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Abstract— The Wavelet Adaptive Multiresolution Represen-
tation (WAMR) code and the G-Scheme framework are used
for the numerical time integration of the flamelet model.
The steep gradients are efficiently captured by the WAMR
algorithm with an a-priori defined accuracy and an associated
large reduction of the number of degrees of freedom (DOFs).
A further opportunity to reduce the complexity of the prob-
lem is represented by the G-Scheme, to achieve multi-scale
adaptive model reduction along-with the time integration of
the differential equations.

I. INTRODUCTION

In this work a study of the unsteady flamelet model is
proposed. Steady-state solutions are generated through the
Wavelet Adaptive Multiresolution Representation (WAMR)
code [1, 2]. This method was verified [2, 3] for a wide
range of test cases - compressible and incompressible flows
described by reacting Navier-Stokes equations in primitive
variables in 1-, 2- and 3-D geometries. Using the WAMR
algorithm to dynamically adapt the space resolution, the
computational cost is largely reduced: steep gradients are
well captured by the algorithm, with a reduced number of
grid points and consequent reduction of the computational
cost.

By decomposing the system dynamics into active, slow,
fast and invariant subspaces, the G-Scheme algorithm allows
to integrate only the DOFs belonging to the active subspace,
with corresponding saving in computational work. Complete
details about the G-Scheme theory can be found in the work
by Valorani et al. [4].

II. DISCUSSION AND RESULTS

We consider the unsteady flamelet proposed in [5], con-
sidered for adiabatic case, at constant pressure and unity
Lewis number. The thermodynamic properties of the fluid
are evaluated with the ideal gas Equation of State (EoS). The
kinetic mechanism for CO, CH50O and CH30OH combustion
[6] is considered, taking into account 12 chemical species.
The flamelet equations are integrated for pressure p = 20
atm and scalar dissipation rate x% . =200 s~1.

The coupling between WAMR and the G-Scheme is
represented in Fig. 1, where ¢ is the time and ¥ is the state
vector, where the temperature and the species mass fractions
are stored.

¥ (to) W.AMR. y (tn G-Scheme
. (Model Reduction & |--
(Mesh Refinement) . .
Time Integration)

! 37 (tne)

Lt J

Fig. 1. Coupling between WAMR and the G-Scheme; ¥/(t) represents the
state vector.

The reference solution is built on a uniform grid using
DVODE as time integrator and the steady-state is supposed
to be reached when the root mean square (RMS) of the right
hand side (RHS) becomes lower than a fixed prescribed
minimum value.

The comparison between the reference and the adaptive
solutions is represented in Fig. 2 in terms of temperature
with respect to the mixture fraction z, for five values of ¢:
the excellent level of accuracy produced by the G-Scheme
and WAMR can be clearly appreciated.
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Fig. 2. Solutions comparison in terms of temperature with respect to z for
five values of ¢ - in the WAMR/G-Scheme simulation the wavelet threshold
parameter is ¢ = 1073; the dashed lines represent the reference curves,
while the triangles are associated with the results of the WAMR/G-Scheme
simulation.

Figure 3 shows the time evolution of the number of
DOFs produced by WAMR, integrated by the G-Scheme
and associated with the reference uniform grid. From an
overall perspective, it is clear that the number of DOFs



produced by WAMR is significantly lower than the one
associated with the reference uniform mesh ensuring the
same accuracy in space. A useful tool to evaluate the
efficiency of the wavelet compression is represented by
the compression degree m,, defined as the ratio between
the number of grid points of the adaptive mesh and a
reference uniform grid having the same minimal spacing. In
the current test this values reaches a peak at t ~ 7.5 x 1076
s (mho® ~ 26%), while it remains fairly constant from
t~1.5x107* s (7, ~ 20%): this excellent result shows
that only a few DOFs are required to obtain solutions
accurate as prescribed by the wavelet threshold parameter.
In the same way, the G-Scheme efficiency can be evaluated
by the index 7y, representing the ratio between the number
of DOFs integrated by the G-Scheme (/N4) and generated
by WAMR. The peak is reached at t ~ 7.5 x 1076 (g™ =~
66%) and the trend remains stable from ¢ ~ 1.5 x 10~% s
(mgs > 7.5%), showing that the G-Scheme is typically able
to integrate a small amount of DOFs generated by WAMR,
while maintaining a prescribed accuracy in time.
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Fig. 3. Number of DOFs with respect to ¢.

Another important feature of the G-Scheme is the integra-
tion time step, Fig. 4: it is of the order of the fastest time
scale of the active subspace, that can be several order of
magnitude larger than the fastest time scale of the system.

Finally, Figure 5 shows the time evolution of the Jacobian
matrix eigenvalues, in terms of orders of magnitude. The
few eigenvalues associated with the active subspace and
integrated are included between the red and blue continuous
lines, representing the boundaries between the active and
the fast/slow subspaces, respectively. The number of active
DOFs remains approximatively constant from ¢ = 2 x 1074
s, Ng =~ 39.25. The green line is associated with the
Tangential Stretching Rate (TSR) [7], showing that the most
energetic scale is always included in the active subspace.

ACKNOWLEDGMENT

The present work has been supported by the Italian
Ministry of Education, University and Research (MIUR).

10-
107
0.0000  0.0002  0.0004 0.0006  0.0008
t[s]
Fig. 4. Integration time step in time for the G-Scheme.
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Fig. 5. Order of magnitude of the Jacobian matrix eigenvalues (gray dots)
for e = 1073; the active subspace is included between the red and blue
lines; the green line is associated with the TSR.
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