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ABSTRACT

The research conducted is intended to enhance the way we view and study 

our solar system and others, by allowing scientists of astronomy, physics, 

and computer science to accurately simulate many different celestial sys

tems. By creating this extensible simulator, we can organize the celes

tial bodies to be studied into groups called projects, calculate their posi

tions, graphically visualize their movement using the computed positions, 

and finally, be able extend this tool to accommodate additional numerical 

methods, body shapes and behaviors, and camera views. The underlying 

science behind the Extensible Simulator is the n-body problem, which is 

derived from the laws of Kepler and Newton. The n-body equation along 

side Runge-Kutta’s Fourth-Order ordinary differential equation solver as 

the numeric method, are the methods we use for the calculation of the 

body positions. A thorough explanation of the Extensible Simulator will 

be given, paying close attention to its extensible components, which will al

low others in this field of study to contribute a multitude of features in the 

form of plug-ins as their needs arise. These extensible components are what 

separates the Extensible Simulator from its predecessors, and will make a 

significant contribution to the fields of astronomy, physics, and computer 

science.
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1. INTRODUCTION

1.1 Background

There is no question that the bodies in space we call planets and comets are mystical 

and intriguing, as are the tools that help us visualize them. Understanding the 

movement of celestial bodies is paramount to continuing the discussion of this tool, 

as is the numerical method that is used to calculate this movement. I will aim to give 

the reader a background that will serve as a solid foundation of these two concepts.

In order to understand the movement of celestial bodies, I will discuss their two 

main characteristics, mass and orbit. The mass of celestial bodies can vary greatly. 

To give an idea of how much they vary, lets first define what is most familiar to us, 

our Earth. The mass of the Earth-is on the order of 1024kilograms(kg). Our Sun 

is much larger than that, at 1030kg. The very large star Antares is 15.5 solar mass 

units, which means that it is 15.5 times the mass of our Sun, while smaller asteroids 

can be but 1 kg. We care about mass because it plays a large role in how these bodies 

interact with one another through the laws of gravity. If a body with a large mass 

comes in close proximity of another body with a lesser mass, then the . orbit of the 

body with lesser mass will be affected, and its orbit is affected.

This brings us to the second property that celestial bodies possess, which is their 

orbits. Orbits are in the form of an ellipse, which means that they take on an oval 
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shape. Elhpses can be nearly circular or very flat, which is determined by their 

eccentricity.

Fig. 1.1: Orbit with eccentricity of .01.

This value can range between zero to one exclusively, meaning they can be anything 

in-between zero and one, but exclude the actual values zero or one. If the value is 1 or 

greater, then the shape would no longer be an ellipse, but a parabola. If the value is 

zero, it would be a perfect circle, which follows that the nearer the value is to zero, the 

more the shape looks like a circle. The nearer it is to one, it becomes more flattened. 

I’ve included two figures to illustrate the two extremes of a low value (Fig. 1.1) and 

a high value (Fig. 1.2) for the eccentricity. Since the planets in our solar system have 

a low eccentricity, they stay fairly equidistant from the Sun along their path. The 

paths of bodies that have a higher eccentricity are capable of traveling very far, as 

in the case of Halley’s comet, which travels 35.33 AU from the Sun. This equates to 

just over 5 billion kilometers or just over 3 billion miles.
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The orbits with a higher eccentricity enable the body to reach very long distances

within the solar system.

Fig. 1.2: Orbit with eccentricity of .99.

The planets and Sun are very large masses, and due to the gravitational field of 

these great Classes, the orbits of smaller bodies can be altered. As an example of a 

large mass altering an orbit, we look at comet Shoemaker-Levy 9. It was discovered 

by Carolyn and Eugene Shoemaker and David Levy on March 24th, 1993, but was 

deduced that this comet had been captured by Jupiter’s orbit between the range of 

1920 - 1938. What they discovered were fragments of the comet, and was deduced that 

under the influence of tidal forces, it had split up on July 8, 1992. Due to observations, 

it was calculated that it would reach its closest distance from Jupiter in the month of 

July, 1994, and sure enough, from July 16-22, the fragments of Shoemaker-Levy 9 had 

passed too close, and due to Jupiter’s large mass, the fragments became very attracted 

to it due to Newton’s laws of motion, and crashed right into the planet [16] [2].
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This particular event can be attributed to Newton’s three laws of motion that are

found in Physics For Scientists and Engineers with Modern Physics [10]. .

Fig. 1.3: Aftermath of Shoemaker-Levy 9 colliding with Jupiter.

1. An object at rest will remain at rest, and an object in motion, will continue in 

that same motion with a constant velocity.

2. The acceleration of an object is directly proportional to the net force acting on 

it and inversely proportional to its mass (ft^F = ma).

3. If two forces interact, the force Fi2 exerted by object 1 on object 2 is equal in 

magnitude to and opposite in direction to the force F2i exerted by object 2 on 

object I: F12 =-F2i[10],

where the gravitational forces of Shoemaker-Levy 9 and Jupiter acted upon each 

other, drawing each other so near to one another that they collided.
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This is precisely one of the reasons that we care about orbits. We want to be able to 

determine the trajectories of planets or comets in our solar system to avoid disasters 

such as this, as well as determine the orbits of the bodies of other solar systems to 

see if they are stable and inhabitable. Our aim here is to create a simulator that 

can model the behaviors of arbitrary celestial bodies within a solar system, initially 

paying attention to how their orbits can be affected by one another, and to create 

such a platform that would enable their calculation by different numerical methods, 

that would also be able to be compared with one another.

Numerical methods are methods used to solve ordinary differential equations(ODE). 

An ODE is an equation that describes continuous change over time. While some sim

ple ODE’s can be solved analytically, meaning that they have a closed-form solution 

and can be calculated exactly, most require very tedious calculations, which is why 

we resort to a numerical solution. To solve using numerics means to start with some 

initial condition, and subsequently solve the equation at small steps across the in

terval that is desired. These approximations that we make at these small steps, will 

no doubt cause some error, because we are not dealing with the exact closed-form 

solution.

There are many ways of going about the approximations of the ODE, and for this 

particular project, the Runge-Kutta Fourth-Order(RK4) ODE solver will be used. 

This particular method is discussed in depth in Chapter 3.
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1.2 History

Johannes Kepler (1571-1630) started modern astronomy by using an observationally 

derived mathematical model to describe the laws of planetary motion. These laws are 

the foundation of the many tools used to understand our solar system, and ultimately, 

the universe. His laws are as follows:

Kepler’s first law states that the orbit of a celestial body is an ellipse, where one 

foci of the ellipse is the Sun. The second law was introduced during his study of the 

orbit of Mars, where the radius vector sweeps out equal areas in equal times. Finally, 

in 1618, Kepler’s third planetary law was introduced, which states that the square 

of the period of any planet about the Sun is proportional to the cube of its mean 

distance from the Sun[15][9].

In the context of this paper, these foundations have been used to simulate the 

orbits of planets and comets by a great number of people, including Sir Isaac Newton 

(1643-17-27). He showed that celestial bodies and objects on Earth are governed by 

the same set of laws, by showing the correlation between Kepler’s laws and his theory 

of gravitation. Newton’s law of universal gravitation states that “Every particle in 

the universe attracts every other particle with a force which is proportional to the 

product of their masses and inversely proportional to the square of their distance 

apart” [15].

Joseph-Louis Lagrange(1736-1813) was named the greatest mathmatician of the 

18th century because he made great contributions to the fields of analysis, number 

theory, classical mechanics, and celestial mechariics[3]. He introduced the theory of 

differential equations, and transformed Newtonian Mechanics into a branch of analysis 
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called Lagrangian Mechanics. He also studied the 3-body problem, which is directly 

related to our subject matter, where he found special cases to this problem, and named 

them Lagrangian Points [4]. These points are 5 points in an orbital configuration 

where a small object only affected by gravity will remain stationary, relative to the 

two larger objects.

Jules Henri Poincare (1854-1912) made a great contribution to the field of Celestial 

Mechanics when he submitted a solution to the n-body problem to the King of Sweden, 

who offered a prize to the first to solve it. Poincare did not solve the problem as 

specified, but was awarded the prize because it was of great significance to celestial 

mechanics, and contained many important ideas that eventually led to chaos theory. 

This submission contained a serious error, however, that was later corrected by Karl

F. Sundman[5]. In the 1990’s, Quidong Wang generalized the 3-body problem, solving 

for n bodies[17].

Today, there has been a great deal of research that aims to simulate the motion of 

planets and comets [14] [11] [6] [1], but the most significant contribution to this area 

that I found is the Millennium Run project, where the aim was to investigate how the 

universe has evolved over time. This particular project traced 10 billion particles over 

a simulated volume space of 2 billion light years, and in that, contained 20 million 

galaxies[18]. The aim of these projects was not to offer an interactive simulator where 

any number of arbitrary celestial bodies can be defined, and where there is potential 

to extend the simulator to incorporate different numerical methods for computing the 

orbits of a multi-body system.
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1.3 Significance

The significance of this project is its ability to be a useful tool .to computer scientists, 

astronomers, and physicists by determining how an arbitrary set of celestial bodies 

interact with one another. It allows definition of bodies that belong to a system, and 

creates a graphical simulation of them based on their specific properties. Ideas are 

then easily conveyed not only to colleagues, but to the public as well through the 

simulation. The most interesting feature of this tool however, is its extensibility over 

time. Those scientists who wish to extend this tool can do so by incorporating different 

numerical methods, gravitational functions, or more detailed algorithms describing 

behavior of a certain body or force. The contributions of myself and others will 

help this evolve into a very robust simulator, that will be capable of endless detailed 

simulations as opposed to being limited to simulating one particular scenario.

1.4 What Was Accomplished

A graphical tool, simulator, and Application Programming Interface(API) comprise 

the basic components of this Extensible Simulator. The creation of “projects” within 

the graphical tool allow the user to manage a specific set of bodies. Bodies are added 

to the project, which encompasses the initialization of all the data needed by the 

program, and are then read by a Scilab script that calculates the positions of the 

bodies based on the initial conditions for each body using the gravitational function 

defined in a separate script. Using the initial conditions, these scripts utilize a built-in 

RK4 ODE solver that ships with Scilab. This solver returns back the position of each 

body for each time step, which is then read by the simulation script. Depending on 
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the definitions of the bodies and calculated positions, the simulation script renders the 

objects and their movement. An analysis of a project that contains the Sun, Mercury, 

Venus, Earth, and Earth’s Moon was performed by comparing the measured values to 

the true values for perihelion and aphelion, as well as the angle at which they occur. 

These errors were compared to a project that contains Mars and Jupiter as additional 

planets to see how they affect the orbits of the others.

1.5 Outline

As you may have already guessed, the introductory chapter introduces the back

ground, history, significance, and what was accomplished in this paper. Chapter 2, 

“Science Behind the Simulation” covers orbits according to both Kepler and Newton. 

In “Computer Science Behind the Simulation,” Chapter 3, we will dive into the nu

merical analysis that we employed to calculate the orbits of the bodies. All of the 

functions that make up the Extensible Simulator will be discussed in Chapter 4, in

cluding the Graphical User Interface(GUI), and the API that will be the component 

that makes the Extensible Simulator extensible. All testing and benchmark data will 

fill Chapter 5, and finally the conclusion will summarize our findings and include 

directions of further study in Chapter 6.
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2. SCIENCE BEHIND THE SIMULATION

2.1 Orbits According to Kepler

The orbit of a body in space is governed by the laws of planetary motion as described 

by Kepler and the laws of gravitational motion as described by Newton.

Kepler’s laws are as follows:

1. The orbits of planets and comets are described as an ellipse, with the Sun at one 

of the foci of the ellipse(See Fig. 2.1).

2. A line that joins the planet and the Sun will fill equal areas on a regular time 

interval(Fig. 2.2). This means that the closer the planet is to the Sun, or peri

helion, the faster it will travel.

3. The squares of the orbital periods of a body are directly proportional to the 

cubes of the semi-major axes(the distance from the center to the farthest point 

along the length of the ellipse), which means that the larger the semi-major axes, 

the longer the orbital period will be.

Where T is the orbital period of the planet, G is the gravitational constant, M 

is the mass of the Sun, and r is the radius of the planet’s circular orbit[10].
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Fig. 2.1: An orbit as an ellipse with the Sun at one foci.

Fig. 2.2: Kepler’s second law.
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To explore the shape of an ellipse, we can define it as the set of all points in a 

plane where the sum of the distances of two fixed points remain constant. These two 

fixed points are the foci of the ellipse, and in the case of our planets, one of those 

foci would be the Sun. The eccentricity is what determines a circular, or a very flat 

ellipse, which describes the different trajectories of planets and comets respectively.

Fig. 2.3: Ellipse in standard position.

