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Abstract

There are two parts in this project.

In part I, we consider the Riccati initial-value problem:

y'(t) = ay2 + by+ c,

y(0) = d,

where a, b, c, and d are real numbers and t > 0 represents time. We determine conditions 
on the constants a, b, c and d that are necessary and sufficient for y(t) to approach either 
+oo or —oo as t approaches some finite value

In part II, we consider blow-up property of solutions for the degenerate semilin- 
ear parabolic initial-boundary value problem:

%quT - = f (u(£o, r)) for 0 < £ < a, 0 < r < a,
u(£, 0) = i/o(£) > 0 for 0 < £ < a, 
u(0, t) = 0 = Uf (a, t) for r > 0.

Here a, cr, and q are constants with a > 0,0 < a < oo, and q > 0. Also, let £o 
be some fixed point in (0, a). It is assumed that f E C’2([0, oo)), f (0) > 0, f > 0, f" > 0. 
We will show that for sufficiently large initial function uo (£) solution of the above initial
boundary value problem blows up in finite time and the blow-up set is the entire interval 
[0,a].
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Chapter 1

Introduction

There are two parts in this project.

In part I, we consider the blow-up property of solutions for Riccati equation. 

Count Jacopolo Francesco Riccati (May 28, 1676 - April 15, 1754) is famous for intro

ducing and researching solvability of the equation that is now known as Riccati equation:

y'(t) = a(t)y2 + b(t)y + c(t). (1.1)

The matrix form of this equation is very important in modern times since it is used 

extensively in design problems in filtering and control [Bit91]. Even though the Riccati 

equation (1.1) is not solvable in general, numerous methods are developed for finding 

solutions for special cases of this equation [PZ03].

We consider the Riccati initial-value problem:

f y'(i) = ay2 + by + c,
| #(0) = d,

where a, b, c, and d are real numbers and t > 0 represents time. We determine conditions 

on the constants a, b, c,and d that are necessary and sufficient for y(t) to approach either 

+oo or — oo as t approaches some finite value tfr. We provide exact values for the time 

for the cases when 4ac — b2 is positive, negative, or zero. We are interested in the first 

occurrence of blow-up. We do not consider behavior of y(t) for t > tt>.

In part II, we consider blow-up property of solutions for the degenerate semilin- 
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ear parabolic initial-boundary value problem:

- u# = f(u(£0, t)) for 0 < £ < a, 0 < t < cr,

u(£, 0) = uo(£) > 0 for 0 < £ < a,
u(0, t) = 0 = ufa, t) for r > 0.

Here a, a, and q are constants with a > 0,0 < a < oo, and q > 0. uT means the first order 

partial derivative of u(£, r) with respect to r, and u^ means the second order partial 

derivative of u(£,r) with respect to £. Also let £o be some fixed point in (0,a). Because 

the reaction term /(,u(£o,t)) depends on the fixed value £o in (0,a), we say that this 

problem has localized nonlinear reaction. Let £=ax, r=aq+2t, D=(0,1), Cl=D x (0, T),D 

and Q be the closures of D and Q respectively, xo = £o/a; and Lu — xqut — uxx. We can 

see that xo = £o/a is a fixed point in (0,1). Since £ — ax, we have ux = du/dx = (du/df) ■ 

(d£/dx) = Uf-a; then u% = ux/a. Also, uxx = dftu/dx2 = (d/dx) ■ (du/dx) = (d/dx) (au^), 

then we have a ■ (d/dx) (uf) = a- (du^/df) ■ (d£/dx) = a ■ u^ • a = a2 • u&, then we have

= u,xx/a^. Now since r — aq+2t, so ut = du/dt = (du/dr) ■ (dr/dt) = uT ■ aq+2, then 

we have = ut/aq+2. And since xo = £o/a, then £o = a • xo- Now we have this:

^quT-u^ = (ax)q—- —
XqUt 'Uxx

Since £ = ax, and 0 < £ < a, then 0 < ax < a, so we have 0 < x < 1. Also, since 

r = aq+2t, and 0 < t < a, then 0 < aq+2t < a, so 0 < t < a/ (a9+2) = T.

So f (-u(£0,r)) = f(u(ax0,aq+tt)) = [xq ■ut(ax0,aq+2t) ~uXx(ax0,aq+2ty\/a2 = f (u(x0,t)) 

in Q, (0 < x < 1,0 < t < T). Then, (xqut — uxx) /a2 = f (u(xq, t)), hence xqut — uxx — 
a2f(u(x0,t)).

The above problem is transformed into

Lu = a2f(u(x0,t)) in

u(x, 0) = uo(z) > 0 on D,

u(Q,t) = 0 = ux(l,t) for 0 < t < T,

(1-3)

where T—a/aq+2 < oo. We assume that / e C2([Q,oo)), f(0) > 0,f > 0, f" > 0, and 

there exists a positive number r such that

/(«) > u1+r for u > 1. (1.4)
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The function uq(x) G C2+a(D) is required to satisfy the compatibility conditions uo(O)= 

0 and fy/l) = 0, where 0 < a < 1. The solution of the problem (1.3) is said to blow-up at 

x = x and t — tb if there exists a sequence {(zn, tn)} —> (x, fy) and Zimn_>00-u(2:n, tn) —> oo. 

The blow-up of u is complete at tb if at tb, u blows up at every point x E D.

The complete blow-up of the solution of the problem (1.3) with ux(l, t) replaced 

by u(l,t) was investigated by Chan and Yang [CY00]. In Chapter 3, we show existence 

of a unique classical solution of the problem (1.3) for any q > 0. If T < oo, then u{xq,t) 

is unbounded in (0,T). A criterion for u to blow up in a finite time is also given, and a 

nonlinear integral equation in terms of Green’s function is used to show that the localized 

nonlinear reaction leads to the complete blow-up of u for any q > 0.
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Chapter 2

Riccati Problems with Constant

Coefficients

We will start by stating the theorem which is very important for the Riccati 

problems.

Theorem 2.1. The following is true for the solution y(t) of (1.2):

1. Let 4ac — b2 > Q. If a> 0, then y(t) —> +oo, while if a < 0, then y(f) —> — oo.

2. Let4ac—b2 = 0. If a > 0, andd > ——, theny(t) —> +oo. If a < 0, andd < then
2a 2a

y(t) —> —oo. Otherwise., y(t) is bounded for any finite t > 0. In particular, if d = — —, 

then y(t) = d.
—b -b y/b2 — 4ac

3. Let 4ac — b2 < 0. If a > 0 and d > -------- ----------- , then y(t) —> Too. If a < 0 and
2a

—b -J- ~\/b2 — 4ac
d < -------- - ---------- , then y(t) —> —oo. Otherwise, y(t) is bounded for any finite t > 0.

