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The factorization scheme, based on the impulse approximation and the spectral function formal-
ism, has been recently generalized to allow the description of electromagnetic nuclear interactions
driven by two-nucleon currents. We have extended this framework to the case of weak charged
and neutral currents, and carried out calculations of the double-differential neutrino-carbon and
neutrino-oxygen cross sections using two different models of the target spectral functions. The re-
sults, showing a moderate dependence on the input spectral function, confirm that our approach
provides a consistent treatment of all reaction mechanisms contributing to the signals detected by
accelerator-based neutrino experiments.

PACS numbers: 24.10.Cn,25.30.Pt,26.60.-c

I. INTRODUCTION

Accurate predictions of neutrino-nucleus interactions
are pivotal to the success of the long-baseline neutrino-
oscillation program. Current-generation [1–4] and next-
generation [5, 6] experiments are sensitive to a broad
range of energy, in which different reaction mechanisms,
involving both nucleon and nuclear excitations, are at
play [7, 8]. At energies of the order of hundreds of MeVs,
the leading mechanism is quasielastic scattering, in which
the probe interacts primarily with individual nucleons
bound inside the nucleus. Corrections to this leading
mechanism arise from processes in which the lepton cou-
ples to interacting nucleons, either via nuclear correla-
tions or two-body currents. Neutrinos can also excite a
struck nucleon to a baryon resonance state that quickly
decays into pions, or give rise to deep-inelastic scattering
(DIS) processes.

Constructing a framework suitable to consistently de-
scribe neutrino-nucleus interactions in the broad energy
regime relevant for neutrino-oscillation experiments is a
formidable nuclear-theory challenge. Because of the rel-
atively high energy and momentum scales at play, the
extent of applicability of nuclear effective field theories
(EFTs), which provide a way to systematically construct
nuclear interactions and currents within the framework of
a low-momentum expansion, is subject of intense debate.
In addition, relativistic effects, both in the interaction
vertex and in the kinematics, must be fully accounted for.
Hence, it is of paramount importance to validate theoret-
ical predictions for neutrino-nucleus scattering through a
systematic comparison with the large body of available
electron scattering data [9]. In fact, the ability to ex-
plain electron scattering experiments should be seen as
an obvious prerequisite, to be met by any models of the
nuclear response to weak interactions [10].

Up to moderate values of the momentum transfer,
Green’s function Monte Carlo (GFMC) [11] is suitable to
perform accurate parameter free calculations of the nu-
clear electroweak response functions in the quasielastic
sector. GFMC gives full account of initial and final state
correlations, and electroweak two-body currents [12, 13].
Once relativistic effects in nuclear kinematics are in-
cluded, and excellent agreement with electron scattering
data off 4He has been found [14]. Because of the expo-
nential scaling with the number of nucleons, it is unlikely
that GFMC will be applied to compute the electroweak
responses of nuclei larger than 12C in the near future.
In addition, the use of integral-transform techniques pre-
cludes a proper treatment of the energy dependence of
the current operators, particularly important at energies
higher than those corresponding to the quasielastic kine-
matics. Finally, despite encouraging preliminary results
have recently been obtained [15], the explicit inclusion of
pions – and hence a proper description of the resonance
region – are still a long way ahead.

The formalism based on the impulse approximation
(IA) and realistic hole spectral functions (SFs) allows
to combine a realistic description of the initial state of
the nuclear target with a fully-relativistic interaction ver-
tex and kinematics [16]. Calculations carried out em-
ploying hole SF computed within the correlated-basis
function (CBF) theory have been extensively validated
against electron-nucleus scattering data on a number of
nuclei [17, 18]. The somewhat oversimplified treatment
of final-state interactions (FSI) to which the struck nu-
cleon undergoes has been corroborated comparing the
electromagnetic response functions of 12C with those of
the GFMC [19].

More recently, the factorisation scheme underlying
IA and the SF formalism has been generalized to in-
clude electromagnetic relativistic meson-exchange two-
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body currents (MEC), arising from pairs of interacting
nucleons [20]. Employing nuclear overlaps and consis-
tent SFs obtained within the CBF theory, the authors
of Refs. [21] have analyzed the role of MEC in electron
scattering off 12C. They found that two-body currents
are mostly effective in the “dip” region, between the
quasielastic and the ∆-production peaks. Their inclu-
sion appreciably improves the agreement between theory
and data.

In this work, we further extend the IA scheme by in-
troducing the MEC relevant for charged-current (CC)
and neutral-current (NC) interactions. We study their
role in neutrino and anti-neutrino scattering off 12C and
16O nuclei, both used as targets in neutrino-oscillation
experiments. We adopt the two-body currents derived
in Ref. [22] from the weak pion-production model of
Ref. [23]. It has been shown that they provide results
consistent with those of Ref. [24], which were also
adopted in the extension of the IA and SF formal-
ism of Ref. [21].

We develop a dedicated code that automatically carries
out the calculation of the MEC spin-isospin matrix ele-
ments, performing the integration using the Metropolis
Monte Carlo algorithm [25]. To validate our implementa-
tion of the two-body currents, we perform a benchmark
calculation of the CC response functions within the rela-
tivistic Fermi gas model, comparing our results with the
findings of Ref. [22].

We consider two nuclear SFs, derived within
the framework of nuclear many-body theory us-
ing the CBF formalism [26] and the self-consistent
Green’s function (SCGF) method [27]. These two
approaches start from different, albeit realistic, nuclear
hamiltonians to describe the interactions between pro-
tons and neutrons. Moreover, the approximations in-
volved in the calculations of the hole spectral function
are also peculiar to of each of the two methods. Hence,
a comparison of the cross sections obtained employing
the CBF and the SCGF nuclear SFs helps gauging the
theoretical error of the calculation.