Here is the mathematical equation for an ellipse in the cartesian coordinate system,

x2 y2
—z-k-rz = l,a>b>0,
a2 . o2

where a is the semi-major axis and b is the semi-minor axis. The center to focus

distance, c is defined by c — y/a2 — b2. The eccentricity is therefore defined as e =

c/a, 0 < e < 1. See Figure 2.3[12].
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2.2 Orbits According to Newton

Newton was able to solidify the relationship between falling objects near to the Earth 

and the motion of planetary orbits by using the inverse-square relationship that Kepler 

had suggested in his third law. After the apple fell off the tree in his garden, he 

pondered that the Earth’s gravity that caused the apple to fall towards the Earth 

could be extended to bodies like the Moon. Even though the Moon happened to be a 

greater distance from the Earth than any Earth-bound object, he believed that they 

may behave the same way. If at any point along a bodies orbit, in Newton’s particular 

case, the Moon’s relationship to the Earth, the body is freed from all of its forces, it 

would continue in a straight line tangent to the orbit at that point. Since the body 

does not follow that tangent line, and the distance between the two bodies doesn’t 

change, then the body in orbit must be effectively “falling” towards the body that is 

at the foci of the orbit’s ellipse. Figure 2.4 illustrates this by showing a deviation of 

y from the line AB(= x) that would be followed (AP) if gravity was not present [7].

From this assertion, Newton derived his law of universal gravitation,

= G^

where Fg is the gravitational force, G is the gravitational constant, mi and m2 are 

the masses of the respective planets, and finally, r is the distance between the two 

masses. To extend this to describe the interactions between any number of bodies 

using Newton’s laws of universal gravitation, the equation of motion for n bodies

13



becomes

Fs

Fg

mtfi

rriifi
j=N

-a E
j=N

-a E

rriimj (rj - rj)

raj(r*  - Pj) 
lu-pjl3

(2-1)

-o E mjmfiri - rff

where is the position vector of the zth particle relative to some inertial frame, m.

is the mass of the zth particle, G is the gravitational constant, and rrij is the mass of 

the jth particle.

Fig. 2.4: Geometry of a small portion of a circular orbit.

In the cases of one and two bodies, this problem can be solved analytically, however 

once we move to three or more bodies, we must resort to numerical analysis. Because 
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every body has an effect on one another, the system can become very chaotic past 

two bodies when trying to solve analytically, meaning that the math becomes far too 

complicated. Solving by numerical analysis, we can eliminate the tediousness of the 

analytical solution, and can obtain an approximate, yet still very accurate result.
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3. COMPUTER SCIENCE BEHIND THE SIMULATION

3.1 Numerical Analysis

’ Newton’s laws of universal gravitation as described in Section 2.2 help us describe 

the trajectory of a smaller body about a larger body. Using equation 2.1 from that 

section, we find the following system of differential equations [8]:

Xi = -G

Hi = -G

where rid =■ y/ fa - x/)2 + - yf2.

This system of differential equations describes the continuous change of accelera

tion of each of the planets involved. We need to solve this using numerical analysis 

because trying to find a closed-form, or analytical solution would be nearly impossible 

due to the limitless amount of forces acting on each one of the bodies. While a closed- 

form solution would give us an exact answer as to the specific positions and velocities 

of the planets, a numeric solution gives us a reasonable approximation without the 

tediousness of a closed-form solution. This invariably introduces error into the cal

culation, which we will discuss in Chapter 5. The order of an ODE is determined 

by its highest derivative, and the equations that we happen to be dealing with are 

a system of second-order ODE’s. In order to solve this using numerical analysis, we
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must transform these equations into an equivalent first order system:

1
dtXp°S

,, Xvel dt

%vel

j=N

E (Xp0si %posj )

It* • • 13 
I'Ml

dtypos 

d 
dtVvel

Vvel

j=N

-G E
The decision to use the RK4 solver over other solvers such as Adams-Bashforth,

XUj (.Uposi Dposj )

I'p. .13 
I' MI

Euler, Fehlberg, or Adams-Moulton[13], was due to my familiarity with it in previous 

course-work, as well as allowing larger time steps and better accuracy than lower order 

methods. Other solvers can be implemented quite easily however, in the Extensible

Simulator, which will be discussed in Chapter 4.

3.1.1 Runge-Kutta Fourth-Order Method

In this project we use the RK4 method that ships with Scilab, however an explanation 

of the method is in order. If we consider the general differential equation

y(x) = f(x,y(x)),y(0') = yo

then the RK4 method for the problem is given by the following equation:

y<x + h) = y(x)'+ — (F\ + 2F^ + 2F^ + Ffi)

(3-1)
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where

Fi = hf(x,y)

K = W + yV + y)

= W + y9+y)

F4 = hf(x + h, y + F3)

(3-2)

The four different functions above are used to determine a weighted average of the 

slope between the present value (y(z)) aiid the next value(y(z + hf). F\ represents 

the slope at the present value, Fz represents the- slope at the midpoint between the 

present value and the next step size, using the Fi to arrive at the y value, F3 is the 

slope at the midpoint again, using F2 to arrive at the y value, and finally F4 is the 

evaluation of the slope at y(x + h), using F3 to arrive at the y value. These four 

slopes are then averaged, with more weight given to the middle values, F2 and F3, to 

find the next value, y<x + h). Below, you will find an example implementation of this 

method.

Listing 3.1: Implementation of Runge-Kutta Fourth-Order solver.

function y=rk4(f, tO, yO, t)

//we agree that we’re going to

//put tO at the beginning at the list.

//the y values will be the height at

//the t values .

nt=max( size (yO ));

18



n=max( size (t));

y=zeros (n ,m);

if t (1) = tO then

y(i,:) = yO;

else

h — t (1) — tO ;

Fl = h .* f (tO , yO);

F2 = h .* f(t0+h/2, yO+Fl/2);

F3 = h .* f(tO+h/2, yO+F2/2);

F4 = h .* f(tO+h, yO+F3);

y(l ,:) = yO + (Fl + 2 .*  F2 + 2 .*  F3 + F4)./6;

end

for i=l:n—1

h = t (i+1)—t (i ) ■

Fl = h .* f(t(i), y(i

F2 = h .* f (t (i)+h/2 , y (i , :) + Fl/2);

F3 = h .* f(t(i)+h/2, y(i ,:) + F2/2);

F4 = h .*f(t(i)+h,  y(i ,:)+ F3);

y( i + 1,:) = y(i ,:) + (Fl + 2.*F2  + 2.*F3  + F4)./6;

19



endfunction

end
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4. EXTENSIBLE SIMULATOR

4.1 Introduction

The Extensible Simulator is a tool that was created using a combination of the Python 

programming language and Scilab, and is able to simulate celestial bodies. It contains 

three major parts: the GUI, the simulation, and the API.

In order to simulate an arbitrary set of bodies, we start with the GUI which is where 

the main constructs called “projects” are created. Projects encapsulate the set of 

bodies to be simulated, while also providing the duration of the simulation, and other 

items that are essential to the simulation running properly. The bodies that are a part 

of a project are flat files, which are edited by hand within the Extensible Simulator, 

and specify the different physical properties of each body, such as mass, initial velocity, 

and many other attributes which we shall discuss in depth in Section 4.3.2. Based 

on the bodies defined in a project, we are able to calculate their positions for the 

specified time interval, by choosing the desired numerical integration method and 

gravitational function.

Once the calculation of the bodies’ positions are complete, the user is able to run 

the simulation, which animates the bodies that were specified by the user. In addition 

to the bodies being set in motion, there are also different camera views that focus on 

each one. One can also move the camera up, down, forward, backward, left and right 
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using specified keystrokes (Table 4.1).

In order to make this simulator extensible, an API is available to the prospective 

programmer. The four main characteristics that makes this simulator interesting and 

most useful are its camera views, the shapes and behavior of the celestial bodies, the 

gravitational functions, and the numerical methods used to calculate the positions of 

the bodies. It follows naturally then, that making these characteristics extensible will 

be of great benefit, and will allow many different and highly detailed simulations to be 

possible. One will be able to essentially plug in different camera and body definitions 

that will be derived from their respective base classes, and specify different numerical 

methods and gravitational functions for calculating the bodies’ positions. This will 

be discussed in depth in Section 4.5.

4.2 Basic Structure of the Graphical User Interface .

As stated before, the main function of the user interface is to manage sets of bodies 

contained in a project. As you can see in Figure 4.3, the user interface is composed 

of two major panels, a file menu, a help menu, two buttons, a few toolbar icons, and 

finally two drop-down menus. The left panel lists the different bodies in the project, 

while the right panel is reserved for the editing of the body configuration files. The file 

menu allows the execution of various functions such as creating new projects and files, 

opening existing projects and files, copying a project to a new project, showing the 

differences between two projects, and saving files. You can also exit the application 

through the file menu or the close button in the top right corner of the application. 

The two buttons that are below the main panels allow one to calculate the values 
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needed by the simulation and simulate the project given its contents. The toolbar 

icons perform some of the same functions as the file menu, such as saving a file, 

creating a new file, and opening a file, and finally the two drop down menus allow 

the selection of the numerical method and gravitational function to be employed.

Fig. 4.1: Screenshot of the Extensible Simulator.

4.3 Python Graphical User Interface - Project Organizer

Now that the basic structure is defined, we can get into some of the more hair

splitting details of the GUI. To keep this in the most logically flowing order, I’ll begin 

by explaining how to create a project, and move on to file creation, editing, saving, 

project copying, and showing the history between two projects.
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4.3.1 Creating A Project

When creating a new project, one would start by selecting New —> New Project from 

the file menu. An “Add New Project” dialog manifests itself, and asks for three items:

1. Choose a Directory

2. Project Name

3. Elapsed Time in Earth Years

The directory choice along with project name are self explanatory, however the elapsed 

time in Earth years refers the length of time for the project simulation. The real-time 

duration obviously does not take this long due to the rate which OpenGL renders 

its frames, and the step size used to perform the calculations. The rate at with the 

simulation renders in real time is also dependant on other programs running on the 

machine that are using up resources, and the amount of objects rendered on screen, 

which I will discuss in section 4.4.

Once the values for the new project have been specified, many things occur behind 

the scenes as preventative measures to errors, and providing essential components for 

the project. First, we check to see if a project of the same name exists in the project 

folder, and if so, we prevent that from happening and. ask the user to rename the 

project. Once we get validation that a unique project name has been selected, a 

project folder is created to house all files and folders related to it.

A project configuration file is created, and is named in accordance with the project 

name. This file contains the values specified during the creation of the project, which 

are the absolute path of the project, the duration that the simulation is to last, and
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finally the configuration type. This final value is used to differentiate between project

configuration files and body configuration files that make up the files of a project.

These files are parsed by a specific configuration module of Python, so within the

scope of this application, the configuration type prevents body configuration files

from being opened as projects.

■ - ■ ~~ " llolla^
Ffe Edit Search View Tools Options Language Buffers Help 

IFIveBodyProject.cfg |

1 configType: ProjectFile
; projectWorkingDir: 'C:\Documents and Settings\Administrator\My Documents\CSCI\Thesis\ThesisProjectSource\Projects\FiveBodyProject'
1 duration: 40.0

i
TF » □........................................................... - ’ ..................................... EJ

Fig. 4.2: Screenshot of a project configuration file.

Still within our project directory, four more sub-folders are created. A body defi

nition folder is created that houses the body configuration files that I spoke of above. 

The positions of each body after the calculation are stored in their own folder named 

“BodyCoordinates”, while the different statistics of each calculation/simulation of the 

project are housed in a “Benchmarks” folder. Finally, an “Images” folder is created 

that is to contain any images to be used for texture-mapping the bodies during the 

simulation.

4.3.2 Creating A Celestial Body

This is where the body configuration files come into play. These files are very sig

nificant to the simulator, as they not only provide the specific information for the 

calculation which leads to the exact positions of the planets to render, but it is also 

used in the simulator itself, by telling it how the body should be rendered on the
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screen, for example, the body’s color and shape. Each body that is created has its 

own configuration file with the following values:

1. Name - The name of the celestial body.

2. Initial 2-coordinate position - The x-coordinate of where the body will start its 

simulation.

3. Initial y-coordinate position - The y-coordinate of where the body will start its 

simulation.

4. Initial x-coordinate velocity - The initial velocity of the body in the x direction 

with meters/second as the units.

5. Initial y-coordinate velocity - The initial velocity of the body in the y direction 

with meters/second as the units.

6. Radius - The radius of the body in meters.

7. Mass - The mass of the body in kilograms.

8. Red color component - The following color components are used in the OpenGL 

script to render the colors of the planets if no image is given for texture mapping. 

These values range from zero to' one.

9. Green color component - See above.

10. Blue color component - See above.

11. Texture image - The filename of the image to use in texture mapping the body. 

If there is no plan to use texture mapping, a value of ‘none’ should be put in its 

place.

