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Topological control of extreme waves
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From optics to hydrodynamics, shock and rogue waves are widespread. Although they appear
as distinct phenomena, transitions between extreme waves are allowed. However, these have
never been experimentally observed because control strategies are still missing. We intro-
duce the new concept of topological control based on the one-to-one correspondence
between the number of wave packet oscillating phases and the genus of toroidal surfaces
associated with the nonlinear Schrédinger equation solutions through Riemann theta func-
tions. We demonstrate the concept experimentally by reporting observations of supervised
transitions between waves with different genera. Considering the box problem in a focusing
photorefractive medium, we tailor the time-dependent nonlinearity and dispersion to explore
each region in the state diagram of the nonlinear wave propagation. Our result is the first
realization of topological control of nonlinear waves. This new technique casts light on shock
and rogue waves generation and can be extended to other nonlinear phenomena.
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a mathematical method—the inverse scattering transform

(IST)!—disclosing the inner features of nonlinear waves in
hydrodynamics, plasma physics, nonlinear optics and many other
physical systems?™4. According to IST, one also predicts the
periodical regeneration of the initial state, as in the Fermi-Pasta-
Ulam-Tsingou recurrence®.

The nonlinear Schrédinger equation (NLSE)” is a cornerstone
of IST for detailing dispersive phenomena, such as dispersive
shock waves (DSWs)8-10, rogue waves (RWs)!1-14, and shape
invariant solitons!>~17. DSWs regularize catastrophic dis-
continuities by means of rapid oscillations!8-22, RWs are giant
disturbances appearing and disappearing abruptly in a nearly
constant background?3-34. Solitons are particle-like dispersion-
free wave packets that can form complex interacting assemblies,
ranging from crystals to gases!>16:33,35-37,

DSWs, RWs, and soliton gases (SGs) are related phenomena,
and all appear in paradigmatic nonlinear evolutions, such as the
box problem for the focusing NLSE33-43, However, for the box
problem in the small-dispersion NLSE, IST becomes unfeasible.
In this extreme regime, the problem can be tackled by the so-
called finite-gap theory044, Tt turns out that extreme waves are
described in terms of one single mathematical entity, the Rie-
mann theta function, and classified by a topological index, the
genus g (see Fig. 1). In nonlinear wave theory, g represents the
number of oscillating phases and evolves during light propaga-
tion: “single phase” DSWs have ¢ = 1, RWs have g ~ 2 and SGs
have g >> 2. This creates a fascinating connection between
extreme waves and topology. Indeed, the same genus g allows a
topological classification of surfaces, to distinguish, for examples,
a torus and sphere (Fig. 1). The question lies open if this elegant
mathematical classification of extreme waves can inspire new
applications. Can it modify the basic paradigm by which the
asymptotic evolution of a wave is encoded in its initial shape,
opening the way to controlling extreme waves, from lasers to
earthquakes?

Here, inspired by the topological classification, we propose and
demonstrate the use of topological indices to control the gen-
eration of extreme waves with varying genera g*!. We consider
the NLSE box problem where, according to recent theoretical
results?0, light experiences various dynamic phases during pro-
pagation, distinguished by different genera. In particular, for high
values of a nonlinearly scaled propagation distance {, one has
g ~ (. By continuously varying {, we can change g and explore all
the possible dynamic phases (see Fig. 1, where { is given in terms
of the observation time t, detailed below). We experimentally test
this approach in photorefractive materials, giving evidence of an
unprecedented control of nonlinear waves, which allows the first
observation of the transition from focusing DSWs to RWs.

In 1967 Gardner, Greene, Kruskal, and Miura developed

Results
Time-dependent spatial box problem. We consider the NLSE

2
160,y + %agw +|yl’y =0, (1)

where v = (£, {) is the normalized complex field envelope, ( is
the propagation coordinate, & is the transverse coordinate and
€ > 0 is the dispersion parameter. We take a rectangular barrier
as initial condition
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that is, a box of finite height g > 0, length 2/ > 0, and genus
g =0. In our work, we fix g =1= 1. Equation (1) with (2) is
known as the NLSE box problem, or the dam break problem,
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Fig. 1 Topological classification of extreme waves. a Final states of the wave
for a fixed initial waist Wy = 100 pm showing the generation of focusing
dispersive shock waves (g = 1), rogue waves (g ~ 2), and a soliton gas
(g >> 2) after different time intervals in a photorefractive material (see
text). b Phase diagram reporting the final states in terms of the parameter ¢
and the initial beam waist. Transitions occur by fixing waist and varying e
or, equivalently, the observation time t. Different surfaces displayed in
proximity of the various wave profiles, corresponding to the different
regions in the phase diagram, outline the link between the topological
classification of extreme waves in terms of the genus g and the topological
classification of toroidal Riemann surfaces (for a sphere, g = O, for a torus,
g=1etc)

