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Simple Summary: In pig nutrition, alternative and safe supplements are needed to enhance the
pigs’ health and welfare. Natural feed components, such as herbs and plant extracts, are of great
importance in animal nutrition, and marine macroalgae can be considered as supplements positively
influence animal health parameters. Seaweeds possess several bioactive molecules that are studied
for their prebiotic, anti-microbial, antioxidant, anti-inflammatory and immunomodulatory effects.
Seaweed benefits are related to their content of sulfated polysaccharides, phlorotannins, diterpenes,
omega-3 polyunsaturated fatty acids, minerals and vitamins. This paper reviews the following
biological functions of seaweeds and seaweed extracts in pig nutrition: prebiotics, anti-microbial,
antioxidant, anti-inflammatory and immunomodulatory effects, promoting intestinal well-being and
improving digestibility.

Abstract: Seaweeds are macroalgae, with different sizes, colors and composition. They consist of
brown algae, red algae and green algae, which all have a different chemical composition and bioactive
molecule content. The polysaccharides, laminarin and fucoidan are commonly present in brown
seaweeds, ulvans are found in green seaweeds and, red algae contain a large amount of carrageenans.
These bioactive compounds may have several positive effects on health in livestock. In order to reduce
the antimicrobials used in livestock, research has recently focused on finding natural and sustainable
molecules that boost animal performance and health. The present study thus summarizes research
on the dietary integration of seaweeds in swine. In particular the influence on growth performance,
nutrients digestibility, prebiotic, antioxidant, anti-inflammatory, and immunomodulatory activities
were considered. The review highlights that brown seaweeds seem to be a promising dietary
intervention in pigs in order to boost the immune system, antioxidant status and gut health. Data on
the use of green seaweeds as a dietary supplementation seems to be lacking at present and merit
further investigation.

Keywords: seaweeds; dietary supplement; pig

1. Introduction

Marine-derived bioactive compounds are valuable as food and feed ingredients due to their
biological activities [1]. The term “algae” includes photosynthetic organisms that are usually divided
into microscopic unicellular organisms, identified as microalgae, and multicellular large-size organisms
defined as macroalgae or seaweed.

Microalgae usually grow in seawater and freshwater environments and can be prokaryotic,
similar to cyanobacteria (Chloroxybacteria), or eukaryotic, similar to green algae (Chlorophyta). Diatoms
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(Bacillariophyceae), green algae (Chlorophyceae) and golden algae (Chrysophyceae) are the most abundant
but blue-green algae (Cyanophyceae) are also defined as microalgae [2]. The bioactive molecules of
microalgae are used as food and feed supplements [3].

Seaweeds are marine organisms and comprise thousands of species, which are classified on the
basis of their pigmentation: brown seaweeds (Phaeophyceae), red seaweeds (Rhodophyceae) and green
seaweeds (Chlorophyceae).

There are around 1800 species of brown seaweeds include, only 1% of which are recognized from
freshwater and the size range varies from 20 m to 30 cm long. The brown color of these algae is related
to the main content of carotenoid fucoxanthin, which masks β-carotene, violaxanthin, diatoxanthin,
and chlorophyll. The main polysaccharides are laminarin, fucoidans and alginates, and the cell walls
are composed of cellulose and alginic acid [4].

Like brown seaweeds, red algae (about 6100 species) are marine, but are able to photosynthesize
in deeper water. The size ranges from thin films to filamentous and membranous forms of 1 m. The
color results from the presence of the pigments, phycoerythrin and phycocyanin which mask α, β
carotene, lutein, zeaxanthin and chlorophyll [5,6]. The main reserves are typically floridean starch
and floridoside, and the cells wall are made up of long-chain polysaccharide agars, carrageenans and
cellulose [7].

There are around 2200 species of green seaweeds. They are of similar size to red seaweeds, only
10% are marine, and their color is related to the presence of chlorophyll. The reserves are composed of
starch, and the cells wall are made up of polysaccharide ulvan [8].

In 2015, world production of algae amounted to 30.4 million tons, of which about 96% from
aquaculture and only 1 million tons from harvesting of wild stock [9].

Due to their nutritional value and the content of bioactive molecules, seaweeds are often used as
food, herbal medicines, dietary supplements, as a source of agar, alginate and carrageenan for several
industrial applications, and as a fertilizer [10,11].

2. Chemical Composition

Several studies have been carried out in order to identify the nutritional composition and
secondary metabolites of various seaweed species. In fact, it has been reported that seaweed contains
several metabolites, such as the sulfated form of polysaccharides, omega 3 fatty acids, phlorotannins,
diterpenes, vitamins and minerals, thus demonstrating positively health effects such as antibacterial,
antioxidant, anti-inflammatory functions [12]. The chemical composition of seaweeds was found to
vary in relation to their species and genera, harvesting period, and habitat condition (water temperature,
light, salinity, nutrients) [13].

The chemical composition and mineral content of brown, red and green seaweeds are reported in
Table 1. As shown, there is a different nutritional composition range for brown, red and green seaweed,
although in the same genus, the values are comparable [14].

Of the brown seaweeds, common species such as Ascophyllum, Laminaria, Saccharina, Macrocystis,
Fucus, and Sargassum was considered [15]. Brown seaweed shows a highly variable composition but
presented a low protein (7.6–12.6% dry matter, DM) and fat content (0.8–6% DM). The Fucus species
presents the highest protein content (12.9% DM), followed by Sargassum (10% DM), Laminaria (9.4%
DM) and the Ascophillum nodosum (7.4% DM), as observed by Fleurence et al. [16]. The fat content of
brown seaweeds is generally lower with an average value of 3.2% DM, and high values are observed
in Fucus spp. and Ascophillum nodosum [17,18].

Red seaweeds contain a higher protein content (16.9% DM) and fat content (8.9% DM) than brown
seaweeds [19].

The green seaweed Ulva lactuca has a protein content (16.2% DM) compared to red seaweeds and a
comparable fat content (1.3% DM) with brown seaweeds [20]. The fat content of the studied seaweeds
varies between 0.8 to 8.9% which is a similar range reported for other seaweeds species [13].
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All seaweeds are characterized by a higher ash content (19.3–27.8% DM) than those observed in
edible plants, in fact they are a considerable rich source of minerals for livestock nutrition [18,19].

Seaweeds are rich in potassium, sodium and calcium. Although there is a high variability, in
general, the sodium and potassium contents in Ulva spp. are lower than those reported for red and
brown seaweeds. A higher content of potassium has been observed in Palmaria palmata, Macrocystis
pyrifera, and Laminaria spp. [19]. All seaweeds present higher levels of calcium than phosphorous, and
thus may be a possible natural source of calcium in livestock. Seaweeds are also a source of essential
trace elements such as iron, manganese, copper, zinc, cobalt, selenium and iodine. In particular, iron
is abundant in all the species considered, and the iodine content is higher in brown than in red and
green seaweeds (Laminaria spp., with a range 833–5100 mg/kg DM), and a higher zinc content has been
observed in red and brown than in green seaweed.

The bioavailability of minerals is related to the fiber content of seaweeds. In addition,
the interactions with several polysaccharides, such as alginates and agar or carrageenan, lead to the
formation insoluble complexes with minerals, decreasing their bioavailability [21]. The mineral content
in the insoluble indigestible fraction residues was higher in brown than in red seaweeds with a range
of 150–260 g/kg [22]. Some studies in vitro and in rats have been performed on the bioavailability
of minerals [21]. In an in vitro study of 13 seaweed species, only Palmaria palmata and Ulva lactuca
showed higher Fe bioavailability than spinach, although six species had a higher Fe content. The
apparent absorption values of Na and K were significantly higher in rats supplemented with Laminaria
spp., while Mg absorption was not affected. It has also been reported that Laminaria spp. is rich in
alginates, which probably hampers the bioavailability of Ca. The absorption of inorganic I, which is
the predominant form in brown seaweeds, was observed to be moderate (20–70%). Therefore, the low
bioavailability may be related to the iodine interaction with other compounds in the seaweed matrix.

The vitamin content showed that seaweeds are a source of water-soluble vitamins (B1, B2, B3
and C) and fat-soluble vitamins (E and provitamins carotenoids, with vitamin A activity). Seasonal
effects have a great influence on vitamin content. Most of the red seaweeds, such as Palmaria palmata
contained a considerable amount of provitamin A and vitamins B1 and B2. The brown seaweeds
Laminaria spp., Ascophillum nodosum and Fucus spp. showed a high content of vitamins E and C [23].