, . , , —b ± Vb2 — 4ac , . .In particular, ij d =-------- ----------- , then y(t) = d.

/. If a = 0, then y(t) is bounded for all t > 0.

Proof. 1. Let 4ac — b2 > 0. A solution of the initial value problem (1.2) can be found 

using separation of variables and the table of integrals [LHE06]:

2/(i) =
y/4ac— b2

2a tan + arctan b + 2ad \
V4ac — b2 J

ft
2a (2-1)
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We can find the blow-up time by solving the following equation for t:

t\/4ac — b2 ( b + 2ad \
------ --------- 1- arctan , -

2 \ V 4ac — b2)
7T

2’

Also,

7T

a/ 4ac — b2
2

, = arctan
V4ac - b2

b + 2acZ 
y/4ac — b2

7T

2
< arctan b + 2ad

4ac — b2

This implies that tb is always positive and solution y(t) of (1.2) is guaranteed 

to blow-up as t approaches tb- Also, from equation (2.1) we notice that if a > 0, then 

y(t) —> Too, while if a < 0, then y(t) —> —oo. Changing initial value d cannot prevent 

blow-up from occurring. However, d influences the blow-up time tb- For example, if a < 0, 

then decreasing d will accelerate the blow-up. If a > 0, then increasing d will accelerate 

the blow-up.

2. Let 4ac — b2 = 0. Using separation of variables, we obtain:

Integration leads to the following solution:

= 2ad + b 
a(2 — 2adt — bt)

b_
2a (2-2)

To find the blow-up time we will set the denominator of the first term in (2.2) 
equal to 0:

2 — 2adt — bt ■ 0,

2
2ad -(- b

From the inequality

tb 2ad + b> °’

Too,and from (2.2) we obtain the following: if a > 0 and d > then y(t)
b 2a

while if a < 0 and d < — —, then y(t) —> —oo, Initial value d is very important since 2a
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certain values can prevent blow-up from occurring. Also, d influences the blow-up time 

tb. If blow-up occurs for some value d, then decreasing d (if a < 0) or increasing d (if 

a > 0) will accelerate the blow-up. Also, if d =----- , then y(t) = d satisfies initial
ed

value problem (1.2). By the existence and uniqueness theorem for first order initial-value 

problem [BDH02], (1.2) has a unique solution. Therefore, in this special case y(t) is 

bounded for all finite t > 0.

3. Let 4ac — b2 < 0. Let us notice that if

—b± y/b2 — 4ac
n. = ----------------------------------

then y = d is the solution of the initial-value problem (1.2). Therefore, in this case 

solution is bounded for all t > 0. Now let us consider the case when

—b ± y/b2 — 4acd^
2a

Using separation of variables and the table of integrals [LHE06], we have:

I dy 
ay2 + by + c

dn
Vb2 — 4ac

where Ci is a constant of integration. We can find substituting the initial condition 
y(0) = d into the equation (2.3). We have:

Ci = 1
y/b2 — 4ac

In 2ad + b — y/b2 — 4ac
2ad + b + y/b2 — 4ac

(2-4)

We will consider two possible cases:

2ad + b-^ -4ac > Q (2,5)
2ad + b + a/62 — 4ac

and
2ad + b — y/b2 — 4ac , .
-------------  , „ < 0. 2.6) 
2ad + b + y/b2 — 4ac

Let us substitute (2.4) into (2.3) and solve for y(t). In case (2.5), we can omit the absolute 

value symbol:
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In case (2.6), we have:

1 1 / 2ay + b — Vb2 — 4ac^

Vb2 — 4ac y 2ay + b + Vb2 — 4ac J
1 1 2ad + b — \/b2 — 4ac^

Vb2 — 4ac y 2ad + b + Vb2 — 4ac J

In both cases (2.5) and (2.6), the solution of the problem (1.2) is given by the following

formula:

, . —bd + d^b2 — 4ac — 2c + (bd + d\/b2 — 4ac + 2c)4“c 
2nd + b + y/b2 — iac — (2ad + b — \/b2 — 4.ac)et'J^2'~^ac

(2-7)

To find the blow-up time we have to set the denominator equal to 0:

2ad + b + y/b2 - 4ac - (2ad + b - \A2 - 4ac)etVt,2-4ac = 0. (2.8)

Solving equation (2.8) for t, we obtain:

* 1 1 ( 2ad + b + y/b2 — 4ac^

Vb2 — 4ac y2ad + b — Vb2 — 4ac J

The blow-up time tj, must be positive, therefore, we have:

(2-9)

Let us observe that if equation (2.6) holds, then (2.8) can never be satisfied, 

therefore, there is no blow-up. If equation (2.5) holds, then there are two possibilities;

✓
2ad + b — y/b2 — iac > 0 

<
2ad + b + \/b2 — iac > 0\

(2.10)



8

or
*

2ad +b — y/b2 — 4ac < 0 

2ad + b + \/b2 — 4ac < 0.
X

(2-11)

Solving (2.10) and (2.9) simultaneously, we obtain conditions on d that lead to blow-up 

in finite time:

d>

d<

—b + Vb2 — 4ac 
2a_____

—b + Vb2 — 4ac 
2a

if a > 0,

if a < 0.

contradiction which implies that

there is no blow-up in this case. We notice that from (2.7) that if a > 0 and d >
Solving (2.11) and (2.9) simultaneously, we obtain a

—b + x/b2 — 4ac , , , —b + y/b2 — 4ac . .
— , then y(t) --> +oo. if a < 0 and a < -------------------- , then y(t) —> —oo.2a
Initial value d is very important since certain values can prevent blow-up from occurring.

Also, d influences the blow-up time t*.

4. If a = 0, then the equation is linear. Using separation of variables, we obtain:

y(t) =
(bd 4- c)ebt — c

b
Function y(t) is bounded for any finite time t > 0.

□
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Example 1 (case 3): Let us investigate the blow-up property of the solution for the

initial-value problem

y'(t) = -4y2 + 5y - 1

3/(0) = d,
(2-12)

with three different values of d as indicated below.

First, we notice that a = — 4 < 0, b = 5, c = —1, and 4ac — b2 = — 9 < 0. Also, 

(—6 + \/b2 — 4uc)/(2a) — 0.25. According to the Theorem 1, we expect that solution of 

the problem (2.12) blows up for any d < 0.25 and is bounded otherwise. Solution of the 

problem (2.12) is given by the formula (2.7).