which exhibits some of the most interesting dynamic phases in
nonlinear wave propagation?4>, The initial evolution presents
the formation of two wave trains counterpropagating that reg-
ularize the box discontinuities. These wave trains are single-phase
DSWs (g = 1). Their two wavefronts superimpose in the central
part of the box (see Fig. la)-occurring at { = (; := ﬁ - and

generate a breather lattice of genus g = 2, a two-phase quasi-
periodic wave resembling an ensemble of Akhmediev breathers
(ABs)!3:28, Since both the é— and {— periods increase with {, the
oscillations at £ ~ 0 become locally approximated by Peregrine
solitons (PSs)!346-48 At long propagation distances { >> (, the
wave train becomes multi-phase and generates a SG with g ~ (.

In Fig. 1a, we report the wave dynamics in physical units, as we
make specific reference to our experimental realization of the
NLSE box problem for spatial optical propagation in photo-
refractive media (PR). In these materials, the optical nonlinearity
is due to the time-dependent accumulation of free carriers
that induces a time-varying low-frequency electric field. Through
the electro-optic effect, the charge accumulation results into
a time-varying nonlinearity. The corresponding time-profile can
be controlled by an external applied voltage and the intensity
level49->1, These features enable to experimentally implement our
topological control technique. In PR, Eq. (1) describes an optical

beam with complex amplitude A(z,x,t) and intensity I = |A|*
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through the transformation (see Methods)

z 2x A
==y =, 3
¢ €zp ¢ W, v Vi (3)
with W, the initial beam waist along x-direction, z, = ﬂ"gr] 0 the

26;201 £(t) the refractive index, 6n, > 0

the nonlinear coefficient, I the saturation intensity, I, the initial
intensity. For PR

diffraction length, n = n, +

Is
2ny0nglof (1)
namely, the dispersion is modulated by the time-dependent

crystal response function f(¢) = 1 — exp(—t/7), with the satura-
tion time 7 fixed by the input power and the applied voltage”.

Genus control. For a given propagation distance L (the length of

the photorefractive crystal), the genus of the final state is deter-
mined by the detection time ¢, which determines ¢, { = L, and g,

€Zp

a
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correspondingly. The genus time-dependence is sketched in
Fig. la. The output wave profile depends on its genus content,
which varies with ¢.

Following the theoretical approach in ref. 40, the two separatrix
equations divide the evolution diagram in Fig. la into three
different areas: the flat box plateau with genus g = 0, the lateral
counterpropagating DSWs with genus ¢ = 1, and the RWs after
the DSW-collision point (corresponding to the separatrices
intersection) with genus g = 2. The two separatrices (dashed
lines in Fig. 1a) have equations

W
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2
with (¢,,x,) the DSW-collision point, ¢, ~ 611;’:;’:202,
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by the central position of the box. It turns out that the shock
velocity is

and x, given
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Fig. 2 Controlling the extreme wave genus. a Numerical simulation of the control of the final state after a propagation distance L = 2.5 mm for an initial
beam waist Wy =140um (g = TF‘;\/O = 0.38x10° W/m2). Axis x represents the beam transverse direction, axis t the time of output detection. b Initial
beam intensity: a super-Gaussian wave centered at x = 150 um of height /, and width W,,. ¢, d Focusing dispersive shock waves occurrence: ¢ represents
the beam intensity at t = 55, when the wave breaking has just occurred, so two lateral intense wave trains regularize the box discontinuity and start
to travel towards the beam central part; d the beam intensity at t = 11s, which exhibits the two counterpropagating DSWs reaching the center x = 150 um.
e-g Akhmediev breathers and Peregrine solitons generation: beam intensity at et = 49s, ft = 985, and gt = 120 s, after the two dispersive shock waves
superposition and the formation of Akhmediev breathers with period increasing with t. Since a Peregrine soliton is an Akhmediev breather with an infinite
period, increasing t is tantamount to generating central intensity peaks, locally described by Peregrine solitons
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Fig. 3 Experimental demonstration of the extreme wave genus control. a Experimental setup. A CW laser is made a quasi-one-dimensional wave by a
cylindrical lens (CL), then a tunable mask shapes it as a box. Light propagates in a pumped photorefractive KLTN crystal, it is collected by a microscope
objective and the optical intensity is detected by a CCD camera. The inset shows an example of the detected input intensity distribution (scale bar is
50 um). b Normalized shock velocity [vy = L/t, L = 2.5 mm, t = (30 £ 2) s], measured through the width of the oscillation tail at fixed time, versus input
power. The blue squares are the experimental data, while the dashed pink line is the linear fit. ¢ Experimental observation of optical intensity I/, for an
initial beam waist W, = 140 um. Axis x represents the beam profile, transverse to propagation, collected by the CCD camera, while axis t is time of CCD
camera detection. Output presents a first dispersive-shock-wave phase, a transition to a phase presenting Akhmediev breather structures and, at long
times, a generation of a soliton gas. The inset is an exemplary wave intensity profile detected at t = 63 s (dotted blue line), along with the theoretical

