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Abstract

The aim of the paper is to relax distributional assumptions on the error terms, often imposed

in parametric sample selection models to estimate causal effects, when plausible exclusion

restrictions are not available. Within the principal stratification framework, we approximate

the true distribution of the error terms with a mixture of Gaussian. We propose an EM

type algorithm for ML estimation. In a simulation study we show that our estimator has

lower MSE than the ML and two-step Heckman estimators with any non normal distribution

considered for the error terms. Finally we provide an application to the Job Corps training

program.
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1 Introduction

In many fields where treatment effect evaluations are conducted, such as labor, health,

and educational economics, the outcome of interest may be observed only for a non-

randomly selected subpopulation. This problem is known in the literature as sample

selection and may flaw causal analysis (see for instance Gronau, 1974 and Heckman,

1974). Indeed, even a randomized experiment cannot guarantee that treatment and

control individuals will be comparable conditional on being selected.

For example, if we want to estimate the wage effect of a training program, often,

only a selective subgroup of training participants and non-participants finds a job

which is a condition for observing earnings. Similar problems are inherent in clinical

trials when some of the participants in a medical treatment pass away (“truncation

by death”) before the health outcome is measured. As a final example, consider the

effect of randomly provided private schooling on college entrance examinations. The

sample selection problem arises when only a non-random subgroup of students takes

the exam.

Principal stratification (PS hereafter, see Frangakis and Rubin, 2002), provides a

natural framework to characterize sample selection problems, as it allows defining

populations (i.e., principal strata) in terms of their behavior w.r.t. selection under

different treatment states. This is useful because the selection problem does not

arise within a particular stratum consisting of individuals with the same selection

behavior, i.e., being of the same “type”. Thus, the treatment effects identified are

causal if the imposed assumptions and the data imply that individuals belonging

to the same stratum may be observed both under treatment and non-treatment.

Therefore, the principal stratification framework enables us to explicitly state

under which assumptions identification works and for which latent population.

Without strong and often unreasonable assumptions, when the treatment effects

are heterogeneous, point identification is possible only for the always selected, i.e.,

those who are selected regardless of the treatment assignment. Indeed, only for this

population it is possible to observe units in both the treatment arms (for partial
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identification on different populations see Lechner and Melly, 2010 and Huber and

Mellace, 2010).

In general, without the availability of a continuous instrument for the selection

(see Das et al., 2003 and Huber, 2009), point identification can be achieved only by

imposing strong distributional assumptions. In most of the applied works in the

principal stratification framework, parametric point identification is achieved by

means of finite mixture (see McLachlan and Peel, 2001) of Gaussian distributions.

These models assume that the error terms are normally distributed among the

strata. Similarly, in the econometric literature, it is well known that parametric

sample selection models heavily rely on distributional assumptions. In particular, it

is often assumed joint normality between the errors of the selection and the outcome

equations. It is important to stress the fact that a failure in the joint normality

assumption leads to inconsistent estimates, for this reason several semi-parametric

and non-parametric estimators have been proposed in the literature (see Vella, 1998).

However all this methods require additional exclusion restrictions assumptions for

identification. Moreover, most of them are at least as restrictive as our, in the second

step.

The idea of our paper is to relax distributional assumptions imposed on the error

terms, when plausible exclusion restrictions are not available. Although, our model

is still parametric, we are able to allow for heterogeneous treatment effects adding

interactions between the treatment and the covariates. Moreover, it is often difficult

or even impossible to find valid continuous instruments for the selection (variables

that are relevant for the selection but not for the outcome). This is true, in particular,

when the analysis regards the wage effect of a training program, as in our application.

It is well known that any distribution can be approximated by a mixture of normal

distributions. Starting from this result, Bartolucci and Scaccia (2005), have shown

how fitting a regression model with error terms distributed as a mixture of Gaussians,

may improve OLS when the true distribution is not normal. Our idea is to extend

this approach within the principal stratification framework. We will show that the

particular structure of the problem allows us to identify a mixture of mixture model,
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which is not identifiable in general. Maximum likelihood estimation is then carried

out by means of an EM type algorithm (Dempster et al., 1977).

In order to study the performances of our estimator, we run a Monte Carlo simula-

tion where data are generated from a standard Heckman sample selection model, and

the performances of our estimator are compared with those of the Heckman maximum

likelihood and two-step estimators. The results show that our approach performs bet-

ter in terms of mean square error (MSE) when the true distribution of the error terms

is not Gaussian (See Mealli and Pacini, 2008b for the Gaussian case).

Finally, we re-evaluate the long term wage effect of the Job Corps training program,

using the same dataset analyzed in Lee (2009).

The paper is organized as follows. In section 2 we introduce the causal problem

and we briefly compare the parametric Heckman sample selection and principal strat-

ification models. In section 3 we present our idea and the main steps of the EM algo-

rithm. In section 4 we show the simulation results. In section 5 we report the results

of the application. Section 6 concludes.

2 Causal inference in presence of sample selection

problems

Suppose we want to estimate the effect of a binary treatment T = 1, 0, on an outcome

Y , at a specific time after assignment. Using the potential outcome framework advo-

cated, among many others, by Rubin (1977), we will denote by Yi(1) and Yi(0), the

two potential outcomes that an individual would receive under treatment and non-

treatment, and by ∆i = Yi(1) − Yi(0), the individual treatment effect. Even under

randomization of the treatment, post-treatment complications might introduce selec-

tion bias and flaw causal inference. One particular form of post-treatment complica-

tions is sample selection, implying that the outcome of interest is only observed for

a non-random subpopulation. To address this issue let Qi ∈ {1, 0}, be an observed

binary post-treatment selection indicator which is 1 if the outcome of individual i is

observed and 0 otherwise and we denote by Qi(1) and Qi(0), the two potential selec-

3



tion states.

Throughout the discussion, the so-called Stable Unit Treatment Value Assumption

(SUTVA, e.g., Rubin, 1990) will be maintained, ruling out interference between units

as well as general equilibrium effects of the treatment.