26



12. Parent body - The name of the body who is the parent to this body.

13. Aphelion from parent - The distance that is furthest away from the parent in 

meters.

14. Perihelion from parent - The distance that is the closest to the planet in meters.

15. Gravitational constant - This should remain the same for all planets in all solar 

systems, at 6.67259 x 10-11.

16. Rotation angle on the xy plane - A degree value that you wish to rotate your 

initial conditions stated above.

17. Body class type - ‘Body’ is the base class type used for any celestial body. We 

will discuss different possible values in section 4.5.

J Eartkcfg x |'

name: Earth
xPosition: 152100000000 /meters
/Position: 0 /meters
sxVelocity: 0
iyVelocity: 29292.35746 /meters per second j
radius: 6378140 /meters
■mass: 5973700000000000000000000 /kilograms 
redColor: 0
greenColor: 0
iblueColor: 1
'textureimage: 'Earth.jpg' 
parentBody: Sun 
aphelionFromParent: 152100000000 /meters 
iperihelionFromParent: 1471X000000 /meters 
g: 0.000000X00667259 /mA3/(kg s^2) 
■rotationAngleXYPlane: 0 /degrees 
bodyClassType: 'Body'

!

Fig. 4.3: Screenshot of a body configuration file.

There are a few things worth noting here in regards to these body values. First, I 

would like to address the initial x and y positions and velocities. Take care to make 

sure that the correct values are used. If we have a planet starting off at aphelion, then 
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we must make sure that the appropriate velocity is applied. This is not the planet’s 

mean velocity, but its velocity at aphelion, which would be traveling at its slowest 

velocity. The equations for the velocities at perihelion and aphelion are as follows: 

27ra /1 + e
vp = —v?—p V 1 — e

27ra 11 — e
Va = —\ P V 1 + e

where a is the length of the semi-major axis of the ellipse, p is the siderial period of 

the planet in seconds, and e is the eccentricity of the orbit.

Second, the ‘Parent Body’ name of the child must coincide with the ‘Name’ value 

of the parent. If there is no parent body to a particular body, for example, the Sun 

has no parent body, then a value of ‘none’ should be inserted. If we are creating the 

Earth as one of our bodies, then this value for the parent body should be ‘Sun’, or 

whatever the ‘Sun’ was named in its body configuration file.

4.3.3 File Editing

File editing is fairly straight-forward. You can open a file for editing by either double

clicking the file you wish to edit in the celestial body tree, right-clicking on the file 

in the tree, and selecting “Edit” from the drop-down menu, or by opening the file 

menu, and selecting Open —> Open File. You may edit the file however you wish, 

just keep in mind that the Config module reads the data in a specific format. See 

APPENDIX B for the specifics of the Config module. Note that scientific notation is 

not yet supported.
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4.3.4 File Saving

The file saving feature currently only saves body configuration files, and does not save 

project files or anything else. The GUI does not let the user know if a file has been 

modified from its original version, which could be a feature implemented in future 

versions. What it does exactly, is take what is on the screen, and re-writes it all back 

to the file it originated from. It’s not very fancy, but it does the job.

4.3.5 Project Copying

When building this simulator, we thought it would be nice to include the ability to 

copy an existing project to a brand new project. This feature yields an exact copy of 

the project you specify, only with a different project name (all project variables reflect 

the name change). It may sound like it has no purpose initially, but the intention was 

to cut out time wasted in creating a project that was slightly different from another, 

in order to view how much of an effect that slight difference would have between the 

two projects. For example, if we had a project that contained celestial bodies such 

as the Sun, Mercury, Venus, Earth, and Earth’s Moon, and we wanted to see what 

effect adding Mars and Jupiter into the equation would have on the system, we would 

create a new project from the initial project, and simply add in Mars and Jupiter 

to the new project. This begs the question, how do we see how these two projects 

differ? This brings us to the next section, the history between two projects.
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4.3.6 History Between Two Projects

As stated above, it would be nice to see how two projects differ when other elements 

are tweaked, like adding in an additional two planets in the example above. The 

history feature compares the difference between the orbits of the corresponding bodies 

in two different projects and outputs a graph indicating those differences.

4.4 Python Graphical User Interface Simulation

After the task of creating the files for each body in a project is complete, it’s time to 

see what the system looks like graphically. Before we can rim the simulation, we must 

first calculate the values of our system in order to run the simulation and plot the 

bodies where they need to be. It is as simple as pressing the “Calculate Simulation” 

button, which invokes the Scilab script, using the function selected in the drop-down 

menu, and solving it using the numeric method specified in the second drop down 

menu.

The application will let the user know that the calculation is complete by saying 

so in the application’s status bar. Depending on how many bodies are present for the 

calculation, this may take roughly 5 minutes or 300 seconds for five bodies or less. 

Once the calculation is complete, the simulation can be run by pressing the “Run 

Simulation” button. This launches the OpenGL rendering of the planets using the 

body configuration files, and the coordinates that resulted from the calculation. In 

the initial stages of development, we were having trouble with the rendering of the 

planets, as it was very spotty. After much trial and error, we came to realize that the 

units of position arid radius were quite large, so we convert everything to astronomical 
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units(AU) before rendering. The speed of the simulation itself, also depends on how 

many objects you render on the screen, as well as how many other programs you have 

running. When drawing the trails that follow a portion of the trajectory of the body, I 

realized that the simulation got slower and slower as the simulation progressed. Once 

I limited the portion of the trail to draw(hence less objects to render), the simulation 

rendered at a more constant rate.

Now that we’ve got a simulation rendering, we must discuss scene navigation. 

To aid in the understanding of the underlying simulation structures, I’ve included 

Figure 4.4.

Fig. 4.4: Unified modeling language diagram of simulation components.

There are keystrokes that can be executed during a simulation that help navigate 

the scene during the simulation. The major simulation functions include switching 
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the view from body to body, moving the camera left, right, up, down, forward, and 

backward while looking at a body, scaling the bodies, resetting the camera view, 

and exiting the application. If at any time the user gets disoriented due to excessive 

camera movement, then they can re-set the camera to the pre-defined position, which 

lies at x = 0, y = 0, and z is the z viewing distance of the body which is its radius 

multiplied by 150 meters. I picked this value because it rendered the body at a 

reasonable viewing distance.

Moving the camera left, right, up, and down will move the camera by 200,000,000 

meters each step. Moving forward and backward is a little more involved, because we 

don’t want the user ending up inside a body, where they would see nothing but black 

space. To move forward, I divide the z viewing distance in half, which brings the 

camera closer to the body. This process will repeat until the camera has come within 

two of the bodies radius. After the camera gets this close, pressing ‘f ’ to move forward 

will keep you right where you are, two radii away from the body. To move backward, 

we do the opposite by multiplying the z viewing distance by two. This posed, a problem 

of clipping if one moved too far back because of the viewport previously defined. This 

was solved by increasing the viewport length to accommodate all bodies.

The absolute scaling is invoked by the ‘a’ key, where the bodies get enlarged so we 

can actually see them during the simulation. The algorithm to compute the scaling 

factor starts by finding the two bodies that have the shortest distance between each 

other in the entire system. We then enlarge the radius of the two planets until the 

distance between them is no more than 30 times the smaller radius. The value of 

30 was chosen because by trial and error, it provided the most reasonable rendering.
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Below, we include the code for this algorithm.

Listing 4.1: Algorithm for absolute scaling factor.

def findScalingFactor ( self ):

#find the shortest distance between any two bodies , take 

#the radius of the larger and smaller and let the 

#algorithm run.

#Now to find the shortest distance between two bodies.

#set shortest distance to the maxint value of the machine, 

#so that when our first, iteration goes around, it 

^automatically gets set to something lower within our 

#body system.

shortestDistance = sys . maxint

i = 0

j = 0

for i in range(len(self.bodies)):

for j in range (len ( self . bodies )):

if i < j :

distance = sqrt( \

pow(( self . bodies [j ] . xPosition — \
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self . bodies [ i ]. xPosition) ,2) + \

pow(( self . bodies [j ]. yPosition — \ 

self . bodies [ i ]. yPosition ) ,2)) 

if distance < shortestDistance:

shortestDistance = distance

if self.bodies[i].radius > \

self.bodies[j] . radius:

radiusSmaller = \

self.bodies[j].radius

radiusLarger = \

self.bodies[i].radius

else :

radiusSmaller = \

self.bodies[i].radius

radiusLarger = \

self .bodies [j ] . radius

newSmallRadius = radiusSmaller

newLargeRadius = radiusLarger 

adjustedDistance = shortestDistance 

distance = adjustedDistance
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while adjustedDistance > (radiusSmaller * 30.): 

newSmallRadius = newSmallRadius + \

(radiusSmaller * .1)

newLargeRadius = newLargeRadius + \

(radiusLarger * .1) 

adjustedDistance = distance — \

(newSmallRadius + newLargeRadius)

return newSmallRadius/radiusSmaller

Table 4.1 contains the different keystrokes available to navigate the scene. You’ll 

notice that there are two groups of keys in the figure. The first group are keystrokes 

defined in the simulation file, and will always remain a part of the simulation. The 

second group, however, is dependent on the camera used for the simulation, and as 

this program grows, these may change.

4.5 Application Programming Interface

The API is the very component of the Extensible Simulator that makes the program 

extensible. Bodies, cameras, gravitational functions and numeric methods can all be 

extended or replaced with ease. There is a Utilities file that keeps track of different 

constants and library functions. It is here where the different string variables describ

ing the different subclassed bodies and cameras reside, in addition to string constants 

describe the different gravitational functions and numerical methods.
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Tab. 4.1: Keystrokes for the Simulator.

Key Description

+ Increments the body index.

Decrements the body index.

a Scales the bodies so they are more visible.

n Renders the bodies as their normal sizes.

e Exit the application.

T Move in the positive y direction.

Move in the negative y direction.

- Move in the positive x direction.

- Move in the negative x direction.

b Move in the positive z direction (backwards).

f Move in the negative z direction(forwards).

r Resets the scene.
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These constants are used in the respective wrapper classes of the bodies and cameras 

to instantiate the proper class when called. The ability to add different bodies and 

different behaviors of bodies is of great interest, because we are continually learning 

of the different properties they possess, and the different things that affect them. For 

a general idea of the relationships between these components, refer to Figure 4.4. The 

code for the objects referenced in the following sections can be found in APPENDIX 

A.

4.5.1 Bodies

The BaseBody is the object that all bodies are to be derived from. It contains the bare 

essentials to render a body on screen when called, including the ability to initialize 

and draw itself, read its respective coordinates file, return its z viewing distance, load 

its textures, and draw a trail that traces its path. To create a plug-in .that contains 

your own definitions of a body and its behavior, simply override the given methods, 

register your new body type in the Utilities object as a string constant, followed by 

including its instantiation in the BodyWrapper initializations.

Keep in mind, that in addition to deriving from the BaseBody object, we can add 

new attributes and methods as long as they are incorporated into the Body Wrapper 

object. The script that renders the body(DynamicCelestialBodyPositionSimulation.py) 

only accepts the Body Wrapper type, so any new methods you wish to call from your 

new method or attribute must be “wrapped” inside this object.

While used in the simulation script, the BodyWrapper type that encapsulates the 

many different BaseBody subclasses is managed by the BodyManager object. The 
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function of this object is to manage the array of bodies as a whole, ranging from 

their instantiation by means of their respective configuration, to drawing, and finally 

finding the scaling factor that suits the system of bodies as a whole.

One question has yet to be answered. Where does the Body Wrapper get the infor

mation on what type of body to instantiate? When we talked about creating a new 

body configuration file in Section 4.3.2, we included the mention of a BodyClassType. 

This is the key to creating as many bodies as desired with the new body definition. 

The name here must coincide with the string constant that was placed in the Utilities 

object.

4.5.2 Cameras

Cameras are structured in the same manner as bodies, meaning that they have a 

CameraWrapper object that instantiates the correct camera by comparing it with 

the respective string constant values found in the Utilities object. Like their Base

Body counterpart, the BaseCamera contains the basic functions for navigating and 

viewing a simulation, with can be used to create subclasses of cameras that override 

the existing methods. The methods that may be overridden include initialization, 

defining the camera viewport, specifying which body to look at, and the ‘special’ and 

‘keyboard’ OpenGL functions.

Just as the bodies, if any BaseCamera subclasses include additional methods or 

attributes, they must be “wrapped” by the Camera Wrapper object if it is to be called 

from the simulation script. The cameras also have a CameraManager which handles 

the instantiation of the different cameras, however unlike the bodies, we specify the
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camera type explicitly in the CameraManager's GetCameras method.