Akhmediev breather profile

proportional to the input power, as experimentally demonstrated
and detailed below.

Equation (5) expresses the genus time-dependence for its first
three values g = 0, 1, 2. It allows designing the waveshape, before
the experiment, by associating a specific combination of the
topological indices, and to predict the detection time corre-
sponding to the target topology. In other words, by properly
choosing the experimental conditions, we can predict the
occurrence of a given extreme wave by using the expected genus
g- According to Eq. (4), we use time t and initial waist W, to
vary €. The accessible states are outlined in the phase diagram in
Fig. 1b, in terms of ¢ and W,. Choosing W, = 100 pm as in
Fig. 1a, by varying t one switches from DSWs to RWs, and then
to SGs.

Supervised transition from shock to rogue waves. The case
W, = 140 um is illustrated in Fig. 2a by numerical simulations.
The two focusing DSWs and the SG are visible at the beginning
and at the end of temporal evolution, respectively (see phase
diagram in Fig. 1b). As soon as an initial super-Gaussian wave
(Fig. 2b, see Methods) starts to propagate, two DSW's appear on
the beam borders (Fig. 2c) and propagate towards the beam
central part (Fig. 2d). Experimental proof of the genuine non-
linear nature of the beam evolution at this regime, not due to
modulation instability arising from noise in the central part of the

box, is shown in Supplementary Information (Suppl. Fig. 1).
When the DSWs superimpose, ABs are generated (Fig. 2e). From
the analytical NLSE solutions for the focusing dam break pro-
blem*0, we see that ABs have &-period increasing with {. More-
over, one finds that 9,{ >0, therefore the period in the
x-direction must increase with time, and central peaks appear
upon evolution. These peaks are well approximated by PSs, for
large ¢, as confirmed by Fig. 2f, g.

The occurrence of RWs in the large box regime is proved also
by statistical analysis, illustrated in Supplementary Information
(Suppl. Fig. 2h, i).

Figure 3 shows the experimental observation of the controlled
dynamics simulated in Fig. 2. Figure 3a sketches the experimental
setup, detailed in Methods. A quasi-one-dimensional box-shaped
beam propagates in a photorefractive crystal, and the optical
intensity distribution is detected at different times. The observa-
tions of shock velocities and beam propagation for W, = 140 um
are reported in Fig. 3b, ¢, respectively. In Fig. 3¢, we see an initial
DSW phase that evolves into a train of large amplitude waves. In
this regime, we identify a breather-like structure (ABs, inset in
Fig. 3c) that evolves into a SG at large propagation time. The
DSW phase is investigated varying the input power. We find a
linear increasing behavior of the shock velocity when increasing
the power (Fig. 3b), as predicted by Eq. (6). The shock velocity is
proportional to the distance between the two counterpropagating
DSWs at a fixed time. We measured the width Ax of the plateau
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Fig. 4 Simulation of the topological control for a small waist. a Numerical simulation of the control of the final state after a propagation distance

P

L =2.5mm for an initial beam waist W, = 10 um (Iy = g~ = 5.33x10° W/m2). Axis t expresses time of detection, while x is the beam transverse

UOWO -

coordinate. b Initial beam intensity: a super-Gaussian wave centered at x = 150 um. c-e Peregrine soliton generation: beam intensity (¢) at t =12s, and
(d) at t = 64 s, during the formation of the Peregrine soliton, while (e) exhibits the Peregrine soliton profile at t = 70 s. f, g Higher-order Peregrine soliton
generation: beam intensity at f t = 85s, and g t = 100's, where the Peregrine soliton is alternately destroyed and reformed

at time ¢ ~ 30 s. Referring to Eq. (6), we obtain the normalized
velocity v = v/v,, with v, = L/t.