Assumption 1 (SUTVA):

Yi(ti)⊥tj ∀j 6= i,

Qi(ti)⊥tj ∀j 6= i.

Where “⊥” denote independence. SUTVA implies that not only the potential out-

comes but also the potential post-treatment variables for each subject i are unrelated

to the treatment status of other individuals.

Causal inference requires the specification of the treatment assignment mechanism.

If the treatment is randomly assigned it will be independent from the post-treatment

variables Q,Y and from their potential values. However, in observational studies,

randomization is assumed to hold conditional on the observed pre-treatment variables

X. This assumption is known in the literature as conditional independence assumption

(CIA), also referred to as “selection on observables” or “unconfoundedness”, (see for

instance Imbens, 2004 and Imbens and Wooldridge, 2009). It implies that the potential

outcomes and selection states are independent of the treatment conditional on the pre-

treatment variables.

In the sample selection framework, Lee (2009), Mealli and Pacini (2008a) and

Mealli and Pacini (2008b), among others, assume that the joint distribution of the

potential post treatment variables is independent of the treatment given X. This

assumption can be formalized as:

Assumption 2 (Unconfoundness):

(Y (1), Y (0), Q(1), Q(0))⊥t|X = x ∀x ∈ X .

Where X denotes the support of X.

A more formal representation of the causal problem is given by the following struc-
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tural model (Huber, 2009 , Imbens, 2006 and Mealli and Pacini, 2008a)

yi = χ(ti, xi, ǫi)

qi = ς(ti, xi, νi)

ti = ψ(xi, ζi) (1)

where ǫi, νi⊥ζi|X = x by unconfoundness, thus the third equation can be ignored.

2.1 Heckman sample selection model and structural model

The standard parametric Heckman sample selection model imposes linearity in the

first two equations of model (1), and can be written as

y∗i = β0 + β1ti + βT
2 xi + ǫi,

qi = I(α0 + α1ti + αT
2 xi + νi > 0),

yi = y∗i qi,

where




ǫi

νi


 ∼ N2







0

0


 ,




σ2
ǫ σǫν

σǫν σ2
ν





 and I(·) is the indicator function.

The idea is to adjust for the bias that arises from the correlation between the regressors

of the outcome equation and its error term which operates through the relationship

between ǫi and νi. This model can be estimated parametrically either by maximum

likelihood or by the popular two-step estimator. The latter is based on the fact that,

thanks to the joint normality of the error terms we can write

E(yi|ti, qi = 1, xi) = β0 + β1ti + βT
2 xi + β3λ(α0 + α1ti + αT

2 xi),

where β1 = E(∆i|ti = 1, qi = 1, xi) is the average treatment effect (ATT) for the

respondents(ATTR), λ(α0 + α1ti + αT
2 xi) is the inverse Mills ratio and β3 = σǫν/σ

2
ν .

This also clarify that under the model assumptions, we are able to identify the ATTR.
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This specification implicitly assume that no interactions between the treatment

variable and the pretreatment characteristics are relevant, this would be plausible if

the treatment effect is homogeneous, but it can lead to inconsistency when the effects

are heterogeneous. One solution could be to add interactions between the treatment

variable and the pre-treatment variables. In the simulation study we consider the case

with no interactions between the treatment and the pre-treatment variables, then the

comparison between the two models refer to this case. In section 3 we will discuss

how our model can allow for heterogeneous effects.

As it has already been pointed out in the introduction, this model heavily rely

on the joint normality of the error terms. Several estimators in the literature try to

relax this assumption but additional exclusion restriction are needed (among many

others: Ahn and Powell, 1993, Cosslett, 1991, Das et al., 2003, Ichimura and Lee,

1991, Ichimura, 1993, Lee, 1994, Li and Wooldridge, 2002, Newey, 2009, Newey, 1990,

Newey et al., 1990, Powell et al., 1989 and Robinson, 1988 ).

2.2 Principal stratification

The Principal stratification approach suggests to stratify the units, within each cell

defined by the values of the covariates, into four latent principal strata, according to

the joint values of (Qi(1), Qi(0)). Frangakins and Rubin (2002) give the following

definition

Definition

The basic principal stratification P0 with respect to post-treatment variable Q is the

partition of units i = 1, . . . , n such that, within any set of P0, all units have the same

vector (Qi(1), Qi(0)). In our case P0 is given by

11 = {i : Qi(1) = Qi(0) = 1}

10 = {i : Qi(1) = 1, Qi(0) = 0}

01 = {i : Qi(1) = 0, Qi(0) = 1}

00 = {i : Qi(1) = Qi(0) = 0}
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Let Si ∈ {11, 10, 01, 00} represent the principal stratum to which subject i belongs. Si

is not affected by the treatment assignment by definition and can be seen as a covariate,

only partially observed in the sample. Unconfoundedness guarantees to have the same

distribution in both treatment arms, within cells defined by pre-treatment variables,

it implies that Y (0), Y (1)⊥t|Q(0), Q(1), X = x, the potential outcomes are, therefore,

independent of the treatment given the principal strata. Thus, any effect defined

conditional on a principal stratum, is a well defined causal effect. In some sense,

we can state that principal strata play a similar role of control functions in deriving

independence conditions, even if not derived from a model (Mealli and Pacini, 2008a).

In our setting direct information on the causal effect can be found only in the 11

stratum of the always respondents, because only for units belonging to this stratum

one can consistently compare Y (1) and Y (0). Since Q represents non response, in fact,

only in this stratum we have both treated or control units, so that the causal effect

which can be estimated, without any further restriction, is an effect within stratum

11.

The following correspondence between the observed values of T and Q and the

latent strata holds

o(1, 1) = {i : ti = 1, Qi(ti) = 1} subject i belongs either to 11 or to 10,

o(1, 0) = {i : ti = 1, Qi(ti) = 0} subject i belongs either to 01 or to 00,

o(0, 1) = {i : ti = 0, Qi(ti) = 1} subject i belongs either to 11 or to 01,

o(0, 0) = {i : ti = 0, Qi(ti) = 0} subject i belongs either to 10 or to 00.

