course, this means that as more

people get access to this framework, the push will come

increasingly from parts of the world other than the West

(Friedman, 2007, 11) .

The emergence of the World Wide Web (WWW) in 1991

kicked off the newest era. The invention of Tim Berners-

Lee, it was meant to be an easy way for scientists to share

documents and collaborate. However, within five years the

number of web users jumped from 600,000 to 40 million

(Friedman, 2007, 62). The Internet existed before the WWW

came along, but it took an easy method for non-technical

people to take advantage of the massive communications

network. Where these people originated from is not

entirely clear, but considering that the Internet started

as the Arpanet, a Department of Defense project, and

Berners-Lee was working at CERN, the European Organization

for Nuclear Research, it is probably safe to say that most

web users during the early 1990s were from Western

countries.

Statistics gathered by Dr. Richard Botting support

this assertion. In his collection of new domains announced

24

on comp.infosystems.www.announce, a Usenet group, the top

ten domains are dominated by .com, .uk, and .au in 1995.

In i996, the top-level domains for Germany, France and the

Netherlands broke into the top ten.

The tech boom of the late 1990s saw a large number of

web-based start up companies and the accompanying

infrastructure companies frantically trying to capture

market share, with no end in sight. There was an end, and

it hit in the early 2000s. By this stage, many e-commerce

businesses had fallen by the wayside and infrastructure

companies had laid so much- fiber optic cable that data

transmission prices fell to near zero (Friedman, 2007, 74).

Web standards such as HTML (hypertext markupJ
language), HTTP (hypertext transfer protocol), SOAP (simple

object access protocol), and XML (extensible markup

language) made it easy for machines to talk to one another

and exchange data independently of the platform or

application (Friedman, 2007, 84). For example, two

different programs in two different locations could send

data back and forth to one another as long as they both

understood XML and could communicate across the Internet,

often done using a web standard due to the robustness of

the protocols and server software. Coupled with the huge

25

http://www.announce

(and cheap) data links, business could now be global and

function in real time.

With the low threshold to the market and an abundance

of talent in information technology and business

administration, India became a leader in providing services

to businesses in the West. Other countries, such as China,

Russia, and former Soviet satellites, were able to take

advantage of this niche as well (Friedman, 2007, 126) .

The growing response in the software, community has

been through internationalization (il8n) and localization

(LlOn) of products. The first, il8n, is the process of

making software adaptable for use worldwide, whereas LlOn"

is the process of actually putting in the locale specific

details such as language, currency, date formats, etc.

(Wikipedia, 2008) . While this is a critical step in making

software that can potentially be used anywhere, it is only

providing one piece of the puzzle. The next step is

creating interfaces that meet the needs of each locale.

So, the question becomes, is this possible and if so, to

what extent?

26

New Directions

If it really takes a generation for changes in

technology to result in changes in productivity and work

flow (Schwartz and Leyden, 1997), we should now start

seeing the effects of the interaction design community on

software in general and the effects of globalization on the

interaction design community about now. The rise in amount

and extent of intercultural relations is bringing about

wider awareness of the need to account for cultural

differences when designing for global audiences. With the

incorporation of HCI principles in software design,

designers are reflecting on whether their assumptions

derived from user-centered design are adequate. And just

to make things more interesting, a semiotic engineering

approach to HCI is emerging in which the influence of

culture on interpretation of signs is being explored.

Hofstede's work in examining cultures and assessing

their nature according to five dimensions has become a key

reference for many researchers interested in intercultural

aspects of computer-mediated communication. The data

source was a collection of surveys administered by IBM to

employees at its offices across the world. The results of

his analysis of this material and later, similar inquiries,

27

are his definitions of five aspects (dimensions) in which

cultures can be qualitatively compared to one another.

The first dimension describes the distance the least

powerful in society have to the most powerful, the Power

Distance Index. The PDI indicates the amount of dependence

between subordinates and superiors, a high score indicating

a high dependence of subordinates to their bosses and a low

score indicating little dependence in the relationship

(Hofstede and Hofstede, 2004, 45). Based on this, power

distance is defined as the level of acceptance of the

unequal distribution of power within, an organization, from

the perspective of the least powerful members of the

organization (Hofstede and Hofstede, 2004, 46).

The second dimension is labeled as individualism

versus collectivism and indicates the level to which

individuals are part of groups. Individualistic societies

have loose ties between their members, with the expectation

that each is to look after themselves and perhaps their

immediate family, whereas members of collectivist societies

are part of strong groups from birth that provide

protection throughout life in exchange for loyalty

(Hofstede and Hofstede, 2004, 76). While there are many

differences between the two types of societies, the goals

28

of each are documented in the study and relate to personal

growth for the individualist and contributing toward the

group in the collectivist.

The masculinity versus femininity dimension is based

on responses to questions relating to the work goals of

earnings, recognition, advancement, challenge, good

relationship with management, cooperation, living area, and

employment security. Hofstede points out that he named

this dimension because it was the only one on which men and

women consistently scored differently (2004, 119). The men

rated earnings and advancement highly; the women rated

management relations and cooperation highly.

Uncertainty avoidance is the fourth dimension, and it

is the extent to which people in a particular culture are

threatened by ambiguous or uncertain situations (Hofstede

and Hofstede, 2004, 167). Those cultures with a high

uncertainty avoidance index would be more anxious than

those of a low index. An interesting observation made

regarding high anxiety countries is that the people tend to

be more expressive and that low anxiety cultures tend to

have members more prone to coronary disease, probably due

to bottling up their emotions (Hofstede and Hofstede, 2004,

171) .

29

The fifth dimension is that of long term versus short

term orientation. This one was added later after research

was conducted in Asian countries based on questions coming

from a Chinese perspective in order to test for a Western

bias in the original IBM survey. Long term oriented

cultures value perseverance and thrift (future rewards),

where short-term cultures are oriented .toward tradition,

maintaining face, and fulfilling obligations (Hofstede and

Hofstede, 2004, 210).

Having a dimensional frame of reference for the

practices and expectations, even on an abstract level, can

foster understanding and avoid embarrassments when HCI

designers deal with other cultures. As discussed above,

communication technology and global travel have seen the

rate of intercultural meetings grow tremendously (Hofstede

and Hofstede, 2004, 321). Being aware of how issues play

out in these dimensions and cultivating intercultural

communication skills to resolve conflicts and foster

understanding will improve the chances of succeeding with

international projects.

Debunking the notion that the global communication

links will unite the world into a single village, Hofstede

asserts that the flood of information does not affect

30

people's ability to absorb the information nor does it

change their values (2004, 330). People will continue to

gravitate towards those things that reinforce their values

and predispositions and exchanges with other cultures will

illustrate the differences rather than erase them (Hofstede

and Hofstede, 2004, 330). The way to successful

intercultural communication is through:

• Awareness: people are brought up in different

environments and consequently have different mental

software for equally valid reasons.

• Knowledge: interacting with a culture will require

learning about it.

• Skills: the application of knowledge in practicing

the various aspects of the culture (Hofstede and

Hofstede, 2004, 359).

On the basis of Hofstede's work and others researching

in the area of cultural aspects of international

communication, a development framework can be established

for particular regions.

As mentioned previously, standardized protocols and

software has had a huge effect on globalization. However,

evidence has arisen that a standardized interface poses

problems for certain cultures due to the differences in

31

signs and visual cues (Li, Sun, and Zhang, 2006). The

desire for compatibility creates a condition in which

cultural considerations are ignored in favor of

universality. A better understanding of cultural

differences is necessary to better understand values and

perceptions in order to provide a higher quality product

that meets people's needs (Li, Sun, and Zhang, 2006).

Western and Eastern cultures have fundamentally

different ways of seeing the world. Western perception

tends to be analytic, categorizing objects based on

attributes, while Eastern perceptions tend to be holistic,

where the object is seen as part of a context and behavior

is a function of relationships (Li, Sun, and Zhang, 2006).

Because of these differences, a design effective in one

culture will probably not be in another. Even between two

Western- cultures, the same may be found to be true.

Internationalization and localization fail to address

the problem because they are geared toward recognizing

differences in culture and have to be customized for a

particular culture, leaving out those that have not been

accounted for (Li, Sun, and Zhang, 2006) . The commonality

of culturally related problems in interface design has to

do with semiotics and the interpretation of representations

32

within a particular context (Li, Sun, and Zhang, 2006).

For successful interpretation, the context of the designer

must be understood by the user. Conversely, the designer

must understand the context of the user and design

accordingly.

The degree to which a design agrees with a particular

culture can be used as a factor in determining the amount

of cognitive effort required by the user (Kralisch, Yeo,

and Jali, 2006). The implication of this system science

proposition is that cultural preferences have to be

determined and accounted for, as those things will affect a

user's perceptions of an interface.

Kralisch, Yeo, and Jali define culture from a system

science perspective as a collection' of valuation, thought

and behavioral patterns (Kralisch, Yeo, and Jali, 2006).

They make a number of hypotheses regarding web design and

the communication of information to a wide audience that

can be summarized as people of different backgrounds will

prefer different methods of information organization and

the more in line with cultural expectations, the better the

experience will be. Their findings suggest that people

with a low level of domain knowledge benefit from visual

cues and that presenting information in the user's native

33

language provided more options for searching for desired

information (Kralisch, Yeo, and Jali, 2006).

There is a strong argument made by Norman that task-

oriented design has made things better in the user

interface world, but that this sole focus is not good

enough (Human-Centered, 2005). He argues that people do

not perform individual tasks in performing their work; they

perform activities that are composed of many tasks.

Focusing on the tasks rather than the higher-order activity

places the focus on specifics and not on the overall nature

of the activity, leading to a lot of time spent learning

about particular users and therefore excluding many others.

Norman cites the use of automobiles and household items as

two instances in which products were made without the

benefit of user-centered design principles and yet people

worldwide have managed to use them. Furthermore, the

assertion of the UCD community that the tool should adapt

to the user is baseless, since many other successful

technologies have required much effort on the part of the

user to become adept at, such as clocks, musical

instruments, and even written language (Norman, 2005). As

technology changes, people adapt and conversely as people

change, the technology is adapted.

34

Activity-centered design (ACD) is the superset of UCD.

ACD is broader in that it requires an understanding of the

technology and the reasoning behind the activity. Norman

states, 'to the Human-Centered Design community, the tool

should be invisible, it should not get in the way.' With

Activity-Centered Design, the tool is the way' (2005). In

the hierarchical view of ACD, there is the activity, which

is composed of tasks, which are made up of actions, which

in turn are based on operations. In this manner, support

for the user is implicit as the "activity will ultimately be

performed by someone, but the design focus is on the

activity.

The main concerns with UCD are that developing toward

individuals or even a group will make the product better

for them at the expense of others, focusing on individuals

today risks being obsolete tomorrow, and focusing on people

detracts from understanding the activities they are’

attempting to perform. There are many valid lessons to be

had from UCD, so there is not a push to discard the

previous work and strike out for some brave new discipline.

Norman does suggest that it is time to reconsider the

lessons of UCD and incorporate knowledge from other fields,

such as industrial design and ergonomics (2005).

35

In an earlier essay, Norman also discusses the

perspective of design as a means of communication. In his

earlier works, he proposed the three part conceptual model

of a system, where the designer created a system image,

ideally matching the user's model, and the user interacted

with the system image. The new perspective of HCI today

sees the designer conversing with the user through the

system, putting affordances in the interface and explaining

why they are there (Norman, 2004). He attributes this new

model to de Souza and her work on semiotics and HCI.

De Souza approaches HCI with semiotics in an attempt

to help users understand meanings in software and methods

of use. Semiotics is the study of signs, signals, and how

they are used in communication (de Souza, 2005, 3). As

signs are produced within cultural contexts, there are some

in the semiotics field that view semiotics as a theory of

culture and it is this aspect of it that interests those

seeking to understand computer-mediated communication

between various groups (de Souza, 2005, 3). As graphical

interfaces are full of signs, symbols, and icons meant to

communicate an idea or indicate an action, designers need

to be acutely aware of the meanings that they are encoding

and that the users will be able to decode them as intended.

