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Summary 

 

 The Irish dairy industry is currently expanding its market worldwide and 

exploring opportunities to diversify its portfolio of products. In this scenario, 

processors have to ensure the continuous production of high quality raw milk for 

the manufacture of dairy products, given that the quality requirements in the 

international market are becoming more stringent. The studies presented in this 

thesis provided information that can aid dairy suppliers and processors on 

improving the quality of raw milk and dairy products. 

Firstly, the impact of different refrigerated storage conditions and pre-

cooling routines was determined on the microbiological load and composition of 

raw milk. Those quality parameters were minimally affected when milk was 

stored at 2 °C for over 72 h, while increasing the temperature to 4 °C resulted in 

major increases in the bacterial numbers and limited storage time. However, the 

initial microbiological load of milk has a greater impact on the maintenance of its 

quality during storage than temperature. Appropriate cow management and 

sanitation are the primary critical practices to ensure the production of high 

quality raw milk. 

 The use of single-stage and double-stage plate coolers did not aid on 

decreasing bacterial growth in milk during 72 h of storage. The blending 

temperatures within each bulk tank decreases after each milking, due to the 

increase in the volume of milk stored at 3 °C. As a result, the maintenance of low 

temperatures within the bulk tank is more efficient on reducing bacterial growth in 

milk than pre-cooling rates. However, the use of single-stage plate coolers can aid 

on reducing the energy usage at farms. Double stage plate coolers are 
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recommended to farmers that already use an ice bank system to cool milk within 

bulk tanks. 

The second part of this research investigated the impact of production 

season on the microbiological load in raw milk and its influence on the quality of 

milk powder, by enumerating different types of microorganisms throughout the 

manufacture of this product. The microbiological quality of the milk produced 

during late-lactation was inferior compared to the milk supplied during mid-

lactation. This result highlighted again the importance of high hygienic standards 

at farms to ensure low bacterial levels in raw milk supplied to processors. This is 

highly important during late-lactation, as it coincides with the period of housing 

herds due to winter conditions. In addition, the incidence of thermoduric and 

thermophilic bacteria is higher during that period and, as a result pasteurisation 

was less efficient on reducing microbiological levels in late-lactation milk. This 

could have implications on the safety of milk powder, as some pathogenic 

microorganisms survive high temperatures. 

 The concentration of residues originated from cleaning products (chlorate, 

perchlorate, trichloromethane and quaternary ammonium compounds) were also 

monitored in milk throughout the same manufacturing process. Results indicated 

that production season can also have an influence on the cleaning practices 

adopted at farms, as higher levels of those residues were observed in late-lactation 

milk. Concentrations could have also been influenced by the lower levels of milk 

stored in bulk tanks in late-lactation. This study also provided further 

understanding regarding the dynamics of residue levels throughout the 

manufacturing stages. Chlorate was highly concentrated in milk powder after 

evaporation and spray-drying of milk. The levels of chlorate allowed in raw milk 
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supplied to manufacturers could be adjusted by also accounting for those 

increases during processing, in order to ensure that the levels in the final product 

are within specifications. Trichloromethane concentrated in the cream portion 

separated from milk as expected. 

Finally, the influence of a thermo-resistant protease, which is produced by 

a Pseudomonas fluorescens strain, was determined on the cheese-making 

properties of milk and quality of Cheddar cheese. The increase in activity level of 

the added protease affected the formation of curd, as the hydrolysis of β- and αS-

caseins increased. However, the same levels of activity had a minimal impact on 

the composition of milk during 48 h of storage, as well as on the manufacture and 

quality of Cheddar cheese. Possibly, the low storage temperatures and pH values 

obtained during manufacture affected the activity of the protease. 

This thesis highlighted the major influence that microbiological quality 

and composition of raw milk have on its processing properties and impact on 

dairy products and, unveiled factors that can aid in controlling different quality 

aspects of milk at the farm and during processing. 
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1. Introduction 

 

Ireland is one of the largest dairy exporter nations, exporting 85% of its 

dairy output worldwide. Irish milk is destined for production of a wide range of 

dairy products and nutritional ingredients, such as: butter, cheddar cheese, infant 

formula, yogurts, whey protein based products and dairy-based drinks (More, 

2009). Since the abolition of milk quotas (2015) and launch of the Food Harvest 

2020 programme, Irish milk production has been continuously increasing 

(DAFM, 2010; Lapple and Hennessy, 2012). While milk production expands, 

Irish milk quality maintenance is essential to meet specific requirements for dairy 

products and hold market share. Those specifications concern the microbiological 

load, composition and level of contaminants in milk, which can be determinants 

of its processability, nutritional value, as well as dairy products quality and safety 

(Malek dos Reis, 2013). 

Several factors throughout the production chain could affect the quality of 

milk and dairy products. Livestock management, sanitation practices, milk 

cooling rates and storage conditions (time and temperature) on-farm can have a 

direct impact on the microbiological and compositional quality of raw milk. 

Enzymes produced by spoilage bacteria can cause compositional changes in milk, 

affecting its physico-chemical properties (e.g., pH and viscosity) and functional 

properties important for the manufacture of several dairy products (e.g., 

emulsifying ability, foaming ability and renneting properties). The seasonal 

character of the milk production system in Ireland is another determinant of milk 

microbiota. For example, the levels of thermoduric and thermophilic bacteria in 

milk tend to be higher during the winter periods, when livestock remain indoors, 

compared to the grazing periods; requiring appropriate management during those 
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different seasons. The decrease in milk collection frequency and consequent 

extended bulk tank storage are among the future challenges for dairy suppliers to 

produce high quality milk. In this scenario, it is important to determine optimum 

storage conditions that will minimally impact the bacterial load and technological 

value of milk. Prolonged milk storage will also potentially result in the increase of 

costs associated with energy usage for cooling, which will also be impacted by 

changes in the metering system. Therefore, investigations regarding the optimum 

balance between production costs and quality, including alternatives that decrease 

energy usage and efficiently cool milk, are necessary.  

The quality of the bulk raw milk delivered to dairy processors is the main 

determinant of the final product quality; therefore, production practices adopted 

by each individual dairy supplier on-farm can have a major effect on the 

microbiological and compositional quality of the final product (Nada et al., 2012). 

For example, the efficiency of thermal treatments to reduce the levels of spoilage 

and pathogenic bacteria in milk could be affected (Griffiths et al., 1988a). Also, 

the activity of thermo-resistant enzymes produced by those bacteria can reduce the 

shelf life and cause sensorial defects in the final product, such as gelation in UHT 

milk. On the other hand, the indigenous microflora of milk can be an important 

determinant of flavour and texture development during ripening of cheese (Callon 

et al., 2005; Fox et al., 2017). For example, Tomasino et al. (2018) compared 

Cheddar cheeses made using raw milk and low-temperature long-time pasteurised 

milk, which were collected from different regions. The authors observed 

differences in the flavour compounds during ripening of those cheeses, which was 

attributed to differences in the microbiota in the milk collected from different 

regions. Further studies are necessary to understand how different bacterial 
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enzymes act (i.e., hydrolysis of specific caseins) and at what levels they would 

have a positive or negative effect on cheese sensorial characteristics. 

Additionally, in the recent years, dairy processors have been focusing on 

monitoring the levels of residues from sanitation products in milk, such as 

trichloromethane (TCM), chlorate (CHLO), perchlorates (PCHLO) and 

quaternary ammonium compounds (QACs), which can negatively impact human 

health and the commercialisation of Irish products. At farm level, sanitation 

practices are the main contributors to residues levels in milk; therefore, the control 

of concentrations of those agents is targeted on-farm, as there is no processing 

technology to reduce them. The establishment of appropriate guidelines regarding 

milk equipment washing routines and use of chlorine-based products are currently 

required in the dairy industry, as well as investigations about the dynamics of 

residues concentrations throughout manufacturing processes, to understand the 

effect of processing parameters. 
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1.1. Milk quality parameters 

 

Quality can be defined as the degree to which a set of inherent 

characteristics meet requirements. The dairy industry has to ensure the production 

of high-quality dairy products by ensuring the safety, nutritional value and 

specific sensorial characteristics of those products. Several factors throughout the 

milk production chain could affect those quality parameters, such as the 

microbiological load, composition and possible contaminants in milk. 

The following topics will be discussed: 

 main spoilage bacteria types that could be detected in milk throughout the 

production chain (mesophilic, psychrotrophic, lipolytic, proteolytic, 

thermoduric and thermophilic bacteria); 

 pathogenic bacteria of most concern in the dairy industry (Bacillus cereus 

and sulphite-reducing Clostridia groups); 

 factors that could affected the composition of milk; 

 influence of somatic cells on milk quality; 

 factors influencing iodine levels in milk and; 

 TCM, CHLO, PCHLO and QACs residues in milk.  

 

1.1.1. Bacteria types 

 

Milk is a suitable culture medium for the growth of several types of 

microorganisms. The region, environment, sanitation practices, production and 

processing conditions are some of the factors that can influence the great variation 

of microorganisms in milk. Some of the main types of spoilage bacteria that could 

be found in milk, as well as their possible sources and products that they could be 
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present are shown in Table 1.1. The following sections will discuss the presence 

of mesophilic, psychrotrophic, lipolytic, proteolytic, thermoduric and 

thermophilic bacteria, as well as pathogenic bacteria (Bacillus cereus and bacteria 

from the Clostridia genera). 

 

Table 1.1.  Microorganisms associated with possible spoilage of milk and milk 

products (Walstra et al., 2006). 

Organism Source 
Heat 

resistant 
Spoilage 

Spore formers 

Bacillus cereus 

 

Bacillus subtilis 

Bacillus stearothermophilus 

Clostridium tyrobutyricum 

 

Feed, dung, soil, dust 

 

Feed, dung, soil, dust 

Feed, soil 

Soil, silage, dung 

 

+ 

 

+ 

+ 

+ 

 

Sweet curdling, bitty 

cream in pasteurised 

milk and cream 

Spoil sterilised milk 

Spoil evaporated milk 

Late blowing in cheese 

Coliforms 

Escherichia coli 

Klebsiella aerogenes 

 

Faeces, milking utensils, 

contaminated water 

 

- 

- 

 

Spoil milk and cheese 

Spoil milk 

Lactic acid bacteria 

Lactobacillus species 

Lactobacillus lactis 

Streptococcus thermophiles 

 

Milking utensils, parlor 

 

- 

- 

+ 

 

Sour milk 

Sour milk 

Sour milk 

 

Psychrotrophs 

e.g., Pseudomonas 

 

 

Milking utensils, cold-

stored milk 

 

 

- 

 

 

Hydrolyse protein and 

fat in cold-stored milk 

Thermoduric bacteria 

e.g., Micrococcus species 

 

Milking utensils 

 

+ 

 

Can grow in pasteurised 

products 

 

Yeasts 

 

Dust, milking utensils 

 

- 

 

Spoil cheese, butter, 

sweetened condensed 

milk 

 

Molds 

 

Dust, dirty surfaces, feed 

 

- 

 

Spoil cheese, butter, 

sweetened condensed 

milk 
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1.1.1.1. Mesophilic bacteria 

 

Aerobic mesophilic bacteria in raw milk could include bacteria of 

technological importance (i.e., lactic acid bacteria for the production of cheese) or 

spoilage bacteria, which include Gram-positive and Gram-negative strains that 

could have considerable effects on the quality of milk and dairy products (Cousin, 

1982; Coppola et al., 2008). Different bacterial groups could contribute to milk 

spoilage depending on the sanitary conditions, season and geographical origin; 

consequently, the microbiological ecology of raw milk is very complex (Ercolini 

et al., 2009). For example, Ercolini et al. (2009) identified spoilage bacteria from 

the groups Pseudomonas, Staphylococcus, Bacillus, Rodococcus, Staphylococcus, 

Lactococcus, Corynebacterium and Carnobacterium in milk produced in southern 

Italy. 

Mesophilic bacteria are enumerated in milk to monitor and to infer the 

sanitary conditions during the production, collection and handling of raw milk 

(Harding, 1995; Robinson, 2002). The test used is called total bacterial count 

(TBC) and can be undertaken using various methods: standard plate count, 

Petrifilm aerobic count, plate loop count, and automated bacteria counting 

(Lachowsky et al., 1997; Laird et al., 2004). Samples are usually incubated at 32 

˚C for 48 h. The growth of those bacteria can be affected by the storage conditions 

(temperature and time) or inadequate sanitisation of the milking equipment, as 

residual milk on the surface of milking or processing equipment are environments 

rich in nutrients and are favourable for the growth of microorganisms. High levels 

of TBC in milk are also associated with inappropriate teat preparation pre-

milking, unclean milking and housing environment or mastitic cows. Appropriate 
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cow management and hygienic milking conditions on-farm are vital to ensure low 

TBC levels in raw milk (Coorevits et al., 2008; O’Connell et al., 2013). 

According to the European Regulation EC No 853/2004, TBC in raw milk 

should be less than 100,000 cfu/ mL (5.00 log10 cfu/ mL; plate count at 30 ˚C) 

when milk is destined for dairy products manufacture. However, some Irish dairy 

processors apply a TBC limit of 50,000 cfu/ mL (4.70 log10 cfu/ mL), establishing 

price incentives for farmers when levels are lower than that limit. The Regulation 

EC No 853/2004 also established that immediately prior to processing, the TBC 

of raw bovine milk should be lower than 300,000 cfu/ mL (5.48 log10 cfu/ mL), 

while processed raw milk (after pasteurisation) destined for dairy products 

manufacture should have a TBC lower than 100,000 cfu/ mL (5.00 log10 cfu/ mL) 

at 30 ˚C. 

 

1.1.1.2. Psychrotrophic bacteria 

 

Psychrotrophic bacteria grow at refrigeration temperatures (7 ˚C or less), 

while their optimum and maximum growth temperatures are above 15 and 20 ˚C, 

respectively (Frank and Yousef, 2004; Moyer and Morita, 2007). Gram-negative 

or Gram-positive psychrotrophic bacteria can be found in milk. The Gram-

negative group includes Pseudomonas, Aeromonas, Serratia, Acinetobacter, 

Alcaligenes, Achromobacter, Enterobacter and Flavobacterium bacteria; the 

Gram-positive group includes Bacillus, Clostridium, Corynebacterium, 

Microbacterium, Micrococcus, Streptococcus, Staphylococcus and Lactobacillus 

(Cousin, 1982; Shah, 1994; Sorhaug and Stepaniak, 1997). The most common 

psychrotrophs that are found in raw milk belong to the genus Pseudomonas spp. 

(Ercolini et al., 2009).  
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The level of psychrotrophic bacterial count (PBC) in milk is influenced by 

the health status and hygiene of dairy cows, hygiene of the milking and housing 

environment, udder preparation, milking machines sanitisation and milk storage 

conditions (Cousin, 1982; Chambers, 2002; Cempirkova, 2007). According to 

Griffiths (2010), the PBC level in raw milk at collection should have a TBC:PBC 

ratio of 6:1. Therefore, considering that the TBC European threshold limit is 

100,000 cfu/ mL, PBC level should be approximately 16,700 cfu/ mL (4.22 log10 

cfu/ mL). Additionally, psychrotrophic bacteria represents up to 70% to 90% of 

the bacterial population in raw milk after 2 to 3 days of storage (Mottar, 1989; 

Sorhaug and Stepaniak, 1997; Skeie, 2007). 

Psychrotrophs represent a major problem for the dairy industry, as several 

factors throughout the production chain can contribute to their growth, such as: 

low temperatures applied during milk storage, low frequency of raw milk 

collection from dairy farms (two or three times per week) and further storage of 

milk at low temperatures in the dairy plant (Sorhaug and Stepaniak, 1991; 

Champagne et al., 1994; Shah, 1994). Psychrotrophs are capable of producing 

heat resistant extracellular proteases and lipases, which could survive 

pasteurisation (e.g., 72 ˚C for 15 s) or even ultra-high temperature processing 

(UHT; 138 ˚C for 2 s or 149 ˚C for 10 s) (Cousin, 1982; Lopez-Fandino et al., 

1993). Muir (1996) suggested that raw milk with a PBC higher than 5 x 10 
6
 cfu/ 

mL should be rejected for processing, due to the possible high levels of lipases 

and proteases in that milk. Populations of psychrotrophs ranging from 10
6
 to 10

7
 

cfu/ mL can produce sufficient amounts of extracellular enzymes to cause defects 

in milk that are detectable by sensory tests. Lipases and proteases hydrolyse 

triglycerides and proteins, respectively, causing sensorial defects and alteration of 
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the physico-chemical properties of dairy products (Walstra et al., 2006). Lipolysis 

could result in flavour defects, for example, in cream, butter, cheese and UHT 

products; while proteolysis could be associated with bitterness in milk, gelation of 

UHT sterilised milk and could contribute for cheese yield reduction (Cousin, 

1982; Braun et al., 1999). 

Strains from the genus Pseudomonas spp. represent not more than 10% of 

the microbiota in fresh raw milk; however, they become one of the main and most 

frequently identified populations in raw milk over storage. Consequently, most of 

the heat-resistant peptidases produced during storage are secreted by 

Pseudomonas spp (Marchand et al., 2009; Baur et al., 2015). Most of the 

psychrotrophic proteases, as well as proteases produced by Pseudomonas, are 

metalloproteases, which preferentially hydrolise κ-casein, then β-casein and then 

αS1-casein (Decimo et al., 2014). The heat-resistant peptidase alkaline 

metallopeptidase (AprX) is widespread among Pseudomonas spp. and are 

produced during the late exponential or early stationary growth phase of the 

bacteria, generally at bacterial count of 10
7
 to 10

8
 cfu/ mL (Stoeckel et al., 2016). 

Therefore, the production of AprX is determined by the storage time, temperature, 

and the pseudomonads numbers. As those proteases exhibit a high thermal 

stability, they can remain active after heat treatments, such as UHT treatments. 

The thermostability of that protease could be due to the presence of zinc, calcium 

and the absence of S-S bridges in the protein. The activity of the protease AprX is 

optimal at a pH value between 7 and 9 and at a temperature range between 30 and 

45 ˚C (Martins et al., 2015). Zhang et al. (2018) shown that increasing 

concentrations of AprX resulted in increasing hydrolysis, mainly of κ-casein, and 

gelation in UHT milk. Bagliniere et al. (2013) used milk with 0.2 mg/ L of AprX 
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to produced UHT milk. Proteolysis of caseins increased over storage (increased 

NCN and NPN fractions) and the destabilisation of UHT milk was visual after 

only 8 days of storage. The authors also found the enzyme to hydrolyse all casein, 

with a preference for β-casein. The protease was produced by inoculating a 

complex medium with a Pseudomonas fluorescens strain. The medium was 

centrifuged, the supernatant was dialysed and after size-exclusion chromatography 

was used to obtain the protease. Stuknyte et al. (2016) observed that the thermo-

resistant protease produced by Pseudomonas fluorescens PS19 preferrely 

hydrolyse β- and κ-casein, when incubated at 7 or 22 ˚C over 6 days and 96 h, 

respectively. The majority of the current studies regarding AprX focused on 

identifying strains that may produce this protease, optimum conditions for 

production and characterisation of its activity. Also, most of those studies focused 

on evaluating the activity of thermo-resistant proteases from P. fluorescens on raw 

milk or UHT milk (Mateos et al., 2015; Caldera et al., 2016; Meng et al., 2018). 

Further studies are still necessary to determine the impact that those proteases 

could have on dairy products, especially in manufacturing processes that involve 

heat-treatments. 

 

1.1.1.3. Lipolytic bacteria 

 

The microorganisms classified as lipolytic produce extracellular lipases, 

which are capable of hydrolysing milk fat (triacylglycerols) into mono- and di-

glycerides, fatty acids and water (Deeth, 2006). As milk cold storage is favourable 

for the growth of psychrotrophic bacteria, the dairy industry has particular interest 

in the lipases produced by psychrotrophic bacteria due to their heat stability. 

Consequently, lipolysis could happen in a variety of dairy products, such as UHT 
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milk, milk powder, butter and cheese, during storage (Fitz-Gerald and Deeth, 

1983; Shelley et al., 1987). The main problems caused by lipolysis in milk are 

undesirable flavour production and altered functionality. Short- and medium- 

chain length free fatty acids have strong flavours, described as rancid, butyric, 

bitter, unclean and astringent. Lipolysis in milk also causes loss of foaming and 

creaming ability and could increase churning time during butter manufacture 

(Shelley et al., 1987). The main lipolytic bacteria species that could be found in 

dairy products are Bacillus, including B. cereus, B. polymyxa, B. licheniformis, B. 

circulans, B. subtilis, b. laterosporus and B. coagulans (Matta and Punj, 1999). 

Other species, such as Pseudomonas also produce lipases when milk is stored at 

low temperatures (Deeth, 2006). 

  

1.1.1.4. Proteolytic bacteria 

 

Proteolytic bacteria produce extracellular enzymes that hydrolyse proteins 

into peptides and amino acids, or also have the ability to survive heat treatments, 

such as pasteurisation. The majority of proteolytic bacteria found in milk are 

psychrotrophs, which produce proteases in the late exponential or stationary phase 

of growth (Kohlman et al., 1991; Chen et al., 2003). The proteolytic bacteria 

count (PROT) in milk is useful as an indicator of inadequate handling and storage 

of raw or processed milk (Frank and Yousef, 2004; Pinto et al., 2006). 

Psychrotrophs proteinases preferentially degrade the milk proteins of great 

technological importance: κ-, αs1- and β- caseins (Gebre-Egziabher et al., 1980). 

This results in defects in dairy products, such as bitterness in milk, gelation of 

UHT milk and reduced yields of cheese (Datta and Deeth, 2003). The main 

proteolytic psychrotrophic bacteria species that could be found in milk belong to 
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the Pseudomonas and Bacillus groups (Chen et al., 2003; Martins et al., 2006). 

Proteases produced by bacteria from the Bacillus group are resistant to heat and 

cleaning reagents, and consequently can survive several processing conditions and 

affect dairy products (Griffiths and Phillips, 1990). 

 

1.1.2. Heat Resistant Bacteria 

 

1.1.2.1. Thermoduric bacteria 

 

Thermoduric bacteria are microorganisms capable of surviving in 

environments at temperatures higher than their maximum growth temperatures. 

The vegetative cells or spores of those microorganisms are capable of surviving 

heat treatments (i.e., pasteurisation) and multiplying, resulting in hydrolysis of 

protein or lipids in dairy products. Consequently, the quality and shelf life of 

those products is affected (Hayes and Boor, 2001; Frank and Yousef, 2004).  

Thermoduric bacteria have their origin in the environment, occurring in 

feed, forage, bedding, dust, faeces and soil. Therefore, appropriate udder 

preparation prior to milking is essential to avoid the transference of high levels of 

those bacteria into milk; which could consequently contaminate milking machine 

and bulk tank surfaces (Gleeson et al., 2013; Doyle et al., 2015). The main 

sources of milk contamination during the grazing and housing period are the soil 

and faeces or bedding material, respectively (Christiansson et al., 1999; 

Magnusson et al., 2007). Other sources of contamination of raw milk could be 

biofilms, mineral deposits on cracks or imperfections in the rubber parts of the 

equipment. Dairy suppliers should regularly inspect the milking equipment to 

identify deposits of organic matter and to ensure that the equipment is being 

appropriately cleaned (Buehner et al., 2014). 
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The determination of thermoduric bacteria in milk can be performed by a 

test called a laboratory pasteurisation count, which consists of heating milk 

samples to 63 °C for 30 minutes and, after plating, samples are usually incubated 

at 32 ˚C for 48 h (Frank and Yousef, 2004). The following species of thermoduric 

bacteria have been reported to survive laboratory pasteurisation (63 ˚C for 30 

minutes): Microbacterium, Micrococcus, Bacillus spores, Clostridium spores, 

Alcaligenes, Streptococcus, Lactobacillus and bacteria of the coryneform group 

(Chambers, 2002; Frank and Yousef, 2004; Hayes and Boor, 2001).  

Irish dairy companies require a thermoduric bacterial count of less than 

500 cfu/ mL in raw milk destined for processing. Buehner et al. (2014) assessed 

the levels of thermoduric bacteria in raw milk from 10 dairy farms in the eastern 

part of South Dakota, observing an average of 2.76 and 2.61 log10 cfu/ mL, during 

summer and winter, respectively. The authors observed a high variability in the 

levels of thermodurics on the 10 farms (summer: 1.46 to 4.45 log10 cfu/ mL; 

winter: 1.81 to 3.50 log10 cfu/ mL), suggesting that individual cleaning practices 

have a significant effect on the presence of thermodurics in milk. Some bacterial 

strains that belong to the enterococci genus are thermo-resistant and could be 

spoilage microrganisms, presenting a health risk to humans. McAuley et al. 

(2012) reported that strains of Enterococcus faecalis, Enterococcus faecium, 

Enterococcus durans and Enterococcus hirae, isolated from six milk silos, were 

heat resistant to pasteurisation (63 ˚C for 30 min). 

The two thermoduric bacteria of major concern for the dairy industry are: 

bacteria that belong to the Bacillus cereus group and the sulphite-reducing 

Clostridia group. Both are spore-forming bacteria and food-borne pathogens 

(Gleeson et al., 2013). Thermoduric spore-formers and their spores are of concern 
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during the manufacture of dried products due to the concentration effect. 

Currently, there are no international standards set for acceptable spore 

concentrations in milk powders. Buehner et al. (2015) measured thermoduric 

bacteria in milk powder from three different North American companies and 

found levels ranging from 2.8 ± 0.22 to 3.5 ± 0.15 log10 cfu/ g. Scott et al. (2007) 

evaluated milk powders from 18 different countries, reporting that 92% of the 

bacteria isolates were classified as Geobacillus stearothermophilus, Bacillus 

licheniformis, or Anoxybacillus flavithermus.  

 

1.1.2.2. Thermophilic bacteria 

 

Thermophilic bacteria are those that grow in environments at temperatures 

higher than 50 °C, and can grow abundantly at temperatures between 60  C to 70  C 

(Bergey, 1919). Therefore, temperatures applied in thermal treatments during 

dairy processing (e.g., pasteurisation, evaporation) are favourable for the growth 

of this type of bacteria (Murphy et al., 1999). Initial thermophile contaminants 

possibly enter a dairy manufacturing process via raw milk in the form of 

endospores, which can originate from the farm environment: silage, bedding 

materials and livestock manure (McGuiggan et al., 2002; Vissers et al., 2007b; 

Quiberoni et al., 2008). Thermophilic vegetative cells or spores can attach to 

equipment surfaces and germinate once the conditions are favourable (high water 

activity and temperatures), resulting in the formation of biofilms (Chen et al., 

2004b). Levels of thermophiles in raw milk are usually low (less than 10 cfu/ 

mL); however, it is essential to ensure appropriate sanitisation of the processing 

line to avoid the formation of those biofilms, which could contaminate the 

subsequent dairy products (McGuiggan et al., 2002; Burgess et al., 2010). 
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Therefore, the quantification of thermophiles in milk is an indicative test of 

hygienic conditions on-farm or within the processing plant (Abdul-Hadi et al., 

2014).  

Thermophilic spore-forming bacteria are a concern in UHT products, as 

some strains have the ability to survive the temperatures applied during such 

process and subsequently grow under the ambient storage conditions of the 

product (Scheldeman et al., 2006). Consequently, those bacteria can result in 

quality defects such as off-flavours and body defects (e.g., gelation). Proteolysis 

or lipolysis caused by thermophilic bacteria can also result in functional and 

flavour defects in dairy products such as milk powder, pasteurised milk, 

buttermilk or whey (Murphy et al., 1999; Scott et al., 2007; Abdul-Hadi et al., 

2014). The bacteria strains belonging to the Bacillus genus are the main 

thermophilic bacteria that can be found in milk. Some examples of thermophilic 

bacilli are: Anoxybacillus flavithermus, Geobacillus spp., Streptococcus 

thermophilus, Bacillus licheniformis, Bacillus coagulans and Bacillus subtilis 

(Crielly et al., 1994; Flint et al., 2001; Ronimus et al., 2003). Thermophilic 

bacteria are also related to pathogenic bacteria such as Clostridium botulinum and 

Bacillus cereus, which produce toxins that could cause severe foodborne diseases. 

 

1.1.3. Pathogenic bacteria 

 

1.1.3.1. Bacillus cereus 

 

Bacillus cereus group, or Bacillus cereus sensu lato group, consists of 

seven closely related species, which cannot be distinguished by 16sRNA gene 

sequencing. Those bacteria are rod-shaped, motile, endospore-forming, aerobe-to-

facultative and Gram-positive (Kumari and Sarkar, 2016), and also have 
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mesophilic and psychrotrophic strains (Svensson et al., 2004). As Bacillus cereus 

strains possess spore-forming and psychrotrophic properties, those bacteria are 

able to survive both milk refrigerated storage conditions and heat treatments 

(Coghill and Juffs, 1979; Svensson et al., 2006). The spores of those bacteria can 

germinate in dairy products during storage and produce enterotoxins and emetic 

toxins, which could cause diarrheal and emetic gastrointestinal syndromes, 

respectively (Di Pinto et al., 2013). Enterotoxins are heat-labile, while emetic 

toxins are heat-stable (temperatures up to 90 ˚C) and can survive in a pH range of 

2 to 11 (ICMSF 1996; Granum and Lund, 1997; Clavel et al., 2004). Both toxins 

can be produced at low temperatures (Christiansson et al., 1999). 

One of the main concerns of the Irish dairy industry is the contamination 

of infant formula with Bacillus cereus, as their spores germinate and produce 

toxins when the product is reconstituted for consumption (Di Pinto et al., 2013). 

Haughton et al. (2010) reported that 24% of infant formula samples (representing 

10 leading brands in Ireland), contained Bacillus cereus. After reconstitution and 

storage over 24 h, Bacillus cereus strains were detected in 35% of the samples at 

levels of 10
3
 cfu/ g. The European regulation EC 1441/2007 states that four out of 

five samples of infant formula produced in a commercial processing plant should 

have less than 50 cfu/ g of that microorganism, while the fifth sample can have 

levels between 50 and 500 cfu/ g. 

Other studies have reported the contamination of pasteurised milk with 

bacteria from the Bacillus cereus group. Salustino et al. (2009) have identified 

Bacillus cereus in pasteurised milk and post-pasteurisation equipment surfaces, 

which were: storage tanks, packaging machines, levelling tanks and package-

forming tube surfaces. The contamination during or post-pasteurisation may occur 
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due to the presence of heat resistance spores in raw milk or by milk 

recontamination, due to inadequately sanitized surfaces (Boor, 2001; Shaheen et 

al., 2010; Bermudez-Aguirre et al., 2012). Bacillus cereus spores have the ability 

to adhere and form biofilm onto equipment surfaces, which is potential source of 

contamination of processed milk and finished dairy products (Shaheen et al., 

2010). The biofilm protects spores and vegetative cells against cleaning agents 

and some spores could develop resistance to antimicrobial agents (Ryu and 

Beuchat, 2005). 

Bacillus cereus bacteria are widely distributed in the environment.  During 

the grazing period, the main sources of contamination are soil, feed and manure, 

which contaminate the cows’ udder through direct contact (Griffiths and Phillips, 

1990; Magnusson et al., 2007). Contamination of cows’ udder and teats, in 

addition to the absence of or inadequate teat preparation prior to milking, results 

in the contamination of the milking equipment and raw milk.  

Traditional culture methods have been unable to differentiate Bacillus 

cereus from Bacillus cereus group species (B. mycoides, B. pseudomycoides, B. 

thuringiensis, B. weihenstephanensis and B. anthracis) (FDA, 2012). Only 

presumptive colonies of Bacillus cereus can be identified using those methods and 

additional phenotypic analyses are necessary to identify the species within the 

Bacillus cereus group. According to O’Connell (2015), the use of BACARA agar 

(Biomerieux, Hampshire, UK) is more accurate for the detection of B. cereus than 

mannitol egg yolk polymyxin agar (MYP). 
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1.1.3.2. Sulphite-reducing Clostridia 

 

Sulphite-reducing Clostridia have the ability to reduce sulphite to sulphide 

under anaerobic conditions. The main sources of Clostridia organisms on-farm 

are soil, feed and manure, where their spores are naturally present (Vissers et al., 

2007a; Drean et al., 2015). Milk can be contaminated with spores that 

contaminated teats during milking (Aureli and Franciosa, 2002). The European 

Union has not stated limits for the presence of Clostridia strains or spore-formers 

in raw milk or dairy products (Lindstrom et al., 2010). The pathogenic species 

Clostridium perfringens and Clostridium botulinum are SRCs and are the bacteria 

of most relevance to the dairy industry, mainly in the infant formula 

manufacturing process, due to their capacity of producing toxins responsible of 

causing severe foodborne diseases (Doyle et al., 2015). 

Clostridium perfringens is an anaerobic, Gram-positive spore-forming 

bacteria, which optimum growth temperature ranges from 43 to 45 ˚C. Some 

strains are capable of growing at lower and higher temperatures, extending the 

temperature growth range (15 to 50 ˚C). Clostridium perfringens grows at a pH 6 

to 7; which includes the pH of milk (6.8). The spores of this microorganism can 

survive great extremes of pH (lower than 5.0) and water activity (Fernandes, 

2009). The vegetative cells are not capable of surviving temperatures higher than 

50 °C, being eliminated during heat treatments (Fernandes, 2009). Additionally, 

vegetative cells cannot grow at refrigeration temperatures within the range of 0 

and 10 ˚C, which include temperatures applied during milk storage (Fernandes, 

2009).  However, spores of Clostridium perfringens present a wide variety of heat 

resistance levels, with D values at 95 ˚C that could range from 17.6 to 64 min 

(Wrigley, 1994; Labbe and Juneja, 2006; Fernandes, 2009). Thus, these spores 
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survive thermal treatments and consequently contaminate dairy products. 

Clostridium perfringens type A strains produce an enterotoxin responsible for 

causing gastrointestinal disease (i.e., diarrhoea, cramps, nausea and vomiting 

(Kokai-Kun et al., 1994; Andersson et al., 1995). 

Clostridium botulinum is a strictly anaerobic bacterium, with optimum 

growth temperature ranging from 20 to 45 ˚C. Those microorganisms are 

classified in four main groups; however, the most common organisms responsible 

for food-borne botulism belong to the proteolytic (I) and non-proteolytic (II) 

groups (Peck, 2005). Several researchers have reported that the minimum and 

maximum growth temperatures of bacteria from group I is approximately 10 and 

50 °C, respectively (Johnson, 2000; Hinderink et al., 2009). Group II is composed 

of psychrotrophic strains, which grow and produce toxins at temperatures as low 

as 3 °C (Kim and Foegeding, 1993; Lund and Peck, 2000). Therefore, the botulin 

toxin is produced at different stages of the milk production, from cold storage, 

throughout processing stages (e.g., heat treatment) and during dairy product 

storage. However, all toxins produced by C. botulinum are heat-labile, and is 

inactivated when heating milk to 80 °C for 20 to 30 min, to 85 °C for 5 min, or to 

90 °C for a few seconds (Fernandes, 2009).  

Vegetative cells of Clostridium botulinum are not heat-resistant; however, 

the spores from both Groups I and II are heat-resistant and are capable of 

surviving heat processes employed in the food industry (Fernandes, 2009; Silva 

and Gibbs, 2010). Temperatures higher than 100 °C are required to eliminate 

spores from strains from Groups I, while spores from Group II can be eliminated 

at temperatures lower than 100 °C (Lindstrom et al., 2010). After processing, 

when conditions are favourable (e.g., storage temperature, pH, water activity), 
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surviving spores can germinate and grow to attain high numbers and cause 

foodborne diseases or spoilage (Silva and Gibbs, 2010). Clostridium botulinum 

outbreaks in dairy have been reported in Argentina (17 outbreaks), Australia (1), 

Iran (1), Italy (1), Kenya (1), Turkey (1), United Kingdom (2) and United States 

(9). The mean fatality rate of those outbreaks was 17.9%, some related to the 

consumption of commercial milk or dairy products or even home-prepared dairy 

products. Factors that could be the causes include: unsafe formulation, inadequate 

fermentation, insufficient thermal processing, post-process contamination and 

lack of quality control (Lindstrom et al., 2010). 

 

1.1.4. Milk composition 

 

Storage and processing conditions can result in physical, chemical and 

biochemical changes in milk composition (Table 1.2). Some of those changes to 

the milk components of high technological value (fat and protein) will be 

discussed in the following sections. 

 

Table 1.2. Typical composition of bovine milk (Walstra et al., 2006). 

Component Average content in milk (% w/w) 

Water 87.1 

Lactose 4.6 

Fat 4.0 

Protein 3.3 

- casein 2.6 

Minerals 0.7 

Organic acids 0.17 

Miscellaneous 0.15 
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1.1.4.1. Fat 

 

The lipid content in bovine milk consists of a mixture of neutral glycerides 

(triglycerides, diglycerides and monoglycerides), corresponding to 98 % of milk 

fat, while the other 2% consists of free fatty acids (i.e. phospholipids, glycolipids, 

glycosylceramides, sterols, carotenoids and vitamin A) (Table 1.3). The lipid 

phase of milk is distributed in the form of droplets (≤ 1 to approximately 1 µm in 

diameter) that are surrounded by an amphiphilic membrane. This milk fat globule 

membrane (MFGM) is composed mainly by proteins and lipids, as well as 

carotenoids, vitamin A and minerals (iron and copper) (Walstra et al., 2006).  

 

Table 1.3. The classes of lipids in milk (Adapted from Jenness & Walstra, 1984; 

MacGibbon & Taylor, 2006). 

Lipid Class Average Amount (%, w/w) 

Triacylglycerols 98.3 

Diacylglycerols 0.3 

Monoacylglycerols 0.03 

Free fatty acids 0.1 

Phospholipids 0.8 

Sterols 0.3 

Carotenoids Trace 

Fat-soluble vitamins Trace 

Flavour compounds Trace 

 

According to the National Milk Agency report (2018), the average fat in 

raw milk supplied during 2018 was 4.14%. The fat content of Irish milk can vary 

from approximately 3.3% during summer months to 4.1% during winter months. 

Bovine milk contains 3% to 5% w/ w fat, which can vary depending on the 

phenotype of the cow, season and lactation stage. Those factors can also 
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considerably influence the fatty acid profile in milk, which in turn may affect the 

rheological and crystallisation properties of milk fat (Shi et al., 2001). Those 

properties have an important role in the manufacture of several dairy products, 

such as butter, whipped cream and ice cream. For example, the milk fatty acid 

composition could influence the melting properties, microstructure, yield, texture 

and flavour of cheese (Guinee et al., 1999). In butter manufacture, the three-

dimensional crystalline network formed by milk fat determines the yield stress 

and viscoelasticity of the final product (Palmquist et al., 1993). 

The structure and composition of fat globules could be also affected by 

low and high temperatures applied during milk storage and processing. According 

to Lindmark-Mansson and Akesson (2000), lipids in milk would be more prone to 

autoxidation when milk is stored at low temperatures, as the activity of an 

antioxidative enzyme (i.e., superoxide dismutase) decreases in that condition. 

Agglutination of the fat globules is another phenomenon that may occur at low 

temperatures due to the adsorption of a protein called agglutinin on the globules 

surface, resulting in aggregation. The floccules thus formed rise, as fat has a lower 

density then milk plasma, forming a cream layer. Therefore, the regular agitation 

of milk during cold storage is necessary to avoid fat separation and maintain a 

homogenous milk composition. Milk cold storage could also lead to irreversible 

migration of some components of the MFGM to the milk plasma, such as 

phospholipids, proteins, xanthine oxidase and copper (Walstra et al., 2006). Patton 

et al. (1980) stored milk at 2 – 4 ˚C for 24 h and observed an increase of 18% on 

the skim milk phospholipids content. The MFGMs are considered efficient 

emulsifiers and can influence the microstructure and flavour of ripened cheese and 
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also have a high water-holding capacity, resulting in greater cheese yield in some 

cases (Kanno et al., 1991; Goudedranche et al., 2000; Lopez et al., 2007). 

Furthermore, thermal degradation of lipids in milk is generally not 

observed during processing, as temperatures greater than 200 ˚C are required to 

promote non-oxidative decomposition of fatty acids. However, temperatures 

greater than 70 ˚C could result in the denaturation of the proteins in the MFGM. 

The removal of phospholipids from the MFGM could also occur at elevated 

temperatures (Tamime, 2007). 

When in sufficient numbers, spoilage microorganisms in milk could 

produce lipases, which hydrolyse lipids into fatty acids and partial glycerides. 

Those compounds are responsible for sensory changes in dairy products, such as 

off-flavours (rancid, butyric, bitter, unclean, soapy or astringent), and could also 

result in a lower foaming ability, reduction of shelf life, reduction in solubility, 

wettability, and flow characteristics of milk powder (Kirst, 1986; Ray et al., 

2013). Psychrotrophic bacteria, such as Pseudomonas, produce heat-stable lipases, 

and therefore are not inactived during HTST and to UHT (approximately 140 ˚C 

for 4s) treatments. Their effects are observed in dairy products (i.e., UHT milk, 

butter, cheese, milk powders) after a certain period of storage (Deeth, 2006). 

Additionally, the MFGM does not appear to be a barrier to those lipases to access 

the fat in intact fat globules (Fitz-Gerald & Deeth, 1983; Deeth, 2006). Decimo et 

al. (2014) tested 80 psychrotrophic bacterial strains, isolated from Italian bulk 

milk tanks, regarding their ability to produce lipases and proteases. The authors 

reported that the majority of the strains (59) presented lipolytic activity at 

different incubation temperatures (7, 22 and 30 ˚C) when bacterial levels reached 

a range of 4.0 to 6.0 log10 cfu/ mL. Most of those strains belong to the 
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Pseudomonas spp. genus (P. fluorescens, P. fragi, P. aeruginosa, P. fulva, P. 

libanensis, P. mosselii, P. putida, P. rhodesiae, P. teatrolens, P. chlororaphis). 

 

1.1.4.2. Proteins (caseins) 

 

According to the National Milk Agency report (2018), the average protein 

content in raw milk supplied during 2018 was 3.48%. O’Brien et al. (1999) 

reported that the protein content of Irish milk can vary from 3.2% during summer 

months to 3.6% during winter. Approximately 75% to 80% of the milk proteins 

are classified as caseins, which precipitate at pH 4.6. The caseins are 

phosphoproteins, denominated αs1-, αs2-, β- and κ-caseins, and are presented in 

milk as micelles, (Figure 1.1). Almost all casein is present in roughly spherical 

particles (40 to 300 nm in diameter), which comprise approximately 10
4
 casein 

molecules. The casein micelles also contain inorganic matter, mainly calcium 

phosphate, small quantities of some other proteins (i.e., proteose peptone) and 

certain enzymes. The micelles also hold a significant amount of water, giving a 

hydrodynamic voluminosity of about 4 mL/ g of dry casein. The core of the 

micelle consists of roughly equal amounts of αs- and β-casein, with small amounts 

of κ-casein, while the outer layer consists of about equal amounts of κ- and αs-

casein. The surface area is mainly composed of κ-casein. That “hairy layer” 

consists of the C-terminal end of κ-casein and is hydrophilic and negatively 

charged. This layer is essential in providing colloidal stability (Walstra et al., 

2006). Some models consider that the micelle is built of mixed-composition 

submicelles (12 to 15 nm in size), as shown in Figure 1.1. Nanoclusters of 

calcium phosphate and protein moieties are also present in the micelle structure.  
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Figure 1.1. Cross section through a tentative model of a casein micelle (Walstra 

et al., 2006). 

 

A casein micelle and its surroundings are constantly exchanging 

components (Figure 1.2). Mineral compounds, such as calcium, phosphate and 

citrate, are exchanged rapidly; while casein can diffuse in and out of each micelle. 

Temperature, pH and calcium activity are factors that could influence the dynamic 

equilibrium in the micelles. 

 

 

 

 

 

 

Figure 1.2. Outline of the main dynamic equilibria between casein micelles and 

milk serum (Walstra et al., 2006). 

 

When milk is stored at low temperatures, the β-casein is the most affected. 

At temperatures below 5 ˚C, the hydrophobic bonds responsible for the β-casein 

binding become weaker, resulting in their dissolution into milk serum phase 

(Creamer et al., 1977; Walstra et al., 2006). Davies and Law (1983) reported that, 
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after 48 h of milk storage at 4  C, approximately 60% of the micellar β-casein 

migrates to the serum phase. Other caseins, such as αs-casein, dissociate into the 

serum phase but in lower quantities. Consequently, these caseins can be converted 

into γ-casein and protease-peptones by plasmin and bacterial proteinases, 

respectively (Eigel et al., 1979; Snoeren and Van Riel, 1979; Walstra et al. 2006). 

Additionally, the association of Ca
2+ 

ions with αs1-caseins decreases with 

decreasing temperature, resulting in the dissolution of part of the colloidal calcium 

phosphate and causing a weaker binding of individual casein molecules in the 

micelles (Walstra et al., 2006). These changes occur slowly, taking 24 h to be 

observed, however, they are reversible when milk is heat up to temperatures 

between 20 ˚C and 40 ˚C (Creamer et at., 1977; Davies and Law, 1983; Walstra et 

al., 2006). Even if those changes are reversible, it is still questionable whether the 

resulting casein micelles are identical to the original micelles.  

Changes in the micelles can affect milk properties, which determine 

physical stability of milk products during heat treatment, concentrating and 

storage, as well as rheological properties of acidified and concentrated milk 

products (Walstra et al., 2006). For example, the high β-casein concentrations in 

the serum have a technological impact on several dairy products. In the case of 

cheese manufacture, some effects are loss of fat and curd fines in whey, as well as 

prolonged clotting times. Consequently, a weak curd structure and low cheese 

yields are obtained (Ali et al., 1980). Also, the colloidal stability of the micelles is 

greater and therefore milk presents poor rennetability during cheese making 

(Walstra et al., 2006). 

High temperatures (above 100 ˚C) could also result in the destabilisation 

of the micelles by promoting the dissolution of part of κ-casein. This effect also 
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depends on the pH of the medium, no dissolution occurs below pH 6.2 and 

complete dissolution can happen at pH 7.2. This effect could be partly due to the 

increased effect of entropy at high temperatures and/ or due to the absence of 

serine phosphate in part of the κ-casein chain, resulting in weak bonds of that 

casein with colloidal phosphate. Furthermore, another effect of high temperatures 

is the association of serum proteins with casein micelles during heat denaturation, 

e.g., association of β-lactoglobulin with κ-casein, which is irreversible on cooling. 

Changes in the micelle structure may also occur due to decreases in pH. Some of 

those changes are: solubilisation of the colloidal phosphate, association of 

hydrogen ions with acid and basic groups of the proteins, increased Ca
2+

 ion 

activity and increased hydrophobicity of casein (Walstra et al., 2006). 

Proteases from spoilage bacteria, as well as indigenous proteases, 

hydrolyse proteins in milk. Consequently, the changes in protein structure 

promoted by those enzymes in milk may affect the manufacture of dairy products 

(i.e., rennet coagulation during cheese production), resulting in sensorial defects 

(i.e., bitterness) or affecting product stability (i.e., gelation in UHT milk). 

 

1.1.5. Somatic cell count 

 

Somatic cell count (SCC) is an indicator of udder health, milk 

microbiological and technological quality (Smith, 2002; Piccinini et al., 2006). 

Somatic cells arise mostly from the immune system and comprised of different 

cell types, for example, lymphocytes, macrophages, polymorphonuclear 

leucocytes and some epithelial cells (Sordillo et al., 1997; Pillai et al., 2001). 

Increases in SCC could be due to a response of the immune system to an 

intramammary infection (e.g., mastitis) or due to the late stage of lactation 
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(Leitner et al., 2006; Merin et al., 2008). On farm, several factors can influence 

SCC in milk, such as animal species, milk production level, lactation stage and 

management practices (Rupp et al., 2000). The European Directive 92/46 (1992) 

states that milk with a SCC over 4 x 10
5
 cells/ mL is considered unfit for human 

consumption and should not be used for further processing. Financial incentives 

are offered by some Irish dairy processors when farmers produce milk with SCC 

lower than 200,000 cells/ mL. 

A range of indigenous enzymes can be released into milk due to lysis, 

leakage or secretion from the somatic cells: lipases (e.g., lipoprotein lipase), 

oxidases (e.g., catalase and lactoperoxidase), glycosidases (e.g., lysozyme) and 

proteases (e.g., cathepsins, elastase and collagenase) (Kelly and Fox, 2006; Li et 

al., 2014). Those enzymes are active at a large range of pH and could have a 

negative impact on milk composition, affecting the quality and yield of dairy 

products (Santos et al., 2007; Li et al., 2014; Cinar et al., 2015). Additionally, the 

types, quantity and activity of those enzymes can be influenced by the different 

levels and types of somatic cells in milk, leading to different levels of proteolysis 

and lipolysis (Li et al., 2014). Litwinczuk et al. (2011) observed a negative 

relationship between casein content in milk and SCC, when studying milk from 

four breeds with four different levels of SCC, ranging from levels lower than 1 x 

10
5
 cells/ mL to 1 x 10

6
 cells/ mL. Malek dos Reis et al. (2013) reported that each 

increase of 1 x 10
5
 cells/ mL in SCC reduced the lactose and non-fat solids 

content of milk by 0.02%. Forsback et al. (2010) observed that milk with SCC 

levels greater than 1 x 10
5
 cells/ mL had lower α- and β- casein contents then in 

milk with SCC lower than 1 x 10
5
 cells/ mL. Some studies have reported that milk 

storage temperature or time had no effect or resulted in small variations on SCC 
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(Sierra et al., 2006; Erdem et al., 2012; O’Connell et al., 2016); however, further 

studies are necessary to determine the effects of milk storage conditions on the 

stability of somatic cells, such as lysis. 

Prior to processing, the mixing of many milk volumes might minimise the 

effects of high levels of SCC of milk from individual milk suppliers; however, it 

is still essential to control SCC on-farm to avoid the possible negative effects on 

milk technological properties (Kelly et al., 2009). Geary et al. (2013) reported that 

each log10 increase in SCC was positively correlated with non-protein nitrogen 

(NPN, 0.006%), whey protein (0.041%), and negatively with lactose (-0.14%) and 

casein levels as a percentage of total protein (-0.96%); therefore, high SCC could 

negatively impact the final yield of dairy products. During cheese manufacture, 

for example, high SCC could contribute to increased casein loss into whey and 

increased curd formation time (Leitner et al., 2008; Forsback et al., 2011).Geary 

et al. (2013) applied a meta-analysis across several studies to investigate the 

relantionship between SCC and cheese processing characteristics. The authors 

reported that fat and protein recovery, as well as the protein content of cheese, 

significantly descrease as SCC levels increase in milk. Ubaldo et al. (2015) used 

milk with different SCCs to produced Mozzarella cheese and observed that the 

milk with the highest SCC had higher pH, lower lactose contents and higher 

proteolysis levels compared to the milk with lower SCC. However, those 

differences did not affect the sensorial characteristics of the cheese produced. 
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1.1.6. Residues 

 

1.1.6.1. Trichloromethane 

 

Trichloromethane (CHCl3, TCM) is a by-product formed when residual 

chlorine comes into contact with milk. In Ireland, 77% of detergent steriliser 

products used for cleaning milking equipment are chlorine-based, as these are 

considered the most effective and economical; however, the misuse of those 

products could lead to the formation of TCM in milk (Gleeson and O’Brien, 

2011). When the cleaning solvent is not completely rinsed from the equipment 

surface, TCM is formed in the milk that subsequently comes in contact with those 

surfaces (Ryan et al., 2012). The International Agency for Research on Cancer 

states that TCM could be possibly carcinogenic to humans (ICAR, 1999).  

Detergent steriliser products should contain less than 3.5% of chlorine, and 

should be used as recommended by the manufacturers (Gleeson and O’Brien, 

2011). Gleeson and O’Brien (2010) reported that farms using cleaning products 

which contain a high chlorine content (> 8%) are more likely to have high levels 

of TCM residues in milk. Other recommendations to avoid TCM formation are to 

drain pipelines after milking and from bulk tanks after collection and rinse out 

each milking cluster with 14 L of clean water (O’Brien, 2009; Ryan et al., 2013). 

Resch and Guthy (2000) observed that the lack of rinsing milking equipment 

results in an increase in the TCM concentration in the detergent solution and in 

the milk subsequently passing through the milking machine. Additionally, the 

recycling of the detergent solution could result in further TCM concentration 

increase in milk. Gleeson and O’Brien (2010) concluded that the main factors 

influencing TCM levels in Irish raw milk are: incorrect use of chlorine-based 
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cleaning products, insufficient rinse water volume, reuse of rinse water and use of 

chlorine for udder preparation prior to milking. According to Ryan et al. (2013), 

sanitisation practices on-farm are the key to controlling TCM levels in milk. 

The European Union has no regulations regarding TCM levels in 

foodstuffs; however, some countries have determined limits of that substance in 

certain dairy products. For example, the German importers require that lactic 

butter should contain less than 0.030 mg/ kg (Verordnung über Höchstmengen an 

Schadstoffen in Lebensmitteln, 2003). In order to achieve those levels in butter, 

Irish processors apply a limit of 0.015 mg/ kg of TCM in milk. Therefore, it is 

economically important to Ireland to achieve those TCM levels required by 

markets, in order to maintain a competitive position. 

Fat-based products contaminated with TCM are the main concern for the 

dairy industry, especially for the Irish lactic butter export market. Hubbert et al. 

(1996) reported that chlorinated hydrocarbons, such as TCM, accumulate in fat-

rich portions. During cream or butter manufacture, milk cream is concentrated, 

consequently the TCM content in the final product increases (Resch and Guthy, 

1999). Since 2007, TCM levels in Irish butter have been gradually reduced from 

0.07 mg/kg to 0.03 mg/ kg, targeting the limit determined by the German market, 

which is one of the main Irish butter importers. Corrective measures have been 

applied at farm level by monitoring sanitisation practices, constantly visiting and 

advising farmers, and also performing routine screening for TCM in both tankers 

and individual suppliers’ milk (Jordan et al., 2012). According to Ryan et al. 

(2013), regular farm visits are essential to ensure fast and immediate resolution of 

milk quality issues. 
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1.1.6.2. Chlorate and perchlorate 

 

Chlorine gas, dioxide or hypochlorite may be used for the sanitisation of 

drinking water or water for food production, while chlorine-based detergents (e.g., 

sodium hypochlorite) are used for the sanitisation of milking or processing 

equipment due to their bactericidal properties and efficiency (Gates et al., 2009; 

Garcia-Villanova et al., 2010; Gleeson and O’Brien, 2011, McCarthy et al., 

2018). However, the decomposition of chlorine compounds result in the 

production of oxyhalide species (ClO
-
 and ClO2

-
) that react and form chlorate 

(ClO3
-
, CHLO). Further reactions of CHLO with those oxyhalides result in the 

formation of perchlorate (PCHLO) (Gordon and Tachiyashiki, 1991). Laboratory 

tests on animals demonstrated that the primary targets of CHLO toxicity in the 

organism are the thyroid gland and the haematological system (EFSA, 2015). 

At farm level and in the processing plant, the same precautions to avoid 

TCM formation are applied to avoid milk contamination with CHLO or PCHLO 

when using chlorine-based products. Additionally, chlorine-based detergents 

should be purchased often and stored under cool dark conditions (for periods no 

longer than 3 months) (O’Brien, 2016). 

Water destined for food production or equipment sanitisation could also 

contain CHLO (McCarthy et al., 2018). Gleeson (2016) measured CHLO levels in 

water from Irish industries in different water schemes and reported concentrations 

varying from a minimum of 0.058 mg/ L to a maximum of 0.340 mg/ L. Fenelon 

(2016) reported CHLO levels in mains water utilised by dairy processors varied 

from 0.059 to 0.246 mg/ L. In both studies, CHLO levels were in accordance to 

the threshold limit determined by the World Health Organisation (0.7 mg/ L). 

Nevertheless, both studies highlighted the importance of using water with low 
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CHLO levels or chlorine free, as water is a potential contributor to increasing 

CHLO levels throughout the dairy production chain. 

The European regulation (EC) no 396/2005, which states the maximum 

residue levels of pesticides in or on food, have not established a threshold for 

CHLO or PCHLO. The Commission Directive 2006/141/EC proposed a default 

limit of 0.0100 mg/ kg for foodstuff. That limit is applied for reconstituted infant 

formula, corresponding to approximately 0.0814 mg/ kg of CHLO in non-

reconstituted infant formula. Some Irish dairy processors require that CHLO 

levels in skim milk or whey powders should be 0.050 mg/ kg. 

Chlorate levels in infant formula are a concern to the dairy industry, as 

infants have a lower tolerance to intoxication compared to adults. Milk is 

evaporated and concentrated during the manufacturing process of milk powder; 

consequently, the CHLO content per gram of product increases. In contrast to 

TCM, CHLO is highly water-soluble and ionic; therefore, in process involving 

cream separation, CHLO will remain in skimmed milk (Smith and Taylor, 2011).  

Kettlitz et al. (2016) measured chlorate levels in several European food 

products. Out of the skim and whole milk powder products tested, 97% contained 

more than 0.0100 mg/ kg (range: 0.0100 to 0.6800 mg/ kg), while 87% of the 

whey powder and milk protein concentrates tested contained levels ranging from 

0.0100 to 16.50 mg/ kg. Those groups had the highest percentage of positive 

samples among all the dairy products tested. 

 

1.1.6.3. Quaternary ammonium compounds 

 

Quaternary ammonium compounds (QACs) have the basic structure NR4
+
, 

a nitrogen atom linked to four alkyl groups, which could vary in structure and 
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complexity. Quaternary ammonium compounds molecules possessing long alkyl 

chains are known to be effective as antimicrobial agents and are useful for the 

disinfection of containers and surfaces (Xian et al., 2016). The main primary 

QACs that may be identified in milk and dairy products are: 

benzyldimethyldodecylammonium chloride (BAC 12), 

benzyldimethyltetradecylammonium chloride (BAC 14), 

benzyldimethylhexadecylammonium chloride (BAC 16) and 

didecyldimethylammonium chloride (DDAC) (Reuter, 2015).  

In the European Union (EU), DDAC and BAC are allowed for use in the 

food industry, as they are believed to be environmentally benign because they do 

not bio-accumulate and have a short degradation half-life (Bassarab et al., 2011). 

However, since studies reported QAC toxicity for different organisms (e.g., fish, 

algae and protozoan) and effects on human health, its use had to be re-evaluated 

(Kreuzinger et al., 2007; Voorde et al., 2012; Chen et al., 2014; Zhang et al., 

2015). Currently, there are no specific limits for QACs in foodstuffs; however, it 

was recommended by the European Union Reference Laboratory (EURL; EU 

396/2005) that the general residue limit of 0.0100 mg/ kg should be applied. 

 In the dairy industry, products employed for the sanitisation of processing 

equipment, collection tankers and silos could contain QACs. On farm, teat 

sanitising wipes or dips, as well as disinfectant agents for milking equipment 

could contain QACs, as those compounds could aid in preventing mastitis or in 

producing milk with low bacterial levels. Eventually, if those products are not 

appropriately removed from the surfaces after application, they may come into 

contact with milk (Xian et al., 2016). Some QACs (e.g., benzalkonium) could 
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have adverse effects on human health, such as causing asthma, skin allergy or eye 

irritation (Voorde et al., 2012). 

The European Food Safety Authority (EFSA) published a report on levels 

of BACs and DDAC in several food products, which were collected from 16 

member states and Norway (EFSA, 2013). BACs and DDAC were detected in 

12% of the dairy products tested, corresponding to the highest percentage 

compared to other food groups tested. DDAC was detected in ice cream (3.64 mg/ 

kg), in butter and other churned products (concentrations varying from 0.010 to 

0.030 mg/ kg) and in unprocessed milk (concentrations varying from 0.01 to 0.03 

mg/ kg). BACs were detected in ice cream (1.4 mg/ kg), churned dairy products 

(1.1 mg/ kg) and cheese (concentrations varying from 0.010 to 0.070 mg/ kg). 

 

1.1.6.4. Iodine 

 

Iodine is a micronutrient essential for humans and animals for the 

production of thyroid hormones thyroxine and triiodothyronine, responsible for 

key metabolic processes and the development of body and brain (Leung and 

Braverman, 2014). According to the World Health Organisation (WHO, 1996; 

WHO 2007), the recommended daily iodine intake is 90 µg for infants between 0 

and 6 years, 120 µg for infants between 6 to 12 years, 150 µg for adolescents 

(above 12 years) and adults, and 250 µg for pregnant and lactating women. 

Excesses of iodine in the organism could result in thyroid dysfunction in 

vulnerable patients (infants or elders), such as hyperthyroidism or hypothyroidism 

(Leung and Braverman, 2014). One of the most important iodine sources for 

humans is bovine milk. The main factors that could influence the iodine content in 

milk are: animal feeding (e.g., supplementation with iodine-containing mineral-
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feed), teat dipping, as well as factors throughout milk processing (Borucki Castro 

et al., 2012; Flachowsky et al. 2014). 

The EFSA (2005) reported that the average iodine content in bulk tank 

milk samples from several European studies varied predominately between 100 

and 200 µg/ L of milk. Those concentrations were suitable to meet the required 

iodine daily intake defined by WHO for children, adolescents and adults. Iodine 

intake is the most important influencing factor on the iodine content in milk. 

Rations supplemented with iodine are used in order to meet the iodine 

requirements for food-producing animals. The British Agricultural Research 

Council (1980) and the US National Research Council (NRC, 2001) recommend 

that the daily iodine intake by dairy cows should be 10 mg. Dairy cows with 

deficiency require a higher iodine supplementation (Flachowsky et al., 2014). 

Sources of iodine in cows’ diet can be forage, ration or nutritive additives. The 

iodine content of forage could vary according to the location, concentrations in 

the soil or vegetation (Suttle, 2010). In relation to rations, the iodine content could 

vary from 10 to 40 mg/ kg in rations usually commercialised by Irish dairy 

companies. The nutritive additives approved by the EU-Legislative (2005) for 

feed supplementation are: sodium iodide (NaI), potassium iodide (KI), calcium 

iodate hexahydrate (Ca(IO3)2·6H2O) and anhydrous calcium iodate (Ca(IO3)2). 

Incorrect feeding management, such as utilisation of rations with higher levels of 

iodine than required or overfeeding cows, could result in high concentrations of 

iodine in milk. Borucki Castro et al. (2012) reported a linear effect of dietary 

iodine content on milk iodine concentration (P<0.0001), when providing feed with 

0.3, 0.6 and 0.9 mg iodine/ kg dry matter. Franke et al. (2009) used iodine 

supplements in feed at different concentrations (0, 0.5, 1, 2, 3, 4 and 5 mg/ kg of 
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dry matter) and also observed a linear relationship between iodine concentration 

in feed and that in milk. 

Teat disinfectants containing iodine are still common for teat disinfection 

pre- or post-milking. However, the correct application of those products is 

required to avoid significant increases in the iodine content in milk. Iodine-based 

teat disinfectants can be absorbed through the teat skin and transferred to milk 

during synthesis; milk can also be contaminated when in contact with the teat skin 

surface (Conrad and Hemken, 1978; Rasmussen et al., 1991). Borucki Castro et 

al. (2012) observed that the iodine concentration in milk, following use of a teat 

disinfectant pre-milking containing 0.5% of iodine, was significantly higher (252 

µg/ kg) than the iodine concentration in milk produced when not using a teat 

disinfectant (164 µg/ kg). Also, in that study, 1% iodine-based teat disinfectant 

was applied post-milking, resulting in significantly higher iodine concentrations in 

milk (218 µg/ kg) compared to the control group. The use of iodine-based teat 

disinfectants pre-milking should be avoided, due to the difficulty in completely 

removing the product. When applying such products post-milking, teats should be 

washed and dried prior to the next milking. 

The iodine concentrations in milk could also be affected throughout dairy 

processing. Norouzian et al. (2009 and 2011) verified in two studies that 

pasteurisation could decrease the iodine content in milk, registering losses 

between 17.6% and 53.1%. The reduced concentrations could be associated with 

sublimation of the iodine, as the majority of iodine in milk is inorganic. The 

iodine content in infant formula is a concern in the dairy industry, as the 

component is important for the metabolism and central nervous system 

development in infants. EU regulation 2016/127 specifies that the minimal and the 
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maximum iodine content in infant formula should be 15 µg/ 100 kcal and 29 µg/ 

100 kcal, respectively. The International Council for Control of Iodine Deficiency 

Disorders (ICCIDD) recommends that the iodine content in infant formula should 

be 5 µg/ dL milk to 10 µg/ dL for full term and 20 µg/ dL for premature babies 

(Delange et al., 1993), in order to prevent iodine deficiency. 

 

1.2. Influence of farm factors on the quality of raw milk 

 

1.2.1. Milk production season and lactation stage 

 

The main milk production system on Irish dairy farms is pasture-based 

seasonal-calving, which coordinates milk production peak with grass growth peak 

(summer months) (Dillon et al., 1995), while a small proportion of cows are 

calved in autumn to maintain a fresh milk supply throughout the year. Therefore, 

on the majority of Irish dairy farms, the early and mid-lactation stages coincide 

with spring and summer months (from March to August), period during which 

cows are grazing outdoors; while the late-lactation stage coincides with autumn 

and winter months (September – February), the period during which cows are 

housed indoors. Changes in dairy herd environment due to seasonality can result 

in the exposure of animals to distinct microbial communities that could be 

transferred to raw milk, which may affect the technological value of milk and 

safety of dairy products. Doyle et al. (2017) reported that the habitat has a great 

influence on the raw milk and teat microbiota. For example, in that study, bacteria 

from the genera Ruminococcus, Eremococcus, Ruminococcaceae Incertae Sedis 

and Corynebacteriales were more prevalent in milk produced during the indoors 

period, while bacteria from the genera Pseudomonas, Acinetobacter (spoilage-

associated genera) and Lactococcus were more prevalent in milk produced during 
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the outdoors period. In both periods, regardless of the environment, the teat skin 

was identified as the greatest contributor to the raw milk microbiota. Some of 

those bacterial strains have already been detected in dairy products, such as 

cheese, in other studies (Beresford et al., 2001; Quigley et al., 2013b; O’Sullivan 

et al., 2015), highlighting the impact of farm management and animal grazing 

practices on the microbiota of dairy products. Therefore, hygiene practices (e.g., 

teat disinfection prior to milking, sanitation of milking equipment), husbandry 

practices, herd health and herd housing should be appropriately managed to 

ensure the production of raw milk of high microbiological quality throughout the 

different seasons and lactation stages (Vacheyrou et al., 2011). 