4.5.3 Gravitational Functions and Numeric Methods

Creating plug-ins for different gravitational functions and numerical methods is a 

complete shift from how the body and camera plug-ins are implemented. The only 

thing that remains the same is the necessity to insert the string constant describing the 

method into the Utilities object. To go about creating a new gravitational function, 

create a Scilab file that contains only the new function, and a variable declaration, 

gravFunc, which is set to your function’s name. This file will live in the root directory 

of this program. Register this file with the Utilities file, and it should appear in the 

main GUI automatically.

As for the numeric method, this file contains all of the setup needed in order to 

populate the initial matrix that gets fed into the solver. This means reading all of the 

data from the body configuration files, using the BodyConfig.sci script, reading the 

project data of the particular project to get the duration of the simulation, which plays 

a part in the step size of the solver(ProjectFile.sci). To determine what gravitational 

function to apply, we use the gravFunc variable that is declared in the previous file 

that we spoke of. After reading in all of the body configuration files, we then apply 

Given’s rotations to each body, taking into account that the Moon, for instance will 

have to be rotated the same amount as the Earth in order for it to be in the correct 

position. The code currently used for setup is found below:

Listing 4.2: Code snippet of initial matrix setup for the solver.

//construct the initial conditions.
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initialPositions =[]

//get all bodies initial conditions prior to rotation, 

//so we can rotate children properly.

for i =l:numBodies

initialPositions (1 , i) = strtod (bodies (xPosition , i))

initialPositions (2 , i) = strtod (bodies (yPosition , i)) 

end

for i =l:numBodies

//apply Given’s rotations here.

//for the angle, we have to get the radians from

//the degrees input into the body config files. 

bodysRotationAngle = (

strtod ( bodies (rotationAngleXYPlane , i)) * %pi)/180

GivensMatrix = [

cos (bodysRotationAngle) — sin (bodysRotationAngle) 

sin (bodysRotationAngle) cos (bodysRotationAngle) ];

//need to find the parent’s xy values, so we can

//subtract from the childs initial conditions.

//we need to do this so we make sure that we’re
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//rotating about the parent, and not anything else, 

//example: in the moon’s case, we want to rotate about 

//the earth, not the sun.

originalXPositionChild = strtod (bodies (xPosition , i)) 

originalYPositionChild = strtod (bodies (yPosition , i)) 

originalXPositionParent = 0

originalYPositionParent = 0

for j =l:numBodies

if bodies (parentBody , i) = bodies (name, j) then 

originalXPositionParent = initialPositions (1 , j ); 

originalYPositionParent — initialPositions (2 , j );

end

end

adjustedXPosition = originalXPositionChild —

originalXPositionParent ;

adjustedYPosition = originalYPositionChild — 

originalYPositionParent ;

originalPosition = [ adjustedXPosition

adjustedYPosition ];

originalVelocity = [ strtod ( bodies (xVelocity , i))

strtod (bodies (y Velocity , i)) ];
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adjustedPosition = GivensMatrix * originalPosition 

adjustedVelocity = GivensMatrix * originalVelocity

adjustedPosition = [ adjustedPosition (1 ,1) + 

originalXPositionParent 

adjustedPosition (2,1) + 

originalYPositionParent]

xPosDifference = adjustedPosition (1 ,1) —

origin alXPositionChild 

yPosDifference = adjustedPosition (2 ,1) —

originalYPositionChild

bodies (xPosition , i) = string ( adjustedPosition (1 ,1)) 

bodies (yPosition , i) = string ( adjustedPosition (2,1)) 

bodies (xVelocity , i) = string ( adjustedVelocity (1 ,1)) 

bodies (yVelocity , i) — string ( adjustedVelocity (2,1))

for k=l:numBodies

if bodies (name, i) = bodies (parentBody , k) then

//we move the smaller (k).
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//first , we have to move the child body the same

//amount as the parent body moved, while not

//rotating it .

//Then, if the child body itself needs rotated, 

//then it will be handled in the previous for 

//loop, not this one.

posX = strtod ( bodies (xPosition ,k));

posY = strtod ( bodies ( yPosition , k)) ;

adjPosx = posX + xPosDifference ;

adjPosy = posY + yPosDifference ;

bodies ( xPosition , k) = string (adjPosx );

bodies (yPosition , k) = string (adjPosy );

end

end

end

//this is outside the initial for loop to make sure that

//all the rotated velocities have been

//calculated prior to adding parent velocities to the
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11 child .

for i =l:numBodies

//add the velocity of the parent body to the child body.

for j =l:numBodies

//ex if the moon’s (i) parent body = the earth(j)

if bodies (parentBody , i) = bodies (name, j) then

velXI = strtod ( bodies (xVelocity , i ));

velXJ = strtod ( bodies (xVelocity , j ));

velYI = strtod (bodies (yVelocity , i ));

velYJ = strtod ( bodies (yVelocity , j ));

theXSum = velXI + velXJ;

theYSum = velYI + velYJ ;

bodies (xVelocity , i) = string (theXSum);

bodies (yVelocity , i) = string (theYSum);

end

end

end

//initial condition matrix setup.
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zO = zeros (max( size (bodies )) * numBodies );

for i =l:numBodies

zO(xPosition + (numAttributes*(i  — 1)) ) = 

strtod(bodies(xPosition ,i));

zO(yPosition + (numAttributes*(i — 1))) =

strtod ( bodies ( yPosition , i ) ) ;

zO(xVelocity + (numAttributes * (i — 1))) =

strtod ( bodies (xVelocity , i ) );

zO(yVelocity + (numAttributes *( i — 1))) —

strtod ( bodies (y Velocity , i ));

zO(radius + (numAttributes *( i — 1))) =

strtod(bodies(radius , i ));

zO(mass + (numAttributes *( i—1))) =

strtod ( bodies (mass , i ));

zO(g + (numAttributes *( i—1))) =

strtod(bodies(g, i ));

zO (rotationAngleXYPlane + (numAttributes *(i —1))) = 

strtod (bodies (rotationAngleXYPlane , i ));

end

Refer to RungeKutta2D.sci in APPENDIX A for the specifics.
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5. BENCHMARKS AND ERROR ANALYSIS

5.1 Benchmarks

The following benchmarks were performed both pre-API and post-API with the 

smaller step-size, measuring the time to calculate the coordinates of all bodies con

tained within a project. The calculations were done on an Intel Core Two Duo CPU 

T7300 @ 2.00 GHz and 1GB of RAM. The only program running while performing the 

calculations was the Wingware Python Intelligent Development Environment, which 

was used for the development of this project. It launches the Extensible Simulator, 

and from there we initialize the calculation by pressing the “Calculate Simulation” 

button.

Tab. 5.1: Pre-application programming interface with large step size.

Project Name Duration(seconds)

TwoBodyProject 11.971

ThreeBodyProject 19.528

FourBodyProject 30.227

FiveBodyProject 44.694

Each calculation was run 10 times, and with a duration of 1 year, and the average 

time was taken.
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The difference in the pre and post API calculation times is due largely to the

smaller step size in the latter. This is discussed in depth in Section 5.2.

Tab. 5.2: Post-application programming interface with small step size.

Project Name Duration(seconds)

TwoBodyProject 82.256

ThreeBodyProject 132.539

FourBodyProject 204.187

FiveBodyProject 295.555

SevenBodyProject 542.719

5.2 Error Analysis

Error analysis was performed on the accuracy of the measured aphelion and perihelion 

versus their true values, and also the angle at which aphelion and perihelion occurs 

versus their starting angle. Specifically, I looked at the relative error between the 

measured and true values, which can be defined as

_ ^approx ^trae|

I Prue |

where e is the resulting error, which portrays the digits of accuracy between the two 

values, vapprox is the measured value, and vtrue is the expected value.

While running the initial tests to see how the RK4 ODE solver was handling the 

data, I realized that after a simulation time of 40 years, the error of the Moon was 

sky-rocketing. See Table 5.3 and Figure 5.1. It was then that I realized that my step

size was increasing exponentially to the duration of the simulation. I was dividing

47



the total duration time into 10,000 steps, and when the duration time increases 

significantly, the step sizes also become very large.

Tab. 5.3: Average error of ‘FiveBodyProject’ at 40 years/old step size.

Aphelion Perihelion Aphelion Slope Perihelion Slope

Mercury 5.93 x 10“5 3.545 x 10“4 8.932 x 10“2 2.049 x 10_1

Venus 3.627 x 10-4 1.130 x 10~3 2.769 x IO-2 2.844 x IO"2

Earth 5.34 x 10“5 1.718 x 10“3 1.155 1.737

Moon 1.457 x 10-2 1.398 x IO"1 46.384 45.887

Average Error 3.655 x 10~2 3.576 x 10~2 11.914 11.964

Total Average 5.988

The step size was so large, that the calculated positions for the Moon became very 

inaccurate towards the end of a 40 year simulation. In fact, the RK4 solver could not 

finish integrating.

After finding this, I decided that negotiating step-size was essential. I experi

mented with a few different values, and came up with a step-size that varied based on 

simulation duration added to a constant. Using the new step sizes I was able to get a 

handle on the error for the Moon. This was the only body that had a problem with 

the errors due to it being a few orders of magnitude smaller than the other planets, 

and having a much faster period as well. This poses a problem, because with a much 

larger step size, one step could be a large portion of the Moon’s orbit, thus giving us 

a highly inaccurate value for its position.

The other factor to consider is the time it takes to calculate a simulation. With 
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a larger step-size, the time to calculate would be small, because there would be less 

calculations to perform.

Tab. 5.4: Average error of ‘FiveBodyProject’ at 40 years/new step size.

Aphelion Perihelion Aphelion Slope Perihelion Slope

Mercury 6.400 x 10“6 2.163 x 10-4 1.447 x 10“2 3.276 x 10“2

Venus 3.636 x 10“4 1.132 x IO-3 6.446 x IO"3 6.701 x 10“3

Earth 5.34 x 10“5 1.717 x 10~3 8.923 x IO-1 8.924 x IO"1

Moon 1.867 x 10-2 5.384 x 10“2 44.28 44.46

Average Error 4.774 x 10~3 1.423 x 10“2 11.30 11.35

Total Average 5.667 ■

With a smaller step-size, we would have more calculations to perform, resulting in a 

longer calculation time. My goal was to find a happy medium, that would give us 

accurate results in the shortest amount of time possible. This is why, for every Earth 

year, I multiply by a constant of 500 to get the optimal step size. This particular 

number yielded the most accurate solutions in the shortest amount of time, as you 

can see in Table 5.4 and Figure 5.2.

To see how the RK4 solver performs for a longer simulation duration, I’ve chosen 

to increase the duration to 100 years (See Figure 5.3 and Table 5.5). We are at an 

average of 2 digits of accuracy for the aphelion and perihelion of all the planets with 

the exception of the Moon. Our errors aren’t too bad, but aren’t great either if we 

adopt the general rule that 3 digits of accuracy is a fair result. This could be due 

to the fact that our system contains a mere 5 bodies compared to the eight that are 
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in our solar system. We are missing Jupiter, which has a very large mass, and as 

referenced in Section 1.1, could certainly have an affect on the system as a whole.

To test this concept, we do exactly that, and run the same tests again with Mars 

and Jupiter included(See Table 5.6 and Figures 5.4 and 5.5).

Tab. 5.5: Average error of ‘FiveBodyProject’ at 100 years/new step size.

Aphelion Perihelion Aphelion Slope Perihelion Slope

Mercury L250 x 10-5 2.932 x 10~4 3.625 x 10“2 8.215 x 10~2

Venus 3.826 x 10~4 1.125 x 10~3 1.328 x 10~2 1.354 x 10"2

Earth 6.060 x 10~5 1.737 x 10~3 9.766 x RF1 9.973 x IO-1

Moon 1.972 x 10-2 5.490 x 10-2 7.030 x 10“2 45.44

Average Error 5.043 x 10~3 1.450 x 10“2 2.741 x 10_1 11.63

Total Average 2.982

As a result of including Mars and Jupiter, we don’t see much of a difference in 

the significant digits of our measurements due to relative error. Some factors that 

could result in less than favorable results are the angles of the true planets’ orbits 

themselves. For these projects, we picked arbitrary angles that didn’t necessarily 

reflect the measured angles at which they occur in our actual solar system. With 

the exception of the angles of the Moon’s orbit, however we still get fair results at 

about 2 digits of accuracy. What really throws off our overall averaged errors are the 

angles at which the Moon’s perihelion and aphelion occur. This could be due to a 

minor distance change in aphelion/perihelion that greatly affects the angle at which 

it occurs. Our step size in the RK4 algorithm may still be too large for the Moon’s 
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orbit, which may be skipping over a significant enough area, which could skip right 

over a true aphelion/perihelion point resulting in a significant error at the angles at 

which they occur.

Tab. 5.6: Average error of ‘SevenBodyProject’ at 100 years/new step size.