If d — 2, then we have

—2 + 14e3t
-8 + 14e3t ’

Figure 2.1: example of the case 4ac - b2 < 0, a < 0, d > (—b + Vb2 — 4ac)/(2a)

This function is bounded for any finite time t > 0.
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If d = 0, then we have

. . 1 - e3t
= t^si-

Figure 2.2: example of the case 4ac — b2 < 0, a < 0, d < (—b + Vb2 — 4ac)/(2a)

Function y(t) —oo when = ln(4)/3.
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Example 2 (case 3):
z

y'(t) = 4y2 + 5y + 1,

3/(0) = d.\
(2.13)

First, we notice that a — 4 > 0, b = 5, c = 1, d = 0, and 4ac — b2 = — 9 < 0. Also, 

(—b + y/b2 — 4ac)/(2a) = —0.25. According to the Theorem 1, we expect that solution of 

the problem (2.13) blows up for any d > —0.25 and is bounded otherwise. Solution of 

the problem (2.13) is given by the formula (2.7). If d — 0, then we have

_2 + 2e3* 
= 8 - 2e3< '

Figure 2.3: example of the case 4ac - b2 < 0, a > 0, d > (—b + y/b2 — 4ac)/(2a)

Function y(t) —> +oo when if, = ln(4)/3.
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Example 3 (case 2):

y'(t) = y2 + 2y + 1,y 'J y y ’ 2.14)
[ #(0) = d.

First, we notice that a = 1 > 0, b = 2, c = 1, and 4ac — b2 = 0. Also, —b/2a = —1. 

According to the Theorem 1, we expect that solution of the problem (2.14) approaches 

+00 for any d > — 1 and is bounded otherwise. Solution of the problem (2.14) is given 

by the formula (2.2). If d = 0, then we have

9(i) = ru " L

Figure 2.4: example of the case 4ac — b2 = 0, a > 0, d > —b/2a

Function y(t) —> +00 when = 1.
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pW=-S2-2y-l, ' (215)

[ y(0) = d.

First, we notice that a = —1 < 0, b = —2, c = —1, and 4ac — b2 = 0. Also, —b/2a = 

—1. According to the Theorem 1, we expect that solution of the problem (2.15) approaches 

—oo for any d < —1 and is bounded otherwise. Solution of the problem (2.15) is given 

by the formula (2.2).

If d = —1.5, then we have

Figure 2.5: example of the case 4ac — b2 = 0, a < 0, d < — b/2a

Function y(t) —> — oo when tj, — 1.
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Example 4 (case 1):

y^t) = 2y2 + 3y + 2,

y(0) = d.
X

First we notice that a = 2 > 0, b — 3, c — 2, d = 1 and 4ac — b2 = 7 > 0. According to the 

Theorem 1, we expect y(t) —> +oo since a > 0. Changing initial value d cannot prevent 
blow-up from occurring.

V7
y(t) — —tan —-—I- arctan(\/7) 3

44

Figure 2.6: example of the case 4ac — b2 > 0, a > 0

Function y(t) —> +oo when t > 0.
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y'(t) = — 3t/2 + 2y — 2,

y(0) = d.

First we notice that a — — 3 < 0, b — 2, c = —2, d = 1 and 4ac — b2 — 20 > 0. According 

to the Theorem 1, we expect y(t) —> —oo since a < 0. Changing initial value d cannot 

prevent blow-up from occurring.

y(t) = -^-|tan tVb + arctan 
o

Figure 2.7: example of the case 4ac — b2 > 0, a < 0

Function y(t) — oo when t > 0.
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Proof. If b(x, i) = 0, we can apply the strong maximum principle [Fri64] to obtain the 

conclusion immediately.

For the case b(x, t) being nonnegative and nontrivial (not indentically zero), let 

7] be a positive constant, and

V(x, t) = u(x, t) + 7}(1 + x^2)ect,

where c is a positive constant to be determined.

Let us verify V(x, 0) > 0 on dOl. We have V(x, 0) = u(x, 0) + 7/(1 + j;1/2)e0 > 0, 

because we know that u(x, 0) > 0, and ?y(l + x1/2)e° > 0, thus V(x, 0) > 0.

Since u(0, t) = 0 and r](l + 0)ect > 0, so V(0,t) = u(0,t) + rj(l + 0)ect > 0. As 

we know £ = ax, then we have v,c = ux/a. We know u^fa, t) = 0, for r > 0. By the 

substitution, we get (ux/a) (l,t) = 0, for 0 < t < T, finally we have ^(l, t) = 0.

We have

Vx(x,t) = ux(x, t) + z1/2-1,
. \ nect= ux(x,t) + —=,2s/x

ct
thus 14(1, t) = xt-c(1, t) + ^|- > 0.

Let dfl denote the parabolic boundary

({0, a} x (0,T)) U ([0, a] x {0})

of IL Then V(x,t) > 0 on dfl, and Lu — b(x,t)u(xo,t) > 0.

Now,

> L(t/(1 + Vx)ect) - b(x, + ^/xo)ect
ctxqd(r/(l + y/x)ect) d2(??(l + ^)ect) ,

=---------- g-t---------------- ^2---------Kx.twi + VSH)
= - A 1 j - b(x,t)ij(l + v'xoje'*

= 7]ect ((cxq(l + fyT)) - b(x, t)(l + 7^) + ^72) •
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Let s denote the positive zero of

1 1 /o
^375 - (1 + x0 )max(X|t)enb(>, t).

For x = s,

cxg(l + x1/2) - bfx, t)(l + Xq/2) +

> ca;9(l + rr1/2) - (1 + x^max^^b^x,^ + 

= cs’(l + s1/2) - (1 + xl/2)max(Xit^nb(x, t) +

1
4^3/2 

4s3/2
= cs9(l + s1/2) — 0 > 0.

For x < s, since cxq (1 + rr1/2) > 0, and -(1 + x1i2)max^Xityenb(x, t) + >0,

CX«(1 + Z1/2) - b(x, t)(l + Y/2) + —

> cxq(l + cr1/2) - (1 + a?Q/2)max(X]t)eflb(a;, t) + —> 0.

For x > s,

cxq(1 + z1/2) - b(x, t) (1 + sj/2) +

> cxg(l + a:1/2) - (1 + xy2)max(S]t)enb(a;, t) +
1 /2> csq - (1 + xQ' )max(X)t)Gnb(x,t) > 0.

If we choose c >
(! + xo/2)max(a;,f)en^(a:1Y) 

sq , then LV — b(x, t)V(xo,t) > 0 in Q.