In each observed group we have a mixture of two principal strata, then, it is not

possible to point-identify the strata proportions, as well as the distribution of Y within

the strata.

To improve identification it is often assumed, that Q is monotone in T

Assumption 3 (monotonicity of selection):

Pr(Q(1) ≥ Q(0)) = 1.
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This requires that the potential selection state never decreases in the treatment

and, thus, rules out the existence of stratum 011.

In the standard sample selection model monotonicity is imposed by construction,

since for example α1 > 0 implies Q(1) ≥ Q(0). When α1 > 0, the following

correspondence between the specified selection model and the underlying latent

strata holds (see Vytlacil, 2002)

{i : νi > −α0 − αT
2 xi} ≡ {i : Qi(1) = Qi(0) = 1},

{i : −α0 − α1 − αT
2 xi < νi < −α0 − αT

2 xi} ≡ {i : Qi(1) = 1, Qi(0) = 0},

{i : νi < −α0 − α1 − αT
2 xi} ≡ {i : Qi(1) = Qi(0) = 0}.

Under assumption 3 we have

o(1, 1) = {i : ti = 1, Qi(ti) = 1} subject i belongs either to 11 or to 10,

o(1, 0) = {i : ti = 1, Qi(ti) = 0} subject i belongs to 00,

o(0, 1) = {i : ti = 0, Qi(ti) = 1} subject i belongs to 11,

o(0, 0) = {i : ti = 0, Qi(ti) = 0} subject i belongs either to 10 or to 00.

Monotonicity allows to point-identify at least the strata proportions, but again is not

possible to disentangle the distribution of Y between strata 11 and 10. In this case

only nonparametric bounds can be derived, unless some parametric distributional as-

sumptions are introduced. Non parametric point identification, again rely on exclu-

sion restrictions, more precisely on the availability of a valid instrument for the selec-

tion mechanism, as discussed for example in Mealli and Pacini (2008a).

Parametric identification is achieved by means of finite mixture models. Although

others specification are possible, the proportions of units belonging to each stratum in

the cell X = x defined as π11|x, π10|x, and π00|x = 1− π11|x − π10|x are often modeled

1A symmetric result can be obtained by assuming Pr(Q(0) ≥ Q(1)) = 1 which implies that stratum 10
does not exist. As Huber and Mellace (2010) have shown only one kind of monotonicity can be consistent
with the data.
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as a multinomial logit

π11|x =
exp{B11,0+BT

11,1x}

1+exp{B11,0+BT
11,1x}+exp{B10,0+BT

10,1x}
,

π10|x =
exp{B10,0+BT

10,1x}

1+exp{B11,0+BT
11,1x}+exp{B10,0+BT

10,1x}
,

π00|x = 1− π11|x − π10|x,

and the distributions of Y conditionally on the principal strata are assumed to be

yi|qi = 1, xi, 11 ∼ N (β0 + β1ti + βT
2 xi, σ

2
11),

yi|qi = 1, xi, 10 ∼ N (δ0 + δ1ti + δT
2 xi, σ

2
10),

(2)

where we set δ = δ0 + δ1ti since ti is always equal to 1 for this units.

In this specification β1 = E(∆i|ti = 1, xi, 11) ≡ ∆11 the ATT for the always

respondents (ATTAR) 2. In order to see this, from 2 we can write

E(yi|ti = 1, xi, 11) = β0 + β1ti + βT
2 xi

and

E(yi|ti = 0, xi, 11) = β0 + βT
2 xi

Subtracting the two we have

∆11 = E(yi|ti = 1, xi, 11)− E(yi|ti = 0, xi, 11) = E(Yi(1)− Yi(0)|ti = 1, xi, 11) = β1.

Notice that under the assumptions of the Heckman sample selection model

ATTR=ATTAR. Indeed, even though it accounts for the correlation between ǫi

and νi imposing joint normality, the effect is constant among the strata. This is a

possible explanation of the relative bad performance of the ML Heckman estimator

when data are generated under the principal stratification model found in Mealli and

Pacini (2008b).

Finally, it is interesting to rephrase principal stratification in terms of the structural

2Same consideration as before for heterogeneous effects. For a fully saturated model with normal error
terms see Zhang et al. (2009).
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model described above. With no loss of generality and to avoid extra notation, suppose

we are already within cells defined by observed pretreatment variables. From the

structural model we have

yi = χ(ti, ǫi)

qi = ς(ti, νi)

and yi is observed only if qi = 1, the endogeneity of Q depends on the relationship

between ǫ and ν. Of course the endogeneity problem disappears whenever we are able

to condition on ν, because in that case Q and ǫ will be conditionally independent.

Obviously we will never observe ν, but we can find a function of it, say S(ν), called

type of unit (Imbens, 2006) such that

ǫ⊥Q|S(ν).

As in the propensity score literature, the type function should have a small variation,

i.e. it should be constant on sets of values of ν such that for all value of T lead to the

same value of Q.

Principal stratification is the choarest choice of S(·), because if S(ν) represents the

stratum S then ǫ⊥Q|S(ν) by unconfoundness and

S(ν) = S(ν′) if ς(t, ν) = ς(t, ν′) ∀ t,

S(ν) 6= S(ν′) if ς(t, ν) 6= ς(t, ν′) for some t.

As an example in the Heckman sample selection model with α1 > 0, S(ν) ∈ {I(ν >

−α0 − αT
2 x) = 11, I(−α0 − α1 − αT

2 x < ν < −α0 − αT
2 x) = 10, I(ν < −α0 − α1 −

αT
2 x) = 00}, clearly satisfies the conditions above, because Q is constant and then

independent from ǫ given S(ν) = 11, 00, while Q = T and then independent from ǫ by

unconfoundness given S(ν) = 10.