More specifically, we analyze the double-differential
cross sections of 12C and 16O for both CC and NC
transitions for incoming (anti)neutrino energy of 1 GeV
and two values of the scattering angle: θµ = 30◦ and
θµ = 70◦. We also present results for the total CC cross
section for neutrino and anti-neutrino scattering off 12C
as a function of the incoming (anti)neutrino energy. Our
calculations are compared with the experimental data ex-
tracted by the MiniBooNE collaboration [28].

The structure of the nuclear cross section, as well as
its expression in terms of relevant response functions are
reviewed in Section II. Section III is devoted to the de-
scription of the IA, including its extension to account for
a consistent treatment of one- and two-nucleon current
contributions. The CBF theory and SCGF approaches
are also briefly outlined. In Section IV we discuss the
explicit expressions of the relativistic two-body currents
employed, while Section V is dedicated to their numeri-

cal implementation. In Section VI we present our results
and in Section VII we state our conclusions.

II. FORMALISM

The double-differential cross section for ν and ν̄ inclu-
sive scattering off a nucleus can be expressed as [29, 30]( dσ

dT ′d cos θ′

)
ν/ν̄

=
G2

2π

k′

2Eν

[
L̂CCRCC + 2L̂CLRCL

+ L̂LLRLL + L̂TRT ± 2L̂T ′RT ′

]
, (1)

where G = GF and G = GF cos θc for NC and CC pro-
cesses, respectively, with cos θc = 0.97425 [31]. The +
(−) sign corresponds to ν (ν̄) induced reactions. We
adopt the value GF = 1.1803× 10−5 GeV−2, as from the
analysis of 0+ → 0+ nuclear β-decays of Ref. [32], which
accounts for the bulk of the inner radiative corrections.
With k = (Eν ,k) and k′ = (E`,k

′) we denote the initial
neutrino and the final lepton four-momenta, respectively,
and θ is the lepton scattering angle. Introducing the four-
momentum

Q = k + k′ = (Ω,Q) , Q = (Qx, 0, Qz) (2)

and the momentum transfer

q = k − k′ = (ω,q) , q = (0, 0, qz), (3)

the kinematical factors can be conveniently cast in the
form

L̂CC = Ω2 − q2
z −m2

`

L̂CL = (−ΩQz + ωqz)

L̂LL = Qz
2 − ω2 +m2

`

L̂T =
Qx

2

2
− q2 +m2

`

L̂T ′ = Ωqz − ωQz , (4)

with m2
` = k′ 2 being the mass of the outgoing lepton.

The five electroweak response functions are given by

RCC = W 00

RCL = −1

2
(W 03 +W 30)

RLL = W 33

RT = W 11 +W 22

RT ′ = − i
2

(W 12 −W 21) , (5)

where the hadronic tensor

Wµν =
∑
f

〈0|jµ †|f〉〈f |jν |0〉δ(E0 + ω − Ef ) (6)

contains all information on the structure of the target. It
is defined in terms of the transition between the initial
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and final nuclear states |0〉 and |f〉, with energies E0 and
Ef , induced by the nuclear current operator jµ.

Note that the sum in Eq.(6) includes the contribu-
tions of inelastic processes, leading to the appearance of
hadrons other than nucleons in final state, which we will
not discuss in this article. The derivation of the inelastic
neutrino-nucleus cross section within the SF formalism
can be found in Ref.[33].

III. IMPULSE APPROXIMATION

At relatively large values of the momentum transfer,
typically |q| & 500 MeV, the impulse approximation
(IA) can be safely applied under the assumption that
the struck nucleon is decoupled from the spectator (A-
1) particles [8, 16]. Within the IA, the nuclear current
operator reduces to a sum of one-body terms, jµ =

∑
i j
µ
i

and the nuclear final state factorizes as

|ψAf 〉 → |p〉 ⊗ |ψA−1
f 〉 . (7)

In the above equation |p〉 denotes the final-state nucleon

with momentum p and energy e(p), while |ψA−1
f 〉 de-

scribes the (A− 1)-body spectator system. Its energy
and recoiling momentum are fixed by energy and mo-
mentum conservation

EA−1
f = ω + E0 − e(p) , PA−1

f = q− p . (8)

Employing the factorization ansatz and inserting a
single-nucleon completeness relation, the matrix element
of the current operator can be written as

〈ψAf |jµ|ψA0 〉 →
∑
k

[〈ψA−1
f | ⊗ 〈k|] |ψA0 〉〈p|

∑
i

jµi |k〉 . (9)

Substituting the last equation in Eq. (6), the incoher-
ent contribution to the hadron tensor, dominant at large
momentum transfer, is given by

Wµν
1b (q, ω) =∑
p,k,f

∑
i

〈k|jµi
†|p〉〈p|jνi |k〉|〈ψA0 |[|ψA−1

f 〉 ⊗ |k〉]|2

× δ(ω − e(p)− EA−1
f + EA0 ) , (10)

where the subscript “1b” indicates that only one-body
currents have been included. Using the identity

δ(ω − e(p)− EA−1
f + EA0 ) =∫

dE δ(ω + E − e(p)) δ(E + EA−1
f − EA0 ) , (11)

and the fact that momentum conservation in the single-
nucleon vertex implies p = k + q, we can rewrite the
hadron tensor as

Wµν
1b (q, ω) =

∫
d3k

(2π)3
dEPh(k, E)

m2
N

e(k)e(k + q)

×
∑
i

〈k|jµi
†|k + q〉〈k + q|jνi |k〉

× δ(ω + E − e(k + q)) . (12)

The factors mN/e(k) and mN/e(k + q), mN being the
mass of the nucleon, are included to account for the im-
plicit covariant normalization of the four-spinors of the
initial and final nucleons in the matrix elements of the
relativistic current.