The amino acid composition of different seaweeds species is reported in Table 2. Red seaweeds
have a higher quality of protein than brown and green seaweeds [24], however there is a considerable
difference in the amino acidic content among seaweeds, in relation to the different seasons. It has
been reported that seaweeds have a low content of methionine and histidine [25,26]. Leucine was the
most abundant amino acid, ranging from 2.43 g/kg DM to 6.63 g/kg DM for Palmaria palmata. and
Ascophillum nodosum respectively, followed by lysine (1.42–7.60 g/kg DM), threonine (1.26–5.17 g/kg
DM) and valine (2.25–5.87 g/kg DM). Glutamic and aspartic acids are the most common amino acids
found in the non-essential fraction which are responsible for the flavor and taste of seaweeds [27].

The in vitro protein digestibility (IVPD) was mid-range (82–87%) for Saccharina latissima and
Palmaria palmata, and lower (79%) for Ascophillum nodosum and Fucus spp. The Red seaweed IVPD of
red seaweeds had an average value of 85%, while the brown seaweeds had a lower IVPD, with an
average value of, 79.7%. A significant inverse correlation between the IVPD and total phenolic content
was also observed [28].

Seaweeds also possess several biological activities due to the presence of several bioactive
compounds, such as phenolic compounds, carotenoids, tocopherols, polysaccharides, and peptides.
Seaweeds are rich in carboxylated and sulfated polysaccharides, such as alginates, ulvans and fucoidans:
their composition and content depend on the algae species and of environmental factors such as
the season and temperature. The total polysaccharide content (% DM) is 29–67% in green algae
(Chlorophyta), 10–59% in red algae (Rhodophita) and 10–75% in brown algae (Phaecophyta). [29].

A major component of brown seaweed cell walls is a salt form of alginic acid, alginate with the
content ranging from 140–400 g/kg DM [30]. Brown seaweed walls are also rich in fucoidans, which are
saccharide units with different degrees of sulphation. Several species contained fucoidan with distinct
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structural characteristics, and thus the different types of functional components have various biological
applications. The fucoidan content varies in relation to seaweed species and season, although the
content ranges from 20 to 200 g/kg DM, with the highest value in Fucus vesiculosus [17,30,31]. Laminarin,
composed of (1,3)-b-D-glucopyranose residues, is the main reserve carbohydrate of brown seaweeds
with a content ranging from 0 to 300 g/kg DM. In Laminaria spp. and Saccharina latissima a high content
of laminarin has been reported, while, Ascophyllum nodosum and, Fucus spp. presented a low laminarin
content [17,30,31]. Laminarin presents prebiotic, immunomodulator and antioxidant activities [32].

The cell walls of red seaweeds are mainly composed of sulfated galactan such as carrageenans
(content range: 220–770 g/kg DM) and agars (content range: 210–420 g/kg DM). Some red seaweed
species contain xylan (in Palmaria palmata approximately 350 g/kg DM) and porphyran (average content
480 g/kg DM). The floridean starch is the main carbohydrate reserve with a content ranging from 250
to 420 g/kg DM [17,30,31].

Ulvan is one of the main sulfated polysaccharides from green seaweed cell walls with anticancer,
antioxidant, antihyperlipidemic, and anticoagulant activities [33] and a content ranging from 400 to
500 g/kg DM [30].

For details and information on the monosaccharide composition of the different polysaccharides
mentioned, some excellent reviews are available [34,35].

Considering their valuable source of bioactive molecules, seaweeds have been studied as feed
supplements in livestock, particularly in pigs in order to boost growth performance and health [36].
Seaweeds exhibit prebiotics, anti-microbial, antioxidant, anti-inflammatory and immunostimulant
properties and obviously effective absorption of dietary nutrients.
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Table 1. Chemical composition of brown, red and green seaweeds (on DM basis) 1.

Seaweeds
BROWN RED GREEN

Laminaria
spp. *

Ascophillum
nodosum

Sargassum
spp.
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8.9 

(4.9–12.9) 
1.3 

(0.25–1.64) 

Crude Fiber % 11.6 
(6.6–16.6) 

5.5 
(5.4–5.5) 

18.2 
(6.4–38) 

10.7 
(5.4–16) 

23 
(6.6–40) 

33.4 
(5.5–50) 

1.5 
(1.49–1.50) 

9.6 
(6.9–12.3) 

Ash % 27.8 
(19.6–31.5) 

24.8 
(21.1–30.9) 

27.6 
(19.4–35.9) 

21.6 
(20.7–22.5) 

22.5 
(13.3–31.7) 

25.8 
(20–35) 

19.3 
(9–24.5) 

25.7 
(21.3–26.2) 

Gross energy MJ/kg 12.7 
(12.5–13) 

14.1 9.1 
15.7 

(15.5–16) 
11.1 9 16.9 

15.2 
(14.7–15.7) 

Ca g/kg 10 
(8–12.55) 

16.4 
(9.8–20) 

14.7 
(3.8–27.2) 

9.9 
(8.9–12.8) 

9.8 
(9.6–10) 

14.1 
(11.6–16.6) 

2.6 
(1–4.2) 

12.6 
(6.1–29.2) 

P g/kg 2.2 
(1.2–3) 

1 
1.7 

(1–2.2) 
1.9 

(1.4–2.3) 
2.7 

(2.2–3.1) 
2.9 

(2.6–3.2) 
4 

(3–5) 
2.1 

(1.3–2.7) 

K g/kg 
54 

(48.6–59.5) 
28.5 

(20–37.7) 
46.2 

22.9 
(0.4–36.1) 

52.5 
67.5 

(44.8–112.3) 
37.1 

(27–47.2) 
14.4 

(1.5–22.1) 

Na g/kg 
23.9 

(22.5–25.3) 
37.5 

(25–45.7) 
– 

24.2 
(0.2–45.8) 

33 
36.9 

(17.1-56.7) 
7.2 

(3.3–11) 
13.9 

(2.9–20.2) 

Mg g/kg 
6.3 

(5.5–7.2) 
6.8 

(1–8.6) 
6.4 

(4–7.7) 
7.5 

(7–8.33) 
6.3 

(5.1–7.4) 
39 

(16.2–61.8) 
2.3 

13 
(1.9–20.5) 

Mn, mg/kg 7.1 
(3.1–11) 

17.8 
(12–25) 

88.3 
(26.7–214) 

104.7 
(8.2–177.8) 

8.2 
(3.9–12.4) 

11 
71.6 

(11–168) 
38.7 

(10.1–122) 

Zn mg/kg 22.6 
(11–31.5) 

116.8 
(30.3–181) 

79.3 
(12–214) 

118.1 
(45.3–275.3) 

35.4 
(29.2–41.55) 

12 
65.1 

(23.6–143) 
29 

(16.1–45) 

Cu mg/kg 2.4 
(1.2–5.9) 

17.8 
(4.2–28) 

6. 
(2.3–7) 

9.3 
(2–23.5) 

4.5 
(1.1–7.9) 

2 
11.1 

(3.8–24) 
8.5 

(3.3–12) 

Fe mg/kg 107.3 
(58–179) 

157.8 
(122–241) 

2678 
(307–7291) 

351.9 
(189–559) 

529 
(30–1028) 

117 
202.5 

(139–315) 
462.2 

(105–1481) 

I mg/kg 2991.7 
(833–5100) 

777 
399.5 

(216–583) 
376 

(232–677) 
1448.5 

(957–1940) 
– 278 56.7 

Fucus
spp. #

Saccharina
latissima

Macrocystis
pyrifera

Palmaria
palmata

Ulva
lactuca

Crude protein % 9.4
(5.3–16.1)

7.4
(4.9–8.7)

10
(8.5–13.6)

12.6
(12.2–12.9)

7.6
(7.1–8.1)

8.3
(8–10)

21.9
(15.1–31.4)

16.2
(7.06–23.1)

Ether extract % 1.1
(0.8–2.4)

5.3
(3.9–8.6)

0.8
(0.5–1.2)

6.1
(3.7–8.4) 5.5 1.8

(0.5–3.9)
8.9

(4.9–12.9)
1.3

(0.25–1.64)

Crude Fiber % 11.6
(6.6–16.6)

5.5
(5.4–5.5)

18.2
(6.4–38)

10.7
(5.4–16)

23
(6.6–40)

33.4
(5.5–50)

1.5
(1.49–1.50)

9.6
(6.9–12.3)

Ash % 27.8
(19.6–31.5)

24.8
(21.1–30.9)

27.6
(19.4–35.9)

21.6
(20.7–22.5)

22.5
(13.3–31.7)

25.8
(20–35)

19.3
(9–24.5)