Within the PS approach, the comparison of y between treated and controls is

possible only for some values of S, in particular those with ς(0, ν) = 1 and ς(1, ν) = 1

(Mealli and Pacini, 2008a, Zhang et al., 2008). This limitation, however, is created by

the selection mechanism, and is not a drawback of principal stratification.
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3 Our Proposal

In this section we present the main ideas underling our approach. In the first model

we allow for heterogeneous effects w.r.t. to the observable covariates. Maintaining

assumptions 1, 2 and 3, we assume that if the i-th individual belongs to stratum 11

its outcomes equation is yi = β0 + β1ti + βT
2 xi + βT

3 xi ∗ ti + ǫi, while if it belongs

to stratum 10, then yi = δ0 + δT
2 xi + ǫi. In the two equations we allow for effect

heterogeneity by adding interactions between the treatment and the covariates.

The main difference of our model and others proposed in the literature is that we

approximate the true distribution of ǫi as

f(ǫi) =
G∑

g=1

τgφ(ǫi;µg, σ
2
k), k = 11, 10,

where τg ≥ 0, g = 1, . . . , G,
∑G

g=1 τg = 1,
∑G

g=1 τgµg = 03 and φ(ǫi, µ, σ
2) denotes

the density at ǫi of the normal distribution N (µ, σ2). This implies that

f(yi|ti, xi, 11) =
G∑

g=1

τgφ(yi;µg + β0 + β1ti + βT
2 xi + βT

3 xi ∗ ti, σ2
11), (3)

f(yi|ti, xi, 10) =

G∑

g=1

τgφ(yi;µg + δ0 + δT
2 xi, σ

2
10). (4)

When qi = 1 and ti = 0, i.e. i ∈ o(0, 1), then individual i belongs to stratum 11 and

the distribution of yi is given by 3, while when qi = 1 and ti = 1, i.e. i ∈ o(1, 1),

individual i belongs either to stratum 10 or to 11. In the latter case the distribution

of yi is given by the following mixture of mixtures

f(yi|ti = 1, qi = 1, xi) = π11|xi

G∑

g=1

τgφ(yi;µg + β0 + β1ti + βT
2 xi + βT

3 xi ∗ ti, σ2
11) +

+π10|xi

G∑

g=1

τgφ(yi;µg + δ0 + δT
2 xi, σ

2
10) (5)

The proportions of units belonging to each stratum are still modeled as the multi-

3This condition is needed only if the intercepts are parameters of interest, indeed in this case we can
identify, for example, β0 as (β0 = [

∑G

g=1
τg(µg + β0)]).
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nomial logit described before. In the simulation study we will use a more restrictive

version of this model, which is obtained assuming that the treatment effect is homo-

geneous and that the distribution of the potential outcomes in stratum 11 stochas-

tic dominate the distribution of the potential outcomes in stratum 10. As shown in

Zang, Rubin and Mealli (2008) stochastic dominance implies that β2 = δ2, β3 = 0

and σ2
11 = σ2

10. The only difference is that the distributions of the potential outcomes

within the strata become

f(yi|ti, xi, 11) =
∑G

g=1 τgφ(yi;µg + β0 + β1ti + βT
2 xi, σ

2
11),

f(yi|ti, xi, 10) =
∑G

g=1 τgφ(yi;µg + δ0 + βT
2 xi, σ

2
11).

3.1 Identification

Identifiability of finite mixture models has been proved for some important class of

distributions such as gamma or multivariate Gaussian (see Teicher, 1963; Yakowitz and

Spragins, 1968). Hennig (2000) provides sufficient conditions under which mixtures of

Gaussian regression models are identified. As Henning pointed out, these conditions

are rather mild if at least one regressor is continuous. In what follows, as in the

standard PS model, we assume that the prior probabilities πSi|xi
are identified.

Notice that f(yi|ti = 1, qi = 1, xi) in 5 is a mixture of two mixtures of Gaussians

whose parameters are not identifiable in general. Indeed, it may exist two different

sets of parameters, say Θ and Θ̃, such that

π11|xi

G∑

g=1

τgφ(yi;µg + β0 + β1 + (β2 + β3)
Txi, σ

2
11) + π10|xi

G∑

g=1

τgφ(yi;µg + δ0 + δT
2 xi, σ

2
10) =

= π̃11|xi

G̃∑

g=1

τ̃gφ(yi; µ̃g + β̃0 + β̃1 + (β̃2 + β̃3)
Txi, σ̃

2
11) + π̃10|xi

G̃∑

g=1

τ̃gφ(yi; µ̃g + δ̃0 + δ̃T
2 xi, σ̃

2
10)

(6)

for every yi and xi.

To see this notice that, equation 5 can be seen as a mixture of 2G normal linear
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regressions and can be rewritten as

2G∑

h=1

ξhφ(yi; γ
T
h xi, σ

2
h) =

2G̃∑

h=1

ξ̃hφ(yi; γ̃
T
h xi, σ̃

2
h),

where 


ξ1 ξG+1

ξ2 ξG+2

...
...

ξG ξ2G




=




τ1

τ2
...

τG




×
[
π11|x1

π10|x1

]

Identifiability of mixtures of Gaussians implies that G = G̃ and that for every h there

exists a unique l such that

(ξh, γ
T
h , σ

2
h) = (ξ̃l, γ̃

T
l , σ̃

2
l ). (7)

this does not guarantee identification of the other parameters. As an example, let us

suppose that




ξ1 ξ5

ξ2 ξ6

ξ3 ξ7

ξ4 ξ8




=
1

60




1 2

2 4

3 6

6 12




=
1

12




1

2

3

6




× 1

5
[1 2] .

Those parameters can be also written as




ξ̃1 ξ̃5

ξ̃2 ξ̃6

ξ̃3 ξ̃7

ξ̃4 ξ̃8




=
1

60




1 3

2 6

2 6

4 12




=
1

9




1

2

2

4




× 9

60
[1 3] .

In this example, 7 is true but our model is not identified if we just consider only the

observed strata o(1, 1). However, we note that the probabilities τg can be identified in

the observed strata o(1, 0). Since the prior probabilities πSi|xi
are identified, we have

13



π11|xi
= π̃11|xi

and π10|xi
= π̃10|xi

, while there exists a relabeling of the τ̃g such that

τg = τ̃g. This guarantees identification.