The hole spectral function

Ph(k, E) =
∑
f

|〈ψA0 |[|k〉 ⊗ |ψA−1
f 〉]|2

× δ(E + EA−1
f − EA0 ) (13)

provides the probability distribution of removing a nu-
cleon with momentum k from the target nucleus, leaving
the residual (A− 1)-nucleon system with an excitation
energy E. Note that in Eq. (12) we neglected Coulomb
interactions and the other (small) isospin-breaking terms
and made the assumption, largely justified in the case of
closed shell nuclei, that the proton and neutron spectral
functions are identical.

Using the Sokhotski-Plemelj theorem [34] we can
rewrite Eq. (13) as

Ph(k, E) =
1

π

∑
f

Im〈0| 1

E + EA−1
f − EA0 − iε

[|k〉

⊗ |ψA−1
f 〉][〈ψA−1

f | ⊗ 〈k|]|0〉 . (14)

Exploiting the fact that H|ψA−1
f 〉 = EA−1

f |ψA−1
f 〉 and

the completeness of the A− 1 states, the hole SF can be
expressed in terms of the hole Green’s function

Ph(k, E) =
1

π
Im〈0|a†k

1

E + (H − EA0 )− iε
ak|0〉 . (15)

Finally, it has to be noted that the single nucleon mo-
mentum distribution, corresponds to the integral of the
spectral function over the removal energy

n(k) = 〈ψA0 |a
†
kak|ψ

A
0 〉 =

∫
dEP (k, E) . (16)

In the kinematical region in which the interactions be-
tween the struck particle and the spectator system can-
not be neglected, the IA results are modified to include
the effect of final-state interactions (FSI). The multiple
scatterings that the struck particle undergoes during its
propagation through the nuclear medium can be taken
into account through a convolution scheme [17, 35], which
amounts to integrating the IA prediction with a folding
function that describes the effects of FSI between the
struck particle and the A − 1 spectator system. In ad-
dition, to describe the propagation of the knocked-out
particle in the mean-field generated by the spectator sys-
tem, the energy spectrum of the knocked-out nucleon is
modified with the real part of an optical potential derived
from the Dirac phenomenological fit of Ref [36].
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In this work, aimed at devising the formalism for in-
cluding relativistic meson-exchange currents within two
realistic models of the nuclear ground-state, FSI are dis-
regarded. On the other hand, we will fully account them
in the forthcoming calculations of the flux-integrated
double-differential neutrino-nucleus cross sections.

A. Correlated basis function theory

Exploiting the spectral representation of the
two-point Green’s function, the CBF hole SFs of
12C and 16O can be written as the sum of two
contributions [37]

Ph(k, E) = P 1h
h (k, E) + P corr

h (k, E) . (17)

The one-hole term is obtained from a modified mean-
field scheme

P 1h
h (k, E) =

∑
α∈{F}

Zα|φα(k)|2Fα(E − eα) , (18)

where the sum runs over all occupied single-particle nu-
clear states, labeled by the index α, and φα(k) is the
Fourier transform of the shell-model orbital with energy
eα. The spectroscopic factor Zα < 1 and the function
Fα(E − eα), describing the energy width of the state
α, account for the effects of residual interactions that
are not included in the mean-field picture. In the ab-
sence of residual interactions, Zα → 1 and Fα(E−eα)→
δα(E − eα). The spectroscopic factors and the widths of
the s and p states of 12C and 16O have been taken from
the analysis of (e, e′p) data carried out in Refs. [38–40].

To evaluate the correlated part, P corr
h (k, E), at first

CBF calculations of the hole SF in isospin-symmetric
nuclear matter are carried out for several values of the
density, considering overlaps involving the ground-state
and one-hole and two-holes-one-particle excitations in
|ψA−1
f 〉 [37, 41]. They are consistently obtained from the

following set of correlated basis (CB) states

|ψn〉CB =
F|Φn〉

〈Φn|F†F|Φn〉1/2
, (19)

where |Φn〉 is an independent-particle state, generic
eigenstate of the free Fermi gas Hamiltonian, and the
many-body correlation operator F is given by

F = S
[ A∏
j>i=1

Fij

]
. (20)

The form of the two-body correlation operator Fij reflects
the complexity of realitistic NN potential [42]

Fij =

6∑
n=1

fn(rij)O
n
ij , (21)

with rij = |ri − rj | and

On≤6
ij = [1, (σi · σj), Sij ]⊗ [1, (τi · τj)] , (22)

In the above equation, σi and τi are Pauli matrices acting
in the spin and isospin space, respectively, and Sij is the
tensor operator given by

Sij =
3

r2
ij

(σi · rij)(σj · rij)− (σi · σj) . (23)

The CB states are first orthogonalized (OCB) [43] pre-
serving, in the thermodynamical limit, the diagonal ma-
trix elements between CB states. Then, standard per-
turbation theory is used to express the eigenstates of the
nuclear Hamiltonian in terms of the OCB. Any eigenstate
has a large overlap with the n−hole-m−particle OCB and
hence perturbation theory in this basis is rapidly converg-
ing.

The nuclear-matter SF can be conveniently split into
two components, displaying distinctly different energy
dependences [8, 16, 37, 44]. The single-particle one, as-

sociated to one-hole states in |ψA−1
f 〉 of Eq. (34), ex-

hibits a collection of peaks corresponding to the energies
of the single-particle states belonging to the Fermi sea.
The continuum, or correlation, component corresponds
to states involving at least two-hole–one-particle contri-
butions in |ψA−1

f 〉. Its behavior as a function of E is
smooth and it extends to large values of removal energy
and momentum [41]. It has to be noted that the corre-
lated part would be strictly zero if nuclear correlations
were not accounted for.

Finally, the correlated part of the SF for finite nu-
clei is then obtained through local density approximation
(LDA) procedure

P corr
h (k, E) =

∫
d3R ρA(R)P corr

h,NM (k, E; ρA(R)) , (24)

where ρA(R) is the nuclear density distribution of the
nucleus and P corr

h ,NM (k, E; ρ) is the correlation component
of the SF of isospin-symmetric nuclear matter at density
ρ. The use of the LDA to account for P corr

h (k, E) is
based on the premise that short-range nuclear dynamics
are largely unaffected by surface and shell effects.