25.7
(21.3–26.2)

Gross energy MJ/kg 12.7
(12.5–13) 14.1 9.1 15.7

(15.5–16) 11.1 9 16.9 15.2
(14.7–15.7)

Ca g/kg 10
(8–12.55)

16.4
(9.8–20)

14.7
(3.8–27.2)

9.9
(8.9–12.8)

9.8
(9.6–10)

14.1
(11.6–16.6)

2.6
(1–4.2)

12.6
(6.1–29.2)

P g/kg 2.2
(1.2–3) 1 1.7

(1–2.2)
1.9

(1.4–2.3)
2.7

(2.2–3.1)
2.9

(2.6–3.2)
4

(3–5)
2.1

(1.3–2.7)

K g/kg 54
(48.6–59.5)

28.5
(20–37.7) 46.2 22.9

(0.4–36.1) 52.5 67.5
(44.8–112.3)

37.1
(27–47.2)

14.4
(1.5–22.1)

Na g/kg 23.9
(22.5–25.3)

37.5
(25–45.7) – 24.2

(0.2–45.8) 33 36.9
(17.1-56.7)

7.2
(3.3–11)

13.9
(2.9–20.2)

Mg g/kg 6.3(
5.5–7.2)

6.8
(1–8.6)

6.4
(4–7.7)

7.5
(7–8.33)

6.3
(5.1–7.4)

39
(16.2–61.8) 2.3 13

(1.9–20.5)

Mn, mg/kg 7.1
(3.1–11)

17.8
(12–25)

88.3
(26.7–214)

104.7
(8.2–177.8)

8.2
(3.9–12.4) 11 71.6

(11–168)
38.7

(10.1–122)

Zn mg/kg 22.6
11–31.5)

116.8
(30.3–181)

79.3
(12–214)

118.1
(45.3–275.3)

35.4
(29.2–41.55) 12 65.1

(23.6–143)
29

(16.1–45)

Cu mg/kg 2.4
(1.2–5.9)

17.8
(4.2–28)

6.
(2.3–7)

9.3
(2–23.5)

4.5
(1.1–7.9) 2 11.1

(3.8–24)
8.5

(3.3–12)

Fe mg/kg 107.3
(58–179)

157.8
(122–241)

2678
(307–7291)

351.9
(189–559)

529
(30–1028) 117 202.5

(139–315)
462.2

(105–1481)
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Table 1. Cont.

Seaweeds
BROWN RED GREEN

Laminaria
spp. *

Ascophillum
nodosum

Sargassum
spp.
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2.1 

(1.3–2.7) 

K g/kg 
54 

(48.6–59.5) 
28.5 

(20–37.7) 
46.2 

22.9 
(0.4–36.1) 

52.5 
67.5 

(44.8–112.3) 
37.1 

(27–47.2) 
14.4 

(1.5–22.1) 

Na g/kg 
23.9 

(22.5–25.3) 
37.5 

(25–45.7) 
– 

24.2 
(0.2–45.8) 

33 
36.9 

(17.1-56.7) 
7.2 

(3.3–11) 
13.9 

(2.9–20.2) 

Mg g/kg 
6.3 

(5.5–7.2) 
6.8 

(1–8.6) 
6.4 

(4–7.7) 
7.5 

(7–8.33) 
6.3 

(5.1–7.4) 
39 

(16.2–61.8) 
2.3 

13 
(1.9–20.5) 

Mn, mg/kg 7.1 
(3.1–11) 

17.8 
(12–25) 

88.3 
(26.7–214) 

104.7 
(8.2–177.8) 

8.2 
(3.9–12.4) 

11 
71.6 

(11–168) 
38.7 

(10.1–122) 

Zn mg/kg 22.6 
(11–31.5) 

116.8 
(30.3–181) 

79.3 
(12–214) 

118.1 
(45.3–275.3) 

35.4 
(29.2–41.55) 

12 
65.1 

(23.6–143) 
29 

(16.1–45) 

Cu mg/kg 2.4 
(1.2–5.9) 

17.8 
(4.2–28) 

6. 
(2.3–7) 

9.3 
(2–23.5) 

4.5 
(1.1–7.9) 

2 
11.1 

(3.8–24) 
8.5 

(3.3–12) 

Fe mg/kg 107.3 
(58–179) 

157.8 
(122–241) 

2678 
(307–7291) 

351.9 
(189–559) 

529 
(30–1028) 

117 
202.5 

(139–315) 
462.2 

(105–1481) 

I mg/kg 2991.7 
(833–5100) 

777 
399.5 

(216–583) 
376 

(232–677) 
1448.5 

(957–1940) 
– 278 56.7 

Fucus
spp. #

Saccharina
latissima

Macrocystis
pyrifera

Palmaria
palmata

Ulva
lactuca

I mg/kg 2991.7
(833–5100) 777 399.5

(216–583)
376

(232–677)
1448.5

(957–1940) – 278 56.7

Se mg/kg 0.6
(0.29–0.93) 0.5 1.2

(1.1–1.4)
0.8

(0.2–1.2)
1.1

(0.9–1.3) – 0.1 1.2
(0.4–1.9)

Co mg/kg 0.1
(0.08–0.11) 0.6 0.4

(0.36–0.47)
1.1

(0.8–1.4) 0.4 – 0.03 0.5
(0.3–0.6)

Vitamin E mg/kg 672
(3–2000)

230
(80–500) 10 164

(100–356) 1.6 928 69.6
(22–152)

12.95
(2.8–35)

Vitamin A mg/kg ** 154.6
(22–299)

57
(35–80) 51 17.8

(7–28.6) 0.42 12.39 142.9
(15.2–270)

3.5
(0.1–7)

Vitamin C mg/kg 632
(355–910)

860
(81–1650) 560 383

(141–770)
11.5

(3.5–18.8) – 78.3
(0.7–156)

141.5
(42–241)

Vitamin B1 mg/kg 7.45
(2.4–12.5) 14(1–27) 4 0.2 0.72

(0.5–0.94) – 18
(0.7–40) 40

Vitamin B2 mg/kg 4.9
(1.4–8.5)

7.5
(5–10) 65 0.35 1.7

(1.4–2.1) – 16
(4.3–19)

5.1
(5–5.3)

Vitamin B3 mg/kg 314
(158–612) 15 20 – – – 45

(10.1–83) –

References [13,17,19,21,37–41] [17,18,21,24,28,
37,42–45] [17,19,24,37,45] [18,19,21,23,28,

37,40] [19,21,23,28,38] [17,46–49] [17,23,28,37,50] [17,19,21,23,37,
44,47,51]

1 data are reported as mean values and ranges. * values from Laminaria digitata and hyperarborea.
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Table 1. Chemical composition of brown, red and green seaweeds (on DM basis) 1. 

Seaweeds 

BROWN RED GREEN 

Laminaria 
spp. * 

Ascophillum 
nodosum 

Sargassum 
spp.   

  
 ⁑  

Fucus 
spp. # 

Saccharina 
latissima 

Macrocystis 
pyrifera 

Palmaria 
palmata 

Ulva 
lactuca 

Crude protein % 9.4 
(5.3–16.1) 

7.4 
(4.9–8.7) 

10 
(8.5–13.6) 

12.6 
(12.2–12.9) 

7.6 
(7.1–8.1) 

8.3 
(8–10) 

21.9 
(15.1–31.4) 

16.2 
(7.06–23.1) 

Ether extract % 1.1 
(0.8–2.4) 

5.3 
(3.9–8.6) 

0.8 
(0.5–1.2) 

6.1 
(3.7–8.4) 

5.5 
1.8 

(0.5–3.9) 
8.9 

(4.9–12.9) 
1.3 

(0.25–1.64) 

Crude Fiber % 11.6 
(6.6–16.6) 

5.5 
(5.4–5.5) 

18.2 
(6.4–38) 

10.7 
(5.4–16) 

23 
(6.6–40) 

33.4 
(5.5–50) 

1.5 
(1.49–1.50) 

9.6 
(6.9–12.3) 

Ash % 27.8 
(19.6–31.5) 

24.8 
(21.1–30.9) 

27.6 
(19.4–35.9) 

21.6 
(20.7–22.5) 

22.5 
(13.3–31.7) 

25.8 
(20–35) 

19.3 
(9–24.5) 

25.7 
(21.3–26.2) 

Gross energy MJ/kg 12.7 
(12.5–13) 

14.1 9.1 
15.7 

(15.5–16) 
11.1 9 16.9 

15.2 
(14.7–15.7) 

Ca g/kg 10 
(8–12.55) 