36

If this exchange happens and both sides of the interface

understand each other, users will be happy. As this

process involves a study of not only the user's frame of

reference, but also the designer's, semiotic engineering is

a reflective theory (de Souza, 2005, 7).

If an intellectual artifact, as opposed to a material

artifact like a chair, has the following properties:

• Encodes a particular understanding of a problem;

• Encodes a set of solutions for the given problem';

• The encoding of the above is symbol-based

(linguistic);

• use of the artifact is dependent upon being able to

place it in the users linguistic context;

then what has been described as perceived affordances in an

interface are better understood as metaphors or symbols of

intention and meaning (de Souza, 2005, 10). This insight

leads to the homogeneous model, uniting users and designers

in HCI through the interface medium by illustrating that,

as Norman summarized above, the encoding and decoding of

messages constitutes a communication. The message encoded

by the designer becomes the deputy, which presents all of

the rationale, principles, and processes used in creating

the artifact (de Souza, 2005, 24).

37

This communication comes from a process in which the

designer analyzes the user's situation in terms of

environment and activities, drawing on cognitive, cultural

and other influencing factors. Then designers express

their perception of how the user will need to work through

the interface. Users then decode and finally make sense of

the design and respond to it (de Souza, 2005, 25) .

Signs can be thought of as having two components, a

representation and the object represented, or having three

components, a representation, what it refers to, and a

meaning. The latter provides an explicit inclusion of

meaning, and the theory behind it goes on to say that the

meaning is really another sign, making the description

recursive and infinite. Human limitations obviously place

a limit on this recursion, but it still stands that the

variety of interpretations to be had make it impossible to

predict exactly how a sign will be decoded (de Souza, 2005,

41-2). Within a given cultural context, the number of

possibilities is reduced further, but the potential for

-unintended interpretations still exists.

HCI is at an interesting junction. The adherents, of

UCD are still gaining acceptance amongst software

developers, while at the same time researchers in various

38

fields are exposing its shortcomings. Activity-centered

design argues for a broader view of what users want to

accomplish, saying that UCD has done good, but is really

too granular and fails to see the big picture. Research

into cultural aspects of interface design are becoming more

popular, especially by those outside of the United States,

as more and more of the world is affected by global

communications. Semiotics is poised to become another

extremely useful tool for the development of interfaces by

introducing concepts of mediated communication, with

implications for intra and intercultural relations.

Conclusion

The history of HCI shows that the field has received

contributions from many different disciplines. Cognitive

studies have contributed greatly to understanding the

mechanics of how users experience interfaces and cognitive

psychologists have contributed methods to facilitate ease

of use. User-centered design, born out of these studies,

is probably the most influential contribution as it shifted

focus from the machine to the user. While this has been a

huge step forward in creating useful artifacts, it is

certainly not the apex of the field.

39

Rapid expansion of high-speed global data and

communication networks has increased the growth of

globalization, creating relations between more people from

more diverse areas than at any other time. This

environment has brought the importance of intercultural

relations to the fore, as individuals and businesses expand

beyond their local domains and in to those of others.

Among other things, the need to be aware of differences

between cultures and become knowledgeable about those

cultures that are engaged has been highlighted, especially

in computer-mediated communication.

Research conducted across cultural boundaries

indicates that different cultures prefer- different methods

of having information presented to them. This undermines

any notions of having a single silver bullet design style

that can work equally well across the globe. Instead, it

confirms the idea that each culture will have to be

approached on terms that are understood by that group

through the use of appropriate language, symbols, color,

and organization.

Globalization and intercultural relations have exposed

some of the shortcomings of user-centered design and new

directions are being explored to better meet the needs of

40

users. Activity-centered design takes a holistic view of

goals that people want to achieve in order to better

understand what it is that needs to be done to accomplish

those goals with better efficiency and a more enjoyable

experience. The study of semiotics is being introduced on

a more formal level than has been used previously.

Advocating a view of design as being a communication

process between the designer and the user, the conceptual

model of UCD that separates the two is rejected in favor of

a model that places designer and user on the same level,

using the interface as the medium.

If it is to be successful, a design must be able to

evolve. There are many aspects of an application to be

considered when planning for the possibility of future

changes. The interface should be adaptable to new

audiences. The software sho.uld be modular, keeping the

logic separate from the interface allows for alternative

methods of interacting with the application to be developed

easily.

Design is an art, not a science. Good design

decisions are those informed by knowledge gleaned from many

different sources, done in the best interest of the user.

As conditions change, design processes must evolve to meet

41

them through the incorporation of new knowledge or taking a

broader look at existing information. When design is

accepted as a process, one in which new goals are

discovered, one in which change is accepted as people,

conditions, and environments move and shift, then issues

such as intercultural communication cease to be problems

and become exciting challenges instead.

42

CHAPTER THREE

INTERFACE DESIGN

Introduction

PySafe was originally conceived as a simple

client/server program with a command line interface. The

goal was to learn low-level socket programming and apply it

to a real need, inventory control in this case. For a

learning tool and proof of concept, a purely text interface

was fine. However, there were two big problems with using

it as a production application. The first problem was with

the server that was implemented, which will be discussed in

the next chapter. The second problem, and perhaps more

important from a user's perspective, was the interface.

The text-based interface provided a menu and some

guidance on how tp use it, but the experience was not nice.

That alone made it almost useless, not because it didn't do

what it was supposed to, but because no one would want to

use it. Since the basic flow and structure of the

application would remain the same, the interface would

become the focus of the new version and drive decisions

about the rest of the application.

43

File Edit View Object Help

Locationr I Buildinal~ I Room I I
MACl | ID| | Alerts□ | Search]

computer L

building

Fig. 1: Basic layout

Mock-Ups

Early on, a decision was made to do the initial design

work using design software. This would allow for quick

sketching of ideas and an interactive way of testing out

different layouts and workflows. Inkscape, a vector-based

drawing program, was used to draw the various components.

Once the parts had been more or less fixed, they were

imported into Flash to create an interactive application.

44

ID 1 I
MAC I I
Location I ZZ1
Building I J
Room I ZJ
Make I □
Model I ZZ1
Check In I ~l

Edit

ID
MAC
Location
Building
Room
Make
Model
Check In

0ED
Edit

Fig. 2: Dialog boxes

Wireframes

A wireframe is a line drawing of what a product will

look like. It focuses on composition and placement of

elements. The vector drawings of PySafe were kept to

wireframes to keep the design process moving quickly, see-

Fig. 1. Later, it would turn out that dealing with color

and other decorations would have been largely pointless

anyway.

The main window, search area, edit buttons, and

'map/list panel were laid out in a single composition. The

dialog boxes (Fig. 2) and any other elements not directly

part of the main window were rendered separately.

Using Animation

Using an animation tool to simulate using a program turns

out to be a very fast way to visualize and experience how

45

File Edit . V=wr- Object- Hap

Applications Races System tSH invetrtaryorgrf^pa-. I i B5 <-»
file Edit View History gookmarks Tools Help

* O $$ Bl ^tpr/^'ocketcsusb.edu/~matUfiles/inventaryprQtotypeJrtml I jiUl* Ipytftor strip itealirre i
§3 Mast Visited*- ^Latest Headlines* ^Contents j? «ffne Application... [yiHassfeGT o?awx ^LinuBastrorrcmyarg WfeJcome to Face.... >>

LpcatronF I Bailldlnnt I Itrmml ~~1

MAC I IDI I AtertsLl I Search I

Fig.. 3: Initial animation screen

the software'design is working, see Fig. 3. ■The concept of

event-driven programming is applied to an animation, so ■

that a button press causes a jump to a point in the

timeline where the'result of the press is displayed.

Testing the workflow becomes fairly easy.. '.

Once'the static images were set, they were' imported

into Flash .and arranged in layers on.the timeline. ■

Invisible, buttons were defined, placed over the'previously

.46

ocketcsusb.edu/%7EmatUfiles/inventaryprQtotypeJrtml

drawn ones. Events were predetermined to cut out the

complexity- of programming for real responses.. For example,

the text’ fields in the search area were just static boxes,

but pressing the 'Search' button would result in the map

panel being displayed, indicating where the computer was on

the map and a dialog box populated with information

relating to that search, see Fig. 4.

47

Development Tools

One of the goals of the project was that it be cross-.'

platform, so that a user could run any of the pieces on

Microsoft Windows,.Apple OSX, or some other Unix variant

like Linux. To this end, Python was chosen as the'language

in which all pieces would be written as it runs on all of

the' target platforms. The. choice, for an interface ■

framework came down to PyXPCOM, Python bindings- to the

XPCOM framework used in Mozilla Firefox> and wxPython, ••

Python bindings to the C++ wxWidgets framework. PyXPCOM

offered, a huge amount of'features, but at the cost of a

very steep learning curve and not much community support

outside of the Mozilla project. wxPython 2.6 was chosen

for providing a good feature set and quick development due

to a relative, lack of complexity. The software packages.,

and versions used in this' application are as follows:

•. Python 2.5.2: interpreted programming language.

■ • CherryPy 3.0.2: web application framework.

• -SQLObject 0.10.2: object-relational mapper.

• MySQL-Server 5.0.51a: database engine.

Nuts and Bolts

. Interface' programming has a'language all its own. The

main window, or more correctly container, is a frame in

48

this case. A frame is the object that contains decorations

such as a title bar, minimize and maximize, buttons, a close.'

button', and status bar. Within the frame- are sizers that .

contain'elements.and take care of placing the elements,

within, the frame? The alternative to sizers is.the-use of

fixed coordinate positions, where each, element is placed at

a defined point. The.main drawbacks to .that method'are

that'. each. element has to be placed individually and the

positions stay fixed.. Sizers adjust positions- of elements

automatically and can be told how to deal with a growing

window, taking, a lot of tedious coding away.

Each- of the elements are referred to as widgets.

Widgets can be acted upon in various ways, such as drawing

on .top of them, setting colors, and things of that nature.

The- main widget of the lower- portion of the. frame is a

notebook. The notebook provides tabbed pages, where each

page contains its own.panel (a-section within a.frame.) .

The map '.tab', panel loads, a . Portable Network Graphics ' image .

with a transparent background. The panel.itself is colored

white and set to grow as the window expands so. that the ■

default, gray do'esn.'t fill, the remainder, of the panel. The

list, tab contains a virtual list control that .displays the.

results'.returned by a -search.- Initially, it displays ■ the .

49

entire database. As new searches are performed, the list

display . is. updated ' to show the hew results.' <

To the- left' of the. notebook, a small button is placed

in a panel. Clicking it pops up a dialog box f or text

entry. The-dialog allows for. a new .entry or an. update, to

an existing record. Each text box has- a validation control

associated with it to ensure that, proper values are placed

in.the database. ' . ■

Design Decisions ■

The layout has a left to right, top to bottom bias,

much like-every other interface. - AsWestern written ■

language is presented in this format, it is. how most

information is expected to be presented. However, this .

could be reversed with the addition of a method that reads-

a preference' declaring a right to left-layout. ' Then-the ' -

elements-text, text boxes, buttons, and spacers-can be

inserted in reverse order. . The same can.be done for the

lower portion, with only a little more- difficulty..

The sizer is - based on columns, with the notebook

taking f our , columns and the button panel' one.... Again,,

reversing the order ofinsertion would reverse the' position

of the elements. The additional difficulty would be in . ,.

. 50 ■

ensuring that the proper column was set to grow as the',

window size grows.

■ " Space-was left in the button .panel"for the addition of

map-making tools. Two different methods of loading maps

are under consideration. The .'first- is loading a pre- .

existing image filo. This file, would have'to have certain

properties, like a particular size and file type, i.e.'500

by. 400 pixels in. size and be a. Portable Network- Graphics

(PNG) file type. The other method•: is to draw a map within

the application. -This would .be saved to a.file and loaded

just as the pre-existing file'would be..