The energy-dependence exhibited by P corr
h (k, E),

showing a widespread background extending up to large
values of both k and E, is completely different from that
of P 1h

h (k, E). For k > pF , P corr
h (k, E) coincides with

Ph(k, E) and its integral over the energy gives the so-
called continuous part of the momentum distribution.

B. Self-consistent Green’s function

The one-body Green’s Function is written as a sum of
two different contributions describing the propagation of
a particle and hole state [45]:

gαβ(ω) = 〈ψA0 |aα
1

ω − (H − EA0 ) + iη
a†β |ψ

A
0 〉
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+ 〈ψA0 |a
†
β

1

ω + (H − EA0 )− iη
aα|ψA0 〉 , (25)

where ψA0 is the ground state wave function of A nucle-
ons, a†α and aα are the creation and annihilation opera-
tor in the quantum state α, respectively. The so-called
Lehmann representation results from inserting complete-
ness relations in Eq. (25). This is

gαβ(ω) =
∑
n

〈ψA0 |aα|ψA+1
n 〉〈ψA+1

n |a†β |ψA0 〉
ω − (EA+1

n − EA0 ) + iη

+
∑
k

〈ψA0 |a
†
β |ψ

A−1
k 〉〈ψA−1

k |aα|ψA0 〉
ω − (EA0 − E

A−1
k )− iη

, (26)

where |ψA+1
n 〉 (|ψA−1

k 〉) are the eigenstates and EA+1
n

(EA−1
k ) the eigenvalues of the (A ± 1)-body system. In-

troducing the transition amplitudes

(Xnα )∗ = 〈ψA0 |aα|ψA+1
n 〉 ,

Ykα = 〈ψA−1
k |aα|ψA0 〉 (27)

and the corresponding quasiparticle energies

ε+n = EA+1
n − EA0 ,

ε−k = EA0 − EA−1
k (28)

leads to the more compact expression

gαβ(ω) =
∑
n

(Xnα )∗ Xnβ
ω − ε+n + iη

+
∑
k

Ykα (Ykβ )∗

ω − ε−k − iη
. (29)

The one-body propagator given in Eqs. (25) and (26) is
completely determined by solving the Dyson equation

gαβ(ω) = g0
αβ(ω) +

∑
γδ

g0
αγ(ω)Σ?γδ(ω)gδβ(ω) , (30)

where g0
αβ(ω) is the unperturbed single-particle propaga-

tor and Σ?γδ(ω) is the irreducible self-energy that encodes

nuclear medium effects in the particle propagator [45].
The latter is given by the sum of two different terms

Σ?αβ(ω) = Σ∞αβ + Σ̃αβ(ω) , (31)

the first one describes the average mean field while the
second one contains dynamic correlations. In practi-
cal calculations the self-energy is expanded as a func-
tion of the propagator itself, implying that an iterative
procedure is required to solve the Dyson equation self-
consistently. The self-energy can be calculated system-
atically within the Algebraic Diagrammatic Construc-
tion (ADC) method. The third order truncation of this
scheme [ADC(3)] yields a propagator that includes all
possible Feynman contributions up to third order but it
further resums infinite series of relevant diagrams in a
non-perturbative fashion [46, 47]. A first organization of
the contributions to the self-energy comes by considering

the particle irreducible (PI) and skeleton diagrams. In
order to reduce the number of Feynman diagrams con-
taining two- and three-body forces to be considered, a
useful strategy is to include only interaction-irreducible
diagrams [27] in which medium dependent or effective
one- and two-body interactions are used. The residual
contribution of effective three-body forces is expected to
be smaller and can be safely neglected [48–51].

The expressions of the static and dynamic self-energy
up to third order, including all possible two- and three-
nucleon terms that enter the expansion of the self-energy,
as well as interaction-irreducible (i.e. not averaged)
three-nucleon diagrams have been recently derived in
Ref. [52].
The dynamical part of the self-energy of Eq.(31) can be
rewritten in the Lehmann representation as

Σ̃αβ(ω) =
∑
ij′

D†αi

[ 1

ω − (K + C)

]
ij

D†jβ , (32)

where K are the unperturbed 2p1h and 2h1p energies,
D coupling matrices and C interaction matrices for the
forward and backward intermediate states.

Rewriting the nuclear matrix element entering Eq. (13)
as

[ 〈ψA−1
f | ⊗ 〈k|]|ψA0 〉 =

∑
α

YkαΦ̃α(k)

=
∑
α

Φ̃α(k)〈ψA−1
f |aα|ψA0 〉 , (33)

we recover the more familiar expression of the spectral
function written as the imaginary part of the Green’s
function describing the propagation of a hole state

Ph(k, E) =
1

π

∑
αβ

Φ̃∗β(k)Φ̃α(k)

× Im〈ψA0 |a
†
β

1

E + (H − EA0 )− iε
aα|ψA0 〉 , (34)

where Φ̃α(k) is the Fourier transform of the single-
particle wave function

Φ̃α(k) =

∫
d3r eik rΦα(r) . (35)

In this work, the SCGF calculations are performed em-
ploying a spherical harmonic-oscillator basis, with fre-
quency ~Ω = 20 MeV and dimension Nmax = max{2n+
`} = 11.