16.4 
(9.8–20) 

14.7 
(3.8–27.2) 

9.9 
(8.9–12.8) 

9.8 
(9.6–10) 

14.1 
(11.6–16.6) 

2.6 
(1–4.2) 

12.6 
(6.1–29.2) 

P g/kg 2.2 
(1.2–3) 

1 
1.7 

(1–2.2) 
1.9 

(1.4–2.3) 
2.7 

(2.2–3.1) 
2.9 

(2.6–3.2) 
4 

(3–5) 
2.1 

(1.3–2.7) 

K g/kg 
54 

(48.6–59.5) 
28.5 

(20–37.7) 
46.2 

22.9 
(0.4–36.1) 

52.5 
67.5 

(44.8–112.3) 
37.1 

(27–47.2) 
14.4 

(1.5–22.1) 

Na g/kg 
23.9 

(22.5–25.3) 
37.5 

(25–45.7) 
– 

24.2 
(0.2–45.8) 

33 
36.9 

(17.1-56.7) 
7.2 

(3.3–11) 
13.9 

(2.9–20.2) 

Mg g/kg 
6.3 

(5.5–7.2) 
6.8 

(1–8.6) 
6.4 

(4–7.7) 
7.5 

(7–8.33) 
6.3 

(5.1–7.4) 
39 

(16.2–61.8) 
2.3 

13 
(1.9–20.5) 

Mn, mg/kg 7.1 
(3.1–11) 

17.8 
(12–25) 

88.3 
(26.7–214) 

104.7 
(8.2–177.8) 

8.2 
(3.9–12.4) 

11 
71.6 

(11–168) 
38.7 

(10.1–122) 

Zn mg/kg 22.6 
(11–31.5) 

116.8 
(30.3–181) 

79.3 
(12–214) 

118.1 
(45.3–275.3) 

35.4 
(29.2–41.55) 

12 
65.1 

(23.6–143) 
29 

(16.1–45) 

Cu mg/kg 2.4 
(1.2–5.9) 

17.8 
(4.2–28) 

6. 
(2.3–7) 

9.3 
(2–23.5) 

4.5 
(1.1–7.9) 

2 
11.1 

(3.8–24) 
8.5 

(3.3–12) 

Fe mg/kg 107.3 
(58–179) 

157.8 
(122–241) 

2678 
(307–7291) 

351.9 
(189–559) 

529 
(30–1028) 

117 
202.5 

(139–315) 
462.2 

(105–1481) 

I mg/kg 2991.7 
(833–5100) 

777 
399.5 

(216–583) 
376 

(232–677) 
1448.5 

(957–1940) 
– 278 56.7 

values from Sargassum Patens, hemifhyllum, henslowianum. # Values from Fucus vesciculosus,
giuryi, serratus, spiralys. ** as provitamin carotenoids.
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Table 2. Aminoacid profile of brown, red and green seaweeds (mg/g DM) 1.

Seaweeds
BROWN RED GREEN

Laminaria
digitata

Ascophillum
nodosum

Sargassum
spp.
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Ca g/kg 10 
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(3.8–27.2) 

9.9 
(8.9–12.8) 

9.8 
(9.6–10) 

14.1 
(11.6–16.6) 

2.6 
(1–4.2) 

12.6 
(6.1–29.2) 

P g/kg 2.2 
(1.2–3) 

1 
1.7 

(1–2.2) 
1.9 

(1.4–2.3) 
2.7 

(2.2–3.1) 
2.9 

(2.6–3.2) 
4 

(3–5) 
2.1 

(1.3–2.7) 

K g/kg 
54 

(48.6–59.5) 
28.5 

(20–37.7) 
46.2 

22.9 
(0.4–36.1) 

52.5 
67.5 

(44.8–112.3) 
37.1 

(27–47.2) 
14.4 

(1.5–22.1) 

Na g/kg 
23.9 

(22.5–25.3) 
37.5 

(25–45.7) 
– 

24.2 
(0.2–45.8) 

33 
36.9 

(17.1-56.7) 
7.2 

(3.3–11) 
13.9 

(2.9–20.2) 

Mg g/kg 
6.3 

(5.5–7.2) 
6.8 

(1–8.6) 
6.4 

(4–7.7) 
7.5 

(7–8.33) 
6.3 

(5.1–7.4) 
39 

(16.2–61.8) 
2.3 

13 
(1.9–20.5) 

Mn, mg/kg 7.1 
(3.1–11) 

17.8 
(12–25) 

88.3 
(26.7–214) 

104.7 
(8.2–177.8) 

8.2 
(3.9–12.4) 

11 
71.6 

(11–168) 
38.7 

(10.1–122) 

Zn mg/kg 22.6 
(11–31.5) 

116.8 
(30.3–181) 

79.3 
(12–214) 

118.1 
(45.3–275.3) 

35.4 
(29.2–41.55) 

12 
65.1 

(23.6–143) 
29 

(16.1–45) 

Cu mg/kg 2.4 
(1.2–5.9) 

17.8 
(4.2–28) 

6. 
(2.3–7) 

9.3 
(2–23.5) 

4.5 
(1.1–7.9) 

2 
11.1 

(3.8–24) 
8.5 

(3.3–12) 

Fe mg/kg 107.3 
(58–179) 

157.8 
(122–241) 

2678 
(307–7291) 

351.9 
(189–559) 

529 
(30–1028) 

117 
202.5 

(139–315) 
462.2 

(105–1481) 

I mg/kg 2991.7 
(833–5100) 

777 
399.5 

(216–583) 
376 

(232–677) 
1448.5 

(957–1940) 
– 278 56.7 

Fucus
spp. #

Saccharina
latissima

Macrocystis
pyrifera

Palmaria
palmata

Ulva
lactuca

Lysine 4.41
(4.1–4.8)

4.77
(4.3–5.4)

3.57
(2.8–4.3)

7.6
(6.7–8.2)

4.05
(4–4.1)

6.63
(5.2–7.5)

1.42
(1.2–1.65)

2.09
(0.5–1.9)

Histidine 1.82
(1.3–2.4)

1.63
(1.4–1.9)

0.82
(0.6–1)

1.33
(0.4–2)

2.2
(1.2–3.2)

2.33
(2–2.9)

0.4
(0.3–0.5)

0.83
(0.1–2.0)

Isoleucine 2.91
(2.6–3.2)

3.76
(3.1–4.3)

2.70
(1.9–3.5)

3.70
(0.9–6)

3.1
(3–3.1)

4.47
(3.2–5.6)

1.31
(0.7–1.9)

1.5
(0.4–5.2)

Leucine 4.93
(4.4–5.4)

6.63
(5.3–7.5)

5.11
(4.4–5.8)

6.42
(1.6–10.5)

5.06
(4.2–5.9)

7.53
(5.5–9.2)

2.42
(1.3–3.6)

2.9
(0.7–6.6)

Arginine 3.2
(2.9–3.4)

5.06
(4.2–6.0)

1.6
(1–3–1.9)

3.24
(1.1–4.6)

4.0
(3.9–4.1)

4.87
(3.5–6.1)

1.9
(1.2–2.6)

2.12
(0.5–1.3)

Methionine 1.5
(1.4–1.5)

1.91
(1.3–2.5)

0.69
(0.68–0.7)

0.81
(0.2–1.8)

2
(1.9–2.1)

2.18
(1.6–2.6)

0.91
(0.5–2.3)

1.21
(0.2–1.8)

Phenylalanine 3.24
(2.8–3.6)

4.23
(3.2–5.0)

2.98
(2.2–3.7)

3.56
(0.9–5.2) 3.82 5.42

(4.1–6.2)
1.7

(0.8–2.6)
2.4

(0.2–3.6)

Threonine 3.68
(3.4–3.9)

4.6
(3.6–5.4)

3.9
(3.3–4.5)

3.09
(1.2–5.1)

4.3
(4.2–4.4)

5.17
(3.6–6.7)

1.26
(0.7–2.8)

2.17
(0.5–3.8)

Tryptophan 1.74
(1.72–1.76) – – 1.22

(0.5–1.9) – – 0.4
(0.2–0.6)

0.51
(0.4–0.6)

Valine 5.38
(4.7–6.0)

4.76
(4.1–5.5)

3.84
(2.9–4.8)

4.65
(1.1–8.0)

4.1
(3.7–4.5)

5.87
(4.3–7.1)

2.25
(1.1–3.4)

2.03
(0.9–4.4)

Tyrosine 1.74
(1.7–1.8)

2.05
(0.9–3.2)

2.35
(1.8–2.9)