The continuous production of high quality milk during winter months is a 

challenge for dairy farmers, and, as a consequence, the maintenance of high 

quality dairy products during that period is also a challenge. During the housing 

period, additional care is necessary regarding cow management, as the probability 

of milk contamination with thermoduric, thermophilic and spore-forming bacteria 

(e.g., Bacillus cereus and sulphite-reducing Clostridia) is higher during that 

period (O’Connell, 2015). Additionally, during the winter months, cows are more 

prone to acquire intramammary infections (mastitis) due to being indoors and 

environmental conditions (e.g., temperature, humidity), which could result in 

increases in the SCC in milk (Olde Riekerink et al., 2007). Bacteria can be present 

in feed, bedding material, dust and livestock manure (McGuiggan et al., 2002; 

Vissers et al., 2007b; Quiberoni et al., 2008); therefore, the dairy cow housing 

should be a clean, dry and comfortable environment for livestock. Cubicles should 

be cleaned twice daily and new bedding should be applied as necessary to 

maintain a dry lie at all times. Also, removal of manure should be as frequently as 
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possible (e.g., automatic scrapers, slats) to avoid teat contamination (O’Brien, 

2009).  

Furthermore, milk composition varies significantly throughout lactation, 

mostly due to cows physiological changes. The fat and protein content increase in 

late-lactation, while the lactose content decreases and milk yield is lower (Audist 

et al., 1995; Henao-Velasquez et al., 2014). Changes in milk composition can also 

occur due to the season, which affects diets of dairy herds. Grass is less available 

during autumn and winter and, therefore, the use of supplements such as 

concentrates and forages is required. For example, Reid et al. (2015) reported that 

increased dietary levels of crude protein can increase the amount of protein 

degraded in the rumen; consequently, large amounts of ammonia can be produced 

and converted into urea in the liver. Some urea diffuses into the milk, which is 

measured as milk urea nitrogen, which can adversely affect milk properties for 

processing (e.g., heat stability). 

 

1.2.2. Milk cooling and cold storage 

 

1.2.2.1. Influence of storage temperature and time on milk quality 

 

During milking, milk is collected at approximately 35 °C and the 

microbiological load or enzymatic activity could increase rapidly if it were not 

immediately refrigerated to temperatures lower than 6 ˚C during storage and prior 

to processing (Walstra et al., 2006). Therefore, by reducing the growth of 

microorganisms and enzymatic reactions, milk cooling aids on preserving the 

composition and consequently the technological properties of milk during cold 

storage. In Ireland, raw milk is usually stored in farm bulk tanks (BTs) for up to 

24 or 48 h prior to collection and transport to processing plants. During winter 
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months, milk could be collected after 72 h of storage, as that time of the year 

usually coincides with the late-lactation period and cows produced less milk 

compared to early and mid-lactation periods. On-farm and prior to processing, 

milk is usually stored at temperatures lower than 6 ˚C (3 to 4 ˚C), as 

recommended by the European regulation EC no 853/2004. 

The growth of some microorganisms is not completely ceased during cold 

storage, as some bacterial species have an optimum growth at low temperatures 

(i.e., psychrotrophs or psychrophiles) (Quigley et al., 2013a). O’Connell et al. 

(2016 and 2017) reported that raw milk with low initial bacterial levels 

(approximately 2,000 cfu/ mL) can be stored at 2 or 4 ˚C for up to 96 h with 

minimal effects on the microbiological quality, composition and functional 

properties. While the TBC in milk stored at 2 or 4 ˚C were approximately 4,000 

cfu/ mL after 96 h, the authors observed a significant increase in levels when 

storing milk at 6 ˚C for periods greater than 48 h (74,000 cfu/ mL). After storing 

milk at 6 ˚C for 96 h, the authors also observed a significant increase in PBC 

(from 741 to 38,904 cfu/ mL) compared to 2 and 4 ˚C (from 794 to approximately 

2,500 cfu/ mL). Other studies have also reported a negative impact of storage 

temperatures higher than 4 ˚C on milk microbiological quality (Banks et al., 1988; 

Griffiths et al., 1988b; Vithanage et al., 2017). Some of those studies are 

laboratory-based and reported increases in the bacterial counts in milk exceeding 

1 x 10
6
 cfu/ mL after 48 h at temperatures ≥ 4 ˚C; however, the addition of fresh 

milk to farm BTs after each milking was not included in their experimental 

design. The differences in bacterial numbers between laboratory-based and farm-

based studies may be due to a dilution effect, which may account for lower 
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bacterial levels in milk. Therefore, the addition of fresh milk throughout storage is 

likely to limit the rate of deterioration of milk quality.  

Milk is collected from dairy farms by insulated tankers, which will keep 

milk temperature at approximately 4 ˚C. As milk quality deteriorates over time, 

milk is usually not stored in silos for longer than 24 h prior to processing. 

Rasolofo et al. (2010) observed considerable increases in PBC in milk stored at 4 

and 8 ˚C after 168 (7 days) and 72 h, respectively. After 72 h at 4 ˚C, PBC was 

similar to initial levels (approximately 6,000 cfu/ mL). Prolonged refrigerated 

storage of milk may have a negative impact on dairy products quality, as 

microorganisms, such as psychrotrophs, can produce heat-resistant enzymes that 

may still be active after pasteurisation and UHT treatments (Cousin, 1982; Lopez-

Fandino et al., 1993). Differently, moderate levels of these microbial enzymes 

may be beneficial for cheese manufacture due to the development of desirable 

flavours and aromas (Vithanage et al., 2016). 

The microbiological load of milk over storage is also influenced by the 

initial bacterial levels in milk. The microbiological load could increase 

considerably after 24 h of storage when initial levels are higher than 10,000 cfu/ 

mL (Guinot-Thomas et al., 1995; Vithanage et al., 2017; Ribeiro et al., 2018). 

Therefore, good hygiene practices, appropriate cow management and sanitation of 

milking equipment are essential factors to produce milk of good microbiological 

quality. 

 

1.2.2.2. Pre-cooling systems 

 

Bulk tanks equipped with a cooling jacket, in which refrigerant liquid or 

chilled water circulate, are the conventional refrigeration systems used on Irish 
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dairy farms. As milk is obtained from cows at approximately 35 ˚C, the 

temperature gradient between milk and cold storage temperature in the BTs (2 to 

4 ˚C) is large and consequently some time is necessary until milk reaches the set 

point temperature. Pre-cooling systems are used to cool raw milk rapidly prior to 

cooling within BTs and are also an alternative to reduce energy requirements and 

costs on-farm. Plate heat exchangers are the equipment usually used for that 

purpose and consist of a heat transfer device that is used for transfer of internal 

thermal energy between two fluids available at different temperatures, separated 

by a heat transfer surface (Thulukkanam, 2013). Plate heat exchangers comprise 

of stainless steel plates in a sandwich arrangement, in which milk and cooling 

water flow in parallel or opposite directions through the spaces between alternate 

plates (Wang et al., 2007; Figure 1.3). The equipment may have one cooling 

stage, in which well water (approximately at 15 ˚C) is used, or two stages, in 

which well and chilled water (approximately at 0 ˚C) are used in the first and 

second stages, respectively (Murphy et al., 2013). Due to the large surface area of 

the plates, heat exchange between water and milk occurs rapidly and aids in 

reducing the temperature gradient between fresh milk and milk that is already 

stored in the BTs. The efficiency of plate cooler systems depends on the 

temperature difference between milk and water, flow rates of both fluids and size 

of the equipment. The number of plates should be determined according to the 

milk flow rate (Thulukkanam, 2013). Milk should be filtered prior to entering the 

plate cooler to avoid residues accumulations in the space between plates. A water 

filter might also be necessary to also avoid the accumulation of foreign matter in 

the equipment. Filter socks can be fitted in the milk or water line for that purpose. 
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Figure 1.3. (A) Construction of a plate heat exchanger (1 – fixed frame plate; 2 – 

top carrying bar; 3 – plate pack; 4 – bottom carrying bar; 5 – movable pressure 

plate; 6 – support column; 7 – fluid port; 8 – tightening bolts) and (B) closer view 

of assembled plates. (Thulukkanam, 2013). 

 

Rapidly cooling milk to low temperatures may prevent further increases in 

the PBC. According to Murphy et al. (2013), pre-cooling and gradually 

refrigerating milk to temperatures between 2 to 4 °C within 30 min after milking 

greatly reduces the possibility of significant bacterial growth. Hartmann et al. 

(2008) reported that pre-cooling milk aided in reducing TBC in raw milk during 

storage. Additionally, another advantage of rapidly cooling milk is that collection 

and transport to the processing plant can take place right after milking. 

 

1.2.2.3. Energy requirements and water usage 

 

Milk production in Ireland has been increasing considerably since the 

abolition of the milk quotas in 2015; however, with milk price being volatile in a 

now open market, farmers have the challenge to produce more milk at lower costs 

with a lower overall environmental footprint (Shine et al., 2018b). Concurrently, 
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electricity costs might increase on-farm, due to the implementation of a dynamic 

electricity pricing system. In 2009, the Irish Government adopted a National 

Energy Efficiency Action Plan 2009-2020 (NEEAP) in order to achieve a national 

goal of 20% improvement in energy efficiency by 2020. The proposed smart 

metering system (Figure 1.4) would result in higher rates during peak periods of 

consumption (currently from 17:00 to 19:00 h) (EirGrid, 2012). Upton et al. 

(2013) reported that the peak electricity consumption on 22 Irish dairy farms 

occurred during the time intervals when demand on the grid was the highest; 

therefore, in a dynamic electricity-pricing system, those times would correspond 

to periods of higher electricity costs. Also, according to that study, electricity 

made up to 12% of total energy demand per litre of milk, from cradle to farm gate 

(Upton et al., 2013; Shine et al., 2018b). Therefore, alternatives for optimising 

energy usage on-farm may contribute to improve the cost competitiveness of Irish 

dairy products (Upton et al., 2013). 

 

 

Figure 1.4. Smart metering plan proposed by the National Energy Efficiency 

Action Plan (Upton et al., 2010). 
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Milk cooling is the main contributor to electricity usage on Irish dairy 

farms (31% of total electricity consumption) and over 60% of milk cooling 

electricity consumption currently occurs on the most expensive day-rate tariff 

(Upton et al., 2013). A strategy to reduce the energy costs is to use plate heat 

exchangers to pre-cool milk and finish cooling within bulk tanks. Pre-cooling 

systems aid with reducing the temperature gradient between the bulk tank set 

point and milk entering the tank; therefore, the energy consumption of the bulk 

tank to cool milk is reduced. Shine et al. (2018b) surveyed 58 Irish dairy farms 

regarding energy consumption during milking and reported that the average (± 

SD) energy usage when using a pre-cooling system (10.54 ± 2.55 Wh/ L) was 

lower than when not pre-cooling milk (12.68 ± 5.20 Wh/ L). A second strategy to 

reduce the energy consumption during peak times would be to decouple the milk 

cooling load from milking times by shifting the load to off-peak periods. Ice 

builder systems could be used for that purpose and cold energy can be generated 

when electricity is cheaper. Upton et al. (2013) observed that ice builder systems 

ran on day tariffs for 30% of their operating times, while direct expansion systems 

(bulk tanks) used 70% day tariff electricity. 

Milk production costs might also increase due to the monetisation of 

public supply and waste water in Ireland, as outlined in the Water Services Act 

2013. Most of Ireland’s dairy farm water is supplied by groundwater boreholes 

and an average of 7.42 Lwater/ Lmilk are consumed on farms (Upton et al., 2013; 

Shine et al., 2018b). Water demand is expected to increase with milk production, 

which may result in water shortages during periods of little rainfall and higher 

demand for public water supply. Water consumption can be influenced by factors 

such as herd size, number of milking units, use and type of pre-cooling systems or 
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bulk tank size. In the study of Shine et al. (2018b) the water consumption within 

the milking parlour corresponded to 33% of total dairy farm water consumption. 

In the parlour, pre-cooling systems had the highest water consumption (1.81 

Lwater/ Lmilk), followed by wash down (1.31 Lwater/ Lmilk) and sanitation (0.15 Lwater/ 

Lmilk). Some alternatives to reduce water consumption are: recycle the water used 

for pre-cooling, re-utilise that water for washdown or as drinking water for 

livestock and monitor water usage during wash cycles (Murphy et al., 2016a; 

Shine et al., 2018a). 

 

1.3. Influence of factors throughout the production chain on the 

quality of dairy products 

 

1.3.1. Cheddar cheese 

 

Cheese is one of the main dairy commodities exported by Ireland and, 

according to a report from the International Dairy Federation (IDF, 2012), Irish 

cheese production in 2011 was approximately 180 x 10
3
 tonnes, and is expected to 

reach more than 200 x 10
3
 tonnes by 2020. Global production of cheese is 

approximately 19 x 10
6
 tonnes per year and has increased at an average annual 

rate of approximately 4% over the past 30 years. The consumption of cheese per 

capita has also been increasing consistently over many years, some reasons for 

this are a positive dietary image of the product, convenience and flexibility in use, 

and the great diversity of flavours and textures (Fox et al., 2017). 

 

1.3.1.1. Cheddar cheese manufacture 

 

Cheddar cheese is classified as a rennet-coagulated hard cheese type. Hard 

cheeses usually have a moisture content ranging from 30 to 45% and are subjected 
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to high pressure during manufacturing to give a hard, uniform and close texture 

(Fox et al., 2017). The traditional protocol for the manufacture of Cheddar cheese 

is shown in Figure 1.6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6. Traditional protocol for the manufacture of Cheddar cheese (Fox et 

al., 2017). 

 

On an industrial scale, Cheddar cheese is usually produced using bovine 

milk that is pasteurised at 72 ˚C for 15 seconds. Milk is also standardised to a 

casein: fat ratio of 0.67 to 0.72:1.00 to compesate for seasonal variations in milk 

Pasteurised Bovine milk (31 ˚C) 

Coagulum 

Cut the coagulum 
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Whey drainage 

Cheddaring of the curd 

Milling of the curd (pH ~ 5.2) 
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Lactococcus lactis ssp. 

cremosis and/ or lactis 

Rennet (1:15,000) 

(CaCl2, 0.02%, w/v) 

Dry Salting 

Moulding and pressing 

Ripening (0.5 to 2 years at 6 – 8 ˚C) 

NaCl (~2%, w/w) 
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composition, as well as to optimise cheese yield and to maintain a constant cheese 

composition. The protein and fat contents in milk can be adjusted by the addition 

of concentrated non-fat milk solids (i.e., skim milk powder or condensed milk) or 

skim milk or by the removal of cream. Milk is heated to approximately 30 ˚C and 

then the starter culture and rennet are added. The main starter cultures used are 

Lactococcus ssp. lactis and Lactococcus lactis ssp. cremosis; however, sometimes 

mixed and undefined cultures could be also used. Starter cultures are responsible 

for the production of lactic acid during cheese-making, which results in the 

acidification of curd and whey. The decrease in pH promotes rennet activity, and 

aids the expulsion of whey from the curd, thus reducing the moisture content of 

the cheese, which helps to prevent the growth of undesirable bacteria in the 

cheese. Starter cultures are also important in developing flavour during ripening 

of cheese.  

The coagulation of milk is promoted by the addition of proteases to the 

milk, which could be rennet or, currently most commonly, fermentation-produced 

chymosin (FPC). Rennet includes proteases produced in the stomachs of 

ruminants and contains approximately 60 to 70 RU (rennet units)/ mL. Chymosin 

represents more than 90% of the milk clotting activity of calf rennet, while the 

remaining activity is due to pepsin (Fox et al., 2017). Currently, FPC represents 

70 to 80 % of the total rennet market. The three main commercial FPC used are: 

Maxiren (secreted by K. marxianus var. lactis, Gist Brocades, The Netherlands), 

ChyMax
 
secreted by A. niger or E. coli (Hansen, Denmark) (Jacob et al., 2011). 

Those proteases hydrolyse the Phe105-Met106 bond of κ-casein, releasing a 

caseinomacropeptide (CMP) into the aqueous medium. After this, the rennet-

altered micelles (paracasein) aggregate in the presence of Ca
2+

, entrapping fat 
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globules and milk serum in a network. The coagulum is cut into small pieces 

(approximately 6 mm cubes), cooked to 39 to 40 ˚C over 30 minutes, and held at 

this temperature for about 1 h. Once a certain pH is reached, the whey is drained 

and the curds are “cheddared”. During the cheddaring process, the curd blocks are 

piled on top of each other, with regular turning and stacking of the curd blocks. 

The cheddaring process allows time for further decreases in the pH (e.g., from 6.1 

to 5.4), thus solubilising some colloidal calcium phosphate, as well as assisting in 

whey drainage as the curds are subjected to gentle pressure. During this process, 

the curds granules fuse and the texture changes from soft and friable to tough and 

pliable.  

The curds are milled and dry-salted when the pH is approximately 5.4. 

During the “mellowing” period, the salt dissolves in moisture on the surface of the 

curd. Finally, the curds are moulded and pressed overnight at up to 200 kN/ m
2
.  

Cheddar is then stored at 6 to 10 ˚C for a period ranging from 3 to 4 

months to 2 years to ripen (Walstra et al., 2006; Fox et al., 2017). The primary 

biochemical changes that occur during ripening include the metabolism of 

residual lactose, lactate and citrate, as well as lipolysis and proteolysis. The 

secondary changes include the metabolism of fatty acids and of amino acids, 

responsible for the development of flavour (McSweeney, 2004). The 

characteristics of the manufacturing process, such as starter culture type, level of 

residual coagulant activity and composition of cheese (i.e., moisture, NaCl 

contents and pH), are the main determinants of those changes in cheese during 

ripening. The complex set of biochemical reactions is responsible for changes in 

flavour, aroma and texture in cheese, which are unique characteristics for each 

type of cheese (Fox et al., 2017). 
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1.3.1.2. Composition of Cheddar cheese 

 

The quality of Cheddar cheese is usually graded according to its 

composition for commercial purposes. Cheddar grading systems mainly specify 

the moisture content, NaCl concentration [expressed as salt-in-moisture (%S/M)], 

pH, moisture in non-fat substances (MNFS; ration of protein to moisture) and 

percentage fat-in-dry matter (FDM). Several studies have attempted to investigate 

the relationship between Cheddar cheese quality and composition (Gilles and 

Lawrence, 1973; Fox, 1975; Pearce and Gilles, 1979; Figure 1.7). It has been 

concluded that the moisture content, % S/M and pH are the key determinants of 

cheese quality; however, studies disagree regarding the relative importance of 

those parameters. The only grading scheme in commercial use appears to be that 

proposed by Gilles and Lawrence (1973), which is applied in New Zealand for 

young (14 day) Cheddar cheese (Figure 1.7). In the United Kingdom, there are 

legal limits in relation to the maximum moisture (39.0%) and minimum % FDM 

(50.0%) for full-fat Cheddar cheese (Lawrence and Gilles, 1980). Lawrence et al. 

(2004) also suggested ranges of S/M, MNFS, FDM and pH for first-grade and 

second-grade young Cheddar cheese (14 day), which are shown in Figure 1.8.  

According to Fox et al. (2017), composition is not a good predictor of 

Cheddar cheese quality, as its quality can be evaluated considering its 

compositional, functional, sensory and safety aspects. Additionally, factors such 

as the microflora, activity of indigenous milk enzymes, relatively small variations 

in cheese composition, and probably other unknown factors, are also determinants 

of Cheese quality and should be taken into account during production. 
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Figure 1.7. Relationships between composition and the quality of mature Cheddar 

cheese (moisture-in-non-fat substances [MNFS]; fat-in-dry matter [FDM], and 

salt-in-moisture [S/M]) (Redrawn from Fox et al., 2017). 
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week-old Cheddar cheese. 

Pearce and Gilles (1979): Composition of cheeses was determined at 

14 days and related to quality of Cheddar cheese. 



 

56 
 

 

 

 

 

 

Figure 1.8. Suggested ranges of salt-in-moisture (S/M), moisture-in-non-fat-

substance (MNFS), fat-in-dry-matter (FDM), and pH for first-grade and second-

grade Cheddar cheese (Redrawn from Lawrence et al., 2004). 

 

1.3.1.3. Factors that influence Cheddar cheese quality 

 

The milk supply quality is critical to maintain the consistent production of 

high quality Cheddar throughout the year (Murphy et al., 2016b). Three aspects of 

raw milk quality must be considered: microbiological, enzymatic and chemical 

(Fox et al., 2017). According to Murphy et al. (2016b), it is difficult to determine 

a bacterial count limit for raw milk to ensure no negative effects on cheese quality 

or yield, due to the natural variation in the enzyme activities of milk microflora 

(Murphy et al., 2016b). For example, some studies suggested that levels higher 

than 1 x 10
6
 cfu/ mL of psychrotolerant bacteria in raw milk could cause flavour 

defects in cheese and reduce yields, due to the production of heat-stable proteases 

and lipases (Cousin, 1982; Fairbairn and Law, 1986; Mottar, 1989; Champagne et 

al., 1994; Sorhaug and Stepaniak, 1997). However, some authors observed 

different results; for example, Leitner et al. (2008) produced cheese using BT 

milk from 15 farms stored for 0, 24 and 48 h at 4 ˚C. After 48 h, TBC levels 

increased from 68 x 10
3
 to 24 x 10

6
 cfu/ mL and the cheese curd yield decreased 

by 7%; however, this decrease was not significantly correlated with bacterial 

count increase. According to the review published by Murphy et al. (2016b), the 
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use of raw milk with bacterial counts lower than 1 x 10
5
 cfu/ mL is unlikely to 

negatively affect cheese manufacture and quality. In countries with a developed 

dairy industry, the TBC of milk supplied is usually lower than 2 x 10
4
 cfu/ mL, 

which may increase during transport and storage in the factory; however, numbers 

are reduced after thermisation (65 ˚C x 15 s) or pasteurisation (72 ˚C x 15 s) (Fox 

et al., 2017). The pasteurisation of milk used for cheese production is the main 

reason for the low incidence of pathogens in this product. Other contributing 

factors would be the decrease in pH and water content during manufacture. The 

Food Safety Authority of Ireland (2004) reported that none of 512 retail cheeses 

tested contained salmonella, one sample contained Listeria monocytogenes (5.7 x 

10
3
 cfu/ g), three samples had Escherichia coli (10

4
 to 10

5
 cfu/ g) and 16 samples 

had Staphylococcus aureus levels higher than 10
4
 cfu/ g.  

Even though bacterial numbers can be considerably reduced in cheese milk 

after heat treatments, the control of those is still required due to the potential 

production of proteases or lipases. Those could be heat-resistant and not 

eliminated during pasteurisation, and consequently affecting milk cheese-making 

properties and cheese quality parameters (flavour and texture) over ripening. Most 

of those heat-resistant enzymes are produced by psychrotrophic bacteria (Mottar, 

1989; Sorhaug and Stepaniak, 1997; Skeie, 2007). Mankai et al. (2012) observed 

low dry matter content of Gouda cheeses produced from milk stored at 4 ˚C for 

48, 72 and 96 h, which was possibly related to psychrotrophic proteases 

responsible for losses of protein in whey. The authors also observed a negative 

relationship between milk storage time and cheese yield, which decreased as the 

milk used was stored for longer. The same was observed by Shah (1994) and 

Boulares et al. (2011), who associated decreases in cheese yield with enzymes 
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produced by Gram-negative psychrotrophs. Proteolysis is also a major 

contributing factor associated with the development of textural and rheological 

properties of cheese (Lawrence et al., 2004). Novella-Rodriguez et al. (2004) and 

Mankai et al. (2012) observed that the proteolysis level was higher for cheeses 

made with milk stored for 48 h and 96 h, respectively, whatever the stage of 

ripening. Those results were associated with physicochemical changes and 

increased in enzymatic activity in milk over storage. Furthermore, growth of 

citrate-metabolising lactobacilli is responsible for open texture or slit openness in 

Cheddar cheese, due to the production of CO2 from citrate. Non-starter 

lactobacilli bacteria (e.g., Lactobacillus casei, plantarum and brevis) at levels 

higher than 10
7
 cfu/ g can result in the production of gas and putrid off-flavour 

development. Thermo-resistant strains, such as Streptococcus thermophiles, could 

accumulate in pasteurisers not properly sanitised and numbers could increase to 

10
8
 cfu/ g in cheese in the early ripening stages, causing unclean flavours in 

cheese (Fox et al., 2017).  

High levels of SCC could also have a negative impact in cheese 

manufacture. According to Politis and Ng-Kwai-Hang (1988), increasing SCC 

incrementally from 10
5
 to levels higher than 10

6
 cells/ mL resulted in linear 

increases in the percentages of milk fat (1%) and protein (3%) lost in whey, and 

reductions in Cheddar cheese yield. Also, adverse effects of SCC higher than 5 x 

10
5
 cells/ mL on the rennet coagulation of milk, cheese yield and recovery protein 

and fat to cheese have also been reported in other studies (Auldist and Hubble 

1998; Barbano et al., 1991; Auldist et al., 1996; Klei et al., 1998; Srinivasan and 

Lucey, 2002). Somatic cells counts lower than 3 x 10
5
 cells/ mL are recommended 

for cheese manufacture (Fox et al., 2017). 
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Residues from cleaning and disinfecting agents are also a concern in 

cheese manufacture. According to Singh and Ghandi (2015), levels around 5 ppm 

of QACs in dairy products could inhibit lactic acid bacteria, which could affect 

the formation of the coagulum and increase the milling time in preparation of 

Cheddar cheese. The Federal Institute of Risk Analysis in Berlin (2012) has 

reported that the QAC compound, DDAC, is frequently detected in dairy 

products. The maximum concentration of that compound reported in cheese was 

0.235 mg/ kg, which is higher than the European limit (0.0100 mg/ kg). Some 

types of cheeses are immersed in brine solutions prepared with disinfected water, 

which could contain residues of chlorine-based sanitisers, TCM and non-volatile 

haloacetic acids (Grellier et al., 2010; Rahman et al., 2010; Cardador et al., 2016). 

Proper sanitation on-farm and within factories are required to avoid high levels of 

those contaminants in dairy products.  

 

1.3.2. Infant formula 

 

Ireland supplies 10% of all global infant milk formula (IMF), which 

accounts for 35% of all Irish dairy exports and is valued at around 35 billion euros 

in retail sales per year (DAFM, 2012; Allen, 2016). As a product of high 

commercial value destined for infants, it is of extreme importance to ensure high 

quality and safety. Infant milk formula is manufactured based on the nutritional 

profile of human milk, in order to satisfy the nutritional requirements of new-

borns until they are introduced to appropriate complimentary food (European 

Commission, 2006; Codex Alimentarius, 2007). There are three types of IMF 

manufacturing process: wet-mixing, dry-blending, or a combination of wet-
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mixing and dry-blending (McSweeney, 2008). A generalised wet process for the 

manufacture of powdered IMF is shown in Figure 1.5.  

In the first IMF production stage, specific powder and/ or liquid 

ingredients are combined with milk and/ or water to obtain the desired macro-

composition. The raw materials that are commonly used in IMF are listed in Table 

1.4. The bacterial and chemical residues levels in raw milk, or in the powdered 

ingredients produced from such milk, are important determinants of the quality of 

the dairy product that will be manufactured. Some of the pathogenic bacteria of 

most concern in the infant formula production are Salmonella spp., Clostridium 

botulinum and perfringens, Escherichia coli, Listeria monocytogenes, 

Campylobacter spp., Staphylococcus aureus and bacteria from the Bacillus cereus 

group (Scott et al., 2015). Those microorganisms could be all present in the cows’ 

environment and therefore farm-level control of those numbers through 

appropriate cow management and udder preparation is essential. The chemical 

hazard of concern in IMF processing would be the levels of CHLO and iodine in 

the ingredients. There is no technology available to reduce the levels of those 

residues in milk, highlighting the importance of appropriate sanitation practices 

and feed management on-farm. The same is valid within the factory, as residual 

chlorine on the surface of processing equipment or water with high levels of 

chlorine could increase residues levels in milk.  
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Figure 1.5. Generalised powdered IMF manufacturing process (grey filled areas 

indicate alternative processing options) (Adapted from Sorensen et al., 1992; 

Montagne et al., 2009). 

 

In relation to other ingredients, oils (such as polyunsaturated fatty acids) 

and fat-soluble vitamins (such as A, D, E and K) are usually incorporated into the 

wet-mix prior to homogenisation to prevent their separation with the fat fraction. 

Heat-sensitive ingredients, such as minerals and other vitamins, are added after 

heat treatment (Murphy, 2015).  
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Table 1.4. Typical raw materials for IMF (Murphy, 2015). 

Casein Source 

Skim milk powder (SMP), evaporated skim 

milk, acid casein, sodium/ calcium/ potassium 

caseinate, milk protein concentrate 

Whey Source 

Demineralised whey powder, whey protein 

concentrates, whey protein isolates, hydrolysed 

whey ingredients 

Alternative protein source 
Soy milk, soy protein isolate, locust bean seed 

protein, amino acids 

Oils 
Soy, corn, safflower, sunflower, rapeseed, palm, 

copra, structured lipids 

Carbohydrates 
Lactose, starch, sucrose, corn syrup, corn syrup 

solids 

Major minerals 

Calcium carbonate, calcium phosphates, dibasic 

magnesium phosphate, potassium citrate, 

magnesium chloride 

Minor minerals 
Potassium iodide, ferrous sulphate, manganese 

sulphate, copper sulphate, zinc sulphate 

Vitamins 
A, D, E, K, B1, B2, B6, B12, niacin, folic acid, 

pantothenic acid, biotine, choline, inositol 

Functional ingredients Soy lecithin, mono- and di-glycerides 

 

 

The positioning of heat-treatment in the process is flexible, and could be 

placed prior to or post homogenisation, as indicated in Figure 1.5. Aggregates of 

fat globules are formed during heat treatments and therefore it is beneficial to 

place that step prior to homogenisation when producing whole milk powder 

destined for IMF manufacture (McSweeney et al., 2004). The milk powder used 

or produced during the production of IMF can be classified as low-, medium- or 

high-heat powder according to the heat treatment applied. Typical heat treatments 

are 70 - 72 ˚C for 15 s for low-heat milk powder, and 120 ˚C for 60 - 120 s, or 90 
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˚C for 300 s high-heat milk powder (Kelly et al., 2003). The heat treatment stage 

is a critical control point as it has to ensure the reduction of pathogenic bacteria 

numbers to safe levels. Commission Regulation (EC) No 2073/2005 establishes 

the microbiological criteria for foodstuff, including IMF. According to that 

regulation, the food safety criteria applicable to IMF requires absence of 

Salmonella spp. and Cronobacter spp. in 25 and 10 g of 30 sample units, 

respectively. The presence of Salmonellae indicates survival or contamination 

after processing and it is used as an indicator of hazards in dried milk and IMF 

(WHO, 1992). Also, according to the EC regulation, the process hygiene criteria 

applicable to IMF requires absence of Enterobacteriaceae in 10 g of 10 sample 

units, while four samples should have presumptive Bacillus cereus levels lower 

than 50 cfu/ g and the fifth sample can have levels between 50 and 500 cfu/ g. 

Even though bacterial levels can be considerably reduced after pasteurisation, it is 

critical to control them at farm level, as the effects of high bacterial numbers in 

milk cannot be addressed with processing technology. Most importantly, the 

levels of thermoduric, thermophilic and spore-forming bacteria should be 

controlled, as those microorganisms can survive heat treatments and most of the 

pathogens of concern in IMF manufacture belong to those bacterial groups. 

Therefore, if pathogens are initially present in high numbers, there is the risk of 

not reducing them to safe levels (Cho et al., 2018; Zou and Liu, 2018). 

After the heat treatment, the wet-mix is evaporated and powder is 

produced by spray-drying (Montagne et al., 2009). The temperature gradient in an 

evaporator system ranges typically from 70 ˚C in the first effect to 45 ˚C in the 

last effect (Murphy, 1999). After this, powder is generally produced using two or 

three stage spray dryers. Those dryers consists of a large drying chamber (stage 1, 
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at 180 to 200 ˚C) in which the bulk of water is removed, followed by 

supplementary drying using an internal fluidised bed (stage 2, at 50 to 60 ˚C) and/ 

or an external fluidised bed (stage 3, at 20 to 30 ˚C) (Montagne et al., 2009). The 

evaporation and spray-drying processes may also contribute to further decreases 

in the bacterial levels in the product, due to the high temperatures applied during 

those operations. However, thermoduric and thermophilic bacteria can survive 

those temperatures and levels could concentrate in the final product. Griffiths et 

al. (1988b) enumerated thermoduric bacteria at several stages of a milk powder 

manufacturing process (pasteurisation, evaporation and spray drying) and in the 

milk powder produced, and reported that numbers of thermoduric bacteria did not 

decrease throughout the processing stages.  

Although most of the bacteria can be eliminated after heat treatment, many 

species of psychrotroph, mesophilics, thermoduric and thermophilic bacteria 

produce heat-stable lipases and proteases, which can retain activity in powdered 

dairy products that could be used as ingredients during the manufacture of infant 

formula (Chen et al., 2003). The presence of these enzymes could affect the 

quality of those powdered ingredients, by affecting their physico-chemical, 

functional and sensory properties. Celestino et al. (1997) reported that 

reconstituted UHT milk powder manufactured using raw milk stored for 4 days 

before processing had rancid and bitter flavours compared to UHT milk powder 

produced using fresh raw milk, possibly due to differences in the bacterial levels 

and enzymatic activity between the milk volumes used. Oliveira et al. (2000) 

observed that whole milk powder produced from raw milk containing high levels 

of psychrotrophs (1.8 x 10
7
 cfu/ g) presented higher insolubility indexes. Both 
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studies indicate that microbiological quality of raw milk has a major impact on the 

quality of the final powder product. 
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Experimental objectives 

 

Considering the gaps in knowledge and current challenges of dairy 

suppliers and processors, the major objective of this study was to investigate how 

production conditions on-farm influence raw milk quality and processability, and 

how the quality of milk can impact on the quality of dairy products. The studies 

were conducted in commercial and research dairy farms, in a commercial milk 

powder processing plant, and in a pilot cheese processing plant, which ensured 

that milk was produced and processed according to typical farm and industrial 

conditions. The work is presented in the experimental chapters as outlined in 

Figure 1.8.  

The specific objectives of this thesis were: 

 Determine the effect of different storage temperatures and time on 

the microbiological and compositional quality of raw milk from 

different farm bulk tanks; 

 Investigate the effect of different pre-cooling rates on milk 

microbiological quality and composition, as well as on energy 

requirements. This study was conducted in a manner that mimicked 

on-farm milk production conditions: morning and evening 

milkings, similar milk storage conditions, and use (or not) of 

precooling systems; 

 Investigate the conjoined impact of seasonal production conditions 

of individual dairy suppliers (sanitation practices and storage 

conditions) on the quality of the bulk milk used for the production 

of milk powder and its effect on the final product quality. The 
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quality aspects investigated were microbiological load and 

concentration of residues from sanitation products and 

concentrations of iodine; 

 Understand the dynamics of changes in residues (TCM, CHLO, 

QACs) from sanitation products throughout milk powder 

processing; 

 Investigate the effect of thermo-resistant protease produced by 

Pseudomonas fluorescens, the main psychrotroph present in milk, 

on the cheese-making properties of milk and Cheddar cheese 

quality parameters. 

 

 

Figure 1.8. Structure of experimental chapters and topics investigated in each 

study. 
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Abstract 

 

In this study, the effect of storage temperature (2 or 4 °C) on the 

composition of milk and microbiological load was investigated over 96 h. Milk 

samples were collected from farm bulk milk tanks after one complete milking and 

stored at 2 or 4 °C over 96 h. Total bacterial count (TBC), psychrotrophic 

bacterial count (PBC) and proteolytic bacterial count (PROT) were affected by 

storage time and temperature and varied significantly between farms (P < 0.05). 

The levels of TBC, PBC and PROT bacterial count increased from 4.37 to 6.15 

log10 cfu/ mL, 4.34 to 6.44 log cfu/mL and 3.72 to 4.81 log10 cfu/ mL, 

respectively, when the milk was stored for 96 h at 2 °C. The milk samples stored 

at 4 °C had higher increases in these bacterial counts after 72 h in comparison to 

milk samples stored at 2 °C. The casein fraction content was lower in milk 

samples stored at 4 °C, which could be due to high levels of PROT bacteria or 

enzyme activity in these samples. Milk stored for 96 h at 2 °C has less impact on 

composition or processability parameters compared to milk stored at 4 °C. 
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2.1. Introduction 

 

The Food and Agriculture Organization of the United Nations 

(OECD/FAO, 2016) reported that the demand for milk and milk products is 

increasing worldwide, mainly due to rising incomes, population growth and 

changes in diets in developing countries; according to their report, milk 

production is expected to increase by 20% by 2025 worldwide. This expansion 

could result in the extension of milk storage time on farms beyond the current 48 

h period practiced for most of the year in some countries. On considering 

prolonging storage of milk on farms or within the processing plant, it is necessary 

to evaluate how extended storage of milk at low temperatures could affect milk 

quality. Milk composition and microbiological load are important factors to 

consider when evaluating quality, due to their influence on milk processability, 

nutritional quality, dairy product quality and safety (Malek dos Reis et al., 2013). 

The most relevant bacterial groups for determining milk quality are counts of 

mesophilic bacteria, psychrotrophic bacteria, lipolytic (LIP) bacteria, proteolytic 

(PROT) bacteria, thermoduric bacteria [laboratory pasteurisation count (LPC)] 

and thermoduric-psychrotrophic bacteria (LPC-PBC).  

Total bacterial count (TBC) and psychrotrophic bacterial count (PBC) are 

laboratory tests that allow for quantification of mesophilic and psychrotrophic 

bacteria (growth temperature of ≤7 °C; Frank and Yousef, 2004) in milk, 

respectively. These tests are used to assess or monitor the sanitary and storage 

conditions during production, collection and handling of raw milk (Harding, 1995; 

Robinson, 2002). Hygienic milking conditions are vital to ensure high initial 

microbiological quality; however, milk storage conditions (i.e., temperature) can 

also influence bacterial growth. Some psychrotrophic bacterial strains can be 
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classified as LIP or PROT bacteria, which can increase during milk cold storage, 

producing lipases and proteases, the action of which could affect milk 

functionality and also result in defects in dairy products such as rancidity and 

bitter flavours (Muir, 1996). Bacteria of the Pseudomonas genus are considered as 

one of the predominant psychrotrophic groups in raw milk with a high spoilage 

potential (De Jonghe et al., 2011; Machado et al., 2015).  

Thermoduric and thermoduric-psychrotrophic bacteria are capable of 

surviving thermal treatments (i.e., pasteurisation), while the latter can also grow at 

low temperatures; consequently, they are capable of multiplying during different 

processing stages (Robinson, 2002; Fromm and Boor, 2004; Barbano et al., 2006). 

These bacteria originate in the environment and could be present in feed, forage, 

bedding material, dust, faeces and soil, and, once in contact with cow’s teat skin, 

could contaminate milk (Gleeson et al., 2013).  

Regarding milk composition, milk contains components of technological 

and nutritional importance (Walstra et al., 2005). Milk fat is a high-value 

component, important for the manufacture of dairy products such as butter and 

cheese. Fat hydrolysis caused by lipases can result in undesirable flavours (i.e., 

rancid, butyric and bitter), as well as loss of functional properties of milk such as 

foaming and creaming ability during manufacture of butter (Shelley et al., 1987).  

Milk proteins play critical roles in the physical stability and rheological 

properties of milk products. The main change in the protein system during cold 

storage is the migration of β-casein to the serum phase, which may impact on 

cheese production, resulting in losses of fat and curd fines in whey, prolonged 

clotting times and poor rennetability (Walstra et al., 2005). Proteolysis may also 

occur during cold storage, albeit likely slowly, due to endogenous enzymes (from 



 

98 
 

psychrotrophic bacteria) or indigenous bovine enzymes. Indigenous proteinases in 

milk such as plasmin preferentially hydrolyse β-casein, αs1-casein and αs2-casein 

(Crudden et al., 2005), resulting in defects in dairy products, such as bitterness in 

milk, gelation of ultra-high temperature processing (UHT) processing milk and 

reduction in yields of cheese (Datta and Deeth, 2003). Proteolysis and lipolysis 

can also be caused by indigenous enzymes in milk associated with somatic cells; 

several studies have reported that milk quality decreases with the increasing 

somatic cell count (SCC) in milk and consequent increased activity of lipases and 

proteases (Santos et al., 2003; Barbano et al., 2006; Wickstrom et al., 2009).  

On farms, milk is added to bulk tanks at least twice every day; therefore, 

the last volume of milk added to the tank remains stored for a shorter period of 

time. Hence, any significant effect caused by enzyme activity, bacterial growth, 

storage temperature and time on the quality of milk over 96 h may not be detected 

due to the addition of fresh milk (Perko, 2011; Reche et al., 2015; O’Connell et 

al., 2016). Therefore, the present study focused on analysing bulk tank milk from 

the first complete herd milking, produced under different farm management 

conditions.  

The aim of this study was to investigate the effect of milk storage 

temperature and time on the quality of raw milk by evaluating the microbiological 

load and composition when milk was stored under controlled laboratory 

conditions at 2 or 4 °C over 96 h. 
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2.2. Materials and methods 

 

2.2.1. Sample collection 

 

Milk samples were collected from bulk milk tanks of four autumn-calving 

dairy farms in the Cork region (Ireland) during the indoor period. The indoor 

period represents the first 150 days of lactation, after which cows are managed 

outdoors on grass. The farms were labelled as W, X, Y and Z, and the bulk tanks 

had milk only from the first milking. This milk was stored for <4 h, and therefore, 

samples analysed on the first day are referred to as 0 h samples. After agitation (1 

min), one milk sample (1 L) was collected from the top of each bulk tank using a 

sterilised jug, transferred to a sterile bottle and transported to the laboratory at <4 

°C within 3 h. The samples were subdivided immediately after manual agitation to 

avoid unequal fat distribution due to fat separation in the original sample 

(Tamime, 2007). Each sample was subdivided into twenty 30 mL sterile bottles, 

which corresponded to four milk samples for each storage time (0, 24, 48, 72 and 

96 h). In all, 10 bottles from each sample were stored at 2 °C, while the other 10 

bottles were stored at 4 °C. At 0, 24, 48, 72 and 96 h, one sample from each 

temperature was analysed in duplicate for bacterial counts, composition (fat, 

protein, lactose and total solid contents) and SCC. In addition, two extra milk 

samples out of the 1 L were separated for each farm and were stored at 2 and 4 °C 

for 0 and 96 h, respectively, in order to quantify casein and nitrogen fractions and 

to obtain peptide profiles. 
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2.2.2. Microbiological analysis 

 

Raw milk samples were tested in duplicate every 24 h for a range of 

bacterial groups. All the microbiological analyses were performed in accordance 

with the Standard Methods for the Examination of Dairy Products (Wehr and 

Frank, 2004). TBC, PBC, LPC and LPC-PBC were measured using Petrifilm, a 

ready to use medium (3 M; Technopath, Tipperary, Ireland), in accordance with 

the procedures described by Laird et al. (2004). The samples tested for LPC and 

LPC-PBC were pasteurised at 63 °C for 35 min, allowing extra time for samples 

to reach the required temperature (Frank and Yousef, 2004). Afterwards, the 

samples were cooled to 10 °C in iced water before testing. The samples tested for 

TBC and LPC were incubated for 48 h at 32 °C (Laird et al., 2004), while samples 

tested for PBC and LPC-PBC were incubated for 10 days at 7 ± 1 °C (Frank and 

Yousef, 2004). The number of bacterial colonies present was counted using a 

Petrifilm plate reader.  

LIP and PROT bacterial counts were performed by spread plating 100 µL 

of the appropriate dilutions on tributyrin agar with added glyceryl tributyrate 

(Sigma Aldrich, Dublin, Ireland) and on calcium caseinate agar with added skim 

milk powder (Merck, Darmstadt, Germany), respectively. The agar plates were 

incubated at 37 °C for 48 h for both methods. LIP bacterial colonies were 

identified as colonies surrounded by a clear zone in a turbid medium, while the 

PROT colonies were identified as colonies surrounded by a clear zone in an 

opaque medium. 
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2.2.3. Composition and SCC 

 

Raw milk sample composition and SCC were measured using a 

Fossomatic FC (Foss Electric, HillerØd, Denmark). Fat, protein, lactose and total 

solid percentages were quantified. Raw milk samples were also analysed in 

duplicate to quantify the non-protein nitrogen (NPN), non-casein nitrogen (NCN) 

and total nitrogen content (N) using the Kjeldahl method [methods 20-4 (IDF, 

2001), 29-1 (IDF, 2004a) and 20-3 (IDF, 2004b), respectively], using a Tecator 

Digestor Auto and Kjeltec 8400 distiller (Foss Electric). Milk samples stored for 0 

and 96 h at 2 or 4 °C were selected for these analyses.  

High-performance liquid chromatography (HPLC) was used to quantify 

the casein content (in triplicate) and to obtain peptide profiles. To quantify the 

casein content, an aliquot of 200 µL of each milk sample was diluted in 3,780 µL 

of dissociating buffer (7 M urea and 20 mM Bis-tris propane, pH 7.5), to which 5 

µL/mL of mercaptoethanol was added before filtering through a 0.22-µm filter. 

The method described by Mounsey and O’Kennedy (2009) was applied to 

perform gradient elution and peak detection. The HPLC equipment used was an 

Agilent 1200s system (Agilent Technologies, Santa Clara, CA, USA) with a 

quaternary pump and a multiwavelength detector. The separation of the milk 

protein fractions was performed in the reversed-phase mode using an Agilent 

Poroshell 300SB C18 column (2.1 mm × 75 mm; Agilent Technologies).  

The peptide profiles were obtained for samples, which showed significant 

differences in the casein content after 96 h. Samples stored at 0 and 96 h had their 

non-protein fraction extracted using trichloroacetic acid, according to the 

extraction procedure described in the IDF method 20-4 (Determination of 

Nitrogen Content) (IDF, 2001). To obtain a clear chromatogram, the extracts were 
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not diluted but were filtered using 0.45 µm syringe cellulose filters (Ø 25 mm, 

Chromafil Xtra RC-45/25). The separation of milk peptides was performed in the 

reverse-phase mode using an Agilent Zorbax 300SB C8 column (4.6 mm ID × 

150 mm; Agilent Technologies). The gradient elution and peak detection 

methodology was an adaption of the methodology of Rohm et al. (1996). The 

same HPLC equipment for quantification of caseins was used in this analysis, in 

which 50 µL samples were injected (in duplicate) onto the column and the flow 

rate was 0.50 mL/min. 

 

2.2.4. Statistical analysis 

 

Least square means for the main effects of storage time, temperature, farm, 

and their interaction were calculated using the MIXED procedure in SAS 9.3 

(SAS Institute, 2016). The milk samples from the farms were the experimental 

units. The response variables were TBC, PBC, LPC, LPC-PBC, PROT bacterial 

count, LIP bacterial count, protein content, fat content, lactose content, total solid 

content, SCC, casein fractions (αS1-casein, αS2-casein, κ-casein and β-casein; α-

lactalbumin; β-lactoglobulin A and B) and nitrogen fractions (N, NPN and NCN). 

The fixed effects included in each model were storage time (0, 24, 48, 72 and 96 

h), farm milk samples (W, X, Y or Z) and temperature (2 or 4 °C). Residual 

checks were made to ensure that the assumptions of the analysis were met. Where 

appropriate, log transformation was used to correct distributional issues. The 

Tukey’s test (at 5% error probability) was used to compare the means for all 

variables. The correlations between TBC and PBC were assessed by applying 

Pearson’s correlation coefficient using the CORR (correlation) procedure (SAS, 
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2016). The GLM (generalised linear model) procedure was used to determine the 

regression relationship between protein content and PROT bacteria. 

 

2.3. Results 

 

2.3.1. TBC 

 

TBC was affected by storage time (P < 0.001), storage temperature (P < 

0.01) and farm (P < 0.001), as well as by the interaction between temperature and 

time (P < 0.05; Table 1). Differences in initial TBC, as well as differences in the 

bacterial growth, were observed between milk samples (Figure 2.1.A.1 and A.2). 

For example, the initial TBC in milk samples from farms W and Z were similar 

(3.93 ± 0.06 log10 cfu/ mL and 3.88 ± 0.06 log10 cfu/ mL, respectively), and these 

samples had a similar TBC after 96 h when stored at 2 °C (Figure 2.1.A.1); 

however, samples stored at 4 °C had different TBCs after 72 h, corresponding to 

5.84 ± 0.06 log10 cfu/ mL and >7.00 log10 cfu/ mL, respectively (Figure 2.1.A.2). 

 

2.3.2. PBC 

 

The PBC was significantly affected by farm (P < 0.001), time (P < 0.0001) 

and temperature (P < 0.001); there was an interaction between time and 

temperature (P < 0.001; Table 2.1) but no interaction between farm and time (P > 

0.05; Table 2.1). Similar to the TBC results, differences between the initial PBC 

levels, as well as differences in the bacterial growth over 96 h, between the farm 

milk samples were observed (Figure 2.1.B). For example, samples from farms W 

and Z had similar initial PBC (3.76 ± 0.07 log10 cfu/ mL and 3.80 ± 0.09 log10 cfu/ 

mL, respectively); however, after 48 h, sample W had a PBC >7.00 log10 cfu/ mL, 
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while sample Z reached that level after 96 h (Figure 2.1.B.2). In this study, TBC 

was correlated with PBC, r(40) = 0.90983, P < 0.0001. 

 

2.3.3. LIP and PROT bacterial counts 

  

The LIP and PROT bacterial counts were significantly affected by storage 

time (P < 0.0001 and P < 0.05, respectively; Table 1) and by the interaction 

between time and temperature (P = 0.01 and P < 0.05, respectively; Table 2.1). 

Similar to TBC and PBC, storage at 2 °C resulted in lower increases in LIP and 

PROT bacterial counts over 96 h in comparison to samples stored at 4 °C (Figure 

2.2.A and B). Only PROT bacterial count was significantly affected by 

temperature (P < 0.01; Table 1), as shown in Figure 2.2.A and B. The initial LIP 

bacterial counts were similar between farms (P > 0.05), while the PROT bacterial 

count had a significant variability (P < 0.0001; Table 1). The increase in LIP and 

PROT bacteria varied among farm milk samples when stored at 4 °C (Figure 

2.1.C.2 and D.2). 
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Table 2.1. The significance of the main effects of time, temperature, farm and the interaction between time and temperature and 

between farm and time on the total bacterial counts (TBC), psychrotrophic bacterial count (PBC), lipolytic bacterial count (LIP), 

proteolytic bacterial count (PROT), thermoduric bacterial count [laboratory Pasteurisation Count (LPC)] and thermoduric-

psychrotrophic bacterial count (LPC-PBC) of the milk samples from all farms.  

Bacterial Counts 
Significance 

Time Temperature Time*Temperature Farm Farm*Time 

TBC <0.001 <0.01 <0.05 <0.001 0.37 

PBC <0.0001 <0.001 <0.001 <0.001 0.11 

LIP <0.0001 0.17 0.01 0.15 <0.05 

PROT <0.05 <0.01 <0.05 <0.001 0.86 

LPC 0.71 0.13 0.50 <0.05 0.59 

LPC-PBC 0.40 0.12 0.66 0.14 0.72 
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Figure 2.1. (A) Total bacterial count (TBC), (B) psychrotrophic bacterial count 

(PBC), (C) proteolytic (PROT) bacterial count and (D) lipolytic (LIP) bacterial 

count over 96 h for milk samples W, X, Y and Z stored at (1) 2 ˚C or (2) 4 ˚C. 

(A.1) (A.2) 

(B.1) (B.2) 

(C.1) (C.2) 

(D.1) (D.2) 
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Figure 2.2. Total bacterial count (TBC), psychrotrophic bacterial count (PBC), 

lipolytic (LIP) bacterial count and proteolytic (PROT) bacterial count over 96 h 

for milk samples from four dairy farms (W, X, Y and Z) stored at (A) 2 ˚C and 

(B) at 4 ˚C. 

 

(A) 

(B) 
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2.3.4. Thermoduric bacterial count and thermoduric-psychrotrophic 

bacterial count 

 

The LPC was not affected by storage time (P = 0.71), temperature (P = 

0.13) or their interaction (P = 0.50; Table 2.1). However, the LPC was 

significantly different between farms (P < 0.05; Table 2.1), with initial counts 

varying from 2.11 to 2.64 lo10g cfu/ mL (128–445 cfu/ mL). The LPC-PBC was 

not affected by time, temperature, farm or their interaction (P > 0.05; Table 2.1). 

The LPC-PBC levels varied from 0 to 1.40 log10 cfu/ mL (25 cfu/ mL). 

 

2.3.5. Composition 

 

The fat, protein and total solid contents of the milk samples were affected 

by storage time (P < 0.001, P < 0.0001 and P < 0.001, respectively), which 

decreased by 0.04%, 0.01% and 0.07% after 96 h, respectively. The lactose 

content remained the same over 96 h. The composition of milk samples was not 

affected by storage temperature. The fat (P < 0.05), protein (P < 0.0001), lactose 

(P < 0.001), total solids (P < 0.001), κ-casein (P < 0.05), αS1-casein (P < 0.05), 

αS2-casein (P < 0.01), β-lactoglobulin A (P < 0.01) and β-lactoglobulin B (P < 

0.001), total casein (P < 0.05), N (3.03%–3.30%) and NPN (0.026%–0.028%) 

contents (P < 0.01) varied between farm milk samples. The NCN content was 

similar between farms (0.10 ± 0.003%, P > 0.05). Statistical analysis did not 

indicate significant changes in casein and nitrogen fractions over time or at 

different temperatures (P > 0.05, data not shown). The chromatograms presented 

in Figure 2.3.A and B indicated decreases in the casein content in the milk 

samples from farms W and Z. The αS1-casein and β-casein contents decreased in 

sample Z, as well as in sample W, with a decrease in k-casein content after 96 h. 
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The chromatograms in Figure 2.4.A and B indicated an increase in the 

concentrations of peptides in samples W and Z. 

 

 

 

Figure 2.3. Separation of bovine milk proteins by reversed-phase high-

performance liquid chromatography (HPLC). Chromatograms of samples (A) W 

and (B) Z stored at 4 ˚C are shown. Full line (-) shows the 0 h sample; dashed line 

(---) shows the 96 h sample. 

αS1-casein 

β-casein 

αS2-casein 

κ-casein 
β-lactoglobulin A 

β-lactoglobulin B 

α-lactalbumin 

αS2-casein κ-casein 

αS1-casein 

β-casein 

α-lactalbumin 

β-lactoglobulin A 

β-lactoglobulin B 

(B) Sample Z 

(A) Sample W 
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Figure 2.4. Separation of bovine milk peptides by reversed-phase high-

performance liquid chromatography (HPLC). Chromatograms of samples (A) W 

and (B) Z stored at 4 ˚C are shown. Full line (-) shows the 0 h sample; dashed line 

(---) shows the 96 h samples. 

 

2.3.6. SCCs 

 

SCCs were different between farm milk samples (P < 0.001). The average 

(s.d.) SCC of the farms W, X, Y and Z were 62 ± 4.1 × 10
3
 cells/mL, 78 ± 6.2 × 

10
3
 cells/mL, 77 ± 4.2 × 10

3
 cells/mL and 214 ± 7.9 × 10

3
 cells/mL, respectively. 

The levels of SCC were significantly affected by storage time (P < 0.01) but not 

by temperature (P > 0.05). The least square means for both temperatures (2 and 4 

°C) were 96,000 cells/ mL. 

 

(A) Sample W 

(B) Sample Z 
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2.4. Discussion 

 

2.4.1. TBC 

 

According to European Regulation EC No 853/2004 (2004), TBC should 

be less than 5.00 log10 cfu/mL (1.00 × 10
5
 cfu/ mL) when milk is destined for 

manufacture of dairy products. However, some milk processors apply a lower 

TBC limit (e.g., 4.70 log10 cfu/ mL or 5.00 × 10
4
 cfu/ mL) for raw milk at the 

farm level. According to Pantoja et al. (2012), when the TBC of raw milk is <5.00 

log10 cfu/ mL, it is assumed that pasteurisation will reduce TBC to safe levels, 

destroying all pathogenic and most non-pathogenic bacteria present in milk. After 

96 h, samples stored at 2 °C had a TBC lower than this limit (4.37 ± 0.32 log10 

cfu/ mL; Figure 2.2.A); however, milk stored at 4 °C reached a TBC of 5.47 ± 

0.32 log10 cfu/ mL after 72 h (Figure 2.2.B). Therefore, applying the legislation 

and industry criteria, milk stored at 4 °C would be unsuitable for processing after 

72 h of storage, while milk stored at 2 °C could have the storage period extended 

to 96 h and remained suitable for processing. This information could be relevant 

for the extended storage of milk on farms, as well as within a dairy plant, where 

milk is stored in silos prior to processing. 

In a farm scenario, the addition of fresh milk to the bulk milk tank at least 

twice a day could result in bacterial counts different from bacterial counts 

reported for milk from a first milking only, stored for the same amount of time 

(Perko, 2011). While the present study could indicate that the storage of milk at 4 

°C should be limited to 48 h, O’Connell et al. (2016) demonstrated that milk 

stored in farm bulk tanks at the same temperature for 96 h (fresh milk added twice 

daily) had minimal deterioration of microbiological quality (3.68 log10 cfu/mL). 
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However, the present study determines the effects possibly caused by enzyme 

activity or bacterial growth that would not be detected when fresh milk is added to 

the tank every day. 

The differences in initial TBC observed between milk samples were 

considered relevant, indicating that samples had different microbiological 

qualities. Guinot-Thomas et al. (1995) suggested that bacterial counts are a 

reflection of the hygiene and sanitation practices at the farm level. Even though 

some of these initial TBCs were similar, the bacteria in the milk samples appeared 

to have different growth rates, as observed when comparing milk samples from 

farms W and Z that were stored at 2 and 4 °C (Figure 2.1.A.1 and A.2, 

respectively). These differences could be due to differences in the make-up of the 

milk microbiota, considering that there are a variety of strains within the 

mesophilic bacterial group that can survive and grow at different temperatures 

(Hantsis-Zacharov and Halpern, 2007). 

 

2.4.2. PBC 

 

According to Griffiths (2010), the PBC limit in raw milk at the collection 

point should be in accordance with the ratio of 6:1 (TBC:PBC). Therefore, based 

on the EU limit for TBC (5.00 log cfu/mL), the PBC limit should be 

approximately 4.22 log10 cfu/ mL. After 96 h, samples stored at 2 °C had a PBC 

over that limit (4.34 ± 0.22 log cfu/mL; Figure 2.2.A), while samples stored at 4 

°C were over that limit after 48 h (4.80 ± 0.50 log cfu/mL), reaching a PBC of 

6.44 ± 0.22 log cfu/mL after 96 h (Figure 2.2.B). However, after 96 h, samples 

stored at 2 and 4 °C may still be suitable, for example, for UHT, where milk is 

heated to a temperature >135 °C, with a holding time of 2–5 s. Muir (1996) 
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suggested that raw milk with a PBC of 6.70 log10 cfu/ mL should be rejected for 

UHT milk production, as high levels of psychrotrophic counts result in faster milk 

spoilage, which is due to the production of heat-resistant enzymes (Machado et 

al., 2017). Considering that the samples stored at 2 °C had a PBC level 

considerably lower than 6.70 log10 cfu/mL after 96 h, the difference between the 

average PBC of these samples and the European threshold (4.22 log10 cfu/mL) can 

be considered to be not biologically relevant. 

The differences in the initial PBC levels between the farm milk samples (P 

< 0.001; Table 2.1) could be due to differences in practices on each of the farms, 

which lead to different contamination levels. The different bacterial increases 

observed over 96 h were probably due to variation in microbiota between 

samples. Similarly, Vithanage et al. (2016) observed that the same milk samples 

stored at different temperatures (2, 4, 6, 8 or 10 °C) showed significant differences 

in their microbiota and bacterial counts over time. 

The TBC of raw milk is normally used as a major quality indicator by milk 

processors, while PBC is not considered as a quality parameter of raw milk. 

However, considering the positive correlation between TBC and PBC as well as 

that refrigerated storage conditions are favourable for the growth of 

psychrotrophic bacteria, it should perhaps be considered as a quality indicator. 

Hantsis-Zacharov and Halpern (2007) also observed a correlation between TBC 

(mesophilic bacterial count) and PBC that increased or decreased in a similar 

range in different seasons when milk was collected from bulk tanks, also 

indicating similar dynamics for the two bacterial groups. 
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2.4.3. LIP and PROT bacterial counts 

 

According to Vyletelova et al. (2000), when milk is destined for 

manufacture of dairy products, PROT and LIP bacterial counts in milk should be 

less than 4.65 log10 cfu/ mL. Milk samples stored at 2 °C for over 96 h would be 

in accordance with this limit (LIP bacterial count: 3.77 ± 0.08 log10 cfu/ mL; 

PROT bacterial count: 3.72 ± 0.19 log10 cfu/ mL). However, PROT bacterial 

count reached 4.81 ± 0.19 log10 cfu/ mL after 96 h at 4 °C, which is above the 

suggested limit, while LIP bacterial count was still below the limit (4.30 ± 0.08 

log10 cfu/ mL) (Figure 2.2.A and B). 

The LIP and PROT bacterial growth were affected by storage conditions 

and varied among farm milk samples (Figure 2.1.C.1 and C.2 and D.1 and D.2). 

This result highlights again the significance of differences in milk sample 

microbiota and their subsequent growth during storage. Celestino et al. (1996) 

also reported different increases of PROT and LIP bacteria in samples stored at 4 

°C over 48 h; initial PROT and LIP bacterial counts were 2.78 and 3.90 log10 cfu/ 

mL, and counts after 48 h were 3.56 and 4.28 log10 cfu/ mL, respectively. The 

increased rates are different on comparing this study to that of Celestino et al. 

(1996), probably due to differences in initial microbiota. 

 

2.4.4. Thermoduric bacterial count and thermoduric-psychrotrophic 

bacterial count 

 

Statistical analysis indicated that LPC was not affected by time, 

temperature or their interaction, suggesting that thermoduric strains present in the 

samples could not grow at low temperatures. The initial LPC levels in the farm 

milk samples were below a typical industry LPC specification, which ranged from 
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2.70 to 3.00 log10 cfu/mL (500 to 1,000 cfu/ mL). Griffiths et al. (1988) also 

observed no significant increase in the LPC of milk stored for 72 h at 2 °C. 

Different levels of thermoduric bacteria between farm milk samples suggest that 

the contamination level depends on the environmental and milking conditions on 

farms (Gleeson et al., 2013). 

The low levels of LPC-PBC indicated that the milk samples were not 

considerably contaminated with this bacterial group. This result could be related 

to the hygiene practices adopted at the farms in this study, which may have 

prevented high levels of contamination. Similarly, Celestino et al. (1996) reported 

no significant increase in psychrotrophic spore-former count in milk stored at 4 °C 

for 48 h. 

 

2.4.5. Composition 

 

The decreases in the fat, protein and total solid contents are not considered 

technologically relevant (Guinee et al., 2000). The variations in milk composition 

between farms can be related to cow diet, breed, physiology and environment 

(Linn, 1988). The milk protein content measured includes the casein fraction, the 

whey protein fraction and the NPN fraction. The activity of enzymes in milk 

during storage could decrease the percentage of protein and increase the fraction 

of NPN in milk (i.e., amino acids and peptides) (Verdi et al., 1987). Hence, in 

order to detect possible changes in the proportions of these proteins over time and 

at different temperatures, casein and nitrogen fractions were quantified. Even 

though casein and nitrogen fractions did not vary significantly over storage time, 

technologically relevant changes were observed in the κ-casein, αS1-casein and β-

casein contents in milk samples stored at 4 °C, affecting the total casein content 
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(Table 2.2). Milk samples from farms W and Z showed the greatest decreases in 

the total casein content: 4.86 and 1.34 g/L, respectively (data not shown), as also 

observed in the chromatograms in Figure 2.3.A and B. The chromatograms 

presented in Figure 2.4.A and B indicated protein breakdown in both samples 

after 96 h, through appearance of peptides. Datta and Deeth (2003) suggested that 

early eluting peptide peaks in HPLC chromatograms, produced using similar 

methods, are possibly related to bacterial proteolysis. However, in this study, the 

chromatograms from samples W and Z show the appearance and/or increase in 

peaks after 20 min (Figure 2.4.A and B), which are possibly characteristics of 

plasmin action (authors’ unpublished data). The peaks areas between 20 and 28 

min increased 2.9 and 3.2 times in the 96 h chromatograms for samples W and Z, 

respectively, in comparison to the 0 h chromatograms (Figure 2.4.A and B). The 

low temperatures applied during bulk tank milk storage are far from the optimum 

temperature for most enzymes; however, during a long storage period, products of 

these enzyme activities could accumulate (Kelly and Fox, 2006). 

The decrease in the casein fraction and whey protein content and increase 

in the peptide content in samples W and Z could also be related to the increase in 

the PROT bacterial population, which was statistically correlated with the protein 

content (P < 0.0001). Milk samples W and Z had the highest levels of PBC after 

96 h, which were >7.00 log10 cfu/ mL, and sample W had the highest level of 

PROT bacteria after 96 h (5.68 ± 0.01 log10 cfu/ mL). According to Lewis and 

Deeth (2009), when levels of psychrotrophic bacteria in milk reach 6.00 log10 cfu/ 

mL, the production of lipases and proteases begins. When the levels of PROT 

bacteria reach 4.65 log10 cfu/ mL, proteases are also produced (Vyletelova et al., 

2000). The PBC and PROT bacterial count of the other two milk samples (X and 



 

117 
 

Y) stored at 4 and 2 °C are below these levels, which could be the reason why 

casein fractions and whey protein levels did not vary (data not shown). 