The SCGF correlated one-body propagator obtained
by solving the Dyson equation of Eq. (30) is used to de-
termine the hole SF of 16O. The results for open shell
nuclei, such as 12C discussed in this work, have been
obtained within the Gorkov’s theory, in which the de-
scription of pairing correlations characterizing open shell
systems is achieved by breaking the particle number sym-
metry [53–55].
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C. Inclusion of two-body currents

The inclusion of two-body current operator requires
the generalization of the factorization ansatz of Eq. (9).
Following Refs. [20, 21] and neglecting the contribution of

[〈ψA−1
f | ⊗ 〈p|]|jµ2b|ψA0 〉, the matrix element of the nuclear

current reads

〈ψAf |j
µ
2b|ψ

A
0 〉 →∑

k k′

[〈ψA−2
f | ⊗ 〈k k′|] |ψA0 〉a〈p p′|

∑
ij

jµij |k k
′〉 . (36)

where |p p′〉a = |p p′〉−|p′ p〉. In infinite matter the corre-
lated nuclear many-body state can be labeled with their
single-particle momenta, implying |ψA−2

f 〉 = |hh′〉, where

|hh′〉 with |h|, |h′| ≤ kF denotes a 2-hole state of (A− 2)
nucleons. A diagrammatic analysis of the cluster expan-
sion of the overlap φhh

′

kk′ ≡ 〈Ψ0|[|kk′〉⊗ |Ψhh′〉 was carried
out by the Authors of Ref. [56]. Their analysis shows
that only unlinked graphs (i.e., those in which the points
reached by the k1, k2 lines are not connected to one other
by any dynamical or statistical correlation lines) survive
in the A→∞ limit

φhh
′

kk′ = φhkφ
h′

k′ (2π)3δ(3)(h− k)(2π)3δ(3)(h′ − k′) , (37)

where φhk is the the Fourier transform of the overlap be-
tween the ground state and the one-hole (A− 1)-nucleon
state, the calculation of which is discussed in Ref. [41]

Therefore, using the δ(3)-function to perform the inte-
gration over p′ = k+k′+q−p, the pure two-body current
component of the hadron tensor in nuclear matter turns
out to be [20]

Wµν
2b (q, ω) =

V

4

∫
dE

d3k

(2π)3

d3k′

(2π)3

d3p

(2π)3

m4

e(k)e(k′)e(p)e(p′)

× PNM
h (k,k′, E)2

∑
ij

〈k k′|jµij
†|p p′〉a〈p p′|jνij |k k′〉

× δ(ω + E − e(p)− e(p′)) . (38)

The normalization volume for the nuclear wave func-
tions V = ρ/A with ρ = 3π2k3

F /2 depends on the Fermi
momentum of the nucleus, which we take to be kF = 225
MeV. The factor 1/4 accounts for the fact that we sum
over indistinguishable pairs of particles, while the factor
2 stems from the equality of the product of the direct
terms and the product of the two exchange terms after
interchange of indices [57]. The two-nucleon SF entering
the hadron tensor is

PNM
h (k,k′, E) =

∫
d3h

(2π)3

d3h′

(2π)3
|φhh

′

kk′ |2δ(E + e(h) + e(h′))

× θ(kF − |h|)θ(kF − |h′|) . (39)

Consistently with the fact that, in absence of long-range
correlations, the two-nucleon momentum distribution of
infinite systems factorizes according to [58]

n(k,k′) = n(k)n(k′) +O
(

1

A

)
, (40)

exploiting the factorization of the two-nucleon overlaps of
Eq. (37), the two-body contribution of the hadron tensor
can be rewritten as

Wµν
2b (q, ω) =

V

2

∫
dẼ

d3k

(2π)3
dẼ′

d3k′

(2π)3

d3p

(2π)3

× m4

e(k)e(k′)e(p)e(p′)
PNM
h (k, Ẽ)PNM

h (k′, Ẽ′)

×
∑
ij

〈k k′|jµij
†|p p′〉〈p p′|jνij |k k′〉

× δ(ω + Ẽ + Ẽ′ − e(p)− e(p′)) . (41)

In order to make contact with finite systems, we take

PNM
h (k, E) ' k3

F

6π2
Ph(k, E) (42)

where the hole SF of the nucleus Ph(k, E) is obtained
from either the CBF theory or the SCGF approach.

We are aware that the assumptions made to include
the contribution of two-body currents deserve further in-
vestigations. For instance, the strong isospin-dependence
of short-range correlations, elucidated in a number of re-
cent works [59–61], is not properly accounted for if the
factorization of Eq. (37). In this regard, it has to be men-
tioned that in the present work we do not account for the
interference between one- and two-body currents. While
in the two-nucleon knockout final states this contribution
is relatively small [20, 21], it has been argued that ten-
sor correlations strongly enhance the interference terms
for final states associated single-nucleon knock out pro-
cesses [62]. This is consistent with the Green’s function
Monte Carlo calculations of Refs. [63, 64], in which the
interference between one- and two-body currents domi-
nate the total two-body current contribution.

IV. ELECTROWEAK CURRENT OPERATORS

We analyze the neutrino- and anti-neutrino- nucleus
quasielastic scattering induced by both CC and NC tran-
sitions. The elementary interactions for the CC processes
are

ν(k) + n(p)→ `−(k′) + p(p′) , (43)

ν̄(k) + p(p)→ `−(k′) + n(p′) , (44)

while for NC transitions

ν(k) + p(p)→ ν(k′) + p(p′) , (45)

ν(k) + n(p)→ ν(k′) + n(p′) . (46)

The corresponding ones for the anti-neutrino are ob-
tained replacing ν with ν̄ both in the initial and final
states.