Therefore the ATTAR denoted by ∆11 is identified as

∆11 =

∫

X

E(Y |T = 1, X, 11)dF (X)−
∫

X

E(Y |T = 0, X, 11)dF (X),

where F (X) denotes the distribution of the covariates. Identification of the restricted

model can be proved in a similar way, thus it will be skipped.

3.2 EM-algorithm

Without loss of generality, and to simplify the exposition, we discuss the estimation

for the model without interaction under stochastic dominance.

The proportions of units belonging to each stratum are still modeled as the multi-

nomial logit described above. Therefore the likelihood becomes

L(θ) =
∏

i∈o(1,1)

[
π11|xi

G∑

g=1

τgφ(yi;µg + ω̆i, σ
2) + π10|xi

G∑

g=1

τgφ(yi;µg + η̆i, σ
2)

]

×
∏

i∈o(1,0)

π00|xi

×
∏

i∈o(0,1)

π11|xi

G∑

g=1

τgφ(yi;µg + ω̆i, σ
2)

×
∏

i∈o(0,0)

[
π10|xi

+ π00|xi

]
.

where θ = (B11,0, B11,1, B10,0, B10,1, τ1, . . . , τg, µ1, . . . , µG, β0, δ, β1, β2, σ
2), ω̆i = β0 +

β1ti + βT
2 xi and η̆i = δ0 + βT

2 xi.

The maximum likelihood estimate of θ can be obtained iterating until convergence

the EM type algorithm described below.

First of all the log-likelihood of the model can be written in compact notation as

ℓ(θ) =
∑

i

ln

(
∑

k

πik

∑

g

τgφikg

)

14



where k = 00, 10, 11 = 1, 2, 3 and φikg =





1 if k = 1

qiφ(yi;µg + η̆i, σ
2) + (1− qi) if k = 2

φ(yi;µg + ω̆i, σ
2) if k = 3

.

Maximizing the log-likelihood is equivalent to maximize the “fuzzy” function

(Hathaway, 1986)

ℓf (θ) =
∑

ikg

uikgln(πikτgφikg)−
∑

ikg

uikgln(uikg)

=
∑

ikg

uikgln(πik) +
∑

i:qi=1

3∑

k=2

∑

g

uikgln(τg) +
∑

i:qi=1

3∑

k=2

∑

g

uikgln(φikg)

−
∑

ikg

uikgln(uikg)

where uikg ≥ 0 and
∑

k

∑
g uikg = 1.

The algorithm we adopt, in each step, maximizes the objective function ℓf with

respect to a subset of parameters, given the current values of the others. In this way

each parameter, or subset of parameters, is in turn updated increasing the value of

the objective function at each iteration. The algorithm stops whenever the increment

between two consecutive iterations is lower than a given threshold.

Before analyzing the fundamental steps of our algorithm, to simplify the exposition,

we introduce some notation. First of all, we let n11, n10, n01 and n00 be the number

of individuals in each observed subgroup defined by the value of t and q. Let y11 and

y01 be the outcomes at o(1, 1) and o(0, 1), respectively. In the same way we define

x11, x01, t11 and t01. Let IG be the identity matrix of dimension G, ιG and ι be G× 1

and (n01+2n11)×1 vectors with all elements equal to 1. ιj and Oj , are nj×1 vectors

(j = 01, 11) with all elements equal to 1 and 0 respectively. Let

Y0 =




y01

y11

y11




X0 =




O01 t01 x01

ι11 O11 x11

O11 t11 x11



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and

YG = ιG ⊗ Y0 XG =

(
IG ⊗ ι ιG ⊗X0

)
.

Let u01,3,g, g = 1, . . . , G and u11,k,g, k = 2, 3, g = 1, . . . , G, be vectors which elements

are the values of the u’s at o(1, 1) and o(0, 1), respectively. Consider the following

(Gn01 + 2Gn11) vector

w =




√
u01,3,1

√
u11,2,1

√
u11,3,1

√
u01,3,2

√
u11,2,2

√
u11,3,2

...

√
u01,3,G

√
u11,2,G

√
u11,3,G




.

Finally let ιG+2+J be a (G+ 2 + J) vector with all elements equal to 1, we define

Ỹ = w ⊙ YG and X̃ = (ιTG+2+J ⊗ w)⊙XG

where ⊙ is the element wise product.

The fundamental steps of our algorithm are

(a) Update of uikg: It can be easily shown that ℓf attains a maximum with respect

to the u’s when

uikg =
πikτgφikg∑
kg πikτgφikg

.

(b) Update of B = B11,0, B11,1, B10,0, B10,1: By rewriting

ℓf =
∑

ikg

uikgln(πik) + const.,

where const. indicates a term that does not depend on the B’s, they are updated

16



fitting a multinomial logit of the current update of the u’s on the x’s.

(c) Update of τg: By rewriting

ℓf =
∑

i:qi=1

3∑

k=2

∑

g

uikgln(τg) + const.,

where const. indicates a term that does not depend on the τ ’s, we will achieve

a maximum when

τg =

∑
i:qi=1

∑3
k=2 uikg

n1
.

where n1 is the number of subjects for which q = 1

(d) Update of β = (µ1 + β0, . . . , µg + β0, δ − β0, β1, β2)
T : By rewriting

ℓf = −
1

2

∑

i:qi=1

3∑

k=2

∑

g

uikg

(yi − γg − γ0 − βT
2 xi)

2

σ2
+ const.,

where γg = µg + β0, g = 1, . . . , G, γ0 =





δ − β0 if k = 2

β1ti if k = 3
and const. indi-

cates a term that does not depend on the β’s. Can be shown that the objective

function is maximized at

β = (X̃T X̃)−1X̃T Ỹ .

(e) Update of σ2: By rewriting

ℓf = −
1

2

∑

i:qi=1

3∑

k=2

∑

g

uikg

(
ln(σ2) +

(yi − γg − γ0 − βT
2 xi)

2

σ2

)
+ const.,

where const. indicates a term that does not depend on the σ2’s, the maximum

is achieved at

σ2 = (wTw)−1(Ỹ − X̃β)T (Ỹ − X̃β).