 

2.4.6. SCC 

 

All SCCs of the farm milk samples were below the EU legislation 

threshold (400 × 10
3
 cells/ mL), also suggesting that cow management on these 

farms was appropriate (Smith, 2002; Piccinini et al., 2006). The marginal 

difference in SCC between 96 h (89,000 cells/ mL) and 0 h (98,000 cells/ mL) is 

probably not relevant, and levels remained below the EU threshold during storage. 
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Table 2.2. Contents of casein fractions in samples stored at 2 ˚C or 4 ˚C, for 0 h and 96 h. 

Temperature (˚C) Time (h)† 

Casein fractions (mg/ mL) 

κ-casein αS1-casein αS2 -casein β - casein α-lactalbumin 
β - lactoglobulin 

A + B 
Total Casein 

2 
0 4.74 11.43 1.68 10.90 0.85 3.58 33.20 

96 4.66 11.43 1.72 10.93 0.86 3.48 33.08 

4 
0 4.69 11.39 1.69 10.89 0.83 3.46 32.96 

96 4.40 11.12 1.64 10.12 0.85 3.44 31.65 

†There is no statistical difference in the contents of casein fractions between 0 and 96 h and between samples stored at 2 or 4 ˚C (P>0.05). 
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2.5. Conclusion 

 

Mesophilic, psychrotrophic, LIP and PROT bacterial counts in milk are 

influenced by storage temperature, which consequently can influence the storage 

time of this milk. The initial microbiological counts in milk are influenced by 

farm management practices, which may impact on the milk bacterial growth 

during storage and possibly limit storage time. The results regarding proteolysis 

levels highlight the importance of considering PBC as an important milk quality 

parameter, due to the capacity of psychrotrophs to produce proteases. According 

to this study, milk could be stored at 2 °C for 96 h with minimal quality 

deterioration, while storage at 4 °C would limit storage time to 48 h for processing 

of milk. In conclusion, careful management of milk storage temperature and time 

is critical to improvement of quality of dairy products. 
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Abstract 

 

The objective of this study was to measure the effect of different milk 

cooling rates, before entering the bulk tank, on the microbiological load and 

composition of the milk, as well as on energy usage. Three milk precooling 

treatments were applied before milk entered 3 identical bulk milk tanks: no plate 

cooler (NP), single-stage plate cooler (SP), and double-stage plate cooler (DP). 

These precooling treatments cooled the milk to 32.0 ± 1.4 °C, 17.0 ± 2.8 °C, and 

6.0 ± 1.1 °C, respectively. Milk was added to the bulk tank twice daily for 72 h, 

and the tank refrigeration temperature was set at 3 °C. The blend temperature 

within each bulk tank was reduced after each milking event as the volume of milk 

at 3 °C increased simultaneously. The bacterial counts of the milk volumes 

precooled at different rates did not differ significantly at 0 h of storage or at 24-h 

intervals thereafter. After 72 h of storage, the TBC of the NP milk was 3.90 ± 0.09 

log10 cfu/ mL, whereas that of the precooled milk volumes were 3.77 ± 0.09 (SP) 

and 3.71 ± 0.09 (DP) log10 cfu/ mL. The constant storage temperature (3 °C) over 

72 h helped to reduce bacterial growth in milk; consequently, milk composition 

was not affected and minimal, if any, proteolysis occurred. The DP treatment had 

the highest energy consumption (17.6 ± 0.5 Wh/ L), followed by the NP (16.8 ± 

2.7 Wh/ L) and SP (10.6 ± 1.3 Wh/ L) treatments. This study suggests that 

bacterial count and composition of milk are minimally affected when milk is 

stored at 3 °C for 72 h, regardless of whether the milk is precooled; however, milk 

entering the tank should have good initial microbiological quality. Considering 

the differences between bacterial counts, however, the use of the SP or DP 

precooling systems is recommended to maintain low levels of bacterial counts and 

reduce energy consumption. 
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3.1. Introduction 

 

Milk cooling and refrigerated storage are necessary after milking to reduce 

bacterial growth. Milk leaves the udder at approximately 35 °C, which is a 

favorable temperature for bacterial growth (Walstra et al., 2006). Thus, the 

microbial load could increase rapidly if milk is maintained at that temperature. 

According to Holm et al. (2004), cooling milk rapidly (below 6 °C) is necessary 

to avoid the multiplication of microorganisms, especially psychrotrophs, which 

can grow at refrigeration temperatures but have optimal and maximal growth 

temperatures at >15 and 20 °C, respectively (Moyer and Morita, 2007). Thus, the 

precooling of milk (before it enters the bulk tank) could further reduce the 

bacterial growth. A further possible benefit of precooling milk is the reduction of 

energy costs on-farm (Murphy et al., 2013). 

The equipment used to precool milk consists of plate heat exchangers 

incorporating stainless steel plates in a sandwich arrangement, in which milk and 

cooling water flow in opposite directions through the spaces between alternate 

plates (Wang et al., 2007). This system may have 1 or 2 cooling stages, in which 

well water and well and chilled waters are used in the first and second stages, 

respectively. O’Connell et al. (2016) observed only a minimal increase in milk 

bacterial count over time when fresh milk from each milking event was precooled 

using a single-stage plate cooler before being added to the bulk milk tanks twice 

daily. 

Total bacterial count (TBC) is the main test used by milk processors to 

assess milk microbiological quality and it quantifies aerobic mesophilic bacteria 

in milk. In conjunction with TBC, the psychrotrophic bacterial count (PBC) is 

used to assess the hygiene quality of milk and is an indicator of hygiene 
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conditions on-farm (Harding, 1995; Robinson, 2002). Milk cooling reduces the 

growth of mesophilic and psychrotrophic bacteria, the optimum growth 

temperatures of which are between 20 and 45 °C and <7 °C, respectively (Frank 

and Yousef, 2004; Willey et al., 2008). Thermoduric and thermophilic bacteria 

are the other relevant groups of bacteria that are measured in milk. These bacteria 

are important because they can survive thermal treatments such as those 

frequently applied in dairy processing to reduce bacterial numbers (e.g., 

pasteurization; Murphy et al., 1999; Robinson, 2002). The main sources of those 

bacteria are in the cows’ environment, because their vegetative cells and spores 

can be present in feed, forage, bedding material, dust, feces and soil (Scheldeman 

et al., 2005; Gleeson et al., 2013). Clostridium perfringens and Clostridium 

botulinum are the pathogenic thermoduric bacteria of most relevance to the dairy 

industry because of their heat-resistant spores and toxins (Wrigley, 1994; 

Fernandes, 2009). 

Some mesophilic, psychrotrophic, thermoduric, and thermophilic bacterial 

strains have the ability to produce lipases and proteases. These enzymes hydrolyze 

fat and protein, resulting in sensorial defects and altering the physico-chemical 

properties and processability of milk (Chen et al., 2003; Deeth, 2006). Lipolytic 

activity produces flavors described as rancid and bitter (Deeth, 2006) and can, for 

example, result in loss of foaming and creaming ability during butter manufacture 

(Shelley et al., 1987). Celestino et al. (1997) reported that reconstituted UHT milk 

powder manufactured using 4-d-old raw milk had rancid and bitter flavours 

compared with UHT milk powder produced using fresh raw milk, probably due to 

bacterial protease and lipase activity. Therefore, the control of bacterial numbers 



 

129 
 

in milk helps to preserve milk functionality, allowing the production of a range of 

dairy products in accordance with specific quality parameters. 

The aim of this study was to investigate the effect of precooling milk at 

different rates on the microbiological quality and composition of milk, as well as 

on energy usage. This study was conducted in a manner that mimicked on-farm 

milk production conditions: morning and evening milkings, similar milk storage 

conditions, and use or not of precooling systems. 

 

3.2. Materials and methods 

 

3.2.1. Experimental Design 

 

This experiment was carried out in the dairy parlor at the Teagasc Animal 

and Grassland Research and Innovation Centre, Moorepark, Cork, Ireland. 

Springcalving dairy cows (n = 210) were milked in a 30-unit side-by-side milking 

parlor, twice daily over two 3-wk periods, with milking commencing at 0700 and 

1430 h. Period 1 extended from June 13 to July 2, 2016, and period 2 extended 

from July 25 to August 13, 2016. 

Before milking, cows’ teats were washed and disinfected with 

chlorhexidine foam teat cleaner (Deosan Teatfoam Advance AG104, Sealed Air, 

Johnson Diversey Ltd., Dublin, Ireland) and dried using individual paper towels. 

The milk was transferred from clusters through 16-mm (internal diameter) milk 

tubes to a mid-level milk line (72 mm, internal diameter), with a milk lift of 1.5 

m. The milk was collected in a receiver jar and pumped through a 48-mm 

stainless steel pipe, using a variable speed milk pump, to the bulk milk tanks 

(Figure 1). Once the milk flow rate dropped to 0.2 kg/ min, clusters were 

automatically removed, with a delay time of 20 s. A system to individually wash 
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and disinfect each cluster between each individual cow milking (Cluster Cleanse, 

Dairymaster, Causeway, Kerry, Ireland) was used. After each milking, the 

milking equipment was rinsed with water (14 L per milking unit), followed by a 

hot (75 °C) liquid detergent sterilizer wash (Liquid Gold, Dairymaster) circulated 

for 8 to 10 min in the milk line. Following this, the milking equipment was rinsed 

twice, and the final rinse contained peracetic acid (0.3–0.5% concentration). An 

acid-descale (Extrastrong descaler, Dairymaster) was incorporated into the wash 

regime before the detergent cycle once a week. 

 

 

 

Figure 3.1. Experimental design: three pre-cooling systems: no plate cooler, 

single-stage plate cooler and double-stage plate cooler (GW: ground water). 

 

The volume of milk collected during each milking was distributed equally 

into 3 identical bulk milk tanks. The milk line for each bulk tank was fitted with 

shut-off valves, which were used to control the milk flow rate and guarantee an 
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equal distribution of milk to the tanks. Each bulk tank had capacity of 4,000 L 

(Swiftcool, Dairymaster) and was fitted with a 5.5-Hp condensing unit. A screen 

on the front of each tank displayed the milk temperature, time, and milk volume. 

The milk was cooled to 3 °C within the tanks and stored for up to 72 h from once 

the first milking entered the tank. Approximately 800 and 500 L of milk were 

added to each bulk milk tank during the morning and afternoon milkings, 

respectively. At the end of each 72-h storage period, the milk was collected and 

the bulk milk tanks were washed using a hot detergent/sterilizer wash (50 °C). 

This was followed by a cold-water rinse and an additional rinse containing 

peracetic acid. An acid-descale wash product was used at every third wash. 

Before entering the bulk tanks, the milk underwent 1 of 3 precooling 

treatments: no precooling (NP), single-stage (SP), or double-stage (DP) plate 

cooling (Figure 3.1). In the NP treatment, the ground water line was closed; 

therefore, no precooling was undertaken in that treatment. In the SP treatment (37 

plates), the milk exchanged heat with ground water at approximately 15 °C. In the 

DP treatment (45 plates), the milk was cooled in 2 stages; in the first stage, 

ground water was used (at approximately 15 °C) and in the second stage, ice 

water (at approximately 0 °C) was used. Ice water was produced in an ice bank, a 

system with external melting ice on a coil thermal storage unit with an inline coil 

array. In the NP, SP, and DP treatments, the milk entered the bulk tanks at 

average temperatures of 32 ± 1.4 °C, 17 ± 2.8 °C, and 6 ± 1.1 °C, respectively. 

The temperature and volume of milk in each tank was recorded by an integrated 

system (Swiftcool, Dairymaster) and transmitted via Global System for Mobile 

communications (GSM) technology to a computer over the two 3-wk trial periods. 
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3.2.2. Milk sampling 

 

During each milking, a milk sample was collected from the milk line using 

a sterile Durham flask surrounded by ice to assess the quality of milk entering the 

tanks. After the initial morning milking, duplicate milk samples (30 mL) were 

collected from each bulk tank once the milk temperature within each tank reached 

3 °C, corresponding to 0-h samples (one milking). The subsequent samples (24, 

48, and 72 h) were collected before the addition of each subsequent morning milk 

on subsequent days, when the bulk tanks contained milk from 2, 4, and 6 

milkings, respectively. Before sample collection, the milk was agitated at 24 rpm 

for 1 min, and samples were collected from the top viewing inlet using sterilized 

sample dippers. Samples were transported to the laboratory in ice boxes, delivered 

within 30 min of collection, and analyzed. One sample from each tank was used 

for microbiological analysis and the other for compositional analysis and SCC. 

 

3.2.3. Microbiological analysis 

 

Immediately on delivery to the laboratory, raw milk samples collected 

every 24 h were tested in duplicate for a range of bacteria. All the microbiological 

analyses were performed according to the Standard Methods for the Examination 

of Dairy Products (Wehr and Frank, 2004). The TBC, PBC, thermoduric 

(laboratory pasteurization count, LPC), and thermophilic (THERM) bacterial 

counts were estimated using Petrifilm aerobic count plates, a ready-to-use 

medium (3M, Technopath, Tipperary, Ireland). Samples tested for LPC were 

pasteurized at 63 °C for 30 min, with an additional 5 min that allowed time for the 

samples to reach the required temperature (Frank and Yousef, 2004); after 

heating, the samples were cooled to 10 °C in iced water before testing. Samples 
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tested for TBC and LPC were incubated for 48 h at 32 °C (Laird et al., 2004; 

Pantoja et al., 2009; O’Connell et al., 2016), whereas samples tested for PBC and 

THERM were incubated at 7 ± 1 °C for 10 d and at 55 °C for 48 h, respectively 

(Frank and Yousef, 2004). We are aware that using Petrifilm plates at 7 °C or 55 

°C is outside the validated range. However, a pretrial experiment for THERM 

indicated that, at the same dilution, plate count agar plates were uncountable due 

to bacterial colonies spreading over the surface of agar plates, whereas Petrifilm 

plates were countable (data not shown). In other studies, Petrifilm plates have 

been used for PBC at 7 °C (Ramsahoi et al., 2011). The number of bacterial 

colonies was assessed using a Petrifilm Plate Reader (3M, Technopath). The 

lipolytic bacterial count (LIP) was performed by spread-plating 100 μL of the 

appropriate dilutions on tributyrin agar with added glyceryl tributyrate (0.01 

mL/mL of agar prepared; Sigma Aldrich, Dublin, Ireland). The proteolytic 

bacterial count (PROT) was estimated by spread-plating 100 μL of the diluted 

sample on calcium caseinate agar with added skim milk powder (2.5 mg/mL of 

agar; Merck, Darmstadt, Germany). For both methods, samples tested were 

incubated at 37 °C for 48 h. Lipolytic bacteria colonies were identified as colonies 

surrounded by a clear zone in a turbid medium, whereas proteolytic bacteria 

colonies were identified as colonies surrounded by a clear zone in an opaque 

medium. 

The sulphite-reducing Clostridia count (SRC) was assessed by pour-

plating 1 mL of diluted sample in iron sulphite agar and incubating plates under 

anaerobic conditions for 72 h at 37 °C, in accordance with ISO standard 15213 

(ISO, 2003). Presumptive SRC colonies were identified as black colonies. 
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3.2.4. Composition and SCC 

 

Raw milk samples collected every 24 h had their composition (fat, protein, 

lactose, and TS contents) and SCC determined using a Fossomatic FC (Foss 

Electric, Hillerød, Denmark) within 24 h after arrival in the laboratory. 

 

3.2.5. Peptide profiles 

 

Milk samples were collected from the bulk milk tanks at 0 and 72 h to 

obtain the peptide profiles. Trichloroacetic acid (TCA) was used to extract the 

nonprotein fraction of the milk samples, according to the extraction procedure 

described in IDF method 20-4 (IDF, 2001). The extracts were not diluted but were 

filtered using 0.45-μm syringe cellulose filters (25 mm diameter, Chromafil Xtra 

RC-45/25, Macherey-Nagel, Dublin, Ireland). The HPLC equipment used was an 

Agilent 1200s system (Agilent Technologies, Santa Clara, CA), with quaternary 

pump and multi-wavelength detector. A Zorbax 300SB column (4.6 mm internal 

diameter × 150 mm; Agilent Technologies) was used to perform the separation of 

milk peptides. The gradient elution and peak detection methodology was an 

adaptation of the methodology of Rohm et al. (1996). Samples were injected onto 

the column (50 μL) in duplicate and the flow rate was 0.50 mL/min. 

 

3.2.6. Assessment of electricity consumption 

 

The energy consumption of each treatment, expressed in Watt-hours (Wh), 

was measured as the energy usage of each bulk milk tank when each of the 

precooling treatments was applied. For the DP treatment, the energy usage of the 

ice bank was also considered. Energy usage was assessed using energy analyzers 
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(EM24 DIN) and Digi Connect wireless WAN cellular routers (Carlo Gavazzi 

Automation SpA, Lainate, Italy), which measured and transmitted the energy data, 

respectively. The cumulative energy usage was recorded every 1 min using the 

software program Powersoft (Carlo Gavazzi Automation SpA). To determine 

electricity costs associated with milk cooling, the data on electricity use was 

combined with day and night tariffs [day tariff was 0.16 €/ kWh (60%); night 

tariff was 0.07 €/ kWh (40%)], similarly to the procedure described by Upton et 

al. (2013).  

 

3.2.7. Statistical analysis 

 

This study was carried out following a Latin square design with repeated 

measures, in which samples were collected every 24 h, and each bulk tank (n = 3) 

received a different precooling treatment (NP, SP, DP) in each week (n = 3). Each 

Latin square was conducted over two 3-wk periods. 

Least squares means for the main effects of period, week, storage time, 

and precooling system, as well as the interaction between storage time and 

precooling system, were calculated using the MIXED procedure in SAS 9.3 (SAS 

Institute Inc., Cary, NC). The fixed effects included in each model were period (1 

and 2), week (1, 2, and 3), precooling system (NP, SP, and DP), and storage time 

(0, 24, 48, and 72 h). Repeated-measures models were used to account for 

correlations between time points. Tank within week was considered the 

experimental unit. The response variables were TBC, PBC, LPC, THERM, 

PROT, LIP, SRC, SCC, and fat, protein, lactose, and TS contents. Residual 

checks were made to ensure that the assumptions of the analysis were met. Where 

appropriate, log-transformation was used to correct distributional issues. The 
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Tukey test (at 5% error probability) was used to compare the means for all 

variables. 

 

3.3. Results and Discussion 

 

3.3.1. Microbiological analysis 

 

During the first milking occasion on the first day of each trial week, a milk 

sample was collected from the milk line before distribution of the milk to each 

bulk tank. The average (± SD) TBC of those milk samples was 3.35 ± 0.29 log10 

cfu/ mL, indicating that milk of good microbiological quality was produced. The 

TBC least squares means of milk samples from each bulk tank collected at 0 h 

(after first milking) was 3.54 ± 0.05 log10 cfu/ mL. The similarity between the 2 

TBC levels for those samples indicated that the precooling treatments did not 

affect the microbiological load and that milk of good microbiological quality 

entered each tank. The average (±SD) TBC of the milk line over 72 h of storage 

and the 2 trial periods was 3.55 ± 0.26 log10 cfu/ mL. Good hygiene practices 

(e.g., teat preparation, individual cluster cleaning between milkings, and 

equipment wash routines) contributed to the high quality of the milk entering the 

bulk milk tanks. 

The TBC levels at 0 h for NP, SP, and DP were 3.55, 3.57, and 3.50 ± 0.09 

log10 cfu/ mL, respectively; the PBC least squares means were 3.11, 3.04, and 

3.07 ± 0.11 log10 cfu/ mL; the LIP least squares means were 3.24, 3.26, and 3.28 ± 

0.10 log10 cfu/ mL; and the PROT least squares means were 3.20, 3.14, and 3.24 ± 

0.07 log10 cfu/ mL, respectively (Figure 3.2). The differences in the time required 

to cool the milk to 3 °C (within the bulk tanks) were expected to affect those 

initial bacterial counts of the milk volumes; however, the bacterial counts were 
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not significantly different (P > 0.05). The NP, SP, and DP treatments precooled 

the milk to average (±SD) temperatures of 32.0 ± 1.4 °C, 17.0 ± 2.8 °C, and 6.0 ± 

1.1 °C, respectively; and the average time taken to cool milk to 3 °C within the 

bulk milk tanks on the first morning milking on each week was approximately 2 

h, 1 h, and 20 min, respectively. Given the low initial bacterial counts, the 

difference in these bulk tank-cooling times was not sufficient to result in different 

bacterial levels at 0 h. 

The different precooling treatments also did not affect any of the bacterial 

counts over the storage time up to 72 h (P > 0.05, Table 3.1). The volume of milk 

stored at 3 °C increased in each bulk tank after each milking, resulting in a 

decrease in the blend temperature within the tanks over time. After the first 2 

milking occasions, the milk volume produced at subsequent milkings blended 

with a higher volume of milk previously cooled to 3 °C; consequently, the milk 

was cooled faster than that from the first 2 milking events. Therefore, the 

maintenance of low temperatures within the bulk tanks did not allow for 

significant increases in bacterial numbers in the milk; consequently, the 

precooling system had no significant effect on bacterial counts over time. 

However, after 72 h, we observed a  difference between the bacterial counts in 

milks subjected to different precooling treatments (Figure 3.2). After 72 h, TBC 

and PBC (least squares means) in milk that was not precooled were 3.90 ± 0.09 

and 3.38 ± 0.11 log10 cfu/ mL, respectively. The SP milk precooled had TBC and 

PBC (least squares means) of 3.77 ± 0.09 and 3.28 ± 0.11 log10 cfu/ mL, and that 

precooled using DP had similar TBC and PBC: 3.71 ± 0.09 and 3.25 ± 0.11 log10 

cfu/ mL, respectively. 
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Storage time affected TBC, PBC, and PROT (P = 0.004, P < 0.001, and P 

= 0.03, respectively, Table 3.1), which were 3.54 ± 0.05, 3.07 ± 0.06, and 3.19 ± 

0.04 log10 cfu/ mL at 0 h; and 3.79 ± 0.05, 3.30 ± 0.06, and 3.36 ± 0.04 log10 cfu/ 

mL after 72 h, respectively (least squares means across precooling treatments). 

The increases in TBC and PBC were not considered biologically relevant because 

both were well below the European thresholds determined in document EC no 

853/2004 [European Commission, 2004; TBC: 5.00 log10 cfu/ mL (1.00 × 10
5
 cfu/ 

mL); PBC: 4.22 log10 cfu/ mL (16,700 cfu/ mL)] and typical TBC limits applied 

by some milk processors [e.g., 4.70 log10 cfu/ mL (5.00 × 10
4
 cfu/ mL)]. The least 

squares means of PROT and LIP levels at 72 h (3.36 ± 0.04 log10 cfu/ mL and 

3.34 ± 0.06 log10 cfu/ mL, respectively) were also not considered relevant as both 

were well below the limit suggested by Vyletelova et al. [2000; 4.65 log10 cfu/ mL 

(44,668 cfu/ mL), for each]; those authors suggested that LIP and PROT should 

be below this level to avoid the production of heat-resistant hydrolytic enzymes 

when milk is destined for dairy product manufacture, because such enzyme 

activities could result in loss of milk functional properties and sensory defects. 

The PBC was different between the 2 trial periods (1 and 2; P = 0.002, 

Table 3.1), whereas TBC and LIP varied between weeks (P = 0.02 and P = 0.005, 

respectively, Table 3.1). Variations in bacterial population in milk at different 

periods could be related to the cows’ health status (e.g., mastitis) or different 

bacteria strains present in the cows’ environment (e.g., feed; Lafarge et al., 2004). 
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Table 3.1. The significance of the main effects of period (2 x 3 weeks), week (6 

weeks), storage time (72 h) and pre-cooling systems (no plate cooler, single-stage 

plate cooler and double-stage plate cooler), as well as the interaction between 

storage time and pre-cooling system on the total bacterial counts (TBC), 

psychrotrophic bacterial count (PBC), lipolytic bacterial count (LIP), proteolytic 

bacterial count (PROT), thermoduric bacterial count (LPC) and thermophilic 

bacterial count (THERM) of the milk samples.  

Bacterial 

Counts 

Significance 

Period Week 
Storage 

Time 

Pre-cooling 

system 

Pre-cooling system* 

Storage Time 

TBC 0.23 0.02 0.004 0.61 0.93 

PBC 0.002 0.18 <0.001 0.68 0.99 

LIP 0.08 0.005 0.05 1.00 0.96 

PROT 0.30 0.05 0.03 0.77 0.92 

LPC 0.82 0.42 0.20 0.71 0.38 

THERM 0.79 0.08 0.70 0.12 0.69 

 

The LPC and THERM counts did not differ between periods and weeks, 

and storage time and precooling systems did not affect their levels (P > 0.05, 

Table 3.1). At 0 and 72 h, the least squares means of LPC were 0.80 and 0.83 ± 

0.11 log10 cfu/mL, whereas THERM counts were 0.85 and 0.64 ± 0.13 log10 

cfu/mL, respectively. A typical industry LPC specification can range from 2.70 to 

3.00 log10 cfu/mL (500 to 1,000 cfu/mL), although there are no European 

legislation thresholds or dairy processor specifications for thermophilic bacteria in 

milk. According to Byrne and Bishop (1991), some species of Micrococcus do not 

grow well on Petrifilm, although those authors concluded that Petrifilm aerobic 

count plates are a suitable alternative to agar plates for determination of LPC. The 

SRC levels varied between 0 and 1 log10 cfu/mL (10 cfu/mL), indicating a low 

level of contamination with those organisms. Because of the low incidence, we 
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could not determine the influence of storage and production conditions on these 

bacteria. 

The milk volumes stored in the 3 tanks had low bacterial growth, 

indicating that the storage temperature was effective in preventing an increase in 

bacterial numbers in the milk over the storage period. O’Connell et al. (2016) 

stored milk in bulk milk tanks for over 96 h at 2 or 4 °C and observed similar 

results to this study. In that study, milk stored at 2 or 4 °C for over 72 h had 

average TBC, PBC, PROT, and LIP of 3.58, 3.11, 2.94, and 2.91 log10 cfu/ mL, 

respectively. As well as the storage temperature, the initial microbial load of the 

milk will influence the microbial load over storage (Guinot-Thomas et al., 1995). 

Therefore, milk entering the tank has to be of high microbiological quality to 

obtain bacterial counts similar to those obtained after the storage period in the 

present study. Thus, to minimize bacterial growth in milk during storage, it is 

important that appropriate cleaning practices (for milking equipment and cows) be 

carried out during milking. 
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Figure 3.2. Effect of storage time and different pre-cooling systems [-●- no plate 

cooler (NP); -■- single stage plate cooler (SP); -▲- double stage plate cooler 

(DP)] on the (A) total (TBC), (B) psychrotrophic (PBC), (C) lipolytic (LIP) and 

(D) proteolytic (PROT) bacterial counts in milk stored for 72 h.  

(A) 

(B) 

(C) 

(D) 
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3.3.2. Composition and SCC 

 

The average (±SD) fat, protein, lactose, and TS contents of the sample 

collected from the milk line after the first milk occasion (first day of each trial 

week) were 4.52 ± 0.26, 3.58 ± 0.09, 4.76 ± 0.18, and 13.36 ± 1.93%, 

respectively. After the first morning milking, the milk samples (0 h) precooled at 

different rates had average (±SD) fat, protein, lactose, and TS contents similar to 

those in the milk line sample: 3.49 ± 0.09, 3.63 ± 0.06, 4.81 ± 0.06, and 12.53 ± 

0.10% (NP treatment); 3.48 ± 0.16, 3.62 ± 0.05, 4.82 ± 0.06, and 12.52 ± 0.17% 

(SP treatment); and 4.14 ± 0.22, 3.59 ± 0.07, 4.76 ± 0.08, and 13.12 ± 0.21% (DP 

treatment), respectively. These results, compared with the milk line results, 

indicate that the precooling treatments did not affect the milk composition as 

would have been expected. The differences in the fat contents noted could be due 

to fat distribution when sampling. 

The precooling treatments had no effect on milk composition (P > 0.05), 

and storage time did not affect fat, protein, or TS content (P > 0.05). After the 2 

milking occasions on the first day, the contents of fat, protein, lactose, and TS 

(least squares means) were 4.41 ± 0.06, 4.59 ± 0.08, 5.78 ± 0.05, and 13.35 ± 

0.07%, and after 72 h (6 milkings) were 4.44 ± 0.06, 4.58 ± 0.08, 5.79 ± 0.05, and 

13.41 ± 0.07%, respectively. The protein contents (least squares means) were 

different in the 2 periods (period 1: 3.55 ± 0.002%; period 2: 3.63 ± 0.002%, P = 

0.0001) and between weeks (P = 0.02), ranging from 3.54 to 3.72%. The lactose 

content was also different between periods (period 1: 4.82 ± 0.002%; period 2: 

4.74 ± 0.002%, P = 0.007). As fresh milk was transferred to the tanks every day, 

the composition of milk stored within the bulk tanks may have varied according to 

the content of components in the fresh milk added to the tank on each milking 
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occasion. Those variations in milk composition could be related to cows’ 

physiology or days in milking (Linn, 1988). Also, the interval between milkings 

can affect milk composition, influencing the TS content of milk collected during 

the morning and afternoon (Ayadi et al., 2004). 

The SCC between periods were statistically different (P = 0.003); 

however, there was a marginal difference of 36.6 × 103 cells/mL between periods 

1 and 2, which is probably not biologically relevant. Furthermore, SCC in both 

periods (period 1: 115.9 × 10
3
 cells/mL; period 2: 152.5 × 10

3
 cells/mL) were 

below the European Union legislation threshold (400 × 10
3
 cells/mL). 

 

3.3.3. Peptide profiles 

 

High-performance liquid chromatography was performed to determine 

whether precooling treatments would result in different peptide profiles after 72 h 

of storage, thus indicating proteolysis. The chromatograms presented in Figure 

3.3.A, B, and C are an average of the chromatograms obtained for all milk 

samples precooled using the NP, SP, and DP systems, respectively, over the 2 

periods. The chromatograms indicated no difference between the initial peptide 

concentrations in milk volumes precooled at different rates (0 h), no increase in 

concentrations over time, and no appearance of peaks that characterize 

proteolysis. We also noted in those chromatograms the absence of peaks after 20 

min, indicating the lack of plasmin action, which hydrolyses β-, αS1-, and αS2-

caseins into peptides and proteose-peptones (Crudden et al., 2005). Therefore, the 

application of different precooling treatments did not affect proteolysis levels in 

the milk. 
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Figure 3.3. Separation of bovine milk peptides by reversed-phase HPLC. 

Chromatograms of samples pre-cooled using (A) no plate cooler (NP), (B) single 

stage plate cooler (SP) and (C) double stage plate cooler (DP) stored at 3 ˚C are 

shown. Black line: 0 h; grey dashed line: 72 h. (AU: absorbance units). 
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The peptide peak at 15 min (unknown) is the only peptide whose 

concentration varied over 72 h and we observed only small differences between 

treatments for that peak. However, the variation in the concentration of this 

peptide could be caused by the addition of fresh milk to the tanks, the composition 

of which could vary, as previously mentioned. The low levels of proteolysis 

observed might be due to the low levels of proteolytic bacteria in the milk, which 

did not reach a level sufficient for significant production of proteolytic enzymes 

(4.65 log10 cfu/mL; Vyletelova et al., 2000). The low storage temperature applied 

over the storage period could have been effective in reducing the growth of 

proteolytic bacteria and is far from the optimum temperature for most enzymes 

(Kelly and Fox, 2006). 

 

3.3.4. Energy consumption 

 

When the NP and SP treatments were used, the average energy usage (± 

SD) of the bulk tanks was 16.8 ± 2.7 and 10.6 ± 1.3 Wh/ L of milk, respectively. 

The energy usage for the NP treatment was higher than that for the SP treatment 

because milk entered the bulk tank at a higher temperature (32.0 ± 1.4 °C) and the 

compressor running time was longer to achieve the required storage temperature. 

In the NP and SP treatments, an average (± SD) of 129 ± 10 min and 57 ± 22 min 

were necessary to cool milk to 3 ˚C, respectively. For the DP treatment, the 

average energy usage (±SD) of the bulk milk tank and ice bank was 4.0 ± 0.5 and 

13.6 ± 0.2 Wh/ L of milk, respectively (total energy usage was 17.6 ± 0.5 Wh/ L 

of milk). When this treatment was used, milk was cooled faster when compared to 

the other treatments (21 ± 3 min). 
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Considering the similar bacterial counts between the precooling treatments 

and the energy usage of each treatment over the 72-h storage period, the SP 

system would achieve low levels of bacterial counts over storage time and lower 

energy usage rates compared with the DP treatment. Energy usage was higher for 

the DP system than for the SP system because of the energy requirements to 

produce ice. However, this system could be recommended for farms in which an 

ice bank system is already being used for cooling milk within the bulk tank.  

The energy consumption of each treatment is within the ranges reported by 

Shine et al. (2018), who surveyed 58 Irish commercial dairy farms regarding 

energy consumption at milking. In that study, the average (±SD) energy usages 

reported were 12.68 ± 5.20, 10.54 ± 2.55, and 14.94 ± 5.45 Wh/ L for NP, SP, and 

DP systems, respectively. The variation in results between studies could be due to 

the age of the bulk tanks, the size of the tanks, and how they were installed. The 

ice bank energy usage in the present study was similar to average usage reported 

in a survey of 25 Irish commercial dairy farms (13.0 Wh/ L; Murphy et al., 2013) 

and similar to the average value reported by Upton et al. (2013; 19.2 Wh/ L, 

range: 16.0–21.8 Wh/ L). 

In this study, the calculated cost related to milk cooling when using NP, 

SP and DP (with ice bank) was €0.0021, €0.0014 and €0.0022/ L of milk, 

respectively. Those results are similar to the average estimated cost reported by 

Upton et al. (2013) (€0.0016), who monitored the electricity consumption on 22 

Irish dairy farms. In that study, the average cost was calculated considering farms 

that did or did not use a pre-cooling system. Also, if the water charges are fully 

implemented in Ireland by 2020, water consumption will be another contributing 

factor to the expenses related to milk production on-farm. In a previous plan 
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established by the Irish government in 2015, the rate would be €1.85 per 1,000 L 

of water when using one public water service. According to Shine et al. (2018), 

pre-cooling has the highest water consumption in Irish dairy parlors (1.81 Lwater/ 

Lmilk). In the present study, the water consumption was measured when using the 

SP and DP treatments; however, the ratio water to milk was high in both periods 

(Period 1 – SP: 3.1 and DP: 9.2 Lwater/ Lmilk; Period 2 – SP: 16.9 and DP: 10.2 

Lwater/ Lmilk) and is not a appropriate representation of the actual water 

consumption on commercial dairy farms. 

 

3.4. Conclusion 

 

The microbiological load of milk precooled at different rates did not differ 

statistically at 0 h or over the 72 h of storage, indicating no significant difference 

between the precooling treatments. No technologically relevant variations were 

observed in milk composition, and no considerable enzymatic activity was 

observed, possibly because of the good microbiological quality of the milk. This 

study suggests that the bacterial count and composition of milk are minimally 

affected when milk is stored at 3 °C for 72 h whether the milk is precooled or not; 

however, milk entering the tank should have good initial microbiological quality. 

Regarding energy usage, the SP treatment required less energy than the other 

treatments to maintain an equivalent microbiological load in milk. Considering 

that the milk volumes undergoing the SP and DP treatments had the lowest 

bacterial counts over 72 h of storage, it may be beneficial and economical to 

incorporate the DP system on farms that already use an ice bank bulk milk tank 

and SP system on other farms. Precooling good quality milk with an SP or DP 
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system and subsequent storage at 3 °C for 72 h can maintain good microbiological 

and compositional quality of milk with reduced energy consumption. 
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Abstract 

 

The experiments reported in this research paper aimed to track the 

microbiological load of milk throughout low-heat skim milk powder (SMP) 

manufacturing process, from farm bulk tanks to final powder, during mid- and 

late-lactation (spring and winter, respectively). In the milk powder processing 

plant studied, low-heat SMP was produced using only the milk supplied by the 

farms involved in this study. Samples of milk were collected from farm bulk tanks 

(mid-lactation: 67 farms; late-lactation: 150 farms), collection tankers (CTs), 

whole milk silo (WMS), skim milk silo (SMS), cream silo (CS) and final SMP. 

During mid-lactation, the raw milk produced on-farm and transported by the CTs 

had better microbiological quality than the late-lactation raw milk [e.g., total 

bacterial count (TBC): 3.60 ± 0.55 and 4.37 ± 0.62 log10 cfu/ mL, respectively]. 

After pasteurisation, reductions in TBC, psychrotrophic (PBC) and proteolytic 

(PROT) bacterial counts were of lower magnitude in late-lactation than in mid-

lactation milk, while thermoduric (LPC – laboratory pasteurisation count) and 

thermophilic (THERM) bacterial counts were not reduced in both periods. The 

microbiological quality of the SMP produced was better when using mid-lactation 

than late-lactation milk (e.g., TBC: 2.36 ± 0.09 and 3.55 ± 0.13 cfu/ g, 

respectively), as mid-lactation raw milk had better quality than late-lactation milk. 

The bacterial counts of some CTs and of the WMS samples were higher than the 

upper confidence limit predicted using the bacterial counts measured in the farm 

milk samples, indicating that the transport conditions or cleaning protocols could 

have influenced the microbiological load. Therefore, during the different 

production seasons, appropriate cow management and hygiene practices (on-farm 

and within the factory) are necessary to control the numbers of different bacterial 
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groups in milk, as those can influence the effectiveness of thermal treatments and 

consequently affect final product quality. 
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4.1. Introduction 

 

Bovine milk is used to produce a wide range of dairy products and 

nutritional ingredients. Each dairy product has to conform with specific quality 

parameters determined by regulatory authorities and international markets, which 

could be related to safety, nutritional value, physical and sensory characteristics. 

Bacterial numbers in milk are one of the main factors that can impact those 

parameters, and their control throughout processing is essential to achieve dairy 

products of high quality (Kable et al., 2016).  

The first stage of the milk supply chain is the farm, where factors such as 

cow management, stage of lactation and equipment cleaning protocols can affect 

bacterial numbers in milk (O’Connell et al., 2015). A variety of microorganisms 

could grow in milk, including: mesophilic, psychrotrophic, lipolytic, proteolytic, 

thermoduric and thermophilic bacteria, as well as pathogenic bacteria. Huck et al. 

(2008) observed that some spore-forming bacteria (Bacillus, Paenibacillus and 

Sporosarcina) were identified throughout the processing stages of fluid milk 

production, from the farm to the packaged product, suggesting that multiple 

potential entry points for those bacteria into milk are at the farm. Therefore, the 

production of raw milk under appropriate hygienic conditions is critical to control 

bacterial numbers, as thermal treatments during dairy processing cannot always 

completely reduce the bacterial load.  

Several studies have focused on quantifying and identifying bacterial types 

in raw milk on-farm and their effect on dairy products (Barbano et al., 2006; 

Quigley et al., 2013a; Murphy et al., 2016). However, the combined influence of 

farm practices, storage conditions, transport and processing conditions on the 

microbiological quality of final product is not well understood and further 
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investigations are necessary Kable et al. (2016) reported that the microbiota in 

collection tankers (CTs) can be highly diverse and differ according to season. This 

diversity may be attributed to contributing on-farm factors, such as cattle skin, 

bedding, feed, human handling, milking equipment, and on-site bulk tanks used 

for storage. Thus, each individual supplier could impact differently on the levels 

of different bacterial groups in the milk within CTs that collect milk from multiple 

farms.  

When milk is collected from farm bulk tanks, it is still prone to further 

increases in bacterial populations, which can arise due to inappropriate equipment 

sanitation, favourable storage conditions or processing parameters for rapid 

bacterial multiplication (Teh et al., 2011; Cherif-Antar et al., 2016). Therefore, 

dairy processors have to adopt good manufacturing practices and monitor several 

critical control points throughout the manufacturing processes to guarantee food 

safety and conformity with legislation or specifications. For example, one of the 

challenges regarding equipment sanitation concerns heat-resistant spore-forming 

bacteria. These bacteria can develop cleaning-resistant biofilms on the interior 

surfaces of pipelines or equipment, enabling cross-contamination of finished 

products (Jindal et al., 2016). Processing parameters can also have an impact on 

bacterial load, especially thermal treatments. For example, the temperature 

programme and holding time during pasteurisation should be appropriate to 

reduce the microbial load and the number of viable pathogens in milk (Tucker, 

2015).  

The objective of this study was to monitor the microbiological quality of 

milk throughout the processing of low-heat skim milk powder (SMP), from 

individual farm bulk tanks to the final powder produced, during mid- and late-
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lactation periods. This study will aid in determining the association between the 

quality of milk and subsequent SMP produced, as well as the impact of processing 

parameters on milk and SMP quality. To our knowledge, this is the first such 

study that has tracked milk quality from individual farms to final product. 

 

4.2. Materials and methods 

 

4.2.1. Milk collection and skim milk powder manufacture 

 

This study was conducted on commercial dairy farms and in a milk 

powder processing plant, which produced SMP only using the milk supplied by 

the farms involved in this study. This experiment was conducted during the mid- 

and late-lactation periods (May 2016 and December 2016, respectively), which 

corresponded to spring and winter in Ireland. During those periods, cows were 

grazing outdoors and housed indoors, respectively. The dairy farms involved in 

this study were located in the Kilkenny and Waterford regions of Ireland. During 

mid-lactation, 67 Irish dairy farms supplied sufficient milk to the factory to 

undertake the manufacturing process; during late-lactation, 150 dairy farms were 

necessary, due to the lower milk yield per cow during that period. The raw milk 

harvested during mid- and late-lactation were stored within the bulk tanks for an 

average (± SD) of 44 ± 11 h (range: 2 to 52 h) and 70 ± 19 h (range: 24 to 217 h) 

prior to tanker collection, at 3.1 ± 0.7 °C (range: 0.9 to 4.5 °C) and 3.3 ± 1.2 °C 

(range: 0.5 to 9.5 °C), repectively. The average (± SD) milk volume collected 

from each farm was 4,418 ± 3,066 L and 1,786 ± 1,905 L, during mid- and late-

lactation, respectively. Each collection tanker (CT, n = 11) collected milk from 

approximately 6 and 14 farms in mid- and late-lactation, respectively; and the 

temperature in the CTs ranged from 3.7 to 4.2 °C. A total of 296,003 L and 
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267,932 L of milk were transported to a commercial SMP factory during mid- and 

late-lactation, respectively. Those volumes were stored in a whole milk silo 

(WMS) within the factory for approximately 5.5 h (time between the transference 

of the first CT milk and the eleventh CT milk to the silo), at an average (± SD) 

temperature of 4.6 ± 0.2 °C, and agitated for 1 min every 29 min. Subsequently, 

the milk was pasteurised by applying a HTST treatment (75 ˚C, 25 s). After 

pasteurisation, the cream was separated and stored in the cream silo (CS), while 

the skim milk (0.075% of cream) was stored in the skim milk silo (SMS). The 

skim milk was concentrated from 9% w/w to 52% w/w of total solids in a triple 

effect evaporator. Afterwards, the evaporated milk underwent spray-drying 

process and the average moisture content of the skim milk powder (SMP) 

produced was 3.2 ± 0.2% w/w. Approximately 22,000 kg of low-heat SMP were 

produced during both lactation periods that this study was carried out. The 

commercial processing plant in which this experiment was carried out detains 

further details regarding the processing parameters. 

 

4.2.2. Sampling procedure 

 

During mid- and late-lactation, 300-mL samples were collected from the 

top inlet of the 67 and 150 farm bulk tanks, respectively, using sterilised sample 

dippers. On arrival at the processing plant, 300-mL samples were collected from 

the top inlet of each CT (n = 11) using sterilised dippers. Samples (300 mL) were 

also collected from the top and bottom sampling ports of both WMS and SMS 

using industrial syringes. Additionally, in late-lactation, cream samples (300 mL) 

were collected from the top and bottom of the CS using industrial syringes, as that 

cream was produced only using the milk supplied by the 150 farms. All silo 



 

160 
 

samples were collected after the whole milk, skim milk or cream was completely 

transferred to the respective silos. Additionally, three 25-kg SMP bags were 

collected within the factory at the start, middle and final stages of the spray-dryer 

run, giving a total of 9 bags. Powder samples were reconstituted using deionised 

water (1:10 dilution). 

All samples collected in mid-lactation and samples from the factory 

collected during late-lactation (CT, WMS, CS and SMS samples) were 

transported in cooling boxes (< 4 °C), within 6 h, and analysed in the milk quality 

laboratory in Teagasc Moorepark (Fermoy, Co. Cork, Ireland). Due to the high 

number of farm milk samples collected in late-lactation, those samples were 

analysed at the laboratory in the factory.  

In relation to the low-heat SMP samples, 100 g were taken from the top, 

middle and bottom of each bag; these were mixed to obtain a representative 300-g 

samples from each bag. These powders were reconstituted using deionised water 

(1:10 dilutions) and sub-divided into 30-mL sterile bottles for microbiological 

analysis. Those samples were also analysed at the milk quality laboratory in 

Teagasc Moorepark. 

A schematic drawing of the SMP manufacturing process is shown in 

Figure 4.1, as well as the sampling points. 
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Figure 4.1. Milk supply chain and manufacturing process for conversion to low-

heat skim milk powder, conducted in the mid- and late-lactation periods. The 

sampling points are indicated with a . 

 

4.2.3. Microbiological analysis 

 

All samples collected during mid-lactation and the CT, WMS, CS, SMS 

and SMP samples collected during late-lactation were tested in duplicate for a 

range of bacterial species. All the microbiological analyses were performed 

according to the Standard Methods for the Examination of Dairy Products (Wehr 

and Frank, 2004). Total (TBC), psychrotrophic (PBC), thermoduric (Laboratory 

Pasteurisation Count - LPC) and thermophilic (THERM) bacterial counts were 

measured using Petrifilm aerobic count plates (ready to use media; 1 mL of 

diluted sample on each plate) (3M, Technopath, Tipperary, Ireland), in accordance 

with the procedures described by Laird et al. (2004). The LPC test consisted of 

pasteurising the milk samples at 63 ˚C for 35 min, including time to allow 

samples to reach the required temperature (Frank and Yousef, 2004); afterwards, 

the samples were cooled to 10 ˚C using iced water before testing. Samples tested 

for TBC and LPC were incubated for 48 h at 32 ˚C, while samples tested for 
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THERM were incubated for 48 h at 55 ˚C. The Petrifilms corresponding to the 

PBC test were incubated for 10 days at 7 ± 1 ˚C (Frank and Yousef, 2004). The 

authors are aware that using Petrifilm at 7 or 55 ˚C is outside the validated 

temperature range for that media. However, a pre-trial experiment for THERM 

indicated that, at the same dilution, plate count agar plates were uncountable due 

to bacterial colonies spreading over the surface of agar plates, whereas Petrifilm 

plates were countable (data not shown). Regarding PBC, other studies have been 

using Petrifilm for that test at 7 ˚C (Ramsahoi et al., 2011). A Petrifilm Plate 

Reader (3M, Technopath, Tipperary, Ireland) was used to assess the number of 

bacterial colonies. 

The proteolytic bacterial count (PROT) test consisted of spread plating the 

diluted sample (100 µL) on calcium caseinate agar with added skim milk powder 

(Merck, Darmstadt, Germany). Plates were incubated at 37 ˚C for 48 h. 

Proteolytic bacterial colonies were identified as colonies surrounded by a clear 

zone in an opaque medium.  

The TBC of the 150 farm milk samples collected during late-lactation 

were analysed within the factory using a MilkoScan FT2 system (Foss Electric, 

HillerØd, Denmark). 

 

4.2.4. Statistical analysis 

 

The statistical analyses were performed using the software SAS 9.3 (SAS 

Institute, 2016). The bacterial counts means (TBC, PBC, PROT, LPC and 

THERM) of each CT were predicted using the volume and bacterial count 

measured in the milk of all farms that supplied each CT. The same bacterial 

counts were predicted for the WMS using the volume and bacterial counts 
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measured in the milk of all CTs that supplied that silo. Those predictions were 

calculated as volume weighted means with estimated confidence interval. The 

actual bacterial counts measured in each CT and WMS samples were compared to 

the respective confidence interval for those predicted means of the bacterial 

counts. Agreement plots were also used to check for bias in the relationship 

between actual and predicted bacterial count means. There were insufficient 

numbers of samples from the factory (WMS, SMS and SMP samples) to 

determine the statistical differences between the bacterial counts measured in 

those samples. Therefore, only numerical differences between those samples were 

reported in this research paper to indicate the possible variations in bacterial load 

throughout the process. This study was performed once during each mid- and late-

lactation periods. 

 

4.3. Results 

 

4.3.1. Mid-lactation study 

 

The mean bacterial counts (TBC, PBC, PROT, LPC and THERM) of the 

samples from the farm bulk tanks, CTs, WMS, SMS and samples of SMP, which 

were collected during the mid-lactation period, are shown in Table 4.1. Small 

increases were observed when comparing all mean bacterial counts of the farm 

bulk tanks and CTs (Table 4.1). Pronounced increases in the TBC, PBC and 

PROT were observed in the WMS samples when compared to the CT samples 

(Table 4.1). The mean TBC, PBC and PROT were lower in the SMS samples 

compared to the WMS samples; however, the LPC and THERM levels were not 

different between them (Table 4.1). 
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The comparisons between the actual bacterial counts of each CT sample 

with the respective confidence interval for the predicted means, which were 

calculated considering the volume and bacterial count of each farm’s milk 

supplied to each CT, are shown in Table 4.2. The TBC, PBC, PROT, LPC and 

THERM of two, three, one, two and four CT samples, respectively, were not 

within the respective confidence intervals (Table 4.2). 

The comparisons between the actual bacterial counts of the WMS samples 

and the respective confidence interval for the predicted means, which were 

calculated considering the volume and bacterial count of each CT milk supplied to 

the silo, are shown in Table 4.3. The mean TBC, PBC, PROT and THERM of the 

WMS samples were not within the respective confidence intervals (Table 4.3). 

 

4.3.2. Late-lactation study 

 

The mean bacterial counts (TBC, PBC, PROT, LPC and THERM) of the 

samples from the farm bulk tanks, CTs, WMS, CS, SMS and samples of SMP, 

that were collected during late-lactation period, are shown in Table 4.1. The mean 

TBC of the CT samples was higher than the mean TBC of the farm milk samples 

(Table 4.1). The mean TBC, PBC and PROT of the WMS samples were higher 

than the CT samples means (Table 4.1). The mean TBC, PBC and PROT of the 

SMS samples were lower compared to the WMS samples, while their LPC and 

THERM levels were similar (Table 4.1). 

The comparisons between the actual mean TBC measured in each CT 

sample with the respective confidence interval for the predicted means, which 

were calculated considering the volume and TBC of each farm milk supplied to 

each CT, are shown in the supplementary Table 4.4. The mean TBC of nine CT 
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samples (1, 3, 5, 6, 7, 8, 9, 10 and 11) were not within the respective confidence 

intervals (Table 4.4). 

The comparisons between the actual bacterial counts of the WMS samples 

with the respective confidence interval for the predicted means, which were 

calculated considering the volume and bacterial count of each CT milk supplied to 

the silo, are shown in Table 4.3. The mean TBC, PBC and PROT of the late-

lactation WMS samples were not within the respective confidence intervals (Table 

4.3). 
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Table 4.1. Mean (± SD) total bacterial count (TBC), psychrotrophic (PBC), proteolytic (PROT), thermoduric (LPC – Laboratory 

pasteurisation count) and thermophilic (THERM) bacterial counts of the samples collected from the farm bulk tanks, collection 

tankers (CTs), whole milk silo (WMS), cream silo (CS), skim milk silo (SMS) and samples of skim milk powder (SMP) from the 

mid- and late-lactation periods. 

Mid-Lactation 

Bacterial counts 

(log10 cfu/ mL) 

Farm bulk tanks†
 

(n=67) 

CT†
 

(n=11) 

WMS 

(n=2) 

CS‡ 

(n=2) 

SMS 

(n=2) 

SMPǁ 

(n=9) 

TBC 3.60 ± 0.55 (2.65 to 4.90) 3.90 ± 0.40 (3.22 to 4.62) 5.89 ± 0.02  2.61 ± 0.20 2.36 ± 0.09 (2.26 to 2.50) 

PBC 3.54 ± 0.65 (2.70 to 6.00) 3.70 ± 0.53 (2.74 to 5.97) 6.00 ± 0.00  2.00 ± 0.00 1.21 ± 0.15 (1.00 to 1.40) 

PROT 3.50 ± 0.56 (3.00 to 5.10) 3.66 ± 0.29 (3.30 to 4.30) 5.72 ± 0.62  2.00 ± 0.00 1.36 ± 0.30 (1.00 to 1.70) 

LPC 1.35 ± 0.33 (1.00 to 2.60) ¶ 
1.44 ± 0.28 (1.00 to 1.98) 1.58 ± 0.17  1.69 ± 0.07 2.45 ± 0.08 (2.30 to 2.51) 

THERM 1.43 ± 0.47 (1.00 to 2.52) ¶ 1.62 ± 0.35 (1.00 to 2.47) 2.02 ± 0.14  1.85 ± 0.10 3.63 ± 0.11 (3.50 to 3.79) 

Late-lactation 

Bacterial counts 

(log10 cfu/ mL) 

Farm bulk tanks†,§ 

(n=150) 

CT†
 

(n=11) 

WMS 

(n=2) 

CS 

(n=2) 

SMS 

(n=2) 

SMPǁ 

(n=9) 

TBC 4.37 ± 0.62 (3.60 to 7.16) 5.12 ± 0.53 (4.32 to 5.96) 5.84 ± 0.09 2.32 ± 0.09 5.00 ± 0.00 3.56 ± 0.08 (3.44 to 3.69) 

PBC  5.25 ± 0.58 (4.15 to 5.97) 5.80 ± 0.04 1.15 ± 0.21 5.00 ± 0.00 2.07 ± 0.10 (1.90 to 2.19) 

PROT  4.09 ± 0.72 (3.30 to 5.95) 4.68 ± 0.40 4.27 ± 0.27 2.52 ± 0.35 2.18 ± 0.26 (2.00 to 2.54) 

LPC  2.60 ± 0.23 (2.35 to 2.99) 2.55 ± 0.03 2.33 ± 0.01 2.61 ± 0.17 3.51 ± 0.09 (3.33 to 3.62) 

THERM  2.72 ± 0.19 (2.51 to 2.98) 2.74 ± 0.06 4.54 ± 0.01 2.63 ± 0.04 3.58 ± 0.09 (3.41 to 3.69) 

n = number of samples analysed in duplicate, ranges are given between parentheses. †Weighted means calculated considering the volumes and 

bacterial counts of each farm or CT sample. ‡Cream samples were not collected during mid-lactation. §Only TBC was measured in the late-

lactation farm milk samples. ǁBacterial counts in log10 cfu/ g. ¶Weighted means calculated not considering the samples in which those bacteria 

were not detected. 
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Table 4.2. Comparison of mean total (TBC), psychrotrophic (PBC), proteolytic (PROT), thermoduric (laboratory pasteurisation 

count – LPC) and thermophilic (THERM) bacterial counts measured in each collection tanker (CT: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11) 

during mid-lactation and those predicted (± standard error; S.E.) from the combined farm samples in each CT. 

Bacterial 

counts  

CT 

number 

Number 

of farms 

Total volume 

per tanker (L) 

Mean (±  SD) 

volume measured 

per farm (L) 

Mean CT bacterial count  

(log10 cfu/ mL)  

Predicted bacterial count 

(weighted means; S.E.)† 

(log10 cfu/ mL) 

95% CI‡ 

Mean CT bacterial counts 

covered by predicted C.I. LCL UCL 

TBC          

 1 4 23771 5,943 ± 1,271 3.99 3.93 ± 0.09 3.64 4.23 Yes 

 2 5 26503 5,301 ± 2,385 4.38 3.7 ± 0.27 2.95 4.45 Yes 

 3 6 29122 4,854 ± 1,763 3.90 3.82 ± 0.32 2.98 4.65 Yes 

 4 6 23780 3,963 ± 2,683 4.18 3.64 ± 0.23 3.06 4.22 Yes 

 5 8 27585 3,448 ± 2,214 3.88 3.51 ± 0.19 3.05 3.97 Yes 

 6 7 28628 4,090 ± 1,208 4.15 3.57 ± 0.2 3.08 4.06 No 

 7 7 27188 3,884 ± 2,064 4.62 3.87 ± 0.33 3.06 4.67 Yes 

 8 7 28470 4,067 ± 2,437 3.64 3.9 ± 0.08 3.71 4.09 No 

 9 2 27147 13,574 ± 11,312 3.22 3.03 ± 0.07 2.2 3.86 Yes 

 10 5 25248 5,050 ± 3,877 3.45 3.27 ± 0.13 2.93 3.62 Yes 

 11 10 28561 2,856 ± 1,764 3.54 3.35 ± 0.12 3.08 3.62 Yes 

†Weighted means were calculated considering the volume of milk supplied by each farm. 

‡Confidence interval (CI), lower (LCL) and upper (UCL) confidence limits. 
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Table 4.2. Continuation. 

Bacterial 

counts 

CT 

number 

Number 

of farms 

Total volume 

per tanker (L) 

Mean (±  SD) 

volume measured 

per farm (L) 

Mean CT bacterial count 

(log10 cfu/ mL) 

Predicted bacterial count 

(weighted means; S.E.)† 

(log10 cfu/ mL) 

95% CI‡ 

Mean CT bacterial counts 

covered by predicted C.I. 
LCL UCL 

PBC          

 1 4 23771 5,943 ± 1,271 3.99 3.61 ± 0.28 2.71 4.51 Yes 

 2 5 26503 5,301 ± 2,385 3.52 3.36 ± 0.18 2.86 3.87 Yes 

 3 6 29122 4,854 ± 1,763 4.04 3.83 ± 0.33 2.97 4.68 Yes 

 4 6 23780 3,963 ± 2,683 3.56 3.51 ± 0.11 3.22 3.8 Yes 

 5 8 27585 3,448 ± 2,214 3.74 3.36 ± 0.25 2.76 3.95 Yes 

 6 7 28628 4,090 ± 1,208 3.80 3.45 ± 0.1 3.21 3.69 No 

 7 7 27188 3,884 ± 2,064 5.97 4.11 ± 0.54 2.78 5.45 No 

 8 7 28470 4,067 ± 2,437 3.60 3.97 ± 0.12 3.67 4.28 No 

 9 2 27147 13,574 ± 11,312 2.74 3.04 ± 0.04 2.48 3.6 Yes 

 10 5 25248 5,050 ± 3,877 3.23 3.35 ± 0.17 2.48 3.6 Yes 

 11 10 28561 2,856 ± 1,764 3.51 3.29 ± 0.11 3.04 3.55 Yes 

†Weighted means were calculated considering the volume of milk supplied by each farm. 

‡Confidence interval (CI), lower (LCL) and upper (UCL) confidence limits. 

 

 

 

 



 

169 
 

 

 

Table 4.2. Continuation. 

Bacterial 

counts 

CT 

number 

Number 

of farms 

Total volume 

per tanker (L) 

Mean (±  SD) 

volume measured 

per farm (L) 

Mean CT bacterial count 

(log10 cfu/ mL) 

Predicted bacterial count 

(weighted means; S.E.)† 

(log10 cfu/ mL) 

95% CI‡ 
Mean CT bacterial counts 

covered by predicted C.I. 
LCL UCL 

PROT          

 1 4 23771 5,943 ± 1,271 3.70 3.71 ± 0.15 3.24 4.17 Yes 

 2 5 26503 5,301 ± 2,385 3.70 3.61 ± 0.41 2.48 4.73 Yes 

 3 6 29122 4,854 ± 1,763 3.65 3.68 ± 0.27 2.98 4.38 Yes 

 4 6 23780 3,963 ± 2,683 3.98 3.61 ± 0.28 2.9 4.33 Yes 

 5 8 27585 3,448 ± 2,214 3.74 3.41 ± 0.15 3.05 3.76 Yes 

 6 7 28628 4,090 ± 1,208 3.30 3.67 ± 0.24 3.08 4.26 Yes 

 7 7 27188 3,884 ± 2,064 4.30 4.03 ± 0.26 3.39 4.67 Yes 

 8 7 28470 4,067 ± 2,437 3.40 3.33 ± 0.09 3.1 3.56 Yes 

 9 2 27147 13,574 ± 11,312 3.84 3.06 ± 0.12 1.52 4.61 Yes 

 10 5 25248 5,050 ± 3,877 3.30 3.05 ± 0.05 2.9 3.2 No 

 11 10 28561 2,856 ± 1,764 3.40 3.37 ± 0.1 3.14 3.6 Yes 

†Weighted means were calculated considering the volume of milk supplied by each farm. 

‡Confidence interval (CI), lower (LCL) and upper (UCL) confidence limits. 
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Table 4.2. Continuation. 

Bacterial 

counts 

CT 

number 

Number 

of farms 

Total volume 

per tanker (L) 

Mean (±  SD) 

volume measured 

per farm (L) 

Mean CT bacterial count 

(log10 cfu/ mL) 

Predicted bacterial count 

(weighted means; S.E.)† 

(log10 cfu/ mL) 

95% CI‡ 
Mean CT bacterial counts 

covered by predicted C.I. 
LCL UCL 

LPC          

 1 4 23771 5,943 ± 1,271 1.54 1.21 ± 0.06 1.01 1.42 No 

 2 5 26503 5,301 ± 2,385 1.18 1.35 ± 0.13 0.99 1.71 Yes 

 3 6 29122 4,854 ± 1,763 1.00 1.07 ± 0.3 0.3 1.84 Yes 

 4 6 23780 3,963 ± 2,683 1.48 1.34 ± 0.07 1.16 1.52 Yes 

 5 8 27585 3,448 ± 2,214 1.98 0.79 ± 0.25 0.21 1.38 No 

 6 7 28628 4,090 ± 1,208 1.30 1.24 ± 0.32 0.45 2.02 Yes 

 7 7 27188 3,884 ± 2,064 1.60 1.12 ± 0.20 0.62 1.62 Yes 

 8 7 28470 4,067 ± 2,437 1.18 0.96 ± 0.18 0.51 1.41 Yes 

 9 2 27147 13,574 ± 11,312 1.70 0.48 ± 0.95 0 12.56 Yes 

 10 5 25248 5,050 ± 3,877 1.70 1.44 ± 0.1 1.17 1.71 Yes 

 11 10 28561 2,856 ± 1,764 1.30 1.26 ± 0.08 1.09 1.44 Yes 

†Weighted means were calculated considering the volume of milk supplied by each farm. 

‡Confidence interval (CI), lower (LCL) and upper (UCL) confidence limits. 
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Table 4.2. Continuation. 

Bacterial 

counts 

CT 

number 

Number 

of farms 

Total volume 

per tanker (L) 

Mean (±  SD) 

volume measured 

per farm (L) 

Mean CT bacterial count 

(log10 cfu/ mL) 

Predicted bacterial count 

(weighted means; S.E.)† 

(log10 cfu/ mL) 

95% CI‡ 
Mean CT bacterial counts 

covered by predicted C.I. 
LCL UCL 

THERM          

 1 4 23771 5,943 ± 1,271 1.30 0.65 ± 0.34 0 1.73 Yes 

 2 5 26503 5,301 ± 2,385 1.00 1.41 ± 0.19 0.88 1.94 Yes 

 3 6 29122 4,854 ± 1,763 1.74 0.87 ± 0.32 0.03 1.7 No 

 4 6 23780 3,963 ± 2,683 1.00 1.08 ± 0.35 0.17 1.99 Yes 

 5 8 27585 3,448 ± 2,214 1.00 0.19 ± 0.15 0 0.56 No 

 6 7 28628 4,090 ± 1,208 1.84 1.55 ± 0.33 0.73 2.37 Yes 

 7 7 27188 3,884 ± 2,064 1.70 0.7 ± 0.3 0 1.44 No 

 8 7 28470 4,067 ± 2,437 1.40 1.4 ± 0.12 1.12 1.69 Yes 

 9 2 27147 13,574 ± 11,312 2.47 0.51 ± 1.0 0 13.15 Yes 

 10 5 25248 5,050 ± 3,877 1.95 0.73 ± 0.25 0.05 1.42 No 

 11 10 28561 2,856 ± 1,764 1.48 0.92 ± 0.28 0.28 1.55 Yes 

†Weighted means were calculated considering the volume of milk supplied by each farm. 

‡Confidence interval (CI), lower (LCL) and upper (UCL) confidence limits. 
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Table 4.3. Comparison of mean total (TBC), psychrotrophic (PBC), thermoduric (laboratory pasteurisation count – LPC) and 

thermophilic (THERM) bacterial counts measured in the whole milk silo (WMS) during mid- and late-lactation and those predicted 

(± standard error; S.E.) from the combined collection tanker (CT) samples. 

Stage of 

lactation 

Bacterial count 

(log10 cfu/ mL) 

Mean (± SD) bacterial 

count (WMS) 

Predicted bacterial count 

(weighted means; S.E.)† 

95% CI‡ Mean CT bacterial counts 

covered by predicted C.I. 
LCL UCL 

Mid-lactation       

 TBC 5.89 ± 0.02 3.9  ± 0.13  3.62 4.18 No 

 PBC 6.00 ± 0.00 3.7 ± 0.17 3.33 4.08 No 

 PROT 5.72 ± 0.62 3.66 ± 0.09 3.45 3.87 No 

 LPC 1.58 ± 0.17 1.46 ± 0.09 1.27 1.65 Yes 

 THERM 2.02 ± 0.14 1.64 ± 0.11 1.39  1.88 No 

Late-lactation       

 TBC 5.84 ± 0.09 5.1 ± 0.17 4.73 5.47 No 

 PBC 5.80 ± 0.04 5.25 ± 0.18 4.84 5.66 No 

 PROT 4.68 ± 0.40 4.09 ± 0.23 3.58 4.6 No 

 LPC 2.55 ± 0.03 2.61 ± 0.07 2.44 2.77 Yes 

 THERM 2.74 ± 0.06 2.73 ± 0.06 2.59 2.86 Yes 

Mean (± SD) volume of milk measured per tanker in mid- and late-lactation were 26,909 ± 1,902 L and 24,357 ± 3,768 L, respectively. 