■For both methods', -the placement of alert circles on

the map would be determined by. a mouse click on the '

building, which would capture the x and y coordinates' and

pop . up. a dialog.. where the user would enter the building ..

name. This information would be written out ;to a- file or ■

-. to an additional table in the database -for storage.-'

■ Time constraints have prevented the addition of this

functionality.- However, ■ to make - the application: as

portable as possible it would have to be added.- For. this.

iteration, the map was created by opening an official

campus map in the Gnu Image Manipulation Program,, selecting

the buildings by .color, and filling, the selections with '.

51

black on a new layer. Then, the coordinates of each '

building were determined by mousing over the building and

reading the'details from the status bar. It was then saved '

as .a . PNG with a transparent background. The background

color of. the' .notebook panel it gets loaded . .into was' set to' .

.white, so that the panel remains white as the window grows

without having to create an arbitrarily large image file.

■ Because, the coordinates are- specific to the panel- the

-object is in- (.0,0) is at the top left, of the. particular

panel-collecting coordinates from the image file works

fine, if not-.a little tedious. However, if scaling, is

required to fit -the image to the panel, the objects will . .

move accordingly and the coordinates gathered rendered’

invalid.

For .this iteration, a dictionary uses building names .■

as keys and the coordinates as values.' When the .alert

toggle: button is depressed in a search, .the results are .

parsed for building names. For each name found, a device-

container object is created - from which- a circle can be :

drawn, on the map at-the appropriate location. If a'

building turns up more than once:,- multiple circles get'

drawn at the samepoint, but in the exact-same place, which

doesn't natter as far as the user is concerned. The ■'

. - ■■ ■ . .52 . . - -

circles 'are :• not persistent and disappear as soon as. the -' ■.

screen is redrawn in that area, whether through switching

to the' list tab or even dragging a completely different

window over the area. This is a feature, of the device

context ob ject ar.d a behavior. that seemed desirable as the-,

alerts are only meant to give a quick visual reference that

a problem exists in a particular .location..

.The list that' , is’displayed in the -list tab is .colored

red when alerts-are returned in a search. ■ This -should -not ■

present a problem for colorblind users as there is still

sufficient contrast with the background and it is an :

additional cue, not- the sold means of communicating a

status. '. For localization, changing the color' for both the.

list and the alert circle could be done through a

preference., but for the moment’ is . coded in, --

As for color,' system defaults .are used for everything

not in the notebook... This..keeps .the look consistent with

the rest- of ..the desktop environment, the. user has setup.

Additionally, it saves time:in determining appropriate :

color, schemes for ..different locales.

53

Conclusion’

Rendering.the GUI in a dedicated.drawing program and .

then testing' the workflow by simulating trie software in an

animation makes for a rapid prototyping process.; Ideas'can

be quickly tested and rejected, sent to others for

..comments, - posted on the web for testing, - etc., . So in that.

sense, the process results in a useful method of

communicating ideas and. a- vision, of how the .final product

will -look.

■ -.-There -were, a few caveats. Because it. is so easy to.

knock up an idea, it is easy to include: features that may

be-difficult or impossible to implement . ' For -example, an

early idea, was to. incorporate the.Google Maps API. into the.

map panel. The GUI toolkit used in the project, wxPython,-

supports. HTML but does not support more advanced features' .

found in web browsers needed to run Google Maps.. The other

problem encountered, was the addition of fe.atures that would

later -prove', to be outside of .the scope'of the application,

:i. e., the 'Building' .button, that was intended for the .

addition of. .properties to a building object that never

materialized.' . The: creation of custom maps within the-

application was an early desire, but would have involved

.54

the implementation>of a drawing program within the overall

application.

55

CHAPTER'FOUR' ".

. SOFTWARE DESIGN,..

. Introduction

The first version of PySafe followed a very basic

structure: a .client. sent . strings of data..to a server; the ',

server stored the data in a database; data was retrieved ■

through a.rudimentary interface to the database,. The.,

server played the■Controller role in the MVC pattern, but

the View, role was not implemented properly. Of course, the

huge problem with this structure is the protocol used to

send data from.the client to the server. In effect, a '.

custom protocol- was' implemented that sent strings,

generated -from converting an object into a string

describing .its attributes (called ’pickling')., of .a certain

length- from the client to a socket on the server, which ■

then unpickled the'object-and stored the attributes' in the

database-.- \,

■The list' :of problems this simple' set - up presents- i-s

quite long. The.'potential- for ‘ a security compromise was

huge. ‘ While the amount of•connections at any one time'

would- probably be. small, the socket server would’ not sca,le.

well. 1 The lack of standard protocols would make extending

. -56

Fig. 5: An early prototype

and maintaining the application troublesome. It.looked

ugly (see Fig. 5), which may seem trivial but having, a

certain elegance makes working, with an application more,

appealing.

■With that as a- basis, the original pattern was .

retained and the code'rewritten. All components were

written in Python,, as-simplicity trumped speed and a large

number of useful libraries were available. Python also has

the benefit of good Unicode support, allowing for

localization of. strings by declaring the encoding, in the.

57

file. The. code is ■ split into separate files based upon

roles and■responsibilities as determined by the application

of the Model-View-Controller ■■ (MVC). design pattern. The MVC •

pattern' separates the interface (the View) from the

persistent storage of .data,, using, an. intermediary . that

handles.- requests' and responses (the Controller.). The first,

version , of Py.Safe partially implemented; this ' with, a simple

server- receiving, data from a remote computer and storing it

in a database; however, the interface communicated directly

with. the. database.

A search initiated in the- user interface’ would look'

like. this:.

' Search terms entered and Search button pressed.

• Parameters sent to mcp.py.

.• mcp.py sends the'. parameters via HTTP -POST to a

.specific URL in inventory.py.

•: inventory.py sends the parameters to the. database

. via store_data. py. ■•

• store_data.py returns the SQL results■to••

inventory.py.

• inventory.py sends an XML formatted response to

mcp.py. ' .

58

• mcp.py returns a. list generated from parsing the '

' .Document Object Model of 'the XML to the interface. . .

• The-Virtual’List Control updates the contents of the'

list'with the results. ■

Pattern .. ’

The MVC pattern divides code into three areas of

responsibility. The Model is the business model reflected

.in the database design.-What and how data gets stored is.'.-

determined by this, persistence layer of the application.

The View is responsible for presentation of the data sent

by the Controller and communicating user inputs back to the

Controller. The Controller acts as a gateway between the

Model and View, handling requests and-submissions from the

View and then sending appropriate commands to the Model..

' PySafe is composed of five elements in implementing

this pattern: the client' for the.- reporting computer; a web

application server; an object relational manager and .

■database;'an administrator-side client; and-the graphical

user.. interface, see Fig. 6.

The Client

On. the reporting’ computer is a. script, computer, py,

that gathers the Media Access Control (MAC) address.arid a

59

responses. The. urllib library is used, to emulate .a' browser

and . submit , the. inf ormation... This can- be set up - to run at ■

system: start. up or at. a scheduled. time, whichever, the . .

system administrator prefers

The operating system (OS) is determined by a class,

MyOS, that is used in the information Expert pattern.' The.,

single, attribute, of the class is set to an instance of. one

of the three .classes implemented to represent the three'

operating systems. Each of the OS classes- have the-same.

methods, and attributes, which, takes advantage, of Python's

duck typing,.allowing, for-polymorphism without inheritance. :

Duck typing is a means of. determining an object's type- by .

■ seeing if themethod being called on-it exists. If the

method is implemented, then it is assumed to be of■the same

type: and the procedure continues., otherwise a type error is

raised. In this•manner, a parent class and inheritance .

hierarchy is not necessary, as. new classes only.have to

implement the same methods and attributes.

The .Web Application' Server

As. HTTP is' a robust protocol, it- was chosen, as the.'

means of communication between both clients.. The. CherryPy

framework provided the basis' for. the web. application server

as it not'only provides a standalone web server, but also

can be proxied behind a more robust- HTTP server such, as

Apache. That has the. advantage of providing secure '

communications' if desired by. taking, advantage . of the. SSL . .

capabilities of Apache. . '

The application server, executed.by inventory.py,'

takes the data.submitted by the client' computer and. calls'-■

the storage' module,' .which places' it in the database.'- From

the administrator-side client, it takes requests for

information and calls .the storage.module. It also submits .

new' data and updates ..to- existing data.'. . To' return data to

the' administrator component,. database results are formatted ;

as . XML. ■ The. data' extracted from..the XML string is in

Unicode. ■■

Persistent Storage •

The database engine is MySQL, chosen mostly for its

popularity,. which translates to lots of community support', ,

and familiarity. SQLitc may be even more appropriate,'as ..

the database consists of a single table with an■expected

maximum number of roughly 500 records.■ 'To.manage.and'

interact' with the database, the SQT,Object library was

chosen, as it . provides , an object-oriented way of dealing

with.data, and a common interface to many different database

engines.. This layer of abstraction makes it easy to switch

database engines in--the future if necessary. .The

store _data . py module contains the- connection information"

required to. sign ..into, the database and all. methods and ■.

functions needed to interact. with ' it. .

62

Computer

File, Help’

-ocation: 'Hi- Building: I Room: |

MAC:j lD:j~ j[Alerts “| 1; Search' |

B|lhventory‘is a-thankless job. Until the auditors arrive.-,

Fig. 7': Initial PySafe' window

The•Administrator Component

This module keeps the application logic out of the GUI

code. All of the administrator-side queries and

submissions:are called from this component by the GUI.

This portion, mcp.py, sends requests and data via HTTP POST

63 -

•1

* -i.---------- - -■nr- -'niJ"ii u----------

Files Help; -

2dcati6ri?| Building: 1 Room: I I;
• ■ 1

. MAG | ID:. ; || Alerts . |ji Sear ch j 1

i,:.-

| Computer ; Map j last |

[|Ldcatidn |jBuiIding‘ [.Room 7 |mAC’
PDC PK2 . 246 74e6a280526c . 24062 2008-10-23 225150
PDC ' Ip 356 ’fb4c482d3dd7 16659 2008-16-23-22:31:30' -

1 SB. . :sB' 447 891f9a62f29e 18282 2008-16-23 22:31:3d;
PDC . . ' Ad 306 84aae6c5ca6d: 58567' 2008 10 23 22:31:30 i
FDC.' ■ ha 150 6baeec57ce2a 29870 ■20,0.8-10-23’2251:30
SB ■ FWf . .246 - b'65dac2ab5c2 46516 2008-16-23 22:3150;
sb: '. PK1 . '■ 315?...'. . 786bf95b5ae8 20483 2008-10-23 22:31:30 ,
FDC ■ TO 189. f09f0dbcb8c6 38472 2008-10-23 22:31:30-
SB YC <396 6fcfd68d472a .34085 2008-10-23 2251:30
SB ' HP- 227 Oab7jleee3ald 44249 2008-10-23 2251:30
SB ' PS 312 290dlfb5ad8d 16383 2668-16/23 22:3150.'
SB ICI . 463 5ea5af413eff? . 50372 2008‘10-23 225150:
ppc: , FO ■ 252 151aOf23be78 34532 .2008-10:23-225150
FDC ES .340 90f70de3733 .56011/ 2008-10-23 22:3150
SB' FB . 343 . . . 3tfb8ad81376 44762- 2008-16-23 22:31:30 .
roc CO 390 . eba2ea88b967.- 240i2 >2008-10-23 225150;
SB SB 382 . ' 93d7ac4a2d9e' ,12160 2008-10-23225150

'I PDC PK2 .236 8673.4364el27 47491/ 2008:10-2322:31:30
PDC? .FB-. ' 435 . 87df9a986a33 ■22514 . 2008:10-23 22:31:30

I SB IC2- 457 bb72fld5a830. 47555 2008-10 23 2251:30;
SB> PK1 141 . ,86574286dlff 20122 2008-10-23.225150
SB f’Ki 372 df91bf9ab'861 • 12741. 2008:10-23 225156;
SB RF >441- ■ 605becd3fcfd >42645 2008-16:23 22:31:30
roc-.' GH . 495 ■ ' 71f8075c53d7 11144 2008-10-23 2251:30
FDC RF 333 321301252cff 45334 20.08T0-23 225150
FDC- TO 162, b54a4aa20cd9 52299 2008:10-23 22:3150
sb: - SV, 499 3a34d98f2d73 48356 2008:16:2322:31:30
roc-.-' HP. 497 f9f3d964df98 59505- 2008-10-23 22:31:30
roc; AV 268 ,8e63c4520742- ’25982 2008-10-23 225150
SB . ' ES’ 391 86080871501e 38583 2008:16-23 2251:30 « ■

Ihventdiy;is'a;thanl<lessfjd6;: Lntiltheauditorsarrive.--

'. Fig..' 8 : . PySafe list view

and receives data as XML',' . which then gets converted to

lists and' sent to the GUI. ■' ■

All ofthe code used to generate the window, frame, ...

panels, . buttons, text, entry boxes, .lists and other

graphical elements are in pysafe.py (Fig. 7).