Keribin (1998) has shown that the Bayesian information criterion (BIC) give a con-

sistent estimate of G, therefore, we choose the number of components, according to

this criterion.
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Finally notice that the algorithm above can be easily modified to relax the

stochastic dominance assumption, by substituting X0 with

X ′0 =




O01 t01 x01 O01

ι11 O11 O11 x11

O11 t11 x11 O11



.

A modified EM-algorithm that allows for heterogeneous effects is available from the

authors upon request.

3.2.1 Starting values

In maximum likelihood estimation, it is well known, that the log-likelihood may have

several local maxima, thus, the choice of the starting values of the EM algorithm may

be crucial. However, several strategies are available to overcome this problem. We

propose the following.

The π’s are initialized drawing at random from a Uniform distribution in [0, 1] and

rescaled such that
∑3

k=1 πik = 1. Consistent estimates of µ1 + β0, . . . , µg + β0, β2, σ
2

and the τ ’s can be obtained estimating a mixture of G Gaussians in o(0, 1). Finally

for δ− β0 and β1, a weighted regression of Y0 on X0 and a constant in the subsample

in which q = 1, with weights the corresponding values of the π’s, can be run or they

can be estimated in the same sub-sample by OLS, or can be used the intercept and

the coefficient of t of a two-step Heckman estimator.

Although, this seems to be reasonable, in some cases, starting from completely

random points can leads to higher values of the log-likelihood. For this reason we

suggest to try many random starting points, as well as the ones proposed above, and

choose the solution corresponding to the highest value of the log-likelihood.

Many others approach are available in the literature, e.g. simulated annealing,

none of them, however, seems to be optimal (See for example Ingrassia, 1991, 1992,

Everitt, 1984, Davenport et al., 1988, Lindsay and Basak, 1993, and Aitkin and Aitkin,

1996).
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4 Simulation results

We carry out a simulation study in which our approach is compared with Heckman’s

maximum likelihood and two-step sample selection estimators. We draw 500 samples

of 1000 observations at each simulation step in which we simulate under the following

Heckman sample selection model

y∗i = 2 + 5ti + 10xi + ǫi

qi = I(−0.2 + 0.3ti + 0.5xi + νi > 0)

yi = y∗i qi.

In this model the treatment effect is constant and equal to 5. Let ei ∼ N (0, 1) at each

simulation the error terms are distributed such that corr(ǫi, νi) ≡ ρ = 0.5, then we

have

• ǫi ∼ 0.3N (7, 1) + 0.7N (−3, 1), a mixture of two normal distributions, and to

induce correlation between the two error terms νi = 0.1231ǫi + ei

• ǫi ∼ T (3), a Student’s t with 3 degrees of freedom, and νi = 1/3ǫi + ei

• ǫi ∼ EV(0, 1) − ϕ, (ϕ ∼= 0.57721 is the Euler-Mascheroni constant) an extreme

values whit location 0 and scale 1, and νi = 0.4502ǫi + ei

• ǫi ∼ GEV(0, 1,−.6) −

0.1774︷ ︸︸ ︷
Γ(1.6)− 1

0.6
, (Γ(·) is the Gamma function) a generalized

extreme values distribution with location 0, scale 1 and shape -0.6, and νi =

0.6289ǫi + ei

• ǫi ∼ LogN (0, 1)− exp(0.5), a lognormal distribution, and νi = 0.2671ǫi + ei

In table 1 it is reported the MSE of the three estimators. For our estimator we reports

the result for the optimal G 4, notice that for G=1 we have the standard principal

stratification model.

4The G is chosen estimating our model in 5 simulated sample and then it is kept fixed for all the others.
It might be the case that choosing the optimal G in each sample can improve the performance of our
estimator.
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[Insert Table 1 here ]

According to the simulation result our estimator seems to have a lower MSE than the

two Heckman estimators, for any distributions we consider.

5 An application to the Job Corps training program

In this section we present the results of an application to the Job Corps program,

which is one of the largest job training programs in the U.S. and is aimed to help young

people residents that belong to a low-income household from 16 to 24 years old. The

program is described as “the nation’s largest career technical training and education

program for young people at least 16 years of age. A voluntary program administered

by the U.S. Department of Labor, Job Corps provides eligible young men and women

with an opportunity to gain the experience they need to begin a career or advance to

higher education”5. In the mid nineties, In order to evaluate the effectiveness of the

program, eligible applicants where randomly assigned to participate or rejected. In

this section we will analyze the wage effect of the program 208 weeks after assignment.

5.1 The dataset and previous applications

The Job Corps public available data base has already been analyzed by Lee (2009)

and Zhang et al. (2009). The former provides bound on the treatment effect under

monotonicity, the latter uses a principal stratification mixture model approach to

provide a point estimate.

The data sets used in the two papers differ essentially in the way in which missing

values are treated, but as pointed out in Zhang et al. (2009) the imputation procedure

used apparently do not affect the results.

Since the aim of this application is just to illustrate how our procedure can be

effectively applied we will only focus on the imputed data base of Lee (2009). We will

5http://www.jobcorps.gov/faq.aspx
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assume either perfect compliance to treatment assignment or that we just estimate an

“intent to treat” effect.

Because of the random treatment assignment, it is not necessary to include covari-

ates in our analysis, however, has argued in Zhang et al. (2009), including covariates

may improve efficiency.

From November 1994 to December 1995, the 80,883 individuals who were eligible

were randomly assigned either to enroll as usual (“treatment group”) or they were

embargoed from the program for 3 years (“control group”). The control group

consisted of 5,997 individuals, from the remaining treated 9,409 applicants were

randomly selected to be followed for the data collection, thus the total sample was of

15,386 individuals. In the dataset of Lee (2009), which is the one that we use, all the

missing values due to non-response as well as to attrition are discarded then the final

sample size is of only 9,145 individuals. The sample selection problem considered

here is just due to unemployment. Since some subpopulation were randomized into

the program group with known probabilities, design weights denoted by we must be

included in the analysis. Finally, since we will use exactly the same variables as Lee

(2009), an exhaustive description of the data can be found in that paper.