Aphelion Perihelion Aphelion Slope Perihelion Slope

Mercury 1.820 x 10“5 2.465 x 10“4 3.677 x 10~2 8.275 x 10~2

Venus 3.916 x 10~4 1.118 x 10~3 1.312 x 10"2 1.338 x IO"2

Earth 6.730 x IO-5 1.750 x 10“3 1.004 9.889 x IO-1

Moon 1.972 x IO-2 5.490 x 10“2 45.35 45.32

Mars 5.590 x 10~5 1.455 x 10“4 1.566 x 10~2 1.991 x 10-2

Jupiter 8.250 x 10-5 1.312 x 10“3 2.574 x 10~4 2.899 x 10-4

Average Error 3.389 x 10~3 9.912 x 10~3 7.736 7.738

Total Average 3.872

This can perhaps be avoided by employing a numerical method that treats systems 

containing varying periods.
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Fig. 5.1: Relative error of ‘FiveBodyProject’ at 40 years/old step-size.
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6. CONCLUSION

The aim of this research was to create an extensible simulator that will not only 

calculate the trajectories of planets and comets using a numerical method, but be 

able to graphically simulate them. This will be particularly useful to colleagues in 

the fields of astronomy, physics, and computer science, by being able to convey ideas 

easily to one another with confidence that the results are accurate to within an average 

of two digits with the exception of the Moon.

Additionally, we structured this program in such a way to make it easily extensible 

by providing an API to allow the extending of cameras, bodies, gravitational func

tions and numerical methods. These features are also very useful, because they allow 

scientists to add more features as needed with a great deal of ease. If one wanted to 

define a different camera that follows a specific path throughout the simulation, that 

could be easily achieved. If one wanted to define a body of a different shape, or add 

rotation to the shape, they can do so through the body portion of the API. The gravi

tational functions and numerical methods are scripts that can be interchanged easily. 

These factors give this program the potential to become a very robust simulator, 

capable of many different and intricate simulations.

The research conducted here, along with the created program can also facilitate 

research in the following ways:
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1. Add the third dimension to the calculation of the trajectory taking into account 

each body’s inclination to the ecliptic.

2. Dynamically speed up the simulation while the simulation is running.

3. Add a GUI to the actual simulation screen that allows easier ways of switching 

between cameras and determining which body the camera is looking at.

4. Add more numeric methods to the simulation to give the user different options. 

For instance, methods that treat different periods differently. This could aid 

greatly with the inconsistency of the Moon’s results compared to the other bod

ies’ results.

5. In the existing GUI, add the ability to edit project files and body configuration 

files more easily, instead of having to edit them by hand. Adding in the ability to 

input values in scientific notation would also improve the usability tremendously.

6. Programmatic video capture of a simulation would be of great interest, allowing 

one to capture a specific simulation, and be able to re-play it anywhere, elim

inating the need to have a machine that contains the software needed to run 

the Extensible Simulator. This would aid greatly in presentations of specific 

scenarios.

7. Automatically calculate the necessary velocities at aphelion and perihelion for 

the user.

8. Develop an algorithm to determine an ideal step size based on the magnitude of 

the bodies, their orbits, and numerical method used.
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In closing, this tool can help us understand a bit more, how our universe really 

moves. It enables communication over a broad spectrum of backgrounds and expe

riences from those in highly technical or scientific fields to those who are not, and 

can, but is certainly not limited to, helping us detect disasters that may threaten our 

existence on Earth, or aiding in the prediction of stable systems elsewhere.
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APPENDIX A

MY CODE
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The code contained here is only the code of the API that I thought relevant enough 

to include, as it is referenced extensively in Chapter 4. For instruction on obtaining 

the code in its entirety, please refer to APPENDIX B. .

Listing 1.1: Utilities.py

import string

import sys

from config import Config

import os

import os . path

class Utilities (object):

’This is a class that has generic . utilities used within the project’

#Used by. the DynamicCelestialBodyPositionSimulation .py

#file , along with others to resolve paths to the respective

^directories

BODY-DEFINITION_DIR = ’ BodyDefinitions ’

BODY_COORDINATES_DIR = ’BodyCoordinates’

#The project file type to determine that a . cfg is indeed

#a project file , and not a body configuration file , or

^anything else.

PROJECT-FILE - ’ ProjectFile ’

#Descriptions of the various body class types. These must be the same that

# the user puts in each of the body configuration files.

= ’SquareBody ’

BODY = ’Body’

#Descriptions of the various camera types.

#This gets used in the Camera Manager and Camera Wrapper.

BASIC-CAMERA = ’BasicCamera ’
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#H.ere we 3 ll put the different strings that signify the different scilab 

^calculation routines that are offered. The string should be what you want 

^displayed in the combo box that selects it.

NUMERIC-METHODS = [’’Runge-Kutta 2D”]

NUMERICJvlETHOD-FILES = [ ” RungeKutta2D .sei”]

GRAVITY-FUNCTIONS = [ ” NewtonNBody” ]

GRAVITY_FUNCTION_FILES = [ ” NewtonNBody. s c i ” ]

AU-SCALING-FACTOR = 1 ./149596000000000.

def IsGravFunction (self , scriptName):

if scriptName = self .NEWTON_GRAV_FUNC:

return True

else ;

return False

def IsScilabScript ( self , scriptName):

#here we would add more conditionals as the number of scilab scripts 

#increases.

if scriptName = se 1 f .RUNGE_KUTTA_2D:

return True

else :

return False

def ProjectExists (self , directoryName ):

return os . exists (directoryName)

def IsAProjectDirectory (self , directorypath):

if os . path . exists (directoryPath );

filename = os . path . split (directoryPath)

projectFile = filename [1] + ’.cfg5

if self . IsProject ( projectFile ):
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return True

else ;

return False

else :

return False

def IsProject ( self , projectFileName ): 

cfg = Config (projectFileName) 

try:

projectType = cfg . configType 

except Exception, e:

return False

if projectType = s e 1 f . PRO JECT-FILE:

return True

else :

return False

def NewProjectTemplate( self ):

return ’name: \n ’ 4- \

’ xPosition

’ yPosition

’ xVelocity

’ y Velocity

\n’ + \

\n’ + \

\n’ + \

\n ’ + \
’ radius: \n’ + \

’ mass : \n ’ + \

’ redColor : \n ’ + \

’greenColor: \n ’ + \

’blueColor: \n ’ + \ 

’textureimage: \n ’ 4- \

’parentBody: \n5 + \

’ aphelionFromParent: \n ’ 4- \

’ perihelionFromParent: \n ’ 4- \

’g: \n ’ + \

63



’ rotationAngleXYPlane : \n ’ 4- \

’ bodyClassType : \n ’

Listing 1.2: BaseBody.py

from -.future.. import with.statement

from OpenGL import *

from OpenGL. GL import *

from OpenGL. GLU import *

from OpenGL.GLUT import *

import string

import sys

from Utilities import Utilities

import Image

class BaseBody ( object):

’This represents a celestial body, its attributes and. functions/methods ’

nextCoordlnc — 0

def -_init-.(self, bodyName, bodyRadius , bodyMass , bodyRedColor , \

bodyGreenCoIor , bodyBlueColor , bodyTexturelmage , \ 

bodyParentBody , bodyAphelionFromParent , \ 

bodyPerihelionFromParent ):

’Initialize a new celestial body, complete with radius, mass, colors, \ 

texture images, it\’s parent body, and the aphelion & perihelion from \ 

the parent object.’

^initialize everything we can from instantiation

self.name

self.radius

self, mass

= bodyName 

= float (bodyRadius) #meters

= float (bodyMass) #kilograms

self . redColor — float (bodyRedColor)

self . greenColor = float (bodyGreenCoIor)

self . blueColor

self . textureimage

= float (bodyBlueColor)

= bodyTexturelmage
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seif . parentBody = bodyParentBody v

self . aphelionFromParent = float (bodyAphelionFromParent) #meters 

self . perihelionFromParent = float (bodyPerihelionFromParent) #meters 

self . actualRadius = self, radius #meters

# initialize all positions and velocities to zero, as we will set these

# later; they will change frequently anyway, and I know of no better

# way. Mayhap this will change later , if I can think of a better way

# to handle the drawing of a body. Still need to think about how we 

#are going to handle the texture mapping of the particular planet.

#keep the values that have already been drawn in arrays , so that we can 

#produce a visual trail to see the trajectory of the planets more clear. 

self . xTrailValues = []

self . yTrailValues = []

with open( Utilities .BODY-COORDINATES_DIR. + ”//” + self .name + ”. txt” ) \ 

as f:

for line in f:

coords = line, split ()

self . xTrailValues . append (float(coords[Oj))

self . yTrailValues . append ( fl oat( coords [1]))

#the x coordinate of the body

self.xPosition = self.xTrailValues[self. nex t Coordinc ]

# the y coordinate of the body

self . yPosition = self . yTrailValues [ self . nextCoordlnc]

print ’’xPosition on setup: ” 4- str ( self . xPosition)

def loadTextures ( s elf ):

if s e 1 f . textureimage != ’’none”:

image = Image. open ( sei f . textureimage)
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ix = image . size [0]

iy = image . size [1]

image = image . tostring ("raw" , ”RGBX’, 0, —1)

# Create Texture

self . textures = glGenTextures (3)

# 2d texture (x and y size)

glBindTexture (GL-TEXTURE.2D, int(self. textures [0]))

glPixelStorei (GL-UNPACK-ALIGNMENT, 1)

glTex!mage2D (GL.TEXTURE-2D, 0, 3, ix , iy , 0, GL-RGBA, \

GL-UNSIGNED-BYTE, image)

glTexParameterf (GL-TEXTURE-2D, GL_TEXTURE_WRAP_S, GL-CLAMP)

glTexParameterf (GL.TEXTURE-2D, GL.TEXTURE-WRAP.T, GL.CLAMP)

glTexParameterf (GL-TEXTURE-2D, GL-TEXTURE-WRAP.S, GLJREPEAT)

glTexParameterf (GL-TEXTURE.2D, GL-TEXTURE-WRAP.T, GL.REPEAT)

glTexParameterf (GL-TEXTURE-2D, GL-TEXTURE-MAG-FTLTER, GL-NEAREST)

glTexParameterf (GL.TEXTURE.2D, GL-TEXTURE_MIN_FILTER, GL-NEAREST)

glTexEnvf(GL-TEXTURE-ENV, GL.TEXTURERNVJ40DE, GL-DECAL) 

def draw(self, scalingFactor, AUScalingFactor ):

’Draw the celestial body. It\’s coordinates must be set by the caller \

before this function is called . ’

s e 1 f . actualRadius = (self.radius + (self.radius * scalingFactor))

self . drawingRadius = seif . actualRadius * AUScalingFactor

glPushMatrix ()

sei f . material ( se If . redColor , self . greenColor , s e 1 f . blueColor , 1, .8, 70) 

glTranslated ( self . xPosition*  AUScalingFactor, self . yPosition*  \

AUScalingFactor , 0)

# handle color here.
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glColor3f ( se 1 f . redColor , self . greenColor , self . blueColor)

# NOTE: if there is no color, then handle texture here.

if self . textureimage != ’’none”:

quadratic = gluNewQuadric ()

gluQuadricNormals (quadratic , GLUJSMOOTH)

gluQuadricTexture (quadratic , GL-TRUE)

glBindTexture (GL-TEXTURE.2D, int ( self . textures [0])) 

gluSphere (quadratic , self . drawingRadius , 50, 50)

else :

#draw the object with no texture.

glutSolidSphere(self. drawingRadius , 50 , 50)

glPopMatrix ()

try:

self . nextCoordlnc = se 1 f . nextCoordlnc 4- 1

#the x coordinate of the body

self . xPosition = self . xTrailValues [ self . nextCoordlnc]

# the y coordinate of the body

self . yPosition = self . yTrailValues [ self . nextCoordlnc] 

except Error :

print ’We have an error ! ’ 

raise Error

def drawTrail ( self , AUScalingFactor, numBodies):

’Draw the trail that the celestial body leaves behind itself. ’

glPushMatrix ()

glBegin (GL_LINE_STRIP)

glColor3f ( sei f . redColor , self . greenColor , self . blueColor) . 

for i in range(self.nextCoordlnc):

if i >= ( self . nextCoordlnc — 1000):

glVertex2f ( s e 1 f . xTrailValues [ i ] * AUScalingFactor, \
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self, y Trail Values [ i ] * AUScalihgFactor)

glEnd()

glPopMatrix ()

#private

def material (self , red , green, blue, alpha, spec, shiny):

ambient-diffuse = [red, green, blue, alpha]

specular = [spec, spec, spec, spec]

shininess = [shiny]

emission = [0, 0, 0, 1]

glMaterialfv (GLJFRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE, ambient-diffuse) 

glMaterialfv(GL_FRONTuWD_BACK, GLJSPECULAR, specular)

glMaterialfv (GLJFRONT-AND-BACK, GL-SHININESS, shininess)

glMaterialfv (GL_FRONT-AND_BACK, GL.EMISSION, emission)

def getZViewingDistance ( self ):

return self.radius * 150

Listing 1.3: Body.py

from BaseBody import BaseBody

from OpenGL import *

from OpenGL.GL import *

from OpenGL.GLU import *

from OpenGL.GLUT import *

class Body (BaseBody):

’This represents a celestial body, its attributes and functions/methods ’

def __init-_ (self , bodyName, bodyRadius , bodyMass , bodyRedColor , \

bodyGreenColor , bodyBlueColor , bodyTexturelmage , \

bodyParentBody , bodyAphelionFromParerit, \

68



bodyPerihelionFromParent):

’Initialize a new celestial body, complete with radius, mass, colors, \ 

texture images, it\’s parent body, and the aphelion & perihelion from \ 

the parent object. ’

super(Body, self).__init_-( bodyName, bodyRadius , bodyMass , \

bodyRedColor , bodyGreenColor , \

, bodyBlueColor , bodyTexturelmage , \

. bodyParentBody, bodyAphelionFromParent , \ 

bodyPerihelionFromParent )

Listing 1.4: BodyWrapper.py

from __future__ import with.statement

from OpenGL import *

from OpenGL.GL import *

from OpenGL. GLU import *

from OpenGL.GLUT import *

import string

import sys

import Image

from Utilities import Utilities

from config import Config

#For each new body that is derived from BaseBody, it must be imported here.