64 .-

Fig..9:.PySafe edit view'

' .The list tab'-of the notebook-displays search■results.

/(Fig.. 8) ...If alerts, are returned; the. items in the list: are

colored • red,.- Upon new searches, the list is' updated.with

the new results and clears other items no longer valid.

■ 65 -J

Fig... 10: PySa.fe' search view

Validation checks on data submitted, via dialogs is '.

performed within the: GUI code (Fig. 9). Each- box is -

checked for. appropriate values, .with an error message and-'

visual cue' (the’ text box is colored pink) to indicate a . '

problem and. what - needs to. be done to fix i.t.-. Drop down '

66

File Help --- ------------ .. .
S>cati6n:'|t [■1; j'Buiiiii rig: It > Room: [_ ____ | .

J| K*i [| Alerts' | Search | i
1 . . -■ - - s--~.........--...I- , ~ __ ■ — - ----- J
ji Computer - ' Map 1 ust 1 ■ .. iH y........ . j

Hi : ■
- j Jf ■ 31

.< >
Sh™-.- .

* r ■" y

: « <

: I* 1; ...' Lu

:. V***:/'.

|(hventojy'is?a,thankless'jo6.s? Until Uie-auditdrstarrive:^

• . Fig, 11: . PySafe alert view. ■

boxes.are used to ensure that only valid choices can be .

-entered for items that need to be ‘ encoded, such as the ■

"Location" and "Building": boxes.

■ The search bar takes on much of the same behavior’as -

the edit dialog, with the exception, of validation checks

67

(Fig. 10). If invalid data is entered, ■■ no results are

displayed in the list tab. The database cannot be fed :

invalid values from this function, so. no.harm can come from

a lack- of checks',- A tradeoff between' potentially

irritating .validation errors and the implicit -warning of ..

zero’results was made, in favor of less irritation.

The alert toggle button, when depressed, sets a flag ■

in . the- parameters dictionary indicating . that, the SQL

■statement that compares' the dates in the table to the

current time should be executed.: If there- are results, the '

list returned to the interface for display is parsed for

building names. .For each name found, a Device Context

object draws ’a red circle on the map at the coordinates set-

for that building (Fig. 11).

Installation

- The computer's ■ used with, the application must, have . the-

Python interpreter.installed. It is included in Apple's OS

X and most Linux distributions'. For Windows', the

interpreter can be downloaded from http://python.org. For ..

all systems, install the Python interpreter and then the

additional Python packages (CherryPy, SQLObject, and

wxPython) . ■

68

http://python.org

The application server will need in addition to the

interpreter the MySQL database engine, available from

http://www.mysql.com. It will also need.CherryPy

(http://www, cherrypy.org)and SQLObject. .

(http://www.sqlobject.org/). Once the packages are

installed; the database needs.to be prepared.

Create a new database called: '.tracker..' ’ The

connection details are contained, in ■ store_data ..py, in. the .

connect_db ()• function. If a different name for the -

database is to be used,- specify it in the 'resource'

string.. The database user name and password.are.also in

the string, whatever values used here must match with the

values used in the creation of. the database.

For example, the following lines would create a root

password for the database, sign, the root. user- into the

database, create the database needed for■PySafe,. and'grant■

all rights to. the account used by s.tore_da.ta. py. to connect :

> mysqladmin -u -root password 'somepassword' '.

■ - • > mysql -u root -p

• > create database tracker.;

.• > grant'all bn tracker.* to 'user'@'localhost'

.identified . by 'someotherpassword';

69

http://www.mysql.com
http://www.sqlobject.org/

The. "resource" string in stor'e_data. py will look like this:

'mysql : //user: sdmepass@lbcalhost/tracker ''.

Copy. the. files inventory.py, stdre_data.py,

cherrypy.config, and pysafe•config to a directory like,

/var/webapps’.. Open cherrypy..config and change the.

log. err.or_f ilo path to something reasonable on your system,

socket_port to the port you want the service to run on and

socket_ host to the .hostname or IP.-address of the system.

In pysafe.config, change tools', staticdir. root to the path

that.installed inventory.py to.

Make sure that-inventory.py and store_data.py are,

executable., then run store_data.py. This will-create a

table in the 'tracker' database made earlier. Then execute

inventory.py, which will start the application server.

On the client computer, things get a little trickier.. .

For Linux,' a script needs to be written to run

computer.py after networking, is set. up or by cron, at some

specified interval’. The shell script goes in the

/etc/init.d directory. Each distribution:does things a

little differently, so check out one of -the other scripts,

in that directory to see what' options- are typical, i.e.

start, -stop, restart,- and how to implement them. :. It may be

70

easier, to copy an existing one and then just have it call

computer.py. instead of whatever it:originally called.

Next, go to the /etc/rcS.d directory and create a

symbolic link to the script placed in /etc/init.d. Name

the link S##yourscriptnamo, where ##.is a number ■

representing the order.in.which it will be run. . For

example, this script depends on networking., so it would

need a number higher than the networking script.

• Normal procedures apply: make the script executable,

change the ownership to root if necessary, etc. Test it,

then test it again. Messing up the boot sequence requires

booting.into single user and fixing it.

. Apple is similar, but of course uses a different'

folder structure. You will need to be root to do many of

these steps. Copy a folder from

/System/Library/Startupltcms to /Library/Startupltems . ■

Apple-tLnstalled stuff goes ■ in the /System/Library, all of. '

the local administrative stuff should go in /Library. . Pick-

one that is similar to what computer.py will do, i.e., a

script that uses some-network resources. Change the name,

of the folder to computer.py. Edit the

Startupparameters.plist-file. so that the values make sense,

for this service. Changes to the Description, Provides,.

71

Requires, .Uses, OrderPrefference,: and Messages values' will .

be necessary-. It. might be an XML file or a text file, but '

the keys are the', same. Make sure it1 s executable and owned

by root. .If the group ownership is set' to the admin group

and execute privileges are also set, then admin users can -.

run the. script while, the system is running.

Windows startup and shutdown scripts are run after

networking has been, established and before networking, is •.

-shut down, respectively. Place computer.py in the ’ -

appropriate folder, c:\\WINDOWS\system32\GroupPoTicy\'

Machine\Scripts\Shutdown or Startup. Run gpedit.msc from

the Run prompt, expand Computer Configuration -> Windows

Settings,' and then click on Scripts (Startup/Shutdown)’.

Double- click on the appropriate one, click 'add! in the

dialog box that appears, then browse.to computer.py.

To make Python scripts run without having to'enter

'.python' at the prompt, the Python executable folder -needs

to be appended to the PATH variable. To do this, right

click on My CompUter^>Properties^>Advanced->Enviroriment-

Variables., highlight the . PATH entry and add the path to the

Python installation 'folder to the end.

The administrator's computer, the one that will.run .

the.interface, needs wxPython (http://www.wxpython.org/).

. ...-■ 72 . .

http://www.wxpython.org/

Put pysafe.py and mcp.py somewhere in the search path, like

7usr/loca-l/bin, create a.desktop launcher for pysafe.py and

it is ready to go.

Maintenance.

Very little- maintenance is required,, amounting to

keeping a back up of the database. . There are aimillion and

one methods of doing that.. One simple method is to dump

the database with-mysqldump, compress the-file using gzip, ■

and transfer it to another computer. If database

corruption occurs, rerun sfore_data.py to dump the table

and recreate it, then reload the previously saved database

dump

■ CHAPTER FIVE ’

■ ■'•••.. TESTING

Introduction '.

While. the focus of this project, was on the development

of a good, solid, usable. interface, a solid foundation had

a high priority. A. good interface coupled with- bad

software is just another' useless application. . With that in

■mind, each component was subjected to a test suite designed

to emulate normal use and determine.if the component :

responded properly or failed. - During the . course of

development., it did not .always seem necessary to produce

specific tests;- however,, following through revealed, subtle,

bugs that may not have affected one component but certainly

would cause others to fail once, propagated, especially if

it reached the. interface.’ -The message was clear: ' don't' ■

skip the testing.

Methods' .. ■ .

...Two different: approaches were used in testing the-

application. .The interface was acceptance tested through

use and.by examining debugging.output by the administrator-,

side' client- and the database. ■ For the-other components,.

unit test .scripts were written to automate the process. As

bugs were discovered and squashed, tests were rerun for" a .

rudimentary regression test. ■

Component Tests

Each module had a corresponding set of unit test

scripts written for it. . In the. test, script, each function '.

or method of the module was called as 'if it were being-. .

invoked by a proper part of the application.. The client

was-tested by running it and checking the.values it sent to

the application server.' For .the application server,

functions were written to emulate the client and the

administrator modules and checking that responses were •

correct and data, was sent properly to. the database. The

administrator functions -were tested by submitting requests

to the application server and printing the results to

standard output.- The database module was tested by

generating random data with valid values and performing .

insertions, updates, and selects on the. database. Valid

.values’ -were picked as it -was revealed during development

that ’ strings, longer than the length parameter , were

truncated and shorter ones were inserted. With data ?■

validation being handled at the source of'input, it didn't/

make sense to input Values that were not valid, such - as tag

75

numbers with characters and digits or MAC addresses with

characters beyond 'f.'

interface Tests- '

; Each . event was', tested, by stepping through the process,

of using the interface to achieve.a.goal, such as selecting

by building', and determining if. the result was. the. expected

one. The■layout was tested in the design portion and.,

remained more or less fixed.

Summary

■The' testing phase revealed some subtle bugs that--could

have, been .showstoppers . The. biggest was the default values

of an empty string being - placed in the- 'database when a

client checked in without having an existing entry.- The

client check in would succeed, but the application would '

crash when it hit the DOM parser in mcp.py. The XML would■

be valid, but without, any .data between the. first tags an

exception would be. thrown. ■ It turned out that, allowing the',

■empty string to pass on to the virtual list control would ■

cause that to crash. The fix was' to store a string of a

single space- character in the database as a -default value.

It was these sorts of conditions that . were, not addressed

during development that .the test -suites were invaluable

■ . : 76 . -

for. As s.tated previously, a good interface is dependent

on a. solid, foundation.' As far as the person using it is

concerned, if it crashes, the whole program is bad. ■

. -.Future Work..

This - is -an area of the .application, that would.-benefit

greatly , from-.some enhancements . - Two improvements to the

testing '-system come to mind. - ■ The- first. is a better

regression test- system - and the' second is a means of

automatically testing the -interface-, ' The former may be ■

j accomplished-through the'use of

framework. . The latter seems to

an established testing

be a much more difficult

task as many methods exist, but are .-often tied to

manipulating'the underlying window manager to simulate

events..'

77 -

CHAPTER SIX

CONCLUSIONS

Review'.

The. .project consists of two 'parts: ' a literature'

review of interface design and- an application designed with

the' principles . gleaned from the review at the fore. Many

disciplines have boon involved with human-computer ...

interaction,- to -include , computer science, cognitive -

psychology,, and cultural studies, among others. The -trend

over the years has been to move toward understanding how

people interact with computers■and giving significant

consideration, to that in the design'. ’

Gaining a- historical perspective through the

literature review,, some issues -became quite apparent.- .