5.2 Estimation results

In this section we estimate the long run effect of the program on the logarithm of

hourly wages 208 week after the treatment assignment. Since the treatment were

assigned at random unconfoundness hold by sample design. The first assumption that

we make is that there are no individuals that would have been employed if non treated

and unemployed if treated (monotonicity). This assumption would be violated if there

are people that four years after the end of the program, were still waiting for a better

offer because of participation. However, we can reasonable argue that four years is a

sufficient amount of time to prevent this possibility. We assume that the probability to

belong to a given stratum depend only on the baseline characteristics, and we model

it as a multinomial logit. We assume that the error terms are distributed as a mixture

of Gaussians in both stratum 10 and 11. We let the coefficients of the covariates vary
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between the two strata (no stochastic dominance). In order to compare our results

with the ones in Lee (2009) we assume that the treatment effect is constant and we do

not include any interaction. Notice that because of randomization covariates should

not matter, then this simplifying assumption should hold.

The table belove report the results of our point estimate of the wage effect as

well as the results in Lee (2009). Moreover we estimate the effect of the program on

unemployment as the share of people belonging to stratum 10 given by

π10 =

∑n

i=1(π10|xi
wei)∑n

i=1 wei

.

[Insert Table 2 here ]

Before commenting on our finding it is important to stress that the program can be

seen as a human capital investment of 1 year of schooling. For this reason, as Lee

(2009) has pointed out, if the program had literally no effect we would find a strong

negative impact of the program even 4 years after the assignment. Lee suggests that

the lost labour market experience for these young applicants that are on the steep

part of their wage profile should be around -0.58.

As reported in table 2 (PS G=7), differently from the standard principal stratifi-

cation mixture model, which under monotonicity estimates a strong positive effect, we

cannot reject the hypothesis of a zero effect of the program on the log hourly wages

208 week after assignment (notice that our point estimate lies within the bounds de-

rived in Lee, 2009). However, this result must be interpret, in the light of the con-

siderations made above, as a positive effect of the program. In particular, it can be

argued that four years after assignment applicants are able to offset 100% of the lost

labour market experience due to participation to the program.

Finally, according to our result 3.37% of the individuals have found a job because

of the program.
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6 Conclusions

In this paper we propose a new principal stratification approach to identify and esti-

mate causal effects in the presence of sample selection when the error terms are not

normally distributed and any plausible instrument for the selection mechanism is at

hand. Our approach is based on the fact that any distribution can be approximated

with a mixture of Gaussians, a known result in the mixture models literature. Given

the particular structure of the problem we are able to identify a mixture of mixtures

model which allows us to take into account the non-normality of the error terms.

Even if our model is fully parametric we show how to allow for heterogeneous

effects, interacting the treatment variable with all the covariates available.

Under basically the same assumptions as the standard parametric principal strat-

ification models that have been proposed in the literature we are able to identify the

average treatment effect on the latent stratum of subject who always respond. This,

however, seems a limitation created by the selection mechanism, rather than a draw-

back of the model.

Simulating under a standard sample selection model, we show that our estimator

has always lower MSE than the two Heckman’s estimators considered, with all the

four different non normal distributions assumed for the error terms.

Finally we present an application to the long run wage effect of the Job Corps

training program. The results are consistent with the bounds derived by Lee (2009).

23



References

Ahn H, Powell JL. 1993. Semiparametric estimation of censored selection models with

a nonparametric selection mechanism. Journal of Econometrics 58: 3–29.

Aitkin M, Aitkin I. 1996. A hybrid em/gauss-newton algorithm for maximum likeli-

hood in mixture distributions. Statistics and Computing 6: 127–130.

Bartolucci F, Scaccia L. 2005. The use of mixtures for dealing with non-normal

regression errors. Computational Statistics and Data Analysis 48: 821–834.

Cosslett S. 1991. Semiparametric estimation of a regression model with sample se-

lectivity. In Barnett WA, Powell J, Tauchen G (eds.) Nonparametric and Semipara-

metric Methods in Econometrics and Statistics. Cambridge university press.

Das M, Newey WK, Vella F. 2003. Nonparametric estimation of sample selection

models. Review of Economic Studies 70: 33–58.

Davenport W J, Pierce A M, Hathaway J R. 1988. A numerical comparison of em and

quasi-newton type algorithms for computing mle’s for a mixture of normal distri-

butions. In Computer Science and Statistics: Proceedings of the 20th Symposium

on the Interface. American Statistical Association, 410–415.

Dempster AP, Laird NM, Rubin DB. 1977. Maximum likelihood from incomplete data

via the em algorithm. Journal of the Royal Statistical Society. Series B 39: 1–38.

Everitt BS. 1984. Maximum likelihood estimation of the parameters in a mixture of

two univariate normal distributions; a comparison of different algorithms. Journal

of the Royal Statistical Society. Series D 33: 205–215.

Frangakis CE, Rubin DB. 2002. Principal stratification in causal inference. Biometrics

58: 21–29.

Gronau R. 1974. Wage comparisons-a selectivity bias. Journal of Political Economy

82: 1119–1143.

Hathaway J R. 1986. Another interpretation of the em algorithm for mixture distri-

butions. Statistics and Probability Letters 4: 53 – 56.

Heckman JJ. 1974. Shadow prices, market wages and labor supply. Econometrica 42:

679–694.

Hennig C. 2000. Identifiablity of models for clusterwise linear regression. Journal of

Classification 17: 273–296.

Huber M. 2009. Treatment evaluation in the presence of sample selection. Dis-

cussion paper 09-07 Department of Economics, University of St. Gallen http:

//www.alexandria.unisg.ch/export/DL/69710.pdf.

24



Huber M, Mellace G. 2010. Sharp bounds on average treatment effects under sam-

ple selection. mimeo University of St. Gallen http://www.alexandria.unisg.ch/

export/DL/70308.pdf.

Ichimura H. 1993. Semiparametric least squares (sls) and weighted sls estimation of

single-index models. Journal of Econometrics 58: 71–120.