†Weighted means were calculated considering the volume of milk supplied by each tanker. 

‡Confidence interval (CI), lower (LCL) and upper (UCL) confidence limits. 
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Table 4.4. Comparison of mean total bacterial counts (TBC) measured in each collection tanker (CT: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 

11) during late-lactation and those predicted (± standard error; S.E.) from the combined farm samples in each CT. 

CT 

number 

Number of 

farms 

Total volume 

per tanker (L) 

Mean (±  SD) volume 

measured per farm (L) 

Mean TBC of each CT  

(log10 cfu/ mL) 

Predicted TBC 

(weighted means; S.E.)†  

(log10 cfu/ mL) 

95% CI‡ 

Mean TBC of each CT 

covered by predicted C.I. LCL UCL 

1 15 25,743 1,716 ± 2,135 5.64 4.38 ± 0.16 3.95 4.66 No 

2 7 19,853 2,836 ± 3,542 5.33 5.12 ± 0.32 4.35 5.89 Yes 

3 8 23,460 2,933 ± 2,381 5.96 4.8 ± 0.34 4.0 5.6 No 

4 13 24,221 1,863 ± 1,401 4.32 4.14 ± 0.08 3.96 4.33 Yes 

5 10 24,274 2,427 ± 2,558 4.64 4.34 ± 0.12 4.06 4.61 No 

6 14 24,729 1,766 ± 2,489 5.90 4.24 ± 0.25 3.71 4.77 No 

7 19 28,583 1,504 ± 1,168 4.86 4.4 ± 0.08 4.23 4.56 No 

8 27 28,322 1,049 ± 881 4.81 4.24 ± 0.08 4.08 4.4 No 

9 18 27,606 1,534 ± 1,794 4.84 4.17 ± 0.11 3.93 4.4 No 

10 8 15,774 1,972 ± 1,002 5.40 4.27 ± 0.13 3.95 4.59 No 

11 13 25,367 2,306 ± 2,221 4.66 4.15 ± 0.06 4.02 4.29 No 

†Weighted means were calculated considering the volume of milk supplied by each farm. 

‡Confidence interval (CI), lower (LCL) and upper (UCL) confidence limits. 
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4.4. Discussion 

 

Production season or storage conditions can affect the bacterial counts of 

different types of microorganisms in milk, which can impact on the final quality 

of SMP. In mid-lactation, the mean TBC and PBC of the farm milk samples were 

below the European limits (EC no 853/2004): 5.00 and 4.22 log10 cfu/ mL, 

respectively. The TBC was also below the typical limit of 4.70 log10 cfu/ mL 

applied by some Irish milk processors (Table 4.1). The mean PROT of the farm 

samples was below the limit suggested by Vyletelova et al. (2000) (4.65 log10 cfu/ 

mL), at which proteolytic bacteria would produce high levels of heat-resistant 

proteases. The mean LPC of the mid-lactation farm milk samples was lower than 

the typical industry specifications, which can range from 2.70 to 3.00 log10 cfu/ 

mL. Thermoduric and thermophilic bacterial colonies were not detected in 8 and 

24 farm milk samples, respectively. In mid-lactation, some individual farm milk 

samples had TBC, PBC, PROT and LPC higher than the specified limits. 

However, considering that the milk volumes from all farms would be blended for 

processing, the comparisons between the weighted mean bacterial counts and the 

known specifications for raw milk indicated that good quality milk was delivered 

to the factory for processing in mid-lactation.  

The mean TBC of late-lactation farm bulk tank milk samples was also 

lower than the European and industrial limits; however, 49 farm samples had TBC 

above those specifications. Statistical comparisons between the mean TBC of the 

farm samples collected during mid- and late-lactation were not possible, as the 

group of farms involved in the mid- and late-lactation studies were different and 

samples from those groups were analysed in different laboratories; however, the 

figures gave an indication that lower quality milk was produced in late-lactation. 
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The variations in the counts of different bacterial types between lactation periods 

could be related to seasonal differences in bacterial strains in the environment, 

cow management, cows’ health status (e.g., mastitis), on-farm hygiene practices, 

or milk storage conditions (Linn, 1988; Lafarge et al., 2004).  

In mid-lactation, the mean TBC, PBC, PROT and LPC of the CT milk 

samples were below the limits determined by the European legislation, industry 

and literature cited; while in late-lactation, the mean TBC and PBC were higher 

than the European limits (Table 4.1). The TBC, PBC, PROT, LPC and THERM of 

the CTs milk were higher in late-lactation compared to mid-lactation, possibly due 

to the production of milk of inferior quality on-farm during that period. Also, the 

longer milk collection periods in late-lactation (approximately 8 h) could have 

contributed to the increased bacterial numbers in the CTs. The CT milk samples 

that had the bacterial counts higher than the upper confidence limit (mid-lactation: 

TBC, PBC, PROT, LPC and THERM; late-lactation: TBC; Tables 4.2 and 4.4) 

indicated that those bacterial numbers could have been influenced by the transport 

duration, CT cleaning protocol, temperature during transport or by the impact of 

individual farm suppliers (Kable et al., 2016). 

In both lactation periods, some of the bacterial counts measured in the 

WMS samples were higher than the respective upper confidence limits (mid-

lactation: TBC, PBC, PROT and THERM; late-lactation: TBC, PBC and PROT; 

Table 4.3). The increase in those bacterial counts could be due to the conditions of 

the equipment in the milk transfer line (from the CT to the silo) (e.g., pump 

system and filters), non-effective silo clean-in-place routine, storage time or 

favourable storage temperature for the growth of some bacterial strains, or could 
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be a result of blending raw milk from different origins and levels of contamination 

(Pinto et al., 2006).  

In mid- and late-lactation, the mean TBC of the WMS samples was higher 

than the limit determined for raw milk prior to processing (5.48 log10 cfu/ mL; EC 

no 853/2004). However, the temperature-time binomial applied during 

pasteurisation (75 ˚C, 25 s) reduced the TBC, PBC and PROT, as observed in the 

SMS samples (Table 4.1). In both lactation periods, pasteurisation was not 

efficient in reducing the LPC and THERM, when comparing the figures obtained 

for the WMS and SMS samples (Table 4.1), as those bacterial types are capable of 

surviving the temperatures applied in thermal treatments (Delgado et al., 2013; 

Quigley et al., 2013b). Thermoduric bacteria are able to survive pasteurisation 

temperatures (above 63 ˚C), while thermophilic bacteria are able to survive and 

grow at 55 ˚C or above (Frank and Yousef, 2004). The decreases in TBC and PBC 

after pasteurisation were of lower magnitude in late-lactation than in mid-lactation 

(Table 4.1), indicating that milk may contain higher numbers of heat-resistant 

bacteria strains during winter. Furthermore, in late-lactation, the THERM levels 

were higher in the CS samples compared to the WMS and SMS samples (Table 

4.1). Given that cream separation occurred after pasteurisation, the relative 

abundance of thermophiles in pasteurised whole milk was possibly higher than 

prior to pasteurisation. Thermophilic bacteria could have migrated with the fat 

globules due to density (Graham, 2004) or the high levels could be related to the 

cleaning of the silos, as the persistence of thermophilic bacteria is related to the 

formation of biofilms (Burgess et al., 2010).  

Mid-lactation raw milk had better microbiological quality than late-

lactation milk; consequently, the SMP produced using mid-lactation milk had 
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lower bacterial counts than that made from late-lactation milk (Table 4.1). 

Laboratory-based studies indicated that when TBC in milk is higher than 5.00 

log10 cfu/ mL, the solubility index of SMP can increase, as well as the free fat acid 

content, while the heat stability decreases (Muir et al., 1986; Celestino et al., 

1997). In relation to thermoduric and thermophilic bacteria, there are no European 

limits determined for milk powder; however, the SMP produced using mid- and 

late-lactation milk had THERM levels in accordance to the North American dairy 

industry requirements (less than 4.00 log10 cfu/ g) (Wehr and Frank, 2004). 

Furthermore, it is likely that evaporation and spray-drying processes may have 

contributed to further reductions in TBC, PBC and PROT in the SMP in both 

periods. 

This study highlights the importance of controlling bacterial levels in milk 

on-farm and during manufacturing, as processing parameters might not be able to 

reverse the negative effects of high bacterial levels; consequently, compromising 

the quality of dairy products. For example, when in sufficient numbers, certain 

bacteria strains can produce lipases and proteases, which could not be eliminated 

in pasteurisation and could affect essential technological properties of milk for 

dairy products manufacture (Muir, 1996; Barbano et al., 2006). Hygiene practices, 

cow management and processing parameters can affect the abundance of different 

bacterial types in milk; and therefore, those should be adequate to guarantee milk 

powder high quality and safety (Craven et al., 2010; Watterson et al., 2014).  

 

4.5. Conclusion 

 

This was the first study that monitored the quality of milk from farm bulk 

tank, through processing stages, to skim milk powder. The effects of milk quality 
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parameters on the quality of low-heat skim milk powder were observed, as well as 

how those parameters were affected throughout the manufacturing process. The 

good microbiological quality of the mid-lactation farm milk resulted in the 

production of milk powder with lower bacterial counts in contrast to the powder 

produced during late-lactation with milk of inferior quality. The season and stage 

of milk production has an influence on the abundance of different bacterial types 

in milk, which could impact the effectiveness of thermal treatments and 

consequently affect final product quality. Also, the differences in bacterial counts 

between production stages are indications of the growth potential of the bacteria 

in the milk, or even an indication of possible contamination sources in the specific 

production stage in which changes were observed. The results observed can aid 

industry in targeting sources of contamination throughout processing stages and 

practices to control bacterial numbers, in order to ensure the consistent production 

of safe high-quality dairy products throughout the year.  
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Abstract 

 

The experiments reported in this research paper aimed to investigate 

differences in the levels of chlorate (CHLO), perchlorate (PCHLO), 

trichloromethane (TCM) and iodine residues in bulk tank (BT) milk produced at 

different milk production periods, and to monitor those levels throughout a skim 

milk powder (SMP) production chain (BTs, collection tankers [CTs], whole milk 

silo [WMS] and skim milk silo [SMS]). Chlorate, PCHLO and iodine were 

measured in SMP, while TCM was measured in the milk cream. The CHLO, 

TCM and iodine levels in the mid-lactation milk stored in the WMS were lower 

than legislative and industrial specifications (0.0100 mg/ kg, 0.0015 mg/ kg and 

150 µg/ L, respectively); however, in late-lactation, those levels were numerically 

higher than the mid-lactation levels and specifications. Consequently, CHLO and 

iodine levels in SMP were numerically higher in late-lactation than in mid-

lactation. Trichloromethane accumulated in the cream portion after separation. 

Perchlorate was not detected in any of the samples. Regarding iodine, the levels in 

mid-lactation reconstituted SMP were higher than that required by manufacturers 

(100 µg/ L), indicating that the levels in milk should be lower than 142 µg/ L. The 

higher residue levels observed in late-lactation could be related to the low milk 

volume produced during that period and changes in sanitation practices, while 

changes in feed management could have affected iodine levels. This study could 

assist in controlling and setting limits for CHLO, TCM and iodine levels in milk, 

ensuring premium quality dairy products. 
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5.1. Introduction 

 

International markets are setting high specifications for milk and dairy 

product quality, including stringent guidelines on concentrations of residues that 

could occur in milk. Potential milk contaminants of most concern include chlorate 

(CHLO, ClO3
-
), perchlorate (PCHLO, ClO4

-
) and trichloromethane (TCM, 

CHCl3), which arise as a consequence of sanitation with chlorine products, and 

quaternary ammonium compounds (QACs), which are present in certain sanitation 

products. 

Chlorate and PCHLO were reported to result in thyroid dysfunctions 

(EFSA, 2015), while TCM could possibly be carcinogenic to humans (ICAR, 

1999). There are a few studies available that have discussed contributing factors 

on-farm (Gleeson et al., 2013; Ryan et al., 2013); however, the dynamic of 

residue concentrations when subjected to different milk processing conditions is 

not fully understood. Sodium hypochlorite, chlorine gas or dioxide may be used 

for the sanitation of water, while chlorine-based detergents are used for the 

sanitation of milking or processing equipment. Chlorine products generally have 

good bactericidal properties and are widely used because of their effectiveness 

and low cost (Garcia-Villanova et al., 2010). The decomposition of chlorine 

compounds results in the production of oxyhalide species (ClO
-
 and ClO2

-
), which 

react and form CHLO. Further reactions of CHLO with those oxyhalides result in 

the formation of PCHLO (Gordon & Tachiyashiki, 1991). Residual chlorine, 

CHLO or PCHLO on the surfaces of processing equipment can contaminate milk 

(Asami et al., 2013). The contamination of infant formula with CHLO is a major 

concern due to the risk of intoxication in infants, which have lower tolerance than 

adults. The contact of chlorine with milk could also result in the formation of 
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TCM (Tiefel & Guthy, 1997). Chlorinated hydrocarbons accumulate in fat-rich 

fractions; therefore, products such as butter and cream could contain high 

concentrations of TCM if milk is contaminated with high levels (Hubbert et al., 

1996). 

Products containing QACs can also be employed for disinfection of 

processing equipment, tankers and silos. On-farm, some teat sanitizing wipes and 

dips or disinfectant agents used for bulk tanks could contain QACs. Those 

products should also be rinsed from equipment surfaces to avoid milk 

contamination (Xian et al., 2016). The main primary QACs that may be identified 

in milk and dairy products are: benzyldimethyldodecylammonium chloride (BAC 

12), benzyldimethyltetradecylammonium chloride (BAC 14), 

benzyldimethylhexadecyl ammonium chloride (BAC 16) and 

didecyldimethylammonium chloride (DDAC) (Reuter, 2015). In a report 

published by the European Food Safety Authority (EFSA, 2013), BACs 

(benzalkonium chlorides) and DDAC were present in 12% of the milk products 

tested, being the highest percentage in comparison to other food groups tested.  

Excessive levels of residual iodine in raw milk are another concern in the 

Irish dairy industry, especially in the manufacture of infant formula. Iodine is an 

essential micronutrient for the synthesis of hormones by the thyroid gland (Leung 

& Braverman, 2014). Even though iodine is a nutrient of extreme importance to 

the human organism, the daily consumption of iodine at higher levels than 

recommended could result in dysfunctions of the thyroid gland. Bovine milk is 

one of the main sources of iodine for humans and its content depends on the daily 

iodine intake by dairy cows (Flachowsky et al. 2014). The US National Research 

Council (2001) recommends that the daily iodine intake per cow should be 10 mg, 
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which is the reference value applied in Ireland. The utilisation of rations with 

higher levels of iodine than required or overfeeding cows can result in excessive 

iodine concentrations secreted into milk. Over supplementation of Irish herds is of 

most concern during early and late-lactation and during winter milk production 

(O’Brien et al., 2013). O’Brien et al. (1999) recorded an average of 227 ug/ L 

iodine in Irish milk, while concentrations of 510 and 180 ug/ L were recorded for 

December and June, respectively. Those levels were not a food safety concern at 

the time; however, processors are currently requiring lower levels of iodine in raw 

milk destined for the production of infant formula, in order to meet requirements 

of the international market.  Some Irish dairy processors require that raw milk 

should contain less than 150 µg/ L of iodine. Other iodine sources in milk include 

mineral-added water, boluses, mineral licks and grass (Magowan et al., 2010). 

The use of iodine-based teat disinfectants can also contribute to iodine content in 

milk, as those products are absorbed through the teat skin if not completely 

removed prior to milking (Flachowsky et al. 2014). 

The first objective of this study was to investigate changes in the CHLO, 

PCHLO, TCM, QACs and iodine levels throughout the milk production chain, 

from farm to dairy product, in two different milk production periods (mid- and 

late-lactation). Chlorate, PCHLO and iodine were measured throughout the 

production stages of skim milk powder (SMP), while TCM was measured 

throughout the production stages of milk and cream, which were destined for 

butter manufacture. The second objective was to investigate differences in residue 

levels in bulk tank (BT) milk produced during mid- and late-lactation. The milk 

used in this study was produced on commercial dairy farms and processed in a 

commercial SMP processing plant. 
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5.2. Material and methods 

 

5.2.1. Sampling procedure at the farms and throughout a skim milk powder 

manufacture process 

 

In Ireland a seasonal spring-calving production system is practiced, with 

all cows calving within a 10-week period approximately (February to April). This 

experiment was performed on one occasion during each of mid- (May; 80 DIM) 

and late-lactation (December; 290 DIM). The farms that supplied milk to the 

factory (mid-lactation: 67 farms; late-lactation: 150 farms), milk storage 

conditions on-farm, amount of milk produced, milk collection and the skim milk 

powder manufacturing process was the same as described in Chapter 4. A 

schematic drawing of the SMP manufacturing process is shown in Figure 5.1, as 

well as the sampling points during the mid- and late-lactation periods. 

In mid-lactation, samples were collected at various points of the 

manufacturing process between the farm BTs and the SMP [BTs, collection 

tankers (CTs), whole milk silo (WMS), skim milk silo (SMS) and final SMP] and 

were tested for CHLO, PCHLO and iodine. In late-lactation, samples were 

collected at various points between the CTs and the SMP [CTs, WMS, cream silo 

(CS), SMS and final SMP] and were tested for CHLO, PCHLO and iodine. In 

both lactation periods, TCM was quantified in all samples, with exception of the 

SMP samples (Figure 5.1). Due to the high number of farms (150) necessary to 

supply sufficient milk volume to undertake the manufacturing process in late-

lactation (December), it was not possible to undertake collection and analysis of 

all individual BT samples. The collection of samples and preparation of SMP 

samples for analysis were performed as described in Chapter 4. 
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5.2.2. Comparison between the residue levels in the same 67 farm bulk tanks 

in mid- and late-lactation (May and November) 

 

The concentrations of CHLO, PCHLO, TCM, QACs and iodine residues 

were measured in raw milk produced on the same 67 dairy farms sampled in mid-

lactation (May, 80 DIM) and in late-lactation period (November; 260 DIM), to 

investigate the effect of milk production period on residue levels. Milk samples 

were collected as described in Chapter 4. 

 

5.2.3. Quantification of chlorate and perchlorate 

 

The quantification of CHLO and PCHLO was performed by high-

performance liquid chromatography coupled to tandem mass spectrometry (LC/ 

MS-MS) with ESI electrospray ionisation in negative mode (-ESI). The mid-

lactation milk and SMP samples, as well as the 67 late-lactation farm BT samples, 

were analysed in the laboratory of Labor Friedle GmbH group (Labor Friedle 

GmbH, Von-Heyden-Straβe 11, D-93105, Tegernheim, Germany), while the late-

lactation samples from the factory (CT, WMS, SMS and SMP samples) were 

analysed in Teagasc Ashtown (Dublin, Ireland). The methodologies used are 

based on the procedures described in the European Quick Polar Pesticides method 

(QuPPe) (EURL-SRM, 2015). In the present study, some of the milk samples 

were analysed by both laboratories and the results were statistically similar 

(P>0.05). The detection limit of CHLO and PCHLO in milk was 0.0010 mg/ kg 

and in SMP was 0.010 mg/ kg. 
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5.2.4. Quantification of trichloromethane 

 

Trichloromethane was quantified in the milk using static head-space gas 

chromatography (HS-GC) with electron capture detector (ECD), fitted with a low 

thermal mass system (LTM) (Agilent 7890A, Agilent Technologies, Santa Clara, 

California, USA). The trichloromethane detection limit in this analysis was 

0.0001 mg/ kg. The methodology applied was an adaption of the procedure of 

Resch & Guthy (1999). This analysis was performed in the Milk Quality 

laboratory in Teagasc Moorepark (Fermoy, Co. Cork, Ireland). 

 

5.2.5. Quantification of iodine 

 

Iodine was quantified in milk and reconstituted SMP samples using 

inductively coupled plasma mass spectrometry (ICP-MS), using an Agilent ICP-

MS 7700x (Agilent Technologies, Santa Clara, California, USA). The 

methodology used was based on the procedures described in the standard method 

for the determination of iodine compounds in foodstuffs (BS EN 15111:2007, 

2007). Standard solutions of Tellurium and 1% TMAH were used to obtain a 

calibration curve. The limit of detection was 1.31 µg/ L. The mid-lactation milk 

and SMP samples were analysed in Teagasc Moorepark (Fermoy, Co. Cork, 

Ireland), while the late-lactation milk and SMP samples were analysed in FBA 

laboratories (Capoquinn, Co. Waterford, Ireland). Those laboratories used the 

same methodology and samples analysed by both laboratories had statistically 

similar results (P>0.05). 
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5.2.6. Quantification of quaternary ammonium compounds 

 

Quaternary ammonium compounds were quantified in milk and SMP 

samples using ultra–performance liquid chromatography coupled to tandem mass 

spectrometry (UPLC-MS/MS). An Acquity UPLC system coupled to a Quattro 

Premier Triple Quadrupole mass spectrometer (Waters Ireland, Dublin, Ireland) 

was used. The analyses were performed at the Food Safety department laboratory, 

in Teagasc Ashtown (Dublin, Ireland) and the methodology was based on the 

procedures described in the EURL method for the quantification of QACs 

(EURL-SRM, 2016). A solution of milk or reconstituted SMP (10 g) with an 

internal standard was prepared according to the QAC of interest. The following 

internal standard solutions were prepared for the analysis: 0.2 mg/ mL of BAC12 

D7, BAC16 D7, BAC18 D7, BISC10 D6; 0.5 mg/ mL of BAC10 D7, BAC14 D7; 

and 1 mg/ mL of BAC8 D7, BISC8 D6. The solutions of sample and internal 

standard were allowed to stand for 15 min. After, 10 mL of acetonitrile were 

added and samples were agitated for 1 min using a Vortex. Sodium chloride (1 g) 

and magnesium sulphate (4 g) were added and samples were agitated again for 1 

min and centrifuged at 35,000 rpm for 10 min at 20 ˚C. Magnesium sulphate 

(MgSO4) (450 mg) and primary-secondary amine (PSA) (150 mg) (Supelclean 

PSA SPE bulk packing, Supelco, Bellefonte, PA, USA) were mixed to the 

supernatant (3 mL); and the mixture was agitated (1 min) and centrifuged at 2500 

rpm for 10 min at 20 ˚C. Polytetrafluoroethylene filters (0.2 µm) were used to 

filter the extracts, which were collected in autosampler vials for UPLC-MS/MS 

analysis. Samples were injected into an Agilent Poroshell 120 SB-AQ (50 m x 2.1 

mm x 2.7 µm), in which the flow rate of the eluents was 0.5 mL/ min. The eluent 

A consisted of ammonium formate buffer (5 mM) dissolved in a solution of 
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0.01% (w/w) formic acid; while eluent B consisted of ammonium formate buffer 

(5mM) dissolved in a solution of 0.01% (w/w) formic acid and methanol. The 

following gradient program was used (Tmin/ % solution A): 0/ 90, 1.5/ 40, 8.5/ 15, 

11/ 0.1, 13/ 0.1 and 13.1/ 90. 

 

5.2.7. Statistical analysis 

 

5.2.7.1. Influence of individual farm milk volumes on the residue 

concentration in each CT and influence of CT milk on the residue 

concentration in WMS 

 

The statistical analyses were performed using the software SAS 9.3 (SAS 

Institute, 2016). In mid-lactation, the iodine and TCM concentrations of each CT 

were predicted using the volume and iodine or TCM concentrations measured in 

the milk of all farms that supplied each respective CT. In mid- and late-lactation, 

the iodine and TCM concentrations in the WMS were also predicted using the 

volume and iodine or TCM concentrations in the milk of all CTs that supplied that 

silo. Those predictions were calculated as volume-weighted means with estimated 

confidence intervals. The actual iodine or TCM concentrations measured in each 

CT and WMS samples were compared to the respective confidence interval for 

those predicted means. Agreement plots were also used to check for bias in the 

relationship between actual and predicted means. It was not possible to perform 

the same analyses with the CHLO, PCHLO, QACs results, due to the low number 

of samples in which those residues were detected.  
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5.2.7.2. Comparison between the residue levels in the same 67 farm bulk 

tanks in mid- and late-lactation (May and November) 

 

Differences between the adjusted least square means of the mid- and late-

lactation milk samples, collected in May and November, were calculated using the 

MIXED procedure in SAS 9.3 (SAS Institute, 2016). The fixed effects included in 

each model were lactation period (mid- and late-lactation) and farms (numbered 

from 1 to 67). Farms were considered the experimental unit and the response 

variable was iodine or TCM. Residual checks were made to ensure that the 

assumptions of the analysis were met.  

It was not possible to statistically determine the differences between 

CHLO, PCHLO and QACs levels measured in mid- and late-lactation milk 

samples, due to insufficient number of samples in which those residues were 

detected. McNemar’s test was applied to compare the number of BT milk samples 

in mid- and late-lactation that had CHLO and TCM concentrations ≥ 0.0010 and 

0.0015 mg/kg, respectively. The GLM procedure was used to determine the 

regression relationship between CHLO and TCM concentrations.  
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Figure 5.1. Milk supply chain and manufacturing process for conversion to low-heat skim milk powder, conducted in the mid- and 

late-lactation periods. The sampling points for chlorate (CHLO) and perchlorate (PCHLO), trichloromethane (TCM), quaternary 

ammonium compounds (QACs) and iodine are indicated with a ●, ■, ♦ and ▲, respectively. 
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5.3. Results 

 

 The mean CHLO, TCM and iodine concentrations of samples collected 

during mid- and late-lactation (May and December, respectively) throughout the 

milk powder production chain are shown in Table 5.1. 

 

5.3.1. Chlorate and perchlorate 

 

In mid-lactation (May), CHLO was detected in 14 of the 67 BT and 6 of 

the 11 CT samples. The weighted mean CHLO concentration was calculated at 

the basis of the milk volume supplied by those farms and CTs (Table 5.1). The 

volume-weighted mean CHLO concentrations of these farms and CTs were 

numerically similar. 

In late-lactation (December), CHLO was detected in 6 of the 11 CT 

samples also, but the volume-weighted mean of those samples was higher 

compared to mid-lactation (Table 5.1).  

In both mid- and late-lactation, the mean CHLO concentration in the WMS 

and SMS were numerically similar (Table 5.1). 

The mean CHLO concentration of the SMP samples was higher in late-

lactation (December) compared to mid-lactation (May) (Table 5.1). In both 

lactation periods, the CHLO concentration in powder increased approximately 50 

times compared to the concentrations in SMS samples. In mid-lactation, the 

CHLO levels in the SMP samples decreased throughout the spray-dryer run. At 

the start, middle and end of the spray-drying process, the CHLO levels were: 

0.0630 ± 0.0020, 0.0610 ± 0.0060 and 0.0470 ± 0.0020 mg/ kg, respectively. In 

contrast, the CHLO concentration of the late-lactation SMP samples did not vary 
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throughout the spray-dryer run (start: 0.124 ± 0.003 mg/ kg; middle: 0.129 ± 

0.011 mg/ kg; end: 0.126 ± 0.006 mg/ kg).  

Perchlorate was not detected in any of the mid- and late-lactation samples 

collected throughout the manufacturing process. 

 

5.3.2. Trichloromethane 

 

Trichloromethane was detected in all BT and CT samples collected in mid-

lactation (May) and in all CT samples collected in late-lactation (December). The 

volume-weighted mean TCM concentration of those samples was calculated 

considering the milk volume supplied by each BT or CT (Table 5.1). The volume-

weighted mean TCM concentration of the CT milk samples was higher in late-

lactation compared to mid-lactation. In mid-lactation, the volume-weighted mean 

TCM concentrations of the milk samples from the BTs and CTs were numerically 

similar. The mean TCM concentrations of the milk samples from the CTs and 

WMS were also numerically similar in both mid- and late-lactation. 

The comparisons between the actual TCM concentration and the 

respective confidence interval for the predicted means for each mid-lactation CT 

sample, are shown in Table 5.2. The TCM concentrations in all of the mid-

lactation CT samples were within their respective confidence intervals. A similar 

comparison for the mid- and late-lactation WMS samples is shown in Table 5.3. 

The TCM concentration in the WMS samples were also within their respective 

confidence interval in mid- and late-lactation. 

In both lactation periods, the mean TCM concentration decreased in the 

SMS samples compared to the WMS samples, as expected (Table 5.1). 
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5.3.3. Quaternary ammonium compounds 

 

 In mid-lactation, QACs were detected in 2 farm milk samples. One sample 

contained BAC 12 (10.5 µg/ kg), BAC 14 (2.00 µg/ kg) and BISC 10 (12.00 µg/ 

kg), while the second contained BAC 12 (5.00 µg/ kg). Quaternary ammonium 

compounds were also present in two CT milk samples; one had BISC 10 (7.1 µg/ 

kg), while the other had BAC 12 (7.4 µg/ kg) and BISC 10 (10.4 µg/ kg). No 

QACs were detected in the WMS, SMS and SMP samples. 

 In late-lactation, one CT sample had a QAC compound (BISC 10: 3.4 µg/ 

kg), while the WMS and CS samples had 3.4 and 7.3 µg/ kg of BISC 10, 

respectively. No QACs were detected in the SMS and SMP samples. 

 

5.3.4. Iodine 

 

In mid-lactation, the volume-weighted mean iodine concentration was 

numerically higher in the BT samples than in the CT samples. The volume-

weighted mean iodine concentration of all of the CTs was numerically higher in 

late-lactation than in mid-lactation. In mid-lactation, the mean iodine 

concentrations in the CTs and WMS were similar, while in late-lactation, the 

mean concentration was numerically higher in the CTs compared to the WMS 

(Table 5.1). In both lactation periods, the iodine concentrations increased in SMS 

samples; and consequently, as levels were higher in late-lactation BT milk, the 

iodine concentration in SMP was higher in late-lactation than in mid-lactation. 

The comparisons between the actual iodine concentrations of each mid-

lactation CT sample with the respective confidence interval for the predicted 

means are shown in Table 5.4, while such comparison for the mid- and late-

lactation WMS samples are shown in Table 5.5. All the iodine concentrations 
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measured in each mid-lactation CT sample were within the respective confidence 

intervals, as well as the WMS samples collected in mid- and late-lactation. 

 

5.3.2. Comparison between the residue levels in the same 67 farm bulk tanks 

in mid- and late-lactation (May and November) 

 

The number of BT samples in which CHLO was detected was significantly 

higher in late-lactation (32 out of the 67 samples) than in mid-lactation (14 out of 

the 67 samples) (P<0.0001). Also, in contrast to mid-lactation, 8 out of the 67 

late-lactation BT samples contained 0.0010 mg/ kg of PCHLO. 

The volume-weighted mean TCM concentration was significantly higher 

in late-lactation (0.0015 ± 0.0014 mg/ kg; range: 0.0003 to 0.0074 mg/ kg) than in 

mid-lactation (0.0009 ± 0.0008 mg/ kg; range: 0.0002 to 0.0043 mg/ kg) 

(P<0.0001).  

In late-lactation, QACs were detected in two BT milk samples, however 

those were different to the BT samples in which QACs were detected in mid-

lactation. One milk sample contained BAC 12 (3.4 µg/ kg) and BISC 10 (6.6 µg/ 

kg), while the other sample contained BISC 10 (3.2 µg/ kg). 

The volume-weighted mean iodine concentrations of the BT samples in 

mid- and late-lactation (142.2 ± 129.2 and 119.7 ± 151.6 µg/ L, respectively) were 

not statistically different (P = 0.63).  
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Table 5.1. Mean (± SD) chlorate (CHLO), trichloromethane (TCM) and iodine concentrations in samples collected from the farm 

bulk tanks (BTs), collection tankers (CTs), whole milk silo (WMS), skim milk silo (SMS), cream silo (CS) and samples of skim milk 

powder (SMP) from the mid- and late-lactation periods. 

 Mid-Lactation 

 CHLO (mg/ kg) TCM (mg/ kg) Iodine (µg/ L) 

Farm BTs (n=67)†
 

0.0021 ± 0.0019 (0.0010 to 0.0070) ‡
 

0.0009 ± 0.0008 (0.0002 to 0.0043) 142.2 ± 129.2 (10.4 to 561.2) 

CT (n=11)†
 

0.0020 ± 0.0010 (0.0010 to 0.0030) §
 

0.0009 ± 0.0003 (0.0006 to 0.0015) 134.2 ± 89.6 (58.3 to 390.8) 

WMS (n=2) 0.0010 ± 0.0000 0.0009 ± 0.0000 135.5 ± 7.6 

SMS (n=2) 0.0010 ± 0.0000 0.0002 ± 0.0000 142.1 ± 9.1 

SMP (n=9) 0.0570 ± 0.0090 ǁ
 

 142.2 ± 10.0 (120.2 to 153.5) 

 Late-Lactation 

 CHLO (mg/ kg) TCM (mg/ kg) Iodine  (µg/ L) 

CT (n=11)†
 

0.0410 ± 0.0554 (0.0020 to 0.1550) §
 

0.0020 ± 0.0007 (0.0010 to 0.0033) 437.6 ± 155.2 (225 to 709) 

WMS (n=2) 0.0025 ± 0.0000 0.0018 ± 0.0000 419.0 ± 2.8 

SMS (n=2) 0.0025 ± 0.0000 0.0005 ± 0.0000 450.0 ± 7.1 

CS (n=2)  0.0190 ± 0.0000  

SMP (n=9) 0.1263 ± 0.0071ǁ
 

 398.2 ± 22.8 (257 to 425) 

n = number of samples; ranges are given between parentheses. 

†Weighted means and standard deviations calculated considering the volumes of milk and residues concentrations of each farm or CT sample. 

‡Weighted mean CHLO of the 14 bulk tank milk samples in which chlorate was detected. 

§Weighted mean CHLO of the CT milk samples in which chlorate was detected (mid-lactation: 6 samples; late-lactation: 6 samples). 

ǁResults for non-reconstituted skim milk powder 
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Table 5.2. Comparison of mean trichloromethane (TCM) concentrations measured in each collection tanker (CT: 1, 2, 3, 4, 5, 6, 7, 8, 

9, 10 and 11) during mid-lactation and those predicted (± standard error; S.E.) from the combined farm samples in each CT. 

CT 

number 

Number 

of farms 

Total volume 

per tanker (L) 

Mean (±  SD) volume 

measured per farm (L) 

Mean TCM concentration 

of each CT (mg/ kg) 

Predicted TCM concentration 

 (weighted means ± S.E.)† 

(mg/ kg) 

95% CI‡ Mean TCM 

concentration of each CT 

covered by predicted C.I. 
LCL UCL 

1 4 23771 5,943 ± 1,271 0.0015 0.0014 ± 0.0009 0.0000 0.0043 Yes 

2 5 26503 5,301 ± 2,385 0.0008 0.0005 ± 0.0002 0.0000 0.0011 Yes 

3 6 29122 4,854 ± 1,763 0.0012 0.0009 ± 0.0003 0.0001 0.0016 Yes 

4 6 23780 3,963 ± 2,683 0.0012 0.0009 ± 0.0003 0.0002 0.0016 Yes 

5 8 27585 3,448 ± 2,214 0.0008 0.0004 ± 0.0001 0.0002 0.0005 Yes 

6 7 28628 4,090 ± 1,208 0.0011 0.0008 ± 0.0004 0.0000 0.0018 Yes 

7 7 27188 3,884 ± 2,064 0.0006 0.0004 ± 0.0001 0.0002 0.0006 Yes 

8 7 28470 4,067 ± 2,437 0.0007 0.0004 ± 0.0002 0.0001 0.0008 Yes 

9 2 27147 13,574 ± 11,312 0.0010 0.0007 ± 0.00004 0.0002 0.0012 Yes 

10 5 25248 5,050 ± 3,877 0.0007 0.0003 ± 0.0001 0.0000 0.0006 Yes 

11 10 28561 2,856 ± 1,764 0.0008 0.0005 ± 0.0001 0.0003 0.0008 Yes 

†Weighted means were calculated considering the volume of milk supplied by each farm or by each CT. 

‡Confidence interval (CI), lower (LCL) and upper (UCL) confidence limits. 
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Table 5.3. Comparison of mean trichloromethane (TCM) concentrations measured in the whole milk silo (WMS) during mid- and 

late-lactation and those predicted (± standard error; S.E.) from the combined collection tankers (CTs) samples. 

 

Mean TCM 

concentration of the 

WMS (mg/ kg) 

Mean (± SD) volume 

measured  per CT (L) 

Predicted TCM 

concentration 

(weighted means ± S.E.)† 

(mg/ kg) 

95% CI‡ 
Mean TCM concentration of 

WMS covered by predicted 

C.I. 
LCL UCL 

Mid-lactation 0.0009 26,909 ± 1,902 0.0007 ± 0.00009 0.0005 0.0009 Yes 

Late-lactation 0.0018 24,357 ± 3,768 0.0019 ± 0.0002 0.0014 0.0024 Yes 

†Weighted means were calculated considering the volume of milk supplied by each CT. 

‡Confidence interval (CI), lower (LCL) and upper (UCL) confidence limits. 
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Table 5.4. Comparison of mean iodine concentrations measured in each collection tanker (CT: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11) 

during mid-lactation and those predicted (± standard error; S.E.) from the combined farm samples in each CT. 

CT 
Number 

of farms 

Mean (±  SD) volume 

measured per farm (L) 

Total volume  

per CT (L) 

Iodine concentration measured 

in each CT sample (µg/ L) 

Predicted iodine concentrations 

(weighted means ±  SE) (µg/ L)† 

95% CI‡ 

Mean iodine concentration of 

each CT covered by predicted CI LCL UCL 

1 4 5,943 ± 1,271 23,771 83.9 89.2 ± 21.8 19.8 158.6 Yes 

2 5 5,301 ± 2,385 26,503 81.8 90.0 ± 23.8 23.9 156.2 Yes 

3 6 4,854 ± 1,763 29,122 120.0 117.9 ± 45.6 0.6 235.3 Yes 

4 6 3,963 ± 2,683 23,780 58.3 61.2 ± 8.5 39.3 83.7 Yes 

5 8 3,448 ± 2,214 27,585 125.9 141.0 ± 27.8 75.4 206.7 Yes 

6 7 4,090 ± 1,208 28628 138.4 144.1 ± 55.7 7.9 280.3 Yes 

7 7 3,884 ± 2,064 27188 112.0 116.7 ± 15.7 78.4 155.1 Yes 

8 7 4,067 ± 2,437 28470 76.3 82.9 ± 20.9 31.6 134.1 Yes 

9 2 13,574 ± 11,312 27147 390.8 335.7 ± 91.6 0 1,500 Yes 

10 5 5,050 ± 3,877 25248 202.9 282.7 ± 121.2 0 619.7 Yes 

11 10 2,856 ± 1,764 28561 80.0 101.7 ± 12.1 74.3 129.1 Yes 

†Weighted means were calculated considering the volume of milk supplied by each farm. 

‡Confidence interval (CI), lower (LCL) and upper (UCL) confidence limits. 
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Table 5.5. Comparison of mean iodine concentrations measured in the whole milk silo (WMS) during the mid- and late-lactation 

periods and those predicted (± standard error; S.E.) from the combined collection tankers (CTs) samples. 

 
Mean (± SD) iodine concentration 

of the WMS (µg/ L) 

Mean (± SD) volume 

measured  per CT (L) 

Predicted iodine concentration 

(weighted means ± SE) (µg/ L)† 

95% CI‡ 

Mean iodine concentration of the 

WMS covered by predicted CI LCL UCL 

Mid-lactation 135.5 ± 7.6 26,909 ± 1,902 134.2 ± 28.3 71.0 197.3 Yes 

Late-lactation 419.0 ± 2.8 24,357 ± 3,768 421.4 ± 50.5 308.8 534.0 Yes 

†Weighted means were calculated considering the volume of milk supplied by each CT. 

‡Confidence interval (CI), lower (LCL) and upper (UCL) confidence limits. 
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5.4. Discussion 

 

5.4.1. Residues related to the use of chlorine 

 

Concentrations of CHLO and PCHLO were monitored throughout the 

production chain of SMP in mid- and late-lactation (May and December, 

respectively). In Europe, a default threshold limit of 0.0100 mg/ kg of CHLO and 

PCHLO is applied for milk (EC no 396/2005). In mid-lactation (May), the 

volume-weighted mean CHLO concentration in the 14 BTs and 6 CTs (in which 

CHLO was detected) were lower than that limit; however, in late-lactation 

(December), the mean CHLO concentration of the 6 CTs (in which CHLO was 

detected) was higher than the EC limit and higher than the volume-weighted mean 

concentration in mid-lactation. 

In mid-lactation, the CHLO concentrations in each of the CTs could have 

been diluted as CHLO was not detected in 53 of the BTs. For example, CHLO 

was not detected in 4 CT milk samples, as only one of the BT milk volumes 

contributing to each of those CTs contained CHLO. Additionally, CHLO was not 

detected in most of the BT milk supplied to the 6 CTs in which CHLO was 

detected, indicating that the sanitation of those CTs could possibly have 

influenced the CHLO levels. In both mid- and late-lactation, as CHLO was not 

detected in most of the CT milk volumes, the CHLO concentrations could have 

also been diluted in the WMS; therefore, it is likely that the sanitation practices of 

the silos did not influence the CHLO levels. Consequently, the mean CHLO 

concentrations in the WMSs were lower than the EC limit of 0.0100 mg/ kg. 

However, as the milk supplied to the factory during late-lactation contained higher 

levels of CHLO than the mid-lactation milk, the CHLO levels in the WMS in late-
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lactation were higher compared to mid-lactation; consequently, the CHLO levels 

in the SMP were higher in late-lactation than in mid-lactation. 

In mid-lactation, the mean CHLO concentration of the SMP samples was 

lower than the limit applied by some Irish infant formula manufacturers (0.100 

mg/ kg). The difference of 0.0016 mg/ kg between the mean CHLO concentration 

of the SMP samples collected at the end and start of the spray-drying run, 

indicated that the sanitation of the spray-dryer could have contributed to the 

CHLO levels in SMP. The interior surface of the spray-dryer could have 

contained residual CHLO, and the majority of that residue was transferred to the 

first batch of evaporated skim milk that entered the equipment. In late-lactation, 

the mean CHLO concentration of the SMP samples was higher than 0.100 mg/ kg, 

indicating that the CHLO level in the bulk milk stored in the WMS should had 

been lower than 0.0025 mg/ kg. Even though no variations in the CHLO 

concentration were observed in SMP samples collected throughout the spray-

drying run in late-lactation, sanitation practices of that equipment could have also 

contributed to the increased CHLO levels in SMP. Additionally, the variations in 

CHLO concentrations throughout the spray-drying run that were observed in mid-

lactation and not observed in late-lactation could be due to differences in the 

sanitation practices between production periods. 

The concentrations of TCM were also monitored throughout the 

production chain of SMP in mid- and late-lactation (May and December, 

respectively). There are no European regulations that have defined a standard 

TCM limit for milk or dairy products; however, Irish dairy processors apply a 

limit of 0.0015 mg/ kg to milk destined for the production of lactic butter which 

should have less than 0.0300 mg/ kg of TCM, as required by the export market 
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(Ryan et al., 2013). In mid-lactation, the mean TCM concentrations of the BTs, 

CTs and WMS were all lower than that limit; while, in late-lactation, the mean 

TCM concentrations of the CTs and WMS were higher than that limit and higher 

than the concentrations in mid-lactation. The agreement between the TCM 

concentrations of each mid-lactation CT sample and the contributions of each BT 

milk volume supplied, as well as the agreement between the TCM concentrations 

of the WMS samples and the contributions of each CT in both lactation periods, 

indicated that the cleaning protocol of the CTs or WMS did not contribute to any 

increases in the TCM levels in milk (Tables 5.2 and 5.3).  

In both lactation periods, the decrease in the TCM concentrations in the 

SMS in relation to the WMS was expected, due to the accumulation of TCM in 

the cream during separation (Hubbert et al., 1996; Table 5.1). As the levels of 

TCM were higher in late-lactation milk, the TCM concentration in late-lactation 

cream was possibly higher than the levels expected in cream produced with mid-

lactation milk. 

The concentrations of CHLO and TCM were also monitored in the same 

67 farm BTs in mid- and late-lactation (May and November, respectively) to 

investigate if those concentrations could differ in milk produced by the same farm 

during different production periods. None of the mid-lactation BT samples 

contained CHLO levels higher than 0.0100 mg/ kg (EC limit), while 5 late-

lactation BT samples contained levels higher than that limit. In relation to TCM, 

the number of BT samples that contained levels greater than 0.0015 mg/ kg was 

significantly higher in late-lactation (21 BT samples; range: 0.0016 to 0.0074 mg/ 

kg) than in mid-lactation (7 BT samples, range: 0.0017 to 0.0043 mg/ kg) (P = 

0.002). Those increases in the levels of those residues in late-lactation could be 
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related to changes in the sanitation practices on each farm. Chlorine detergent 

sterilisers should contain a maximum of 3.5% of chlorine and should be prepared 

and applied according to the manufacturer’s instructions (Gleeson, 2016). 

According to Ryan et al. (2012), 14 L of rinse water per milking unit are 

recommended in order to totally remove the detergent solution, and the solutions 

should be rinsed immediately after the wash cycle. Additionally, the lower 

volume of milk produced per farm during late-lactation (1,683 ± 1,031 L) could 

have also contributed to the increase in CHLO or TCM levels during that period, 

as those residues could have been more concentrated. The presence of CHLO and 

TCM in milk was not correlated; therefore, if milk contains CHLO it will not 

necessarily contain TCM and vice versa. The contamination of milk with CHLO 

or TCM might be related to a combination of specific sanitation practices and 

further studies are necessary to determine them. In addition, the higher number of 

farms in late-lactation that supplied milk containing higher levels of CHLO or 

TCM indicated that extra care is required during that period for the production of 

milk powder or butter. 

 

5.4.2. Quaternary ammonium compounds 

 

The contamination of QACs in milk could be due to the use of sanitation 

products or teat disinfectants that contain those compounds (Danaher and Jordan, 

2013). There are no specific limits for QACs in food matrices; however, the 

European Union Reference Laboratory (EURL) determined that the general QAC 

limit should be 0.010 mg/ kg (EU no 396/2005). In mid- and late-lactation, the 

QACs levels detected in BT, CT, WMS and CS samples were all below that limit.  
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In mid-lactation, the two CTs samples that had BISC 10 did not collected 

milk that contained that type of QAC, indicating that possibly sanitation products 

containing BISC 10 were used for the CTs cleaning; however, the product was not 

rinsed appropriately. Even though other CTs collected milk that had QACs, those 

were probably not detected due to a dilution effect. The same might explain why 

no QACs were detected in the WMS, SMS and SMP samples. 

In late-lactation, the detection of BISC 10 in a CT, WMS and CS samples 

indicated again that the cleaning practices within the factory might have influence 

in the levels of that compound. Possibly, BISC 10 was separated with the cream, 

as it was not detected in the SMS and SMP samples. 

When comparing the same 67 farms in mid- and late-lactation, the QAC 

levels detected in BT samples from both periods were below the limit determined 

by the European Union Reference Laboratory (0.010 mg/ kg). Changes in 

sanitation practices or teat disinfectants used could have made some samples to 

have detectable levels of QACs or not in mid- and late-lactation (Danaher and 

Jordan, 2013). 

 

5.4.3. Iodine 

 

Variations in the iodine concentrations were investigated throughout the 

production chain of SMP in mid- and late-lactation (May and December, 

respectively). The EFSA (2005) reported that the average iodine concentration in 

BT milk samples from several European studies was predominately between 100 

and 200 µg/ L, which were suitable to meet the required iodine daily intake for 

children and adults. Some Irish dairy processors specify that the iodine levels in 

raw milk should be lower than 150 µg/ L to produce infant formula. In mid-
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lactation, the mean iodine concentration of the BT, CT and WMS samples were 

all lower than that limit; while in late-lactation, the mean concentrations of the CT 

and WMS were higher than that limit.  

Flachowsky et al. (2014) suggested that iodine could undergo sublimation 

throughout processing, as more than 90% of iodine in milk is in the inorganic 

form. Small decreases in the mean iodine concentration observed from the BTs to 

CTs (mid-lactation) and from the CTs to WMS (late-lactation) could be associated 

with the sublimation of iodine (Table 5.1). The actual iodine concentrations 

measured in each CT (Table 5.4) and WMS (Table 5.5) were in agreement with 

the contributions of each BT and CT, respectively. However, the actual 

concentrations of each CT and WMS were slightly lower than the predicted 

concentrations (Tables 5.4 and 5.5), indicating that possibly a small amount of 

iodine underwent sublimation during transport and storage, but not sufficient to be 

significant. Those small losses could have resulted in those decreases in the mean 

iodine concentrations shown in Table 5.1. 

In mid-lactation, two CT samples had levels higher than 150 µg/ L (390.8 

and 202.9 µg/ L). One of those CTs collected milk from two farms that supplied 

milk containing 289.1 and 516.0 µg/ L of iodine. The other CT collected milk 

from 5 farms; however, most of the volume collected was from one farm that 

supplied milk containing 561.2 µg/ L of iodine.    

Therefore, it is important that individual milk suppliers control the iodine 

intake of their herds and correctly apply iodine-based teat disinfectants (US 

National Research Council, 2001; O’Brien et al., 2013). In late-lactation, all of the 

CT samples had levels higher than 150 µg/ L, indicating that the iodine levels in 

BT milk were possibly higher in late-lactation than in mid-lactation. Those higher 
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levels could be due to the contribution of the increased number of farms (150) and 

also due to high levels of iodine in ration supplied to the cows when indoors. 

In both lactation periods, the mean iodine concentrations increased in the 

SMS when compared to the WMS. Prior to pasteurisation and cream separation, 

milk permeate (details were not disclosure by the manufacture) is added to 

standardise the protein and lactose content in milk; therefore, that permeate could 

have contributed to an increase in the iodine content in the SMS.  

The International Council for Control of Iodine Deficiency Disorders 

(ICCIDD; Delange et al., 1993) specified that the iodine content in reconstituted 

SMP should be lower than 100 µg/ L. The mean iodine concentrations of the SMP 

produced in mid- and late-lactation were higher than that limit (Table 5.1). 

Therefore, in the case of the conditions of this study, the iodine levels in the bulk 

milk supplied to the factory should be lower than 142 µg/ L to produce SMP 

containing iodine levels within the specification. Also, as the iodine levels were 

higher in late-lactation compared to mid-lactation milk, the iodine content in 

reconstituted SMP was also higher in late-lactation than in mid-lactation. 

In order to investigate variations in the levels iodine in BT milk during 

different production periods, the concentrations of such residue were also 

measured in the same 67 farm BTs in mid- and late-lactation (May and 

November, respectively). In mid- and late-lactation, 13 and 12 BT samples had 

iodine concentrations higher than 150 µg/ L, respectively. Questionnaires were 

completed on some of those farms, capturing information regarding animal feed. 

It was established that the majority of those farms were using concentrates from 

one manufacturer, which contained at least 10 and a maximum of 43 mg of 

iodine/ kg of ration. Therefore, the iodine intake from ration per cow on those 
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farms was likely to be higher than that recommended (10 mg per cow per day), as 

the average ration intake on those farms was 2.5 kg per cow per day. Other factors 

that were not included in the questionnaires could have contributed to iodine 

levels in milk such as grass, boluses, mineral-supplemented water and mineral 

licks. Furthermore, according to the questionnaires, five and two farms that were 

using iodine-based teat disinfectants supplied milk with iodine levels higher than 

150 µg/ L, in mid- and late-lactation, respectively. O’Brien et al. (2013) also 

observed increases in the iodine levels in milk when applying those teat 

disinfectants post-milking. Those increases are associated with the absorption of 

iodine through the teat skin, particularly if pre-milking teat preparation is not 

being conducted. 

 

5.5. Conclusion 

 

Incorrect sanitation practices on-farm can result in increases in the CHLO 

or TCM levels in milk throughout the year, while the production of lower volumes 

of milk is an additional contributing factor in late-lactation; therefore, extra care is 

necessary during that period. Consequently, increases in the CHLO or TCM levels 

in milk result in increased residue levels in SMP or cream, respectively. 

Therefore, it is important to control the initial residue levels in milk destined for 

processing, especially considering that those could concentrate greatly after 

evaporation and spray-drying processes or cream separation. Appropriate 

sanitation practices should also be carried out within the processing plant to avoid 

increases in the residue levels throughout the processing stages. In relation to 

iodine, this study indicated that some Irish dairy herds are over supplemented with 

iodine, while the use of iodine-based teat disinfectants also contributed to high 
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levels in some BT samples. Also, the iodine content of the SMP produced in mid-

lactation was not within the required specification, even though the WMS milk 

had lower iodine levels than specified, indicating that the levels in BT milk should 

be even lower. Finally, it is possible to calculate the expected residue levels in 

milk stored in the CTs or WMS based on the volumes and residue levels of milk 

supplied by each dairy farm, which could aid dairy processors to identify the 

stages that may have contributed to increases in those levels. This study highlights 

the importance of controlling the contributing factors on-farm and in the 

processing plant in order to maintain residues at safe and market-acceptable 

levels. 
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Abstract 

 

This study aimed to investigate the effect of different activity levels of a 

thermo-resistant protease, produced by Pseudomonas fluorescens (ATCC 17556), 

on the cheese-making properties of milk and proteolysis levels. Sterilised 

reconstituted skim milk powder was inoculated with the bacterial strains and, after 

incubation, centrifuged to obtain a supernatant containing protease. Raw milk was 

collected and inoculated to obtain a protease activity of 0.15, 0.60 and 1.5 U/ L of 

milk (treatments P1, P4 and P10, respectively). One sample was not inoculated 

(control) and non-inoculated supernatant was added to a fifth sample to be used as 

negative control (P10 neg). Samples were stored at 4 °C for 72 h. After 0, 48 and 

72 h, the rennet coagulation properties and proteolysis levels were assessed. The 

protease produced was thermo-resistant, as there were no significant difference in 

the activity in the pasteurised (72 ˚C for 15s) and non-pasteurised supernatants. 

The chromatograms and electrophoretograms indicated that the protease 

preferably hydrolysed κ-casein and β-casein, and levels of proteolysis increased 

with added protease activity over storage time. The hydrolysis of αS-CNs and 

major whey proteins increased considerably in milk samples P10. At 0 h, the 

increase in the level of protease activity decreased the rennet coagulation time 

(RCT) of the samples, possibly due to synergistic proteolysis of κ-casein into 

para-κ-casein. However, over prolonged storage, hydrolysis of β- and αS-caseins 

increased in samples P4 and P10. The RCT of samples P4 increased over time and 

the coagulum became softer, while samples P10 did not coagulate after 48 h of 

storage. In contrast, the RCT of samples P1 decreased over time and a firmer 

coagulum was obtained, possibly due to a lower rate of hydrolysis of β- and αS-

caseins. Therefore, certain levels of action of the protease could actually improve 
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the rennet coagulation properties of milk. However, increased levels of protease 

could result in further hydrolysis of caseins, affecting the processability of milk 

over storage time. 

 

Keywords: psychrotrophic bacteria, milk storage, rennet coagulation properties, 

thermoresistant protease. 
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6.1. Introduction 

 

The storage of raw milk for extended periods at low temperatures (2 to 6 

˚C) on-farm has a significant impact on milk microflora, which becomes mostly 

composed of Gram-positive and Gram-negative psychrotrophic bacteria (Lafarge 

et al., 2004). Increased levels of psychrotrophs in raw milk could negatively 

impact the manufacture of dairy products, as those bacteria have the ability to 

produce heat-resistant extracellular proteases and lipases. Those enzymes can 

survive thermal treatments, such as pasteurisation (e.g., 72 ˚C for 15 s) or even 

UHT processing (138 ˚C for 2 s or 149 ˚C for 10 s), decreasing yield and sensory 

quality of dairy products during storage (Cousin, 1982; Lopez-Fandino et al., 

1993). Muir (1996) suggested that raw milk with a psychrotrophic count higher 

than 5 x 10 
6
 cfu/ mL should be rejected for processing, due to the possible high 

levels of lipase and proteases. The most common psychrotrophs found in raw milk 

during cold storage belong to the genus Pseudomonas spp., which secrete most of 

the heat-resistant peptidases during milk cold storage (Ercolini et al., 2009; Baur 

et al., 2015).  

During the late exponential or early stationary growth phase, Pseudomonas 

bacteria produce thermoresistant alkaline metalloproteases (AprX), generally at a 

bacterial count of 10
7
 to 10

8
 cfu/ mL (Stoeckel et al., 2016). These 

metalloproteases preferably hydrolyse κ-casein (κ-CN), then β-casein (β-CN) and 

then αS1-casein (αS1-CN), and their activities are optimal at a pH between 7 and 9, 

in a temperature range between 30 and 45 ˚C (Decimo et al., 2014; Martins et al., 

2015). Zhang et al. (2018) reported that increasing concentrations of AprX 

resulted in increasing hydrolysis, mainly of κ-CN, and gelation in UHT milk. 

Bagliniere et al. (2013) inoculated 0.2 mg/ L of purified AprX into milk and 
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observed increased proteolysis of caseins over storage and destabilisation of the 

produced UHT milk after 8 days of storage. In the case of cheese manufacture, the 

activity of bacterial proteases can affect the casein content, which may result in 

low yield, off-flavour (i.e., bitterness) and texture problems (Cousin, 1982; Fox et 

al., 2017). Mankai et al. (2012) observed a low dry matter content in Gouda 

cheeses produced from milk stored at 4 ˚C for 48, 72 and 96 h, and related this to 

the activity of psychrotrophic proteases leading to losses of protein in whey. 

Boulares et al. (2011) also associated decreased cheese yield with enzymes 

produced by gram-negative psychrotrophs. High levels of proteolysis can 

negatively affect cheese manufacture and sensory characteristics of the final 

product; however, in contrast, certain levels of proteolysis are necessary during 

cheese ripening. Proteolysis is essential in most cheese varieties, as it is 

responsible for textural changes (i.e., hardness, elasticity, cohesiveness) and 

development of flavour during cheese ripening (Fox et al., 2017).  

Some studies have correlated psychrotrophic bacterial counts with 

proteolysis levels in milk, highlighting the negative impact levels higher than 10
6
 

cfu/ mL can have on cheese-making properties of milk (clotting time, curd yield) 

and cheese sensory characteristics (Leitner et al., 2008; Ricciardi et al., 2015). 

However, psychrotrophs can produce a range of thermo-resistant enzymes, which 

can be active in different conditions (e.g., temperature, pH). Therefore, in addition 

to psychrotrophic counts, further studies are necessary to understand the activity 

and impact of different levels of proteases produced by psychrotrophs on the 

quality of milk used for cheese production. Those investigations could aid in 

elucidating to what extent those proteases could have a positive or negative 

impact on cheese manufacture. Therefore, the objective of this study was to 
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investigate the effect of different activity levels of a thermo-resistant protease, 

produced by a Pseudomonas strain, on the cheese-making properties of milk and 

proteolysis. 

 

6.2. Materials and methods 

 

6.2.1. Experimental design 

 

 The experimental design of this study is shown in Figure 6.1. Fresh raw 

milk was collected during milking from the milk line, inoculated with different 

levels of protease and stored at 4 °C for 72 h. After 0, 48 and 72 h, rennet 

coagulation properties and proteolysis levels in the samples were assessed. The 

experiment was repeated in triplicate over a 3-week period. 

 

Figure 6.1. Experimental design. 
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6.2.2. Culture of Pseudomonas fluorescens and protease extraction 

 

Pseudomonas fluorescens (ATCC 17556) was grown in nutrient broth 

(meat extract 3 g/ L, meat peptone 5 g/ L; Sigma Aldrich, Dublin, Ireland) for 48 

h at 26 ˚C with stirring at 90 rpm. After, 1 mL of the inoculated nutrient broth was 

spread-plated on blood agar plates (horse blood agar, 7% concentration, base No. 

2; Oxoid, Basingstoke, UK) and plates were incubated for 24 h at 26 ˚C. Bacterial 

colonies were transferred to 100 mL of sterilised reconstituted skim milk powder 

(RSMP; 0.1% w/v). The inoculated RSMP bottles were incubated for 120 h at 10 

˚C with stirring at 90 rpm. Afterwards, RSMP was centrifuged at 20,000 g at 

ambient temperature for 30 min and the supernatant containing protease was 

collected. 

 

6.2.3. Azocasein assay 

 

The production of protease by the strain was verified using azocasein 

(Sigma Aldrich, Dublin, Ireland) as substrate, as described by Andreani et al. 

(2016). The results were used to determine the activity of the protease. One unit of 

protease activity was defined as the required amount of enzyme able to hydrolyse 

azocasein resulting in an increase of 1 unit of absorbance per mL of sample 

(supernatant) per minute (Leighton et al., 1973). The following equation was used 

for calculations: 
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(                         )        

 
 

 

Where, 

ABSsample, ABSneg, ABSblank = absorbance of the sample, negative control 

and blank, respectively 

Fd = factor of dilution, which is equal to 1.00 as samples were not diluted 

t = time of reaction 

 

In addition, samples of the same supernatant were separated in two groups 

to determine if the protease would still be active after pasteurisation: one group of 

three samples was heated to 72 ˚C for 15 s, while other three samples were not 

pasteurised. Afterwards, those samples were analysed using the azocasein assay 

for comparison. 

 

6.2.4. Milk collection and inoculation 

 

At the Teagasc Animal and Grassland Research and Innovation Centre 

(Moorepark, Cork, Ireland), spring-calving cows were milked in a 30-unit side-

by-side milking parlor, with milking commencing at 07:00 h. The milking 

equipment used, udder preparation and sanitation of equipment were as described 

by Paludetti et al. (2018). Over 3 weeks, raw milk was collected once weekly and 

transferred directly from the milking machine milk line to 5 x 500 mL sterilised 

bottles. Milk was transported to the Milk Quality Laboratory (Teagasc, 

Moorepark, Cork, Ireland) in cooling boxes. 

Milk samples were inoculated based on the protease activity determined 

using the azocasein assay (0.030 ± 0.006 U/ mL.min). Samples were inoculated 
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with 5, 20 and 50 mL of supernatant containing protease per L of milk, 

corresponding to 0.15, 0.60 and 1.50 U/ L of milk (treatments P1, P4 and P10, 

respectively). One milk sample was not inoculated to be used as control (C), while 

one sample of milk was inoculated with 50 mL of supernatant from RSMP that 

was not inoculated with P. fluorescens and was used as the negative control 

sample (P10 neg). All milk samples were stored at 4 ˚C for up to 72 h. 

 

6.2.5. Total bacterial count 

 

After 0, 48 and 72 h, milk samples from each treatment were tested in 

duplicate for total bacterial count (TBC). The analysis was performed according 

to the Standard Methods for the Examination of Dairy Products (Wehr and Frank, 

2004). The TBC was estimated using Petrifilm aerobic count plates, a ready-to-

use medium (3M, Technopath, Tipperary, Ireland). Samples were incubated for 48 

h at 32 ˚C (Laird et al., 2004). 

 

6.2.6. Rennet coagulation properties 

 

 The rennet coagulation properties of the inoculated milk were assessed 

using a Formagraph instrument (Model 11700, Foss Electric, HillerØd, Denmark) 

after 0, 48 and 72 h of storage. Prior to analysis, milk samples were pasteurised at 

72 ˚C for 15 s in a water bath. In order to mimic Cheddar cheese manufacture, the 

pH was measured when samples were cooled to 32 ˚C and, when necessary, 

adjusted to 6.55 with 4% (v/v) lactic acid solution. The milk volumes were 

renneted with chymosin (1:20 v/v dilution of double strength Chy-max; Pfizer 

Inc., Milwaukee, WI, USA) at a rate of 36 µL/ 10 mL, incubated at 32 ˚C and the 

coagulation properties monitored over a 30 min period. The properties measured 
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were rennet coagulation time (RCT, min), curd firmness at 30 min (a30, mm) and 

curd-firming time (k20, min). 

 

6.2.7. Quantification of casein fractions 

 

 The caseins fractions (κ-CN, αS1-CN; αS2-casein, αS2-CN; β-casein, β-CN; 

α-lactalbumin, α-lac; β-lactoglobulin A, β-Lg A, β-Lactoglobulin B, β-Lg B; and 

total casein) were identified and quantified (in duplicate) in the inoculated milk 

samples by high-performance liquid chromatography (HPLC). Milk samples (200 

µL) were diluted in 3,780 µL of dissociating buffer (7 M urea and 20 mM Bis-

Tris propane, pH 7.5). Twenty µL of mercaptoethanol were added to the diluted 

samples, after which they were filtered through 0.22-µm filters. The equipment 

used was an Agilent 1200s system (Agilent Technologies, Santa Clara, CA, USA) 

with a quaternary pump and a multiwavelength detector. The casein fractions 

were separated in the reversed-phase mode using an Agilent Poroshell 300SB C18 

column (2.1 mm x 7.5 mm; Agilent Technologies). The gradient elution and peak 

detection were performed according to the method of Mounsey and O’Kennedy 

(2009). 

 

6.2.8. Peptide profiles 

 

 The peptide profiles of milk samples collected after 0, 48 and 72 h were 

obtained by HPLC. The non-protein fractions of the milk samples were extracted 

using trichloroacetic acid, according to the procedure described in IDF method 

20-4 (IDF, 2001). The extracts were filtered using 0.45-µm syringe cellulose 

filters (25 mm diameter, Chromafil Xtra RC-45/25, Macherey-Nagel, Dublin, 

Ireland) and 50 µL were injected onto the column to obtain the profiles. The 
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separation of milk peptides was performed in the reversed-phase mode using an 

Agilent Zorbax 300SB C8 column (4.6 mm ID x 150 mm; Agilent Technologies). 

The gradient elution and peak detection methodology was an adaption of the 

methodology of Rohm et al. (1996). The HPLC equipment used was an Agilent 

1200s system (Agilent Technologies, Santa Clara, CA, USA) with a quaternary 

pump and a multiwavelength detector. 