2.26
(1.9–2.6) – 2.8

(2.1–3.5)
1.15

(0.6–1.7)
1.03

(0.5–1.4)

Alanine 6.68
(4.5–8.8)

5.95
(5.4–6.5)

4.23
(3.3–5.1)

1.58
(1.5–1.6)

6.8
(5.0–8.5)

4.81
(4.5–5.0)

2.23
(1.1–3.3)

3.22
(0.7–5.9)

Glutamine 7.3
(4.6–9.9)

14.5
(1.4–11.6)

19.5
(18.9–20.1)

20.1
(19.6–20.3)

10.5
(10.6–10.4)

14.1
(9.7–18.3)

16.6
(11.0–18.7)

13.2
(11.5–14.8)

Asparagine 6
(3.9–8.1)

8.4
(8.3–8.5)

12
(11.5–12–5)

12.8
(10.9–16.7)

9.4
(8.8–9.8)

10.8
(8.3–13.3)

11.3
(9.9–14.3)

10.4
(7.9–12.2)

References [41,52] [17,18] [14] [18,53] [52,54] [48,49,55] [25,28] [17,18,47]
1 data are reported as mean values.
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(22.5–25.3) 
37.5 

(25–45.7) 
– 

24.2 
(0.2–45.8) 

33 
36.9 

(17.1-56.7) 
7.2 

(3.3–11) 
13.9 

(2.9–20.2) 

Mg g/kg 
6.3 

(5.5–7.2) 
6.8 

(1–8.6) 
6.4 

(4–7.7) 
7.5 

(7–8.33) 
6.3 

(5.1–7.4) 
39 

(16.2–61.8) 
2.3 

13 
(1.9–20.5) 

Mn, mg/kg 7.1 
(3.1–11) 

17.8 
(12–25) 

88.3 
(26.7–214) 

104.7 
(8.2–177.8) 

8.2 
(3.9–12.4) 

11 
71.6 

(11–168) 
38.7 

(10.1–122) 

Zn mg/kg 22.6 
(11–31.5) 

116.8 
(30.3–181) 

79.3 
(12–214) 

118.1 
(45.3–275.3) 

35.4 
(29.2–41.55) 

12 
65.1 

(23.6–143) 
29 

(16.1–45) 

Cu mg/kg 2.4 
(1.2–5.9) 

17.8 
(4.2–28) 

6. 
(2.3–7) 

9.3 
(2–23.5) 

4.5 
(1.1–7.9) 

2 
11.1 

(3.8–24) 
8.5 

(3.3–12) 

Fe mg/kg 107.3 
(58–179) 

157.8 
(122–241) 

2678 
(307–7291) 

351.9 
(189–559) 

529 
(30–1028) 

117 
202.5 

(139–315) 
462.2 

(105–1481) 

I mg/kg 2991.7 
(833–5100) 

777 
399.5 

(216–583) 
376 

(232–677) 
1448.5 

(957–1940) 
– 278 56.7 

values from Sargassum Patens and hemifhyllum. # Values from Fucus vesciculosus and serratus.
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3. Influence on Growth Performance

Brown seaweeds have a generally positive effect on growth, as presented in Table 3. Some
interactions between seaweeds bioactive molecules and dietary components should be probable, but
considering the heterogeneity of seaweeds species, the effects on growth performances have to be
firstly analyzed in relation to seaweed supplement, and bioactive molecules content. With dietary
integration in sows at the end of gestation and during lactation, an increase in average daily gain (ADG)
of suckling piglets has been observed (from +11.8 to +32.3% compared to the control group). Most of
the studies we reviewed involve the dietary supplementation of brown seaweeds in weaned piglets.
In weaned piglets, improvements of ADG are observed. The ADG of piglets fed brown seaweeds is
higher than the ADG of piglets fed a control diet with an increase of between +4.6 and +40.8%.

Draper et al. [56] and Ruiz et al. [57] appear to be the only two authors to report the effects of
long–term dietary supplementation with brown seaweed from weaning to slaughter on ADG. In this
case, the influence on ADG was limited but statistically significant, and ranged from +1.2 to +3.3%.
Bouwhuis et al. [58,59] evaluated the effects of brown seaweed supplementation on pigs’ growth
performance after being challenged with Salmonella Typhimurium. When the challenge occurred in
post–weaning, no significant effect was observed; in pigs with a live weight of 30 kg, the seaweed
supplement led to a significant increase in growth (+16%). It is possible that the bioactive compounds
of seaweeds are not able to positively modulate the immune system of the post–weaning piglet which
is still immature.

Positive effects on growth are related to the improvement in digestibility and overall health
conditions of piglets due to the prebiotic effects of seaweed polysaccharides, as described in the
following sections. The effects of seaweed dietary supplementation on the improvement in antioxidant
status and the decrease in inflammatory condition may contribute to reduce energy and amino
acidic expenditure.
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Table 3. Effect of seaweed supplement on average daily gain (ADG) in pigs.

Algae Supplement Dose Animal Control Supplemented Diff. % Ref.

A. nodosum Dried seaweed 2.5–5–10 g/kg Weaning to 28 d 0.220

0.209 −5.0

[60]0.198 −10.0

0.213 −3.18

A. nodosum Dried seaweed 10–20 g/kg Weaning to 11 d 0.027
0.054 +100 [42]
0.040 +48.14

Brown seaweed
Alginic acid oligosaccharides

(50–100–200 mg/kg)
Weaning to 14 d 0.216

0.248 (50) +14.81

[61]0.304 * (100) +40.78

0.301 * (200) +39.35

Brown seaweed Alginates oligosaccharides (100 mg/kg) Weaning to 21 d 0.441 0.516 +17.01 [62]

Ecklonia cava FUC = 0.05 – 0.10 – 0.156 g/kg Weaning to 28 d 0.344
0.347 +0.87

[63]0.368 * +6.98

0.360 * +4.65

Laminaria digitata LAM + FUC (0.314 –0.250 g/kg) – lactose
15 or 25%)

Weaning to 25 d 0.275
0.287

0.293 (15% lact.) +6.55
[64]0.350 **

(25% lact.) +21.95

Laminaria spp.

LAM (1 g/day)—sows, 109 d until
weaning at 20 d

20 d lactation
Weaning to 26 d

Challenge Salmonella
Typhimurium at 10 d

post weaning

0.340 0.450 ** +32.35

[58]

LAM (0.3 g/kg)—piglets 0.410 0.370 −16.13

Laminaria spp. LAM + FUC
(0.18 + 0.34 g/kg)

30.9 kg pigs for 28 d
Challenge Salmonella
Typhimurium at 10d

0.620 0.720 *** +16.13 [59]

Laminaria spp. LAM (0.112 g/kg) y

FUC (0.089 g/kg) z Weaning to 25 d 0.281 0.322 ** +14.59 [65]



Animals 2019, 9, 1126 10 of 26

Table 3. Cont.

Algae Supplement Dose Animal Control Supplemented Diff. % Ref.

Laminaria spp.
LAM + FUC

(1 g + 0.8 g day) − sows
LAM + FUC

(0.3 + 0.24 g/kg) − piglets

Weaning to 126 d 0.760 0.850 **(lactation effect) +11.84 [56]

0.800 0.810 (weaning effect) +1.23

Laminaria spp.
Extract (1–2–4 g/kg) x

LAM = 0.11–0.22–0.44
FUC = 0.09–0.18–0.36

Weaning to 21 d 0.249

0.274 ***(1 g/kg) +10.04

[66]0.313 *** (2 g/kg) +25.70

0.303 ***(4 g/kg) +21.69

Laminaria spp. LAM (0.30 g/kg) Weaning to 32 d 0.280 0.353 * +26.07 [67]

Laminaria spp. LAM + FUC
(0.30 + 0.24 g/kg) Weaning to 40 d 0.356 0.374 +5.06 [68]

Laminaria spp.