Suppose V(x,t) < 0 somewhere in Q. Then, the set

{t: V(x, t) < 0 for some x 6 D]

is nonempty. Let t denote its infimum. Since V(x,0) > 0, we have 0 < t < T. Thus, 

there exists some xi E D such that V(xi,t) = 0, and Vt(x-y,ty < 0. On the other hand, 

since V(x, t) attains its local minimum at (x\,t), we have Vxx(xi,t) > 0. Since t is the 

infimum, we also have V(xo,t) > 0. Now we have,

LV(xi,t) = x^Vf(x1,t) - Vxx(xi,t) < 0,

XiVt(xi,t) ~ Vxx(xi,t) - b(xi,i)V(x0,i) < 0,

0 > xlVt(x3.,t) > LV(xi,t) — b(xi,t)V(xo,t) > 0.
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This contradiction shows that V(x,t) — u(x,t) +77(1 T a;1/2) > 0, in Q. 

As 7j —> 0+, u(x, t) > 0.

□

3.2 Existence and Uniqueness

Let a> = D x (0, to) for some positive number to, and w be its closure.

Lemma 3.2. There exists a positive constant to < T such that the problem (1.3) has an 

upper solution pi(x, t) G C'2,1(cu).

Note: An upper solution /xi(x,t) has to satisfy the following:

Lpi — a2f(/zi(xo,t)) > 0 in w

0) > no (a?) on D

Mlx(M) >0, te[o,to]
jUi(0,t)>0, te[o,t0].

Note: pi G C2,1(w) means that Pi, Pix, Pixx and are continuous on a).

Proof. Let = 1 + maxa.ejp(uo(a;)), and #2(> 2a2) be chosen sufficiently large such that

7 = fc2f(l + ki) > 2, (3-2)

0 < e < min 1
1 1 I k2 - 2a2 )

(3-3)
z

Since 21/G 2) > 1 for any 7 > 2, we have

0 < 1---- < 1.
2v-2

Let pi(x,i) = $i(a;)7i(t), where

Oftx) = (1 - xft e^x + ku (3-4)



20

r[ = e qk1 71(0) = 1. (3.5)
01 (x0)

By the existence and uniqueness theorem for first order initial-value problem [BDH02], 

(3.5) has a unique solution. We note that in D,

and the function 0i(z) is decreasing, which implies that

01 (x) < 1 + k-y.

From (3.2),

_ £2 2 ms _ ^/(gl(70)7i(0))
7 e 7 7iw _ e)7_2

_ _ 22 _
7 7 (1-<W2

> *2/(1  + fci) - e2fcj/2(1 + fcj) - a + *1)

= f (1 + fci)(/c2 - 2a2 - e2/c2f (1 + #1))

> 0.

We used the following: 

holds by (3.3).

Also, Ti(t) is an increasing function that blows up at

eqk\ ds
tb 7(1 + 7)e7 + a201W VeRxo) As) <
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Let t<2 denote the time such that

.. ,2..2_ u a2/(0i(zo)r(t2)) . . n 79
7 - e 7 TX(t2)-------_ g)7—2------- -

and to = min{t2;tb — k} for some fixed small number 0 < n tb- Since ri(t) is an 

increasing function, it follows from (3.2), (3.4), and (3.6) that for any x G [0, e] and 

t < to, 

- a2/(Mi(zo,O) = ~ o2/(mi(^o, t))

= xq9i(x)T{(t) - 6>i(x)Ti(t) - a2/(0i(zo)Ti)
- C-aln -v,.™ , u\W.-«>.-lb(l+7)£ +a2l/(e1(x0)T1)
- o t J n,x L 0i(xo)

-^7(1 - z)7-2(-l + 7x2)e7a:^ti - a2/(0i(a:o)T-i)

> -7(1 - x)7-2(—1 + 73?2)e7a:Ti - a2/(6*i(x 0)Ti)

(1 - x)7-2e7S

(1 - x^-2e^x

From (3.4) we get

— z)7 2

> 0.
a2/(01(zo)TL(£o)j’

7 - 72ri(to)e2------- (1 - c)7-2

>

>

we obtain

Using rx > 0, and from (1.4), (3.2), and (3.6) we have /(^i(a:o)n) > ^1(^o)tl, 
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and for any x E [e, 1], and t < to,

Lyi - a2/(^i(a?o,t)) = xqp,lt - p,lxx - a2fGui(z0,t))

= 2^i(2)r{(t) - 0i'(ir)n(t) - a2/(/zi(a;o,*))
= 29((1 - 2)7e7X + fci^r{(t) - (7(1 - 2)7_2(-l + 'yx2)e^r1(t) - a2f (miOo, *))
> 29((1 - x^e1* + k^r[(t') - (7(1 + 7)e7)ri(f) - a2f (^1(20, t))

> e9fcir{ - 7(1 + 7)e7ri - a2f (0i(2O)ti)

> eqkir[ - 7(1 + 7)e7 ~

= - e-’fcf1 7^1^6 + °-2 J

= 0.

Since ti(0) = 1, 0 < x < 1, and k± = 1 + max^p (120(2)),

01 (z) = (1 _ x)7e7X + kl

= (1 - x)yeyx + 1 + max^ (120(2)) > 0.

So, we have p,i(rr,0) = 0i (2)71(0) > 110(2). Also, pax(l,t) — 0i(l)2i(t) = 0, since 0j(l) = 

—7(1 — l)7_1e7 = 0. Then yi(0, t) = 0i(O)ri(i) = ((1 — 0)7e7° + Aji)ri(t) > 0. Since Lyi — 

a2f(pi(xo,t)) > 0 and Lu — a2 f (u(xq, t)), using the Mean Value Theorem (Appendix 
A), we attain

T(pi — u) = Lyi — Lu

> a,2f{m(xo,t')') ~ a2f(u.(20,t))

= a2 f (C(zo,t))(/AL(Ao,t) - 12(20,t)),

for some C(xo,t) between /2i(2o,t) and 12(20,4). By Lemma 3.1,

/2i(2,t)(e C2,1(w)) is an upper solution.

□

Let p(x) in C^O, 1] be an increasing function such that p(x) is 0 for 2 < 0 and 

1 for 2 > 1. Also, let 5 be some positive constant with 5 < xq/2, D$ = (5,1), wj = 

£>5 x (0, to), Dg and a>s be the closures of Ds and u>s respectively,
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z

for x < 5,

PS= \

ll
p(j — 1) for 5 < x < 25,

1 for x > 25,

From

dup6(x) =
36

_ z /
52p

0 for x > 25,

z

0

\

we have dup^.x^/dS < 0, and uq^(x) < rzo(rr).