#That’s pretty standard, but just in case., had to include that.

from Body import Body

from SquareBody import SquareBody

class BodyWrapper( object):

’This is the class .that manages whigh type of body subclass to instantiate. ’

#the body type is intented to be private. I don’t know how to force this

#right now, but if you’re the one extending this simulator, just don’t use

#it after you instantiate it elsewhere. It ’s used to supply the data for
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#the wrapper functions here. Nothing else.

name = None

radius = None

mass = None

redColor = None

greenColor = None

blueColor = None

textureimage = None

parentBody = None

aphelionFromParent = None

perihelionFromParent = None

coordinatesFile = None

xPosition = 0

yPosition = 0

xTrailV alues = I)

yTrailValues = []

nextCoordlnc = 0

textures = None

bodyClassType = None

getZViewingDistance = 0

def -_init-_ (self , bodyName, bodyRadius , bodyMass, bodyRedColor, \ 

bodyGreenColor , bodyBlueColor , bodyTexturelmage , \ 

bodyParentBody , bodyAphelionFromParent , \ 

bodyPerihelionFromParent , bodyClassType):

if bodyClassType = U t i 1 i t i e s . SQUARE-BODY:

self, body = SquareBody( bodyName, bodyRadius, bodyMass, \ 

bodyRedColor , bodyGreenColor , \ 

bodyBlueColor , bodyTexturelmage , \ 

bodyParentBody , bodyAphelionFromParent , \ 

bodyPerihelionFromParent )
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elif bodyClassType Utilities .BODY:

self, body = Body( bodyName, bodyRadius, bodyMass, bodyRedColor , \

bodyGreenCoior , bodyBlueColor , bodyTexturelmage , \ 

bodyParentBody , bodyAphelionFromParent , \
bodyPerihelionFromParent )

#if one wanted to add

Additionally , if any extra methods were added to

#the new body type, you’d have to include a wrapper for that,

#also performing any error handling that may arise if someone calls

#your method for your body while actually dealing with a body type other

#than your own.

else :

self, body = BaseBody ( bodyName, bodyRadius, bodyMass, bodyRedColor, \ 

bodyGreenCoior , bodyBlueColor , \ 

bodyTexturelmage , bodyParentBody , \ 

bodyAphelionFromParent, \ 

bodyPerihelionFromParent )

self, name =

self.radius =

self, mass =

self. redColor —

self . greenColor =

self . blueColor =

self. textureimage =

s e 1 f . parentBody =

self . aphelionFromParent =

self . perihelionFromParent =

self. bodyClassType =

self . getZViewingDistance =

self. actualRadius =

self . xPosition =

self . yPosition =

self.body.name

self.body.radius

self . body, mass

self . body . redColor

self, body. greenColor

self . body .blueColor

self, body. textureimage

self, body. parentBody

self . body. aphelionFromParent 

self, body. perihelionFromParent 

self . bodyClassType

self.body.radius * 150 

self . body. actualRadius 

self, body . xPosition 

self, body .yPosition
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def loadTextures ( self ):

self . body . loadTextures ()

def draw(self, scalingFactor, AUScalingFactor ):

sel f . body . draw(scalingFactor , AUScalingFactor)

#these are the values that need updating after the base drawing 

#function

self . xPosition = self . body. xPosition

self . yPosition = s e 1 f . body. yPosition

self . actualRadius = self . body. actualRadius

se 1 f . drawin'gRadius = self .body. drawingRadius

def drawTrail ( self , AUScalingFactor, numBodies):

self . body . drawTrail (AUScalingFactor , numBodies)

Listing 1.5: BodyManager.py

from __future__ import with-statement

from OpenGL import *

from OpenGL.GL import *

from OpenGL.GLU import *

from OpenGL.GLUT import *

import string

import sys

import Image

from Utilities import Utilities

from config import Config

from BodyWrapper import BodyWrapper

from math import *

class BodyManager(object) :

bodies = []

scalingFactor = 0

' normalScaling = True
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absoluteScaling = False

def AddBody (self , bodyName, bodyRadius, bodyMass, bodyRedColor, \ 

bodyGreenCoIor , bodyBlueColor , bodyTexturelmage , \ 

bodyParentBody , bodyAphelionFromParent , \ 

bodyPerihelionFromParent , bodyClassType ):

s e 1 f . bodies . append ( Body Wrapper (bodyName, bodyRadius, bodyMass, \ 

bodyRedColor , bodyGreenCoIor , \ 

bodyBlueColor , bodyTexturelmage , \ 

bodyParentBody , bodyAphelionFromParent ,\ 

bodyPerihelionFromParent , \ 

bodyClassType ) )

#eventually we need to get to the part where bodies are manipulated through 

#this class only. Therefore we won’t be returning the bodies to the main 

#program hopefully .

def GetBodies ( self , directory):

for filex in directory:

if os . path . splitext ( filex )[ 1] = ’. cfg 5 :

f = file (Utilities .BODY_DEFINITIONT>IR + ’\\ ’ + filex)

cfg = Config(f)

self . AddBody( cfg.name, cfg . radius , cfg.mass, cfg . redColor , \

cfg . greenColor , cfg . blueColor , cfg . textureimage , \ 

cfg . parentBody , cfg . aphelionFromParent , \ 

cfg . perihelionFromParent , cfg . bodyClassType )

self . scalingFactor = self . findScalingFactor ()

return self.bodies

def DrawBodies( self , AUScalingFactor):

if self. normalScaling = True and self. absoluteScaling = False: 

theScalingFactor = 0

elif self . absoluteScaling True and self . normalScaling = False: 

theScalingFactor = self . scalingFactor
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else :

theScalingFactor = 0

for bodyx in self.bodies:

bodyx. draw( theScalingFactor , AUScalingFactor)

if bodyx. parentBody ! = ’’none”:

bodyx. drawTrail (AUScalingFactor , len ( sei f . bodies))

def findScalingFactor ( self ):

#find the shortest distance between any two bodies , take the radius of

#the larger and smaller and let the algo run.

#Now to find the shortest distance between two bodies.

#set shortest distance to the maxint value of the machine, so that when 

#our first iteration goes around, it automatically gets set to something 

#lower within our body system.

shortestDistance = sys . maxint

i = 0

j = 0

for i in range (len ( self . bodies )):

for j in range (len ( sei f . bodies )):

if i < j:

distance = sqrt( pow(( self . bodies [j ]. xPosition — \

self . bodies [ i ]. xPosition ) ,2) 4- \

pow(( self . bodies [j ]. yPosition — \ 

self.bodies [i]. yPosition) ,2)) 

if distance < shortestDistance:

shortestDistance = distance

if self.bodies[i].radius > self.bodies[j].radius: 

radiusSmaller = self . bodies [j ]. radius 

radiusLarger = self.bodies[i]. radius
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else :

radiusSmaller = self . bodies [ i ]. radius

radiusLarger = self.bodies[j]. radius

newSmallRadius = radiusSmaller

newLargeRadius = radiusLarger

adjustedDistance = shortestDistance

distance = adjustedDistance

while adjustedDistance > (radiusSmaller * 30.):

newSmallRadius = newSmallRadius + (radiusSmaller * .1)

newLargeRadius = newLargeRadius + (radiusLarger * .1) 

adjustedDistance = distance — (newSmallRadius + newLargeRadius) 

return newSmallRadius/radiusSmaller

Listing 1.6: BaseCamera.py

from .-future-- import with.statement

import string ■

from OpenGL import *

from OpenGL.GL import *

from OpenGL. GLU import *

from OpenGL.GLUT import *

from Utilities import Utilities

class BaseCamera( object ):

’This represents a camera, which can be extended’

def -_init__(self , eyex, eyey, eyez, lookx , looky , lookz , windowx, windowy):

’Initialize where we want the camera to look.’

self.eyeX = eyex

self.eyeY = eyey
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self.eyeZ = eyez

self.lookX = lookx

self. lookY = looky

self.lookZ = lookz

self. windowX = windowx

self. windowY = windowy

#This is 1/AU where AU is the astronomical unit. (AU/meters)

def CameraViewport (self , angle, near, far):

’Create the viewport definition of the camera’

# Reset The Projection Matrix

gIMatrixMode (GL_PROJECHON)

glLoadIdentity()

# Calculate The Aspect Ratio Of The Window

ratio = sel f . windowX/ se 1 f . windowY

gluPerspective (angle , ratio, near, far)

gIMatrixMode (GLMODELVIEW)

def LookAt(self , body):

sel f . eyeX = body. xPosition * Ut i 1 i ties . AU-SCALING-FACTOR

self.eyeY = body. yPosition * U t i 1 i t i es . AU_SCALING_FACTOR

self.eyeZ = body . getZViewingDistance * U t i 1 i t i e s . AU-SCAUNG-FACTOR

self.lookX = body. xPosition * U t i 1 i t i e s . AU-SCALING_FACTOR

self . lookY = body. yPosition * U t i 1 i t i e s . AU_SCAUNG_FACTOR

#this is where we decide what body to look at.

gluLookAt ( self . eyeX, self.eyeY, self.eyeZ, self.lookX, self.lookY, \

self . lookZ , 0 , 1, 0)

def keyboard(self , args, body):

pass
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def special(self, key, x, y):

#print ”we made it to base camera”

pass

Listing 1.7: BasicCamera.py

from -.future.- import with_statement

import string

from OpenGL import *

from OpenGL.GL import *

from OpenGL.GLU import *

from OpenGL.GLUT import *

from Utilities import Utilities

from BaseCamera import BaseCamera

class BasicCamera(BaseCamera):

’This represents a camera, which can be extended’

def __init__ (self , eyex , eyey , eyez , lookx, looky , lookz , windowx, windowy): 

’Initialize where we want the camera to look. ’

super (BasicCamera , self ). __init_-( eyex, eyey, eyez, lookx, looky, \ 

lookz, windowx, windowy)

self. eyeXInc = 0

self.eyeYInc = 0

self.eyeZInc = 0

def LookAt ( s-e 1 f , body):

self.eyeX = body. xPosition * U t i 1 i t i e s . AU-SCAUNG-FACTOR

self.eyeY = body. yPosition ' * Ut i 1 ities . AU_SCAUNG_FACTOR

self.eyeZ = body. getZViewingDistance * Utilities .AU-SCAUNG-FACTOR

self .lookX = body. xPosition * Uti 1 ities .AU_SCAUNG_FACTOR

self.lookY = body. yPosition * U t i 1 i t i e s . AU-SCAUNG-FACTOR
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self.eyeX = self.eyeX + self.eyeXInc

self.eyeY = self.eyeY + self.eyeYInc

if self.eyeZInc != 0:

self.eyeZ = self.eyeZInc * U t i 1 i t i e s . AU-SCAUNG -FACTOR

#this is where we decide what body to look at.

gluLookAt ( self . eyeX , self.eyeY, self.eyeZ, self.lookX, self.lookY, \ 

self. lookZ , 0 , 1, 0)

def AdjustCamera ( self , body):

if self.eyeZInc != 0:

#print "Actual Radius: ” + str (body. actualRadius)