Advocacy for the people component of the■interface, has been

around for a long time.- Its.voice was not. very loud,

however,, until'.personal computing, became, mainstream'and the

numbers of people affected grew- large.- With the: addition-'

of. the- cognitive psychology perspective: to the body of

research, ■ better methods of accounting for the:--inherent

limitations of people were established., • This’ really .

78

signaled a major shift away from: adapting users' to a system

and toward.'.adapting the ■ system . to better fit people.

The- growth of- cheap, high-speed .data communications .

networks has'.made the' world a smaller, place in many ways.

Businesses', can operate around, the clock, .with-locations •

around the'.world.' People have the. ability' to. connect with',

people! in other countries from the comfort, of . their'homes.-

This-.global communication necessitates the - need for

.cultural -awareness in order to reduce' conflict and promote ■

better communication. It. is true for' design,- as well, when

the. interface is considered as communication.between the '

designer and user. ' A basic understanding that what goes in

one culture may not go in another could be the difference .

between something useful to a small audience and one useful

to a-very large audience. Taking advantage of

internationalization and localization efforts and relying ■

less on color and symbols to. convey, meaning was: the method

used in this project toward that goal. '. .

■Design first can work. -. While PySafe was built on the

ashes of a former incarnation,, it grew out .of. an interface-

first ■ approach.. Decisions about, -what the overall activity

was and the tasks required to achieve it were .resolved

before' coding began'.' That' resulted in a back end that was .

... : .79 -

focused on providing the functionality' needed to perform

the activity without straying from the goal.. While-. RySafe

is.a rather small- application (a good deal of the source

code is dedicated to the graphical interface) with a d.o-

ono-thing approach, .the development method .is applicable.to

..larger .products’.

Future Work

It is said that software is never finished: only too

true with PySafe. Once a working application-was realized,

some additional features came’to be desired. A method of

importing of creating.maps and being able to map alerts to .

locations by point and click, would be welcome.' j Report

printing from lists' generated by searching, a means-of

running computer.py at. startup for Windows clients, and an

installer for all three components are under consideration.'

And, perhaps most importantly, • documentation and a useful ■'

help..facility within the graphical interface.- ..

' -'As for research,: more study in semiotics and cultural'■

studios are called for.. There seems to: be great benefit to

be had from gaining insights into better methods of '.•••’

communication,- whether ' through .language or symbols. Of:

course', - more- design .work needs to be done as. that is the

best way to get better at it.'

81

APPENDIX A

SOURCE CODE

.82

!’/usr/biri/python
coding: :utf-8 -A-

"computer .'py - determines system type,
and .traceroute dump..

then gathers the MAC

import os . .
import ■ time ■ ■ . ■.
import platform -' ■ • /
import .re.
import.urllib

class MyOS(object): ■ '■

■ def ini.t_ (self-, host, time Limit) : . ■
■ if .platform. system() ==. 'Linux'-: ■

-. self. ostype. = -Liriuxfhost.,' timeLimit) •
elif platform. system(} ■ =.= .'Darwin': ■

self ..ostype = Apple (host, timeLimit)
elif.platform.system() == 'Windows': ■

self.ostype = Windows(host, timeLimit)
else.: '

self, ostype -None "■

class Apple:

def ' init__ (self-, host., ■timeLimit) :
self.setMAC() :
self . setTrace (host-, timeLimit)

■I

■ def setMAC(self):
"■""Retrieve MAC- address■, set' object variable. (Apple)

f .-= os .popen ('./sbin/ifconfig' j
data : f.readlines() .
f .close ()
pattern = '\tether [0-9a-z

results =' [re. f indal'l (pattern,. item)- for
; if re.search(pattern, item)]

item in' data

.. maclist : [address . split't). for item in results
. for address in.item]

self.mac ■- maclist[0][1].replace(':','') ■

def setTrace (self-, host, .timeLimit):
■ ■ """Get. traceroute' output/: set ■ trace .variable"""

f. = os .popen (' /usr/sbin/traceroute %s' %host)-
time.sleep(timeLimit)
g .= os .popen (.-'/usr/bin/killall traceroute').,
tracer! - '' '
for line in f.readlines():

83 -

tracert +'= line
. ■ f.close/)

. . g. close') ;
self. trace = tracert . replace (■'\n', . ■ '■)

class Linux: .

def __.ini-t ~' (self,.' host, timeLimit) •: '
' self .- setMAC (j
■ self. set'l’raco (hosr_, timeLimit). .

def setMAC(self):
"""Retrieve' MAC address', set-object variable (Linux) ""."

f = os .popen (-' /sbin/ifconfig ethO ') , -
■ ■ data = f.'readlines (j

.. f. close () . ..- .

sdata = ■ data [0] . split (). .. ■
.. . self .mac = .sdata [4],. replace' 'I.uower ()

def setlrace(self, host, timeLimit):'
‘"""Get', traceroute output,1 set' trace variable"""

■ f = o.s .popen (' /usr/bin/traceroute %s.' %host)
.time . sleep (timeLimit).
g.= os.popen('/usr/bin/killall' traceroute')

.- tracer! = ' '.
for. Line in, f'. readlines' (.) : •

tracert +? line
’ f. close() ' '
... . g . close () ■ . ■ . -

■self. trace ■= tracert.replace (■ \n' , '■ '-)

class Windows:

def. init(self, host, timeLimit):
' self. setMAC () . -'
self.setTrace(host,- timeLimit) ■

cef setMAC(self):
"""Retrieve MAC address, set object variable■(Windows)"""
results = [] ■. .
f = os . popen ('i.pconfig. exe /all') •

. • • • ’ data. = f. r eadlines. ()
f.close()

pattern =

results =

<a * physical Address, j' ■

[re . findall-.(pattern-,-■ item) ' for . item'in data
if re.search(pattern, item)]

84

mac-list' = [address, split () for -item in results .
.for .address, in item] .-

self.mac.= maclist[0][-1].replace!''),.16wer()

def setTrace (self, host, timeLimit):
".""Get tracerf output, set trace variable"""

f .= os.poperi('tracert.exe %s' %host)
■ ■ -time.sleep(timeLimit) ■ ■■'■■■

g = Os . popen ('taskkill /F /IM tracert.exe').

tracert-= ''
for line in f,readlines():

’ tracert'+=' line .
' f.close ()
g.close ()

■ self.trace = tracert.replace('\n', ' 'j .

class Computer(object) : . . • .

def __init__ (self, host, timeLimit):
myOS = MyOS (host,- timeLimit)
self. status (myOS . ostype. mac, myOS .ostype. trace).-

def' status(self, mac, trace):
self.params = {'mac' : mac,

'trace1' : trace

def' main () :
try:.

home = "http://yourserver. com: 80.80/inDB"
host = 'somehost.com' .
timeLimit =15
comp = Computer(host, timeLimit)

.parameters = urllib.urlencode(comp.params)
f = urllib .urlopen (home,' parameters)
print f.readf)

except:
. pass

if -. -name__ ■== ' main___ ' :
main(j

.85

http://yourserver

!'/usr/biri/python ' '
coding: utf-8 —'■ . -

".""inventory.py /.Collect data from POST submitted'by client, '
then update information in database.

Ti ll H

import cherrypy'.
import- os' '. J
import datetime -.' .
.import store data ' . - ■

class InputData: .

i,©cherrypy. expose
def' Index (self.) : ■■ ■ ’

""".Uncomment the decorator . if you want to' use an ,-html page to
. '. test submissions to.-the database.."""-

return. ' ' ' .
■..'' <form action="inDB" method="POST">

<input type="text" name="mac" />'
' C.i.nput type="text" name;’"trace" /> '
<input type="submit" />'
</f orir.> ' ' '.

©cherrypy.expose’
def. inDB (self,. .mac = None./ trace - None)

if mac and trace:
■ . store data.connect_db() ' '

sLore data .updaue .by_c_ienf (mac, trace) '■
. ' ■ ■ else: '■ -

f = openfsend_error.log",: "a")
-' f .write ("%s check in failed"' ■% datetime.datetime.now())
f.closet) - '. . '. .

'. ©cherrypy. expose .
■ def getRecords (self, **kwargs):

"""Resuits returned as: xml"""
store_data.connect_db()
-params = kwargs ■
results- = store_data.get_records (**kwargs)

. : xmldoc = ""
rowxml = """<row>
■.<location>%s</lo.cation><b.uilding>%s</building>\

. <room>%s</room>'<mac>%s</ma'c>\' • '
. <p'tag>%s</ptag><time>%s</time></row>"""

for.i in' results:
xmldoc -1-=^ r.ow^xml %■(i . location, i .building, i.room,,i.mac,

i.ptag, i.timeln)
return "<resu_ts>" .+ xmld.oc. +"</results>"

- ©cherrypy.expose . ■ .
def updateRecords(self, . **params.) .: '

86

store_jdata. connect_db () ■'
.. store_data. update by mcp (**parairts) ■

Schorrypy.expo.se ■
.def count (self) :

store data.connect_db()
rows =■store_data.count()
return ■"<results><count>%i<7courit><7r.esuits>". % rows

appeonf ■= os .path. join (os .path.dirname (-file - 'pys-afe.config') /
. cherryconf = "os . path; j pin (.os . path .’dirname C_ file.').-, 'cherrypy.config') ,

cherrypy ..conf ig, update (.cherryconf).
cherrypy.quickstart(InputData(j, appeonf)

#! /us'r/bin/python '
coding:, utf-8

"""invent'oryTracker-gui.py: the launcher" for the
graphical interface."""

import.wx
import mcp

class MyFrame(wx.Frame):

,def : init"__ (self, ".title," pos, size):
, wx.Frame, "iriit " (self, None, -1, title, pcs, size)

self’. dataSource =■ DataSource ()
self.locationlist [' ', 'SB'-, 'PDC'].-
self.buildinglist = [' ', 'AD','AF', 'AH', 'AS',- 'AV',"

'BI', 'BK', 'CC','CE',•'CH',.'CO', 'CS',
,:DD ' ,; .' ESFB ' , : FM' , ' FO ' , ' HA' , . ' HC'

' " ’ .'HP ' , ' IC1' , ' IC2 ' , 'JB',. 'PA', 'PE', 'PK1',
. 'PK2',. 'PL', 'PS''PW'■ 'RF'", . .'SB', "'SH-'",

' SU ' , ' SV' , "L'A' , ' TC' , ' TK'TOUH',■
'.UP' , ,'UV.' , 'VA-' , 'YC'.] .

menuBar.= wx". MenuBar.f)
menuFile • wx.Menu"(). ■
menuFile.Append(1, "Q&uit")
menuBar’. Append (menuFile, "&File") .

#menuEdit = wx,Menu(.) .
4.T.cnuEdit .Append ()
ttmeriuBar.Append(menuEdit, ,"&Edit").

ftmenuView- = wx.Menu (')..-
ImenuView.Append()
#menuBar.Append(menuView, "&View")"

#menuOb j ect = ■wx.Menu'(-)
#menuObject.Append()

87

Schorrypy.expo.se

ftmenuBar.Append-(menuObject, "&Object")

menuHelp : = wx.MenuO
menuHelp.Append(2, "SAbout")
menuBar .Append (menuHelp,. "&Help")

self.SetMenuBar(menuBar)

- ' self.CreateStatusBar() ■ ■
statusMsg = """Inventory is a thankless job.

Until the- auditors arrive.-""",
/ self.SetStatusText(statusMsg)

self-.Bind(wx.EVT_MENU.,’ self.OnQuit, id=l)
'. self.Bind(wx.EVT_MENU, self.OnAbout, id=2)

self . notebook = self. cr.eateNotebook (j. ■ ■
self.createPanel()

■ def OnQuit(self, event):
self.Close()

def OnAbout (self, event) : ■ ■ .- - - .
DisplayText = """PySafe. shows when a computer last \ .

checked in and helps you determine if you need to go check. \
on .one of- you.r pies . """

wx.MessageBox(DisplayText,' "About.. PySafe",. \
■ wx. OK I wx. ICON INFORMATION, .self).

def createNotebook(self) :
nb = wx.Notebook(self)
self.mymap = MyMapDisplay(nb)
self.mylist = MyListDisplay(nb, self.dataSource)
nb.AddPage(self.mymap, "Map")
nb.AddPage (self .mylist, "List") .
return nb

def createPanel(self):
■.self.searchPanel = SearchCriteriaPane.l (self, self. locationlist,

self.buildinglist)
graphicPaneIs = GraphicPanels(self, -1) .