The one-body current operator is the sum of vector
(V) and axial (A) terms for both CC and NC processes
and it can be written as

jµ = (JµV + JµA)
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JµV = F1γ
µ + iσµνqν

F2

2M

JµA = −γµγ5FA − qµγ5
FP
M

. (47)

The Conserved Vector Current (CVC) hypothesis allows
to relate the vector form factor to the electromagnetic
ones. For CC processes they are given by

Fi = F pi − F
n
i , (48)

where

F p,n1 =
Gp,nE + τGp,nM

1 + τ

F p,n2 =
Gp,nM −Gp,nE

1 + τ
(49)

with τ = −q2/4M2. As for the proton and neutron elec-
tric and magnetic form factors, we adopted the Galster
parametrization [65]

GpE =
1

(1− q2/M2
V )2

, GpM = µpG
p
E

GnE = − µnτ

(1 + λnτ)
GpE , GnM = µnG

p
E (50)

with MV = 0.843 GeV, µp = 2.7928, µn = −1.9113, and
λn = −5.6. In this work we neglect the pseudoscalar
form factor FP = FP , since in the cross section formula
it is multiplied by the mass of the outgoing lepton. As for
the axial form factor FA = FA, we assume the standard
dipole parametrization

FA =
gA

(1− q2/M2
A)2

, (51)

where the nucleon axial-vector coupling constant is taken
to be gA = 1.2694 [31] and the axial mass MA = 1.049
GeV. The dipole parametrization of FA has been the sub-
ject of intense debate and an alternative “z-expansion”
analyses [66] has recently been proposed. Understanding
how the q2 dependence of the axial form factor impact
predictions for the neutrino cross sections, in particular
relatively to uncertainties in modeling nuclear dynamics,
is certainly interesting, and will be investigated in future
works.

The single-nucleon form factors relevant to the NC
neutrino-proton scattering of Eq. (45), read

Fi =
(1

2
− 2 sin2 θW

)
F pi −

1

2
Fni −

1

2
F si ,

FA =
1

2
FA +

1

2
F sA , (52)

while those relevant for the NC neutrino-neutron scatter-
ing process of Eq. (46) are

Fi =
(1

2
− 2 sin2 θW

)
Fni −

1

2
F pi −

1

2
F si ,

FA =− 1

2
FA +

1

2
F sA , (53)

(a) (b) (c)

(d)

FIG. 1. Ferynman diagrams describing two-body currents
contributions associated to: pion in flight (a), seagull (b),
pion-pole (c), and delta excitations (d) processes.

where θW is the Weinberg angle (sin2 θW = 0.2312 [31]).
The form factors F si and F sA describe the strangeness
content of the nucleon. Following Ref. [67], we set

F si = 0 ,

F sA = − 0.15

(1− q2/M2
A)2

. (54)

The electroweak meson exchange current operators
used in our work are those employed in Ref. [22]. They
have been derived by coupling the pion-production ampli-
tudes obtained within the non-linear σ model in Ref. [23]
to a second nucleon line. The meson exchange current
operator is the sum of four different contributions

jµMEC = jµπ + jµsea + jµpole + jµ∆ , (55)

whose corresponding Feynman diagrams are depicted in
Fig. 1.

Introducing the pion momenta k1 = p − k and k2 =
p′ − k′, the pion-in-flight current operator corresponding
to diagram (a) of Fig. 1 is written as

jµπ = (IV )±J
µ
π ,

Jµπ = (Jµπ )V + (Jµπ )A ,

(Jµπ )V =
f2
πNN

m2
π

FV1 (q)FπNN (k1)FπNN (k2)

×Π(k1)(1)Π(k2)(2)(k
µ
1 − k

µ
2 ) ,

(Jµπ )A = 0 . (56)

where f2
πNN/(4π)=0.08 and the pion propagation and

absorption is described by

Π(k) =
γ5/k

k2 −m2
π

. (57)
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The isospin raising-lowering operator is given by

(IV )± = (τ (1) × τ (2))± , (58)

where ± → x± iy.
To preserve the CVC, in the vector part of the pion-

in-flight current operator we include the electromagnetic
form factor

FV1 (q) = GpE(q)−GnE(q) . (59)

The πNN coupling is described using a form factor that
accounts for the off-shellness of the pion

FπNN (k) =
Λ2
π −m2

π

Λ2
π − k2

, (60)

where Λπ=1300 MeV.
The electroweak seagull current operator, given by the

sum of diagram (b) of Fig. 1 and the one obtained inter-
changing particles 1 and 2, reads

jµsea = (IV )±J
µ
sea ,

Jµsea = (Jµsea)V + (Jµsea)A ,

(Jµsea)V =
f2
πNN

m2
π

FV1 (q)F 2
πNN (k1)Π(k1)(1)

(
γ5γ

µ
)

(2)

− (1↔ 2) ,

(Jµsea)A =
f2
πNN

m2
π

1

gA
Fρ(k2)F 2

πNN (k1)Π(k1)(1)(γ
µ
)

(2)

− (1↔ 2) . (61)

The form factor Fρ(k), included to account for the ρ me-
son dominance of the πNN coupling, is given by [23]

Fρ(k) =
1

k2 −m2
ρ

, mρ = 775.8 MeV (62)

The expression for the pion-pole current operator, rep-
resented by diagram (c) of Fig. 1, is

jµpole = (IV )±J
µ
pole , (63)

Jµpole = (Jµpole)V + (Jµpole)A , (64)

(Jµpole)V = 0, (65)

(Jµpole)A =
f2
πNN

m2
π

1

gA
Fρ(k1)F 2

πNN (k2)Π(k2)(2)

×
( qµ/q

q2 −m2
π

)
(1)
− (1↔ 2) . (66)

Diagram (d), as well as the corresponding two in which
particles 1 and 2 are interchanged, are associated with
two-body current terms involving a ∆-resonance in the
intermediate state. The expression of this operator is
largely model dependent, owing to the purely transverse
nature of this current, i.e. the form of the vector part
is not subject to current-conservation constraints. We
adopted the parametrization of Ref. [23]

jµ∆ =
3

2

fπNNf
∗

m2
π

{
Π(k2)(2)

[(
− 2

3
τ (2) +

IV
3

)
±

× FπNN (k2)FπN∆(k2)(Jµa )(1) −
(2

3
τ (2) +

IV
3

)
±

× FπNN (k2)FπN∆(k2)(Jµb )(1)

]
+ (1↔ 2)