Peregrine solitons emergence. Figure 4 illustrates the numeri-
cally determined dynamics at smaller values of the beam waist
(W, = 10 um), a regime in which the generation of single PSs is
evident. The intensity profile is reported in Fig. 4a. As shown in
Fig. 1b, one needs to carefully choose W, for observing a RWs
generation without the DSWs occurrence. For W, = 10 um, the
super-Gaussian wave (Fig. 4b) generates a PS (Fig. 4c—e). The
following dynamics shows the higher-order PS emergence
(Fig. 4f, g), each order with a higher genus.

Figure 5a-g report the experimental results for the case
W, = 30 um. Observations of the Peregrine-like soliton genera-
tion are shown, both in intensity (Fig. 5a-d) and in phase
(Fig. 5e-g). For a small initial waist, a localized wave, well
described by the PS (Fig. 5b, d), forms and recurs without a
visible wave breaking. This dynamics is in close agreement with
simulations in Fig. 4d-g, where the PS is repeatedly destroyed and
generated, each time at a higher order. Phase measurements are

illustrated in Fig. 5e-g. Each PS has two-phase signatures: a
longitudinal smooth phase shift of 27w and a transversal
rectangular phase shift profile, with height 7 and basis as wide
as the PS width*748, Such signatures are here both experimentally
demonstrated. From Fig. 5e, which shows the interference pattern
during the first PS occurrence, we obtain the longitudinal phase
shift behavior in Fig. 5g, by a cosinusoidal fitting along the central
propagation outline. Figure 5f reports the experimental transver-
sal phase shift profile along x. A comparison with the measured
interference fringes is also illustrated in the inset, which directly
shows the phase jump (topological defect). Stressing the signi-
ficance of these results is very important, because they are a proof
of the topological control: the genus is determined by the input
waist and time of detection. Indeed, the longitudinal phase
shift represents the transition from genus 0 to 2, whereas the
transverse PS phase shift outline unveils the value g = 2, equal to
the number of phase jumps (first from 0 to 7, then again from n
to 0). This is summarized in Fig. 5h, which sketches numerical
simulations of phase behavior at W, = 10 pum, normalized in
[-m, 7. Figure 5h gives a picture of genera changes, PS
occurrence and phase discontinuities. The genus is zero and the
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Fig. 5 Experimental topological control for a small waist. a Observation of optical intensity I/l for an initial beam waist W, = 30 um. Axis t is time of
output detection, x is the transverse direction. In this regime, we observe Peregrine-soliton-like structures formation (see Fig. 1b) [the colored scale goes
from O (dark blue) to 5 (bright yellow)]. ¢, d Intensity outlines corresponding to numbered dashed lines in (a): the blue lines are experimental waveforms,
the pink continuous lines are fitting functions according to the analytical PS profile. e-h Phase measurements (e-g) and simulations (h) of the Peregrine
soliton. The detected interference pattern during the first PS generation is reported in (e), corresponding to (b). The jump from O to 27 along the white
dashed line corresponds to the transition from g = O to g = 2. The black dashed line highlights the jump, shown in (g). The experimental transversal

phase shift profile along x is reported in (f), showing the expected 7 shift corresponding to (b). Error bars represent standard deviation. The inset shows the
corresponding area of the measured interference fringes on the transverse plane. Phase simulations at W, = 10 um are reported in the bottom panel in
(h) [the colored scale goes from —n (bright yellow) to 7 (dark blue) (O is green)]. Top panel sketches Fig. 4a, for at-a-glance correspondence between

genera changes, PS occurrence and phase discontinuities

phase profile is flat until the first PS occurrences. After that, the
phase value changes and the phase transverse profile presents two
jumps of 7.

The statistical properties of the PS intensity are illustrated in
Supplementary Information (Suppl. Fig. 2f, g), and they confirm
the occurrence of RWs in the small box regime.

Discussion

The topological classification of nonlinear beam propagation by
the genera of the Riemann theta functions opens a new route to
control the generation of extreme waves. We demonstrated the
topological control for the focusing box problem in optical pro-
pagation in photorefractive media. By using the time-dependent
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photorefractive nonlinearity, we could design the final state of the
wave evolution in a predetermined way and explore all the pos-
sible dynamic phases in the nonlinear propagation.

Such a novel control strategy enabled the first observation of
the continuous transition from dispersive shock to rogue waves
and soliton gases, demonstrating that different extreme wave
phenomena are deeply linked, and also that a proper tuning of
their topological content in their nonlinear evolution allows
transformations from one state to another. The further numerical
and experimental analysis reported in Supplementary Informa-
tion proves that this new control paradigm in third-order media
has a broad range of validity, where it is not affected by linear
effects, like modulation instability or loss, but its nature is gen-
uinely nonlinear.