. ■ sizer = wx. GridBagSizer (hgap--1, vgap=l)
sizer . Add (self. searchPanel, pos= (0,0) , span=(l,5).,

- flag=wx.EXPAND)
sizer. Add (graphicpanels, pos=.(.l,Oj, flag=wx. EXPAND) -..

- sizer.Add(self.notebook,■ pos=(1,1), spah=(1,4),- flag=wx.EXPAND)
sizer . AddGrowabl'eCol (1)
sizer. AddGrowableRow.t 1).
self.SetSizer'(sizer)

class SearchCriteriaPanel (wx.-Panel) :

def.__;init__ (self, parent,' locations, buildings-, ID=-1,

88

pcs »:. Def'aultPosition) :
wx.Panel.__ init _(self, 'parent, -ID-, pos) ■

. self. locChoi.ee. = ' ' . ' .
location = wx,StaticText(self,. -1,. "Location: ") ■
self.loc = wx.Choice(self, -1, choices1-.1 ocations)

■ self.loc.SetSelection(0)
self.loc.Bind(wx.EVT_CHOICE, self-.OnLocChoice)

.]self.buildChoice = ' ' ■ .
building .= wx .StaticText/self, -1,. "Building:")
self.build = -. wx. Choice (self, -.1, choices=buildings)-

. self..build. SetSelection (0)
self,build.Bind(wx.EVT_CHOICE, ■ self.OnBuildChoice)

. room =. wx. StaticText (self, -1, ."Room: ") ..
self, rm = . wx. TextCtrl (self., -1) .
self,rm.SetinsortionPofnt(0)

■ mac = wx. StaticText (self-, -1,- "MAC:")-
'' self .me ■■ wx. TextCtrl (self, -1) • . ■
self..me . SetlnsertionPOint/0) '

■ idt.xt. .= wx. StaticText (self-, -1, "ID:")
' self.idctrl = wx.,TextCtrl.(self, -.1) .
. self-.-idctrl. Setlnsert-i'onPo'int (0) .

. self.alert = 0 . - ' . ■ .
- self. alertsButton .= wx. ToggleButton (self, -1, "Alerts-',.

■' ’ s’.ze- (100,25)) .
' self.alertsButton.SetTodlTip(wx.ToolTip("Search for overdue

checkins"))
.- self . alertsButton. B-irid/wx.EVT_TO.GGLEBUTTON,. ' .' .

. self. aler.tButtoriClick).

'. sear.chButton. =: wx.Button (self, -1, "Search", 'size.= (100,25j)
searchButton. Bind (wx . E.VT_BUTTON, self. sea rchButtonC I ick) '

. mainSizer =.wx, BoxSizer (wx. VERTICAL) ■

searchSizer = wx.FlexGridSizer(cols=7, hgap=5, vgap=2)
searchSizer.Add(location, 0, .

wx. ALIGN RlGIIm | wx. ALIGN _CENTER VERTTCAL)
searchSizer .Add (self ..loc, 0)
searchSizer . Add (building, 0,..

' wx.AT,LGN _RIGHT]wx.ALIGN_ CENTER_VERTICAL)
. searchSizer.. Add (self .build, 0) -.

■ searchSizer.Add(room, . 0,
--' wx. ALIGN—RIGHT-] wx.ALIGN—CENTER—VERTICAL) ' .

searchSizer .Add (self. rm, 0) '
searchSizer .Add ((10, 10)) ' .„

89

locChoi.ee

searchSizer. Add (mac, 0, '
. 'wx,ALIGN_RIGHT|wx.ALIGN_CENTER_VERTICAL) .

searchSizer.Aac(self.me, 0)
searchSizer.Add(idtxu, 0,

. . wx.ALIGN_RIGHT|wx.ALIGN_CENTER_VERTICAL)
. searchSizer .Add (self. idctrl, 0)
searchSizer.Add((10, .10)) .

. . . searchSizer.Add(self.alertsButton). ■
' searchSizer.Add(searchButton)

.• • ' mainSizer.Add(searchSizer, . O., wx.EXPAND),
. ’ mainSizer. Add (wx. StaticLine (self),, 0,

-■ wx. EXPAND >-x. TOP ?wx. BOTTOM, 5)

self.SetSizer(mainSizer)
mainSizer.Fit(self)■

. def OnLocChoice(self, event):
■. .-. self . locChoice = event, GetString.(). . .

• def OnBuildChoice(self, event): ' ■
* ■ ■ self.buildChoice = event. GetString ()

.def alertButtonClick (self,. .event) : ’.
. self .alert' '= self ..alertsButton, Gel.Vai.Je (-)' .

def' searchButtonC.lick (self, event) :.

■ room = self . rm, GetValue (j
mac. self.me. GetValue ()
p.id .= self .idctrl.GetValue ()■ . .

'■ .' searchDict. ■-= {'}.■' .:

if self.. locChoice
searchDict!'location'] = self.locChoice

if self.buildChoice
. ' searchDict['building']■ = self.buildChoice

■ . if room ‘
■ searchDict [-' room']. = room . ■ ' •

if mac != ■
searchDict ['mac'.] '= mac

if pid ,!=.
' ■ searchDict ['ptag'] = p.id

if self.alert -== 1:
.searchDict ['.alert'] = 1 '.

prev = . app. frame .dataSource. GetCount. () -l
■ app. frame .'dataSource. GetResults (**searchDict) ;

,1 new =:app. frame;dataSource.GetCount () ... - ,
.app-. frame .mylist. list. SetltemCount (new)

#last = max(prev, new)
last = new - 1

' - 90 : ■

print .-'last ’, last
app. frame-, my list. list. Ref reshltems (0., last)

}

= { 'AD' (.289, 248), 'AF'. (96, 125)., 'AH' : ' (28-9,119')-, '
'AS' (115,187), 'AV'. (560,340), 'BI'-: (334,144),.

• 'BK' . (321,31.1),' 'CC' (-234,265)', ' CE' : (427,142),
■'•CH' (285,285), 'CO' (455,284), 'CS' : . (302., 14'5.) ,
'DD'- (248,251), '.ES' (11.2,131.) , ,'FB'.: (202,236) r .
' FM '- (94, 1-52),- ' FO' (32 6-,'227) , 'HA'-: (284, 97) ,
'HC' <(452,235), 'HP' ■ (503,123),' 'IC1'. : (384,360),
' IC2 : .(621, 258) , ' JB :.(501,213), ' 'PA' : (350,280),
'PE') (515,165)., 'PK1 :. (229, 89), ' PK2' :. (464,-81), -'
?PL'' - (375,213), 'PS' (350,173)-, - ' PW' : (72,' 173),
'RF' (596, 151)-, ' '■SB' ■(318,196) ,’ '. SH' : ■ (2 6.4,2 62) , ■
'SU' ■('420,260) , 'SV' (50.9,305) , ' .' TA' : (455/198) ,'.

. 'TO'-' ' (34'4,-119), 'TK' (-566, 125)., ■ '.TO' : ' (344., 119)-,
■ 'UH' ; (422,3.05) , . 'UP' (114,107),. ' UV' : (550,454) ,. .
'VA' ■ (248,205), ' YC'.- (190,200)

if self.alert ■ 1:'
de = wx.ClientDC (app-. frame .mymap . sb)'
de. Set-Pen (wx. Pen ("red", 1))
de'. SetBrush(Wx.Brush ("red"))
for row in aipp. frame. dataSource. rows:

marker = row[l], ■
de.Drawcircle.(coords[marker] [0], coords[marker] [1] 5)

index = .0
while-index < new:

item = app.frame.mylist.list.OnGetltemAttr(index)

index += 1

class:MyMapDisplay(wx.Panel) :

def J_ init__ (self, parent) :
■’ wx. Panel.- init'_ (self; parent) '
self .-SetBackgrbundColour ("White")
sizer = wx.BoxSizer(wx.VERTICAL) ■
img = wx. Image ('.'map_crop-. png", wx . BITMAP__TYPE_PNG) ■■

w = img. Ge'tWidth() '
h- = -img. GetHeight () .

'imgl. = img.Scale(w, h) - ■

'self.sb = wx. Stat-icBitmap-(self, . -1, wx. Bitmap.Fromlmage (imgl))..

. sizer.Add(self.sb)

self-.-SetSizerAndFit (sizer)
self.Fit()

-.91

class MyListD.isplay.(wx. Panel) ::

def _ .init , (self,. parent,dataSourc.e) :
wx.Panel.__ init. (self, parent).

■. self -.list =. VirtualListCtrl (self, da’taSource).
mainSizer.= wx.BoxSizer(wx.VERTICAL)

. mainSizer.Add(self.list/. 1, wx.EXPAND)
■ self.SetSizer(mainSizer)

class GraphicPanels(wx..Panel):•

SPACING =. 4
' .COLUMNS' .= 1 .

.def ? init__ (self, parent, ID):
.. wx. Panel. - init.__(self,, parent,.. ID)
.. b.utto.nSize = (100, 25)

- buttonGrid = self .createButtonGrid(parent,. buttonsize)
■ self.layout(buttonGrid)

def createButtonGrid(self, parent, buttonSize):
buttonGrid =^. wx. GridSizer(cols=self. COLUMNS hgap=2,

e)computerButton. .= wx. Button (self, -1,. "Computer",. buttonSiz
self. Bind (wx ..EVT_.BUTTON, self. computerButtonClick,.

computerButton)

. # -Future work, add map'creation functions
#bui.ldingButton =. wx.Button (self, .-1,. "Building", buttonSiz.e)-

\ #sel.f .Bind (wx.EVT BUTTON, self .build i.ngButtonClick,
■ ■ bui ldingBut.ton) .

. buttonGrid. Add (computerButton, . 0.)
#buttonGrid ..Add (buildingButton, .0)

return buttonGrid . •

def computerButtonClick(self, event):
dig = MyComputerEditDialog()

• result = dig.ShowModal()
, if result ==' wx..ID_0K:

params = { 'location': dig. locCho.ice, - .
'building': dig.buildChoice,
•'room': dig.room_txt.GetValue(),
'mac': dig.mac txt.GetValue(),

■ 'ptag'.: • dig. id_txt.GetValue () . .
' ' J-' ■ ■ ■.. .■ '■'■■■■ ''

■ mcp.updateRecords(**params) .

dig.Destroy!)

def buildingButtonClick(self, event):

92

■ dig- = wx.M'essageDialog.(None, "Still working on this' one.",
' "In progress"./ . :.

wx.II OK wx. ICONANFORMAT.ION)
_■ dlg.'ShowModal-C) . '.-
cig.Destroy() ■ ■ .

- def layout (self ,• buttonGrid) : ■■
.box- = wx.BoxSizer(wx,VERTICAL) -.
box.Add(buttonGrid, 0, ■'' '

wx.ALL|wx.EXPAND|wx/ALIGN_RIGHT ■
| wx.AEIGN CENTER VERTICAL, self.SPACING) . .

; self. SetSizer (box) '.
box.Fit(self)

class DataSource: ' ' . ' .

' . def ■ ' init__ (self) : ■'
.. self. GetResults.C)

def GefColurnnHeaders(self):
. return self . columns,' ■ ' . '

def GetCount(self):
return.mCp.count()

def ■ Getlt.em (self, index) :
return, self. rows [.index]

def UpdateCache(self,
pass

start, end) :

def GetResults'(self-, **selects) :
. . self.columns, self.rows. = mcp.getRecbrds(**selects) .

class . VirtualListCtrl (wx. L.istCtr-1) :-

def. init_ _(self, parent, dataSource) :.-
wx.Lj.stCtrl-. . init_ (self, parent,-

' s.tyle=wx . 7.C REPORT j wx.. LC_SINGLE_SEL |-wx . LC_VIRT.UAL)
self.dataSource = dataSource
self.Bind(wx.EVT_LIST_CACHE THINT, /self.DoCacheltems).