}
(67)

where f∗=2.14 and

FπN∆(k) =
Λ2
πN∆

Λ2
πN∆ − k2

, (68)

with ΛπN∆ = 1150 MeV. The N → ∆ transition vertices
entering the left and right (d) diagrams, corresponding
to Jµa and Jµb , respectively are expressed as

Jµa = (Jµa )V + (Jµa )A ,

(Jµa )V =
CV3
M

[
kα2Gαβ(h1 + q)

(
gβµ/q − qβγµ

)]
γ5 ,

(Jµa )A = CA5

[
kα2Gαβ(h1 + q)gβµ

]
(69)

and

Jµb = (Jµb )V + (Jµb )A ,

(Jµb )V =
CV3
M

γ5

[(
gαµ/q − qαγµ

)
Gαβ(p1 − q)kβ2

]
,

(Jµb )A = CA5

[
gαµGαβ(p1 − q)kβ2

]
. (70)

Since the above ∆ current is applied in the resonance
region, the standard Rarita-Schwinger propagator

Gαβ(p∆) =
Pαβ(p∆)

p2
∆ −M2

∆

(71)

has to be modified to account for the possible ∆ decay
into a physical πN state. To this aim, following Refs. [24,
68], we replaced the real resonance mass M∆=1232 MeV
by M∆ − iΓ(p∆)/2. The energy-dependent decay width
Γ(p∆)/2 effectively accounts for the allowed phase space
for the pion produced in the physical decay process. It
is given by

Γ(p∆) =
(4fπN∆)2

12πm2
π

|k|3√
s

(mN + Ek)R(r2) (72)

where (4fπN∆)2/(4π) = 0.38, s = p2
∆ is the invariant

mass, k is the decay three-momentum in the πN center
of mass frame, such that

k2 =
1

4s
[s− (mN +mπ)2][s− (mN −mπ)2] (73)

and Ek =
√
m2
N + k2 is the associated energy. The ad-

ditional factor

R(r2) =

(
Λ2
R

Λ2
R − r2

)
(74)

depending on the πN three-momentum r, with r2 =
(Ek−

√
m2
π + k2)2−4k2 and Λ2

R = 0.95m2
N , is needed to
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better reproduce the experimental phase-shift δ33 [68]. In
addition, to avoid double-counting with real pion emis-
sion, as in Refs. [22, 24, 69] we only keep the real part
of the ∆ propagator. The spin 3/2 projection operator
reads

Pαβ(p∆) = (/p∆
+M∆)

[
gαβ − 1

3
γαγβ − 2

3

pα∆p
β
∆

M2
∆

+
1

3

pα∆γ
β − pβ∆γα

M∆

]
. (75)

The vector and axial form factors adopted in this work
are those of Ref. [23]

CV3 =
2.13

(1− q2/M2
V )2

1

1− q2/(4M2
V )

, (76)

CA5 =
1.2

(1− q2/M2
A∆)2

1

1− q2/(3M2
A∆)

, (77)

where MV = 0.84 GeV and MA∆ = 1.05 GeV.
The MEC employed here are purely isovector. Hence,

the currents relevant to NC processes are obtained by
replacing the ± → z component in the isospin operator,
for example

(IV )± → (IV )z = (τ (1) × τ (2))z . (78)

Following the discussion of Ref. [67] we rewrite the vector
form factors of Eqs. (59), (76) as

F̃V = (1− 2 sin θ2
W )FV , (79)

C̃V3 = (1− 2 sin θ2
W )CV3 , (80)

while the axial form factors are the same as in the CC
case.

V. NUMERICAL IMPLEMENTATION

The large number of terms entering the current opera-
tor defined in Eqs. (56), (61), (66), and (67) greatly com-
plicates the calculation of the two-body response func-
tions. Explicitly summing the matrix elements of the
two-body currents over the initial and final spin states
gives rise to thousands of terms, the inclusion of which in-
volves non-trivial difficulties. To overcome them, we de-
veloped Fortran subroutines able to automatically com-
pute the required matrix elements performing an explicit
spin-isospin summation. We note that this procedure
allows for a straightforward inclusion of the exchange
terms, avoiding the complications encountered by the
Authors of Refs. [21, 24, 68].

Taking p = (p cos θp, 0, p sin θp) as in Ref. [68] and us-
ing the energy-conserving delta function to determine p,
the eleven-dimensional integral of Eq. (41) can be re-
duced to a nine-dimensional one, schematically written
as

Wµν
2b (q, ω) =

∫
dXIµν(X,q, ω) . (81)
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FIG. 2. The upper and lower panel display the two-body CC
response functions of 12C for |q|=400, and 800 MeV, respec-
tively, obtained within the Relativistic Fermi gas model. We
benchmark our results displayed by the dashed curves with
those of Ref. [22] corresponding to the solid curves.

In the above equation we have introduced the generalized
coordinate X = {k,k′, Ẽ, Ẽ′, cos θp}, while the integrand
is given by

Iµν(X,q, ω) =
m4

e(k)e(k′)e(p)e(p′)
PNM
h (k, Ẽ)PNM

h (k′, Ẽ′)

× p2

(2π)8

∑
ij

〈k k′|jµij
†|p p′〉〈p p′|jνij |k k′〉 (82)

It has long been known that Monte Carlo methods pro-
vide an efficient way to evaluate large-dimensional inte-
grals. In this regard, let us express the integral of Eq. (81)
as

Wµν
2b (q, ω) =

∫
dXP(X)

Iµν(X)

P(X)
(83)

where P(X) is a probability distribution. According to
the central limit theorem, the above integral can be es-
timated by sampling a sequence of points Xi distributed
according to P(X)

Wµν
2b (q, ω) ' 1

NX

∑
Xi

Iµν(Xi)

P(Xi)
. (84)
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with NX being the number of Monte Carlo samples. Its
variance decreases asymptotically to zero as 1/NX , re-
gardless the number of integration variables