Let us consider the following problem,

Lu5 = a2f(i4a(zo,t)) in
< uj(x,0) = uOs(x)(> 0) on 
[ us(6,t) = 0 = 'Ujx(l,t) for

■Dj,

0 < t < to

(3-7)

Existence of a classical solution for the problem (3.7) with U5X(1, t) = 0 replaced 

by us(l,t) = 0 has been established by Chan and Yang [CY00]. By using Theorem A.4.1 

(instead of Theorem 4.2.2) of Ladde, Lakshmikantham and Vatsala [LLV85], and Theorem 

5.3 (instead of Theorem 5.2) of Ladyienskaja, Solonnikov and Ural’ceva [LSU67], a proof 

similar to that of Theorem 3 of Chan and Yang [CY00] gives the following result.

Lemma 3.3. The problem (3.7) has a unique nonnegative solution u$ E C2+°‘,1+a/2(a>s) 

such that us(x,t) < /zi(z,t).

It is shown in Chan and Liu [CL98] that there exists solution u$ E C2+a,1+a^2(ajs) 

of (3.7).

Let lim5_>o'W(s(x, t) = u(x,t). By using the singular index 3 (cf. Ladyienskaja, 

Solonnikov and Ural’ceva [LSU67]), a proof similar to that of Lemma 2 of Chan and Liu 

[CL98] gives the following result.
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Theorem 3.4. The problem (1.3) has a unique solution u(x,t) E P C2,1((0,1] x

[0,io])-

Since 0 < nj < /zi,limj_>o'a5 exists for all (x,t) G cu. It is also shown that 

u§1, (u5)t, (vflx, and (uf)xx are equicontinuous (Appendix A) in D. By the Ascoli-Arzela 

Theorem (Appendix A), the partial derivatives of u are the limits of the corresponding 

derivatives of u$. Therefore, u(x,t) = lim5_>o«3-

Let T be the supremum over to for which the problem (1.3) has a unique solution 

u E C(uj) P C'2,1((0,1] x [0, io])- Then, it has a unique solution u(x,t) E C(D x [0,Tj) P 

C'2,1((0,1] x [0, T)). We modify the proof of Theorem 2.5 by Floater [Flo91] to prove the 

following result.

Theorem 3.5. IfT < oo, then u(xo,t) is unbounded in (0,T).

Proof. Let us suppose that u(xo,t) is bounded above by some positive constant M in Q. 

We would like to show that u can be continued into a time interval [0, T + to] for some 

positive t0. To do so, let

K = max(aV(M). l(2 Yl-x) } •

TT7Z > Kx(2k3 +1 - x) W(x) = ---------- -------- --

= Kxk3 + \Kx - ^Kx2,

W'(x) = Kk3 + - Kx,

W"(x) = -K,

where k3 > 1/2. Since LW — xqWt — Wxx = xq ■ 0 — (-K) — K, we have

L(W - u) = LW-Lu

= K - a2/(u(xo,t))

> a2 f(M) - a2f(u(x0, t))
= a2(f(M) - f(u(xQ,t))\ >0 in Q.
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Also, we have

W(x) >

Also,

(m^gx(2fa + lL))l(2i:3 + 1 - ,,
- -------------------—- --------------- > w-

and since #3 > |,

jyz(l) = Kk3 + ±K - K = K(k3 - 0.5) > 0, and ux(l,t) = 0,

we have W'(l) = K(k3 — 0.5) > Ux(l,t) for t > 0.

By Lemma 3.1, W(x) is an upper solution of u(x,t) for 0 < t < T.

Taking W(x) as the initial function at t = T, we can construct, as in Lemma 

3.2, an upper solution fiffx,t) of u(rc,t) on D x [T,T + to] for some positive to. Thus, u 

can be continued into a time interval [0, T + to]. This contradicts the definition of T. 

Hence, the theorem is proved. □

Theorem 3.6. If uq(x) is sufficiently large in the neighborhood of xq, then u blows up 

in a finite time.

Proof. Let

= (x - xo + e)2(x - xo - e)2,

= (x2 — 2xox + Xq — e2)(x2 — 2xox + Xq — e2)

= x4 + x3(—2xo — 2xo) + x2(xq - e2 + 4xq + Xq - e2)

+ x(—2xq + 2xe2xo — 2x3 + 2e2xo) + (xq ~ e2^o ~ 62Xq + g4)

= x4 + x3(—4xo) + x2(6xq - 2e2) + x(-4x§ + 4e2x0) + (xq — 2e2XQ + e4)-

Also,

^(x) = 4x3 + 3x2(—4xq) + 2x(6xq — 2e2) + (—4xq + 4e2zo)
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and

02 (x) = 12s2 — 24sos + 12sq — 4e2 

= 4(3s2 — 6sqs + 3sq — e2).

Also, we have

/ CX c i_|_r
+ (s0 + e)«e2T2 (so + e)qT2 

£72(0) = tq> max

where e is sufficiently small such that 0<sq — e < sq + e < 1, and r is given in (1.4).

We note that

02 (s) = 4(3s2 — 6xqx + 3sq — e2)

is a quadratic function with vertex at s = sq, a = 12, b — — 24xq, and c = (3s2 — e2)4.

Now,

a/3 1/3
6'2 = 0 at x = so----—e and x = xo 4——e,

O O
02 < 0 for X G (s0 - ^ye, so + yej, 

02 > 0 for s G (so - e, so - , x G (so + x0 + e),

02(zo) = (zo - xo + e)2(so - xo - e)2 = e4

and 02(s) attains its maximum e4 at x = sq.

Let w{x, t) = 02(^)T2(t)- Then for s G (so — e, so + e), since f(u) > u1+r,u > 1, 

and /(e472) > (e472)1+r provided e4r2 > 1, and e4r2 > e4(l/e4) = 1 from (3.8), since 
4 a2e4r

so + e is maximum, 02(so) = e4, and rZ + ;—^r2 = -------- —r01+r,
(s0 + e)«e2 (s0 + e)« 2

Lp2 - a2/(p2(s0,t))

= L(02(s)T2(t)) - a2/(At2(zo,O)

= s9(s - so + e)2(s - so - e)27-2 + (—12s2 + 24xox — 12xq + 4€2)r2 — a2f(ff2(.xo)x2)

< xq(x - so + c)2(x - So - e)2T2 + 4e2T2 - a2 f

< (so + e)9e4T2 + 4e2T2 - a2/(e4T2)

< (so + e)9e472 + 4e2T2 —

= (so 4- e)qe4

a2e4(l+r)r21+’-

/ , 4 _ q2e4r 1+r
T2 (s0 + e)9e2T2 (so + e)?7"2

= 0.
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For x E [so - e,so + e],/Z2fy,0) > 0. Also, ^(so — e, t) = 0 = pz^xo + e,i)- In 
(3.8), let z — r2r. We obtain a linear equation,

, 4r a2re4r
z ~ ;—t;Z + --------— = 0.