LAM (0.3 g/kg)
FUC (0.36 g/kg)

LAM + FUC
(0.3 + 0.36 g/kg)

Weaning to 21 d 0.288

0.319 * LAM 0.3 +10.7

[69]0.302 FUC 0.36 +4.86

0.328 LAM + FUC +13.89

Laminaria spp. LAM + FUC
(0.30 + 0.24 g/kg) k

Weaning to 21 d
21–40 d

0.235 0.239 +1.70
[70]

0.489 0.523 +6.25

Laminaria spp.
LAM (0.15–0.30 g/kg)

FUC (0.24 g/kg)
LAM + FUC (0.15 + 0.24

and 0.30 + 0.24 g/kg)

Weaning to 35 d 0.340

0.351 FUC 0.24 +3.24

[71]
0.334 LAM 0.15 –1.76

0.347 FUC 0.24 LAM 0.15 +2.06

0.390* LAM 300 +14.71

0.358 FUC 0.24 LAM 0.3 +5.29

OceanFeedSwine
Seaweeed extract

(5 g/kg)
21 to 56 d 0.401 0.380 −5.24

[57]
56–160 d 0.798 0.824 * +3.26

Means marked with *, **, *** showed a significant effect of supplement for p < 0.05, p < 0.01 and p < 0.001 respectively; LAM, laminarin; FUC, fucoidan; y 990 g/kg Laminarin; z 720 g/kg
Fucoidan; x 112 g/kg Laminarin, 89 g/kg Fucoidan and 799 g/kg ash; K 455 g/kg Laminarin and 360 g/kg Fucoidan.



Animals 2019, 9, 1126 11 of 26

4. Influence on Digestibility

Many authors have evaluated the effects of algae supplementation on the digestibility of the diet
in pigs, as presented in Table 4.

All digestibility trials were conducted in weaned piglets, except for the study by Gardiner et al. [72]
which investigated male pigs with a 45 kg live weight. The Ascophyllum nodosum does not appear
to have a significant influence on diet digestibility [42,72]. On the other hand, Laminaria digitata,
Laminaria spp., Ecklonia cava and brown seaweed, titrated in alginates, showed positive effects on the
digestibility of nitrogen (N), gross energy (GE), fiber (NDF) and ash in various experiments. Significant
improvements from +5.1 and +8% in N digestibility are reported. Also for GE, dietary integration with
seaweed improved the digestibility, with an increase of between +3.3 and +10%.

Some authors have also observed that introducing laminarin and fucoidans in the formula
increases the digestibility of the fibrous fraction (NDF). The animals fed seaweed showed a higher
digestibility of NDF (+39 to +73%) compared to the control group. Finally, ash digestibility presented
values that in the seaweed group were 25.9–82.4% higher than in the control.

The improvement in nutrient digestibility is related to the influence of the seaweed constituents,
in particular carbohydrates and antioxidants, on microbiota and on the villous architecture with an
increase in absorptive capacity and nutrient transporters [73]. These effects are also related to the
trophic effect on the intestinal mucosal cells of volatile fatty acid production (i.e., butyric acid).
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Table 4. Influence of seaweed on digestibility in swine.

Algae
Supplement Dose g/kg Animal Effects on Digestibility Treatment vs.

Control, % Ref.

A. nodosum Dried intact
(2.5 g/kg)

Male Pigs,
45 kg LW NS – [73]

A. nodosum Dried intact (10–20 g/kg) Weaned piglets (35 d age) NS – [42]

Brown seaweed
Alginates olisaccharides

(100 mg/kg)
Weaned piglets, 6.2 kg LW Improved digestibility of [62]

N,
fat,
ash
GE

+6.7%
+10.8%
+25.9%
+4.0%

Ecklonia cava Seaweed
(0.5–1—1.5 g/kg) s Weaned piglets 7.8 kg LW Improved digestibility of GE +3.3% (1g/kg) [63]

Laminaria digitata LAM + FUC
(0.314–0.250 g/kg)

Weaned piglets,
7.2 kg LW

Improved digestibility of [64]
OM,
N,

NDF,
GE

+4.5%
+7.3%
+73.3%
+5.9%

Laminaria spp. Extract (1–2–4 g/kg) x Weaned piglets (24 d age) NS [66]

Laminaria spp.
Seaweed extract

LAM (0.112 g/kg) y

FUC (0.089 g/kg) z

Weaned piglets, (24 d age) Improved digestibility of [65]
N,
GE

+6.7%
+5.2%

Laminaria spp. LAM + FUC (0.30 + 0.24 g/kg) Weaned piglets (22 d age) Improved digestibility of [68]
DM,
N,

NDF

+8.8%
+8.9%

+57.5%

Laminaria spp.
LAM (0,15–0,30 g/kg)

FUC (0,24 g/kg)
LAM + FUC (0,15 + 0.24 and

0.30 + 0.24 g/kg)

Weaned piglets (24 d age) improved digestibility of [71]
DM, LAM and LAM + FUC
OM, LAM and LAM + FUC

N, LAM
NDF, LAM and LAM + FUC
GE, LAM and LAM + FUC

+7.0% – +4.5%
+5.9% – +3.5%

+5.1%
54.5% – 39.7%

+7.3% – +4.3%
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Table 4. Cont.

Algae
Supplement Dose g/kg Animal Effects on Digestibility Treatment vs.

Control, % Ref.

Laminaria spp.
LAM (0.30 g/kg)
FUC (0.24 g/kg)

LAM + FUC (0.30 + 0.24 g/kg)

Weaned piglets (24 d age) Improved digestibility of [67]
DM, LAM and LAM + FUC

N, LAM
Ash, LAM and LAM + FUC
GE, LAM and LAM + FUC

+7.9% – +4.5%
+6.6%

58.0% – 42.6%
+8.5% – +4.3%

Laminaria spp. Extract (0.66 g/kg) k Weaned piglets (24 d age) Improved digestibility of [70]
OM,
N,

Ash,
NDF,
GE

+8.8%
+8.9%
+82.4%
+57.5%
+10.9%

x 112 g/kg Laminarin, 89 g/kg Fucoidan and 799 g/kg ash.; k 455 g/kg Laminarin and 360 g/kg Fucoidan; s 112 g/kg Fucoidan; z 720 g/kg Fucoidan; y 990 g/kg Laminarin; FUC, Fucoidan;
LAM, laminarin; LW, live weight; DM, dry matter; GE, gross energy; N, nitrogen; NDF neutral detergent fiber; OM, organic matter.
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5. Prebiotic Function

Seaweeds are rich in carboxylated and sulfated polysaccharides, such as alginates, ulvans and
fucoidans which all act as prebiotics with positive effects on gut health. According to FAO [74] a
prebiotic is a ‘non–viable food component that confers a health benefit on the host associated with
the modulation of microbiota’. The health benefit is associated with the stimulated activity/growth of
beneficial bacteria and the higher production of short chain fatty acids (SCFAs) with direct impact on
gut health and also an immunomodulatory effect, as reported below.

Several papers have analyzed the prebiotic effects of algae [5,29,73,75–79]. In swine, 24 studies
have been published in the last 10 years on the effects of supplementation with brown seaweeds, or their
extracts, on gut health: Ascophyllum nodosum [42,60,72], Ecklonia cava [63], Laminaria digitata [64,80,81],
Laminaria hyperborea [82,83], Laminaria digitata and Laminaria hyperborea association [84], Laminaria
spp. [58,59,65,67,69–71,85–90]. Brown seaweeds titrated in alginic acid polysaccharides have also been
studied [63]. Most of the studies were carried out on weaned piglets (14 trials), considering that the
weaning phase is a critical period with a high incidence of enteric pathologies. Some studies were
carried out on growing pigs ranging between 14 and 65 kg LW, and some others on gestating and
lactating sows.

In general the compounds present in the brown seaweeds (in 20 trials the supplement was titrated
in laminarin and/or fucoidans) stimulated the growth of Lactobacilli [61,64,65,70–72,81–84], and reduced
the enterobacteria population or Escherichia coli [42,58,61,63,64,69,71,72,83–85,87]. Brown seaweed
supplements supported the growth of Bifidobacteria species in the ileum in piglets [61,80,81]. Gut
health is modulated by laminarin and/or fucoidans, with the microbial production of short–chain
fatty acids (SCFAs), in particular butyrate [81,84,86]. Glucose are the main energy source for small
intestinal epithelial cells, and SCFAs are the main energy source for caecum and colon cells, stimulating
cell growth [91]. Several studies have reported that brown seaweeds have a positive influence
on gut morphology [63,87,88,92]. Supplementation with Ecklonia cava (0.05 and 0.15% of dietary
inclusion), linearly improved villi height in the ileum [63]. In weaning piglets, maternal dietary
supplementation with laminarin and fucoidans (1 and 0.8 g/day) after 83 days of gestation and during
lactation increased villi height in the jejunum and ileum (+43 and +88% respectively) [87]. According
to Heim et al. [88], maternal dietary treatment with fucoidans (0.8 g/day) had no influence on the
small intestine morphology, while laminarin increased the villus height in the ileum (+13%) at day
8 post–weaning. In vitro and in vivo experiments carried out by Dierick et al. [42] revealed that
native seaweeds Ascophyllum nodosum suppressed in vitro the gut flora counts and metabolic activity
(production of organic acids), while in vivo, a significant better lactobacilli/E. coli ratio was found in the
small intestine. Michiels et al. [60] on the other hand observed no significant effects on gut health with
the use of the same seaweed in weaned piglets, most probably due to the already high digestible basal
diet, including lactose. To probiotic activity algae associate bacteriostatic and antibacterial activities
recently reviewed by Perez et al. [93]. In particular potential applications in aquaculture [94] and in
the pharmaceutical and food industry [95], have been evaluated.