Ichimura H, Lee L. 1991. Semiparametric least squares of multiple index models: Single

equation estimation. In Barnett WA, Powell J, Tauchen G (eds.) Nonparametric

and Semiparametric Methods in Econometrics and Statistics. Cambridge university

press.

Imbens GW. 2004. Nonparametric estimation of average treatment effects under ex-

ogeneity: a review. The Review of Economics and Statistics 86: 4–29.

Imbens GW, Wooldridge JM. 2009. Recent developments in the econometrics of pro-

gram evaluation. Journal of Economic Literature 47: 5–86.

Imbens W G. 2006. Nonadditive models with endogenouus regressors. mimeo Uni-

versity of Chicago http://ws1.ad.economics.harvard.edu/faculty/imbens/

files/wc_06feb28.pdf.

Ingrassia S. 1991. Mixture decomposition via the simulated annealing algorithm.

Applied Stochastic Models and Data Analysis 7: 317–325.

Ingrassia S. 1992. A comparison between the simulated annealing and the em algo-

rithms in normal mixture decompositions. Statistics and Computing 2: 203–211.

Keribin C. 1998. Consistent estimate of the order of mixture models. Sankya: The

Indian journal of statistics 62: 49–66.

Lechner M, Melly B. 2010. Partial identification of wage effects of training programs.

Brown University Economics Working Paper 2010-8 Brown University, Depart-

ment of Economics, http://www.brown.edu/Departments/Economics/Papers/

2010/2010-8_paper.pdf.

Lee DS. 2009. Training, wages, and sample selection: Estimating sharp bounds on

treatment effects. Review of Economic Studies 76: 1071–1102.

Lee L. 1994. Semiparametric instrumental variable estimation of simultaneous equa-

tion sample selection models. Journal of Econometrics 63: 341 – 388.

Li Q, Wooldridge JM. 2002. Semiparametric estimation of partially linear models for

dependent data with generated regressors. Econometric Theory 18: 625–645.

Lindsay BG, Basak P. 1993. Multivariate normal mixtures: A fast consistent method

of moments. Journal of the American Statistical Association 88: 468–476.

25



McLachlan G, Peel D. 2001. Finite Mixture Models. Wiley series in probability and

statistics.

Mealli F, Pacini B. 2008a. Causal inference with nonignorably missing out-

comes: instrumental variables and principal stratification. mimeo University

of Florence, http://www.ds.unifi.it/mealli/pubblicazioni/mealli_pacini_

IV_short_11_11_08.pdf.

Mealli F, Pacini B. 2008b. Comparing principal stratification and selection models in

parametric causal inference with nonignorable missingness. Computational Statis-

tics and Data Analysis 53: 507–516.

Newey W. 1990. Semiparametric efficiency bounds. Journal of Applied Econometrics

5: 99–135.

NeweyWK. 2009. Two-step series estimation of sample selection models. Econometrics

Journal 12: 217–229.

Newey WK, Powell JL, Walker J. 1990. Semiparametric estimation of selection models:

Some empirical results. American Economic Review 80: 324–328.

Powell JL, Stock J, Stoker T. 1989. Semiparametric estimation of index coefficients.

Econometrica 57: 1403–1430.

Robinson P. 1988. Root-n consistent semiparametric regression. Econometrica 56:

931–954.

Rubin DB. 1977. Assignment to treatment group on the basis of a covariate. Journal

of Educational Statistics 2: 1–26.

Rubin DB. 1990. Formal modes of statistical inference for causal effects. Journal of

Statistical Planning and Inference 25: 279–292.

Teicher H. 1963. Identifiability of finite mixtures. The Annals of Mathematical Statis-

tics 34: 1265–1269.

Vella F. 1998. Estimating models with sample selection bias: A survey. The Journal

of Human Resources 33: 127–169.

Vytlacil E. 2002. Independence, monotonicity, and latent index models: An equiva-

lence result. Econometrica 70: 331–341.

Yakowitz SJ, Spragins JD. 1968. On the identifiability of finite mixtures. The Annals

of Mathematical Statistics 39: 209–214.

Zhang J, Rubin DB, Mealli F. 2008. Evaluating the effects of job training programs

on wages through principal stratification. In Millimet D, Smith J, Vytlacil E (eds.)

Advances in Econometrics: Modelling and Evaluating Treatment Effects in Econo-

metrics, volume 21. Elsevier Science Ltd., 117–145.

26



Zhang JL, Rubin DB, Mealli F. 2009. Likelihood-based analysis of causal effects of job-

training programs using principal stratification. Journal of the American Statistical

Association 104: 166–176.

27



Table 1: MSE and bias of the estimates of β1.

PS G=2 PS G=1 ML Two-step

Mixture

MSE β1 0.0105 3.7025 1.0115 0.3989
Bias (-0.0113) (-1.2597) (-0.5913) (0.0350)

Student’s t

MSE β1 0.0201 0.0266 0.0434 0.0379
Bias (0.0011) (0.0355) (-0.0016) (-0.0009)

Extreme values

MSE β1 0.0145 0.0490 0.0436 0.0174
Bias (0.0173) (0.1909) (0.1157) (0.0042)

GEV

MSE β1 0.0065 0.0360 0.0285 0.0091
Bias (-0.0149) (0.1708) (0.0863) (-0.0003)

Lognormal

MSE β1 0.0093 0.0636 0.4111 0.0500
Bias (-0.0120) (-0.0918) (-0.1499) (-0.0005)

Note: The optimal G has been chosen according to the BIC. The lowest MSE is reported in bold.
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Table 2: Estimation results

Method Parameters Estimates

Lee(2009) Bounds (-0.019,0.093)
S.e. [0.0179, 0.0130]

Worst c. i. {-.055,0.119}
Heckman two step ATE 0.0148

S.e. 0.0117

Das et al. (2003) ATE 0.0140
S.e. 0.0122

PS (G=1) ATE 0.0503
LR-test p-value 0.0005

π10 0.0686

PS (G=7) ATE 0.0065
LR-test p-value 0.2334

π10 0.0337
Note:the optimal G has been chosen according to the BIC.
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