 

6.2.9. Polyacrylamide gel electrophoresis (SDS-PAGE) 

 

 The individual proteins of the milk samples collected after 0, 48 and 72 h 

of storage were identified using pre-cast sodium dodecylsulphate-polyacrylamide 

gel electrophoresis (SDS-PAGE) (Novex Technologies, ThermoFischer 

Scientific) under reducing and non-reducing conditions. The inoculated milk 

samples were diluted in Milli-Q water to a protein concentration of approximately 

5.7 µg/ µL, and then further diluted in SDS sample buffer [NuPAGE LDS Sample 

Buffer (4x; ThermoFisher Scientific, Waltham, MA)]. For reducing SDS-PAGE 

conditions, dithiothreitol [NuPAGE Sample Reducing Agent (10x); concentration 

= 500 mmol/ L, (ThermoFisher Scientific)] was added to the samples at a level of 

10% (v/v) of the sample total volume. Samples were heated to 70 °C for 10 min, 

cooled, and loaded on 12% Bis-Tris SDS-PAGE gels (10 µg/ well). A low range 

protein ladder was also loaded on the gels (10 µg/ well; Spectra Multicolor Low 

Range Protein Ladder, ThermoFisher Scientific). The gels were run in SDS 

running buffer [NuPAGE MOPS SDS Running Buffer (1x)] at 200V for 50 min. 

After, the gels were stained for 24 h with Instant Blue Coomassie (Expedeon, 

UK). 
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6.2.10. Statistical analysis 

 

The results of the azocasein test for the pasteurised and non-pasteurised 

supernatants were statistically compared using the MIXED procedure in SAS 9.3 

(SAS Institute Inc., Cary, NC). 

Least square means for the main effects of storage time and added protease 

activity, as well as the interaction between storage time and added protease 

activity, were calculated using the GLIMMIX procedure also in SAS 9.3. The 

fixed effects included in each model were storage time (0, 48 and 72 h) and added 

protease activity (0, P10 neg, P1, P4, P10). The inoculated milk volumes within 

trial week were considered the experimental unit. The response variables were: 

pH; RCT, k20 and a30; κ-CN, αS1-CN, αS2-CN, β-CN, α-lac, β-Lg A, β-Lg B and 

total casein. Residual checks were made to ensure that the assumptions of the 

analysis were met. The Tukey test (at 5% error probability) was used to compare 

the means for all variables. 

 

6.3. Results 

 

6.3.1. Total bacterial count 

 

The TBC of milk samples from different treatments and stored for up to 72 

h are shown in Table 6.1. The TBC of those samples significantly increased with 

level of protease activity (P<0.0001) in the milk samples and over storage time 

(P<0.0001) (Table 6.1). The interaction between storage time and added protease 

activity did not affect TBC (P>0.05). 
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6.3.2. Measurements of pH in milk 

  

The pH measurements were not affected by added protease activity (P = 

0.52). The mean (± S.E.) pH measured in samples C, P10 neg, P1, P4 and P10 

were 6.51, 6.53, 6.53, 6.54, 6.53 ± 0.01, respectively. The pH was also 

significantly affected by storage time (P<0.0001) and interaction between added 

protease activity and storage time (P = 0.01). No decreases in pH were observed 

over storage time, except in samples P10. At 0, 48 and 72 h the pH measured in 

samples P10 were 6.58, 6.55 and 6.47 at 0, 48 and 72 h, respectively (P = 0.001).  

In addition, the mean (± S.E.) fat (3.44 ± 0.30%) and protein (3.58 ± 

0.06%) contents did not differ significantly between treatments and during storage 

of milk (data not shown). 

 

6.3.3. Azocasein assay and protease activity 

 

The mean (± S.E.) result obtained for the supernatant samples that were 

not pasteurised was 0.5469 ± 0.1093 nm. Based on this results, the mean (± S.E.) 

protease activity in the supernatant was 0.030 ± 0.006 U/ mL.min. Also, the result 

obtained for non-pasteurised samples was not statistically different from the 

results obtained for the samples that were pasteurised (0.5352 ± 0.1143 nm, 

P>0.05). 
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Table 6.1. Mean (± S.E.) total bacterial count (log10 cfu/ mL) of control (C) and negative control (P10 neg) milk samples, as well as 

samples inoculated with 0.15, 0.60 and 1.50 U/ L (treatments P1, P4, P10, respectively), stored for up to 72 h. 

TBC (log10 cfu/ mL) 
Protease activity 

S.E. 
C P10 neg P1 P4 P10 

0 h 3.11
A 

3.22
A 

4.14
A 

4.46
A 

4.77
A 

0.24 

48 h 3.96
AB 

4.26
A 

5.45
A 

6.00
B 

6.00
B 

0.24 

72 h 5.33
B 

5.30
B 

8.00
B 

8.00
C 

8.00
C
 0.24 

A-B
Values within a column not sharing common superscripts differ significantly (P < 0.05). 
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6.3.4. Proteolysis 

 

6.3.4.1. Casein fractions 

 

The significance of the main effects of storage time, added protease 

activity and interaction between added protease activity and storage time on the 

concentration of caseins and major whey proteins of milk are shown in Table 6.2. 

The concentrations of those proteins measured in the milk samples from the 

different treatments stored for up to 72 h are also shown in Table 6.2. 

 The concentrations of αS2-CN and β-CN were affected by storage time. 

The concentrations of all caseins were significantly affected by added protease 

activity and interaction between protease activity and storage time. 

 The mean concentrations of α-lac were affected by storage time, β-Lg A 

was affected by added protease activity and β-Lg B was affected by the 

interaction between those factors. 

 The casein chromatograms of the samples C, P10 neg, P1, P4 and P10, 

stored for up to 72 h, are shown in Figure 6.2. The chromatograms of samples C 

and P10 neg are similar and indicated low levels of proteolysis over storage. In 

relation to the inoculated samples, the levels of proteolysis increased with the 

activity of protease over storage time. The chromatograms indicated that κ-CN 

and β-CN were the main proteins hydrolysed by the protease over time. Small 

decreases were also observed in αS1-CN peaks with the increase in added protease 

activity. In samples P10, decreases in the concentrations of αS1-CN and αS2-CN 

after 48 h and decreases in the concentrations of β-Lg A and B after 72 h were 

greater compared to other samples (Table 6.2). 
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6.3.4.2. Peptide profiles 

 

The peptide profiles of samples C, P10 neg, P1, P4 and P10, stored for up 

to 72 h at 4 °C, are shown in Figure 6.3. The peptide profiles of the samples C and 

P10 neg were similar and low levels of proteolysis were observed. Over storage 

time, the hydrolysis of proteins in milk increased with added protease activity. 
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Table 6.2. Contents of casein fractions (κ-CN, αs1-CN, αs2-CN, β-CN, α-lac, β-Lg A, β-Lg B and total casein contents) in control (C) 

and negative control (P10 neg) milk samples and samples inoculated with 0.15, 0.60 and 1.50 U/ L (treatments P1, P4, P10, 

respectively) stored for up to 72 h, and significance of the main effects of protease activity, storage time and the interaction between 

protease activity and storage time on those contents. 

Protease activity Time (h) 
κ-CN 

(mg/ mL) 

αs1 – CN 

(mg/ mL) 

αs2 – CN 

(mg/ mL) 

β- CN 

(mg/ mL) 

α-lac 

(mg/ mL) 

β-Lg A 

(mg/ mL) 

β-Lg B 

(mg/ mL) 

Total casein 

(mg/ mL) 

C 

0 5.30 13.53 3.01 12.71 1.13 1.96 2.62 39.75 

48 5.66 12.44 3.25 11.51 1.13 1.95 2.54 38.48 

72 6.32 13.36 3.54 12.37 1.18 2.10 2.60 41.46 

P10 neg 

0 6.20 14.42 3.93 13.18 1.26 2.20 2.67 43.88 

48 6.35 13.65 3.97 12.43 1.21 2.21 2.51 42.33 

72 5.95 13.60 3.73 12.38 1.21 2.03 2.42 41.33 

P1 

0 4.13 12.60 2.94 11.56 1.05 1.80 1.96 36.54 

48 4.96 14.79 3.72 11.25 1.23 2.11 2.74 40.83 

72 5.16 14.35 4.07 10.53 1.26 2.07 2.74 40.18 

P4 

0 4.04 13.14 3.47 11.63 1.11 1.96 2.69 38.05 

48 3.69 11.78 3.28 8.28 1.12 1.81 2.53 32.51 

72 4.13 13.54 3.85 8.64 1.27 1.76 2.85 36.02 

P10 

0 4.25 13.39 3.79 13.18 1.04 1.87 2.64 37.77 

48 3.70 8.05 2.89 7.72 1.04 1.87 2.40 27.68 

72 3.32 8.13 2.86 6.60 1.19 1.17 2.02 26.30 

S.E. 0.25 0.31 0.14 0.28 0.05 0.08 0.15 1.05 

Significance         

Storage time 0.40 <0.0001 0.09 <0.0001 0.02 0.14 0.47 0.01 

Protease activity 0.002 <0.0001 0.01 <0.0001 0.22 0.02 0.06 0.0004 

Protease activity*storage time 0.02 <0.0001 0.001 0.001 0.20 0.18 0.04 0.001 
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Figure 6.2. Separation of bovine milk caseins by reversed-phase HPLC 

(measured in absorbance units, AU). Chromatograms of (A) control and (B) 

negative control samples and samples inoculated with (C) 0.15 (P1), (D) 0.60 (P4) 

and (E) 1.50 (P10) U/ L stored for up to 72 h are shown. 
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Figure 6.3. Separation of bovine milk peptides by reversed-phase HPLC 

(measured in absorbance units, AU). Chromatograms of (A) control and (B) 

negative control (P10 neg) samples and samples inoculated with (C) 0.15 (P1), 

(D) 0.60 (P4) and (E) 1.50 (P10) U/ L stored for up to 72 h are shown. 
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6.3.4.3. Electrophoresis (SDS-PAGE) 

 

Non-reducing and reducing SDS-PAGE electrophoretograms of all milk 

samples stored for up to 72 h are shown in Figures 6.4.A and B, respectively. 

The electrophoretograms of the samples C (lane 1) and P10 neg (lane 5) 

were similar and no apparent indication of proteolysis was observed. In contrast, 

the electrophoretograms of samples P1, P4 and P10 indicated that the protease 

was active mainly on κ-CN and β-CN, bands for which became of a less intense 

colour and decreased in size over time. In addition, a small decrease in bands 

corresponding to αS1-CN was noted with increasing level of protease activity. The 

decrease was more noticeable in samples P10. 

The intensity of the peptide bands from 10 kDa to 25 kDa, which are 

products of the hydrolysis of caseins, increased with level of protease activity. 

Those bands were observed in samples tested after inoculation (0 h of storage), 

indicating that the protease is highly active in milk. Also, a peptide band around 

14 kDa (above ala) was observed in lanes corresponding to samples P1, P4 and 

P10 (lanes 2, 3 and 4, respectively) and its intensity increased with level of 

protease activity and storage time. 
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(A) Non-reducing 

 

 

       
 

 

(B) Reducing 

 

 

          
 

Figure 6.4. SDS-PAGE electrophoretogram of milk samples stored for up to 72 h 

under (A) non-reducing and (B) reducing conditions. Lane 1 corresponds to the 

control samples, while lanes 2 to 5 correspond to samples inoculated with 0.15 

(P1), 0.60 (P4), 1.50 (P10) U/ L and negative control (P10 neg), respectively. 

Lane PL corresponds to a low range protein ladder. 
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6.3.5. Rennet coagulation properties 

 

The significance of the main effects of storage time, added protease 

activity and interaction between added protease activity and storage time on the 

rennet coagulation properties of milk are shown in Table 6.3. The parameters 

RCT, k20 and a30 obtained for the milk samples from the different treatments, 

stored for up to 72 h, are shown in Table 6.4. It was not possible to assess the 

rennet coagulation parameters of the milk samples P10 after 48 h, as those 

samples did not form a coagulum after rennet addition. 

 Rennet coagulation time decreased significantly with increasing level of 

protease activity (C, P10 neg, P1 and P4: 21.54, 19.63, 16.64 and 16.81± 1.16 

min, respectively; P<0.05). Over 72 h, a decrease in RCT was observed when 

testing samples P1. The results also indicated that RCT may tend to increase over 

time for samples P4. 

 The parameter a30 (mm) was affected by the interaction between level of 

protease activity and storage time (P = 0.002). Over 72 h, the parameter a30 did 

not vary significantly for samples C and P10 neg (Table 6.4). The variations in 

a30 measured in samples P1 were also not significant over 72 h; however, an 

increase in that parameter was observed after 48 h of storage. In relation to 

samples P4, a30 decreased significantly after 48 h (P = 0.001; Table 6.4). 

It was not possible to measure the parameter k20 in samples P4 and P10 

after 72 h and 48 h, respectively, as those samples did not reach a curd firmness of 

20 mm. Consequently, the data set obtained at 0 and 48 h was separated from the 

data obtained after 72 h for statistical analysis. After 48 h, the k20 measured for 

samples C, P10 neg, P1 and P4 were not significantly affected by storage time (P 

= 0.56), added protease activity (P = 0.32) and interaction between those effects 
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(P = 0.09). Samples C, P10 neg and P1 reached a curd firmness of 20 mm after 72 

h, and the parameter k20 for those samples did not differ statistically (P = 0.84). 
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Table 6.3. The significance of the main effects of protease activity, storage time and the interaction between protease activity and 

storage time on the rennet coagulation time (RCT) and curd firmness at 30 min (a30). 

Rennet Coagulation Properties 
Significance 

Storage time Protease activity Protease activity*storage time 

RCT 0.06 0.02 0.21 

a30 0.06 0.08 0.002 

*The significance levels obtained for k20 measurements were not included in this table as those measurements were separated in two groups (group 1: data obtained at 0 and 48 

h; group 2: data obtained only at 72 h) for the statistical analysis, differently than for other parameters. 

 

Table 6.4. Mean (± SD) rennet coagulation time (RCT), curd firmness at 30 min (a30) and curd-firming time (k20) of control (C) and 

negative control (P10 neg) milk samples and samples inoculated with 0.15 (P1), 0.60 (P4) and 1.50 (P10) U/ L, stored for up 72 h. 

Protease activity 
RCT (min) a30 (mm) k20 (min) 

0 h 48 h 72 h 0 h 48 h 72 h 0 h 48 h 72 h 

C 23.0 ± 1.6a 19.6 ± 0.9a 22.0 ± 3.5a 17.36 ± 2.3A,ab 31.42 ± 4.0A,a 21.67 ± 10.4A,a * 5.39 ± 0.5a 7.00 ± 0.8a 

P10 neg 17.7 ± 3.9ab 19.5 ± 0.4a 21.7 ± 2.5a 28.14 ± 5.7A,a 27.22 ± 5.0A,ab 25.10 ± 10.1A,a 6.58 ± 1.3a 6.89 ± 1.8a 6.39 ± 1.7a 

P1 20.3 ± 2.2a 15.2 ± 1.1a 14.4 ± 1.2a 23.27 ± 6.1A,ab 34.08 ± 5.4A,a 32.60 ± 6.7A,a 7.86 ± 3.0a 6.28 ± 1.3a 7.28 ± 2.3a 

P4 14.4 ± 6.5ab 16.7 ± 3.9a 19.3 ± 1.2a 32.78 ± 9.0A,a 17.93 ± 6.5AB,b 5.61 ± 1.6B,b 6.03 ± 2.2a 9.31 ± 1.6a * 

P10 7.8 ± 4.0b ** ** 27.98 ± 14.2a ** ** 6.08 ± 0.6a ** ** 

A-BValues within a row not sharing common superscripts differ significantly (P < 0.05). 

a-bValues within a column not sharing common superscripts differ significantly (P<0.05). 

*Samples did not reach a curd firmness of 20 mm. 

**Data missing due to the no coagulation of those samples. 
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6.4. Discussion 

 

According to the azocasein test, the strain of Pseudomonas fluorescens 

(ATCC 17556) produced active proteases when incubated at 10 ˚C. This result is 

in accordance with the study from Marchand et al. (2009), in which the same 

strain presented proteolytic activity at 7, 22 and 30 ˚C. In relation to the level of 

protease activity, Liao and McCallus (1998) cultured P. fluorescens CY091, 

centrifuged the media and obtained a protease activity varying from 5 to 8 U/ mL 

in the supernatant. Those results differ from the activity obtained in this study, 

indicating that other strains may produce proteases with higher levels of activity. 

The production of protease could depend on several factors, such as bacterial 

strain, culture media, time and temperature of incubation (McKellar, 1982).  

The protease produced was thermo-resistant, as its activity was maintained 

after pasteurisation and therefore it would remain active during cheese 

manufacture. In addition, it is now widely shown that multiple Pseudomonas 

strains produce heat-resistant proteases (Bagliniène et al., 2013; Machado et al., 

2017; Marchand et al., 2017). 

 The difference in TBC and bacterial growth between non-inoculated 

samples (C and P10 neg) and inoculated samples (P1, P4 and P10) over storage 

time at 4 °C could be due to the presence of P. fluorescens cells in the supernatant 

used for inoculation. As the amount of supernatant added increased according to 

the aimed protease activity, the levels of TBC and bacterial growth also increased. 

The strains of P. fluorescens probably contributed to the increase in TBC, because 

this strain can grow at temperatures up to 30 ˚C, which is close to the incubation 

temperature applied to measure mesophilic bacterial numbers (32 ˚C) (Marchand 

et al., 2009). 
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After 72 h, the pH of samples P10 decreased significantly, which could be 

due to the high levels of bacteria in those samples. The high bacterial activity 

could have increased the acidity of milk with the conversion of lactose into lactic 

acid. The decrease in pH could have potentially resulted in the coagulation of milk 

samples P10 after 48 h, as the acidity could have influenced the net charge of the 

casein micelles (Fox et al., 2017). 

The similarity between the results obtained for samples C and P10 neg, as 

well as how they differed from the results obtained for the inoculated samples, 

indicated that the method of production and extraction of proteases were effective 

and that protease was active in milk. 

The casein concentrations (Table 6.2), as well as the results from the 

chromatograms (Figures 6.2 and 6.3) and electrophoretograms (Figure 6.4), 

indicated an increase in proteolysis levels with added protease activity over 

storage time. The protease tested preferably hydrolysed κ-CN and β-CN; the rate 

of hydrolysis of αS-CNs increased with level of protease activity. The breakdown 

of αS-CNs and major whey proteins were more noticeable when the level of 

protease activity was increased to 1.50 U/ L (P10, Figures 6.2 and 6.4; Table 6.2). 

Similar results were observed by Zhang et al. (2015) when investigating the 

degradation on milk proteins by a thermo-resistant protease produced by 

Pseudomonas fluorescens BJ-10. 

Statistical analysis indicated that ala and β-Lg B levels were affected by 

storage time and interaction between added protease activity and storage time, 

respectively. However, no trends over time were observed for the concentrations 

on those proteins and variations observed were minimal (Table 6.2). Small 

variations in the concentrations of whey proteins were also observed in the 
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chromatograms (Figure 6.2). The only trend observed was the decrease in the 

whey protein peaks when the protease activity was 1.50 U/ L (samples P10). 

The hydrolysis of the caseins affected the rennet coagulation properties of 

the milk from different treatments. Overall, the increase in the level of protease 

activity resulted in a significant decrease in RCT. At 0 h, that trend was observed 

(Table 6.4) and could be linked to the hydrolysis of κ-CN, which is important for 

the coagulation of milk during cheese-making. During coagulation, the Phe105-

Met106 bond of κ-CN is hydrolysed and the N-terminal that remains bound in the 

casein network is called para-κ-casein (para-κ-CN). Due to changes in charges, 

the para-casein micelles are then able to aggregate in the presence of calcium ions 

(Fox et al., 2017). In the electrophoretograms (Figure 6.4), a peptide band around 

14 kDa (above α-lac) was observed in lanes corresponding to samples P1, P4 and 

P10 (2, 3 and 4, respectively) and its intensity increased with level of added 

protease activity and storage time. A similar result was obtained by Timotijevic et 

al., (2006) when testing different concentrations of rennet and the authors 

identified that band as corresponding to para-κ-CN. According to Jackman et al. 

(1985), psychrotrophic bacterial proteases include endopeptidases capable of 

hydrolysing the phenylalanine-methionine bond of κ-CN in a similar manner to 

rennet. Therefore, the increase in added protease activity could have resulted in 

increasing hydrolysis rates of κ-CN into para-κ-CN, and consequently the 

decrease of RCT in inoculated milk samples. 

After 48 h, the RCT of samples P1 continued to decrease over storage 

time. In contrast, the RCT of samples P4 tended to increase over time, while 

samples P10 did not coagulate after 48 h (Table 6.4). In addition, the firmness 

(a30) of the coagulum formed when testing samples P1 increased over time, while 
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the firmness of the coagulum of samples P4 significantly decreased over time (P = 

0.01). The increase in RCT is potentially due to the enzymatic degradation of 

caseins. The αS-CN and β-CN constitute the basic microstructure of the curd, and 

reduced levels of those caseins results in slow curd formation and a soft coagulum 

as observed. Protease activity can affect the caseins to such an extent that 

coagulation of milk does not occur (St-Gelais and Hache, 2005; Amenu and 

Deeth, 2007), as observed in samples P10. The proteolysis of caseins could result 

in curd shattering, high losses of fat in the whey and reduced cheese yields (Fox et 

al., 2017). In relation to samples P1, the rate of hydrolysis of αS-CN and β-CN 

was lower and therefore the structure of the casein micelles was less affected (Lu 

et al., 2017). Consequently, the coagulum produced was firmer compared to other 

inoculated samples. The firmness measured in those samples was also higher than 

the firmness of control samples, possibly due to the higher rate at which κ-CN 

was hydrolysed into para-κ-CN. 

Finally, the inoculated samples had a similar TBC after 48 and 72 h of 

storage and still had different results in relation to proteolysis levels. Therefore, 

those results were mainly due to the protease activity added and not the bacterial 

count. 

 

6.5. Conclusion 

 

This study demonstrated that the protease produced by the psychrotrophic 

bacteria tested was thermo-resistant and can affect the cheese-making properties 

of milk. The rennet coagulation time and curd firmness were affected over storage 

time, as the protease was mainly active on essential caseins for the formation and 

structure of the coagulum (κ-CN and β-CN, respectively). The results indicated 
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that, to a certain extent, protease activity can be favourable to accelerate the 

coagulation of milk and produce a firmer coagulum. However, increased levels of 

protease can result in the hydrolysis of αS-CNs and major whey proteins, and 

consequently a softer coagulum is produced or the coagulation of milk is not 

possible. Therefore, this study highlighted the importance of controlling initial 

levels of psychrotrophs in milk, as the activity of their protease could affect the 

processability of milk over storage time. Further studies are necessary to 

determine the effect of those proteases on the manufacture and quality of cheese 

in an industrial scale. Additionally, as milk has a complex microbiota, it would be 

relevant to characterise other psychrotrophic bacterial proteases to determine their 

resistance to heat treatment and activity in milk. 
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Abstract 

 

The objective of this study was to investigate the effect of different activity 

levels of a thermo-resistant protease, produced by a Pseudomonas fluorescens 

strain, on the manufacture, proteolysis and quality of Cheddar cheese. Fresh raw 

milk was collected, standardised and pasteurised at 72 ˚C for 15s. Milk was 

inoculated to obtain a protease activity of 0.15 and 0.60 U/ L (treatments P1 and 

P4, respectively), while one sample was not inoculated to be the control (C). The 

milk containers were stored at 4 °C for 48 h and Cheddar cheese was 

manufactured after 0 and 48 h of storage. Results indicated that the protease was 

active in milk during 48 h of storage; however, its effect on the milk composition 

was minimal. β-CN was preferentially hydrolysed by the protease over storage 

time, followed by κ-CN. The mean cheese yield and recovery of fat and protein 

obtained for all cheeses were not affected by added protease activity (P>0.05). 

These results also indicated that the protease presented low activity during cheese 

manufacture, possibly due to the processing conditions (e.g., pH). Consequently, 

the composition, pH, patterns of proteolysis and hardness of all cheeses produced 

were similar and in accordance with parameters expected for that type of cheese, 

independently of the added protease activity level. However, slight increases in 

proteolysis were observed in cheeses with higher levels of protease and that were 

produced using milk stored for 48 h. Both cheeses had higher concentrations of 

FAA compared to control, while Urea-PAGE electrophoretograms indicated a 

higher breakdown of caseins in those P4 samples. This can be related to possible 

increases in proteolytic bacteria numbers in milk during storage. Therefore, to a 

certain extent, psychrotrophic bacterial proteases may not affect the manufacture 

and quality of Cheddar cheese during ripening. Finally, the control of initial levels 
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of proteolytic bacteria in raw milk is essential, as proteolysis influences on the 

development of flavour and texture in cheese. 

 

Keywords: Pseudomonas fluorescens, psychrotrophic bacteria, milk storage, 

thermoresistant protease, Cheddar cheese. 
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7.1. Introduction 

 

 The world production of cheese is approximately 19 x 10
6
 tonnes per year, 

and has increased at an average annual rate of approximately 4% over the past 30 

years. The increase in cheese consumption could be due to the positive dietary 

image of the product, convenience and flexibility in use, as well as the great 

diversity of flavours and textures. Cheddar cheese is one of the most important 

cheese varieties worldwide and is one of the main dairy products exported by 

Ireland and the United Kingdom (Fox et al., 2017). The quality of milk supplied 

for cheese manufacture is one of the main factors that can affect the quality of the 

final product.  

The microbiota of raw milk during cold storage is mainly composed of 

Gram-negative and Gram-positive psychrotrophic bacteria. The most common 

psychrotrophs identified in raw milk belong to the genera Pseudomonas spp. 

(Ercolini et al., 2009; Ribeiro Junior, 2017). Most of the lipases and proteases 

produced by this bacterial species are thermo-resistant, and can withstand heating 

to 100 ˚C for 30 min. Those enzymes are produced when psychrotrophic bacterial 

counts (PBCs) are higher than 6.0 log10 cfu/ mL and are not eliminated after heat 

treatment, affecting the quality of cheese products (Fox, 1989; Fox et al., 2017). 

According to SØrhaug and Stepaniak (1997), PBCs between 6.5 to 7.5 log10 cfu/ 

mL can cause rancidity in hard cheeses, while counts between 7.5 to 8.3 log10 cfu/ 

mL can cause off-flavours (i.e., rancidity and soapy taste) and reduced cheese 

yield. Most psychrotrophic proteases are metalloproteases, which preferentially 

hydrolyse κ-casein (κ-CN), then β-casein (β-CN) and then αs1-casein (αs1-CN), 

potentially causing reductions in cheese yield (Decimo et al., 2014). Boulares et 

al. (2011) and Mankai et al. (2012) observed decreases in cheese yield which 
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were associated with the loss of protein into whey due to the activity of proteases 

produced by psychrotrophic bacteria. Even though certain microbial proteolysis 

can be an undesirable by-product in raw milk during storage and cheese 

manufacture, specific starter cultures are added into milk to promote proteolysis 

during ripening for the development of texture and flavour in different cheese 

varieties.  

 Several studies have investigated the effects of thermo-resistant 

psychrotrophic bacterial proteases on UHT milk, identified and characterised the 

proteases produced by Pseudomonas, and assessed their proteolytic activity 

(Marchand et al., 2009; Mateos et al., 2015; Caldera et al., 2016). However, the 

dynamics and activity of those proteases during the manufacturing process of a 

range of other dairy products, their impact on raw milk and consequent 

implications for the quality of the final product still require further investigations. 

Cheese products, for example, can vary greatly in relation to their processing 

parameters, pH and microbiota, which can be determinant parameters of the types 

and activity of proteases in those products. Therefore, the aim of this study was to 

investigate the effect of different activity levels of a thermo-resistant protease, 

produced by a Pseudomonas fluorencens strain, on the manufacture, proteolysis 

and quality of Cheddar cheese. 

 

7.2. Materials and methods 

 

7.2.1. Culture of Pseudomonas fluorescens and protease extraction 

 

Pseudomonas fluorescens (ATCC 17556) was grown in nutrient broth 

(meat extract 3 g/ L, meat peptone 5 g/ L; Sigma Aldrich, Dublin, Ireland) for 72 

h at 26 ˚C with stirring at 90 rpm. After this, 1 mL of the inoculated nutrient broth 
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was spread plated on blood agar plates (horse blood agar, 7% concentration, base 

No. 2; Oxoid, Basingstoke, UK) and plates were incubated for 24 h at 26 ˚C. 

Bacterial colonies were transferred to 100 mL of sterilised reconstituted skim milk 

powder (RSMP, 10% w/v). The inoculated RSMP bottles were incubated for 120 

h at 10 ˚C with stirring at 90 rpm. Afterwards, RSMP was centrifuged at 20,000 g 

at 25 ˚C for 30 min and the supernatant containing protease was collected. In a 

previous trial, the authors determined that the protease was thermoresistant, as it 

still was active after being heated at 72 ° C (temperature applied during milk 

pasteurisation) (Chapter 6). 

 

7.2.2. Milk collection 

 

At the Teagasc Animal and Grassland Research and Innovation Centre 

(Moorepark, Cork, Ireland), spring-calving cows were milked in a 30-unit side-

by-side milking parlor, with milking commencing at 07:00 h. The milking 

equipment used, udder preparation and sanitation were as described by Paludetti 

et al. (2018). This experiment was repeated in triplicate over a 3-week period. 

During that period fresh raw milk was collected once per week and directly 

transferred from the milking machine line to three sanitised containers. The 

containers were transported to the Biofunctional Food Engineering facility, at the 

Teagasc Food Research Centre (Moorepark, Cork, Ireland), where milk was 

standardised, pasteurised and used for the production of Cheddar cheese. 

 

7.2.3. Milk standardisation, pasteurisation and inoculation 

 

Raw milk was skimmed using a tabletop cream separator (Milky FJ 130 

ERR, Janschitz-gmbh, Germany), and, the fat and protein contents in the 



 

255 
 

separated cream and skim milk were measured by using infrared absorption 

spectroscopy (MilkoScan FT6000, Foss Ireland Ltd, Dublin, Ireland). Pearson’s 

square calculations were used to determine the amount of skim milk and cream 

that should be mixed to achieve a protein-to-fat ratio of 0.95:1.00. The 

standardised milk was pasteurised at 72 ˚C at a flow rate of 2 L/ min with a 

holding time of 15 s using a Microthermics Lab heat exchanger (MicroThermics, 

NC, USA).  

The pasteurised milk was divided into 3 sanitised containers (40 L/ 

container). In a previous study, the activity of the protease extract was determined 

(0.030 U/ mL.min, Chapter 6) and, based on that value, the milk containers had 

different amounts of supernatant added to obtain different activity levels in the 

milk samples. One milk container was not inoculated to be used as control (C), 

while 5 and 20 mL of supernatant per L of milk were added to the other two 

containers, to obtain activity levels of 0.15 and 0.60 U/ L, respectively (treatments 

P1 and P4, respectively). Those concentrations were selected based on a previous 

study carried out by the authors, in which curd formation was observed after 

adding rennet to milk samples containing those levels of protease activity. All 

milk containers were stored at 4 ˚C for 48 h and Cheddar cheese was produced 

after 0 and 48 h of inoculation. The experimental design of this study is shown in 

Figure 7.1. 
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Figure 7.1.  Experimental design. 

7.2.4. Milk composition 

 

After 0 and 48 h of storage, the composition of each milk was assessed. 

The nitrogen (%N), non-casein nitrogen (%NCN) and non-protein nitrogen 

(%NPN) contents of the milk samples were determined using the Kjeldahl 

method, as described in the methods IDF 20-3 (IDF, 2004a), 29-1 (IDF, 2004b) 

and 20-4 (IDF, 2001), respectively, using a Tecator Digestor Auto and Kjeltec 

8400 distiller (Foss Electric, HillerØd, Denmark). The non-casein protein (%NCP) 

was calculated by multiplying %NCN by 6.38. The pH of milk was also measured 

after 0 and 48 h of storage, prior to cheese manufacture. 

The casein fractions (κ-CN; αS2-casein, αS2-CN; αS1-CN; β-CN; α-

lactalbumin, α-lac; β-lactoglobulin A and B, β-Lg A and B; and total casein) were 

identified and quantified (in triplicate) in the milk samples by high-performance 

liquid chromatography (HPLC). Milk samples (200 µL) were diluted in 3.78 mL 

of dissociating buffer (7 M urea and 20 mM Bis-Tris propane, pH 7.5). Twenty 
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µL of mercaptoethanol were added to the diluted samples, and after they were 

filtered through 0.22-µm filters. The equipment used was an Agilent 1200s system 

(Agilent Technologies, Santa Clara, CA, USA) with a quaternary pump and a 

multiwavelength detector. The casein fractions were separated in the reversed-

phase mode using an Agilent Poroshell 300SB C18 column (2.1 mm x 7.5 mm; 

Agilent Technologies). The gradient elution and peak detection were performed 

according to the method of Mounsey and O’Kennedy (2009). 

 

7.2.5. Microbiological count in milk samples 

 

The total bacterial count (TBC) and psychrotrophic bacterial count (PBC) 

were measured in all milk samples at 0 and 48 h, after pasteurisation and 

inoculation. Both bacterial counts were estimated using Petrifilm aerobic count 

plates, a ready-to-use medium (3M, Technopath, Tipperary, Ireland). Samples 

were incubated at 32 °C for 48 h to determine TBC, while samples were incubated 

at 7 °C for 10 days to determine PBC (Laird et al., 2004). Those tests were 

performed according to the Standard Methods for the Examination of Dairy 

Products (Wehr and Frank, 2004).  

 

7.2.6. Cheddar cheese production 

  

After 0 and 48 h of inoculation and storage, milk containing different 

protease activity levels were used to manufacture Cheddar cheese. Therefore, 

during a 3-week period, two cheesemaking trials were undertaken per week. 

During each period, 10 L of milk were transferred into jacketed, stainless steel 

cheese vats, which contained automated variable speed cutting and stirring 

equipment. The milk from different treatments were inoculated at 32 ˚C with 
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strains of lactic acid bacteria (R-604, Lactococcus lactis sub. cremoris and 

Lactococcus lactis sub. lactis, Chr. Hansen Ltd., Cork, Ireland). After 60 min, 

rennet (Chy-Max Plus, Chr. Hansen Ltd.), diluted in Milli Q water (approximately 

0.1% v/v), was added to each milk vat at a level of 2 mL/ L. 

Small-amplitude oscillatory rheometry (AR 2000ex, TA Instruments, New 

Castle, DE) was used to determine curd firmness (storage or elastic modulus, G’), 

by using a concentric-cylinder measuring geometry (cylindrical bob and cup). The 

dynamic changes in rheology during the coagulation process were monitored 

using a dynamic time sweep analysis, as described by Mateo et al. (2010) and 

Lamichhane et al. (2018), but at 32 ˚C. The gels were cut at a curd firmness of 35 

Pa. 

The cut programme of 3 min consisted of alternating between cutting (40 

s) and healing (20 s). The curd/ whey mixture was stirred continuously for 15 min 

and then cooked. The temperature was increased at a rate of approximately 0.2 ˚C/ 

min from 32 to 38 ˚C. Once the pH reached 6.15, the whey was drained and the 

curds were retained in the vat to promote further syneresis. The curds were 

inverted every 15 min and pH was monitored over that period (cheddaring). Once 

the pH reached 5.30, the curds were milled and salted (2.7% w salt /w cheese). 

The curds from each vat were weighed and molded in 2 x 500 g moulds, pressed 

at 150 kPa overnight, weighed again and vacuum packed. The cheeses were stored 

at 4 ˚C for 14 days and ripened at 8 ˚C for 180 days.  

The cheese yield (Y%) was calculated as the ratio between the weight of 

cheese produced (g) to the weight of milk used (g) multiplied by 100. Moisture 

adjusted yield was not calculated as the moisture contents of the cheeses was not 

significantly different. The fat and protein recovery (%RECFAT and %RECPROT, 
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respectively) were calculated as the ratio of the weight (g) of the curd components 

(fat and protein, respectively) to the same component of milk (g) multiplied by 

100.  

 

7.2.7. Cheese and whey composition 

 

At 7 days post-manufacture, the moisture (IDF, 1982), protein (IDF, 

1993), salt (IDF, 1988) and fat of all cheeses were determined. The fat content 

was measured by nuclear magnetic resonance, using a CEM Smart Trac System 

method (Cartwright et al., 2005). Based on the content of those parameters, the 

content of total solids (TS), salt-in-moisture (S/M), moisture in the nonfat 

substance (MNFS) and fat in dry matter (FDM) were calculated. The pH of the 

cheeses was monitored after 7, 14, 90 and 180 days of ripening, by mixing 20 g of 

cheese with 12 g of deionised water (British Standards Institution, 1976). 

The fat and protein contents in whey were determined according to the 

IDF standard methods 22 (IDF, 2008) and 20-3 (IDF, 2004a), respectively. 

 

7.2.8. Assessment of proteolysis 

 

7.2.8.1. pH 4.6-soluble nitrogen and free amino acids 

 

 The pH 4.6-soluble fractions of the cheeses ripened for 14, 90 and 180 

days (expressed as % of total nitrogen) were obtained as described by Fenelon and 

Guinee (2000a). The nitrogen content of those fractions (pH 4.6-SN/TN) were 

determined in duplicate by the macro-Kjeldahl method (IDF, 1986). The levels of 

free amino acids (FAA) were measured as described by Sheehan et al. (2007). 

The following amino acids were quantified: aspartic acid (asp), threonine (thre), 
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serine (ser), glutamic acid (glu), glycine (gly), alanine (ala), cysteine (cys), valine 

(val), methionine (met), isoleucine (ile), leucine (leu), tyrosine (tyr), 

phenylalanine (phe), histidine (his), lysine (lys), tryptophan (tryp), arginine (arg) 

and proline (pro). 

 

7.2.8.2. Reversed-phase high-performance liquid chromatography 

 

The hydrolysates peptide profiles of pH 4.6-soluble fractions were 

obtained by reversed-phase HPLC using an ultra-performance liquid 

chromatographer (UPLC). The pH 4.6-soluble fractions were filtered through 0.22 

µm cellulose filters. An aliquot (10 μL) of each filtered extract was injected on the 

column (Acquity UPLC Peptide BEH C18, 130 Å, 1.7 m, 2.1 x 100 mm) and the 

flow rate was 0.20 mL/ min. The equipment consisted of a Waters Acquity UPLC 

H-Class Core System with an Acuity UPLC TUV Detector (dual wavelength) and 

Acquity Column Heater 30-A. The system was interfaced with Empower 3 

software (Water Corp., Milford, MA, USA). The core system includes an Acquity 

UPLC H-Class quaternary solvent manager, an H-Class Samples Manager-FTN 

and a CH-A column heater. Elution was monitored at 214 nm and a mobile phase 

of two solvents was used: 0.1% (v/v) trifluoroacetic acid (TFA) in Milli-Q water 

(A) and 0.1% (v/v) TFA in acetonitrile (B). In the elution gradient program used, 

the percentage of solvent B increased at a constant rate from 3% to 40% over 45 

min, after which the % B increased to 85% in 2 min, was held at 85% B for 2 min, 

and then returned to 3% B over 8 min before injection of the next sample. 
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7.2.8.3. Urea polyacrylamide electrophoresis 

 

 Urea polyacrylamide electrophoresis (Urea-PAGE) was carried out on all 

cheeses after 14, 90 and 180 days of ripening. The analysis was performed using a 

PROTEAN II xi cell vertical slab gel unit (Bio-Rad Laboratories Ltd., Hemel 

Hempstead, Herts, UK), using a separating and stacking gel system. The method 

used was an adaption of the methodology used by Andrews (1983) and Shalabi 

and Fox (1987). Cheese was dissolved in 1 mL of sample buffer [0.75 g Tris 

(hydroxymethyl)-methylamine, 49 g urea, 0.7 mL mercaptoethanol and 0.15 g 

bromophenol blue] on a protein basis (4.75 mg protein). Samples were incubated 

at 55 °C for 15 min and after filtered through glass wool to remove fat deposits. 

Sodium caseinate powder was used as a non-hydrolysed casein control and was 

dissolved to give an equivalent concentration of protein. The voltages applied 

when samples ran through the stacking and separating gels were 280 and 300 V, 

respectively. Gels were stained for 24 h with Instant Blue Coomassie (Expedeon, 

UK) and after scanned using a dual lens Epson Perfection V700 Photo Model 

J221A with Epson Scan software (Epson Deutschland GmbH, Meerbusch, 

Germany). The bands were identified as described by McSweeney et al. (1994) 

and Mooney et al. (1998). 

 

7.2.9. Texture analysis 

 

The hardness of each cheese were measured after 14, 90 and 180 days of 

ripening. All cheeses were cut into six cube-shaped samples (25 mm
3
) using a 

Cheese Blocker (Bos Kaasgreedschap, Bodengraven, the Netherlands), wrapped 

in tin foil and stored at 4 ˚C for 1 h prior to analysis. The texture profile was 

assessed using a TAHDi analyser (Stable Micro Systems, Goldalming, Surrey, 
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UK), equipped with a 75-mm (diameter) compression plate and a 50-kg load cell. 

Each cube was taken from the refrigerator and immediately compressed, in 2 

successive bites, to approximately 40% of their original height at a rate of 1.00 

mm/ sec (Henneberry et al., 2015). Hardness was calculated as described by 

Chevanan et al. (2006). 

 

7.2.10. Statistical analysis 

 

The main effects of storage time and added protease activity, as well as the 

interaction between storage time and added protease activity, on the parameters 

measured in the inoculated milk were investigated. The least square means of 

those effects were calculated using the GAUSSIAN procedure in SAS 9.3 (SAS 

Institute Inc., Cary, NC). The fixed effects included in each model were storage 

time (0 and 48 h) and added protease activity (C, P1 and P4). The containers in 

which inoculated milk was stored within week were considered the experimental 

unit. The response variables were: N%, NCN%, NPN%, and NCP%; κ-CN, αS1-

CN, αS2-CN, β-CN, α-lac, β-Lg A and B, total casein contents and pH; TBC and 

PBC. 

The influence of those same effects was also investigated on parameters 

measured in the cheeses and whey produced. When the cheeses were considered 

the experimental unit, the response variables were: Y%, %RECFAT, %RECPROT 

and composition after 7 days (fat, protein, moisture, salt, TS, S/M, MNFS, FDM 

and pH). When the whey produced was considered the experimental unit, the 

response variables were the fat and protein contents. 

Finally, the influence of those same effects and ripening time (14, 90 and 

180 days) on the parameters measured during the ripening of the cheeses 
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produced (experimental unit) was determined. The least square means of those 

effects were also calculated using the GAUSSIAN procedure in SAS 9.3 (SAS 

Institute Inc., Cary, NC). The response variables were: pH, pH 4.6-SN/TN, 

concentrations of amino acids (asp, thre, ser, glu, gly, ala, cys, val, met, ile, leu, 

tyr, phe, his, lys, tryp, arg and pro) and hardness. In the case of the pH, the 

analysis also included the data measured at 7 days of ripening. 

Residual checks were made to ensure that the assumptions of the analyses 

were met. The Tukey test (at 5% error probability) was used to compare the 

means for all variables. 

 

7.3. Results 

 

7.3.1. Milk composition 

 

The mean (± S.E.) composition parameters and pH measured in milk from 

the different treatments are shown in Table 7.1, as well as the effects of storage 

time, added protease activity and interaction between them. 

The mean (± S.E.) %N significantly decreased with increasing level of 

protease activity (C: 4.10, P1: 3.94 and P4: 3.91 ± 0.05%) (Table 7.1). The 

%NCN and %NCP of milk samples were also affected by added protease activity. 

However, the mean %NCN varied minimally, while the mean %NCP increased 

significantly with level of protease activity (Table 7.1). 

In relation to the casein fractions, none of the factors significantly affected 

the level of κ-CN; however, decreases in κ-CN levels with increasing level of 

protease added were observed (Table 7.1). The mean contents of β-CN, α-lac, β-

Lg A and B decreased significantly over storage time (Table 7.1). The significant 
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differences in α-lac and β-Lg A and B concentrations throughout storage time 

were considered minimal. 

The casein chromatograms of all milk samples, stored for up to 48 h, are 

shown in Figure 7.2. β-CN content decreased with increasing level of protease 

added. 

The pH of the milk samples was affected by storage time; however, the 

decreases observed over time were minimal. 

 

7.3.2. Microbiological counts in milk 

 

The mean TBC and PBC measured at 0 and 48 h in all milk samples, as 

well as the effects of storage time, added protease activity and their interaction, 

are shown in Table 7.2. The mean TBC increased significantly with added 

protease activity and storage time, while PBC increased significantly with storage 

time; it is noted that the enzyme preparation used was not pasteurised, and so may 

have contained live cells.  
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Table 7.1. Contents of nitrogen fractions, caseins and major whey proteins, and pH, in control (C) milk samples and milk samples 

inoculated with 0.15 (P1) and 0.60 (P4) U/ L stored for up to 48 h; significance of the main effects of storage time, protease activity 

and the interaction are indicated. 

Components 

Protease activity  Significance 

C P1 P4 
S.E. 

Storage 

time 

Protease 

activity 

Storage time*Protease 

activity 0 h 48 h 0 h 48 h 0 h 48 h 

%N 4.17 4.20 4.01 3.87 3.90 3.93 0.09 0.80 0.04 0.68 

%NCN 0.14 0.14 0.14 0.14 0.15 0.15 0.004 0.39 0.04 0.89 

%NPN 0.04 0.03 0.03 0.04 0.04 0.04 0.001 1.00 0.07 0.30 

%NCP 0.87 0.88 0.89 0.92 0.97 1.00 0.03 0.45 0.01 0.95 

κ-CN (µg/ µL) 7.68 6.97 6.75 6.35 5.97 5.82 0.34 0.09 0.06 0.56 

αS2-CN (µg/ µL) 5.15 4.72 4.61 4.50 4.82 4.63 0.20 0.30 0.42 0.12 

αS1-CN (µg/ µL) 15.03 14.10 14.02 13.92 15.22 14.33 0.38 0.83 0.32 0.05 

β-CN (µg/ µL) 15.12 14.15 14.05 12.74 14.10 11.63 0.38 0.0002 0.05 0.05 

α-lac (µg/ µL) 1.24 1.06 1.08 1.04 1.11 1.07 0.06 0.03 0.52 0.20 

β-Lg A (µg/ µL) 2.76 2.37 2.37 2.36 2.47 2.37 0.11 0.03 0.42 0.08 

β-Lg B (µg/ µL) 3.12 2.67 2.75 2.63 2.90 2.74 0.11 0.01 0.41 0.12 

Total casein (µg/ µL) 50.10 46.05 45.64 43.56 45.52 43.67 1.50 0.01 0.22 0.49 

pH 6.60 6.58 6.59 6.58 6.61 6.59 0.01 0.005 0.24 0.61 
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Figure 7.2. Separation of bovine milk caseins by reversed-phase HPLC (measured in absorbance units, AU). Chromatograms of (A) 

control milk samples and samples inoculated with (B) 0.15 and (C) 0.60 U/ L stored for up to 48 h are shown. 
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Table 7.2. Mean (± S.E.) total (TBC) and psychrotrophic (PBC) bacterial counts measured in control (C) milk samples and samples 

inoculated with 0.15 (P1) and 0.60 (P4) U/ L stored for up to 48 h, and significance of the main effects of storage time, protease 

activity and the interaction between them. 

Bacterial count 

(log10 cfu/ mL) 

Protease activity  Significance 

C P1 P4 
S.E. Storage time Protease activity Storage time*Protease activity 

0 h 48 h 0 h 48 h 0 h 48 h 

TBC 2.21 3.27 2.41 4.32 3.41 5.00 0.34 <0.0001 0.04 0.13 

PBC 2.13 3.32 3.25 4.51 4.02 4.78 0.54 0.007 0.17 0.73 
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7.3.3. Cheese yield 

 

The mean Y%, %RECFAT and %RECPROT obtained for all cheeses 

manufacture after 0 and 48 h of milk storage are shown in Table 7.3. The 

%RECFAT was affected by storage time (P = 0.03), while none of the factors 

affected the mean Y% or %RECPROT. 

 

7.3.4. Cheese and whey composition 

 

The effects of storage time, added protease activity and interaction 

between those factors on cheese and whey composition are shown in Table 7.4. 

Only the FDM content was affected by storage time. None of the factors 

influenced the fat and protein contents in whey. 

The mean (± S.E.) pH measured in the cheese samples from the different 

treatments and stored for 7, 14, 90 and 180 days are shown in Table 7.5. The pH 

of cheese was affected by ripening time (7 d: 5.13, 14 d: 5.16, 90 d: 5.21, 180 d: 

5.26 ± 0.03; P = 0.01) and treatment (C: 5.17, 5: 5.10, 20: 5.20 ± 0.02; P<0.001). 

The pH was not affected by storage time (P = 0.05), ripening time and storage 

time (P = 0.96), ripening time and treatment (P = 0.99), storage time and treatment 

(P = 0.10) and interaction between ripening time, storage time and treatment (P = 

0.99). 
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Table 7.3. Mean (± S.E.) cheese yield (Y%), fat recovery (%RECFAT) and protein recovery (%RECPROT) measured in control (C) 

milk samples and samples inoculated with 0.15 (P1) and 0.60 (P4) U/ L stored for up to 48 h, and significance of the main effects of 

storage time, protease activity and the interaction between them. 

Parameter 

Protease activity  Significance 

C P1 P4 
S.E. Storage time Protease activity Storage time*Protease activity 

0 h 48 h 0 h 48 h 0 h 48 h 

Y% 11.40 11.94 11.56 11.48 11.38 11.17 0.1 0.66 0.13 0.27 

%RECFAT 86.73 85.91 86.93 85.24 86.85 85.15 0.5 0.03 0.87 0.72 

%RECPROT 72.23 70.16 76.54 75.76 70.84 70.76 1.1 0.54 0.68 0.37 
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Table 7.4. Contents of fat, protein, moisture, salt, total solids (TS), salt-in-moisture (SM), moisture in the nonfat substance (MNFS), 

fat in dry matter (FDM) of the cheeses produced using control (C) milk and milk inoculated with 0.15 (P1) and 0.60 (P4) U/ L, and 

fat and protein contents in whey obtained during manufacture of Cheddar cheese; and significance of the main effects of storage time, 

protease activity and the interaction between them. 

 Protease activity  Significance 

 C P1 P4 
S.E. 

Storage 

time 

Protease 

activity 

Storage time* 

Protease activity Cheese 0 h 48 h 0 h 48 h 0 h 48 h 

Fat% 32.08 31.58 31.29 31.46 31.49 31.85 0.30 0.97 0.34 0.50 

Protein% 26.38 25.66 23.81 25.57 24.37 24.99 0.71 0.47 0.16 0.43 

Moisture% 34.76 35.82 36.00 36.21 35.74 35.69 0.51 0.39 0.41 0.62 

Salt% 1.39 1.45 1.28 1.29 1.42 1.31 0.06 0.83 0.21 0.50 

TS% 65.24 64.18 64.00 63.79 64.26 64.31 0.51 0.39 0.41 0.62 

SM% 4.03 4.06 3.55 3.57 3.99 3.69 0.23 0.69 0.22 0.75 

MNFS% 51.16 52.33 52.39 52.83 52.16 52.36 0.53 0.22 0.43 0.68 

FDM% 49.18 49.30 48.89 49.32 49.01 49.54 0.12 0.04 0.10 0.47 

Whey           

Fat% 0.32 0.35 0.32 0.32 0.31 0.35 0.02 0.31 0.82 0.67 

Protein% 0.92 1.06 0.96 1.18 0.92 1.22 0.09 0.09 0.47 0.84 
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Table 7.5. Mean (± S.E.) pH measured throughout the ripening (7, 14, 90 and 180 

days) of Cheddar cheeses produced using control (C) milk and milk inoculated 

with 0.15 (P1) and 0.60 (P4) U/ L and stored for up to 48 h. 

Protease 

activity 
Time (h) 

Ripening time (d) 

7 14 90 180 

C 
0 5.19 ± 0.30 5.20 ± 0.29 5.25 ± 0.26 5.29 ± 0.30 

48 5.05 ± 0.01 5.08 ± 0.00 5.11 ± 0.00 5.15 ± 0.00 

P1 
0 4.95 ± 0.01 5.00 ± 0.05 5.06 ± 0.05 5.11 ± 0.05 

48 5.10 ± 0.27 5.13 ± 0.27 5.18 ± 0.28 5.23 ± 0.28 

P4 
0 5.17 ± 0.19 5.18 ± 0.20 5.20 ± 0.22 5.25 ± 0.21 

48 5.17 ± 0.26 5.19 ± 0.30 5.20 ± 0.28 5.26 ± 0.26 

 

7.3.5. Proteolysis during cheese ripening 

 

The mean %pH 4.6 SN/ TN obtained for cheeses C, P1 and P4, throughout 

ripening time, are shown in Table 7.6. The mean nitrogen content quantified in 

those fractions was affected by ripening time (P<0.0001); however, level of added 

protease (P = 0.17), storage time (P = 0.71) or interactive parameters evaluated 

did not affect that parameter. 

The concentrations of all FAAs increased significantly over ripening time, 

with the exception of lys (Table 7.7). The mean concentrations of the FAA 

measured in all cheeses after 180 days of ripening are shown in Figure 7.3. 

Leucine and glutamic acid were the most abundant FAA quantified in all cheeses 

produced using milk stored for 0 and 48 h, with approximately 250 and 235 mg/ 

kg at 180 days, respectively, followed by phe, val, lys, hys and pro (approximately 

190, 110, 93, 90 and 74 mg/ kg of cheese, respectively) (Figure 7.3). 

The peptide peaks obtained for the pH 4.6-soluble fractions of the cheeses 

at 180 days of ripening were broadly similar (Figure 7.4). Differences were 
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observed in relation to the height of those peaks between samples, indicating 

possible quantitative but not qualitative differences in the levels of proteolysis in 

terms of relative concentrations of those peptides.  

 Electrophoresis indicated a progressive increase in the breakdown of αS1-

CN and β-CN throughout ripening time (Figure 7.5). The pattern of proteolysis 

over ripening was similar between cheeses manufactured using non-inoculated 

and inoculated milk after 0 h of storage. In contrast, an increase in the breakdown 

of β-CN with increasing levels of protease activity was observed in cheeses 

manufactured using milk stored with enzyme added for 48 h. The increase in the 

intensity of a band denoted by X, which is possibly a product of protein 

breakdown, also indicated increased proteolysis in cheese samples from treatment 

P4 manufactured after 48 h of milk storage. 

The hardness of the cheeses was affected by ripening time (14 d: 265.9, 90 

d: 225.6, 180 d: 127.7 ± 10.3 N; P<0.0001).  Hardness was not affected by storage 

time (P = 0.54), added protease activity (P = 0.13), interaction between ripening 

time and treatment (P = 0.73), interaction between storage time and treatment (P = 

0.61) and interaction between ripening time, storage time and treatment (P = 

0.98). 

 

 

 

 

 

 



 

273 
 

Table 7.6. Mean (± S.E.) levels of %pH 4.6 SN/TN (g/ 100 g) measured during 

ripening (14, 90 and 180 days) of cheeses produced with control (C) milk and 

milk inoculated with 0.15 (P1) and 0.60 (P4) U/ L and stored for up to 48 h. 

Protease activity Time (h) 
Ripening time (d) 

14 90 180 

C 
0 4.68 ± 1.33 14.74 ± 1.74 20.55 ± 0.56 

48 6.31 ± 0.23 17.45 ± 0.32 22.53 ± 0.56 

P1 
0 5.35 ± 1.92 16.55 ± 3.68 22.58 ± 4.07 

48 5.58 ± 0.97 15.97 ± 1.04 21.35 ± 0.71 

P4 
0 5.60 ± 1.24 16.74 ± 1.70 22.71 ± 0.66 

48 5.92 ± 1.71 15.99 ± 2.10 22.05 ± 1.13 
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Table 7.7. Significance of the main effects of storage time, protease activity, ripening time, interaction between storage time and 

protease activity, interaction between ripening time and protease activity and interaction between storage time, protease activity and 

ripening time on the content of free amino acids (asp, thre, ser, glu, gly, ala, cys, val, met, ile, leu, tyr, phe, his, lys, tryp, arg and pro) 

contents (mg/ kg of cheese) measured in the pH 4.6 soluble fractions of control (C) cheese samples and cheeses manufactured with 

milk containing 0.15 (P1) and 0.60 (P4) U/ L of protease activity. 

Amino acid 

(mg/ kg of cheese) 

Significance 

Storage time 
Protease 

activity 
Ripening time 

Storage time* 

protease activity 

Ripening time* 

protease activity 

Storage time*protease 

activity*ripening time 

asp 0.21 0.52 0.0007 0.26 0.60 0.27 

thre 0.60 0.49 0.002 0.37 0.24 0.13 

ser 0.54 0.67 0.01 0.39 0.67 0.59 

glu 0.85 0.84 0.03 0.28 0.92 0.34 

gly 0.91 0.83 0.02 0.37 0.59 0.21 

ala 0.77 0.81 0.006 0.36 0.33 0.11 

cys 0.11 0.18 <0.0001 0.95 0.74 0.89 

val 0.96 0.86 0.008 0.34 0.58 0.19 

met 0.98 0.82 0.0002 0.32 0.65 0.18 

ile 0.60 0.89 0.007 0.11 0.81 0.64 

leu 0.64 0.94 <0.0001 0.09 0.80 0.47 

tyr 0.20 0.20 <0.0001 0.50 0.45 0.85 

phe 0.60 0.47 <0.0001 0.55 0.40 0.77 
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Table 7.7. Continuation. 

Amino acid 

(mg/ kg of cheese) 

Significance 

Storage time 
Protease 

activity 
Ripening time 

Storage time* 

protease activity 

Ripening time* 

protease activity 

Storage time*protease 

activity*ripening time 

his 0.41 0.54 <0.0001 0.25 0.59 0.70 

lys 0.80 0.95 0.07 0.45 0.67 0.18 

tryp 0.30 0.73 <0.0001 0.19 0.71 0.69 

arg 0.31 0.32 <0.0001 0.51 0.50 0.83 

pro 0.21 0.52 0.0007 0.26 0.60 0.27 
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Figure 7.3. The effect of milk treatments on the mean levels of individual FAA in 

pH 4.6-soluble nitrogen extracts from Cheddar cheeses at 180 days of ripening. 

The charts correspond to cheeses produced using milk after (A) 0 h and (B) 48 h 

of storage. Data presented are means of data from 3 replicate trials. Error bars 

show the SEM from 3 replicate trials. 
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Figure 7.4. Reversed-phase UPLC profiles of peptides in the pH 4.6 soluble fraction of Cheddar cheeses manufactured using milk 

with added protease activity levels of (A) 0 (control), (B) 0.15 and (C) 0.60 U/ L, after (1) 0 and (2) 48 h of storage, at 180 days of 

ripening.  
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Figure 7.4. Continuation  
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Figure 7.4. Continuation  
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Figure 7.5. Urea-polyacrylamide gel electrophoretograms of Cheddar cheeses stored for 14, 90 and 180 days. Those cheeses were produced 

using control (C) milk and milk inoculated with 0.15 (P1) and 0.60 (P4) U/ L (lanes 1, 2 and 3, respectively) after 0 and 48 h of storage. Sodium 

caseinate (lane NaCn), loaded at an equivalent weight of protein (4.75 mg per lane) was included as an unhydrolysed casein control. Protein 

bands were identified according to Mooney et al. (1998) and McSweeney et al. (1994): 1 – β-CN(f106-209) (γ2); 2 – β-CN(f29-209) (γ1); 3 – β-

CN(f108-209) (γ3); 4 - β-CN; 5 – β-CN(f1-192); 6 – αS1-CN; 7 - αS1-CN(f102-199); 8 - αS1-CN(f24 – 199); 9 - αS1-CN(f121-199); 10 - αS1-

CN(f33-*).The band that increased intensity with protease concentration is denoted by X.  
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Table 7.8. Mean (± S.E.) hardness (N) measured during ripening (14, 90 and 180 

days) of Cheddar cheeses produced with control (C) milk and milk inoculated 

with 0.15 (P1) and 0.60 (P4) U/ L stored for up to 48 h. 

Protease activity Time (h) 
Ripening time (d) 

14 90 180 

C 
0 h 258.7 ± 51.7 226.5 ± 88.6 121.2 ± 28.0 

48 h 225.1 ± 51.8 211.0 ± 16.0 108.1 ± 13.6 

P1 
0 h 248.5 ± 76.4 210.4 ± 48.7 122.6 ± 40.4 

48 h 242.0 ± 90.1 221.6 ± 33.0 119.1 ± 13.4 

P4 
0 h 281.9 ± 97.5 225.1 ± 43.4 127.6 ± 19.7 

48 h 314.8 ± 125.0  244.9 ± 43.1 134.7 ± 36.0 

 

7.4. Discussion 

 

The slight decreases in %N and increases in %NCP with added protease 

activity level are an indication that the protease was active in the milk during 

storage. The increases in %NCP could be due to the amount of supernatant that 

were added to the milk, aiming to achieve a range of levels of protease activity. 

During the protease extraction, some of the NCP fraction of the RSMP could have 

also been separated in the supernatant.  

In relation to caseins, the addition of protease seemed to have mainly 

affected the mean β-CN and κ-CN contents over storage time (Table 7.1 and 

Figure 7.2). A difference of approximately 1.5 and 2.0 µg/ µL in the mean κ-CN 

and β-CN concentrations, respectively, were observed between samples C and P4. 

Similarly, Baglinière et al. (2013) reported that a thermo-resistant protease 

(AprX) produced by a Pseudomonas strain preferably hydrolysed β-CN, and 

Matéos et al. (2015) observed rapid hydrolysis of κ-CN and β-CN in similar 

proportions by AprX. However, other studies (Zhang et al., 2015; Zhang et al., 

2018) reported that thermo-resistant proteases produced by Pseudomonas strains 
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preferably hydrolyse κ-CN followed by β-CN. Those differences in results could 

be due to the methodology used to investigate hydrolysis or differences in the 

specificity of the protease isolated. β-CN, along with αS-CN, constitutes the basic 

microstructure of cheese and decreases in its concentration in milk could affect 

the rennet clotting of milk and curd formation (St-Gelais and Hache, 2004). 

In addition, the increase in the breakdown of caseins and whey proteins in 

milk with increasing level of protease activity over storage time could have 

resulted in the loss of amino acids or peptides into whey, which could have 

resulted in the increase in %N in whey samples over time as shown in Table 7.4. 

Decreases in %RECPROT with increasing level of protease added were also 

observed (Table 7.3) and could be due to the breakdown of proteins in milk 

during storage. 

The increases in TBC and PBC with added protease activity and over 

storage could be due to P. fluorescens cells in the supernatant used for 

inoculation; the initial TBC and PBC increased as the amount of supernatant 

added was increased to achieve experimental levels of protease activity in the 

milk samples. 

While the level of protease activity and storage time had little effect on the 

composition of milk and cheese, the statistical differences observed in the mean 

Y%, %RECFAT, %RECPROT and whey composition were also minimal (Tables 7.3 

and 7.4). Those results could also indicate that the protease had a low activity 

when subjected to the processing conditions (e.g., variations in pH). In addition, 

the composition of the cheeses produced were similar to the one obtained by 

Auldist et al. (2016) (moisture: 37.5%, fat: 31%, protein: 25.5%, salt: 1.70%, SM: 
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4.60%, FDM: 49.5%) and reported by Fox et al. (2017) (moisture: 37.2%, protein: 

25.4%, fat: 33.1%, salt: 1.80%, SM: 4.8%). 

The variations in the mean pH between treatments were considered small. 

After 7 days of ripening, the mean pH of the cheeses from each treatment varied 

from 4.95 to 5.15, which was within the ranges specified for Premium quality 

Cheddar as defined by Fox (1975) and Pearce and Gilles (1979). Furthermore, the 

pH of the cheeses increased approximately 0.1 unit after 180 d of ripening, which 

is as reported by Fox et al. (2004). The increase in pH during ripening is due to 

the formation of alkaline nitrogenous compounds and/ or catabolism of lactic acid 

(Fox et al., 2004).  

The pattern of proteolysis investigated in each experimental cheese 

(quantification of pH 4.6 SN/ TN, concentration of FAAs, peptide profiles, Urea-

PAGE electrophoresis) indicated that the protease added had minimal impact on 

proteolysis during ripening. 

The quantification of the pH 4.6 SN/TN is a measurement of proteolysis in 

cheeses, as this fraction contains the peptides resulting from casein breakdown 

(Hou et al., 2014). The magnitude of the increase in pH 4.6 SN/TN over ripening 

(from approximately 5.0% at 14 d to 22.0% at 180 d; Table 7.6) was similar 

between all cheeses and is in agreement with previous reports for Cheddar cheese 

(Fenelon et al., 2000, Wang et al., 2011, Hou et al., 2014). The progressive 

breakdown of the casein matrix during ripening also increases concentrations of 

FAAs (Fox, 1996), as was observed in all cheese samples in this study (Figure 

7.3). Fenelon & Guinee (2000b) and McCarthy et al. (2017) also observed high 

levels of leu, glu, phe, val, lys, hys and pro in Cheddar cheeses.  
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Storage time did not statistically affect the concentrations of each FAA in 

cheese; however, some trends in relation to ripening and added protease activity 

were observed. Cheeses P1 and P4, produced using milk stored for 48 h, had 

higher concentrations of glu, gly, ala, val, met, ile, leu, lys and pro than control 

cheeses. These increases in proteolysis in those cheeses could be related to the 

increase in bacterial counts with added protease activity that was observed in milk 

samples. Possibly, bacteria cells that remained in the milk after pasteurisation or 

Pseudomonas cells that were in the supernatant could have contributed to an 

increased concentration of enzymes in milk during storage, consequently 

increasing the proteolytic activity in the cheese produced with that milk. 

Concentrations of FAA are associated with the development of flavour in cheese 

(Fox et al., 2017) and the prolonged storage of milk containing high levels of 

proteolytic bacteria could affect the sensory quality of the product. 

Urea-PAGE electrophoretograms also showed a slight increase in 

proteolysis in cheese samples P4, manufactured after 48 h of milk storage, the 

increase in intensity of band X, above β-CN, was greater compared to other 

samples (Figure 7.5). Furthermore, the proteolysis between all cheese samples 

were similar independently of level of protease activity. During ripening, αS-CN is 

degraded more extensively than β-CN into smaller fragments by proteolytic 

enzymes (St-Gelais and Hache, 2004), as was observed in the 

electrophoretograms. 