6. Antibacterial Function

In addition to the probiotic action that positively modulates the intestinal microbiota, the
seaweeds and their extracts show a specific anti-bacterial and / or bacteriostatic action [8,96,97].
Phlorotannins, fatty acids, peptides, terpenes, polysaccharides and sulphated polysaccharides, and
several other bioactive compounds have been reported as bacterial inhibitors (Table 5). A very
interesting action of seaweed extracts is the effectiveness against methicillin resistant Staphylococcus
aureus and vancomycin–resistant Enterococcus faecium [98].
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Table 5. Antibacterial activity of seaweeds.

Strain Seaweed Functional Group Seaweed Ref.

Campylobacter jejuni Delisea pulchra Halogenated furanone Red [99]

Enterococcus faecium
vancomycin-resistant Callophycus serratus Diterpene-benzoate Red [98]

Escherichia coli

Ascophyllum nodosum
and Laminaria hyperborea Laminarin Brown [100]

Sphaerococcus
coronopifolius

Sphaerane
bromoditerpenes Red [101]

Pterocladia capillacea Water-extracted
polysaccharides Red [102]

Sargassum swartzii Sulphated
polysaccharides Red [103]

Delisea pulchra Halogenated furanone Red [104]

Listeria monocytogenes Ascophyllum nodosum and
Laminaria hyperborea Laminarin Brown [100]

Pseudomonas aeruginosa
Solieria filiformis Lectin Red [105]

Sphaerococcus
coronopifolius

Sphaerane
bromoditerpenes Red [101]

Delisea pulchra Halogenated furanone Red [106,107]

Propionibacterium Eisenia bicyclis Phlorofucofuroeckol Brown [108,109]

Salmonella typhimurium Ascophyllum nodosum
and Laminaria hyperborea Laminarin Brown [100]

Staphylococcus aureus Eisenia bicyclis Phlorofucofuroeckol Brown [110]
Ascophyllum nodosum

and Laminaria hyperborea Laminarin Brown [100]

Pterocladia capillacea Water–extracted
polysaccharides Red [102]

Staphylococcus aureus
methicillin resistant

Saccharina longicruris Extracted peptides
(>10 kDa) Brown [111]

Sphaerococcus
coronopifolius

Sphaerane
bromoditerpenes Red [101]

Callophycus serratus Diterpene-benzoate Red [98]

Antibacterial activity is expressed across multiple mechanisms: inhibition of oxidative
phosphorylation and link with compounds in the bacterial cell wall and increased permeability
of the cytoplasmic membrane causing cell lysis [97]. At the same time some seaweed compounds,
in particular polysaccharides, contribute significantly to the health and well-being of the animals by
enhancing the in vivo immune response.

The variability of bioactive compounds in seaweeds influences the lab techniques used to obtain
antimicrobials ranging from traditional extraction techniques, solid–liquid extraction or liquid–liquid
extraction, to the most modern process of supercritical fluid extraction using CO2 ultrasonically-assisted
extraction [93]

The potential applications in aquaculture [94] and in the pharmaceutical and food industry [95],
have been evaluated, while studies on food producing animals, and in pigs in particular, are limited.
Berri et al. [112] evaluated the effect of marine-sulfated polysaccharide extract from the green macroalga
Ulva armoricana against seven bacterial strains found in pigs (Table 6).
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Table 6. Minimum inhibitory concentration (MIC) of marine–sulfated polysaccharides extract from
Ulva armoricana [112].

Strain MIC (mg/mL)

Pasteurella multocida 1.56
Pasteurella multocida subsp. multocida 3.125

Streptococcus suis 6.25
Trueperella pyogenes 50

Bordetella bronchiseptica 50
Escherichia coli K85 >50

Escherichia coli K88 (F4) >50

7. Influence on Antioxidant Function

Seaweeds have antioxidant properties due to the presence of phenols, carotenoid fucoxanthin,
tannins and phlorotannins, polysaccharides (fucoidans and laminarans in brown seaweeds; ulvans
in green seaweeds and carrageenans, porphyrin and agar in red seaweeds) [113]. The highest
concentrations of phenols and phlorotannins have been observed in brown seaweed, up to 12–14%
DM in Ascophhyllum nodosum, Fucus spp. and Sargassum spp. [114]. In green and red seaweeds
concentrations lower than 1% have been reported [114–116].

The carotenoid fucoxanthin has only been detected in brown seaweeds with concentrations of
up to 5.000 mg/kg [117–119]. Tocopherols are present in all seaweed, with variables concentrations.
In brown seaweed higher values have been reported for Fucus spp. and Ascophyllum nodosum (up to
600 mg/kg DM) [120,121] than in Laminaria spp. [122]. Lower concentrations were observed in red
seaweeds [122,123], and green seaweeds showed up to 1070 mg/kg DM in Ulva spp. [47].

The effects of dietary seaweeds are reported on serum and plasma antioxidant status, duodenum,
jejunum and ileum antioxidant markers and Longissimus dorsi muscle oxidative stability (Table 7).

At the blood level, dietary supplementation with Laminaria spp. extract (laminarin 0.18 g/kg and
fucoidans 0.33 g/kg) or brown seaweed (alginates 100 mg/kg) has a strong antioxidant effect in growing
pigs [124] and weaned piglets [61,62]. The total antioxidant capacity (TAS), superoxide dismutase
(SOD), glutathione (GSH) and catalase activities increased from +14 to +37% with respect to the control
group. At the same time, there was a reduction in lipid oxidation with lower values of malondialdehyde
(MDA) ranging from 10% to 26% than in the controls. Other authors reported the non-significant
effects on serum MDA, using dietary Ascophyllum nodosum [60] and brown seaweeds [62].

Wan et al. [92] observed a significant reduction in the MDA concentration in duodenum, jejunum
and ileum of between –35 and −40% and an increase in catalase activity. Finally, some studies have
evaluated the oxidative stability of pork during storage time by evaluating thiobarbituric acid-reactive
substances (TBARS). The reduction in TBARS concentration for long refrigerated storage times of 14
d, ranged between −21% and −60%. The administration of an extract of Laminaria digitata in liquid
form instead of spray–dried appears to affect the antioxidant potential of the extract. The liquid form
better exploits the antioxidant potential of the extract, with reductions in TBARS production of –47%
compared to –29% with the spray-dried form [125].
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Table 7. Effects of seaweed on antioxidant capacity in pigs.

Algae
Supplement

Dose
g/kg or g/day Animal Antioxidant Effects Treatment

vs. Control, % Ref.

A. nodosum Dried seaweed
5–10 g/kg

Weaned piglets,
6.59 kg LW

Plasma TBARS a, FRAP
b, α-tocopherol NS [60]

Brown seaweed
Alginic acid

olisaccharides
(100 mg/kg)

Weaned piglets,
7.8 kg LW

Serum [61]
T-AOC e

SOD f

CAT g

MDA h

+14%
+20%
+37%
−26%

Brown seaweed
Alginates

olisaccharides
(100 mg/kg)

Weaned piglets,
6.2 kg LW

Serum [62]
T-AOC

CAT
GSHi

MDA

+21%
+28%
+28%
−10% NS

Brown seaweed
Alginates

olisaccharides
(100 mg/kg)

Weaned piglets,
6.2 kg LW

Duodenum

[92]

T-AOC +45%

MDA −40%

Jejunum

T-AOC +39%

CAT +22%

MDA −36%

Ileum

T-AOC +58%

CAT +72%

MDA –35%

Laminaria
digitata

Wet (W) or spray
dried (SD)
seaweed

LAM + FUC
(0.5+0.4 g/kg)

Pigs, 14.5 kg LW
Plasma TAS c

LD muscle TBARS
(refrig. storage 14 d)

NS
−29% SD
−47% W

[125]

Laminaria
digitata

LAM + FUC
(0.45 or 0.9 g/kg)
3 or 6 weeks pre

slaughter

Pigs, 82 kg LW

Plasma TAS
LD muscle TBARS

(refrig. storage 14 d)
0.45 for 3 weeks
0.90 for 3 weeks

NS

−57%
−60%

[126]

Laminaria spp. LAM + FUC
(0.18 + 0.33 g/kg) Pigs, 71 kg LW

Serum
DPPH d

LD muscle TBARS
(refrig. storage 14 d)

+400%
−41% [124]

LAM = Laminarin, FUC = Fucoidan; a TBARS, thiobarbituric acid-reactive substances; b FRAP, ferric reducing
ability of plasma; c TAS, total antioxidant status; d DPPH, 2,2-diphenyl-1-picrylhydrazyl assay; e T-AOC, total
antioxidant capacity; f SOD, superoxide dismutase; g CAT, catalase; h MDA, malondialdehyde; i GSH, glutathione.