(s0 + e)9e2 (s0 + e)9

For solving this, we start from (3.8)

/ , 4 _ a2e4r 1+r
T2 (so + ej’e2^ (zo + e)?72

Let y = r2,a = -----  2, and b = -----—r-, then y’ + ay = by1+r. We have — + ay =
(so + (so + e)q dx

by1+r.

Now, P(x) — a, Q(x) = b, n = 1 +r, and v = y1 1 r = y T, then since y = v r, 

we have by1+r = 6('u_?)1+r = bv~r~\ and dy/dx = (dy/dv')(dv/dx') = — l/rv~r~1dv/dx,

1 _l_i dv _i , _i_-i----V r -----1- av r = bv r i;
r dx 

if we divide by —l/r(v)_1/r_1 to both sides, then we have

dv—---- arv = —br.
dx

Now, we have

Dx(e~arxv) = —br(e~arx),
e-arxv = j- _br(e~arx)dx = ^(e~arx) + c, 

e~arxy-r = - (e~arx) + c,
—r _ b , c

y — —---------.* a e~arx

Since 72 = y, a =
4 b_ a2eir 

(s0 + e)9e2 ’ (s0 + e)9
and x = t.

(x0 + e)9 c
A __ 4rt

----------------------------------- e <a:o+£)9£'!

(so + e)9e2
^2g4r+2 4rt

---------------------------- 1_ Cg(x0+£)9£2
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T2 =
a2£4r+2 4rt
----------- F cei-xo+^9<P

4

1 
r

I

(
4-r-O (

(*o+ £)’£2 I 0 1 K
/ = e = 1, now we have

raM^2
to = r2(0) = —-—

_r a2e4r+2
T2 = ------- A------- + c>

+ C
1 
r

>

Therefore, t2 = {

_r a26^+2

T2-----4~ = C>
\ah4r+2 ( 1
—+uT2 =

a2e4r+2 _4rt
------ e C^o-t-*) 962

4
To find the blow-up time,

a2£4r+2 _ 4rt
--------- e (a:o+£)9£2 

4
a2e4r+2 4rt
--------- e (xo+£),e2

4
a2£4r+2 _ 4rt
--------- e (io+£),£2

4

______4rt
e (a:o+e)3£2 =

—4rt

Art
g(®0+£)9e2

,2 ,4r+2-11 a“e~H--r-----------TT0 4

a2e4r+2
4 °’

. a2e4r+2
4 ’

-4“+ a2r^e4r+2

1

To
1 

~~7 +
r0

4tJ
—4 + q2Tq e4r+2

5

i
r

4to 
a2e4r+2 
l-4 4 )

a2TQ£4r+2 J

—4 + q2Tq e4r+2
^a2e4r+2

= 1-------- - -----
a2r^+2 ’

Therefore, t = (x° + e)ge in fi _ .

1

4r

, then 4 
a2TQe4r+2 <Since r2(0) = to > max

Therefore, r2(t) blows up at the time In ^1 —
4r

Since

4
a2TQ€2+4r > 0.

Lu = a2f(u(x0,t)) = a2f{^u(xo,t),

where g lies between 0 and u(xq, t), it follows from Lemma 3.1 that u(x, t) > 0. Therefore, 

if we choose uq(x) such that uq(x) > ^2(t,0) on [tq — e,xq + e], then by Lemma 1 of
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Chan, and Yang [CYOO], u(x, t) > Hence, the solution u(x, t) of the problem (1.3)

blows up no later than whenever iio(z) > M2 (7,0).

□

3.3 Complete Blow-Up

Green’s function G(x, t;£,r) corresponding to the problem (1.3) is determined 

by the following system: for x and £ in D, and t and t in (—00,00),

LG = <5(x — £)5(t — r),

G(x, t; £, r) = 0 for t < r, 

G(0, t\£, r) = 0 = Gs(l, t; £, r)

where 6(x) is the Dirac delta function.

Definition of the Dirac delta function <5:

We define the delta function, or more accurately the delta distribution [McO97], in Rn 

to be object 8(x) so that formally

5(x)v(x)dx = v(0)

for every test function v E Gq°(R"). Go°(Rn) denotes the space of continuous functions 

with continuous derivatives on Rn whose support is a compact subset of Rn. The support 

of a continuous function f (x) defined on Rn is the closure of the set of points where f (x) is 

nonzero [McO97]. In the one-dimensional case we find H1 (x) = 5(x), where the Heaviside 

function of a single real variable is:
z

ff(x) = <
1 if x > 0 

0 if x < 0.

Notice that we can take any number of distributional derivatives of <5(x). Also, we can 

translate the singularity in <5(x) to any point p E Rn by letting <iM(x) = <5(x — m) so that 

a change of variables y = x — /a, yields

iMv(x)dx = / 6(x —/i)v(x)d:
JRn
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Lemma 3.7. If h(x,t) is nontrivial (not indentically zero) such that 0 < h(x,t) < 1 and 

hfx, t) 6 C'OO(.R2)) then for any finite 6, the degenerate linear parabolic problem,

Lv = h(x,fi) in D x (0,0],

< v(x, 0) = 0 on D, (3-9)

n(0,t) = 0 = ^(ljt) for 0 < t < 0,

has a unique solution v(x,t) G C{D x [0,0]) A C'2,1((0,1] x [0,0]).

Proof. Let 5 be some positive constant such that 5 < xq- We consider the problem,

Lv$ = h(x,t) in

< v$(x, 0) = 0 on Ds, (3.10)

vs(8,t) = 0 = njx(l,t) for 0 < t < 0.

We would like to construct an upper solution /z3(x,t) G C2,1(D x [0, 0]) in the 

form 03(x)73(.t) for v and all v$ given by (3.9) and (3.10) respectively. Let 03(xj = 

xe4~x, 03(x) = e1_a: — xe4~x, 03(x) = e4~x(x — 2), and e be a fixed positive number 

less than rro, and

7-3 = e_9(l + e_1)7-3,r3(0) = 1.

It follows that

r3(t) = > 0,

which is increasing and bounded for any t < 0.

Let p3(x,t~) — 03(x)r3(t). Then,

M3(x,t) = 03(x)r3(t)
= (xe1-a:)(e£“9C1+£_1)t) G C2ftD x [0, 0]).