_ ■ self'. SetltemCbunt (dataSource. GetCount ()•) ■
/ columns./= dataSource . GetCo.lumnHeaders’()■ ./
for col, text in enumerate(columns):

. self.Insertcolumn(col, text)
self.SetColumnWidth(0, wx;LIST_AUTOSIZE) ■

' self.SetColumnWidth(1,wx.LIST AUTOSIZE)
. ' self.SetColumnWidth(2, wx.T.IST AUTOSTZE)

■■ self. SetColumnWidth (3, 12 0)
■ self . SetColumnWidth (4 , 70)

■ self.SetColumnWidth(5, .140) .'

def•DoCacheltems(self, evt) :
self.dataSource.UpdateCache(evt.GetCacheFrom'O ,

93

■ evt. GetCacheTo (-)') ' : '

def .QnGetltemText (selfitem,., col) :.
. data••= self .da.taSource,GetItem(item)
return data [coil-

def OnGetltemAttr(seif, item):
■'.if app. frame, searchPanel,. aiert •== 1: .

return self.SetTextColour("red")
■ else: ■ ' ■ ■' ■ '

. return self. Se.tTextCoiour("black")

def• OnGetitemlmage(self, item) : return -1

class - NbtEmptyValidator'(wx . PyVaiidator): '

. def __ init.. (self)
wx.PyValidatcr. -in.it__ (self)

.def Clone(self):
''' ■ return NotEmptyValidator-0

.def Validate(self, win) :
textCtrl =' self .'GetWindow () ‘

... text = textCtrl.. Ge;. Value ()

. . if Ten (text)' .== .0 :
,wx.MessageBox("This field must contain some: text!",.

"Error.")
textCtrl. SetBackgr.ouridColour ("pink")
textCtrl. S.etFocus ()

. textCtrl.Refresh()
return False

.- else: :
textCtrl.SetBackgroundColour(■’

wx.SystemSettings_GetColour(wx.SYS_COLOUR_WINDOW)).
.textCtrl.. Refresh () ' '. .
return. True '

■. def Transf.erToWindow (self) :
■ .-' return True ' ■:

/ ’ def Trans.ferFromWindow (self) :
return True' ■

class IDLengthValidator (wx . PyVaiidator)-:

. ' def .. init.- (self) : . .
wx. PyVaiidator .__:.nit___ (seif)

def Clone(self):
. return’IDLengthVai.idator.()

94

def Validate(self, win):
textCtrl.,= Self.GetWindow() '
text '= textCtrl.GetValue()

if Ten (text) • !’= .5 or text. is.digit () != True:. .
■ wx;MessageBox("Invalid property tag number,", "Error")
textCtrl. SetBackgroundColour.("pink")-. •'
textCtrl. SetFocus (.)
textCtrl. Refresh (-) ■■ ■
return False -'...- ■■ ■''.

else:
'textCtri.SetBackgroundColour('-

wx..SystemSettings_GetColour (wx.SYS_COLOUR_WINDbW).)
■ textCtrl.Refresh()

< return True ■' ■ -

■ def-. TransferToWindow (self) :
■ return True

-def- TransferFromWindow (self) -:
return True

class MachengthVa.: i.dator (wx . PyValidatbr) :

def init.__.(self)
wx.PyValidatOr init.-' (self)

def Clone (se’i :.') :
return -MacLengthValidator f) -

def Validate(self, win):
■ textCtrl- = self .’GetWindow ()
.-text = textCtrl .-Get-Value-()/■

if len(text) != .12-’or text.isalnum() 1= True:
■ wx;MessageBox("Invalid MAC.", "Error")-
textCtrl.SetBackgroundColour("pink")

■ textCtrl. SetFocus (.) ■
■ textCtrl .-Refresh () ■ ■ ■ -'
return False . '. ..

else: ■ , ■ ' ■ . ■ , ■ • '
■ textCtrl-. SetBackgroundColour (

wx. SystemSettirigs_GetColour (wx.SYS_COLOUR_WINDOWj.)
■ textCtrl.Re fresh()
.return True -.

def TransferToWindow(self) •.
.return True ■

def TransferFromWindow(self):
return' True'

95-

class.RoomNumberValidator(wx;PyValidator)

' de f

■def

def

def

init (self):
wx. PyValidator..__ init_]_ (self)

Clone(self):
return 'RoomNumberValidator()■

■Validate (self, win) :
textCtrl =■ self. GetWindow () •
text = textCtrl...GetValue ()

if Ten (text)'. .1 — 3 or' text. isdigit () 1= True: '.
' wx'.MessageBox ("Room numbers have three digits,

'.use leading zeros if needed"Error")
. . textCtrl. SetBackgro.undColour ("pink").
textCtrl.SetFocus()
textCtrl . Refresh ()

• return False ,

else: ' ' ■ ' ■ '■
textCtrl.SetBackgrcundCoI our(

wx. SystemSettings_GetColout (wx. SYS_COLOUR__WINDOW).)
textCtrl.Refresh() ;

.' return True- ■ ■ .-'■ . ■ ■ .

Trans-ferTo.Window (self)':
return True . . '

def T.ransferFromWinddw(self) :
return- -True ■ .- •

class'. MyComputerEditDialog (wx. Dialog) :

. def init_ _(s'elf) :
wx.-Dialog. - jnit ' (self, None.,- -1,- "Edit a■ Computer") ■■

' id label =. wx-.StaticText(self,. -1, ’ ."-ID")'
mac_label' = wx. StaticTcxt (self, -1, "MAC"):' : •

, location_label.wx. StaticText (self . -1,. - "Location") .
< b.uilding_label = wx.StaticText(self, -1, "Building")
■ room_label = wx.StaticText(self, -1, "Room") ■

self. id_txt' - wx. TextCtrl (self, 'vaiidat6r=IDLengthVal'idator () j
self ,mac_t-xt. = wx.TextCtrl (self,

. . ■• validator=MacLengthValidator ())

■ ifself. location txt =■ wx. TextCtrl (self,
vali.dator=NotEmptyV.alidator ()) ■.

self.locChoice
♦ location ='wx.StaticText(self, -1, "Location-:")

96

self. locatiori_.txt. = wx,.Choice (self,' -1,.
choices=app. frame., locationlist)

self. location_txt. SetSelection (.0) .
self . locat-ion_txt. Bind.(wx. EVT^CHOICE, self.OnLocCho.ice) .

♦self.building_txt = wx. TextCtrl.(self ■,
validator=NctEmptyVal.i dator ())

self.buildChoice = 1 ’
♦building .= wx. StaticT.ext (self, ■-1,. "Building:")-
self.building_txt = wx.Choice(self, -1, ■

, choices=app. frame.build i.nglist)
self.building_txt.SetSelection(0)
seif.buil.ding_txt,Bind(wx.EVT_CHOICE, self.,OnBuildChoice)

self.room txt =.wx.TextCtrl(self,
v'alidator=RoomNumberValidator ())■''

ok = '.wx.Button.(self, wx.ID_0K) • •
ok.SetDefaul-t () .
cancel = wx. Button (self, wx, ID_CANCEL).

sizer =■wx.BoxSizer(wx.VERTICAL)

5 5)t J-t
wx.ALIGN_LEFT-)
0, wx.EXPAND)
wx.ALIGN_LEFT)

wx.EXPAND)
wx.ALIGN_LEFT)
0, wx.EXPAND)
wx.ALIGN_LEFT)
0, wx.EXPAND)

f.lexSizer = wx.FlexGridSizer(3, 2
flexSizer.Add(id_label, 0,

. ' f lexS.izer. Add.(.self. id_txt,
flexSizer.Add(mac_label, 0,

. flexSizer.Add(self.mac_txt, . 0-,
flexSizer.Add(location_label, 0,
flexSizer . Add (self . location_.txt,
f.lexSizer .Add (building_label, 0,
flexSizer.Add(self.building_txt,

' flexSizer.Add(rbom_label’, 0, wx.ALIGN_LEFT)
flexSizer .Add (self. room_txt,‘ 0, wx.EXPAND);

.' f lexSizer. AddGrowableCol (1)

sizer.Add(flexSizer, ,0,- wx.EXPAND|wx.ALL, 5)

btns = wx.StdDialogButtonSizer()
btns.AddButton(ok) ■■■■■
btns.AddButton(cancel)■..

■ btns.Realize() .
• sizer.Add(btns, 0, wx.EXPAND)wx.ALL, - 5)

. self.SetSizer(sizer)
sizer.Fit(self)

def OnLocChoice(self, event):
self. locChoice event. GetString.().

def OnBuildChoice(self, event):
- self.buildChoice = event.GetString() ■

97

class. MyApp (wx.App) : . .: ■ ■ .

#def -init__ (self, redirect=True, ,filename=Noriej: ’ .
. print. "App __ init__ "

■ . # . wx.App..__ init (self,'' redirect, filename)

def Ohln.it (self) :
self.frame = MyFrame ("PySafe", wx. DefaultPositiori, (800, •'800))
self. frame . Show ()■ - -■-■
self.SetTopWindow(self.frame)
'return True

if . name-__ == ' main__ ':
app = MyApp()
app.MainLoop() •

#1/usr/bin/python
-*- coding:, utf-8 '

"""mcp .py .contains.- functions to connect'to .inventory.py for searches '
.and updates."""

import,urllib .
.import, xml.dom.minidom.

def getRecords(**kwargs) : ■
columns =.["Location", "Building", "Room", "MAC", "ID",. "Time"]
rows - [] ’

try: -• -
parameters, = urllib . urlencode(kwargs)

xmldoc - xml.dom.minidom.parse(
.. urllib.urlopen ("http://localhost: 8080/getRecords", ■

parameters))
re.sult-sNode = xmldoc.firstChild

for row.Node' in . resultsNode . childNodes :■
row L i st ■■■ []
•for tag in rowNode. childNodes:. ’ ■

; ' rowlist.append(tag.firstChild.data)
rows.append(tuple(rowlist))’

return .columns,, rows. ’

except:
empty = ('No connection to server', .' .', ' ', .' .',. '. ', .' '■) .

. rows', append (empty)
return columns, rows ■

98

Ohln.it
http://localhost

def updateRecords. (**p'arams)': ■
. try: -...'. ...

parameters = urllib,urlencode(params) .
urllib.urlopen("http://localhost:8080/updateRecords",

parameters) . '

- except: ■
print "No connection tb server"

def count():
■. try:

xmldoc = xml.dom.minidom.parse(
. urllib.urlopen("http://localhost:8080/count"))

resultsNode -. xmldoc'. firstChild ' .
print ■ xmldoc,toxml()
rows
•for. rowNode. .in resultsNode. childNode.s:

rows.append(rowNode.firstChild.data)
■ return int(rows[0])

■ except:
return 1

def main(')-:
. getRecOrds()■ .

if.__ name__=='L__main__ ": ■
main()

if!/usr/bin/python
coding: utf-8

"""store^data.py-handles all database interactions."""

import sqlobject
import sqlobject.sqlbuilder
import- datetime

class. Che'ckin-Recor.d (sqlobj ect. SQLObj ect) :

■ location = sqlobject.StringCol(length =^15,, default = ' '.)
building = sqlobject.StringCol(length = 3, default =-' ')

■ room = sqlobj.ect. StringCol (length = 3,. default. = ■ ' ') .
' mac = sqlobject. StringCol (length .= 12, default -= ' •’)
ptag = sqlobject.StringCol(length = 5, default = ' ')

■ timein = sqlobj ect. Dat.eTimeCol (default = datetime . datetime, now ())■
.. trace = sqlobj ect. StringCol. (def ault =■ ' ') '.

def __ cmp ■ (self, other) : •
. ■ return cmp(self.ptag, other.ptag)

def connect db():
.resource = 'mysql://user :password@localhost/tracker''

99

http://localhost:8080/count

connection = sqlobje'ct . connectionForURI (resource)
sqlobject ..sqlhub.processconnection = connection .