8. Anti-inflammatory Function

Many studies have evaluated the anti–inflammatory activity of brown seaweeds, in particular
Laminaria digitata, Laminaria hyperborea and Laminaria spp., usually titrated in laminarin and fucoidans [58,
59,61,71,80,85,87,88,90,92]. In addition, non-specified brown seaweeds titrated in alginic acid have
been evaluated by Wan et al. [61,92]. Of these authors, 8/10 showed anti-inflammatory effects. Walsh et
al. [71] reported a lower expression of pro-inflammatory cytokines in the colon of piglets after dietary
supplementation with laminarin, but not with fucoidans.

Dietary treatment of gestating and lactating sows with laminarin (1 g/d) and fucoidans (0.8 g/d)
reduced the ileal gene expression of IL-6, IL-8, IL-10 of piglets at weaning [87]. Similarly, in piglets
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born from sows fed diets supplemented with laminarin from 109 d gestation and during lactation, a
reduction on the colon IL-6 concentration at weaning and of ileal IL-8 concentration eight days post
weaning were observed [88].

In a 28-day trial, Bouwhuis et al. [59] observed the effects of a diet supplemented with laminarin
0.18 g/kg and fucoidans 0.34 g/kg, in 30 kg LW female pigs. After an 11-day adaptation period,
pigs were orally challenged with Salmonella Typhimurium. Dietary treatment reduced colon cytokine
expression (IL-6, IL-18, IL-22 and TNF-α) 17 days post challenge, thus revealing an anti-inflammatory
effect. In addition, in 18 kg LW pigs, laminarin from Laminaria digitata dietary supplementation (0.6
g/kg) significantly increased gut mucin gene expression (MUC2 and MUC4) from 20% to 33% with a
protective effect on epithelial cells [127]. McDonnel et al. [90] observed an increase of 16% in mucin
gene expression (MUC2) in the ileal in female pigs fed diets supplemented with Laminaria spp. (0.18
g of laminarin and 0.34 g of fucoidan per kg of feed). A study using an in vitro system of porcine
intestinal epithelial cells showed that ulvans from Ulva armoricana, a green seaweed, upregulated the
gene expression of cytokines such as IL1α, IL1β, L6, IL8, TNFα [112,128].

9. Immunomodulatory Function

Many studies have evaluated the immunomodulatory activity of seaweeds [61,63,85,129–131]. In
addition to an anti-inflammatory action, laminarin also has an immunomodulatory function. Leonard
et al. [85] reported that the dietary supplementation of sows from 109 days of gestation until weaning
with Laminaria spp. extract (1 g laminarin and 0.8 g fucoidans/day) increased immunoglobulin G (IgG)
and immunoglobulin A (IgA) in sow colostrum by 19% to 25%, respectively. Consequently, an increase
in piglet serum IgG was observed (10%).

In another study, the effects were evaluated of sow supplementation with 30 g/day of an extract of
Ascophyllum nodosum and Fucus from the 85th day of gestation until weaning on liver and lymphoid
organs of piglets. The relative population of CD4 + CD8 + T cells was higher in piglets from treated
sows in the thymus, spleen, mesenteric node, liver and in peripheral blood, thus suggesting an
important effect of maternal diet on the immune status of 40-day-old piglets [130].

The immunomodulatory effect of green seaweed extract (Ulva armoricana) was evaluated in
sows by Bussy et al. [131]. Different levels of inclusion were tested: 2, 8 and 16 g/day during two
periods of three days: 34 days before farrowing, before the last vaccine booster against Bordetella
bronchiseptica, and one week before farrowing. The higher dietary level increased anti-Bordetella IgG
in sow’s blood and colostrum, while with the middle dietary integration, the authors observed an
increase in milk IgA. Wan et al. [61] and Choi et al. [63] evaluated the immunomodulatory effects of
seaweed fed to weaned piglets. Alginic acid oligosaccharides from brown seaweed increased IgG and
IgA concentrations in piglet serum by 20% and 53 %, respectively after 21 days of treatment [61]. No
immunomodulatory effect was observed in weaned piglets fed a diet supplemented with different
Ecklonia cava concentrations [63]. According to the authors, the result may be the consequence of
the low dosage and consequently the low content of fucoidan in the diets (0.056 – 0.112 – 0.168 g/kg,
respectively).

In growing pigs (29 kg LW), 0.8% seaweed enhanced the immune function. Pigs were sensitized
with the subcutaneous inoculum of sheep red blood cells at days 42 and 49. Seaweed increased the
saliva IgA production five times more than the control after 56 days [129]. The concentration of
antigen-specific IgG in peripheral blood was higher in the seaweed group, but not significantly due to
the high standard deviation.

10. Potential Toxicity

The use of seaweed in swine nutrition may have the following limitations: mineral elements and
potentially toxic mineral content. Generally, seaweeds are introduced in pig diets as ingredients/raw
materials in a low percentage, thus there is no risk of potential toxicity in this case. In terms of
microelements, the first limiting factor is the iodine content which, as reported in Table 1, can reach
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particularly high concentrations in brown seaweeds. According to NRC [132], tolerance levels in
growing pigs and sows are 400 and 1500–2500 mg/kg DM for iodine from iodine salt, respectively.
Of the potentially toxic minerals, the first limiting element is arsenic (As) which is found in high
concentrations in brown seaweed (Table 8). However, a low content of the most toxic form of arsenic,
inorganic arsenic, has been observed in seaweeds. The arsenic content of green seaweed is below the
maximum level of 40 mg/kg feed (12% moisture content) set by European feed legislation (Commission
Directive 2002/32/EC and amendments).

Table 8. Potentially toxic trace element concentrations in seaweeds (mg/kg DM).

Trace Element Brown
Seaweed 1

Green
Seaweed 2

Red
Seaweed 3 Feed 4 Feed

Ingredient 4 Ref.

Cadmium 0.05–8 0.03–4 0.04–3.8 0.5 (1 *) 1 [19,21,39,133]
Mercury <0.005–0.16 0.005–0.07 <0.005–0.03 0.1 (0.2 *) 0.1 [19,21,39,133]

Lead 0.01–7 0.05–7 0.01–19 5 10 [19,21,133]
Arsenic 8–120 0.8–18 1–50 2 (10 *) 40 [19,21,39,133]

Inorganic arsenic 0.03–7.7 0.2–0.4 0.03–0.6 – – [21,133]
1 Brown seaweed: Alaria esculenta, Ascophyllum nodosum, Fucus spiralis, Fucus vesicolosus, Himanthalia elongate, Laminaria
digitata, Lamibaria hyperborea, Laminaria spp., Pelvetia canaliculata, Saccharina latissima Sargassum fusiformis, Undaria
pinnatififda; 2 Green seaweed: Cladophora rupestris, Codium adhaerens, Codium vermilara, Enteromorpha intestinalis, Ulva
lactuca, Ulva spp.; 3 Red seaweed: Chondrus crispus, Gigartina spp., Gracilaria vericulophylla, Gracilaria spp., Palmaria
palmata, Polysiphonia lanosa, Porphyra spp.; 4 UE directive 2002/32/EC and amendments; * Fish feed.

11. Conclusions

The biological activities of brown seaweeds could be used to improve the health and welfare of pigs.
The prebiotic effects and the antimicrobial activities of laminarin and fucoidans may have beneficial
effects in the prevention of gastrointestinal diseases and to enhance diet digestibility in post–weaning
piglets. Laminarin also has an anti-inflammatory activity, which reduces the pro–inflammatory
cytokine response. The seaweed content of antioxidant molecules enhances the antioxidant status
and meat oxidative stability. Dietary supplementation with brown seaweed may positively affect the
immune system, enhancing immunoglobulin production and modulating cytokine production. In
conclusion, brown seaweeds seem to be a promising dietary intervention in pigs in order to enhance
the immune system, antioxidant status and gut health. Data on the dietary supplementation with
green seaweeds in pigs seem to be lacking at present and merit further investigations.
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