The electrophoretograms obtained in Chapter 6 indicated that the protease 

potentially have a specificity, in relation to casein hydrolysis, similar to that of 

chymosin. This could explain the similarity between the peptide peaks obtained 

for control cheese samples and samples with added protease at 180 days of 
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ripening (Figure 7.4). In addition, the decrease in some of the peptide peaks could 

indicate that those could have possibly been further hydrolysed by the protease 

during ripening. 

Proteolysis is a determinant factor of the final texture and flavour in 

cheeses (Fox et al., 2017). As the levels of proteolysis were similar between 

samples, it is perhaps not surprising that the mean hardness values obtained for 

the cheeses from each treatment were also similar. The decrease in cheese 

hardness with ripening was expected. The softening of cheese texture during 

ripening is a result of the hydrolysis of the casein matrix, solubilisation of calcium 

in the early stages of ripening, and a decrease in the water activity of the curd  

(McSweeney, 2004; Fox et al., 2017). The latter occurs as a consequence of 

changes in water-binding by the carboxylic acid and amino groups formed on 

hydrolysis. The chemical composition of cheese (e.g., fat and moisture content) 

can also impact on the hardness of cheese during ripening. In addition, as reported 

by Lamichhane et al. (2019), hydrolysis of αs- and β-CNs influences the fracture 

stress and strain of cheeses, respectively. The decreases in hardness between 14 

and 180 d of ripening observed in this study were similar to decreases reported by 

McCarthy et al. (2016) and Hickey et al. (2017) for Cheddar-style cheeses 

(approximately 100 N). 

Finally, the results suggested that the protease was not extensively active 

in the cheese matrix. An azocasein test was carried out to investigate if the 

protease was transferred into the whey during manufacture of each cheese. The 

results of the test were not significantly different (0 h; C: 0.0653 ± 0.0645 nm, P5: 

0.0748 ± 0.0665 nm, P20: 0.0917 ± 0.0951 nm; 48 h, C: 0.0953 ± 0.1193 nm, P5: 

0.1739 ± 0.0454 nm, P20: 0.1468 ± 0.2049 nm; P>0.05), indicating that the 
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protease remained in the cheese matrix. The activity of thermo-resistant proteases, 

produced by Pseudomonas bacteria, is optimal at a pH value between 7 and 9 and 

at a temperature range between 30 and 45 ˚C (Martins et al, 2015). Therefore, the 

low pH and storage temperature of the cheeses could have affected the protease 

activity. Other cheese types are characterized by higher ripening temperatures and 

pH, such as Swiss cheese (stored at approximately 22 °C for 4 to 6 weeks), 

Mozzarella cheese (heated to 57 °C during stretching) and smear ripened cheeses 

(e.g., Camembert, which pH is approximately 7.0) (Fox et al., 2017), and may be 

more significantly affected if the protease is active in the matrix. 

 

7.5. Conclusion 

 

The levels of activity of the Pseudomonas protease tested had a minimal 

impact on the proteolysis levels in milk and Cheddar cheese produced. Processing 

and storage conditions of milk and cheese could have influenced the activity of 

the protease and, consequently, the manufacture and quality of the Cheddar 

cheeses produced were not affected. Independently of the added protease activity 

level tested, the composition and levels of proteolysis during ripening in all 

cheeses were similar and consistent with parameters expected for that type of 

product. The levels of protease activity tested seemed to have also not affected the 

quality of whey, a valuable by-product obtained in cheese manufacture. Therefore, 

the production of psychrotrophic bacterial proteases in milk during storage might 

not contribute to increase proteolysis in cheese to a certain extent. The prolonged 

storage of milk containing high levels of proteolytic enzymes indicated that higher 

levels of protease than tested could potentially affect proteolysis in cheese during 
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ripening. Further studies may be necessary to determine the effects of those higher 

concentrations on cheese and whey. 
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8.1. General summary 

 

Milk production in Ireland has been expanding as a result of the removal 

of milk quotas in 2015. In 2014, the reported milk production was 5 billion litres 

and it was projected to increase to 7.5 billion litres by 2020; however, this 

production had already been reached in 2018 (Central Statistics Office, 2019). 

This scenario is an opportunity for Irish dairy processors to expand its market 

worldwide; however, complying with international quality standards is critical to 

holding market share.  

The microbiological and compositional quality of raw milk are the main 

determinants of its processability and safety, and consequently have a major 

influence on the quality of dairy products. As a result, Irish dairy processors have 

been applying measures to improve the control of factors that can affect the 

quality of raw milk, such as penalising dairy suppliers when bacterial levels are 

higher than acceptable, monitoring farm management practices, and monitoring 

concentrations of residues originating from sanitation products.  

In the context of improving the quality of raw milk and dairy products, this 

thesis has generated knowledge in relation to milk production on-farm (storage 

and cooling conditions), processability of milk, as well as the impact of 

microbiological and compositional quality of raw milk on the quality of Irish 

dairy products of high commercial value (milk powder and Cheddar cheese). 

The enumeration of bacteria in raw milk samples from bulk tanks after the 

first milking was an approach that allowed an observation of the effect of initial 

microbiological count and storage temperature on the quality of raw milk during 

storage (Chapter 2). Milk obtained from only one milking was used as this milk is 

stored for longer compared to the milk added in bulk tanks from subsequent 
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milkings. The addition of fresh milk to bulk tanks everyday may also mask the 

effects of bacterial growth and enzymatic activity on raw milk (O’Connel et al., 

2016). Even though the study conducted was laboratory-based and did not 

represent a real farm scenario, it still showed an opportunity for improvement of 

the quality of Irish milk.  

Temperature is a parameter that has impact on the bacterial growth and 

consequently on the composition of milk during storage (Chapter 2). Cooling milk 

to 2 ˚C can allow the extension of storage with minimal impact in bacterial counts 

and breakdown of caseins and other proteins, while a small increase in the 

temperature to 4 ˚C can promote a considerable increase in those levels. Also, the 

maintenance of low temperatures throughout storage is more effective on 

preserving milk quality than pre-cooling milk (Chapter 3).  

Nevertheless, independently of temperature, the initial microbiological 

count in milk is the main limiting factor of storage time in bulk tanks and, 

consequently, is the main determinant of its quality (Chapter 2). High initial levels 

of total (TBC) and psychrotrophic (PBC) bacterial counts in raw milk (> 3.70 

log10 cfu/ mL) can reduce the effectiveness of storage temperature on reducing 

bacterial growth. Therefore, farm management practices are still the most 

important factor to determine microbiological quality of raw milk. The sanitation 

of milking equipment and parlor, hygiene during milking and cow management 

should be appropriately carried out (O’Brien, 2009; O’Connell, 2015; Vithanage 

et al., 2017).  

In Ireland, the effect of seasonality on farm production conditions also 

challenges dairy suppliers to consistently achieve low bacterial levels in milk 

throughout the year (Doyle et al., 2017). Appropriate equipment sanitation and 
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cow management are especially critical during late-lactation, which coincides 

with the period when herds are housed indoors due to winter conditions. 

Thermoduric and thermophilic bacterial counts can potentially be higher in milk 

produced during those months due to housing and poorer hygienic conditions 

(O’Connell, 2015; Doyle et al., 2017). Consequently, variations in the 

microbiological quality of milk can directly impact dairy products manufactured 

during different seasons. High bacterial counts in late-lactation milk, especially of 

microorganisms that survive high temperatures, can affect the effectiveness of 

thermal treatments in reducing those levels (Chapter 4). This could have 

implications in the safety of dairy products, particularly products for infants, as 

some thermoduric and thermophilic microorganisms can be pathogenic (Gleeson 

et al., 2013). Some examples are bacteria that belong to the Bacillus cereus group 

and sulphite-reducing Clostridia. Monitoring the microbiological load of milk 

throughout a dairy manufacturing process can be useful to identify the effect that 

different suppliers have on the overall quality of raw milk delivered to the factory, 

as well as, contamination points throughout the production line.  

The microbiological quality of raw milk is also of major importance to 

processors as thermo-resistant proteases can be produced by certain 

microorganisms, especially Pseudomonas fluorescens strains (Lopez-Fandino et 

al., 1993). Bacteria from the species P. fluorescens mainly comprise the 

population of psychrotrophs in milk, which are the main bacteria type to increase 

levels during storage and are possibly the main contributors to increases in 

proteolysis in milk (Chapter 2). The effects of the activity of their thermo-resistant 

proteases are well known in products subjected to high temperatures, such as 

gelation in UHT milk (Bagliniere et al., 2013; Zhang et al., 2018), however, they 
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can also affect the cheese making properties of milk (Chapter 6). Increasing levels 

of added protease activity increased the hydrolysis of β- and αS-caseins in milk 

over storage time. As a result, a softer coagulum was produced or the coagulation 

of milk was not possible, as β- and αS-caseins are related to the structure 

formation of the coagulum (Amenu and Deeth, 2007).  

In contrast, the levels of protease activity used during the pilot-plant 

experiment (0.15 and 0.60 U/ mL, Chapter 7) affected minimally the quality of 

milk and Cheddar cheese, as well as the manufacture of such product. Those 

results could be positive from the perspective of a cheese manufacturer; however, 

it is not known if the activity levels tested are representative of the levels that 

could be measured in raw milk supplied to factories. In Chapter 7, results 

indicated that further increases in the bacterial proteolytic activity during storage 

could have potentially affected proteolysis in Cheddar cheese during ripening. 

Therefore, considering those results and the potential effect that thermo-resistant 

proteases could have on cheese-making properties of milk (Chapter 6), it would 

be relevant to correlate PBCs in milk with levels of protease activity. 

Psychrotrophic bacterial counts could also be adopted as another quality indicator 

of raw milk supplied for processing. 

Variations in pH during Cheddar cheese manufacture, as well as the low 

storage temperatures, seemed to have influenced the activity of the protease 

(Chapter 7). Thus, investigations regarding the effect of other processing 

conditions on the protease activity would be relevant, considering that Irish cheese 

manufacturers have been exploring opportunities to diversify its products. Those 

studies could focus on cheeses that are stored at higher temperatures, such as 

Swiss cheese, which is stored at approximately 22 ˚C for 4 to 6 weeks, or cheeses 
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that have a high final pH, such as smear ripened cheeses (e.g., the pH of 

Camembert cheese is 7.0) (Fox et al., 2017; Hartmann et al., 2017). It would also 

be important to determine if higher levels of protease would have an effect on the 

composition of whey obtained during cheese manufacture. This information 

would be useful to processors, as whey became a high-value by-product in the 

international market, which is used for the production of a wide range of 

nutritional products. 

International markets are also setting stringent specifications regarding the 

concentrations of chlorine related residues (chlorate, CHLO; perchlorate, PCHLO 

and trichloromethane, TCM) in dairy products. Consequently, it became highly 

important to Irish processors to control those concentrations in raw milk, which 

has led to investigating sanitation practices that contribute to their increase. 

Monitoring residue concentrations throughout the manufacturing process of SMP, 

from individual suppliers until the final product, showed that production season 

also has an effect on those concentrations (Chapter 5). The concentrations of 

CHLO and TCM tended to be higher in late-lactation milk and, consequently, in 

the SMP and cream produced, respectively. Those differences could be due to 

changes in the sanitation practices adopted during summer and winter months. 

Therefore, the consistent use of appropriate sanitation practices during winter 

months is critical to control residue levels in raw milk. Changes in practices could 

have also affected the microbiological quality of milk supplied during winter 

(Chapter 4). New studies have been testing alternatives to reduce residue levels 

during processing, such as the use of microfiltration; however, it is still more 

effective from an economical point of view to control levels at the farm (Wang et 

al., 2013; McCarthy et al., 2018). 
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In addition, by monitoring the concentrations of CHLO throughout the 

manufacture of SMP, it was shown that some operations may cause a large 

increase in CHLO in dairy products (Chapter 5). The CHLO concentrations can 

increase approximately 50 times in SMP after evaporation and spray-drying. This 

information could be useful for processors to determine what should be the 

concentration of CHLO in the raw milk supplied to the factory. For example, in 

the case of the SMP manufacturing process, results indicated that CHLO levels 

should be lower than 0.0025 mg/ kg in raw milk to produce SMP with lower 

levels than the specification allow (0.100 mg/ kg). Those results also indicate that 

the use of chorate-based products and chlorinated water should be reviewed for 

the sanitation of processing equipment. Moreover, the prediction of residue 

concentrations in milk prior to processing, based on the volumes and 

concentrations in each milk volume supplied, could also be a useful tool to 

determine the quality of milk prior to processing.  

Levels of residual iodine in raw milk are another concern for the Irish 

dairy industry, as the consumption of excessive amounts can lead to dysfunctions 

in the thyroid gland (Leung & Braverman, 2014). The initial iodine concentrations 

in raw milk are the main determinants of the concentration in the final product, 

and therefore actions to control levels in milk should be focused on Irish farms 

(Chapter 5). The main factor to be monitored is the level of iodine supplemented 

to dairy herds, especially during early and late-lactation and during winter milk 

production (O’Brien et al., 2013). In addition, in the case of SMP manufacture, 

even though the levels in raw milk were lower than the required by the 

manufacturer (150 µg/ L), the levels in the SMP produced were higher than the 

required. Therefore, the limit iodine concentration in raw milk destined for milk 
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powder production should be lower than the current specification, which could 

possibly be decreased to 100 µg/ L.   

The continuous growth of Irish milk production and changes in electricity 

pricing systems have been also challenging dairy suppliers to sustainably increase 

the production and to produce high quality milk. The prolonged storage of milk 

on-farm may impact on production costs related to cooling, requiring alternatives 

to decrease energy usage (Upton et al., 2013). The operation of highest energy 

consumption on Irish dairy farms is cooling using bulk tanks and, therefore, the 

use of pre-cooling systems would be effective in substantially reducing the costs 

related to that operation (Chapter 3). Single-stage plate coolers are the systems 

which mostly decrease the energy usage compared to double-stage plate coolers. 

Energy requirements can be high when using a double-stage plate cooler as it 

requires an ice bank; however, this system could be useful on farms that already 

use an ice bank for cooling milk within bulk tanks. As electricity is one of the 

main contributors to production costs, alternatives for optimising energy usage 

on-farm may contribute to improvement of the cost competitiveness of Irish dairy 

products (Upton et al., 2013). 

In conclusion, the microbiological quality and composition of raw milk are 

still the main factors to pose challenges for dairy processors to ensure the 

consistent production of high quality and safe products. The present research 

explored opportunities for dairy suppliers to improve the quality of raw milk and 

increase production sustainably, as well as providing relevant information for 

processors on how the quality of raw milk can affect its processability and 

manufacture of milk powder and Cheddar cheese. 
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8.2. Proposals for further research 

 

 The following suggested studies would provide further understanding of 

the influence of microbiota and bacterial thermo-resistant proteases on the 

composition and processing properties of milk. In addition, further studies in 

relation to the use of different sanitation products could aid on ensuring the safety 

of dairy products, while studies using pre-cooling systems could aid on improving 

production costs on-farms. 

 Screening of the microbiota of milk from different Irish dairy farms 

during storage. The present research indicated that bacterial growth in 

raw milk was possibly affected by its microbiota, therefore, the 

suggested study would aid in understanding the dynamics of growth of 

different microbial strains during storage. Microorganisms that mainly 

increase in numbers during storage could be identified and 

characterised in relation to their proteolytic activity, as well as their 

possible effects on the composition of milk; 

 The present research indicated that the activity of the thermo-resistant 

protease tested was possibly affected by low storage temperatures or 

low pH obtained during Cheddar cheese manufacture. Therefore, it 

would be relevant to identify and characterise this protease regarding 

its activity when subjected to refrigeration temperatures and low pH 

ranges. This information could indicate what manufacturing processes 

and dairy products are more likely to be affected by the protease; 

 The levels of protease activity tested had a minimal effect on the 

composition of milk and Cheddar cheese; however, it is not known if 

those are representative levels of the protease activity that could be in 
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raw milk supplied to factories. A study could be conducted to 

determine the potential concentrations and activity of thermo-resistant 

proteases in raw milk containing different psychrotrophic bacterial 

counts. The production and activity of those proteases could be 

monitored in farm bulk tanks over storage time, as well as their effects 

on milk composition. This study could mimic the milking routines, 

storage time and temperature usually used on farms, and the selection 

of PBC could be based on levels usually measured in raw milk 

supplied to processors. A correlation between protease activity and 

PBC could also be established based on the results. This information 

could be useful for processors to determined what levels of PBC could 

affect the processability of milk and quality of dairy products. 

 In relation to CHLO and TCM residues, Irish processors are currently 

planning to ban the use of chlorine-based products on farms as a 

measure to avoid the formation of those residues in milk. However, 

chlorine-based products are widely used due to their strong bactericidal 

properties (Garcia-Villanova et al., 2010) and, therefore, it would be 

necessary to determine if non-chlorine products are as effective on 

reducing bacterial numbers in raw milk, especially pathogenic 

microorganisms. Dairy farms that supply milk to different processors 

and that are already using non-chlorine cleaning products could 

participate in this study. Raw milk samples from those farms could be 

analysed for several microorganisms and questionnaires regarding their 

cleaning routines could be applied. The results could aid processors in 
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identifying suppliers having difficulties to adapt their cleaning 

routines, as well as, identify the most effective non-chlorine products. 

 The present thesis indicates that pre-cooling systems would be efficient 

to decrease production costs on farms. However, those costs could also 

be affected if the monetisation of the public supply and waste water 

occurs in Ireland. Therefore, a study to identify opportunities for the 

reuse of water on farm would provide useful information for dairy 

farmers. A modelling of the influence of water reuse and pre-cooling 

systems on milk production costs could also be investigated. This 

would be relevant to demonstrate that the implementation of those 

alternatives to decrease energy and water usage can contribute to 

improving the cost competitiveness of Irish dairy products. 
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CHAPTER 3 - The effect of different pre-cooling rates and cold storage on milk microbiological quality and 

composition 
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CHAPTER 4 - Microbiological quality of milk from farms to milk powder manufacture: an industrial case 

study 

CHAPTER 5 - Monitoring residue concentrations in milk from farm and throughout a milk powder 

manufacturing process 
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Control of chlorate and trichloromethane residue levels in bulk 

tank milk 
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Chlorate (CHLO) and trichloromethane (TCM) residues are formed when 

chlorine-based sanitation products are used inappropriately for milking equipment 

cleaning. Those residues are a concern in milk powder and butter manufacture, 

respectively. The aim of this study was to measure CHLO and TCM in 67 farm 

bulk milk tanks during mid- and late-lactation, and to investigate the main factors 

that influence these residue levels in milk. The CHLO and TCM levels were 

assessed using gas chromatography and high performance liquid chromatography 

with tandem mass spectroscopy, respectively. Questionnaires regarding sanitation 

practices were completed on farms. Differences between lactation periods with 

regard to residue levels, and the effect of equipment cleaning practices on TCM 

and CHLO in milk, were calculated using the MIXED procedure in SAS 9.3. The 

median TCM levels in milk during mid- and late-lactation were significantly 

different (0.0005 mg/kg [CI: 0.0004 - 0.0006 mg/kg] and 0.0011 mg/kg [CI: 

0.0009 – 0.0014 mg/kg], respectively; P<0.0001), and were lower than the limit 

applied by butter manufacturers (0.0015 mg/kg). However, 6 and 21 farms in mid- 

and late-lactation, respectively, had TCM levels greater than that limit. In mid-

lactation, less milk samples had CHLO detected (14 samples [range: 0.0010 – 

0.0070 mg/kg]) compared to late-lactation (32 samples [range: 0.0010 – 0.6500 

mg/kg]). In mid-lactation, all of the samples had CHLO levels lower than the 

European default limit for milk (0.010 mg/kg); however, in late-lactation 5 

samples had CHLO levels greater than that limit. The higher levels of TCM and 

CHLO in late-lactation were associated with incorrect sanitation practices on-

farm: insufficient rinse water used after milking (P=0.03) and after the detergent 

wash (P=0.01) and detergent type used (P=0.010). Generally, less milk is stored in 

bulk tanks during late-lactation, due to the advancing stage of lactation; 

consequently, residue concentrations may be higher in late-lactation milk. This 

study highlighted production conditions that could be targeted to minimize TCM 

and CHLO levels in farm milk. 

Published as: Paludetti, L. F., Kelly, A. L., O’Brien, B. & Gleeson, D. (2018). 

Control of chlorate and trichloromethane residue levels in bulk tank milk. In: 69th 

Annual Meeting of the European Federation of Animal Science, August 2018, 

Dubrovnik, Croatia.  
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impact on milk powder quality 
 

Paludetti L.
1,2

, Kelly, A. K.
2
 and Gleeson, D.

1
 

1
Teagasc, Moorepark, Animal & Grassland Research and Innovation Centre, Fermoy, Co. 

Cork, Ireland; 

 
2
School of Food and Nutritional Sciences, University College Cork, Cork, Ireland. 

 

Abstract 

 

The microbial quality of bovine milk, produced on a pasture based system 

on 67 dairy farms, and its influence on milk powder quality were evaluated. The 

diet of the cows consisted mainly of perennial ryegrass with an additional 2.0 kg 

DM / cow / day of concentrates. Milk was sampled from farm bulk tanks, as well 

as from the 11 collection tankers, whole milk (WMS) and skim milk (SMS) silos. 

Skim milk powder (SMP) was also sampled. The average total bacterial count 

(TBC) for the farm milk samples was 3.78 ± 0.08 log10 cfu mL
-1

, which was 

similar to that observed in the tankers (3.90 ± 0.41 log10 cfu mL
-1

) and increased 

in the WMS (5.89 ± 0.02 log10 cfu mL
-1

). Pasteurisation decreased TBC (SMS: 

2.61 ± 0.20 log10 cfu mL
-1

), while evaporation and drying resulted in further 

reductions of TBC in SMP (2.36 ± 0.09 log10 cfu g
-1

). Thermal processes were not 

efficient in reducing thermoduric bacterial counts (LPC), which did not vary 

greatly from farm (0.90 ± 0.11 log10 cfu mL
-1

) to SMS (1.85 ± 0.10 log10 cfu mL
-

1
). In conclusion, milk of good microbial quality can be produced from grass-

based systems, resulting in high quality milk powder. 

 

Keywords: milk quality, milk powder, pasture-based systems, microbiological 

quality 

 

Introduction 

 

Ireland is the 10
th

 largest dairy exporter in the world, supplying dairy 

products to 130 countries. The Irish industrial milk production is currently 

expanding, due to the end of the milk quotas and to the increase in demand for 

dairy products worldwide. The maintenance of high milk quality is essential to 

hold market share and produce dairy products in accordance with specific quality 

parameters. On Irish dairy farms, pasture-based seasonal calving is the main milk 

production system, coordinating the peak of the lactation period and milk 

production with grass growth peak. Farming systems that are pasture-based can 

contribute to the production of milk with high fat content (due to a diet rich in 

fibre) and high protein content. Such milk is rich in fatty acids, vitamins and 

volatile compounds (flavours, terpenes) favourable to human nutrition and health. 

In this study, the microbiological quality and composition of milk produced from 
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pasture-based systems on 67 commercial dairy farms were evaluated and 

monitored throughout the milk powder manufacturing process, and the effect on 

the final product quality was evaluated. 

 

Materials and methods 

 

To undertake the manufacturing process within the factory, a minimum 

quantity of milk was required (296,003 L), which was supplied by a total of 67 

dairy farms during the mid-lactation period (May 2016). The dairy farms that 

participated in this study were located in the Kilkenny and Waterford regions of 

Ireland. The diet of the cows on the farms (Holstein-Friesian, 120 DIM) consisted 

mainly of perennial ryegrass with on average an additional 2.0 kg DM / cow / day 

of concentrates. The average milk volume collected from each farm was 4,418 L, 

which was stored in bulk tanks for an average of 48 h, prior to tanker collection. 

Collection tankers (11) transported the milk from the farms (approximately 6 

farms / tanker) to a commercial skim milk powder factory and the milk collected 

was stored in the whole milk silo (WMS) for approximately 5.5 h at 4.6 ˚C. Milk 

was then pasteurised (high temperature/ short time treatment), cream was 

separated and skim milk was stored in the skim milk silo (SMS). The skim milk 

underwent evaporation and a spray-drying process to produce skim milk powder 

(SMP) (21,940 kg). Milk samples were collected from the top inlet of the 67 farm 

bulk tanks, collection tankers (11) and the WMS and SMS. During the start, 

middle and final stages of the spray dryer run, 9 x 25 kg bags of powder were 

collected. A representative sample was collected from each bag (300 g) and 

reconstituted using deionised water (1:10 dilutions). All samples were tested for 

total bacterial count (TBC), psychrotrophic (PBC), proteolytic (PROT), 

thermoduric (Laboratory pasteurisation count – LPC), thermophilic (THERM), 

presumptive Bacillus cereus (BAC) and sulphite-reducing Clostridia (SRC) 

bacterial counts, as well as fat, protein and lactose contents were also measured in 

the samples. Somatic cell count (SCC) was measured in the all samples, except in 

the SMP samples. 

 

Results and discussion 

 

The TBC and PBC levels in the farm bulk tank milk samples varied from 

2.48 to 4.97 log10 cfu mL
-1 

and from 2.84 to 4.67 log10 cfu mL
-1

, respectively. The 

TBC levels were below the European limit (TBC: 5.00 log10 cfu mL
-1

, EC no 

853/2004) and below the typical limit applied by some Irish milk processors (4.70 

log10 cfu mL
-1

). Twelve farms had PBC levels higher than the European limit 

(PBC: 4.22 log10 cfu mL
-1

), possibly due to the milk storage temperature within 

the bulk tanks, as low temperatures are favourable for the growth of 

psychrotrophs. The average PROT was below the limit suggested by Vyletelova et 

al. (2000) (4.65 log10 cfu mL
-1

), at which proteolytic bacteria starts to produce 

high levels of heat-resistant enzymes. The LPC levels were below typical Irish 
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milk processor specifications and varied from 2.70 to 3.00 log10 cfu mL
-1

. Milk of 

good microbiological quality was produced on-farm, given that TBC, PBC, PROT 

and LPC are below the limits cited. The European legislation or dairy processors 

have no specifications for thermophilic bacteria in milk. The farm milk samples 

also had a low level of contamination with BAC (non-detected to 2.00 log10 cfu 

mL
-1

) and SRC (non-detected to 1.00 log10 cfu mL
-1

). The TBC, PBC, PROT and 

LPC levels in the collection tankers samples were also below the limits cited. The 

TBC, PBC and PROT levels were higher in the WMS than in the collection tanker 

samples, which could be due to the silo or transference equipment (pipes, pumps, 

filters) cleaning practices. The TBC was above the limit specified in legislation 

for milk prior to processing (5.48 log10 cfu mL
-1

; EC no 853/2004). The 

temperature applied during pasteurisation (75 ˚C, 25 s) was effective in 

significantly reducing the TBC, PBC and PROT levels, as observed in the SMS 

samples. The subsequent processing, where high temperatures were applied, also 

contributed to further reductions in those bacterial counts, as observed in the SMP 

samples (Table 1). The LPC and THERM levels were similar in the WMS and 

SMS samples, indicating that pasteurisation was not efficient in reducing those 

bacteria numbers, possibly due to the high temperatures applied, which are 

favourable for the growth of thermoduric and thermophilic bacteria; also, spores 

can survive high temperatures. The highest bacterial counts in the SMP samples 

were LPC and THERM; however, THERM counts were below the industrial limit 

applied in the USA for milk powder (4.00 log10 cfu g
-1

). The composition of the 

milk transported by the tankers was similar to the composition of the raw milk 

collected from the corresponding farms, and no differences were noticed in the 

WMS, as expected (Table 2). After cream separation, the fat content in the SMS 

samples decreased, while the protein and lactose contents remained the same 

(Table 2). The average SCC in the farm milk samples was 135 ± 73 x 10
3
 cells 

mL
-1

 (range: 36 to 342 x 10
3
 cells mL

-1
) and was below the European threshold 

limit (400 x 10
3
 cells mL

-1
). The average SCC in the tanker milk samples and 

WMS were similar: 139 ± 42 x 10
3
 cells mL

-1
 and 126 ± 3 x 10

3
 cells mL

-1
, 

respectively. The SCC decreased in the SMS samples (98 ± 8 x 10
3
 cells mL

-1
), 

possibly due to the separation of somatic cells with the cream. 

 

Table 1. Average (± SD) total (TBC), psychrotrophic (PBC), proteolytic (PROT), 

thermoduric (LPC) and thermophilic (THERM) bacterial counts of milk samples 

from the farm bulk tanks, collection tankers, whole milk silo (WMS) and skim 

milk silo (SMS), and of the skim milk powder (SMP) samples. 

Samples 
Bacterial counts (log10 cfu mL

-1
) 

TBC PBC PROT LPC THERM 

Farm bulk tanks 3.78 ± 0.08 3.74 ± 0.09 3.54 ± 0.17 1.26 ± 0.11 0.90 ± 0.11 

Collection tankers 3.90 ± 0.41 3.70 ± 0.55 3.64 ± 0.35 1.38 ± 0.44 1.43 ± 0.68 

WMS 5.89 ± 0.02 6.00 5.45 ± 0.62 1.55 ± 0.17 2.00 ± 0.14 

SMS 2.61 ± 0.20 2.00 2.00 1.69 ± 0.07 1.85 ± 0.10 

SMP
1
 2.36 ± 0.09 0.99 ± 0.48 1.24 ± 0.53 2.45 ± 0.09 3.63 ± 0.12 

1
Results given in log10 cfu g

-1
. 
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Table 2. Average (± SD) fat, protein and lactose contents of the milk samples 

from the farm bulk tanks, collection tankers, whole milk silo (WMS) and skim 

milk silo (SMS), and of the skim milk powder (SMP) samples. 

Samples Fat % Protein % Lactose % 

Farm bulk tanks 3.76 ± 0.05 3.44 ± 0.02 4.89 ± 0.01 

Collection tankers 3.76 ± 0.12 3.44 ± 0.06 4.90 ± 0.04 

WMS 3.85 ± 0.01 3.42 ± 0.01 4.88 ± 0.03 

SMS 0.08 ± 0.05 3.54 ± 0.01 5.08 ± 0.01 

SMP (reconstituted) 0.09 ± 0.03 3.45 ± 0.05 4.88 ± 0.08 

 

Conclusion 

 

Milk of good microbiological and compositional quality was produced 

from grass-based systems, contributing to the production of good quality milk 

powder. The differences in bacterial counts between production stages are 

indications of the growth potential of the bacteria in the milk, or even an 

indication of possible contamination sources. Also, the reduction of bacterial 

counts is an evidence of the effectiveness of pasteurisation. This study can aid 

industry in the development of new sanitation procedures, process controls or 

optimization of processes parameters and practices to control bacterial numbers, 

in order to ensure the consistent production of safe high-quality dairy products.  
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Application 

 

The consumption of excess iodine by humans is related to thyroid 

dysfunctions. Bovine milk is one of the main iodine sources for humans and 

therefore it is relevant to monitor on-farm factors that could contribute to high 

iodine levels in milk. 

 

Introduction 

 

Two major factors influencing milk iodine levels are (i) ingestion of iodine 

through animal feeds and (ii) application of teat disinfectants containing iodine to 

cows. Incorrect feeding management, such as utilisation of rations with higher 

levels of iodine than required or unnecessary supplementation, can result in high 

concentrations of iodine in milk. Borucki Castro et al. (2012) reported a linear 

relationship between dietary iodine content and milk iodine concentration. With 

regard to the use of iodine teat disinfectants, the incomplete removal of those 

products from the teat surface prior to cluster attachment can increase the risk of 

direct transfer of iodine to milk. Iodine may also be absorbed through the teat 

skin, with consequent effects on milk iodine levels. The British Agricultural 

Research Council, the German Society of Nutrition & Physiology and the US 

National Research Council recommend that the daily iodine consumption should 

be 10 to 12 mg/cow/day. The aim of this study was to investigate the 

concentration of milk iodine levels on Irish dairy farms during mid- and late-

lactation periods and identify the possible sources of this iodine in the milk. 

 

Material and methods 

 

This study was undertaken on 67 spring-calving dairy farms (herd size: 21 

to 469 cows), located in the Kilkenny and Waterford region of Ireland, during the 

mid- (June) and late- (October) lactation periods. Milk samples were collected 

from the top inlet of each of 67 bulk tanks using sterilised sample dippers, after 

appropriate agitation. Iodine was quantified through inductively coupled plasma 

mass spectroscopy, using an Agilent ICPMS 7700x system. Questionnaires were 
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completed on-farm, in which information on iodine content in animal feed and use 

of teat disinfectants containing iodine was captured. 

 

Results  

 

Average milk iodine levels on the 67 dairy farms were similar during the 

mid- and late-lactation periods: at 116 ppb (range: 10–561 ppb) and 109 ppb 

(range: 3–1121 ppb), respectively. During the mid- and late-lactation periods, 13 

and 12 farms, respectively, produced milk with iodine levels higher than 150 ppb, 

which is the target level for the production of milk powder. Among those farms, 5 

farms had high levels of iodine in both lactation periods. Milk iodine levels 

ranged between 178 and 561 ppb and between 154 and 1121 ppb on the farms 

with iodine levels higher than 150 ppb in the mid-lactation and late-lactation 

periods, respectively. The daily iodine intake from the dairy rations on a per cow 

basis on the farms that were higher than the 150 ppb limit varied from 31.8 to 100 

mg of iodine/cow/day (mid-lactation) and 75.0 to 87.5 mg iodine/cow/day (late-

lactation). It was not possible to observe a linear relationship between dietary 

iodine content and milk iodine concentration in the present study, given that the 

questionnaires did not cover other potential factors that could contribute to iodine 

levels in milk (e.g., boluses, addition of iodine to drinking water, mineral licks) 

and the contribution of grass. Regarding teat disinfection, in the mid- and late-

lactation period, 4 of the 13 farms and 2 of the 12 farms, respectively, were using 

iodine teat disinfectants. Those products were also used on other farms among the 

67 (mid-lactation: 3 farms; late-lactation: 3 farms); however, the iodine levels in 

their milk samples was lower than 150 ppb. 

 

 
Figure 1. Iodine levels in milk samples collected during the mid- and late-

lactation period on 67 dairy farms. 

Conclusion 

 

The concentration of iodine in Irish dairy rations is higher than necessary 

and combined with the misuse of iodine-based teat disinfectants will result in 

higher levels of iodine than required in milk destined for infant formula 

manufacture. 
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Application  

 

Pre-cooling milk prior to it entering the bulk tank is effective in rapidly 

reducing milk temperature and could be useful in reducing bacterial growth 

during storage, thereby preserving milk quality. 

 

Introduction  

 

Milk leaves the cow’s udder at approximately 35 ˚C, which is a favourable 

temperature for bacterial growth (Walstra et al., 2006). Therefore, milk cooling 

and refrigerated storage are necessary after milking, in order to reduce bacterial 

growth rates. An increase in bacterial counts in milk could result in hydrolysis of 

protein, fat and lactose, thus affecting milk processing characteristics and 

nutritional value. The pre-cooling of milk using plate heat exchangers (prior to 

entering the bulk tank) rapidly reduces milk temperature and also could rapidly 

reduce bacterial growth rates. The aim of this study was to investigate the effect 

of pre-cooling milk at different rates on the microbiological quality and 

composition of milk.  

 

Material and methods 

 

Spring-calving dairy cows (n=210) were milked in a 30-unit side-by-side 

milking parlour, twice daily over two three-week periods. The volume of milk 

collected during each milking was distributed equally into three identical bulk 

tanks (morning: 800 L/ tank; afternoon: 500 L/ tank), using shut-off valves to 

control the flow rate. Prior to the milk entering the bulk tanks, three pre-cooling 

treatments were applied: no plate cooler (NP), single-stage (SP) and double-stage 

(DP) plate cooler; which pre-cooled milk to 32.0 ± 1.4 ˚C, 17.0 ± 2.8 ˚C and 6.0 ± 

1.1 ˚C, respectively. In the SP treatment, milk exchanged heat with ground water 

(at approximately 15 ˚C). In the DP treatment, milk was pre-cooled in two stages: 

ground and ice-water (at approximately 0 ˚C) were used in the first and second 

stage, respectively. Milk was added to the bulk tanks twice daily for 72 h and 

stored at 3 ˚C. Milk line samples were collected to access the microbiological 
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quality of milk entering the tanks. After the initial morning milking, duplicate 

milk samples were collected from each bulk tank once the milk temperature 

reached 3 ˚C, corresponding to 0 h samples (one milking). The subsequent 

samples (24, 48 and 72 h) were collected prior to the addition of milk from the 

morning milkings of the following days, when the bulk tanks contained milk from 

2, 4 and 6 milkings, respectively. The samples were analysed for a range of 

bacteria, as well as composition and somatic cell count (SCC). The data were 

analysed using the MIXED procedure in SAS 9.3, with period (1 and 2), week (1, 

2 and 3), pre-cooling system (NP, SP and DP) and storage time (0, 24, 48, and 72 

h) as fixed effects. 

 

Results  

 

The average total bacterial count (TBC) for the milk line samples was 3.35 

± 0.29 log10 cfu/ mL, indicating that milk of good microbiological quality was 

produced. The TBC means at 0 h for NP, SP and DP were 3.55, 3.57 and 3.50 ± 

0.09 log10 cfu/ mL, respectively; while the psychrotrophic bacterial count (PBC) 

means were 3.11, 3.04 and 3.07 ± 0.11 log10 cfu/ mL, respectively. The bulk tanks 

that received the NP, SP and DP treatments cooled milk to 3 ˚C in 2 h, 1 h and 20 

min, respectively. The differences in cooling times were expected to affect the 

initial bacterial counts within each tank; however, there was no significant 

difference between treatments (P>0.05). The different pre-cooling treatments also 

did not affect any of the bacterial counts over the storage period up to 72 h 

(P>0.05). This could be due to the reduction of the blend temperature within each 

bulk tank as the volume of milk at 3 ˚C increased after each milking; 

consequently, the milk was cooled faster. However, after 72 h, numerical 

differences were observed between the bacterial counts in the milk volumes 

subjected and not subjected to pre-cooling. The TBC means at 72 h for NP, SP 

and DP were 3.90, 3.77 and 3.71 ± 0.09 log10 cfu/ mL, respectively; the mean 

PBC were 3.38, 3.28 and 3.25 ± 0.11 log10 cfu/ mL, respectively. The low 

bacterial growth rates also indicate that the storage temperature of 3 ˚C was 

effective in preventing an increase in bacterial numbers over the storage period. 

The pre-cooling treatments and storage time had no impact on milk composition 

(P>0.05). The average fat, protein, lactose and total solids were: 4.42 ± 0.08 %, 

3.58 ± 0.07 %, 4.78 ± 0.07 % and 13.38 ± 0.13 %, respectively. 

 

Conclusion  

 

The bacterial count and composition of milk are minimally impacted when 

the milk was stored at 3 ˚C for 72 h, whether the milk is pre-cooled or not; 

however, milk entering the tank should have good initial microbiological quality. 

Considering the numerical differences in bacterial counts between treatments at 

72 h, the use of the SP or DP pre-cooling systems is recommended to maintain 

low levels of bacteria and possibly reduce cooling energy costs. 
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Introduction 

 

Trichloromethane (TCM) and chlorate residues are formed in milk and 

dairy products when sanitation products containing chlorine are inappropriately 

used for cleaning milking and processing equipment. 

 

Aim 

 

To monitor TCM and chlorate concentrations in farm milk bulk tanks, and 

through the manufacturing stages to final product. 

 

Methods 

 

TCM and chlorate concentrations were measured in milk from 67 farm 

bulk tanks, 11 collection tankers that transported that milk to a factory 

(approximately 6 farms/tanker), whole milk silo (WMS) that stored milk from the 

tankers (300,000 L) and in a skim milk silo (SMS) after pasteurization and cream 

separation. Residues were also measured in powder collected at the start, middle 

and end of a spray dryer run. TCM levels were assessed using gas 

chromatography, while chlorate was quantified using High Performance Liquid 

Chromatography and Tandem Mass Spectroscopy. Milk powder samples were 

reconstituted in deionized water (1:10) to quantify TCM. Questionnaires were 

also completed on farms regarding sanitation practices. 

 

Results 

 

TCM and chlorate concentrations were above the detection limit suggested 

for raw milk in 6 (>0.0015 mg/kg) and 8 farms (>0.0010 mg/kg), respectively; 

suggesting incorrect sanitation practices. The average TCM and chlorate 

concentrations in farm milk were 0.0007 and 0.0006 mg/kg, respectively. The 

TCM level remained the same in tankers and WMS and decreased in the SMS 

(0.0001 mg/kg), indicating that TCM was separated with cream. Chlorate 

concentrations slightly increased in tankers (0.0008 mg/kg) and WMS (0.0010 

mg/kg) and remained the same in the SMS; however these averages are below the 

detection limit. Powder samples contained TCM and chlorate levels of 0.0001 and 
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0.057 mg/kg, respectively; the latter being lower than the suggested limit for 

infant formula (0.100 mg/kg).  

 

Conclusion 

 

This study highlighted production conditions that could affect residue 

concentrations in milk from farm level through the processing stages to powder 

manufacture. 
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The microflora population in milk is an important determinant of milk 

processability and functional properties, as well as organoleptic qualities, shelf 

life and safety of dairy products. The objective of this study was to monitor the 

microbiological quality of milk from individual dairy farms, during transport, in 

factory silos and in milk powder subsequently manufactured.  Milk was collected 

from 67 dairy farms by 11 tankers, which transported this blended milk to a 

factory, where milk was stored in a whole milk silo, pasteurised and skimmed, 

and used to produce milk powder. Milk samples were collected at each stage from 

farms to final product. Among the 12 microbiological analysis performed, 

samples were tested for: total bacterial count (TBC), psychrotrophic (PBC), 

thermoduric (LPC), thermophilic (THERM) bacterial counts and presumptive 

Bacillus cereus (BAC). Questionnaires were completed on farms in order to 

correlate hygiene and sanitation practices with the microbiological levels in milk. 

The average TBC and PBC for farm milks were 9,723 cfu/mL (range:450-80,000 

cfu/mL) and 31,368 cfu/mL (range:500-10
6 

cfu/mL), respectively, and those 

levels increased from farm to whole milk silo. The average TBC in tankers and 

whole milk silo samples were 1.2±1.2x10
4
 and 7.75±0.4x10

5
 cfu/mL, while PBCs 

were 1.3±2.7x10
4
 and 1.0x10

6
 cfu/mL respectively. After pasteurisation, TBC and 

PBC decreased to 450±238 cfu/mL and 50±58 cfu/mL, respectively. Evaporation 

and the drying processing stage contributed to the lower bacterial levels observed 

in milk powder (TBC: 233±49 cfu/g; PBC: 14±9 cfu/g).  After pasteurisation, no 

presumptive BAC colonies were identified; however the process was not efficient 

in reducing LPC and THERM, which did not vary greatly from farm to skim milk 

silo (LPC: 38±10 cfu/mL; THERM: 69±30 cfu/mL). Farms presented milks of a 

high microbiological quality and where inferior quality milk was observed this 

was related to inadequate cow and equipment cleaning protocols. This study can 

aid in monitoring sanitation practices and process controls to ensure manufacture 

of safe and high-quality dairy products. 

Published as: Paludetti, L. F., Kelly, A. L. & Gleeson, D. (2017). 
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Trichloromethane (TCM) is a residue in milk caused by the interaction of chlorine 

(hypochlorite) and milk. On the majority of farms in Ireland, the products used for 

cleaning milking equipment contain sodium hydroxide and sodium hypochlorite 

(detergent/steriliser). It is thought that incorrect use of these products and/or 

inadequate rinsing after washing may increase milk TCM levels. A detailed 

knowledge of the daily milking equipment cleaning practices on dairy farms is 

required in order to give effective advice to farmers on this issue. A survey of 

milking equipment cleaning procedures was conducted on 112 farms, previously 

identified as having milk containing TCM residue. The size of the water trough in 

the dairy was inadequate on 55% of farms and this is a key factor accounting for 

the insufficient water used for rinsing milking equipment after washing on 65% of 

farms. A minimum of 14 litres per milking unit is advised. Meanwhile inadequate 

rinsing of the bulk milk tank (after washing) was also identified on 30% of farms. 

Higher than the required volume of cleaning product was used for cleaning the 

milking machine and bulk milk tank on 18% and 26% of farms, respectively. 

Products with a high chlorine concentration (>3.5%) were used for cleaning bulk 

milk tanks on 16% of farms. Using cleaning products with >3.5% chlorine 

increase the likelihood of residues, particularly when rinse water volumes are 

inadequate. Even though an adequate chlorine concentration was present in all 

products used, additional chlorine was added to the wash solution on 15% of 

farms resulting in very high working solutions of chlorine. Reusing the cleaning 

solution more than once, using chlorine in a pre-milking rinse to sterilize 

equipment, and dipping clusters in a chlorine solution between individual cow 

milking’s all represent additional individual causes of high milk TCM. These 

practices were observed on 19%, 5% and 4% of farms, respectively. Overall, there 

were 14 incorrect cleaning procedures identified on the farms visited with the 

number of faults per farm ranging from one to seven. All of these incorrect 

practices must be addressed to ensure minimum residue levels in milk leaving the 

farm. 

Published as: Gleeson, D., O’Brien, B. & Paludetti, L. F. (2017). Changes 
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In Ireland, dairy companies are interested in increasing the storage time of milk 

intended for UHT processing, which is currently stored on-farm for 24 h before 

collection. However, investigations are required regarding the effects of the 

extended storage time on the raw milk quality. This study assessed the effects of 

storing 24 h milk (two milkings) for a further three days on the microbiological 

load. Raw milk samples were collected from bulk tanks on six dairy farms and 

stored at 4 ˚C for 96 h; total bacterial (TBC), psychrotrophic bacteria (PBC) and 

thermoduric (TC) counts were measured at 24 h intervals. The initial TBC and 

PBC were 1.0 x 10
4
 ± 0.3 x 10

4
 cfu/mL and 8.3 x 10

3
 ± 3.1 x 10

3
 cfu/mL, 

respectively. The TBC and PBC increased significantly (2.3 x 10
6
 ± 1.9 x 10

6
 

cfu/mL, P<0.05 and 2.7 x 10
6
 ± 1.9 x 10

6
 cfu/mL, P<0.01, respectively), after 72 

h.  TC did not change up to and including 96 h (P>0.05); however, counts higher 

than acceptable levels were observed for four farms (200-900 cfu/mL) over the 

storage period. Milk was collected during the housing period, in which 

contamination by spore-forming bacteria is more likely. Good farm management 

practices are required to ensure minimal contamination of milk with TC. The TBC 

and PBC levels after 72 h were within the specification required for raw milk 

destined for UHT (50,000 and 300,000 cfu/mL, respectively); indicating that the 

storage time of milk could be extended beyond 24 h. 

 

Published as: Paludetti, L. F., Kelly, A. L. & Gleeson, D. (2016). Influence of 
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Abstract
In this study, the effect of storage temperature (2 or 4°C) on the composition of milk and microbiological load was 
investigated over 96 h. Milk samples were collected from farm bulk milk tanks after one complete milking and stored 
at 2 or 4°C over 96 h. Total bacterial count (TBC), psychrotrophic bacterial count (PBC) and proteolytic  bacterial count 
(PROT) were affected by storage time and temperature and varied significantly between farms (P < 0.05). The levels of TBC, 
PBC and PROT bacterial count increased from 4.37 to 6.15 log cfu/mL, 4.34 to 6.44 log cfu/mL and 3.72 to 4.81 log cfu/
mL, respectively, when the milk was stored for 96 h at 2°C. The milk samples stored at 4°C had higher increases in these 
bacterial counts after 72 h in comparison to milk samples stored at 2°C. The casein fraction content was lower in milk 
samples stored at 4°C, which could be due to high levels of PROT bacteria or enzyme activity in these samples. Milk stored 
for 96 h at 2°C has less impact on composition or processability parameters compared to milk stored at 4°C.

Keywords
cold storage • dairy microbiology • proteolysis • raw milk quality

Introduction

The Food and Agriculture Organization of the United Nations 
(OECD/FAO, 2016) reported that the demand for milk and 
milk products is increasing worldwide, mainly due to rising 
incomes, population growth and changes in diets in developing 
countries; according to their report, milk production is expected 
to increase by 20% by 2025 worldwide. This expansion could 
result in the extension of milk storage time on farms beyond 
the current 48 h period practiced for most of the year in some 
countries. On considering prolonging storage of milk on farms 
or within the processing plant, it is necessary to evaluate how 
extended storage of milk at low temperatures could affect 
milk quality. Milk composition and microbiological load are 
important factors to consider when evaluating quality, due 
to their influence on milk processability, nutritional quality, 
dairy product quality and safety (Malek dos Reis et al., 
2013). The most relevant bacterial groups for determining 
milk quality are counts of mesophilic bacteria, psychrotrophic 
bacteria, lipolytic (LIP) bacteria, proteolytic (PROT) bacteria, 
thermoduric bacteria [laboratory pasteurisation count (LPC)) 
and thermoduric-psychrotrophic bacteria (LPC-PBC).
Total bacterial count (TBC) and psychrotrophic bacterial count 
(PBC) are laboratory tests that allow for quantification of 
mesophilic and psychrotrophic bacteria (growth temperature 

†Corresponding author: David Gleeson

E-mail:  David.Gleeson@teagasc.ie

of ≤7°C; Frank and Yousef, 2004) in milk, respectively. These 
tests are used to assess or monitor the sanitary and storage 
conditions during production, collection and handling of raw milk 
(Harding, 1995; Robinson, 2002). Hygienic milking conditions 
are vital to ensure high initial microbiological quality; however, 
milk storage conditions (i.e., temperature) can also influence 
bacterial growth. Some psychrotrophic bacterial strains can be 
classified as LIP or PROT bacteria, which can increase during 
milk cold storage, producing lipases and proteases, the action of 
which could affect milk functionality and also result in defects in 
dairy products such as rancidity and bitter flavours (Muir, 1996). 
Bacteria of the Pseudomonas genus are considered as one of 
the predominant psychrotrophic groups in raw milk with a high 
spoilage potential (De Jonghe et al., 2011; Machado et al., 2015).
Thermoduric and thermoduric-psychrotrophic bacteria are 
capable of surviving thermal treatments (i.e., pasteurisation), 
while the latter can also grow at low temperatures; consequently, 
they are capable of multiplying during different processing 
stages (Robinson, 2002; Fromm and Boor, 2004; Barbano et al., 
2006). These bacteria originate in the environment and could be 
present in feed, forage, bedding material, dust, faeces and soil, 
and, once in contact with cow’s teat skin, could contaminate milk 
(Gleeson et al., 2013).
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on grass. The farms were labelled as W, X, Y and Z, and the 
bulk tanks had milk only from the first milking. This milk was 
stored for <4 h, and therefore, samples analysed on the first 
day are referred to as 0 h samples. After agitation (1 min), 
one milk sample (1 L) was collected from the top of each bulk 
tank using a sterilised jug, transferred to a sterile bottle and 
transported to the laboratory at <4°C within 3 h. The samples 
were subdivided immediately after manual agitation to avoid 
unequal fat distribution due to fat separation in the original 
sample (Tamime, 2007). Each sample was subdivided into 
twenty 30 mL sterile bottles, which corresponded to four milk 
samples for each storage time (0, 24, 48, 72 and 96 h). In all, 
10 bottles from each sample were stored at 2°C, while the 
other 10 bottles were stored at 4°C. At 0, 24, 48, 72 and 96 h, 
one sample from each temperature was analysed in duplicate 
for bacterial counts, composition (fat, protein, lactose and total 
solid contents) and SCC. In addition, two extra milk samples 
out of the 1 L were separated for each farm and were stored 
at 2 and 4°C for 0 and 96 h, respectively, in order to quantify 
casein and nitrogen fractions and to obtain peptide profiles.

Microbiological analysis
Raw milk samples were tested in duplicate every 24 h for a 
range of bacterial groups. All the microbiological analyses were 
performed in accordance with the Standard Methods for the 
Examination of Dairy Products (Wehr and Frank, 2004). TBC, 
PBC, LPC and LPC-PBC were measured using Petrifilm, a 
ready to use medium (3 M; Technopath, Tipperary, Ireland), in 
accordance with the procedures described by Laird et al. (2004). 
The samples tested for LPC and LPC-PBC were pasteurised at 
63°C for 35 min, allowing extra time for samples to reach the 
required temperature (Frank and Yousef, 2004). Afterwards, 
the samples were cooled to 10°C in iced water before testing. 
The samples tested for TBC and LPC were incubated for 48 h 
at 32°C (Laird et al., 2004), while samples tested for PBC and 
LPC-PBC were incubated for 10 days at 7 ± 1°C (Frank and 
Yousef, 2004). The number of bacterial colonies present was 
counted using a Petrifilm plate reader.
LIP and PROT bacterial counts were performed by spread 
plating 100 µL of the appropriate dilutions on tributyrin agar 
with added glyceryl tributyrate (Sigma Aldrich, Dublin, Ireland) 
and on calcium caseinate agar with added skim milk powder 
(Merck, Darmstadt, Germany), respectively. The agar plates 
were incubated at 37°C for 48 h for both methods. LIP 
bacterial colonies were identified as colonies surrounded by 
a clear zone in a turbid medium, while the PROT colonies 
were identified as colonies surrounded by a clear zone in an 
opaque medium.

Composition and SCC
Raw milk sample composition and SCC were measured using 
a Fossomatic FC (Foss Electric, HillerØd, Denmark). Fat, 

Regarding milk composition, milk contains components 
of technological and nutritional importance (Walstra et al., 
2005). Milk fat is a high-value component, important for the 
manufacture of dairy products such as butter and cheese. Fat 
hydrolysis caused by lipases can result in undesirable flavours 
(i.e., rancid, butyric and bitter), as well as loss of functional 
properties of milk such as foaming and creaming ability during 
manufacture of butter (Shelley et al., 1987).
Milk proteins play critical roles in the physical stability and 
rheological properties of milk products. The main change in the 
protein system during cold storage is the migration of β-casein 
to the serum phase, which may impact on cheese production, 
resulting in losses of fat and curd fines in whey, prolonged 
clotting times and poor rennetability (Walstra et al., 2005). 
Proteolysis may also occur during cold storage, albeit likely 
slowly, due to endogenous enzymes (from psychrotrophic 
bacteria) or indigenous bovine enzymes. Indigenous 
proteinases in milk such as plasmin preferentially hydrolyse 
β-casein, α

s1-casein and αs2-casein (Crudden et al., 2005), 
resulting in defects in dairy products, such as bitterness in 
milk, gelation of ultra-high temperature processing (UHT) milk 
and reduction in yields of cheese (Datta and Deeth, 2003). 
Proteolysis and lipolysis can also be caused by indigenous 
enzymes in milk associated with somatic cells; several studies 
have reported that milk quality decreases with the increasing 
somatic cell count (SCC) in milk and consequent increased 
activity of lipases and proteases (Santos et al., 2003; Barbano 
et al., 2006; Wickstrom et al., 2009).
On farms, milk is added to bulk tanks at least twice every day; 
therefore, the last volume of milk added to the tank remains 
stored for a shorter period of time. Hence, any significant 
effect caused by enzyme activity, bacterial growth, storage 
temperature and time on the quality of milk over 96 h may 
not be detected due to the addition of fresh milk (Perko, 2011; 
Reche et al., 2015; O’Connell et al., 2016). Therefore, the 
present study focused on analysing bulk tank milk from the 
first complete herd milking, produced under different farm 
management conditions.
The aim of this study was to investigate the effect of milk 
storage temperature and time on the quality of raw milk by 
evaluating the microbiological load and composition when 
milk was stored under controlled laboratory conditions at 2 or 
4°C over 96 h.

Materials and methods

Sample collection
Milk samples were collected from bulk milk tanks of four 
autumn-calving dairy farms in the Cork region (Ireland) during 
the indoor period. The indoor period represents the first 
150 days of lactation, after which cows are managed outdoors 
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of caseins was used in this analysis, in which 50 µL samples 
were injected (in duplicate) onto the column and the flow rate 
was 0.50 mL/min.

Statistical analysis
Least square means for the main effects of storage time, 
temperature, farm, and their interaction were calculated using 
the MIXED procedure in SAS 9.3 (SAS Institute, 2016). The 
milk samples from the farms were the experimental units. 
The response variables were TBC, PBC, LPC, LPC-PBC, 
PROT bacterial count, LIP bacterial count, protein content, 
fat content, lactose content, total solid content, SCC, casein 
fractions (α

S1-casein, αS2-casein, κ-casein and β-casein; 
α-lactalbumin; β-lactoglobulin A and B) and nitrogen fractions 
(N, NPN and NCN). The fixed effects included in each model 
were storage time (0, 24, 48, 72 and 96 h), farm milk samples 
(W, X, Y or Z) and temperature (2 or 4°C). Residual checks 
were made to ensure that the assumptions of the analysis 
were met. Where appropriate, log transformation was used 
to correct distributional issues. The Tukey’s test (at 5% error 
probability) was used to compare the means for all variables. 
The correlations between TBC and PBC were assessed by 
applying Pearson’s correlation coefficient using the CORR 
(correlation) procedure (SAS, 2016). The GLM (generalised 
linear model) procedure was used to determine the regression 
relationship between protein content and PROT bacteria.

Results

TBC
TBC was affected by storage time (P < 0.001), storage 
temperature (P < 0.01) and farm (P < 0.001), as well as by the 
interaction between temperature and time (P < 0.05; Table 1). 
Differences in initial TBC, as well as differences in the 
bacterial growth rates, were observed between milk samples 
(Figure 1A.1 and A.2). For example, the initial TBC in milk 

protein, lactose and total solid percentages were quantified. 
Raw milk samples were also analysed in duplicate to quantify 
the non-protein nitrogen (NPN), non-casein nitrogen (NCN) 
and total protein content (N) using the Kjeldahl method 
[methods 20-4 (IDF, 2001), 29-1 (IDF, 2004a) and 20-3 (IDF, 
2004b), respectively], using a Tecator Digestor Auto and 
Kjeltec 8400 distiller (Foss Electric). Milk samples stored for 
0 and 96 h at 2 or 4°C were selected for these analyses.
High-performance liquid chromatography (HPLC) was used 
to quantify the casein content (in triplicate) and to obtain 
peptide profiles. To quantify the casein content, an aliquot 
of 200 µL of each milk sample was diluted in 3,780 µL of 
dissociating buffer (7 M urea and 20 mM Bis-tris propane, 
pH 7.5), to which 20 µL/mL of mercaptoethanol was added 
before filtering through a 0.22-µm filter. The method described 
by Mounsey and O’Kennedy (2009) was applied to perform 
gradient elution and peak detection. The HPLC equipment 
used was an Agilent 1200s system (Agilent Technologies, 
Santa Clara, CA, USA) with a quaternary pump and a multi-
wavelength detector. The separation of the milk protein 
fractions was performed in the reversed-phase mode using 
an Agilent Poroshell 300SB C18 column (2.1 mm × 75 mm; 
Agilent Technologies).
The peptide profiles were obtained for samples, which 
showed significant differences in the casein content after 
96 h. Samples stored at 0 and 96 h had their non-protein 
fraction extracted using trichloroacetic acid, according to 
the extraction procedure described in the IDF method 20-4 
(Determination of Nitrogen Content) (IDF, 2001). To obtain a 
clear chromatogram, the extracts were not diluted but were 
filtered using 0.45 µm syringe cellulose filters (Ø 25 mm, 
Chromafil Xtra RC-45/25). The separation of milk peptides 
was performed in the reverse-phase mode using an Agilent 
Zorbax 300SB C8 column (4.6 mm ID × 150 mm; Agilent 
Technologies). The gradient elution and peak detection 
methodology was an adaption of the methodology of Rohm 
et al. (1996). The same HPLC equipment for quantification 

Table 1. The significance of the main effects of time, temperature, farm and the interaction between time and temperature and between farm 
and time on the total bacterial count (TBC), psychrotrophic bacterial count (PBC), lipolytic (LIP) bacterial count, proteolytic (PROT) bacterial 
count, thermoduric bacterial count [laboratory pasteurisation count (LPC)] and thermoduric-psychrotrophic bacterial count (LPC-PBC) of the 

milk samples from all farms
Bacterial counts P value

Time Temperature Time × temperature Farm Farm × time

TBC <0.001 <0.01 <0.05 <0.001 0.37

PBC <0.0001 <0.001 <0.001 <0.001 0.11

LIP <0.0001 0.17 0.01 0.15 <0.05

PROT <0.05 <0.01 <0.05 <0.001 0.86

LPC 0.71 0.13 0.50 <0.05 0.59

LPC-PBC 0.40 0.12 0.66 0.14 0.72
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Figure 1. (A) Total bacterial count (TBC), (B) psychrotrophic bacterial count (PBC), (C) proteolytic (PROT) bacterial count and (D) lipolytic 
(LIP) bacterial count over 96 h for milk samples W, X, Y and Z stored at (1) 2°C or (2) 4°C.
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cfu/mL, respectively); however, after 48 h, sample W had a 
PBC >7.00 log cfu/mL, while sample Z reached that level 
after 96 h (Figure 1B.2). In this study, TBC was correlated 
with PBC, r(40) = 0.90983, P < 0.0001.

LIP and PROT bacterial counts
The LIP and PROT bacterial counts were significantly affected 
by storage time (P < 0.0001 and P < 0.05, respectively; 
Table 1) and by the interaction between time and temperature 
(P = 0.01 and P < 0.05, respectively; Table 1). Similar to 
TBC and PBC, storage at 2°C resulted in lower increases 
in LIP and PROT bacterial counts over 96 h in comparison 
to samples stored at 4°C (Figure 2A and B). Only PROT 
bacterial count was significantly affected by temperature  
(P < 0.01; Table 1), as shown in Figure 2A and B. The initial 
LIP bacterial counts were similar between farms (P > 0.05), 
while the PROT bacterial count had a significant variability 

samples from farms W and Z were similar (3.93 ± 0.06 log 
cfu/mL and 3.88 ± 0.06 log cfu/mL, respectively), and these 
samples had a similar TBC after 96 h when stored at 2°C 
(Figure 1A.1); however, samples stored at 4°C had different 
TBCs after 72 h, corresponding to 5.84 ± 0.06 log cfu/mL and 
>7.00 log cfu/mL, respectively (Figure 1A.2).

PBC
The PBC was significantly affected by farm (P < 0.001), 
time (P < 0.0001) and temperature (P < 0.001); there was 
an interaction between time and temperature (P < 0.001; 
Table 1) but no interaction between farm and time (P > 0.05; 
Table 1). Similar to the TBC results, differences between the 
initial PBC levels, as well as differences in the growth rates 
over 96 h, between the farm milk samples were observed 
(Figure 1B). For example, samples from farms W and Z had 
similar initial PBC (3.76 ± 0.07 log cfu/mL and 3.80 ± 0.09 log 

Figure 2. Average of the total bacterial count (TBC), psychrotrophic bacterial count (PBC), lipolytic (LIP) bacterial count and proteolytic 
(PROT) bacterial count over 96 h for milk samples from four dairy farms (W, X, Y and Z) stored at (A) 2°C and (B) 4°C.
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Figure 21. Average of the Ttotal bacterial count (TBC), psychrotrophic bacterial count (PBC), lipolytic (LIP) 

bacterial count and proteolytic (PROT) bacterial count over 96 h for milk samples from four dairy farms (W, X, 

Y and Z) stored at (A) 2 ˚C and (B) at 4 ˚C. 
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0.07% after 96 h, respectively. The lactose content remained 
the same over 96 h. The composition of milk samples was 
not affected by storage temperature. The fat (P < 0.05), 
protein (P < 0.0001), lactose (P < 0.001), total solids (P < 
0.001), κ-casein (P < 0.05), αS1-casein (P < 0.05), αS2-casein 
(P < 0.01), β-lactoglobulin A (P < 0.01) and β-lactoglobulin B  
(P < 0.001), total casein (P < 0.05), N (3.03%–3.30%) and 
NPN (0.026%–0.028%) contents (P < 0.01) varied between 
farm milk samples. The NCN content was similar between 
farms (0.10 ± 0.003%, P > 0.05).
Statistical analysis did not indicate significant changes in casein 
and nitrogen fractions over time or at different temperatures 
(P > 0.05, data not shown). The chromatograms presented in 
Figure 3A and B indicated decreases in the casein content in the 
milk samples from farms W and Z. The α

S1-casein and β-casein 
contents decreased in sample Z, as well as in sample W, with a 
decrease in k-casein content after 96 h. The chromatograms in 
Figure 4A and B indicated an increase in the concentrations of 
peptides in samples W and Z.

(P < 0.0001; Table 1). The growth rates of LIP and PROT 
bacteria varied among farm milk samples when stored at 4°C 
(Figure 1C.2 and D.2).

Thermoduric bacterial count and thermoduric-psychro-
trophic bacterial count
The LPC was not affected by storage time (P = 0.71), 
temperature (P = 0.13) or their interaction (P = 0.50; Table 1). 
However, the LPC was significantly different between farms 
(P < 0.05; Table 1), with initial counts varying from 2.11 to 
2.64 log cfu/mL (128–445 cfu/mL).
The LPC-PBC was not affected by time, temperature, farm 
or their interaction (P > 0.05; Table 1). The LPC-PBC levels 
varied from 0 to 1.40 log cfu/mL (25 cfu/mL).