#print "eyeZInc: ” + str (self. eyeZInc)

if self.eyeZInc < body.actualRadius*2:

self.eyeZInc = body.actualRadius * 2

s e 1 f . CameraViewport (130 , .00000001, \

(152630000000 + self.eyeZInc)\

♦ Utilities. AU-SCAUNG-FACTOR)

def keyboard ( self , args, body):

if args [0] = ’ f ’ :

print ’’We’re moving forward”

if self.eyeZInc = 0:

zDist = body. getZViewingDistance/2

self.eyeZInc = zDist

else :

self.eyeZInc = self.eyeZInc/2

if self.eyeZInc < body.actualRadius*2:

self.eyeZInc = body.actualRadius*2

#move camera backward

elif args [0] = ’b ’ :

if self.eyeZInc = 0:

zDist = body . getZViewingDistance*2
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self.eyeZInc = zDist

else :

self.eyeZInc = se1f.eyeZInc*2

moving backwards by a whole bunch, so we must compensate

#for the clipping that would occur because the viewport wouldn 31 

#be long enough to hold the body objects in it 3s viewport.

print ’’EyeZInc: ” + str(self.eyeZInc)

self . CameraViewport (130 , .00000001, \

(body . getZViewingDistance + self.eyeZInc)*\

Utilities .AU-SCAUNG-FACTOR)

#reset the view

elif args[0] = ’r’:

self. eyeXInc = 0

self. eyeYInc = 0

self.eyeZInc = 0

#absolute scaling

else :

return

def special (self , key, x, y):

#move camera up

if key = GLUT_KEY-UP:

self. eyeYInc = self. eyeYInc + 200000000. * \

Utilities . AUJSCAUNG-FACTOR

#move camera down

if key = GLUT-KEY_DOWN:

self. eyeYInc = self. eyeYInc — 200000000. * \

Utilities .AU-SCAUNG-FACTOR

#move camera right

if key = GLUT-KEYJUGHT:

self.eyeXInc = self.eyeXInc + 200000000. * \

Utilities .AU-SCAUNG-FACTOR
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#move camera left

if key = GLUT J<EY_LEFT:

self.eyeXInc = self.eyeXInc — 200000000. * \

Utilities .AU-SCALING-FACTOR

else :

return

Listing 1.8: CameraWrapper.py

from --future-- import with.statement

from OpenGL import *

from OpenGL.GL import *

from OpenGL.GLU import *

from OpenGL.GLUT import *

import string

import sys

import Image

from Utilities import Utilities

from config import Config

#For each new camera that is derived from BaseCamera, it must be imported here. 

#That’s pretty standard, but just in case., had to include that.

from BasicCamera import BasicCamera

class CameraWrapper ( obj ect):

’This is the class that manages which type of camera subclass to \ 

instantiate.’

#the body type is intented to be private. I don't know how to force this 

#right now, but if you're the one extending this simulator, just don’t use 

#it after you instantiate it elsewhere. It 's used to supply the data for 

#the wrapper functions here. Nothing else.

def -_init_-( self , cameraSubType eyex , eyey , eyez , lookx , lodky , lookz , \
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windowx , windowy):

s e 1 f . cameraSubType = cameraSubType

if self . cameraSubType = U t i 1 i t i e s . BASIC-CAMERA:

self, camera = BasicCamera(eyex , eyey , eyez, lookx , looky, lookz , \ 

windowx, windowy)

#if one wanted to add an additional camera type, they’d have to

#instantiate it here. Additionally , if any extra methods were added to

#the new camera type, you’d have to include a wrapper for that , while 

#also performing any error handling that may arise if someone calls your 

#method for your camera while actually dealing with a camera type other 

#than your own.

else :

self, camera = BaseCamera (eyex, eyey, eyez, lookx, looky, lookz, \

windowx, windowy)

self.eyeX = self . camera. eyeX

self.eyeY = se 1 f . camera. eyeY

self.eyeZ = s e 1 f . camera. eyeZ

self. lookX = self . camera. lookX

self.lookY = s e 1 f . camera. lookY

self.lookZ = s e 1 f . camera. lookZ

self. windowX = self, camera. windowX

self.windowY = se 1 f . camera. windowY

if self . cameraSubType = U t i 1 i t i e s . BASIC-CAMERA:

self . eyeXInc = 0

self.eyeYInc = 0

self.eyeZInc = 0

def CameraViewport (self , angle, near, far):

self . camera. CameraViewport (angle , near , far )

def LookAt(self , body):
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self, camera . LookAt (body)

def AdjustCamera(self , body):

if self .cameraSubType = U t i 1 i t i e s . BASIC-CAMERA:

self. camera. AdjustCamera(body)

def keyboard ( self , args, body):

se 1 f . camera. keyboard (args , body)

def special (self , key, x, y):

self . camera. special (key , x, y)

Listing 1.9: CameraManager.py

from --future-- import with.statement

from OpenGL import *

from OpenGL.GL import *

from OpenGL.GLU import *

from OpenGL.GLUT import *

from Utilities import Utilities

from CameraWrapper import CameraWrapper

class CameraManager ( obj ect ):

cameras = []

def AddCamera ( s e 1 f , cameraSubType, eyex , eyey, eyez , lookx , looky , lookz , \ 

windowx , windowy):

s e 1 f . cameras . append ( CameraWrapper (cameraSubType , eyex, eyey, eyez, \ 

lookx , looky , lookz , windowx, \ 

windowy) )

#Give the initial conditions for every camera here. If you need different 

#initial conditions for different cameras then use the AddCamera method from 

#the calculation script to instantiate it.
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def GetCameras (self , eyex , eyey , eyez, lookx , Iooky , lookz , windowx, \ 

windowy):

#add as many cameras as you want right here. In the simulation script,

#you can add keyboard functions that will switch between the different 

^cameras you instantiate if you like.

self .AddCamera ( Utilities .BASIC-CAMERA, eyex, eyey, eyez', lookx, looky ,\ 

lookz, windowx, windowy )

return self, cameras

Listing 1.10: DynamicCelestialBodyPositionSimulation.py

from --future.- import with-statement

from OpenGL import *

from OpenGL.GL import *

from OpenGL. GLU import *

from OpenGL.GLUT import *

import string

import sys

import os

from config import Config

from BodyManager import BodyManager

from BodyWrapper import BodyWrapper

from Utilities import Utilities

import os

import time

from CameraManager import CameraManager

class Simulation (object):

def __init__(self):

#get the current working directory set by the main GUI

thisdir = os.getcwd() + ’ \\ ’ + U t i 1 i t i e s . BODY_DEFINITION_DIR 

theListDir = os . listdir (thisdir )
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self.bodyMgr = BodyManager ()

self . theBodies = se 1 f . bodyMgr. GetBodies (theListDir)

se1f.bodyindex = 0

self . cameraindex = 0

self, window-x=800

self, window_y=800

#This is 1/AU where AU is the astronomical unit. (1AU/14-9596000m)

self.eyex = 0

self.eyey = 0

self.eyez = self . theBodies [ self . bodyindex ]. getZViewingDistance * \

Utilities . AU_SCALING_FACTOR #meters

#self. eyexlnc = 0

#s elf. eyeyInc = 0

#s elf. eyezlnc = 0

self.lookx = 0 #152100000000

self . looky = 0

self, lookz = 0

self . cameraMgr = CameraManager ()

sei f . theCameras = self . cameraMgr . GetCameras ( \

self.eyex, self.eyey, self.eyez, self.lookx, self.looky, \

self.lookz, self . window_x , self . window-y)

se 1 f . normalScaling = bool(True)

self . absoluteScaling = bool(False)

self . categoricalScaling = bool(False)

self . scalingFactor = 0
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#The categorical radii of celestial bodies.

self.categorylradius = 200 

self.category2radius = 20.

self.category3radius = 1.0

self.category4radius = .3.

self . elapsedTime = 0

self.name = ’Sun Earth & Moon Animation’

def main( self ):

self . timeStart = time, time ()

print ’Main Start Time: ’ + str ( self . timeStart)

glutlnit(sys. argv)

glutlnitDisplayMode (GLUT-RGBA | GLUT-DOUBLE | GLUT-ALPHA | GLUT-DEPTH)

glutlnitWindowSize ( self . window_x , self . window.y) 

glutCreateWindow( self .name)

glutDisplayFunc ( s e 1 f . display)

glutIdleFunc(self. display)

#glutReshapeFunc (ReSizeGLScene)

glutKeyboardFunc( self . keyboard)

glutSpecialFunc ( self . special)

self . InitGL(self, window.x , self, window.y)
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glutMainLoop ()

return

def InitGL(self, Width, Height):

#initialize all the planets data.

for bodyx in se 1 f . theBodies :

bodyx. loadTextures ()

glEnable (GL_TEXTURE_2D)

# We call this right after our OpenGL window is created.

# This Will Clear The Background Color To Black

glCle ar Color (0. ,0. ,0. ,1.)

# Enables Clearing Of The Depth Buffer

glClearDepth (1.0)

# The Type Of Depth Test To Do 

glDepthFunc(GL-LESS)

g 1E n a b 1 e (GL_CULL_F ACE)

glEnable (GL.LIGHTING)

# Enables Depth Testing

glEnable (GL_DEPTH_TEST)

# Enables Smooth Color Shading

glShadeModel (GLSMOOTH)

^initialize the camera viewport.

self . theCameras [ self . cameraindex]. CameraViewport(\

130, 0.00000001, \

( self . theBodies [ self . bodyindex]. getZViewingDistance )*\

Utilities . AU-SCAUNG-FACTOR)

def display ( self ):

g 1C1 e a r (GL_COLOR_BUFFERBIT | GL_DEPTH_BUFFER_BIT)
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glLoadldentity ()

self. theCameras [ self . cameraindex ]. Look At ( self . theBodies [ self . bodyindex ])

lightZeroPosition = [self.eyex, self.eyey, self.eyez, 1.]

glLightfv (GL-LIGHTO, GL-POSITION, lightZeroPosition)

lightZeroColor = [10. , 10.0 ,10. , 1.0]

glLightfv (GL-LIGHTO, GL-DIFFUSE, lightZeroColor)

ambientlntensityO = [152100000000., 152100000000., 152100000000., 1.0]

glLightfv (GL-LIGHTO, GL-AMBIENT, ambientlntensityO)

glLightf (GL-LIGHTO, GL_CONSTANTjVTTENUATION, 0.1) '

glLightf (GL-LIGHTO, GL-LINEARATTENUATION, 0.05)

glEnable (GL-LIGHTO)

#make the bodies draw themselves — CONTROLLER!

try:

self. bodyMgr. DrawBodies (Utilities .AU-SCAUNG-FACTOR)

#when drawing bodies, make sure that the camera doesn’t go inside

#one of the bodies.

self. theCameras [self, cameraindex ] . AdjustCamera(\

self . theBodies [ self . bodyindex] )

glutSwapBuffers ()

return

except Error:

elapsedTime = (time.time() — sei f . timeStart) / 60

print ’Start Time is: ’ + str (self. timeStart) + \

’ Elapsed time is: ’ 4- str (elapsedTime) 4- ’ minutes’

exit(0)

def idle(self):

glut Post Redisplay ()

def keyboard ( self , *args):
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self. theCameras [self, cameraindex ] . keyboard (\

args , self . theBodies [ self . bodyindex])

^absolute scaling

if args [0] = ’a5 :

self . bodyMgr . normalScaling = bool(False)

self .bodyMgr. absoluteScaling = bool(True)

#normal scaling

elif args [0] = ’n ’ :

seIf .bodyMgr. normalScaling = bool(True)

self .bodyMgr. absoluteScaling = bool(False)

elif args [0] =’e’:

exit (0)

#These two here need to be the exact same as the and ’b ’ keys above.

elif args [0] •= ’+*:

self . bodyindex = ( self . bodyindex + 1) % len ( self . theBodies)

#self.eyezlnc = 0

elif args [0] = :

self . bodyindex = ( self . bodyindex — 1) % len ( se 1 f . theBodies )

#self. eyezlnc = 0

else:

return

glutPostRedisplay ()

def special (self, key, x, y):

self . theCameras [ self . cameraindex] . special (key , x, y)

glutPostRedisplay ()

#s tarts demo ..

#if__name__= ”___ main__

■ #main () 
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Listing 1.11: NewtonNBody.sci

function xyp=fl(t,Z);

name = 1;

xPosition = 2;

yPosition = 3;

xVelocity = 4;

yVelocity = 5;

radius = 6;

mass = 7;

redColor = 8;

greenColor — 9;

blueColor = 10;

textureimage = 11;

parentBody = 12;

aphelionFromParent = 13;

perihelionFromParent = 14;

g = 15;

rotationAngleXYPlane = 16;

//G=12

//get the size of this beast(all planetary/cometary data)

//number of columns equals the number of planets.

numPlanets = max( size (Z)) /16;

numAttributes = 16;

//for each planet, calculate thier coordinates.

for i =1: numPlanets

eqnSumX = 0;

eqnSumY =0;

calcRadius = 0;

//calculating each individual component of the gravitational equation.
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for j =1: numPlanets

if j O i then

calcRadius = ’((Z(xPosition 4- (numAttributes*(i  — 1))) — ...