For any x E [0, e], and any t < 0,

Lp3 — h{x,t) = L(03(x)r3(t)) - h(x,t)

x9(xe1_I)e_9(l + e_1)r3 — ef~x(x — 2)t3 — h(x, t)
> -e4~x(x - 2)t3 - 1

> 61 ^<-e + 2-e-J
> e1-a:T3(—e + 2 — 1) 

(1 — e)e1_IT3 > 0.
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Since r3(t) is an increasing function, we have for any x E (e, 1] and any t < 9,

Lp,3 — h(x, t) xq(xe1 x)e 9(l + e 1)t3 — e1 X(x — 2)t3 — h(x,t)
eqxe1 xr^ — xe1 xt3 — 1

eqxer~x

eqxe2~x

— e qr3 -

- e~qr3 -

e qT3 \ 
e1_a:XT3 / 
e~gT3 \ 
el-a:e7-3 J

e9xe1 “(rg — e qr3 — e 9 1t3)

= 0.

Since p3(x, 0) = 03(2j)t3(O) = xe1-1 • 1 = xe1-1 > 0, /23(C), t) = 03(O)r3(t) — 0, and

/z3a,(l,t) = ^(l)7^) = (e1_1 — e1_1)r3(t) = 0, it follows from the strong maximum 

principle [Fri64] and the parabolic version of Hopf’s lemma [Fri64] that p3(x,t) is an 

upper solution for all v$ and v.

We note that x~q E Ca’a/2(Ds x [0,0]), |x_qh\ < 5~q for (x,t,uj) E D$ x 

[0,0] x R, and uOd(x) = 0 E C2+a(Ds).

Definition of Holder Continuity.

If 0 < a < 1 and u is defined and continuous in a neighborhood U of xo, then we can say 

that u is Holder continuous at xq with exponent a if

< 00.

>

>

>

Here xq E D$ — [0,1].

Let us prove that x 9 G CQ,“/2(Di x [0, 0]). By the mean value theorem, 

/(u) - f(y) = /'(£)(u - v). Let f(x) = x q, and /(x0) = x0 q,

|x--x0-| = |y'(£)(x-xo)|

= |-q£_9_1(z - zo)| 
= ^i^-xq) < 00.

So

sup^et/

supxe[Z

\u(x) - u(x0)|
I IQ|x — CEo |

‘7’ — 'T
n-------- < °°-|z — Zo|
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By Theorem A.4.1 of Ladde, Lakshmikantham and Vatsala [LLV85] (Appendix A), the 

problem (3.10) has a unique solution v$ E C2+a,1+“/2(Dd x [0,0]).

By the strong maximum principle (Appendix A), vs > 0 on D$ x [0, 0]. Let (A), 

(B), (C) hold. Lu < 0 means u > 0, so Lv$ < 0 means v$ > 0, on Ds x [0, 0].

For 6i < 62,

L(yS1 - vs2) = 0 for x E (62,1)

-u51(x,0) =i>a2(z,0) for x E [62,1]

■R5i(<W) - V52(W) > 0, vdla;(l,t) -vj2x(l,t) = 0, 0 < t < 0.

By Lemma 3.1, i7dl > v$2 on Dg2 x [0, 0], Thus, limd_,ovd exists, since v$ is bounded by 

upper solution and is monotone because udl > v$2.

Let v(x, 4) = limd^o'L’d(2, 4). A proof similar to that of Theorem 3.5 shows that 

v(x, 4) is a solution of the problem (3.9), and v(x, t) E C(D x [0, 0]) Pl C2,1((0,1] x [0,0]).

Let’s prove that 17(2,4) is unique. Let yi = 171 — 172, and y2 = v2 — i?i. We have

Ll71 = xqvlt - 171,, = h(x, 4) in D x (0, 0],

1/1(2, 0) = 0 on D. (3.H)

171(0,4) = 0 = ui,(l,4) for 0 < 4 < 0.

L172 = 29172t - i/2„ = h(x, 4) in D x (0,0],

< i72(z, 0) = 0 on D. (3-12)

, v2(0,4) = 0 = i72,(1,4) for 0 < 4 < 0.

Subtracting equations (3.12) from (3.11), we get
<

Lyi = L(yi - v2) = 0 

14(2,0) - v2(z,0) = 0, 

171(0,4) - v2(0,4) = 0, 

. ^(i >t)-^(i,t) = 0.

Subtracting equations (3.11) from (3.12), we get
/

Ly2 = L(v2 - ui) - 0 

v2(z, 0) - 14(2,0) = 0, 

v2(0,4) -ui(0,4) = 0, 

. ^(1,4) -171,(1,4) = 0.
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By Lemma 3.1, yi > 0, then iq — V2 > 0, so iq > V2, and y2 > 0, then u2 — rq > 0, 

so V2 > rq, hence rq > v2 and v2 > iq, thus ui = u2. Therefore, u(x,t) is a unique 

solution. □

Lemma 3.8. Given any x G (0,1] and any finite time 0, there exist positive constants 

(depending on x and 0) and kp (depending on 6) such that

Aq < f G(x,t\8,,T)d^ for 0 < t < 0,

1
/ G(xo,t;£,r)d£ < #5 for 0<t<0.

Jo

Proof. By Lemma 3.7, the problem,

Lv = 1 in D x (0, 0], v(x, 0) = 0 on D, v(0, t) = 0 = ^(1, t) for 0 < t < 0,

has a unique solution v G C(D x [0,0]) D C'2,1((0,1] x [0, 0]). The adjoint operator L*  of 

L is given by

L*u  = -xqut - uxx.

Definition: The operator L*  is called the adjoint of L, and is an m-th order linear 

differential operator with continuous coefficients.

Let Lu — J3|Q|<m aa(x)Dau, where aa G u G G'rn(fl), and v G

CmffV). Then f^(Dau)vdx = (—l)mfnuDavdx, where m = |a| ,

L*v =

Therefore, f^(Lu)vdx = fnu(L*v)dx  [McO97].

Using Green’s second identity, we obtain

u(x,t)=/> [ G(x,£,t-T)d£dr= [ [ G(x,£,t)d£dr.
Jo Jo Jo Jo

This gives
vt= f G(x,£,t)d£,

Jo
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corresponding to the problem

Lvt — 0 in Q,

vfix, 0) — x~q for 0 < x < 1,

vt(0,t) = 0 = vtx(l,t) for 0 < t < oo.

By using the strong maximum principle [Fri64] and the parabolic version of 

Hopf’s lemma [Fri64] (Appendix A), vt > 0 in (0,1] x [0, 0]. Thus for any finite time 0, 

there exists a positive constant k$ (depending on x and 0) such that

1
G(x, £, t)d£ > Ai4 for 0 < t < 0.

Since v(x,t) G C(Q) Cl C2,1((0,1] x [0,0]), there exists a positive constant fcs (depending 

on 0) such that

1

G(rro,£;£)d£ < k& for 0 < t < 0.

□

Our next result gives the complete blow-up of the solution u.