Composition
The fat, protein and total solid contents of the milk samples 
were affected by storage time (P < 0.001, P < 0.0001 and P < 
0.001, respectively), which decreased by 0.04%, 0.01% and 

Figure 3. Separation of bovine milk proteins by reversed-phase high-performance liquid chromatography (HPLC). Chromatograms of samples 
(A) W and (B) Z stored at 4°C are shown. Full line (-) shows the 0 h sample; dashed line ( – –) shows the 96 h sample.
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level. According to Pantoja et al. (2012), when the TBC of raw 
milk is <5.00 log cfu/mL, it is assumed that pasteurisation will 
reduce TBC to safe levels, destroying all pathogenic and most 
non-pathogenic bacteria present in milk. After 96 h, samples 
stored at 2°C had a TBC lower than this limit (4.37 ± 0.32 log 
cfu/mL; Figure 2A); however, milk stored at 4°C reached 
a TBC of 5.47 ± 0.32 log cfu/mL after 72 h (Figure 2B). 
Therefore, applying the legislation and industry criteria, milk 
stored at 4°C would be unsuitable for processing after 72 h 
of storage, while milk stored at 2°C could have the storage 
period extended to 96 h and remained suitable for processing. 
This information could be relevant for the extended storage 
of milk on farms, as well as within a dairy plant, where milk is 
stored in silos prior to processing.
In a farm scenario, the addition of fresh milk to the bulk milk 
tank at least twice a day could result in bacterial counts different 
from bacterial counts reported for milk from a first milking only, 
stored for the same amount of time (Perko, 2011). While the 
present study could indicate that the storage of milk at 4°C 

SCCs
SCCs were different between farm milk samples (P < 0.001). 
The average (s.d.) SCC of the farms W, X, Y and Z were 
62 ± 4.1 × 103 cells/mL, 78 ± 6.2 × 103 cells/mL, 77 ± 4.2 × 
103 cells/mL and 214 ± 7.9 × 103 cells/mL, respectively. The 
levels of SCC were significantly affected by storage time (P 
< 0.01) but not by temperature (P > 0.05). The least square 
means for both temperatures (2 and 4°C) were 96,000 cells/
mL.

Discussion

TBC
According to European Regulation EC No 853/2004 (2004), 
TBC should be less than 5.00 log cfu/mL (1.00 × 105 cfu/
mL) when milk is destined for manufacture of dairy products. 
However, some milk processors apply a lower TBC limit (e.g., 
4.70 log cfu/mL or 5.00 × 104 cfu/mL) for raw milk at the farm 

Figure 4. Separation of bovine milk peptides by reversed-phase high-performance liquid chromatography (HPLC). Chromatograms of 
samples (A) W and (B) Z stored at 4°C are shown. Full line (-) shows the 0 h sample; dashed line ( – –) shows the 96 h sample.
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The TBC of raw milk is normally used as a major quality 
indicator by milk processors, while PBC is not considered 
as a quality parameter of raw milk. However, considering the 
positive correlation between TBC and PBC as well as that 
refrigerated storage conditions are favourable for the growth 
of psychrotrophic bacteria, it should perhaps be considered as 
a quality indicator. Hantsis-Zacharov and Halpern (2007) also 
observed a correlation between TBC (mesophilic bacterial 
count) and PBC that increased or decreased in a similar range 
in different seasons when milk was collected from bulk tanks, 
also indicating similar dynamics for the two bacterial groups.

LIP and PROT bacterial counts
According to Vyletelova et al. (2000), when milk is destined 
for manufacture of dairy products, PROT and LIP bacterial 
counts in milk should be less than 4.65 log cfu/mL. Milk 
samples stored at 2°C for over 96 h would be in accordance 
with this limit (LIP bacterial count: 3.77 ± 0.08 log cfu/mL; 
PROT bacterial count: 3.72 ± 0.19 log cfu/mL). However, 
PROT bacterial count reached 4.81 ± 0.19 log cfu/mL after 
96 h at 4°C, which is above the suggested limit, while LIP 
bacterial count was still below the limit (4.30 ± 0.08 log cfu/
mL) (Figure 2A and B).
The LIP and PROT bacterial growth rates were affected by 
storage conditions and varied among farm milk samples 
(Figure 1C.1 and C.2 and D.1 and D.2). This result highlights 
again the significance of differences in milk sample microbiota 
and their subsequent growth during storage. Celestino et al. 
(1996) also reported different growth rates of PROT and LIP 
bacteria in samples stored at 4°C over 48 h; initial PROT 
and LIP bacterial counts were 2.78 and 3.90 log cfu/mL, and 
counts after 48 h were 3.56 and 4.28 log cfu/mL, respectively. 
The increased rates are different on comparing this study to 
that of Celestino et al. (1996), probably due to differences in 
initial microbiota.

Thermoduric bacterial count and thermoduric-psychro-
trophic bacterial count
Statistical analysis indicated that LPC was not affected 
by time, temperature or their interaction, suggesting that 
thermoduric strains present in the samples could not grow 
at low temperatures. The initial LPC levels in the farm milk 
samples were below a typical industry LPC specification, 
which ranged from 2.70 to 3.00 log cfu/mL (500 to 1,000 cfu/
mL). Griffiths et al. (1988) also observed no significant increase 
in the LPC of milk stored for 72 h at 2°C. Different levels of 
thermoduric bacteria between farm milk samples suggest that 
the contamination level depends on the environmental and 
milking conditions on farms (Gleeson et al., 2013).
The low levels of LPC-PBC indicated that the milk samples 
were not considerably contaminated with this bacterial group. 
This result could be related to the hygiene practices adopted 

should be limited to 48 h, O’Connell et al. (2016) demonstrated 
that milk stored in farm bulk tanks at the same temperature for 
96 h (fresh milk added twice daily) had minimal deterioration of 
microbiological quality (3.68 log cfu/mL). However, the present 
study determines the effects possibly caused by enzyme activity 
or bacterial growth that would not be detected when fresh milk 
is added to the tank every day.
The differences in initial TBC observed between milk 
samples were considered relevant, indicating that samples 
had different microbiological qualities. Guinot-Thomas et al. 
(1995) suggested that bacterial counts are a reflection of 
the hygiene and sanitation practices at the farm level. Even 
though some of these initial TBCs were similar, the bacteria 
in the milk samples appeared to have different growth rates, 
as observed when comparing milk samples from farms W 
and Z that were stored at 2 and 4°C (Figure 1A.1 and A.2, 
respectively). These differences could be due to differences 
in the make-up of the milk microbiota, considering that there 
are a variety of strains within the mesophilic bacterial group 
that can survive and grow at different temperatures (Hantsis-
Zacharov and Halpern, 2007).

PBC
According to Griffiths (2010), the PBC limit in raw milk at the 
collection point should be in accordance with the ratio of 6:1 
(TBC:PBC). Therefore, based on the EU limit for TBC (5.00 log 
cfu/mL), the PBC limit should be approximately 4.22 log cfu/
mL. After 96 h, samples stored at 2°C had a PBC over that 
limit (4.34 ± 0.22 log cfu/mL; Figure 2A), while samples stored 
at 4°C were over that limit after 48 h (4.80 ± 0.50 log cfu/mL), 
reaching a PBC of 6.44 ± 0.22 log cfu/mL after 96 h (Figure 
2B). However, after 96 h, samples stored at 2 and 4°C may 
still be suitable, for example, for UHT, where milk is heated 
to a temperature >135°C, with a holding time of 2–5 s. Muir 
(1996) suggested that raw milk with a PBC of 6.70 log cfu/
mL should be rejected for UHT milk production, as high levels 
of psychrotrophic counts result in faster milk spoilage, which 
is due to the production of heat-resistant enzymes (Machado 
et al., 2017). Considering that the samples stored at 2°C had a 
PBC level considerably lower than 6.70 log cfu/mL after 96 h, 
the difference between the average PBC of these samples and 
the European threshold (4.22 log cfu/mL) can be considered 
to be not biologically relevant.
The differences in the initial PBC levels between the farm 
milk samples (P < 0.001; Table 1) could be due to differences 
in practices on each of the farms, which lead to different 
contamination levels. The different growth rates observed over 
96 h were probably due to variation in microbiota between 
samples. Similarly, Vithanage et al. (2016) observed that the 
same milk samples stored at different temperatures (2, 4, 6, 8 
or 10°C) showed significant differences in their microbiota and 
bacterial counts over time.

Unauthenticated
Download Date | 8/1/18 11:12 AM



60

Irish Journal of Agricultural and Food Research

enzyme activities could accumulate (Kelly and Fox, 2006).
The decrease in the casein fraction and whey protein content 
and increase in the peptide content in samples W and Z 
could also be related to the increase in the PROT bacterial 
population, which was statistically correlated with the protein 
content (P < 0.0001). Milk samples W and Z had the highest 
levels of PBC after 96 h, which were >7.00 log cfu/mL, and 
sample W had the highest level of PROT bacteria after 96 h 
(5.68 ± 0.01 log cfu/mL). According to Lewis and Deeth (2009), 
when levels of psychrotrophic bacteria in milk reach 6.00 log 
cfu/mL, the production of lipases and proteases begins. When 
the levels of PROT bacteria reach 4.65 log cfu/mL, proteases 
are also produced (Vyletelova et al., 2000). The PBC and 
PROT bacterial count of the other two milk samples (X and 
Y) stored at 4 and 2°C are below these levels, which could be 
the reason why casein fractions and whey protein levels did 
not vary (data not shown).

SCC
All SCCs of the farm milk samples were below the EU 
legislation threshold (400 × 103 cells/mL), also suggesting that 
cow management on these farms was appropriate (Smith, 
2002; Piccinini et al., 2006). The marginal difference in SCC 
between 96 h (89,000 cells/mL) and 0 h (98,000 cells/mL) 
is probably not relevant, and levels remained below the EU 
threshold during storage.

Conclusions

Mesophilic, psychrotrophic, LIP and PROT bacterial counts 
in milk are influenced by storage temperature, which 
consequently can influence the storage time of this milk. 
The initial microbiological counts in milk are influenced by 
farm management practices, which may impact on the milk 
bacterial growth during storage and possibly limit storage 
time. The results regarding proteolysis levels highlight the 
importance of considering PBC as an important milk quality 
parameter, due to the capacity of psychrotrophs to produce 
proteases. According to this study, milk could be stored at 2°C 
for 96 h with minimal quality deterioration, while storage at 
4°C would limit storage time to 48 h for processing of milk. In 

at the farms in this study, which may have prevented high 
levels of contamination. Similarly, Celestino et al. (1996) 
reported no significant increase in psychrotrophic spore-
former count in milk stored at 4°C for 48 h.

Composition
The decreases in the fat, protein and total solid contents are 
not considered technologically relevant (Guinee et al., 2000). 
The variations in milk composition between farms can be 
related to cow diet, breed, physiology and environment (Linn, 
1988).
The milk protein content measured includes the casein 
fraction, the whey protein fraction and the NPN fraction. The 
activity of enzymes in milk during storage could decrease 
the percentage of protein and increase the fraction of NPN 
in milk (i.e., amino acids and peptides) (Verdi et al., 1987). 
Hence, in order to detect possible changes in the proportions 
of these proteins over time and at different temperatures, 
casein and nitrogen fractions were quantified. Even though 
casein and nitrogen fractions did not vary significantly 
over storage time, technologically relevant changes were 
observed in the κ-casein, α

S1-casein and β-casein contents 
in milk samples stored at 4°C, affecting the total casein 
content (Table 2). Milk samples from farms W and Z showed 
the greatest decreases in the total casein content: 4.86 and 
1.34 g/L, respectively (data not shown), as also observed in 
the chromatograms in Figure 3A and B. The chromatograms 
presented in Figure 4A and B indicated protein breakdown 
in both samples after 96 h, through appearance of peptides. 
Datta and Deeth (2003) suggested that early eluting peptide 
peaks in HPLC chromatograms, produced using similar 
methods, are possibly related to bacterial proteolysis. 
However, in this study, the chromatograms from samples W 
and Z show the appearance and/or increase in peaks after 
20 min (Figure 4A and B), which are possibly characteristics 
of plasmin action (authors’ unpublished data). The peaks 
areas between 20 and 28 min increased 2.9 and 3.2 times in 
the 96 h chromatograms for samples W and Z, respectively, 
in comparison to the 0 h chromatograms (Figure 4A and B). 
The low temperatures applied during bulk tank milk storage 
are far from the optimum temperature for most enzymes; 
however, during a long storage period, products of these 

Table 2. Contents of casein fractions in samples stored at 2 or 4°C for 0 and 96 h
Temperature 

(°C)
Time 
(h)1

κ-casein 
(mg/mL)

αS1-casein
 (mg/mL)

αS2-casein 
(mg/mL)

β-casein 
(mg/mL)

α-lactalbumin 
(mg/mL)

β-lactoglobulin A + B 
(mg/mL)

Total casein 
(mg/mL)

2 0 4.74 11.43 1.68 10.90 0.85 3.58 33.20

96 4.66 11.43 1.72 10.93 0.86 3.48 33.08

4
0 4.69 11.39 1.69 10.89 0.83 3.46 32.96

96 4.40 11.12 1.64 10.12 0.85 3.44 31.65

1There is no statistical difference in the contents of casein fractions between 0 and 96 h and between samples stored at 2 or 4°C (P > 0.05).
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lipolytic traits. Applied and Environmental Microbiology 73: 7162–
7168.

Harding, F. 1995. “Milk Quality”. Blackie Academic and Professional, 
London, UK, page 166.

International Dairy Federation (IDF). 2001. “Standard 20-3: Milk-De-
termination of Nitrogen Content-Part 4: Block Digestion Method 
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tion, Brussels.

International Dairy Federation (IDF). 2004a. “Standard 29-1: Milk-
Determination of Casein-Nitrogen Content-Part 1: Indirect Method 
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Determination of Nitrogen Content-Part 3: Block Digestion Method 
(Semi-micro Rapid Routine Method)”. International Dairy Federa-
tion, Brussels.

Kelly, A.L. and Fox, P.F. 2006. Indigenous enzymes in milk: A syn-
opsis of future research requirements. International Dairy Journal 
16: 707–715.

Laird, D.T., Gambrel-Lenarz, S.A., Scher, F.M., Graham, T.E. and 
Reddy, R. 2004. Microbiological count methods. In: “Standard 
Methods for the Examination of Dairy Products”, 17th Edition (eds. 
H.M. Wehr and J.F. Frank), American Public Health Association, 
Washington, DC, USA, pages 153–186.

Lewis, M.J. and Deeth, H.C. 2009. Heat treatment of milk. In: “Milk 
Processing and Quality Management” (ed. A.Y. Tamime), Black-
well Publishing Ltd, United Kingdom, pages 168–204.

Linn, J.G. 1988. Factors affecting the composition of milk from dairy 
cows. In: “Designing Foods: Animal Product Options in the Mar-
ketplace” (eds. D.L. Call, C.E. Allen, H.A. Fitzhugh, R.H. Forsythe, 
R.D. Goodrich, S.M. Grundy, T. Hammonds, R.G. Hansen, N.W. 
Jerome, J. Kinsella, K.W. McNutt, G.C. Smith, V.C. Speer, J.H. 
Venable, W.J. Visek, and T.E. Wagner), National Academy Press, 
Washington, DC, USA, pages 224–241.

Machado, S.G., Bagliniere, F., Marchand, S., Van Coillie, E., Vanetti, 
M.C.D., De Block, J., and Heyndrickx, M. 2017. The biodiversity of 
the microbiota producing heat-resistant enzymes responsible for 
spoilage in processed bovine milk and dairy products. Frontiers in 
Microbiology 8: 1–22.

Machado, S.G., da Silva, F.L., Bazzolli, D.M.S., Heyndrickx, M., Cos-
ta, P.M. and Vanetti, M.C.D. 2015. Pseudomonas spp. and Ser-
ratia liquefaciens as predominant spoilers in cold raw milk. Journal 
of Food Science 80: M1842–M1849.

Malek dos Reis, C.B., Barreiro, J.R., Mestieri, L., Poscionato, M.A.F. 
and dos Santos, M.V. 2013. Effect of somatic cell count and mas-
titis pathogens on milk composition in Gyr cows. BMC Veterinary 
Research 9: 1–7.

Mounsey, J.S. and O’Kennedy, B.T. 2009. Stability of β-lactoglobulin/
micellar casein mixtures on heating in simulated milk ultrafiltrate 
at pH 6.0. International Journal of Dairy Technology 62: 493–499.

conclusion, careful management of milk storage temperature 
and time is critical to improvement of quality of dairy products.

Acknowledgement

The authors would like to acknowledge the farmers involved 
in this study, Jim Flynn for the guidance in the microbiological 
analysis and composition analysis, Bernard Corrigan for the 
guidance in the HPLC analysis and Jim Grant for the statistical 
analysis.

References

Barbano, D.M., Ma, Y. and Santos, M.V. 2006. Influence of raw milk 
quality on fluid milk shelf life. Journal of Dairy Science 89: E15–
E19.

Celestino, E.L., Iyer, M. and Roginski, H. 1996. The effects of refriger-
ated storage on the quality of raw milk. Australian Journal of Dairy 
Technology 51: 59–63.

Crudden, A., Fox, F.P. and Kelly, A.L. 2005. Factors affecting the hy-
drolytic action of plasmin in milk. International Dairy Journal 15: 
305–313.

Datta, N. and Deeth, H.C. 2003. Diagnosing the cause of proteolysis 
in UHT milk. Lebensmittel Wissenschaft and Technologie – Food 
Science and Technology 36: 173–182.

De Jonghe, V., Coorevits, A., Van Hoorde, K., Messens, W., Van 
Landschoot, A., De Vos, P., et al. 2011. Influence of storage condi-
tions on the growth of Pseudomonas species in refrigerated raw 
milk. Applied and Environmental Microbiology 77: 460–470.

Frank, J.F. and Yousef, A.E. 2004. Test for groups of microorganisms. 
In: “Standard Methods for the Examination of Dairy Products”, 17th 
Edition (eds. H.M. Wehr and J.F. Frank), American Public Health 
Association, Washington, DC, USA, pages 227–248.

Fromm, H.I. and Boor, K.J. 2004. Characterization of pasteurized fluid 
milk shelf-life attributes. Journal of Food Science 69: 207–214.

Gleeson, D., O’Connell, A. and Jordan, K. 2013. Review of potential 
sources and control of thermoduric bacteria in bulk tank milk. Irish 
Journal of Agricultural and Food Research 52: 217–227.

Griffiths, M. 2010. “Improving the Safety and Quality of Milk: Milk Pro-
duction and Processing”. Woodhead Publishing, Cambridge, USA, 
page 520.

Griffiths, M.W., Phillips, J.D., West, I.G., Sweetsur, A.W.M. and Muir, 
D.D. 1988. The quality of skim-milk powder produced from raw 
milk stored at 2°C. Food Microbiology 5: 89–96.

Guinee, T.P., Auty, M.A.E. and Fenelon, M.A. 2000. The effect of fat 
content on the rheology, microstructure and heat-induced function-
al characteristics of Cheddar cheese. International Dairy Journal 
10: 277–288.

Guinot-Thomas, P., Al Ammoury, M. and Laurent, F. 1995. Effects of 
storage conditions on the composition of raw milk. International 

Unauthenticated
Download Date | 8/1/18 11:12 AM



62

Irish Journal of Agricultural and Food Research

SAS. 2016. “Version 9.3”. SAS Institute Inc, Cary, NC, USA.
Shelley, A.W., Deeth, H.C. and MacRae, I.C. 1987. Review of meth-

ods of enumeration, detection and isolation of lipolytic microrgan-
isms with special reference to dairy applications. Journal of Micro-
biological Methods 6: 123–137.

Smith, K.L. 2002. A discussion of normal and abnormal milk based 
on somatic cell counts and clinical mastitis. Bulletin of the Interna-
tional Dairy Federation 372: 43–45.

Tamime, Y. 2007. “Structure of Dairy Products”. Blackwell Publishing 
Ltd, Oxford, UK, page 304.

Verdi, R.J., Barbano, D.M., Dellavalle, M.E. and Senyk, G.F. 1987. 
Variability in true protein, casein, non-protein nitrogen, and prote-
olysis in high and low somatic cell milks. Journal of Dairy Science 
70: 230–242.

Vithanage, N.R., Dissanayake, M., Bolge, G., Palombo, E.A., Yeager, 
T.R. and Datta, N. 2016. Biodiversity of culturable psychrotrophic 
microbiota in raw milk attributable to refrigeration conditions, sea-
sonality and their spoilage. International Dairy Journal 57: 80–90.

Vyletelova, M., Hanus, O., Urbanova, E. and Kopunecz, P. 2000. 
The occurrence and identification of psychrotrophic bacteria with 
proteolytic and lipolytic activity in bulk milk samples at storage in 
primary production conditions. Czech Journal of Animal Science 
45: 373–383.

Walstra, P., Wouters, J.T.M. and Geurts, T.J. 2005. “Dairy Technology: 
Principles of Milk Properties and Processes”. Marcel Dekker Inc, 
New York, USA, page 154.

Wehr, H.M. and Frank, J.F. 2004. “Standard Methods for the Exami-
nation of Dairy Products”. American Public Health Association, 
Washington, DC, USA, page 570.

Wickstrom, E., Persson-Waller, K., Lindmark-Mansson, H., Ostens-
son, K. and Sternesjo, Ã. 2009. Relationship between somatic cell 
count, polymorphonuclear leucocyte count and quality parameters 
in bovine bulk tank milk. Journal of Dairy Research 76: 195–201.

Muir, D.D. 1996. The shelf-life of dairy products: 1. Factors influenc-
ing raw milk and fresh products. International Journal of Dairy 
Technology 49: 24–32.

O’Connell, A., Ruegg, P.L., Jordan, K., O’Brien, B. and Gleeson, 
D. 2016. The effect of storage temperature and duration on the 
microbial quality of bulk tank milk. Journal of Dairy Science 99: 
3367–3374.

OECD/FAO. 2016. Dairy and Dairy Products . In: “OECD-FAO Ag-
ricultural Outlook 2016-2025”. Food and Agriculture Organiza-
tion of the United Nations. Available online: pages https://www.
oecd-ilibrary.org/agriculture-and-food/oecd-fao-agricultural-out-
look-2016-2025/dairy-and-dairy-products_agr_outlook-2016-11-
en [Accessed 13 April 2017], 12 pages.

Pantoja, J.C.F., Rosa, G.J.M., Reinemann, D.J. and Ruegg, P.L. 
2012. Sampling strategies for total bacterial count of unpasteur-
ized bulk milk. Journal of Dairy Science 95: 2326–2335.

Perko, B. 2011. Effect of prolonged storage on microbiological quality 
of raw milk. Mljekarstvo 61: 114–124.

Piccinini, R., Mirelli, M., Ferri, B., Tripaldi, C., Belotti, M., Dapra, V., 
Orlandini, S. and Zecconi, A.. 2006. Relationship between cellular 
and whey components in buffalo milk. Journal of Dairy Research 
73: 129–133.

Reche, N.L.M., Neto, A.T., D’Ovideo, L., Felipus, N.C., Pereira, L.C., 
Cardozo, L.L.,  Lorenzetti, R.G. and Picinin, L.C.A. 2015. Microbi-
al multiplication in raw milk stored in direct expansion bulk tanks. 
Ciencia Rural Santa Maria 45: 828–834.

Robinson, R.K. 2002. “Dairy Microbiology Handbook: The Microbiol-
ogy of Milk and Milk Products”. John Wiley & Sons, New York, 
USA, page 784.

Rohm, H., Jaros, D., Rockenbauer, C., Riedler-Hellrigl, M., Uniacke-
Lowe, T. and Fox, P.F. 1996. Comparison of ethanol and trichlor-
acetic acid fractionation for measurement of proteolysis in Em-
mental cheese. International Dairy Journal 6: 1069–1077.

Santos, M.V., Ma, Y. and Barbano, D.M. 2003. Effect of somatic cell 
count on proteolysis and lipolysis in pasteurized fluid milk during 
shelf-life storage. Journal of Dairy Science 86: 2491–2503.

Unauthenticated
Download Date | 8/1/18 11:12 AM

https://www.oecd-ilibrary.org/agriculture-and-food/oecd-fao-agricultural-outlook-2016-2025/dairy-and-dairy-products_agr_outlook-2016-11-en
https://www.oecd-ilibrary.org/agriculture-and-food/oecd-fao-agricultural-outlook-2016-2025/dairy-and-dairy-products_agr_outlook-2016-11-en
https://www.oecd-ilibrary.org/agriculture-and-food/oecd-fao-agricultural-outlook-2016-2025/dairy-and-dairy-products_agr_outlook-2016-11-en
https://www.oecd-ilibrary.org/agriculture-and-food/oecd-fao-agricultural-outlook-2016-2025/dairy-and-dairy-products_agr_outlook-2016-11-en


1921

J. Dairy Sci. 101:1921–1929
https://doi.org/10.3168/jds.2017-13668
© 2018, THE AUTHORS. Published by FASS Inc. and Elsevier Inc. on behalf of the American Dairy Science Association®. 
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

ABSTRACT

The objective of this study was to measure the effect 
of different milk cooling rates, before entering the bulk 
tank, on the microbiological load and composition of 
the milk, as well as on energy usage. Three milk pre-
cooling treatments were applied before milk entered 3 
identical bulk milk tanks: no plate cooler (NP), single-
stage plate cooler (SP), and double-stage plate cooler 
(DP). These precooling treatments cooled the milk to 
32.0 ± 1.4°C, 17.0 ± 2.8°C, and 6.0 ± 1.1°C, respec-
tively. Milk was added to the bulk tank twice daily for 
72 h, and the tank refrigeration temperature was set at 
3°C. The blend temperature within each bulk tank was 
reduced after each milking event as the volume of milk 
at 3°C increased simultaneously. The bacterial counts 
of the milk volumes precooled at different rates did not 
differ significantly at 0 h of storage or at 24-h intervals 
thereafter. After 72 h of storage, the total bacterial 
count of the NP milk was 3.90 ± 0.09 log10 cfu/mL, 
whereas that of the precooled milk volumes were 3.77 
± 0.09 (SP) and 3.71 ± 0.09 (DP) log10 cfu/mL. The 
constant storage temperature (3°C) over 72 h helped 
to reduce bacterial growth rates in milk; consequently, 
milk composition was not affected and minimal, if any, 
proteolysis occurred. The DP treatment had the high-
est energy consumption (17.6 ± 0.5 Wh/L), followed by 
the NP (16.8 ± 2.7 Wh/L) and SP (10.6 ± 1.3 Wh/L) 
treatments. This study suggests that bacterial count 
and composition of milk are minimally affected when 
milk is stored at 3°C for 72 h, regardless of whether 
the milk is precooled; however, milk entering the tank 
should have good initial microbiological quality. Con-
sidering the numerical differences between bacterial 
counts, however, the use of the SP or DP precooling 
systems is recommended to maintain low levels of bac-
terial counts and reduce energy consumption.

Key words: milk precooling, milk microbiological 
quality, energy, milk storage

INTRODUCTION

Milk cooling and refrigerated storage are necessary af-
ter milking to reduce bacterial growth rates. Milk leaves 
the udder at approximately 35°C, which is a favorable 
temperature for bacterial growth (Walstra et al., 2006). 
Thus, the microbial load could increase rapidly if milk 
is maintained at that temperature. According to Holm 
et al. (2004), cooling milk rapidly (below 6°C) is neces-
sary to avoid the multiplication of microorganisms, es-
pecially psychrotrophs, which can grow at refrigeration 
temperatures but have optimal and maximal growth 
temperatures at >15 and 20°C, respectively (Moyer and 
Morita, 2007). Thus, the precooling of milk (before it 
enters the bulk tank) could further reduce the bacterial 
growth rate. A further possible benefit of precooling 
milk is the reduction of energy costs on-farm (Murphy 
et al., 2013).

The equipment used to precool milk consists of plate 
heat exchangers incorporating stainless steel plates in a 
sandwich arrangement, in which milk and cooling water 
flow in opposite directions through the spaces between 
alternate plates (Wang et al., 2007). This system may 
have 1 or 2 cooling stages, in which well water and 
well and chilled waters are used in the first and second 
stages, respectively. O’Connell et al. (2016) observed 
only a minimal increase in milk bacterial count over 
time when fresh milk from each milking event was pre-
cooled using a single-stage plate cooler before being 
added to the bulk milk tanks twice daily.

Total bacterial count (TBC) is the main test used by 
milk processors to assess milk microbiological quality 
and it quantifies aerobic mesophilic bacteria in milk. 
In conjunction with TBC, the psychrotrophic bacterial 
count (PBC) is used to assess the hygiene quality of 
milk and is an indicator of hygiene conditions on-farm 
(Harding, 1995; Robinson, 2002). Milk cooling reduces 
the growth rate of mesophilic and psychrotrophic bac-
teria, the optimum growth temperatures of which are 
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between 20 and 45°C and <7°C, respectively (Frank 
and Yousef, 2004; Willey et al., 2008). Thermoduric 
and thermophilic bacteria are the other relevant groups 
of bacteria that are measured in milk. These bacte-
ria are important because they can survive thermal 
treatments such as those frequently applied in dairy 
processing to reduce bacterial numbers (e.g., pasteuri-
zation; Murphy et al., 1999; Robinson, 2002). The main 
sources of those bacteria are in the cows’ environment, 
because their vegetative cells and spores can be present 
in feed, forage, bedding material, dust, feces and soil 
(Scheldeman et al., 2005; Gleeson et al., 2013). Clos-
tridium perfringens and Clostridium botulinum are the 
pathogenic thermoduric bacteria of most relevance to 
the dairy industry because of their heat-resistant spores 
and toxins (Wrigley, 1994; Fernandes, 2009).

Some mesophilic, psychrotrophic, thermoduric, and 
thermophilic bacterial strains have the ability to pro-
duce lipases and proteases. These enzymes hydrolyze fat 
and protein, resulting in sensorial defects and altering 
the physico-chemical properties and processability of 
milk (Chen et al., 2003; Deeth, 2006). Lipolytic activity 
produces flavors described as rancid and bitter (Deeth, 
2006) and could, for example, result in loss of foam-
ing and creaming ability during butter manufacture 
(Shelley et al., 1987). Celestino et al. (1997) reported 
that reconstituted UHT milk powder manufactured 
using 4-d-old raw milk had rancid and bitter flavors 
compared with UHT milk powder produced using fresh 
raw milk, probably due to bacterial protease and lipase 
activity. Therefore, the control of bacterial numbers in 
milk helps to preserve milk functionality, allowing the 
production of a range of dairy products in accordance 
with specific quality parameters.

The aim of this study was to investigate the effect of 
precooling milk at different rates on the microbiological 
quality and composition of milk, as well as on energy 
usage. This study was conducted in a manner that 
mimicked on-farm milk production conditions: morning 
and evening milkings, similar milk storage conditions, 
and use or not of precooling systems.

MATERIALS AND METHODS

Experimental Design

This experiment was carried out in the dairy parlor 
at the Teagasc Animal and Grassland Research and 
Innovation Centre, Moorepark, Cork, Ireland. Spring-
calving dairy cows (n = 210) were milked in a 30-unit 
side-by-side milking parlor, twice daily over two 3-wk 
periods, with milking commencing at 0700 and 1430 h. 
Period 1 extended from June 13 to July 2, 2016, and 
period 2 extended from July 25 to August 13, 2016. 

Before milking, cows’ teats were washed and disinfected 
with chlorhexidine foam teat cleaner (Deosan Teat-
foam Advance AG104, Sealed Air, Johnson Diversey 
Ltd., Dublin, Ireland) and dried using individual paper 
towels. The milk was transferred from clusters through 
16-mm (internal diameter) milk tubes to a mid-level 
milk line (72 mm, internal diameter), with a milk lift 
of 1.5 m. The milk was collected in a receiver jar and 
pumped through a 48-mm stainless steel pipe, using 
a variable speed milk pump, to the bulk milk tanks 
(Figure 1). Once the milk flow rate dropped to 0.2 kg/
min, clusters were automatically removed, with a delay 
time of 20 s. A system to individually wash and disin-
fect each cluster between each individual cow milking 
(Cluster Cleanse, Dairymaster, Causeway, Kerry, Ire-
land) was used. After each milking, the milking equip-
ment was rinsed with water (14 L per milking unit), 
followed by a hot (75°C) liquid detergent sterilizer wash 
(Liquid Gold, Dairymaster) circulated for 8 to 10 min 
in the milk line. Following this, the milking equipment 
was rinsed twice, and the final rinse contained peracetic 
acid (0.3–0.5% concentration). An acid-descale (Extra-
strong descaler, Dairymaster) was incorporated into 
the wash regime before the detergent cycle once a week.

The volume of milk collected during each milking 
was distributed equally into 3 identical bulk milk 
tanks. The milk line for each bulk tank was fitted with 
shut-off valves, which were used to control the milk 
flow rate and guarantee an equal distribution of milk 
to the tanks. Each bulk tank had capacity of 4,000 L 
(Swiftcool, Dairymaster) and was fitted with a 5.5-Hp 
condensing unit. A screen on the front of each tank 
displayed the milk temperature, time, and milk volume. 
The milk was cooled to 3°C within the tanks and stored 
for up to 72 h from once the first milking entered the 
tank. Approximately 800 and 500 L of milk were added 
to each bulk milk tank during the morning and after-
noon milkings, respectively. At the end of each 72-h 
storage period, the milk was collected and the bulk 
milk tanks were washed using a hot detergent/steril-
izer wash (50°C). This was followed by a cold-water 
rinse and an additional rinse containing peracetic acid. 
An acid-descale wash product was used at every third 
wash.

Before entering the bulk tanks, the milk underwent 1 
of 3 precooling treatments: no precooling (NP), single-
stage (SP), or double-stage (DP) plate cooling (Figure 
1). In the NP treatment, the ground water line was 
closed; therefore, no precooling was undertaken in that 
treatment. In the SP treatment (37 plates), the milk 
exchanged heat with ground water at approximately 
15°C. In the DP treatment (45 plates), the milk was 
cooled in 2 stages; in the first stage, ground water was 
used (at approximately 15°C) and in the second stage, 



Journal of Dairy Science Vol. 101 No. 3, 2018

EFFECT OF PRECOOLING AND COLD STORAGE ON MILK QUALITY 1923

ice water (at approximately 0°C) was used. Ice water 
was produced in an ice bank, a system with external 
melting ice on a coil thermal storage unit with an in-
line coil array. In the NP, SP, and DP treatments, the 
milk entered the bulk tanks at average temperatures 
of 32 ± 1.4°C, 17 ± 2.8°C, and 6 ± 1.1°C, respectively. 
The temperature and volume of milk in each tank was 
recorded by an integrated system (Swiftcool, Dairy-
master) and transmitted via Global System for Mobile 
communications (GSM) technology to a computer over 
the two 3-wk trial periods. 

Milk Sampling

During each milking, a milk sample was collected 
from the milk line using a sterile Durham flask sur-
rounded by ice to assess the quality of milk entering the 
tanks. After the initial morning milking, duplicate milk 
samples (30 mL) were collected from each bulk tank 
once the milk temperature within each tank reached 
3°C, corresponding to 0-h samples (one milking). The 
subsequent samples (24, 48, and 72 h) were collected 
before the addition of each subsequent morning milk on 
subsequent days, when the bulk tanks contained milk 

from 2, 4, and 6 milkings, respectively. Before sample 
collection, the milk was agitated at 24 rpm for 1 min, 
and samples were collected from the top viewing inlet 
using sterilized sample dippers. Samples were trans-
ported to the laboratory in ice boxes, delivered within 
30 min of collection, and analyzed. One sample from 
each tank was used for microbiological analysis and the 
other for compositional analysis and SCC.

Microbiological Analysis

Immediately on delivery to the laboratory, raw milk 
samples collected every 24 h were tested in duplicate 
for a range of bacteria. All the microbiological analyses 
were performed according to the Standard Methods for 
the Examination of Dairy Products (Wehr and Frank, 
2004). The TBC, PBC, thermoduric (laboratory pas-
teurization count, LPC), and thermophilic (THERM) 
bacterial counts were estimated using Petrifilm aerobic 
count plates, a ready-to-use medium (3M, Technopath, 
Tipperary, Ireland). Samples tested for LPC were 
pasteurized at 63°C for 30 min, with an additional 5 
min that allowed time for the samples to reach the 
required temperature (Frank and Yousef, 2004); after 

Figure 1. Experimental setup using 3 precooling systems: no plate cooler, single-stage plate cooler, and double-stage plate cooler. GW = 
ground water.
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heating, the samples were cooled to 10°C in iced water 
before testing. Samples tested for TBC and LPC were 
incubated for 48 h at 32°C (Laird et al., 2004; Pantoja 
et al., 2009; O’Connell et al., 2016), whereas samples 
tested for PBC and THERM were incubated at 7 ± 
1°C for 10 d and at 55°C for 48 h, respectively (Frank 
and Yousef, 2004). We are aware that using Petrifilm 
plates at 7°C or 55°C is outside the validated range. 
However, a pretrial experiment for THERM indicated 
that, at the same dilution, plate count agar plates were 
uncountable due to bacterial colonies spreading over 
the surface of agar plates, whereas Petrifilm plates were 
countable (data not shown). In other studies, Petrifilm 
plates have been used for PBC at 7°C (Ramsahoi et al., 
2011). The number of bacterial colonies was assessed 
using a Petrifilm Plate Reader (3M, Technopath). 
The lipolytic bacterial count (LIP) was performed by 
spread-plating 100 μL of the appropriate dilutions on 
tributyrin agar with added glyceryl tributyrate (0.01 
mL/mL of agar prepared; Sigma Aldrich, Dublin, Ire-
land). The proteolytic bacterial count (PROT) was es-
timated by spread-plating 100 μL of the diluted sample 
on calcium caseinate agar with added skim milk powder 
(2.5 mg/mL of agar; Merck, Darmstadt, Germany). For 
both methods, samples tested were incubated at 37°C 
for 48 h. Lipolytic bacteria colonies were identified as 
colonies surrounded by a clear zone in a turbid medium, 
whereas proteolytic bacteria colonies were identified 
as colonies surrounded by a clear zone in an opaque 
medium.

The sulfite-reducing Clostridia count (SRC) was 
assessed by pour-plating 1 mL of diluted sample in 
iron sulfite agar and incubating plates under anaerobic 
conditions for 72 h at 37°C, in accordance with ISO 
standard 15213 (ISO, 2003). Presumptive SRC colonies 
were identified as black colonies.

Composition and SCC

Raw milk samples collected every 24 h had their 
composition (fat, protein, lactose, and TS contents) 
and SCC determined using a Fossomatic FC (Foss 
Electric, Hillerød, Denmark) within 24 h after arrival 
in the laboratory.

Peptide Profiles

Milk samples were collected from the bulk milk tanks 
at 0 and 72 h to obtain the peptide profiles. Trichloro-
acetic acid (TCA) was used to extract the nonprotein 
fraction of the milk samples, according to the extrac-
tion procedure described in IDF method 20-4 (IDF, 
2001). The extracts were not diluted but were filtered 
using 0.45-μm syringe cellulose filters (25 mm diameter, 

Chromafil Xtra RC-45/25, Macherey-Nagel, Dublin, 
Ireland). The HPLC equipment used was an Agilent 
1200s system (Agilent Technologies, Santa Clara, CA), 
with quaternary pump and multi-wavelength detector. 
A Zorbax 300SB column (4.6 mm internal diameter × 
150 mm; Agilent Technologies) was used to perform 
the separation of milk peptides. The gradient elution 
and peak detection methodology was an adaptation of 
the methodology of Rohm et al. (1996). Samples were 
injected onto the column (50 μL) in duplicate and the 
flow rate was 0.50 mL/min.

Assessment of Electricity Consumption

The energy consumption of each treatment, expressed 
in Watt-hours (Wh), was measured as the energy usage 
of each bulk milk tank when each of the precooling 
treatments was applied. For the DP treatment, the en-
ergy usage of the ice bank was also considered. Energy 
usage was assessed using energy analyzers (EM24 DIN) 
and Digi Connect wireless WAN cellular routers (Carlo 
Gavazzi Automation SpA, Lainate, Italy), which mea-
sured and transmitted the energy data, respectively. 
The cumulative energy usage was recorded every 1 min 
using the software program Powersoft (Carlo Gavazzi 
Automation SpA).

Statistical Analysis

This study was carried out following a Latin square 
design with repeated measures, in which samples were 
collected every 24 h, and each bulk tank (n = 3) re-
ceived a different precooling treatment (NP, SP, DP) in 
each week (n = 3). Each Latin square was conducted 
over two 3-wk periods.

Least squares means for the main effects of period, 
week, storage time, and precooling system, as well as 
the interaction between storage time and precooling 
system, were calculated using the MIXED procedure in 
SAS 9.3 (SAS Institute Inc., Cary, NC). The fixed ef-
fects included in each model were period (1 and 2), week 
(1, 2, and 3), precooling system (NP, SP, and DP), and 
storage time (0, 24, 48, and 72 h). Repeated-measures 
models were used to account for correlations between 
time points. Tank within week was considered the 
experimental unit. The response variables were TBC, 
PBC, LPC, THERM, PROT, LIP, SRC, SCC, and fat, 
protein, lactose, and TS contents. Residual checks were 
made to ensure that the assumptions of the analysis 
were met. Where appropriate, log-transformation was 
used to correct distributional issues. The Tukey test (at 
5% error probability) was used to compare the means 
for all variables.
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RESULTS AND DISCUSSION

Microbiological Analysis

During the first milking occasion on the first day of 
each trial week, a milk sample was collected from the 
milk line before distribution of the milk to each bulk 
tank. The average (± SD) TBC of those milk samples 
was 3.35 ± 0.29 log10 cfu/mL, indicating that milk of 
good microbiological quality was produced. The TBC 
least squares means of milk samples from each bulk 
tank collected at 0 h (after first milking) was 3.54 ± 
0.05 log10 cfu/mL. The similarity between the 2 TBC 
levels for those samples indicated that the precooling 
treatments did not affect the microbiological load and 
that milk of good microbiological quality entered each 
tank. The average (±SD) TBC of the milk line over 
72 h of storage and the 2 trial periods was 3.55 ± 0.26 
log cfu/mL. Good hygiene practices (e.g., teat prepara-
tion, individual cluster cleaning between milkings, and 
equipment wash routines) contributed to the high qual-
ity of the milk entering the bulk milk tanks.

The TBC levels at 0 h for NP, SP, and DP were 
3.55, 3.57, and 3.50 ± 0.09 log10 cfu/mL, respectively; 
the PBC least squares means were 3.11, 3.04, and 
3.07 ± 0.11 log10 cfu/mL; the LIP least squares means 
were 3.24, 3.26, and 3.28 ± 0.10 log10 cfu/mL; and the 
PROT least squares means were 3.20, 3.14, and 3.24 
± 0.07 log10 cfu/mL, respectively (Figure 2). The dif-
ferences in the time required to cool the milk to 3°C 
(within the bulk tanks) were expected to affect those 
initial bacterial counts of the milk volumes; however, 
the bacterial counts were not significantly different (P 
> 0.05). The NP, SP, and DP treatments precooled the 
milk to average (±SD) temperatures of 32.0 ± 1.4°C, 
17.0 ± 2.8°C, and 6.0 ± 1.1°C, respectively; and the 
average time taken to cool milk to 3°C within the bulk 
milk tanks on the first morning milking on each week 
was approximately 2 h, 1 h, and 20 min, respectively. 
Given the low initial bacterial counts, the difference 
in these bulk tank-cooling times was not sufficient to 
result in different bacterial levels at 0 h.

The different precooling treatments also did not af-
fect any of the bacterial counts over the storage time up 
to 72 h (P > 0.05, Table 1). The volume of milk stored 
at 3°C increased in each bulk tank after each milking, 
resulting in a decrease in the blend temperature within 
the tanks over time. After the first 2 milking occa-
sions, the milk volume produced at subsequent milk-
ings blended with a higher volume of milk previously 
cooled to 3°C; consequently, the milk was cooled faster 
than that from the first 2 milking events. Therefore, the 
maintenance of low temperatures within the bulk tanks 
did not allow for significant increases in bacterial num-

Figure 2. Effect of storage time and different precooling systems 
(● no plate cooler; ■ single-stage plate cooler; and ▲ double-stage 
plate cooler) on (A) total, (B) psychrotrophic, (C) lipolytic, and (D) 
proteolytic bacterial counts (±SD) in milk stored for 72 h.
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bers in the milk; consequently, the precooling system 
had no significant effect on bacterial counts over time. 
However, after 72 h, we observed a numerical differ-
ence between the bacterial counts in milks subjected to 
different precooling treatments (Figure 2). After 72 h, 
TBC and PBC (least squares means) in milk that was 
not precooled were 3.90 ± 0.09 and 3.38 ± 0.11 log10 
cfu/mL, respectively. The SP milk precooled had TBC 
and PBC (least squares means) of 3.77 ± 0.09 and 3.28 
± 0.11 log10 cfu/mL, and that precooled using DP had 
similar TBC and PBC: 3.71 ± 0.09 and 3.25 ± 0.11 
log10 cfu/mL, respectively.

Storage time affected TBC, PBC, and PROT (P = 
0.004, P < 0.001, and P = 0.03, respectively, Table 
1), which were 3.54 ± 0.05, 3.07 ± 0.06, and 3.19 ± 
0.04 log10 cfu/mL at 0 h; and 3.79 ± 0.05, 3.30 ± 0.06, 
and 3.36 ± 0.04 log10 cfu/mL after 72 h, respectively 
(least squares means across precooling treatments). 
The increases in TBC and PBC were not considered 
biologically relevant because both were well below the 
European thresholds determined in document EC no 
853/2004 [European Commission, 2004; TBC: 5.00 
log10 cfu/mL (1.00 × 105 cfu/mL); PBC: 4.22 log10 cfu/
mL (16,666 cfu/mL)] and typical TBC limits applied 
by some milk processors [e.g., 4.70 log10 cfu/mL (5.00 
× 104 cfu/mL)]. The least squares means of PROT 
and LIP levels at 72 h (3.36 ± 0.04 log10 cfu/mL and 
3.34 ± 0.06 log10 cfu/mL, respectively) were also not 
considered relevant as both were well below the limit 
suggested by Vyletelova et al. [2000; 4.65 log10 cfu/
mL (44,668 cfu/mL), for each]; those authors suggested 
that LIP and PROT should be below this level to avoid 
the production of heat-resistant hydrolytic enzymes 
when milk is destined for dairy product manufacture, 
because such enzyme activities could result in loss of 
milk functional properties and sensory defects.

The PBC was different between the 2 trial periods 
(1 and 2; P = 0.002, Table 1), whereas TBC and LIP 
varied between weeks (P = 0.02 and P = 0.005, respec-

tively, Table 1). Variations in bacterial population in 
milk at different periods could be related to the cows’ 
health status (e.g., mastitis) or different bacteria strains 
present in the cows’ environment (e.g., feed; Lafarge et 
al., 2004).

The LPC and THERM counts did not differ between 
periods and weeks, and storage time and precooling 
systems did not affect their levels (P > 0.05, Table 1). 
At 0 and 72 h, the least squares means of LPC were 0.80 
and 0.83 ± 0.11 log10 cfu/mL, whereas THERM counts 
were 0.85 and 0.64 ± 0.13 log10 cfu/mL, respectively. 
A typical industry LPC specification can range from 
2.70 to 3.00 log10 cfu/mL (500 to 1,000 cfu/mL), al-
though there are no European legislation thresholds or 
dairy processor specifications for thermophilic bacteria 
in milk. According to Byrne and Bishop (1991), some 
species of Micrococcus do not grow well on Petrifilm, al-
though those authors concluded that Petrifilm aerobic 
count plates are a suitable alternative to agar plates for 
determination of LPC. The SRC levels varied between 
0 and 1 log10 cfu/mL (10 cfu/mL), indicating a low 
level of contamination with those organisms. Because of 
the low incidence, we could not determine the influence 
of storage and production conditions on these bacteria.

The milk volumes stored in the 3 tanks had low 
bacterial growth rates, indicating that the storage 
temperature was effective in preventing an increase in 
bacterial numbers in the milk over the storage period. 
O’Connell et al. (2016) stored milk in bulk milk tanks 
for over 96 h at 2 or 4°C and observed similar results to 
this study. In that study, milk stored at 2 or 4°C for over 
72 h had average TBC, PBC, PROT, and LIP of 3.58, 
3.11, 2.94, and 2.91 log10 cfu/mL, respectively. As well 
as the storage temperature, the initial microbial load of 
the milk will influence the microbial load over storage 
(Guinot-Thomas et al., 1995). Therefore, milk entering 
the tank has to be of high microbiological quality to ob-
tain bacterial counts similar to those obtained after the 
storage period in the present study. Thus, to minimize 

Table 1. Significance of the main effects of period (2 × 3 wk), week (6 wk), storage time (72 h), and precooling 
systems (no plate cooler, single-stage plate cooler, and double-stage plate cooler), as well as the interaction 
between storage time and precooling system on bacterial counts of milk samples

Bacterial count1

P-value

Period Week
Storage  

time
Precooling  

system
Precooling system  
× Storage time

TBC 0.23 0.02 0.004 0.61 0.93
PBC 0.002 0.18 <0.001 0.68 0.99
LIP 0.08 0.005 0.05 1.00 0.96
PROT 0.30 0.05 0.03 0.77 0.92
LPC 0.82 0.42 0.20 0.71 0.38
THERM 0.79 0.08 0.70 0.12 0.69
1TBC = total bacterial count, PBC = psychrotrophic bacterial count, LIP = lipolytic bacterial count, PROT 
= proteolytic bacterial count, LPC = thermoduric (laboratory pasteurization) bacterial count, and THERM 
= thermophilic bacterial count.



Journal of Dairy Science Vol. 101 No. 3, 2018

EFFECT OF PRECOOLING AND COLD STORAGE ON MILK QUALITY 1927

bacterial growth in milk during storage, it is important 
that appropriate cleaning practices (for milking equip-
ment and cows) be carried out during milking.

Composition and SCC

The average (±SD) fat, protein, lactose, and TS con-
tents of the sample collected from the milk line after 
the first milk occasion (first day of each trial week) 
were 4.52 ± 0.26, 3.58 ± 0.09, 4.76 ± 0.18, and 13.36 
± 1.93%, respectively. After the first morning milking, 
the milk samples (0 h) precooled at different rates had 
average (±SD) fat, protein, lactose, and TS contents 
similar to those in the milk line sample: 3.49 ± 0.09, 
3.63 ± 0.06, 4.81 ± 0.06, and 12.53 ± 0.10% (NP treat-
ment); 3.48 ± 0.16, 3.62 ± 0.05, 4.82 ± 0.06, and 12.52 
± 0.17% (SP treatment); and 4.14 ± 0.22, 3.59 ± 0.07, 
4.76 ± 0.08, and 13.12 ± 0.21% (DP treatment), re-
spectively. These results, compared with the milk line 
results, indicate that the precooling treatments did not 
affect the milk composition as would have been ex-
pected. The differences in the fat contents noted could 
be due to fat distribution when sampling.

The precooling treatments had no effect on milk 
composition (P > 0.05), and storage time did not affect 
fat, protein, or TS content (P > 0.05). After the 2 
milking occasions on the first day, the contents of fat, 
protein, lactose, and TS (least squares means) were 4.41 
± 0.06, 4.59 ± 0.08, 5.78 ± 0.05, and 13.35 ± 0.07%, 
and after 72 h (6 milkings) were 4.44 ± 0.06, 4.58 ± 
0.08, 5.79 ± 0.05, and 13.41 ± 0.07%, respectively. The 
protein contents (least squares means) were different in 
the 2 periods (period 1: 3.55 ± 0.002%; period 2: 3.63 
± 0.002%, P = 0.0001) and between weeks (P = 0.02), 
ranging from 3.54 to 3.72%. The lactose content was 
also different between periods (period 1: 4.82 ± 0.002%; 
period 2: 4.74 ± 0.002%, P = 0.007). As fresh milk 
was transferred to the tanks every day, the composition 
of milk stored within the bulk tanks may have varied 
according to the content of components in the fresh 
milk added to the tank on each milking occasion. Those 
variations in milk composition could be related to cows’ 
physiology or days in milking (Linn, 1988). Also, the 
interval between milkings can affect milk composition, 
influencing the TS content of milk collected during the 
morning and afternoon (Ayadi et al., 2004).

The SCC between periods were statistically different 
(P = 0.003); however, there was a marginal difference 
of 36.6 × 103 cells/mL between periods 1 and 2, which 
is probably not biologically relevant. Furthermore, SCC 
in both periods (period 1: 115.9 × 103 cells/mL; pe-
riod 2: 152.5 × 103 cells/mL) were below the European 
Union legislation threshold (400 × 103 cells/mL).

Peptide Profiles

High-performance liquid chromatography was per-
formed to determine whether precooling treatments 
would result in different peptide profiles after 72 h of 
storage, thus indicating proteolysis. The chromatograms 
presented in Figure 3A, B, and C are an average of the 
chromatograms obtained for all milk samples precooled 
using the NP, SP, and DP systems, respectively, over 
the 2 periods. The chromatograms indicated no dif-
ference between the initial peptide concentrations in 
milk volumes precooled at different rates (0 h), no in-
crease in concentrations over time, and no appearance 
of peaks that characterize proteolysis. We also noted 
in those chromatograms the absence of peaks after 
20 min, indicating the lack of plasmin action, which 
hydrolyses β-, αS1-, and αS2-caseins into peptides and 
proteose-peptones (Crudden et al., 2005). Therefore, 
the application of different precooling treatments did 
not affect proteolysis levels in the milk.

The peptide peak at 15 min (unknown) is the only 
peptide whose concentration varied over 72 h and we 
observed only small differences between treatments for 
that peak. However, the variation in the concentration 
of this peptide could be caused by the addition of fresh 
milk to the tanks, the composition of which could vary, 
as previously mentioned. The low levels of proteolysis 
observed might be due to the low levels of proteolytic 
bacteria in the milk, which did not reach a level suf-
ficient for significant production of proteolytic enzymes 
(4.65 log10 cfu/mL; Vyletelova et al., 2000). The low 
storage temperature applied over the storage period 
could have been effective in reducing the growth rate 
of proteolytic bacteria and is far from the optimum 
temperature for most enzymes (Kelly and Fox, 2006).

Energy Consumption

When the NP and SP treatments were used, the av-
erage energy usage (±SD) of the bulk tanks was 16.8 
± 2.7 and 10.6 ± 1.3 Wh/L of milk, respectively. The 
energy usage for the NP treatment was higher than 
that for the SP treatment because milk entered the 
bulk tank at a higher temperature (32.0 ± 1.4°C) and 
the compressor running time was longer to achieve the 
required storage temperature. For the DP treatment, 
the average energy usage (±SD) of the bulk milk tank 
and ice bank was 4.0 ± 0.5 and 13.6 ± 0.2 Wh/L of 
milk, respectively (total energy usage was 17.6 ± 0.5 
Wh/L of milk).

Considering the similar bacterial counts between the 
precooling treatments and the energy usage of each 
treatment over the 72-h storage period, the SP system 
would achieve low levels of bacterial counts over storage 
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time and lower energy usage rates compared with the 
DP treatment. Energy usage was higher for the DP 
system than for the SP system because of the energy 
requirements to produce ice. However, this system 
could be recommended for farms in which an ice bank 
system is already being used for cooling milk within the 
bulk tank.

The energy consumption of each treatment is within 
the ranges reported by Shine et al. (2018), who sur-
veyed 58 Irish commercial dairy farms regarding energy 
consumption at milking. In that study, the average 
(±SD) energy usages reported were 12.68 ± 5.20, 10.54 
± 2.55, and 14.94 ± 5.45 Wh/L for NP, SP, and DP 
systems, respectively. The variation in results between 
studies could be due to the age of the bulk tanks, the 
size of the tanks, and how they were installed. The ice 
bank energy usage in the present study was similar to 
average usage reported in a survey of 25 Irish com-
mercial dairy farms (13.0 Wh/L; Murphy et al., 2013) 
and similar to the average value reported by Upton et 
al. (2013; 19.2 Wh/L, range: 16.0–21.8 Wh/L).

CONCLUSIONS

The microbiological load of milk precooled at dif-
ferent rates did not differ statistically at 0 h or over 
the 72 h of storage, indicating no significant difference 
between the precooling treatments. No technologically 
relevant variations were observed in milk composition, 
and no considerable enzymatic activity was observed, 
possibly because of the good microbiological quality of 
the milk. This study suggests that the bacterial count 
and composition of milk are minimally affected when 
milk is stored at 3°C for 72 h whether the milk is pre-
cooled or not; however, milk entering the tank should 
have good initial microbiological quality. Regarding 
energy usage, the SP treatment required less energy 
than the other treatments to maintain an equivalent 
microbiological load in milk. Considering that the milk 
volumes undergoing the SP and DP treatments had the 
lowest bacterial counts over 72 h of storage, it may be 
beneficial and economical to incorporate the DP system 
on farms that already use an ice bank bulk milk tank 
and SP system on other farms. Precooling good quality 
milk with an SP or DP system and subsequent stor-
age at 3°C for 72 h can maintain good microbiological 
and compositional quality of milk with reduced energy 
consumption.
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Abstract

The experiments reported in this research paper aimed to track the microbiological load of
milk throughout a low-heat skim milk powder (SMP) manufacturing process, from farm bulk
tanks to final powder, during mid- and late-lactation (spring and winter, respectively). In the
milk powder processing plant studied, low-heat SMP was produced using only the milk sup-
plied by the farms involved in this study. Samples of milk were collected from farm bulk tanks
(mid-lactation: 67 farms; late-lactation: 150 farms), collection tankers (CTs), whole milk silo
(WMS), skim milk silo (SMS), cream silo (CS) and final SMP. During mid-lactation, the raw
milk produced on-farm and transported by the CTs had better microbiological quality than
the late-lactation raw milk (e.g., total bacterial count (TBC): 3.60 ± 0.55 and 4.37 ± 0.62
log 10 cfu/ml, respectively). After pasteurisation, reductions in TBC, psychrotrophic (PBC)
and proteolytic (PROT) bacterial counts were of lower magnitude in late-lactation than in
mid-lactation milk, while thermoduric (LPC—laboratory pasteurisation count) and thermo-
philic (THERM) bacterial counts were not reduced in both periods. The microbiological qual-
ity of the SMP produced was better when using mid-lactation than late-lactation milk (e.g.,
TBC: 2.36 ± 0.09 and 3.55 ± 0.13 cfu/g, respectively), as mid-lactation raw milk had better
quality than late-lactation milk. The bacterial counts of some CTs and of the WMS samples
were higher than the upper confidence limit predicted using the bacterial counts measured
in the farm milk samples, indicating that the transport conditions or cleaning protocols
could have influenced the microbiological load. Therefore, during the different production sea-
sons, appropriate cow management and hygiene practices (on-farm and within the factory) are
necessary to control the numbers of different bacterial groups in milk, as those can influence
the effectiveness of thermal treatments and consequently affect final product quality.

Bovine milk is used to produce a wide range of dairy products and nutritional ingredients.
Each dairy product has to conform with specific quality parameters determined by regulatory
authorities and international markets, which could be related to safety, nutritional value, phys-
ical and sensory characteristics. Bacterial numbers in milk are one of the main factors that can
impact those parameters, and their control throughout processing is essential to achieve dairy
products of high quality (Kable et al., 2016). The first stage of the milk supply chain is the
farm, where factors such as cow management, stage of lactation and equipment cleaning
protocols can affect bacterial numbers in milk (O’Connell et al., 2015). A variety of microor-
ganisms could grow in milk, including: mesophilic, psychrotrophic, lipolytic, proteolytic, ther-
moduric and thermophilic bacteria, as well as pathogenic bacteria. Huck et al. (2008) observed
that some spore-forming bacteria (Bacillus, Paenibacillus and Sporosarcina) were identified
throughout the processing stages of fluid milk production, from the farm to the packaged
product, suggesting that multiple potential entry points for those bacteria into milk are at
the farm. Therefore, the production of raw milk under appropriate hygienic conditions is crit-
ical to control bacterial numbers, as thermal treatments during dairy processing cannot always
completely reduce the bacterial load.

Several studies have focused on quantifying and identifying bacterial types in raw milk
on-farm and their effect on dairy products (Barbano et al., 2006; Quigley et al., 2013a;
Murphy et al., 2016). However, the combined influence of farm practices, storage conditions,
transport and processing conditions on the microbiological quality of final product is not well
understood and further investigations are necessary. Kable et al. (2016) reported that the
microbiota in collection tankers (CTs) can be highly diverse and differ according to season.
This diversity may be attributed to contributing on-farm factors, such as cattle skin, bedding,
feed, human handling, milking equipment, and on-site bulk tanks used for storage. Thus, each
individual supplier could impact differently on the levels of different bacterial groups in the
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milk within CTs that collect milk from multiple farms. When
milk is collected from farm bulk tanks, it is still prone to further
increases in bacterial populations, which can arise due to inappro-
priate equipment sanitation and storage conditions or processing
parameters that are favourable for rapid bacterial multiplication
(Teh et al., 2011; Cherif-Antar et al., 2016). Therefore, dairy
processors have to adopt good manufacturing practices and
monitor several critical control points throughout the manufac-
turing processes to guarantee food safety and conformity with
legislation or specifications. For example, one of the challenges
regarding equipment sanitation concerns heat-resistant spore-
forming bacteria. These bacteria can develop cleaning-resistant
biofilms on the interior surfaces of pipelines or equipment, enab-
ling cross-contamination of finished products (Jindal et al., 2016).
Processing parameters could also have an impact on bacterial
load, especially thermal treatments. For example, the temperature
programme and holding time during pasteurisation should be
appropriate to reduce the microbial load and the number of viable
pathogens in milk (Tucker, 2015).

The objective of this study was to monitor the microbiological
quality of milk throughout the processing of low-heat skim milk
powder (SMP), from individual farm bulk tanks to the final pow-
der produced, during mid- and late-lactation periods, addressing
the hypothesis that stage of lactation and/or environmental factors
related to time of year will influence microbiological quality. This
study will aid in determining the association between the quality
of milk and subsequent SMP produced, as well as the impact of
processing parameters on milk and SMP quality. To our knowl-
edge, this is the first such study that tracked milk quality from
individual farms to final product.

Materials and methods

Milk collection and skim milk powder manufacture

This study was conducted on commercial dairy farms and in a
milk powder processing plant, which produced SMP only using
the milk supplied by the farms involved in this study. This experi-
ment was carried out during the mid- and late-lactation periods
(May 2016 and December 2016, respectively), which corresponded
to spring and winter in Ireland. During those periods, cows were
grazing outdoors and housed indoors, respectively. The dairy
farms involved in this study were located in the Kilkenny and
Waterford regions of Ireland. During mid-lactation, 67 Irish
dairy farms supplied sufficient milk to the factory to undertake
the manufacturing process; during late-lactation, 150 dairy farms
were necessary, due to the lower milk yield per cow during that
period. During mid- and late-lactation, the average (±SD) milk vol-
ume collected from each farm was 4418 ± 3,066 l and 1786 ±
1,905 l, respectively. Collection tankers (n = 11) transported a
total of 296 003 l and 267 932 l of milk to a commercial SMP fac-
tory during mid- and late-lactation, respectively. Those volumes
were stored in a whole milk silo (WMS) within the factory.
Subsequently, the milk was pasteurised by applying a high tem-
perature/short time (HTST) treatment (75 °C, 25 s). After pasteur-
isation, the cream was separated and stored in the cream silo (CS),
while the skim milk was stored in the skim milk silo (SMS). The
skim milk was evaporated in a triple-effect evaporator and after-
wards underwent spray-drying process. Approximately 22 000 kg
of low-heat SMP were produced during both lactation periods
that this study was carried out. Further details regarding the pro-
cessing parameters are described in the supplementary material.

Sampling procedure

During mid- and late-lactation, samples were collected from the
top inlet of the 67 and 150 farm bulk tanks, respectively, using
sterilised sample dippers. On arrival at the processing plant, sam-
ples were collected from the top inlet of each CT (n = 11) using
sterilised dippers. Samples were also collected from the top and
bottom sampling ports of both WMS and SMS using industrial
syringes. Additionally, in late-lactation, cream samples were col-
lected from the top and bottom of the CS using industrial syr-
inges, as that cream was produced only using the milk supplied
by the 150 farms. All silo samples were collected after the
whole milk, skim milk or cream was completely transferred to
the respective silos. Additionally, three 25-kg SMP bags were col-
lected within the factory at the start, middle and final stages of the
spray-dryer run, giving a total of 9 bags. Powder samples were
reconstituted using deionised water (1:10 dilution).

All samples collected in mid-lactation and samples from the
factory collected during late-lactation (CT, WMS, CS, SMS and
SMP samples) were analysed in the milk quality laboratory in
Teagasc Moorepark (Fermoy, Co. Cork, Ireland). Due to the
high number of farm milk samples collected in late-lactation,
those samples were analysed at the laboratory in the factory. A
schematic drawing of the SMP manufacturing process is shown
in supplementary Fig. S1, as well as the sampling points.

Microbiological analysis

All samples collected during mid-lactation and the CT, WMS, CS,
SMS and SMP samples collected during late-lactation were tested
in duplicate for a range of bacterial species. All the microbio-
logical analyses were performed according to the Standard
Methods for the Examination of Dairy Products (Wehr and
Frank, 2004). Total (TBC), psychrotrophic (PBC), thermoduric
(Laboratory Pasteurisation Count—LPC) and thermophilic
(THERM) bacterial counts were measured using Petrifilm aerobic
count plates (ready to use media; 1 ml of diluted sample on each
plate) (3M, Technopath, Tipperary, Ireland), in accordance with
the procedures described by Laird et al. (2004). The LPC test con-
sisted of pasteurising the milk samples at 63 °C for 35 min,
including time to allow samples to reach the required temperature
(Frank and Yousef, 2004); afterwards, the samples were cooled to
10 °C using iced water before testing. Samples tested for TBC and
LPC were incubated for 48 h at 32 °C, while samples tested for
THERM were incubated for 48 h at 55 °C. The Petrifilms corre-
sponding to the PBC test were incubated for 10 d at 7 ± 1 °C
(Frank and Yousef, 2004). The authors are aware that using
Petrifilm at 7 or 55 °C is outside the validated temperature range
for that media. However, a pre-trial experiment for THERM indi-
cated that, at the same dilution, plate count agar plates were
uncountable due to bacterial colonies spreading over the surface
of agar plates, whereas Petrifilm plates were countable (data not
shown). Regarding PBC, other studies have been using Petrifilm
for that test at 7 °C (Ramsahoi et al., 2011). A Petrifilm Plate
Reader (3M, Technopath, Tipperary, Ireland) was used to assess
the number of bacterial colonies.