def update_by_client (m.c,- tracer!) :’.
.record = list (ChecklnRecord ..select (ChecklnRecord.,q.mac==mc))

. if record ==[]:.
row = ChecklnRecord() .

else:
■row = ChecklnRecord. get (record! O’] . id)

• row.set(mac = me,- timeIn = datetime.datetime.now(),
■ trace = tracert) '

def update_by_mcp.(**params) :
record =.list(ChecklnRecord.select (

ChecklnRecord.q.mac==params['mac']))
if record- -= [] :

row = ChecklnRecord()
. else: - ■ ■. .

row = ChecklnRecord. get (record [0] .id)-

row.set(location-■ params['location'],
building =■ params['building'],
room =• params ['room'] , mac = params['mac'],
ptag = params['ptag'])

def get records (**kwar.gs) :
days =.'3'.
■if kwargs' == {.}.: -. ' .

records.■= list(ChecklnRecord.select())
. else: . '- . ' . . ■ ' ■

sqlstatement = ""
■ ■ param ■= "check_in^_record, %s=' %s '- AND " '

■ alert_param '= "check_in_record, %s +. interval %s day < now () "
for eachArg in kwargs.keys():

if eachArg == 'alert':
statement = alert_param .% ('time_in', days)

■ . - - else:. ■ ’ .
statement =param % (eachArg,.kwargs[eachArg])

sqlstatement += statement
sql = sqlstatement.rstrip(' AND ')

records = list (CheckiriRecord. select ((sql)) j' ■

return records

def count():
- return ChecklnRecord.select () .count()

def main():
connect_db()
ChecklnRecord. dropTable (True).
ChecklnRecord. createTable (ifNotExists=T.rue)

100.’

if name == ' . main ■ ':
main()

#cherrypy.config
[global]
log. error_file="/path/to/log/error. log"
server. socke,t_host = "your. ip. addr. ess"
server.socket_port = 8080
server.thread pool•= 10
tools.sessions,on = True

ttpysafe.config
LA
tools.staticdir.root = "/path/to/app/rodt/"
tools.sessions.on = True

101,:

APPENDIX B

TEST.' GODE:

102

#1 /usr/bin/python
#-*- coding: utf-8 -*-

"""Test suite’.for .computer..py"""

import computer

def.main(): . . ,■'
■. ■' computer.main() . •

if ' name .- - ==" - main'__":
main() .

#!/usr/bin/python
-*-• coding: utf-8 -*- . ■

"""Test suite for' inventory.py:
•..posts variables, to the CherryPy .server.

import urllib

def test_inDB(): ■
f = urllib:urlopen("http://localhost:8080/inDB")
print 'No parameters: ', f.read()
parameters = .{'mac': '112233445566', '.trace': .'foo bar.baz'}
■params = urllib.urlencode(parameters)
g = urllib.urlopen!"http://localhost:8080/inDB", params),
print g.read()

def te'st_getRecords’() ': '
f. = urllib.urlopen{"http: /./localhost: 8080/getRecords");.

- print f.read() ■ : .
. parameters ■= {'mac': ' 112233445566'}
params■= urllib.urlencode(parameters) '
g. =-urllib.urlopen("http{//localhost:8080/getRecords", params)
.print g.readO

'def test__updat:eRccords () : ■
parameters = -{'mac':. '112233445566',', 'location'': 'SB',

, 'building'-'UH', 'room'.:- ' 012',. -'pt’ag'54321' }
■: ■ params = urllib. ur lencode (parameters)

f .= urllib .urlopen ("http :'//local.host: 8080/updateRecords",. params)
print f.read()

def test_ count ():..'
f'= urllib'. urlopen ("http://localhost: 8080/count")

■ print', f. read ().

def main () :
test_inDB ()■.

.■ test_gotRocords ()

.' test—updateRecords () ■ .
■test—count()
print."Done 1" .

103

http://localhost:8080/inDB
http://localhost:8080/inDB
http://localhost

if .___name-_
main(j .

" mairi .

!/usr/bin/python
#■coding: utf-8 -*

import mop

.: def ■ test_getRecdrds (■)
- cols,

' print
rows = mcp.getRecords()
cols, rows.

cols,
,.print

.rows■ = mcp,getRecords(location
cols, rows ■

def test_updateRecords ().: .
mcp.updateRecords(location =■'SB', building. - ' I’A', room =' '.231',

ptag. = ' 43215 ', .mac - . ' 445;:66aabbcc '
-cols, rows' = mcp. getRecords (building = 'PA')

■ print rows ' ' -

def "cst .count () : .
. print mcp.. count.() . ./■

def main (j.:
test_getRecords()
test updatcRccorcs ().

. test count()

if .__name- ==." ■ main
main,(j •

1/usr/bin/python
-.*-■ coding:'utf-8 -*-

"""Test, suite for-'store_da'ta.py.
■delete's -data from database

■Inserts data,: gets results,

import store data.
import -random, .os, time.

seq ■=■ ['O',
' 'a', 'b',

'2', '3', '4',
'c', 'c', 'o', 'f']

’ 6 ’ z '7 ' -, .■ ' 8', ’9' , "' "

buildings = [' ', 'AD', 'AF', 'AH', 'AS', ' AV', . 'BI', ' BK'-, 'CC,
' CE ' , 'CH' , 'CO', 'CS', . ' DD' , 'ES* ,. ' FB ' , ' FM' , '.FO',
'HA' , 'HC.', 'HP', 'IC1', 'IC2' , ,'JB' > 'PA', . .-'PE' , 'PK1',
'PK2.' , .'PL',' -'PS ', . ' PW' , ■ ' RF'., ''SB', ■ ,'SH' 'SU,', 'SV' ,., '
' TA' , ' 'TC , ,'TK' , 'TO' , . 'UH' , 'UP' , ' 'UV',' -' VA', ' YC']

104---

def generatoMac(): ■
.' mac-
for'i in range (12.) :

i , = random, choice (seq)
.’ mac .+= i

. return mac .

def gerierate.Rdom ()':
return str(random.randrange(100, 500)) .

def generateLO.cation (j : -
locations ■ = ; ['SB', IPDC'J

■ location = random.choice(locations)
' return location''

def .generateBuilding ().: ‘ '
building = random, choice.(buildings)'
return building.

def- genera tePtag () :.
return str(random.randrange(10000, 60000))

def generateTrace () : . .
host' = ' 'csusb.edu'
timeLimit =15 .

.’ f .= 'os .popen (-' /us.r/bin/.traceroute . %.s'..% .host)'..
time.sleep(timeLimit) .

, g .= Os . popen ('/usr'/bih/k.illall traceroute ')'
. -trace = ' '
for line, in f. readlines () :

■' trace += line. ' ' '
f. close()
g. closet)
return-trace

def. test_update by rr.cp () : .
''try: '

• ' for- .i in range (100) : .
params. = f' location' : generateLocat-ion (.) ,

'building'n generateBuilding/),
■ ■ . ' ' room-' : gene rat eRoom (■) , -'

'mac': gcneratoMac(),
'pt.ag'-: generatePtag ()

.. : ./
' store_data'.update_by_mcp/**params) ■

■ except :
print "Failure in' updat.e_by_mcp" ''-

def Lest_update_by cl.: ent () :
■ try:... . ' . T '

trace = generateTra.ee/)' .
for i in range(100):■

. . me = generateMac (.)■ •

■ 105-

generateTra.ee/

' stere daoa.update_by_client(me, trace)
except:.

print trace',

def.Lest get records():
try: - - •

results =.store data.get_records().
- result = store_data. get_records (Id = random. randint (l, 99))
■' print-. "Select .All: " , results
print "Select One: ", result

except:
print "Failure in.getResuits"

def main () :
. store_data.connect_db(j
test updatc_by_mcp()
test_updato by cl i er. o ()
test_get_r.ecords ()
print. store_data.count()

if._ . name . . =
■main()

rr main , ":.

10 6

REFERENCES

Rotting, -Richard;,'Private correspondence. October 27, 2008;

Courage, - C. and Baxter, K. (20.05) . Understanding your'

users: A. practical guide to user requirements. San

Francisco: Morgan Kaufmann. .

Friedman, T, (2007). The world is flat: A brief history of

. the twenty first, century.. New.York: Picador. .

■ Gilb, T.- and Weinberg, ■ G. . (1984) . Humanized input:. .

Techniques, for reliable keyed input (Reprint ed.).

- Wellesley': QED information Sciences, Inc,

Hofstede, G. and Hofstede/ G. J.: (2004) . 'Cultures and -.

organizations: . Software of the mind.. New York: McGraw-

'- .Hill. '. '■ . •••'. ’■ •’

Kralisch, A;, Yeo, A. W., and Jali, N, '(2006) . "Linguistic

and'cultural differences in-.information categorization .

and. their impact- on website use. Proceedings of, the. 39th

Annual Hawaii International Conferenc.e.on System

Sciences93 . ' Retrieved May 21-, 2008, from ■

http://doi.ieeecomputersocioty.org/lC.1109/HTCSS.2006.25

Ledgard, H. , Singer, A., arid Whiteside,: J.. (198:1)

. Directions in human factors, for interactive systems'.

Berlin:. Springer-Verlog.

107,

http://doi.ieeecomputersocioty.org/lC.1109/HTCSS.2006.25

Levin Institute. What is globalization?. Retrieved May'21,.

- . 2008., from http://www.global!zationl01.org/

. What_is_Globalization.html

Li, H., Sun, X.,.and Zhang, K.. (2007), Culture-centered

. ’ design': Cultural, factors in .-interface, usability and ■ .

usability tests. Eighth ACIS International Conference on .

Software Engineering, Artificial Intelligence, : -

Networking, and Parallel/Distributed. Computing, .1084- ' .

' 1088. Retrieved May 21,'2008, from■

- http: //doi . iooecomputersociety. org/10'. 1109/SNPD. 2007.489'

Lowgr-en, "J. and Stolterman, E. (2004) , Thoughtful '

interaction design. Cambridge : The. MIT . Press .

Mehlmann, M-. (1981) . When people use .computers: An approach "

to developing an interface. Englewood Cliffs: Prentice-/

' ■. ' Hall-,..' Inc . ' '

Nelson, T. (1987). Computer lib/Dream machines (Revised

ed.) . Redmond: -Tempu-s Books of Microsoft Press.

Norman, D. '(2-002) The design of. everyday things .New York: ,

Basic- Books . ' ■

Norman, D. ,(2004) .. . Design: as- communication . .Retrieved June

3, 2008,. from http://www.jnd.org/dn.mss/

design__as_comun.html . '. . •/.

. - 108 - -

http://www.global!zationl01.org/
http://www.jnd.org/dn.mss/

Norman, D. (2005) . ■Human-centered' design considered -'

harmful. Retrieved June 3,' 2008, from

■’ http://www.jnd.org/dn.mss/human-centorod.html

Saffer, D. '(2007) . Designing for interaction. Berkeley.: New :

Riders. ' ■•■■.

Schneiderman, ..B . ■ (1987) . Designing.. the user interface: ..

Strategies for effective human-computer interaction.

■ Reading:, Addison-Wesley Publishing Company.

Schwartz, P. and Leyden, P. The long boom-. Wired. Retrieved

June' 3, 2008, from http://www.wired.com/wired/

.archive/5,07/longboom.htm ■

de Souza, C. (200.5.) . The semiotic engineering of human ■.

computer interaction. Cambridge:. The MIT. Press. .

Spolsky, J. (2001). User interface design for programmers.

■ Berkeley: Apress. .. ■

Tidwell/ J.' (2006), Designing interfaces. Sebastopol:

■ O'Reilly .Media, ,Inc..'

Wikipedia, Internationalization 'and. localization.'. Retrieved'.

■ May, 2 9, 2008, from

http: //eni wikipedia.org/wiki/Internationaliz-ation_and_JLo:

■ '■ calization ■

109

http://www.jnd.org/dn.mss/human-centorod.html
http://www.wired.com/wired/
wikipedia.org/wiki/Internationaliz-ation_and_JLo

	Pysafe: An interdisciplinary approach to interface design
	Recommended Citation