Theorem 3.9. If the solution of the problem (1.3) blows up in a finite time tb, then the 

blow-up set is D.

Proof. By Green’s second identity,

u(x,t) = f [ a2 f(u(xo,Tf)G(x,£,t — r^d^dr + [ ^uot&Gfip^tfilfi, 
Jo Jo Jo

for .any t < tb- If the solution of the problem (1.3) blows up in a finite time tb, then 

by Theorem 3.5, u blows up at the point so- We know that maximum of is 1, 
maximum of jj uo(fi)d£ is maxa.gpixo(a;), Jq G(xo,t; £)d£ < ks, for 0 < t < 0, and 

a2 Jo J^ G(xq, £, r)/(u(xo, t — r^d^dr < k^a2 Jq f(u(xo,t — T))dr. It follows from Lemma 

3.8 that for any t < tb,

u(x0,t) = [ £qG(fEo,£,t)uo(£)d£ + a2 [ [ G(xo,^,r)f(u(xo,t - r))d^dr
Jo Jo^o

maxa.e5Uo(x) + a2 / f(u(xo,t — r^dr
Jo
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Since u(xo, £) —> oo as £ —> £b , we have

tb
f(u(xo, tb - r))dr = oo.

On the other hand, for any (s,£) G (0,1] x [0, £&), since f) G(x,£,t)d£ > k^ for 

0 < t < Q, 

we have

a
Jo Jo t

,t — r))dfdr > a2k^ / f (u(xq, t — r^dr,

U

> a2

(x,t) = [ £qG(x,£,t)u0(g)d£ + a2 [ [ G(x,£,r)f(u(x0,t - r))d^dr 
Jo Jo Jo t

[ [ G(x,^,T)f(u(xo,t — T)')d^dr>a2k^l' f(u(x0
Jo Jo Jo o

which tends to infinity as t approaches tf. For x — 0, we can always find a sequence 

{(zn>£n)} such that (sn,£n) —» (0, if,) and limn_,oo'u(sn,£n) —> oo. Thus, the blow-up set 

is D.

□
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Appendix A

1. The Maximum Principle [Fri64]

Consider the operator

in an (n + l)-dimensional domain Q with the following assumptions:

(A) N is parabolic in Q, i.e., for every (x,t) G Q and for any real vector £
0, a2j(x, > 0;

(B) the coefficients of N are continuous functions in Q;
(C) c(x, t) < 0 in Q.

The functions u are always assumed to have two continuous ^-derivatives and one

continuous t-derivative in Q.

Definition A.l. Notation: For any point P° = (z°, t°) in D, we denote by S(P°) 

the set of all points Q in D which can be connected to P° by a simple continuous 

curve in D along which the t-coordinate is nondecreasing from Q to P°. By C(P°), 

we denote the component (in t = t°) of D Pl {t = t0} which contains P°. Note that 

S(P°) D C(F°).

Theorem A.2. Let (A), (B), (C) hold. If Lu > 0 (Lu < 0) in D and if u has in 

D a positive maximum (negative minimum) which is attained at a point P°(x°,t°), 

then u(P) = u(P°) for all P E S(P°).

2. Extensions of the Maximum Principle [Fri64]
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Theorem A.3. Let (A), (B) hold. If u < 0 {u > 0) in S{P°),Lu > 0 {Lu < 0) 

in S{P°) and u{P°) = 0, then u = 0 in S{P°).

3. Hopf’s Lemma [Fri64]

Definition A.4. Let P° = (x°,t°) be a point on the boundary dPl of a domain Pl. 
If there exists a closed ball B with center (x, t) such that B C Pl, B A dPl = {P0}, 

and if x x°, then we say that P° has the inside strong sphere property.

Lemma A.5. Let P° have the inside strong sphere property. Assume further that, 

for some neighborhood V of P°,u < M in D AV. Then, for any non-tangential 

inward direction t,

du . ./An\
— = Z?mAr-ow( 1 < 0 at Pu.

By a non-tangential inward direction we mean direction pointing from P° into the 

interior of the ball B whose boundary touches dD at P°.

4. The Mean Value Theorem [LHE06]

Theorem A.6. Let f be a continuous function on [a, b] that is differentiable on 

{a, b). Then there exists at least one point c E {a, b) such that

/'(e)=
b — a

5. Parabolic Equations [LLV85]

Let £ be a differential operator defined by

£ = -N,

where N is defined on page 36. Let f E O'®/2’0[[0,T] x A x R x Rm,R], that 

is f{t,x,u,y) is Holder continuous in t and (x,u,y) with exponent a/2 and a, 

respectively, where 0 < a < 1.
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Consider the linear second order parabolic initial boundary value problem (IBVP 

for short)

£u = F(t,x), (t, x) E Qt,
< (Bu)(t, x) = ^(t, x), (t, x)erT,

u(0,x) = <M.x~), x E O,

where B is defined by Bu = p(t, x)u+q(t, x)du/dv and du/dv stands for the normal 

derivative of u\ Q is a bounded domain; Qt = (0,7) x Q; Ik = (0,7) x and 

Dxu = (du/dxi,du/dxm).

Theorem A.7. Assume that
(al) aij, bi, c and F E Ca^2’a[H,T, R],c(t, x) < 0 and £ is strictly uniformly parabolic 

in Qt;
(a2) p,q E C'(1+a^2’1+a[f'r, R],p and q are nonnegative functions which do not 

vanish simultaneously;

(aS) dPl belongs to class C2+a;
(a4) </> € C'(1+QV2’1+a[rT, R] and 0O E C2+a[ti,R];

(aS) the IBVP

£u = F(t,x), (t,x)EQr,
< (Bu) (t, x) = <f(t, x), (t,x) eVt,

u(0, x) = fo(x), X ED.,

satisfies the compatibility condition of order [(1 + a)/2].

Then this linear parabolic IB VP has a unique solution u such that u E C':1+a/2>2+Q: [QT, R]. .

6. The Ascoli-Arzela Theorem [Col88]

Definition A.8. : Equicontinuity

A set of functions {V’j(s)} is said to be equicontinuous on an interval [0, Z] if for 

every e > 0 there exists a number 5 = 5(e) independent of j such that

\ifj(si.) - V>j(s2)| < e for si,s2G[0,Z], |sx - s2| <5.
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Definition A.9. A set of functions defined on [0,1] is said to be uniformly

bounded if there exists a constant M independent of j such that

maxp<s<i \ipj(s) | < M.

Theorem A.10. Let {V’y(s)} be a set of uniformly bounded and equicontinuous 

functions defined on an interval [0, Z]. Then there exists a subsequence of {V'j(s)} 

that is uniformly convergent on [0,1].
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