Z (xP osit ion+(num Attributes *(  j — 1))))" 2 4- ...

(Z(yPosition+(numAttributes*(i  — 1))) — ...

Z( yPositi o.n+( num Attributes *(j  — l))))"2)"(l/2);

//theradius = disp ([ calcRadius ]);

eqnSumX = eqnSumX 4- ((Z(mass4-(numAttributes*(j  — 1))) * ...

(Z( xPosition4-(numAttributes *(  i — 1))) — ...

Z( xP os ition+( num Attributes *(j  — 1))) )) / abs( calcRadius ) " 3); 

eqnSumY = eqnSumY 4- ((Z(mass4-(numAttributes*(j  —1))) * ...

(Z(yPosition4-(numAttributes*(i  —1))) — ...

Z(yPosition4-(humAttributes*(j  — 1))) )) / abs (calcRadius ) " 3); 

end

end

//after each component is summed up (which is a property of the 

//gravitational equation, set the values back to what they 

// should be:

xyp(xPosition4-(numAttributes*(i  —1))) = ...

Z( xVelocity 4-(numAttributes * ( i — 1) ));

xyp ( xVelocity4-(numAttributes *(  i —1))) = ...

—Z(g4~(numAttributes*( i — 1))) * eqnSumX; 

xyp(yPosition4-(numAttributes*(i  — 1))) = ...

Z( y Velocity 4~( num Attributes * (i — 1)));

xyp (y Velocity4-(numAttributes * (i'—!))’) = ...

—Z(g4-(numAttributes*(i  —1))) * eqnSumY;

//clear out the mass values , so the function doesn’t .add to them, 

for k=l:numPlanets

xyp(mass 4- (numAttributes*(k  — 1))) = 0;

xyp(g 4- (numAttributes*(  i — 1))) = 0; •

xyp(rotationAngleXYPlane 4- (numAttributes *(  i — 1))) = 0;
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end

end

endfunction

gravFunc = fl

I

Listing 1.12: RungeKutta2D.sci

//include the configuration file here, so we can actually access the values. 

//Read in the values as a two dimensional array so we can keep everything 

//as organized as we can.

bodyConfig = ”C:\Documents and Settings\Administrator\My Documents\CSCI\” + ...

” Thesis\ThesisProjectSource\BodyConfig . sci”

exec (bodyConfig);

projectFile = ”C: \ Documents and Settings\Administrator\My Documents\CSCI\” + ••• 

”Thesis\ThesisProjectSource\ProjectFiIe . sci”

exec (projectFile);

name = 1;

xPosition = 2;

yPosition = 3; 

xVelocity = 4;

yVelocity = 5; 

radius = 6;

mass = 7;

redColor = 8; 

greenColor = 9; 

blueColor = 10; 

textureimage = 11;

parentBody = 12;

aphelionFromParent = 13;

perihelionFromParent = 14;
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g = 15;

rotationAngleXYPlane = 16;

tO = 0;

//number of real time seconds in the simulation

tf = 3600 * 24 * 365.24 * getDuration ();

//we want to divide the period up into small step—sizes , so the 

//larger the denominator, the smaller our step—size will be. 

h = 500 * getDuration ();

t=0:h: tf ;

//initial condition setup for x and y.

// first value is the distance between the Earth and

//the Sun at aphelion (furthest distance)..

bodies = GetAllBodyData () ;

size (bodies)

[m, numBodies] = size (bodies );

numAttributes = 16;

//construct the initial conditions.

initialPositions =[]

//get all bodies initial conditions prior to rotation,

//so we can rotate children properly.

for i =l:numBodies

initialPositions (1 , i) = strtod (bodies (xPosition , i))

initialPositions (2, i) = strtod (bodies (yP os ition , i )) 

end

for i =l:numBodies

//apply Given’s rotations here.
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//for the angle, we have to get the radians from

//the degrees input into the body config files. 

bodysRotationAngle — ( ...

strtod ( bodies (rotationAngleXYPlane , i)) * %pi)/180 ;

GivensMatrix = [

cos (bodysRotationAngle) —sin (bodysRotationAngle)

sin (bodysRotationAngle) cos (bodysRotationAngle) ];

//need to find the parent’s xy values, so we can 

//subtract from the childs initial conditions.

//we need to do this so we make sure that we’re 

//rotating about the parent, and not anything else, 

//example: in the moon’s case, we want to rotate about 

//the earth , not the sun.

originalXPositionChild = strtod (bodies (xPosition , i)) 

originalYPositionChild = strtod (bodies (yPosition , i)) 

originalXPositionParent = 0

originalYPositionParent = 0

for j =1: numBodies

if bodies (parentBody , i) = bodies (name, j) then 

originalXPositionParent = initialPositions (1, j ); 

originalYPositionParent = ini tial Pos it io ns(2,j);

end

end

adjustedXPosition = originalXPositionChild — ...

originalXPositionParent ;

adjustedYPosition = originalYPositionChild — ...

originalYPositionParent ;

originalPosition = [ adjustedXPosition

adjustedYPosition ];

originalVelocity = [ strtod (bodies (xVelocity , i))

strtod (bodies (y Velocity , i)) ]; 
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adjustedPosition = GivensMatrix * originalposition 

adjustedVelocity = GivensMatrix * originalVelocity

adjustedPosition = [ adjustedPosition (1 ,1) 4- ...

originalXPositionParent 

adjustedPosition (2,1) 4- ...

originalYPositionParent ]

xPosDifference = adjustedPosition (1 ,1) — ...

origin alXPositionChild 

yPosDifference = adjustedPosition (2,1) — ...

originalYPositionChild

bodies (xPosition , i) = string (adjustedPosition (1 ,1)) 

bodies (yPosition , i) = string ( adjustedPosition (2,1)) 

bodies (xVelocity , i) = string ( adjustedVelocity (1 ,1)) 

bodies (y Velocity , i) = string ( adjustedVelocity (2,1))

for k=l:numBodies

if bodies (name, i) = bodies (parentBody , k) then

//we move the smaller (k).

//first , we have to move the child body the same

//amount as the parent body moved, while not

//rotating it .

//Then, if the child body itself needs rotated, 

//then it will be handled in the previous for 

//loop, not this one.

posX = strtod ( bodies (xPosition ,k));

posY = strtod (bodies (yPosition ,k));
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adjPosx = posX 4- xPosDifference ;

adjPosy = posY 4- yPosDifference ;

bodies ( xPosition , k) = string (adjPosx );

bodies (yPosition , k) = string (adjPosy );

end

end

end

//this is outside the initial for loop to make sure that

//all the rotated velocities have been

//calculated prior to adding parent velocities to the

//child .

for i =1: numBodies

//add the velocity of the parent body to the child body.

for j =1: numBodies

//ex if the moon’s (i) parent body = the earth(j)

if bodies (parentBody , i) = bodies (name, j) then

velXI = strtod ( bodies (xVelocity , i ));

velXJ = strtod (bodies (xVelocity , j ));

velYI = strtod ( bodies (yVelocity , i ));

velYJ = strtod(bodies( yVelocity , j ) ) ;

theXSum = velXI + velXJ;

theYSum = velYI 4- velYJ;

bodies ( xVelocity ,i) = string (theXSum ) ;

bodies (yVelocity , i) = string (theYSum);

end

end

end
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//initial condition matrix setup.

zO = zeros(max(size (bodies )) * numBodies); 

for i =1: numBodies

zO (xPosition (numAttributes *(  i —1)) ) = strtod ( bodies (xPosition J));+
+zO(yPosition (numAttributes *(  i—1))) = j

+zO (xVelocity (numAttributes *(  i—1))) = strtod (bodies (xVelocity i));5

+zO(yVelocity (numAttributes*(i  —1))) = strtod (bodies (yVelocity i));J

zO(radius 4- (numAttributes *(  i —1)))

zO(mass 4- (numAttributes*(  i —1)))

zO(g 4- (numAttributes*(i  —1)))

strtod (bodies (radius , i));

strtod (bodies (mass , i ));

strtod(bodies(g, i ));

zO (rotationAngleXYPlane 4- (numAttributes*(  i — 1))) = ..

strtod (bodies (rotationAngleXYPlane , i ));

end 

zO

// in order to start the bodies at positions other than x=aphelion , y=0, 

// we can perform a givens rotation to specify an angled offset of that.

// We’ll need to extract the x and y positions of each body, and multiply 

// that by the Givens rotation matrix with the angle specified for the 

// body, in order to get the correct rotated positions. We’d have to do 

// this not only for the x and y positions , but also for the velocities 

// of the respective bodies, and it would have to happen right here.vv

// the tic() toc() sequence is used for benchmarking purposes, to see how 

// different things affect the calculation .

tic ()

y = ode(” rkf ” , zO , tO , t , gravFunc );

timeForCalc = toc()

fileCalc = getcwd() 4- ’\Benchmarks\currentBenchmark.txt’; 

calc = mopen( fileCalc , ’a+’ );
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mfprintf (calc , ’Time to calculate= %f \n ’ , timeForCalc ); 

mclose (calc)

[m,n] = size(y);

for i =1: numBodies

xl = zeros(2,n);

yl = zeros(2,n);

xl (1 ,:) = y(xPosition + (numAttributes *(  i — 1)) ,:);

xl(2,:)

yl(l .:)

yl (2 ,:)

= y(yPosition + (numAttributes*(i  —1)) ,:);

= y(xVelocity + (numAttributes*( i — 1)) ,:);

= y(yVelocity 4- (numAttributes*(  i — 1));:);

filen = getcwd() 4- ’ \ ’ 4- getBodyCoordinatesDir () 4- ’\’ 4- ...

bodies (name, i) 4- ’.txt’;

u = f i 1 e ( ’open ’ , filen , ’unknown ’)

for j=l:n

fprintf(u, *%f  %f’,xl(l,j), xl(2,j));

end

fi1e(’close’, u)

end 

exit
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APPENDIX B

INSTALLATION
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The following programs/extensions will be needed in order to obtain a completely 

working copy of the code:

1. Tortoise SVN (1.5.3 Build 13783), or equivalent.

http: //tortoisesvn.net/downloads

Google Code uses subversion for their repository, so any compatible client will 

do.

2. OpenGL files. These must be in your C:\WINDOWS\System(32) folder or 

equivalent for your particular operating system:

• opengl32.dll (http://www.dll-files.com/dlhndex/dll-files.shtml7opengl32)

• glu32.dll (http://www.dll-files.com/dllindex/dll-files.shtml?glu32)

• glut32.dll (http://www.dll-files.com/dllindex/dll-files.shtml7glut32)

If they aren’t already there, visit the corresponding links to download. These 

may vary depending on what type of system you’re using. Now would be a 

good time to mention www.opengl.org. If you have any questions regarding the 

OpenGL library, that’s a great place to start. This link:

http: //www.xmission.com/~nate/glut.html

has anything and everything you need to know about glut (else it will direct you 

someplace that does). The NeHe tutorials are always good too for beginners and 

gurus alike: http://nehe.gamedev.net/

3. Python v. 2.5.2

http://www.python.org/download/
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Set environment variables to the python installation directory (C:\Python25), 

and also the scripts directory within that (C:\Python25\scripts).

All the extensions you’ll need for Python:

• PyOpenGL v. 3.0.0.065

http://sourceforge.net/projects/pyopengl/

• SetupTools After you download PyOpenGL, read its documentation, and 

it’ll take you exactly where you need to go for the SetupTools. Make sure 

your environment variables are set!

• WxPython v. 2.8

http://www.wxpython.org/download.php

• Config v. 0.3.7 

http://www.red-dove.com/python_config.html from Red-Dove. .

• Python Imaging Library(PIL) v. 1.1.6 

http://www.pythonware.com/products/pil/

4.. Wingware IDE v. 3.1.3-1. Personal

http://www.wingware.com/downloads/wingide-personal

5. Scilab 5.0.1

http://www.scilab.org/

Set environment variable to where scilex.exe is located within the main Scilab 

program file folder.
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Now that you’ve got everything setup, pick a place for your repository to reside 

within your file system, right click on. the folder, and use Tortoise SVN to check out 

the project to that folder. The code can be found here: 

http://code.google.eom/p/extensiblesimulationofplanetsandcomets/, and on the ac

companying CD. You will have to consult Google for your username and password 

credentials.

You will have to change a few files in order for everything to work properly, and 

these include a few Scilab files:

• BodyConfig.sci

• ESPCConfig.sci

• RungeKutta2D.sci

You have to change the paths at the beginning of the aforementioned files to the 

appropriate directory where this, project will reside in order for them to be able to 

read and communicate with each other.
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