The proteolytic bacterial count (PROT) test consisted of spread
plating the diluted sample (100 µl) on calcium caseinate agar with
added skim milk powder (Merck, Darmstadt, Germany). Plates
were incubated at 37 °C for 48 h. Proteolytic bacterial colonies
were identified as colonies surrounded by a clear zone in an
opaque medium.
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The TBC of the 150 farm milk samples collected during late-
lactation were analysed within the factory using a MilkoScan FT2
system (Foss Electric, Hillerød, Denmark).

Statistical analysis

The statistical analyses were performed using the software SAS 9.3
(SAS Institute, 2016). The bacterial counts means (TBC, PBC,
PROT, LPC and THERM) of each CT were predicted using the
volume and bacterial count measured in the milk of all farms
that supplied each CT. The same bacterial counts were predicted
for the WMS using the volume and bacterial counts measured in
the milk of all CTs that supplied that silo. Those predictions were
calculated as volume weighted means with estimated confidence
interval. The actual bacterial counts measured in each CT and
WMS samples were compared to the respective confidence inter-
val for those predicted means of the bacterial counts. Agreement
plots were also used to check for bias in the relationship between
actual and predicted bacterial count means. There were insuffi-
cient numbers of samples from the factory (WMS, SMS and
SMP samples) to determine the statistical differences between
the bacterial counts measured in those samples. Therefore, only
numerical differences between those samples were reported in
this research paper to indicate the possible variations in bacterial
load throughout the process. This study was performed once dur-
ing each mid- and late-lactation periods.

Results

Mid-lactation study

The mean bacterial counts (TBC, PBC, PROT, LPC and THERM)
of the samples from the farm bulk tanks, CTs, WMS, SMS and
samples of SMP, which were collected during the mid-lactation
period, are shown in Table 1. Small increases were observed
when comparing all mean bacterial counts of the farm bulk
tanks and CTs (Table 1). Pronounced increases in the TBC,
PBC and PROT were observed in the WMS samples when com-
pared to the CT samples (Table 1). The mean TBC, PBC and
PROT were lower in the SMS samples compared to the WMS
samples; however, the LPC and THERM levels were not different
from each other (Table 1).

The comparisons between the actual bacterial counts of each
CT sample with the respective confidence interval for the pre-
dicted means, which were calculated considering the volume
and bacterial count of each farm’s milk supplied to each CT,
are shown in supplementary Table S1. The TBC, PBC, PROT,
LPC and THERM of two, three, one, two and four CT samples,
respectively, were not within the respective confidence intervals.
The comparisons between the actual bacterial counts of the
WMS samples and the respective confidence interval for the pre-
dicted means, which were calculated considering the volume and
bacterial count of each CT milk supplied to the silo, are shown in
Supplementary Table S2. The mean TBC, PBC, PROT and
THERM of the WMS samples were not within the respective con-
fidence intervals.

Late-lactation study

The mean bacterial counts (TBC, PBC, PROT, LPC and THERM)
of the samples from the farm bulk tanks, CTs, WMS, CS, SMS
and samples of SMP, that were collected during late-lactation

period, are shown in Table 1. The mean TBC of the CT samples
was higher than the mean TBC of the farm milk samples. The
mean TBC, PBC and PROT of the WMS samples were higher
than the CT samples means. The mean TBC, PBC and PROT
of the SMS samples were lower compared to the WMS samples,
while their LPC and THERM levels were similar (Table 1).

The comparisons between the actual mean TBC measured in
each CT sample with the respective confidence interval for the
predicted means, which were calculated considering the volume
and TBC of each farm milk supplied to each CT, are shown in
the supplementary Table S3. The mean TBC of nine CT samples
(1, 3, 5, 6, 7, 8, 9, 10 and 11) were not within the respective con-
fidence intervals. The comparisons between the actual bacterial
counts of the WMS samples with the respective confidence inter-
val for the predicted means, which were calculated considering
the volume and bacterial count of each CT milk supplied to the
silo, are shown in Supplementary Table S2. The mean TBC,
PBC and PROT of the late-lactation WMS samples were not
within the respective confidence intervals.

Discussion

Production season or storage conditions can affect the bacterial
counts of different types of microorganisms in milk, which can
impact on the final quality of SMP. In mid-lactation, the mean
TBC and PBC of the farm milk samples were below the
European limits (EC no. 853/2004): 5.00 and 4.22 log10 cfu/ml,
respectively. The TBC was also below the typical limit of 4.70
log10 cfu/ml applied by some Irish milk processors (Table 1).
The mean PROT of the farm samples was below the limit sug-
gested by Vyletelova et al. (2000) (4.65 log10 cfu/ml), at which
proteolytic bacteria would produce high levels of heat-resistant
proteases. The mean LPC of the mid-lactation farm milk samples
was lower than the typical industry specifications, which can
range from 2.70 to 3.00 log10 cfu/ml. Thermoduric and thermo-
philic bacterial colonies were not detected in 8 and 24 farm
milk samples, respectively. In mid-lactation, some individual
farm milk samples had TBC, PBC, PROT and LPC higher than
the specified limits. However, considering that the milk volumes
from all farms would be blended for processing, the comparisons
between the weighted mean bacterial counts and the known spe-
cifications for raw milk indicated that good quality milk was
delivered to the factory for processing in mid-lactation.

The mean TBC of late-lactation farm bulk tank milk samples
was also lower than the European and industrial limits; however,
49 farm samples had TBC above those specifications. Statistical
comparisons between the mean TBC of the farm samples col-
lected during mid- and late-lactation were not possible, as the
group of farms involved in the mid- and late-lactation studies
were different and samples from those groups were analysed in
different laboratories. However, the figures gave an indication
that lower quality milk was produced in late-lactation. The varia-
tions in the counts of different bacterial types between lactation
periods could be related to seasonal differences in bacterial strains
in the environment, cow management, cows’ health status (especially
mastitis), on-farm hygiene practices, or milk storage conditions
(Linn, 1988; Lafarge et al., 2004).

In mid-lactation, the mean TBC, PBC, PROT and LPC of the
CT milk samples were below the limits determined by the
European legislation, industry and literature cited, while in late-
lactation the mean TBC and PBC were higher than the
European limits (Table 1). The TBC, PBC, PROT, LPC and
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Table 1. Mean (±SD) total bacterial count (TBC), psychrotrophic (PBC), proteolytic (PROT), thermoduric (LPC—Laboratory pasteurisation count) and thermophilic (THERM) bacterial counts of the samples collected from
the farm bulk tanks, collection tankers (CTs), whole milk silo (WMS), cream silo (CS), skim milk silo (SMS) and samples of skim milk powder (SMP) from the mid- and late-lactation periods.

Mid-lactation
bacterial counts (log10 cfu/ml)

Farm bulk tanksa

(n = 67)
CTa

(n = 11)
WMS
(n = 2)

CSb

(n = 2)
SMS
(n = 2)

SMP d

(n = 9)

TBC 3.60 ± 0.55 (2.65 to 4.90) 3.90 ± 0.40 (3.22 to 4.62) 5.89 ± 0.02 2.61 ± 0.20 2.36 ± 0.09 (2.26 to 2.50)

PBC 3.54 ± 0.65 (2.70 to 6.00) 3.70 ± 0.53 (2.74 to 5.97) 6.00 ± 0.00 2.00 ± 0.00 1.21 ± 0.15 (1.00 to 1.40)

PROT 3.50 ± 0.56 (3.00 to 5.10) 3.66 ± 0.29 (3.30 to 4.30) 5.72 ± 0.62 2.00 ± 0.00 1.36 ± 0.30 (1.00 to 1.70)

LPC 1.35 ± 0.33 (1.00 to 2.60) e 1.44 ± 0.28 (1.00 to 1.98) 1.58 ± 0.17 1.69 ± 0.07 2.45 ± 0.08 (2.30 to 2.51)

THERM 1.43 ± 0.47 (1.00 to 2.52) e 1.62 ± 0.35 (1.00 to 2.47) 2.02 ± 0.14 1.85 ± 0.10 3.63 ± 0.11 (3.50 to 3.79)

Late-lactation
bacterial counts (log10 cfu/ml)

Farm bulk tanksa,c

(n = 150)
CT a

(n = 11)
WMS
(n = 2)

CS
(n = 2)

SMS
(n = 2)

SMP d

(n = 9)

TBC 4.37 ± 0.62 (3.60 to 7.16) 5.12 ± 0.53 (4.32 to 5.96) 5.84 ± 0.09 2.32 ± 0.09 5.00 ± 0.00 3.56 ± 0.08 (3.44 to 3.69)

PBC 5.25 ± 0.58 (4.15 to 5.97) 5.80 ± 0.04 1.15 ± 0.21 5.00 ± 0.00 2.07 ± 0.10 (1.90 to 2.19)

PROT 4.09 ± 0.72 (3.30 to 5.95) 4.68 ± 0.40 4.27 ± 0.27 2.52 ± 0.35 2.18 ± 0.26 (2.00 to 2.54)

LPC 2.60 ± 0.23 (2.35 to 2.99) 2.55 ± 0.03 2.33 ± 0.01 2.61 ± 0.17 3.51 ± 0.09 (3.33 to 3.62)

THERM 2.72 ± 0.19 (2.51 to 2.98) 2.74 ± 0.06 4.54 ± 0.01 2.63 ± 0.04 3.58 ± 0.09 (3.41 to 3.69)

aWeighted means calculated considering the volumes and bacterial counts of each farm or CT sample.
bCream samples were not collected during mid-lactation.
cOnly TBC was measured in the late-lactation farm milk samples.
dBacterial counts in log10 cfu/g.
eWeighted means calculated not considering the samples in which those bacteria were not detected.
n = number of samples analysed in duplicate
Ranges are given between parentheses.
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THERM of the CTs milk were higher in late-lactation compared
to mid-lactation, possibly due to the production of milk of infer-
ior quality on-farm during that period. Also, the longer milk col-
lection periods in late-lactation (approximately 8 h) could have
contributed to the increased bacterial numbers in the CTs. The
CT milk samples that had the bacterial counts higher than the
upper confidence limit (mid-lactation: TBC, PBC, PROT, LPC
and THERM; late-lactation: TBC; supplementary Tables S1 and
S3) indicated that those bacterial numbers could have been influ-
enced by the transport duration, CT cleaning protocol, tempera-
ture during transport or by the impact of individual farm
suppliers (Kable et al., 2016).

In both lactation periods, some of the bacterial counts mea-
sured in the WMS samples were higher than the respective upper
confidence limits (mid-lactation: TBC, PBC, PROT and THERM;
late-lactation: TBC, PBC and PROT; supplementary Table S2).
The increase in those bacterial counts could be due to the condi-
tions of the equipment in the milk transfer line (from the CT to
the silo) (e.g., pump system and filters), non-effective silo
clean-in-place routine, storage time or favourable storage tem-
perature for the growth of some bacterial strains, or could be a
result of blending raw milk from different origins and levels of
contamination (Pinto et al., 2006).

In mid- and late-lactation, the mean TBC of the WMS samples
was higher than the limit determined for raw milk prior to
processing (5.48 log10 cfu/ml; EC no. 853/2004). However, the
temperature-time binomial applied during pasteurisation (75 °C,
25 s) reduced the TBC, PBC and PROT, as observed in the
SMS samples (Table 1). In both lactation periods, pasteurisation
was not efficient in reducing the LPC and THERM, when com-
paring the figures obtained for the WMS and SMS samples
(Table 1), as those bacterial types are capable of surviving the
temperatures applied in thermal treatments (Delgado et al.,
2013; Quigley et al., 2013b). Thermoduric bacteria are able to sur-
vive pasteurisation temperatures (above 63 °C), while thermo-
philic bacteria are able to survive and grow at 55 °C or above
(Frank and Yousef, 2004). The decreases in TBC and PBC after
pasteurisation were of lower magnitude in late-lactation than
in mid-lactation (Table 1), indicating that milk may contain
higher numbers of heat-resistant bacteria strains during winter.
Furthermore, in late-lactation, the THERM levels were higher in
the CS samples compared to the WMS and SMS samples
(Table 1). Given that cream separation occurred after pasteurisa-
tion, the relative abundance of thermophiles in pasteurised
whole milk was possibly higher than prior to pasteurisation.
Thermophilic bacteria could have migrated with the fat globules
due to density (Graham, 2004) or the high levels could be related
to the cleaning of the silos, as the persistence of thermophilic bac-
teria is related to the formation of biofilms (Burgess et al., 2010).

Mid-lactation raw milk had better microbiological quality than
late-lactation milk, consequently, the SMP produced using mid-
lactation milk had lower bacterial counts than that made from
late-lactation milk (Table 1). Laboratory-based studies indicated
that when TBC in milk is higher than 5.00 log10 cfu/ml, the solu-
bility index of SMP can increase, as well as the free fat acid con-
tent, while the heat stability decreases (Muir et al., 1986; Celestino
et al., 1997). In relation to thermoduric and thermophilic bacteria,
there are no European limits determined for milk powder.
However, the SMP produced using mid- and late-lactation milk
had THERM levels in accordance to the North American dairy
industry requirements (less than 4.00 log10 cfu/g) (Wehr and
Frank, 2004). Furthermore, it is likely that evaporation and spray-

drying processes may have contributed to further reductions in
TBC, PBC and PROT in the SMP in both periods.

This study highlights the importance of controlling bacterial
levels in milk on-farm and during manufacturing, as processing
parameters might not be able to reverse the negative effects of
high bacterial levels, consequently compromising the quality of
dairy products. For example, when in sufficient numbers, certain
bacteria strains can produce lipases and proteases, which could
not be eliminated in pasteurisation and could affect essential
technological properties of milk for dairy products manufacture
(Muir, 1996; Barbano et al., 2006). Hygiene practices, cow man-
agement and processing parameters can affect the abundance of
different bacterial types in milk; and therefore, those should be
adequate to guarantee milk powder high quality and safety
(Craven et al., 2010; Watterson et al., 2014).

In conclusion, this was the first study that monitored the quality
of milk from farm bulk tank, through processing stages, to skim
milk powder. We found evidence that stage of lactation and/or
environmental factors related to time of year did influence micro-
biological quality, but the experimental design did not allow us to
statistically validate the hypothesis. The effects of milk quality para-
meters on the quality of low-heat skim milk powder were observed,
as well as how those parameters were affected throughout the
manufacturing process. The good microbiological quality of the
mid-lactation farm milk resulted in the production of milk powder
with lower bacterial counts in contrast to the powder produced
during late-lactation with milk of inferior quality. The season
and/or stage of milk production had an influence on the abundance
of different bacterial types in milk, which could impact the effect-
iveness of thermal treatments and consequently affect final product
quality. Also, the differences in bacterial counts between produc-
tion stages are indications of the growth potential of the bacteria in
the milk, or even an indication of possible contamination sources
in the specific production stage in which changes were observed.
The results observed can aid industry in targeting sources of con-
tamination throughout processing stages and practices to control
bacterial numbers, in order to ensure the consistent production
of safe high-quality dairy products throughout the year.
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Materials & Methods 

Milk collection and skim milk powder manufacture  

The raw milk harvested during mid- and late-lactation were stored within the bulk tanks for 

an average (± SD) of 44 ± 11 h (range: 2 - 52 h) and 70 ± 19 h (range: 24 – 217 h) prior to 

tanker collection, at 3.1 ± 0.7 ˚C (range: 0.9 to 4.5 ˚C) and 3.3 ± 1.2 ˚C (range: 0.5 to 9.5 ˚C), 

respectively. During mid- and late-lactation, the milk volume collected from each farm 

ranged from 298 to 21,572 L and from 114 to 10,525 L, respectively. Each collection tanker 

(CT) collected milk from approximately 6 and 14 farms in mid- and late-lactation, 

respectively; and the temperature in the CTs ranged from 3.7 to 4.2 ˚C. The milk stored in the 

whole milk silo (WMS) was stored approximately 5.5 h (time between the transference of the 

first CT milk and the eleventh CT milk to the silo), at an average (± SD) temperature of 4.6 ± 

0.2 ˚C, and agitated for 1 min every 29 min. The whole milk was pasteurised by applying a 

high temperature/ short time (HTST) treatment, during which the milk was heated to 75 ˚C 

for 25 s. After cream separation, the cream content in the skim milk was 0.075%. In the 

triple-effect evaporator the skim milk was concentrated from 9% w/w to 52% w/w of total 

solids content and the final moisture content was 48% w/w. The average moisture content of 

the skim milk powder (SMP) produced was 3.2 ± 0.2% w/w. The commercial processing 

plant in which this experiment was carried out detains further details regarding the processing 

parameters. 

 

Sampling procedure 

After agitation, 300-mL milk samples were collected from each farm bulk tanks, CTs, WMS, 

cream silo (CS) and SMS. All milk samples collected in mid-lactation and samples from the 

factory collected during late-lactation (CT, WMS, CS and SMS samples) were transported to 

the milk quality laboratory in Teagasc Moorepark in cooling boxes (<4 ˚C) within 6 h. After 

delivery, samples were sub-divided into 30-mL sterile bottles for microbiological analysis 

and analysed within 2 h. The milk samples were manually agitated to avoid unequal fat 

distribution. 

In relation to the low-heat SMP samples, 100 g were taken from the top, middle and bottom 

of each bag; these were mixed to obtain a representative 300-g sample from each bag. These 

powder samples were reconstituted using deionised water (1:10 dilutions) and sub-divided 

into 30-mL sterile bottles for microbiological analysis. 

 

 



Table S1. Comparison of mean total (TBC), psychrotrophic (PBC), proteolytic (PROT), thermoduric (laboratory pasteurisation count – LPC) and thermophilic (THERM) 

bacterial counts measured in each collection tanker (CT: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11) during mid-lactation and those predicted (± standard error; S.E.) from the 

combined farm samples in each CT. 

Bacterial 

counts  

CT 

number 

Number 

of farms 

Total volume 

per tanker (L) 

Mean (±  SD) 

volume measured 

per farm (L) 

Mean CT bacterial count  

(log10 cfu/ mL)  

Predicted bacterial count 

(weighted means; S.E.)†  

(log10 cfu/ mL) 

95% CI‡ 

Mean CT bacterial counts 

covered by predicted C.I. LCL UCL 

TBC          

 1 4 23771 5,943 ± 1,271 3.99 3.93 ± 0.09 3.64 4.23 Yes 

 2 5 26503 5,301 ± 2,385 4.38 3.7 ± 0.27 2.95 4.45 Yes 

 3 6 29122 4,854 ± 1,763 3.90 3.82 ± 0.32 2.98 4.65 Yes 

 4 6 23780 3,963 ± 2,683 4.18 3.64 ± 0.23 3.06 4.22 Yes 

 5 8 27585 3,448 ± 2,214 3.88 3.51 ± 0.19 3.05 3.97 Yes 

 6 7 28628 4,090 ± 1,208 4.15 3.57 ± 0.2 3.08 4.06 No 

 7 7 27188 3,884 ± 2,064 4.62 3.87 ± 0.33 3.06 4.67 Yes 

 8 7 28470 4,067 ± 2,437 3.64 3.9 ± 0.08 3.71 4.09 No 

 9 2 27147 13,574 ± 11,312 3.22 3.03 ± 0.07 2.2 3.86 Yes 

 10 5 25248 5,050 ± 3,877 3.45 3.27 ± 0.13 2.93 3.62 Yes 

 11 10 28561 2,856 ± 1,764 3.54 3.35 ± 0.12 3.08 3.62 Yes 

PBC          

 1 4 23771 5,943 ± 1,271 3.99 3.61 ± 0.28 2.71 4.51 Yes 

 2 5 26503 5,301 ± 2,385 3.52 3.36 ± 0.18 2.86 3.87 Yes 

 3 6 29122 4,854 ± 1,763 4.04 3.83 ± 0.33 2.97 4.68 Yes 



 4 6 23780 3,963 ± 2,683 3.56 3.51 ± 0.11 3.22 3.8 Yes 

 5 8 27585 3,448 ± 2,214 3.74 3.36 ± 0.25 2.76 3.95 Yes 

 6 7 28628 4,090 ± 1,208 3.80 3.45 ± 0.1 3.21 3.69 No 

 7 7 27188 3,884 ± 2,064 5.97 4.11 ± 0.54 2.78 5.45 No 

 8 7 28470 4,067 ± 2,437 3.60 3.97 ± 0.12 3.67 4.28 No 

 9 2 27147 13,574 ± 11,312 2.74 3.04 ± 0.04 2.48 3.6 Yes 

 10 5 25248 5,050 ± 3,877 3.23 3.35 ± 0.17 2.48 3.6 Yes 

 11 10 28561 2,856 ± 1,764 3.51 3.29 ± 0.11 3.04 3.55 Yes 

PROT          

 1 4 23771 5,943 ± 1,271 3.70 3.71 ± 0.15 3.24 4.17 Yes 

 2 5 26503 5,301 ± 2,385 3.70 3.61 ± 0.41 2.48 4.73 Yes 

 3 6 29122 4,854 ± 1,763 3.65 3.68 ± 0.27 2.98 4.38 Yes 

 4 6 23780 3,963 ± 2,683 3.98 3.61 ± 0.28 2.9 4.33 Yes 

 5 8 27585 3,448 ± 2,214 3.74 3.41 ± 0.15 3.05 3.76 Yes 

 6 7 28628 4,090 ± 1,208 3.30 3.67 ± 0.24 3.08 4.26 Yes 

 7 7 27188 3,884 ± 2,064 4.30 4.03 ± 0.26 3.39 4.67 Yes 

 8 7 28470 4,067 ± 2,437 3.40 3.33 ± 0.09 3.1 3.56 Yes 

 9 2 27147 13,574 ± 11,312 3.84 3.06 ± 0.12 1.52 4.61 Yes 

 10 5 25248 5,050 ± 3,877 3.30 3.05 ± 0.05 2.9 3.2 No 

 11 10 28561 2,856 ± 1,764 3.40 3.37 ± 0.1 3.14 3.6 Yes 

LPC          



 1 4 23771 5,943 ± 1,271 1.54 1.21 ± 0.06 1.01 1.42 No 

 2 5 26503 5,301 ± 2,385 1.18 1.35 ± 0.13 0.99 1.71 Yes 

 3 6 29122 4,854 ± 1,763 1.00 1.07 ± 0.3 0.3 1.84 Yes 

 4 6 23780 3,963 ± 2,683 1.48 1.34 ± 0.07 1.16 1.52 Yes 

 5 8 27585 3,448 ± 2,214 1.98 0.79 ± 0.25 0.21 1.38 No 

 6 7 28628 4,090 ± 1,208 1.30 1.24 ± 0.32 0.45 2.02 Yes 

 7 7 27188 3,884 ± 2,064 1.60 1.12 ± 0.20 0.62 1.62 Yes 

 8 7 28470 4,067 ± 2,437 1.18 0.96 ± 0.18 0.51 1.41 Yes 

 9 2 27147 13,574 ± 11,312 1.70 0.48 ± 0.95 0 12.56 Yes 

 10 5 25248 5,050 ± 3,877 1.70 1.44 ± 0.1 1.17 1.71 Yes 

 11 10 28561 2,856 ± 1,764 1.30 1.26 ± 0.08 1.09 1.44 Yes 

THERM          

 1 4 23771 5,943 ± 1,271 1.30 0.65 ± 0.34 0 1.73 Yes 

 2 5 26503 5,301 ± 2,385 1.00 1.41 ± 0.19 0.88 1.94 Yes 

 3 6 29122 4,854 ± 1,763 1.74 0.87 ± 0.32 0.03 1.7 No 

 4 6 23780 3,963 ± 2,683 1.00 1.08 ± 0.35 0.17 1.99 Yes 

 5 8 27585 3,448 ± 2,214 1.00 0.19 ± 0.15 0 0.56 No 

 6 7 28628 4,090 ± 1,208 1.84 1.55 ± 0.33 0.73 2.37 Yes 

 7 7 27188 3,884 ± 2,064 1.70 0.7 ± 0.3 0 1.44 No 

 8 7 28470 4,067 ± 2,437 1.40 1.4 ± 0.12  1.12 1.69 Yes 

 9 2 27147 13,574 ± 11,312 2.47 0.51 ± 1.0 0 13.15 Yes 



 10 5 25248 5,050 ± 3,877 1.95 0.73 ± 0.25 0.05 1.42 No 

 11 10 28561 2,856 ± 1,764 1.48 0.92 ± 0.28 0.28 1.55 Yes 

†Weighted means were calculated considering the volume of milk supplied by each farm. 

‡Confidence interval (CI), lower (LCL) and upper (UCL) confidence limits. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table S2. Comparison of mean total (TBC), psychrotrophic (PBC), thermoduric (laboratory pasteurisation count – LPC) and thermophilic (THERM) bacterial counts 

measured in the whole milk silo (WMS) during mid- and late-lactation and those predicted (± standard error; S.E.) from the combined collection tanker (CT) samples. 

Stage of 

lactation 

Bacterial count 

(log10 cfu/ mL) 

Mean (± SD) bacterial 

count (WMS) 

Predicted bacterial count 

(weighted means; S.E.)† 

95% CI‡ Mean CT bacterial counts 

covered by predicted C.I. 
LCL UCL 

Mid-lactation  
     

 TBC 5.89 ± 0.02 3.9  ± 0.13  3.62 4.18 No 

 PBC 6.00 ± 0.00 3.7 ± 0.17 3.33 4.08 No 

 PROT 5.72 ± 0.62 3.66 ± 0.09 3.45 3.87 No 

 LPC 1.58 ± 0.17 1.46 ± 0.09 1.27 1.65 Yes 

 THERM 2.02 ± 0.14 1.64 ± 0.11 1.39  1.88 No 

Late-lactation 
      

 TBC 5.84 ± 0.09 5.1 ± 0.17 4.73 5.47 No 

 PBC 5.80 ± 0.04 5.25 ± 0.18 4.84 5.66 No 

 PROT 4.68 ± 0.40 4.09 ± 0.23 3.58 4.6 No 

 LPC 2.55 ± 0.03 2.61 ± 0.07 2.44 2.77 Yes 

 THERM 2.74 ± 0.06 2.73 ± 0.06 2.59 2.86 Yes 

Mean (± SD) volume of milk measured per tanker in mid- and late-lactation were 26,909 ± 1,902 L and 24,357 ± 3,768 L, respectively. 

†Weighted means were calculated considering the volume of milk supplied by each tanker. 

‡Confidence interval (CI), lower (LCL) and upper (UCL) confidence limits. 

 

 



Table S3. Comparison of mean total bacterial counts (TBC) measured in each collection tanker (CT: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11) during late-lactation and those 

predicted (± standard error; S.E.) from the combined farm samples in each CT. 

CT 

number 

Number of 

farms 

Total volume 

per tanker (L) 

Mean (±  SD) volume 

measured per farm (L) 

Mean TBC of each CT  

(log10 cfu/ mL) 

Predicted TBC 

(weighted means; S.E.)†  

(log10 cfu/ mL) 

95% CI‡ 

Mean TBC of each CT 

covered by predicted C.I. LCL UCL 

1 15 25,743 1,716 ± 2,135 5.64 4.38 ± 0.16 3.95 4.66 No 

2 7 19,853 2,836 ± 3,542 5.33 5.12 ± 0.32 4.35 5.89 Yes 

3 8 23,460 2,933 ± 2,381 5.96 4.8 ± 0.34 4.0 5.6 No 

4 13 24,221 1,863 ± 1,401 4.32 4.14 ± 0.08 3.96 4.33 Yes 

5 10 24,274 2,427 ± 2,558 4.64 4.34 ± 0.12 4.06 4.61 No 

6 14 24,729 1,766 ± 2,489 5.90 4.24 ± 0.25 3.71 4.77 No 

7 19 28,583 1,504 ± 1,168 4.86 4.4 ± 0.08 4.23 4.56 No 

8 27 28,322 1,049 ± 881 4.81 4.24 ± 0.08 4.08 4.4 No 

9 18 27,606 1,534 ± 1,794 4.84 4.17 ± 0.11 3.93 4.4 No 

10 8 15,774 1,972 ± 1,002 5.40 4.27 ± 0.13 3.95 4.59 No 

11 13 25,367 2,306 ± 2,221 4.66 4.15 ± 0.06 4.02 4.29 No 

†Weighted means were calculated considering the volume of milk supplied by each farm. 

‡Confidence interval (CI), lower (LCL) and upper (UCL) confidence limits. 

 

 



 

Figure S1. Milk supply chain and manufacturing process for conversion to low-heat skim milk powder, conducted in the mid- and late-lactation periods. The sampling points 

are indicated with a . 
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Abstract

The experiments reported in this research paper aimed to investigate differences in the levels
of chlorate (CHLO), perchlorate (PCHLO), trichloromethane (TCM) and iodine residues in
bulk tank (BT) milk produced at different milk production periods, and to monitor those
levels throughout a skim milk powder (SMP) production chain (BTs, collection tankers
[CTs], whole milk silo [WMS] and skim milk silo [SMS]). Chlorate, PCHLO and iodine
were measured in SMP, while TCM was measured in the milk cream. The CHLO, TCM
and iodine levels in the mid-lactation milk stored in the WMS were lower than legislative
and industrial specifications (0.0100 mg/kg, 0.0015 mg/kg and 150 µg/l, respectively).
However, in late-lactation, these levels were numerically higher than the mid-lactation levels
and specifications. Trichloromethane accumulated in the cream portion after separation.
Perchlorate was not detected in any of the samples. Regarding iodine, the levels in mid-lacta-
tion reconstituted SMP were higher than that required by manufacturers (100 µg/l), indicating
that the levels in milk should be lower than 142 µg/l. The higher residue levels observed in
late-lactation could be related to the low milk volume produced during that period and
changes in sanitation practices, while changes in feed management could have affected iodine
levels. This study could assist in controlling and setting limits for CHLO, TCM and iodine
levels in milk, ensuring premium quality dairy products.

International markets are setting high specifications for milk and dairy product quality,
including stringent guidelines on concentrations of residues that could occur in milk.
Potential milk contaminants of most concern include chlorate (CHLO, ClO3

−), perchlorate
(PCHLO, ClO4

−) and trichloromethane (TCM, CHCl3), which arise as a consequence of sani-
tation with chlorine products.

Chlorate and PCHLO were reported to result in thyroid dysfunctions (EFSA, 2015), while
TCM could possibly be carcinogenic to humans (ICAR, 1999). There are a few studies available
that have discussed contributing factors on-farm (Gleeson et al., 2013; Ryan et al., 2013) but
the dynamics of residue concentrations when subjected to different milk processing conditions
are not fully understood. Sodium hypochlorite, chlorine gas or dioxide may be used for the
sanitation of water, while chlorine-based detergents are used for the sanitation of milking
or processing equipment. Chlorine products generally have good bactericidal properties and
are widely used because of their effectiveness and low cost (Garcia-Villanova et al., 2010).
The decomposition of chlorine compounds results in the production of oxyhalide species
(ClO− and ClO2

−), which react and form CHLO. Further reactions of CHLO with those
oxyhalides result in the formation of PCHLO (Gordon and Tachiyashiki, 1991). Residual
chlorine, CHLO or PCHLO on the surfaces of processing equipment can contaminate milk
(Asami et al., 2013). The contamination of infant formula with CHLO is a major concern
due to the risk of intoxication in infants, which have lower tolerance than adults. The contact
of chlorine with milk could also result in the formation of TCM (Tiefel and Guthy, 1997).
Chlorinated hydrocarbons accumulate in fat-rich fractions, so products such as butter and
cream could contain high concentrations of TCM if milk is contaminated with high levels
(Hubbert et al., 1996).

Excessive levels of residual iodine in raw milk are another concern in the Irish dairy indus-
try, especially in the manufacture of infant formula. Iodine is an essential micronutrient for the
synthesis of hormones by the thyroid gland (Leung and Braverman, 2014). Even though iodine
is a nutrient of extreme importance to the human organism, the daily consumption of iodine
at higher levels than recommended could result in dysfunctions of the thyroid gland. Bovine
milk is one of the main sources of iodine for humans and its content depends on the daily
iodine intake by dairy cows (Flachowsky et al., 2014). The US National Research Council
(2001) recommends that the daily iodine intake per cow should be 10 mg, which is the refer-
ence value applied in Ireland. The utilisation of rations with higher levels of iodine than
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required or overfeeding cows can result in excessive iodine concen-
trations secreted into milk. Over supplementation of Irish herds is
of most concern during early and late-lactation and during winter
milk production (O’Brien et al. 2013). O’Brien et al. (1999) recorded
an average of 227 µg/l iodine in Irish milk, while concentrations of
510 and 180 µg/l were recorded for December and June, respect-
ively. Those levels were not a food safety concern at the time.
However, processors are currently requiring lower levels of iodine
in raw milk destined for the production of infant formula, in
order to meet requirements of the international market. Some
Irish dairy processors require that raw milk should contain less
than 150 µg/l of iodine. Other iodine sources in milk include
mineral-added water, boluses, mineral licks and grass (Magowan
et al. 2010). The use of iodine-based teat disinfectants could also
contribute to iodine content in milk, as these products are absorbed
through the teat skin if not completely removed prior to milking
(Flachowsky et al., 2014).

The first objective of this study was to investigate changes in
the CHLO, PCHLO, TCM and iodine levels throughout the
milk production chain, from farm to dairy product, in two differ-
ent milk production periods (mid- and late-lactation). Chlorate,
PCHLO and iodine were measured throughout the production
stages of skim milk powder (SMP), while TCM was measured
throughout the production stages of milk and cream, which
were destined for butter manufacture. The second objective was
to investigate differences in residue levels in bulk tank (BT)
milk produced during mid- and late-lactation. The milk used in
this study was produced on commercial dairy farms and pro-
cessed in a commercial SMP processing plant.

Materials and methods

Sampling procedure at the farms and throughout a skim milk
powder manufacturing process

In Ireland a seasonal spring-calving production system is prac-
ticed, with all cows calving within a 10-week period approxi-
mately (February to April). This experiment was performed on
one occasion during each of mid- (May; 80 DIM) and late-
lactation (December; 290 DIM). The farms that supplied milk
to the factory (mid-lactation: 67 farms; late-lactation: 150
farms), milk storage conditions on-farm, amount of milk pro-
duced, milk collection and the skim milk powder manufacturing
process was the same as described by Paludetti et al. (2019).
A schematic drawing of the SMP manufacturing process is
shown in supplementary Figure S1.

In mid-lactation, samples were collected at various points of
the manufacturing process between the farm BTs and the SMP
[BTs, collection tankers (CTs), whole milk silo (WMS), skim
milk silo (SMS) and final SMP] and were tested for CHLO,
PCHLO and iodine. In late-lactation, samples were collected at
various points between the CTs and the SMP [CTs, WMS,
cream silo (CS), SMS and final SMP] and were tested for
CHLO, PCHLO and iodine. In both lactation periods, TCM was
quantified in all samples, with exception of the SMP samples
(supplementary Figure S1). Due to the high number of farms
(150) necessary to supply sufficient milk volume to undertake
the manufacturing process in late-lactation (December), it was
not possible to undertake collection and analysis of all individual
BT samples. The collection of samples and preparation of SMP
samples for analysis were performed as described by Paludetti
et al. (2019).

Comparison between the residue levels in the same 67 farm
bulk tanks in mid- and late-lactation (May and November)

The concentrations of CHLO, PCHLO, TCM and iodine residues
were measured in raw milk produced on the same 67 dairy farms
sampled in mid-lactation (May, 80 DIM) and in late-lactation
period (November; 260 DIM), to investigate the effect of milk
production period on residue levels. Milk samples were collected
as described by Paludetti et al. (2019).

Quantification of chlorate and perchlorate

The quantification of CHLO and PCHLO was performed by high-
performance liquid chromatography coupled to tandem mass spec-
trometry (LC/MS-MS) with ESI electrospray ionisation in negative
mode (−ESI). The mid-lactation milk and SMP samples, as well
as the 67 late-lactation farm BT samples, were analysed in the labora-
tory of Labor Friedle GmbH group (Labor Friedle GmbH, Von-
Heyden-Straβe 11, D-93105, Tegernheim, Germany), while the
late-lactation samples from the factory (CT, WMS, SMS and SMP
samples) were analysed in Teagasc Ashtown (Dublin, Ireland).
The methodologies used are based on the procedures described in
the European Quick Polar Pesticides method (QuPPe)
(EURL-SRM, 2015). In the present study, some of the milk samples
were analysed by both laboratories and the results were statistically
similar (P > 0.05). The detection limit of CHLO and PCHLO in
milk was 0.0010 mg/kg and in SMP was 0.010 mg/kg.

Quantification of trichoromethane

Trichloromethane was quantified in the milk using static head-space
gas chromatography (HS-GC) with electron capture detector (ECD),
fitted with a low thermalmass system (LTM) (Agilent 7890A, Agilent
Technologies, Santa Clara, California, USA). The trichloromethane
detection limit in this analysis was 0.0001 mg/kg. The methodology
applied was an adaption of the procedure of Resch and Guthy
(1999). This analysis was performed in the Milk Quality laboratory
in Teagasc Moorepark (Fermoy, Co. Cork, Ireland).

Quantification of iodine

Iodine was quantified in milk and reconstituted SMP samples
using inductively coupled plasma mass spectrometry (ICP-MS),
using an Agilent ICP-MS 7700x (Agilent Technologies, Santa
Clara, California, USA). The methodology used was based on
the procedures described in the standard method for the deter-
mination of iodine compounds in foodstuffs (BS EN
15111:2007, 2007). Standard solutions of Tellurium and 1%
TMAH were used to obtain a calibration curve. The limit of detec-
tion was 1.31 µg/l. The mid-lactation milk and SMP samples were
analysed in Teagasc Moorepark (Fermoy, Co. Cork, Ireland),
while the late-lactation milk and SMP samples were analysed in
FBA laboratories (Capoquinn, Co. Waterford, Ireland). Those
laboratories used the same methodology and samples analysed
by both laboratories had statistically similar results (P > 0.05).

Statistical analysis

Influence of individual farm milk volumes on the residue
concentration in each CT and influence of CT milk on the residue
concentration in WMS
The statistical analyses were performed using the software SAS 9.3
(SAS Institute, 2016). In mid-lactation, the iodine and TCM
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concentrations of each CT were predicted using the volume and
iodine or TCM concentrations measured in the milk of all
farms that supplied each respective CT. In mid- and late-lactation,
the iodine and TCM concentrations in the WMS were also pre-
dicted using the volume and iodine or TCM concentrations in
the milk of all CTs that supplied that silo. Those predictions
were calculated as volume-weighted means with estimated confi-
dence intervals. The actual iodine or TCM concentrations mea-
sured in each CT and WMS samples were compared to the
respective confidence interval for those predicted means.
Agreement plots were also used to check for bias in the relation-
ship between actual and predicted means. It was not possible to
perform the same analyses with the CHLO and PCHLO results,
due to the low number of samples in which those residues were
detected.

Comparison between the residue levels in the same 67 farm bulk
tanks in mid- and late-lactation (May and November)
Differences between the adjusted least square means of the 67 mid-
and late-lactation milk samples, collected in May and November,
were calculated using the MIXED procedure in SAS 9.3 (SAS
Institute, 2016). The fixed effects included in each model were
lactation period (mid- and late-lactation) and farms (numbered
from 1 to 67). Farms were considered the experimental unit and
the response variable was iodine or TCM. Residual checks were
made to ensure that the assumptions of the analysis were met.

It was not possible to statistically determine the differences
between CHLO and PCHLO levels measured in mid- and late-
lactation milk samples, due to insufficient number of samples
in which those residues were detected. McNemar’s test was
applied to compare the number of BT milk samples in mid-
and late-lactation that had CHLO and TCM concentrations
≥0.0010 and 0.0015 mg/kg, respectively. The GLM procedure
was used to determine the regression relationship between
CHLO and TCM concentrations.

Results

The mean CHLO, TCM and iodine concentrations of samples col-
lected during mid- and late-lactation (May and December,
respectively) throughout the milk powder production chain are
shown in Table 1.

Chlorate and perchlorate

In mid-lactation (May), CHLO was detected in 14 of the 67 BT
and 6 of the 11 CT samples. The weighted mean CHLO concen-
tration was calculated at the basis of the milk volume supplied by
those farms and CTs (Table 1). The volume-weighted mean
CHLO concentrations of these farms and CTs were numerically
similar. In late-lactation (December), CHLO was detected in 6
of the 11 CT samples also, but the volume-weighted mean of
those samples was higher compared to mid-lactation (Table 1).
In both mid- and late-lactation, the mean CHLO concentration
in the WMS and SMS were numerically similar (Table 1).

The mean CHLO concentration of the SMP samples was
higher in late-lactation (December) compared to mid-lactation
(May) (Table 1). In both lactation periods, the CHLO concentra-
tion in powder increased approximately 50 times compared to the
concentrations in SMS samples. In mid-lactation, the CHLO levels
in the SMP samples decreased throughout the spray-dryer run.
At the start, middle and end of the spray-drying process, the

CHLO levels were: 0.0630 ± 0.0020, 0.0610 ± 0.0060 and 0.0470 ±
0.0020 mg/kg, respectively. In contrast, the CHLO concentration
of the late-lactation SMP samples did not vary throughout the
spray-dryer run (start: 0.124 ± 0.003 mg/kg; middle: 0.129 ±
0.011 mg/kg; end: 0.126 ± 0.006 mg/kg).

Perchlorate was not detected in any of the mid- and late-lactation
samples collected throughout the manufacturing process.

Trichloromethane

Trichloromethane was detected in all BT and CT samples collected
in mid-lactation (May) and in all CT samples collected in late-
lactation (December). The volume-weighted mean TCM concentra-
tion of those samples was calculated considering the milk volume
supplied by each BT or CT (Table 1). The volume-weighted mean
TCM concentration of the CT milk samples was higher in late-
lactation compared to mid-lactation. In mid-lactation, the volume-
weighted mean TCM concentrations of the milk samples from
the BTs and CTs were numerically similar. The mean TCM concen-
trations of the milk samples from the CTs and WMS were also
numerically similar in both mid- and late-lactation.

The comparisons between the actual TCM concentration and
the respective confidence interval for the predicted means for
each mid-lactation CT sample, are shown in the Supplementary
Table S1. The TCM concentrations in all of the mid-lactation
CT samples were within their respective confidence intervals.
A similar comparison for the mid- and late-lactation WMS sam-
ples is shown in the Supplementary Table S2. The TCM concen-
tration in the WMS samples were also within their respective
confidence interval in mid- and late-lactation.

In both lactation periods, the mean TCM concentration
decreased in the SMS samples compared to the WMS samples,
as expected (Table 1).

Iodine

In mid-lactation, the volume-weighted mean iodine concentration
was numerically higher in the BT samples than in the CT sam-
ples. The volume-weighted mean iodine concentration of all of
the CTs was numerically higher in late-lactation than in mid-
lactation. In mid-lactation, the mean iodine concentrations in
the CTs and WMS were similar, while in late-lactation, the
mean concentration was numerically higher in the CTs compared
to the WMS (Table 1). In both lactation periods, the iodine con-
centrations increased in SMS samples and, consequently, as levels
were higher in late-lactation BT milk, the iodine concentration in
SMP was higher in late-lactation than in mid-lactation.

The comparisons between the actual iodine concentrations of
each mid-lactation CT sample with the respective confidence inter-
val for the predicted means are shown in the Supplementary
Table S3, while such comparison for the mid- and late-lactation
WMS samples are shown in the Supplementary Table S4. All the
iodine concentrations measured in each mid-lactation CT sample
were within the respective confidence intervals, as well as the
WMS samples collected in mid- and late-lactation.

Comparison between the residue levels in the same 67 farm
bulk tanks in mid- and late-lactation (May and November)

The number of BT samples in which CHLO was detected was sig-
nificantly higher in late-lactation (32 out of the 67 samples) than
in mid-lactation (14 out of the 67 samples) (P < 0.0001). Also, in
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contrast to mid-lactation, 8 out of the 67 late-lactation BT samples
contained 0.0010 mg/kg of PCHLO. The volume-weighted mean
TCM concentration was significantly higher in late-lactation
(0.0015 ± 0.0014 mg/kg; range: 0.0003 to 0.0074 mg/kg) than in
mid-lactation (0.0009 ± 0.0008 mg/kg; range: 0.0002 to 0.0043 mg/
kg) (P < 0.0001). The volume-weighted mean iodine concentrations
of the BT samples in mid- and late-lactation (142.2 ± 129.2 and
119.7 ± 151.6 µg/l, respectively) were not statistically different
(P = 0.63).

Discussion

Residues related to the use of chlorine

Concentrations of CHLO and PCHLO were monitored through-
out the production chain of SMP in mid- and late-lactation
(May and December, respectively). In Europe, a default threshold
limit of 0.0100 mg/kg of CHLO and PCHLO is applied for milk
(EU Regulation 396, 2005). In mid-lactation (May), the volume-
weighted mean CHLO concentration in the 14 BTs and 6 CTs
(in which CHLO was detected) were lower than that limit; how-
ever, in late-lactation (December), the mean CHLO concentration
of the 6 CTs (in which CHLO was detected) was higher than the
EC limit and higher than the volume-weighted mean concentra-
tion in mid-lactation.

In mid-lactation, the CHLO concentrations in each of the CTs
could have been diluted as CHLO was not detected in 53 of the
BTs. For example, CHLO was not detected in 4 CT milk samples,
as only one of the BT milk volumes contributing to each of those
CTs contained CHLO. Additionally, CHLO was not detected in
most of the BT milk supplied to the 6 CTs in which CHLO was
detected, indicating that the sanitation of those CTs could pos-
sibly have influenced the CHLO levels. In both mid- and late-
lactation, as CHLO was not detected in most of the CT milk
volumes, the CHLO concentrations could have also been diluted

in the WMS; therefore, it is likely that the sanitation practices
of the silos did not influence the CHLO levels. Consequently,
the mean CHLO concentrations in the WMSs were lower than
the EC limit of 0.0100 mg/kg. However, as the milk supplied
to the factory during late-lactation contained higher levels of
CHLO than the mid-lactation milk, the CHLO levels in the
WMS in late-lactation were higher compared to mid-lactation;
consequently, the CHLO levels in the SMP were higher in late-
lactation than in mid-lactation.

In mid-lactation, the mean CHLO concentration of the SMP
samples was lower than the limit applied by some Irish infant for-
mula manufacturers (0.100 mg/kg). The difference of 0.0016 mg/kg
between the mean CHLO concentration of the SMP samples col-
lected at the end and start of the spray-drying run, indicated that
the sanitation of the spray-dryer could have contributed to the
CHLO levels in SMP. The interior surface of the spray-dryer
could have contained residual CHLO, and the majority of that
residue was transferred to the first batch of evaporated skim
milk that entered the equipment. In late-lactation, the mean
CHLO concentration of the SMP samples was higher than
0.100 mg/kg, indicating that the CHLO level in the bulk milk
stored in the WMS should had been lower than 0.0025 mg/kg.
Even though no variations in the CHLO concentration were
observed in SMP samples collected throughout the spray-drying
run in late-lactation, sanitation practices of that equipment
could have also contributed to the increased CHLO levels in
SMP. Additionally, the variations in CHLO concentrations
throughout the spray-drying run that were observed in mid-
lactation and not observed in late-lactation could be due to differ-
ences in the sanitation practices between production periods.

The concentrations of TCM were also monitored throughout
the production chain of SMP in mid- and late-lactation (May
and December, respectively). There are no European regulations
that have defined a standard TCM limit for milk or dairy pro-
ducts; however, Irish dairy processors apply a limit of

Table 1. Mean (± SD) chlorate (CHLO), trichloromethane (TCM) and iodine concentrations in samples collected from the farm bulk tanks (BTs), collection tankers
(CTs), whole milk silo (WMS), skim milk silo (SMS), cream silo (CS) and samples of skim milk powder (SMP) from the mid- and late-lactation periods

Mid-lactation

CHLO (mg/kg) TCM (mg/kg) Iodine (μg/l)

Farm BTs (n = 67)a 0.0021 ± 0.0019 (0.0010 to 0.0070)b 0.0009 ± 0.0008 (0.0002 to 0.0043) 142.2 ± 129.2 (10.4 to 561.2)

CT (n = 11)a 0.0020 ± 0.0010 (0.0010 to 0.0030)c 0.0009 ± 0.0003 (0.0006 to 0.0015) 134.2 ± 89.6 (58.3 to 390.8)

WMS (n = 2) 0.0010 ± 0.0000 0.0009 ± 0.0000 135.5 ± 7.6

SMS (n = 2) 0.0010 ± 0.0000 0.0002 ± 0.0000 142.1 ± 9.1

SMP (n = 9) 0.0570 ± 0.0090d 142.2 ± 10.0 (120.2 to 153.5)

Late-lactation

CHLO (mg/kg) TCM (mg/kg) Iodine (μg/l)

CT (n = 11)a 0.0410 ± 0.0554 (0.0020 to 0.1550)c 0.0020 ± 0.0007 (0.0010 to 0.0033) 437.6 ± 155.2 (225 to 709)

WMS (n = 2) 0.0025 ± 0.0000 0.0018 ± 0.0000 419.0 ± 2.8

SMS (n = 2) 0.0025 ± 0.0000 0.0005 ± 0.0000 450.0 ± 7.1

CS (n = 2) 0.0190 ± 0.0000

SMP (n = 9) 0.1263 ± 0.0071d 398.2 ± 22.8 (257 to 425)

aWeighted means and standard deviations calculated considering the volumes of milk and residues concentrations of each farm or CT sample.
bWeighted mean CHLO of the 14 bulk tank milk samples in which chlorate was detected.
cWeighted mean CHLO of the CT milk samples in which chlorate was detected (mid-lactation: 6 samples; late-lactation: 6 samples).
dResults for non-reconstituted skim milk powder n = number of samples; ranges are given between parentheses.
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0.0015 mg/kg to milk destined for the production of lactic butter
which should have less than 0.0300 mg/kg of TCM, as required by
the export market (Ryan et al., 2013). In mid-lactation, the mean
TCM concentrations of the BTs, CTs and WMS were all lower
than that limit; while, in late-lactation, the mean TCM concentra-
tions of the CTs and WMS were higher than that limit and higher
than the concentrations in mid-lactation. The agreement between
the TCM concentrations of each mid-lactation CT sample and the
contributions of each BT milk volume supplied, as well as the
agreement between the TCM concentrations of the WMS samples
and the contributions of each CT in both lactation periods, indi-
cated that the cleaning protocol of the CTs or WMS did not con-
tribute to any increases in the TCM levels in milk (Supplementary
Tables S1 and S2).

In both lactation periods, the decrease in the TCM concentra-
tions in the SMS in relation to the WMS was expected, due to the
accumulation of TCM in the cream during separation (Hubbert
et al., 1996; Table 1). As the levels of TCM were higher in late-
lactation milk, the TCM concentration in late-lactation cream
was possibly higher than the levels expected in cream produced
with mid-lactation milk.

The concentrations of CHLO and TCM were also monitored
in the same 67 farm BTs in mid- and late-lactation (May and
November, respectively) to investigate if those concentrations
could differ in milk produced by the same farm during different
production periods. None of the mid-lactation BT samples con-
tained CHLO levels higher than 0.0100 mg/kg (EC limit), while
5 late-lactation BT samples contained levels higher than that
limit. In relation to TCM, the number of BT samples that con-
tained levels greater than 0.0015 mg/kg was significantly higher
in late-lactation (21 BT samples; range: 0.0016 to 0.0074 mg/kg)
than in mid-lactation (7 BT samples, range: 0.0017 to
0.0043 mg/kg) (P = 0.002). Those increases in the levels of those
residues in late-lactation could be related to changes in the sani-
tation practices on each farm. Chlorine detergent sterilisers
should contain a maximum of 3.5% of chlorine and should be
prepared and applied according to the manufacturer’s instructions
(Gleeson, 2016). According to Ryan et al. (2013), 14 l of rinse
water per milking unit are recommended in order to totally
remove the detergent solution, and the solutions should be rinsed
immediately after the wash cycle. Additionally, the lower volume
of milk produced per farm during late-lactation (1,683 ± 1,031 l)
could have also contributed to the increase in CHLO or TCM
levels during that period, as those residues could have been
more concentrated. The presence of CHLO and TCM in milk
was not correlated; therefore, if milk contains CHLO it will not
necessarily contain TCM and vice versa. The contamination of
milk with CHLO or TCM might be related to a combination of
specific sanitation practices and further studies are necessary to
determine them. In addition, the higher number of farms in late-
lactation that supplied milk containing higher levels of CHLO or
TCM indicated that extra care is required during that period for
the production of milk powder or butter.

Iodine

Variations in the iodine concentrations were investigated
throughout the production chain of SMP in mid- and late-
lactation (May and December, respectively). The EFSA (2005)
reported that the average iodine concentration in BT milk samples
from several European studies was predominately between 100
and 200 µg/l, which were suitable to meet the required iodine

daily intake for children and adults. Some Irish dairy processors
specify that the iodine levels in raw milk should be lower than
150 µg/l to produce infant formula. In mid-lactation, the mean
iodine concentration of the BT, CT and WMS samples were all
lower than that limit; while in late-lactation, the mean concentra-
tions of the CT and WMS were higher than that limit.

Flachowsky et al. (2014) suggested that iodine could undergo
sublimation throughout processing, as more than 90% of iodine
in milk is in the inorganic form. Small decreases in the mean iod-
ine concentration observed from the BTs to CTs (mid-lactation)
and from the CTs to WMS (late-lactation) could be associated
with the sublimation of iodine (Table 1). The actual iodine con-
centrations measured in each CT (Supplementary Table S3) and
WMS (Supplementary Table S4) were in agreement with the con-
tributions of each BT and CT, respectively. However, the actual
concentrations of each CT and WMS were slightly lower than
the predicted concentrations, indicating that possibly a small
amount of iodine underwent sublimation during transport and
storage, but not sufficient to be significant. Those small losses
could have resulted in those decreases in the mean iodine concen-
trations shown in Table 1.

In mid-lactation, two CT samples had levels higher than
150 µg/l (390.8 and 202.9 µg/l). One of those CTs collected
milk from two farms that supplied milk containing 289.1 and
516.0 µg/l of iodine. The other CT collected milk from 5 farms;
however, most of the volume collected was from one farm that
supplied milk containing 561.2 µg/l of iodine. Therefore, it is
important that individual milk suppliers control the iodine intake
of their herds and correctly apply iodine-based teat disinfectants
(US National Research Council, 2001; O’Brien et al., 2013). In
late-lactation, all of the CT samples had levels higher than
150 µg/l, indicating that the iodine levels in BT milk were possibly
higher in late-lactation than in mid-lactation. Those higher levels
could be due to the contribution of the increased number of farms
(150) and also due to high levels of iodine in ration supplied to
the cows when indoors.

In both lactation periods, the mean iodine concentrations
increased in the SMS when compared to the WMS. Prior to pas-
teurisation and cream separation, milk permeate (details were not
disclosure by the manufacturer) is added to standardise the pro-
tein and lactose content in milk. That permeate could have con-
tributed to an increase in the iodine content in the SMS.

The International Council for Control of Iodine Deficiency
Disorders (ICCIDD; Delange et al. 1993) specified that the iodine
content in reconstituted SMP should be lower than 100 µg/l. The
mean iodine concentrations of the SMP produced in mid- and
late-lactation were higher than that limit (Table 1). Therefore,
in the case of the conditions of this study, the iodine levels in
the bulk milk supplied to the factory should be lower than
142 µg/l to produce SMP containing iodine levels within the spe-
cification. Also, as the iodine levels were higher in late-lactation
compared to mid-lactation milk, the iodine content in reconsti-
tuted SMP was also higher in late-lactation than in mid-lactation.

In order to investigate variations in the levels iodine in BT
milk during different production periods, the concentrations of
such residue were also measured in the same 67 farm BTs
in mid- and late-lactation (May and November, respectively). In
mid- and late-lactation, 13 and 12 BT samples had iodine concen-
trations higher than 150 µg/l, respectively. Questionnaires were
completed on some of those farms, capturing information regard-
ing animal feed. It was established that the majority of those farms
were using concentrates from one manufacturer, which contained
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at least 10 and a maximum of 43 mg of iodine/kg of ration.
Therefore, the iodine intake from ration per cow on those farms
was likely to be higher than that recommended (10 mg per cow
per day), as the average ration intake on those farms was 2.5 kg
per cow per day. Other factors that were not included in the ques-
tionnaires could have contributed to iodine levels in milk such as
grass, boluses, mineral-supplemented water and mineral licks.
Furthermore, according to the questionnaires, five and two
farms that were using iodine-based teat disinfectants supplied
milk with iodine levels higher than 150 µg/l, in mid- and late-
lactation, respectively. O’Brien et al. (2013) also observed
increases in the iodine levels in milk when applying those teat dis-
infectants post-milking. Those increases are associated with the
absorption of iodine through the teat skin, particularly if pre-
milking teat preparation is not being conducted.

In conclusion, incorrect sanitation practices on-farm can result
in increases in the CHLO or TCM levels in milk throughout the
year, while the production of lower volumes of milk is an add-
itional contributing factor in late-lactation; therefore, extra care
is necessary during that period. Consequently, increases in the
CHLO or TCM levels in milk result in increased residue levels
in SMP or cream, respectively. Therefore, it is important to con-
trol the initial residue levels in milk destined for processing, espe-
cially considering that those could concentrate greatly after
evaporation and spray-drying processes or cream separation.
Appropriate sanitation practices should also be carried out within
the processing plant to avoid increases in the residue levels
throughout the processing stages. In relation to iodine, this
study indicated that some Irish dairy herds are over supplemented
with iodine, while the use of iodine-based teat disinfectants also
contributed to high levels in some BT samples. Also, the iodine
content of the SMP produced in mid-lactation was not within
the required specification, even though the WMS milk had
lower iodine levels than specified, indicating that the levels in
BT milk should be even lower. Finally, it is possible to calculate
the expected residue levels in milk stored in the CTs or WMS
based on the volumes and residue levels of milk supplied by
each dairy farm, which could aid dairy processors to identify
the stages that may have contributed to increases in those levels.
This study highlights the importance of controlling the contribut-
ing factors on-farm and in the processing plant in order to main-
tain residues at safe and market-acceptable levels.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0022029919000578
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Materials & Methods 30 

Comparison between the residue levels in farm bulk tanks in mid- and late-lactation 31 

In late-lactation (November 2016), the average (± SD) milk volume that was stored in each 32 

BT of the 67 farms during sampling was 1,683 ± 1,031 L (range: 125 to 4,519 L), which were 33 

stored for an average (± SD) of 34 ± 15 h, at 3.3 ± 1.2 ˚C. 34 

 35 

Quantification of trichoromethane 36 

In each sample vial, 2 mL of milk or reconstituted SMP were added with 5 µL of internal 37 

standard and 5 µL of of ethanol. The internal standard consisted of a solution prepared using 38 

2-bromo-1-chloropropane and ethanol (0.2 mg/ mL). Samples were placed on an autosampler 39 

tray (CTC analytics Combi-pal; CTC Analytics AG Industriestrasse 20 CH-4222, Zwingen, 40 

Switzerland) and were incubated for 15 min at 80 ˚C and agitated at 750 rpm. Samples were 41 

injected (500 µL) into an Agilent 19095J-121LTM column (10 m x 0.53 mm x 2.65 µm; 42 

Agilent Technologies, Santa Clara, California, USA) with a heated gas-tight syringe (90 ˚C). 43 

Helium was used as the carrier gas, and the column temperature was kept at a constant 44 

temperature of 200 ˚C, which decreased to 70 ˚C in the end of analysis. 45 

 46 

Quantification of total iodine 47 

In each vial, 1:1 (w/v) solutions of sample and 5% tetramethyl-ammonium hydroxide 48 

(TMAH) extraction solution were added and gently swirled. Vials were placed in an oven at 49 

90 ˚C for 3 h and afterwards they were allowed to cool. The standards used for the calibration 50 

consisted of solutions of iodine with 0.5 mL of a Tellurium solution (1,000 µg/ mL), which 51 

contained 1% TMAH. 52 

 53 

 54 

 55 

 56 
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 59 

 60 
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Table S1. Comparison of mean trichloromethane (TCM) concentrations measured in each collection tanker (CT: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 

11) during mid-lactation and those predicted (± standard error; S.E.) from the combined farm samples in each CT. 

CT 

number 

Number 

of farms 

Total volume 

per tanker (L) 

Mean (±  SD) volume 

measured per farm (L) 

Mean TCM concentration 

of each CT (mg/ kg) 

Predicted TCM concentration 

 (weighted means ± S.E.)† 

(mg/ kg) 

95% CI‡ Mean TCM 

concentration of each CT 

covered by predicted C.I. 
LCL UCL 

1 4 23771 5,943 ± 1,271 0.0015 0.0014 ± 0.0009 0.0000 0.0043 Yes 

2 5 26503 5,301 ± 2,385 0.0008 0.0005 ± 0.0002 0.0000 0.0011 Yes 

3 6 29122 4,854 ± 1,763 0.0012 0.0009 ± 0.0003 0.0001 0.0016 Yes 

4 6 23780 3,963 ± 2,683 0.0012 0.0009 ± 0.0003 0.0002 0.0016 Yes 

5 8 27585 3,448 ± 2,214 0.0008 0.0004 ± 0.0001 0.0002 0.0005 Yes 

6 7 28628 4,090 ± 1,208 0.0011 0.0008 ± 0.0004 0.0000 0.0018 Yes 

7 7 27188 3,884 ± 2,064 0.0006 0.0004 ± 0.0001 0.0002 0.0006 Yes 

8 7 28470 4,067 ± 2,437 0.0007 0.0004 ± 0.0002 0.0001 0.0008 Yes 

9 2 27147 13,574 ± 11,312 0.0010 0.0007 ± 0.00004 0.0002 0.0012 Yes 

10 5 25248 5,050 ± 3,877 0.0007 0.0003 ± 0.0001 0.0000 0.0006 Yes 

11 10 28561 2,856 ± 1,764 0.0008 0.0005 ± 0.0001 0.0003 0.0008 Yes 

† Weighted means were calculated considering the volume of milk supplied by each farm or by each CT. 

‡ Confidence interval (CI), lower (LCL) and upper (UCL) confidence limits. 
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Table S2. Comparison of mean trichloromethane (TCM) concentrations measured in the whole milk silo (WMS) during mid- and late-lactation 

and those predicted (± standard error; S.E.) from the combined collection tankers (CTs) samples. 

 

Mean TCM 

concentration of the 

WMS (mg/ kg) 

Mean (± SD) volume 

measured  per CT (L) 

Predicted TCM 

concentration 

(weighted means ± S.E.)† 

(mg/ kg) 

95% CI‡ 
Mean TCM concentration of 

WMS covered by predicted 

C.I. 
LCL UCL 

Mid-lactation 0.0009 26,909 ± 1,902 0.0007 ± 0.00009 0.0005 0.0009 Yes 

Late-lactation 0.0018 24,357 ± 3,768 0.0019 ± 0.0002 0.0014 0.0024 Yes 

† Weighted means were calculated considering the volume of milk supplied by each CT. 

‡ Confidence interval (CI), lower (LCL) and upper (UCL) confidence limits. 
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Table S3. Comparison of mean iodine concentrations measured in each collection tanker (CT: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11) during mid-

lactation and those predicted (± standard error; S.E.) from the combined farm samples in each CT. 

CT 

Number 

of farms 

Mean (±  SD) volume 

measured per farm (L) 

Total volume  

per CT (L) 

Iodine concentration measured 

in each CT sample (µg/ L) 

Predicted iodine concentrations 

(weighted means ±  SE) (µg/ L) † 

95% CI ‡ 
Mean iodine concentration of 

each CT covered by predicted CI LCL UCL 

1 4 5,943 ± 1,271 23,771 83.9 89.2 ± 21.8 19.8 158.6 Yes 

2 5 5,301 ± 2,385 26,503 81.8 90.0 ± 23.8 23.9 156.2 Yes 

3 6 4,854 ± 1,763 29,122 120.0 117.9 ± 45.6 0.6 235.3 Yes 

4 6 3,963 ± 2,683 23,780 58.3 61.2 ± 8.5 39.3 83.7 Yes 

5 8 3,448 ± 2,214 27,585 125.9 141.0 ± 27.8 75.4 206.7 Yes 

6 7 4,090 ± 1,208 28628 138.4 144.1 ± 55.7 7.9 280.3 Yes 

7 7 3,884 ± 2,064 27188 112.0 116.7 ± 15.7 78.4 155.1 Yes 

8 7 4,067 ± 2,437 28470 76.3 82.9 ± 20.9 31.6 134.1 Yes 

9 2 13,574 ± 11,312 27147 390.8 335.7 ± 91.6 0 1,500 Yes 

10 5 5,050 ± 3,877 25248 202.9 282.7 ± 121.2 0 619.7 Yes 

11 10 2,856 ± 1,764 28561 80.0 101.7 ± 12.1 74.3 129.1 Yes 

† Weighted means were calculated considering the volume of milk supplied by each farm. 

‡ Confidence interval (CI), lower (LCL) and upper (UCL) confidence limits. 
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Table S4. Comparison of mean iodine concentrations measured in the whole milk silo (WMS) during the mid- and late-lactation periods and 

those predicted (± standard error; S.E.) from the combined collection tankers (CTs) samples. 

 
Mean (± SD) iodine concentration 

of the WMS (µg/ L) 

Mean (± SD) volume 

measured  per CT (L) 

Predicted iodine concentration 

(weighted means ± SE) (µg/ L) † 

95% CI ‡ 

Mean iodine concentration of the 

WMS covered by predicted CI LCL UCL 

Mid-lactation 135.5 ± 7.6 26,909 ± 1,902 134.2 ± 28.3 71.0 197.3 Yes 

Late-lactation 419.0 ± 2.8 24,357 ± 3,768 421.4 ± 50.5 308.8 534.0 Yes 

† Weighted means were calculated considering the volume of milk supplied by each CT. 

‡ Confidence interval (CI), lower (LCL) and upper (UCL) confidence limits. 
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Figure S1. Milk supply chain and manufacturing process for conversion to low-heat skim milk powder, conducted in the mid- and late-lactation 

periods. The sampling points for chlorate (CHLO) and perchlorate (PCHLO), iodine and trichloromethane (TCM) are indicated with a ●, ▲and 

■, respectively. 
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