In conclusion, our result is the first example of the topological
control of integrable nonlinear waves. This new technique casts
light on dispersive shock waves and rogue wave generation. It is
general, not limited to the photorefractive media, and can be
extended to other nonlinear phenomena, from classical to
quantum ones. These outcomes are not only important for fun-
damental studies and control of extreme nonlinear waves, but
further developments in the use of topological concepts in non-
linear physics can allow innovative applications for engineering
strongly nonlinear phenomena, as in spatial beam shaping for
microscopy, medicine and spectroscopy, and coherent super-
continuum light sources for telecommunication.

Methods

Photorefractive media. Starting from Maxwell’s equations in a medium with a
third-order-nonlinear polarization, in paraxial and slowly varying envelope
approximations, one can derive the propagation equation of the complex optical
field envelope A(x,y, z):

1, k
ZBZA+2kV A+n0 on(I)A =0, (7)
with z the longitudinal coordinate, x, y the transverse coordinates and n =

1y + 0n(I) the refractive index, weakly depending on the intensity

1= |AP(0n(I) << ny).

Equation (7) is the nonlinear Schrodinger equation (NLSE) and rules laser
beam propagation in centrosymmetric Kerr media. For PR, the refractive index
perturbation depends also parametrically on time, i.e., dn = dn(I, t). In fact, the
amplitude of the nonlinear self-interaction increases, on average, with the exposure
time up to a saturation value, on a slow timescale, typically seconds for peak
intensities of a few kWem=2°1,

In our centrosymmetric photorefractive crystal, at first approximation

on = —="_£(¢), with f(t) the response function. &n, includes the electro-optic
1+4

effect coefficient*->1. For weak intensities I << I, we obtain a Kerr-like regime

with 6n = 28n, if(t), apart from a constant term. We consider the case d,A ~ 0

(strong beam anisotropy), thus we look for solutions of the (1 + 1)-dimensional
NLSE for the envelope A ~ A(x, z):

DA+ Z—IkaiA 1+ 2p()]APA = 0, ®)

with p(t) = % f(t) and the field envelope initial profile
Ax,0) = { Vio forlsd <3 Wy

0 elsewhere

©)

One obtains Eq. (8) from Eq. (1) through the transformation (3). We stress that,
in this case, the dispersion parameter depends on time, as follows from Eq. (4).

Numerical simulations. We solve numerically Eq. (1) by a one-parameter-
depending beam propagation method (BPM) with a symmetrized split-step in the
code core’. We use a high-order super-Gaussian initial condition

WL =0) :qexp{f; (f)}

For each temporal value, Eq. (1) solutions have different dispersion parameter e
and final value of {, because from Eq. (3) it reads (5, 4L

(10)

= e where L is the

crystal length. In Fig. 2 and 4, we show the numerical results. The propagation in
time considers y(&, {3,), which corresponds to detections at end of the crystal.

Experimental setup. A y-polarized optical beam at wavelength A = 532 nm from
a continuous 80 mW Nd:YAG laser source is focused by a cylindrical lens down
to a quasi-one-dimensional beam with waist Uy, = 15 um along the y-direction.
The initial box shape is obtained by a mask of tunable width, placed in proximity
of the input face of the photorefractive crystal. A sketch of the optical system
is shown in Fig. 3a. The beam is launched into an optical quality specimen

of 2.1% x 1.90) x 2.5 mm Ky g6, Lig 036 T2 6oNbg 4903 (KLTN) with Cu and V
impurities (n, = 2.3). The crystal exhibits a ferroelectric phase transition at the
Curie temperature T = 284 K. Nonlinear light dynamics are studied in the
paraelectric phase at T = T 4 8 K, a condition ensuring a large nonlinear
response and a negligible effect of small-scale disorder®>. The time-dependent
photorefractive response sets in when an external bias field E is applied along y
(voltage V = 500 V). To have a so-called Kerr-like (cubic) nonlinearity from the
photorefractive effect, the crystal is continuously pumped with an x-polarized
15 mW laser at A = 633 nm. The pump does not interact with the principal beam
propagating along the z axis and only constitutes the saturation intensity I5. The
spatial intensity distribution is measured at the crystal output as a function of
the exposure time ¢ by means of a high-resolution imaging system composed of
an objective lens (NA = 0.5) and a CCD camera at 15 Hz.

In the present case, evolution is studied at a fixed value of z (the crystal output)
by varying the exposure time t. In fact, the average index change grows and
saturates according to a time dependence well defined by the saturation time
7 ~ 100 s once the input beam intensity, applied voltage, and temperature have
been fixed.

Data availability

All data are available in this submission.
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