σ2
Wµν

2b
(q, ω) ' 1

NX(NX − 1)

[∑
Xi

(
Iµν(Xi)

P(Xi)

)2

−

(∑
Xi

Iµν(Xi)

P(Xi)

)2
 . (85)

The SFs employed in this work include the contribu-
tion of correlated pairs of nucleon, hence they extend
up to large momentum and removal energy. As a con-
sequence, the phase space spanned by the nucleons in
the initial state is significantly larger than in the Fermi-
gas case. To efficiently perform the integral of Eq. (81),
we chose the following normalized importance-sampling
function

P(X) =
1

2

k6
F

(6π)2
PNM
h (k, Ẽ)PNM

h (k′, Ẽ′) . (86)

We generate the sequence of points Xi sampling P(X)
according to the Metropolis algorithm [25]. Exploiting
the importance-sampling allows to achieve a percent-level
precision with NX ∼ 5× 106. Note that, to reduce auto-
correlation of samples, we compute the integral every 10
steps, so that the total number of samples in the Monte
Carlo path is 5 × 107. We take full advantage of the
fact that Monte Carlo algorithms are known to be “em-
barrassingly parallel”. Our calculations are distributed
over dozens of MPI ranks reaching an almost ideal effi-
ciency, as very little communication between the different
ranks is required. More specifically, computing the five
response functions relevant for neutrino-nucleus scatter-
ing for a given value of momentum transfer requires less
than one minute of computing time on 64 Intel Xeon E5-
2600 (Broadwell) processors.

Our integration algorithm presents a number of advan-
tages with respect to the standard deterministic meth-
ods usually employed in the calculation of the nuclear
response function. For instance, we neither employ the
so-called “frozen approximation” – amounting to neglect
the momenta of the two initial nucleons [70] – nor we need
to parametrize the response functions before computing
the double-differential and total cross sections [71, 72].

Considering the SF of a uniform isospin-symmetric
Fermi gas of nucleons with Fermi momentum kF =
225 MeV, we benchmarked our results for the two-
body charged-current responses of 12C against those of
Ref. [22], obtained within the relativistic Fermi gas model
using the same current operators. The remarkably good
agreement between the two calculations, displayed in
Fig. 2 for |q| = 400 MeV and |q| = 800 MeV, consid-
erably corroborates their accuracy. It has to be stressed
that achieving this degree of consistency for such elabo-
rate calculations must not be taken for granted. In fact,
the models of Refs. [73, 74], although based on similar

models of nuclear dynamics, differ in about a factor of
two in their estimation of the size of the multi-nucleon
effects [75].

Analogously to the electromagnetic case, two-body
currents are most effective in the transverse channels. On
the other hand, we observe a non-negligible enhancement
in RCC and RLL, driven by the axial two-body pieces of
the current operator, consistently with the findings of
Refs. [13, 76].

VI. RESULTS

In this Section we present our findings for neutrino
and anti-neutrino scattering off 12C and 16O nuclei, for
both CC and NC reactions. In this preliminary study,
aimed at gauging the differences between the CBF and
SCGF models for the hole SFs, discussed Sec. III, we ne-
glect FSI between the struck nucleon(s) and the specta-
tor systems. They will be accounted for when flux-folded
doubly-differential cross sections will be computed, which
will require a separate publication.

The upper panels of Fig. 3 show the νµ-12C inclusive
differential cross section induced by CC transitions for
Eν=1 GeV and θµ = 30◦ (left panel) and θµ = 70◦ (right
panel). The solid and the dashed curves have been ob-
tained employing the CBF and SCGF hole SFs, respec-
tively. The full calculations, which include both one- and
two-body currents, are displayed by the black lines. The
red and blue curves separately highlights one- and two-
body current contributions. The lower panel is analogous
to the upper one but for ν̄µ-12C scattering processes.

Calculations carried out employing the CBF and
SCGF hole SFs are in remarkably good agreement, al-
though they are obtained from different, albeit realistic,
input Hamiltonians. Consistently with the findings of
Ref. [21], two-body currents primarily enhance the cross-
sections in the “dip region”, between the quasielastic
peak and the resonance-production region. The excess
strength provided by meson-exchange currents increases
relatively to the total cross section for larger values of
the scattering angle. In fact, as shown in Fig. 2, two-
body contributions are most effective in the transverse re-
sponses, although this feature is less clearcut than in the
electromagnetic case. It has to be noted that, in the anti-
neutrino case, for θµ = 70◦, two-body currents are also ef-
fective for quasielastic kinematics. Because of the cancel-
lation in Eq. (1) between the contributions proportional
to the RT and RT ′ responses, the neutrino cross section
decreases rapidly relatively to the anti-neutrino cross sec-
tion as the scattering angle changes from θµ = 30◦ to
θµ = 70◦.

Figure 4 is analogous to Fig. 3 but for νµ- and ν̄µ-
16O scattering. For closed-shell nuclei all the many-body
diagrams entering up to third order in the self-energy
expansion are included in the ADC(3) truncation of the
SCGF approach. Hence, the propagator is more accu-
rate than that of an open-shell nucleus as 12C. In addi-
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FIG. 3. The upper panels correspond to the CC inclusive differential cross section of νµ scattering on 12C for Eν=1 GeV and
θµ = 30◦, and 70◦, respectively. The dotted (green) and short-dashed (purple) line correspond to the CBF calculation were
only one- body and two-body contributions in the CC are accounted for. The solid (blue) line displays the total result. The
lowest panels are the same as the upper but for ν̄µ scattering on 12C.

tion, since 16O comprises more nucleons than 12C, the
LDA entering the CBF calculation of the hole SF is ex-
pected to be more reliable. Nonetheless, a comparison
between the solid and dashed curves reveals somewhat
larger discrepancies between the CBF and SCGF results
than in the 12C case. In particular, the one-body SCGF
results exhibit an enhancement in the peak region and a
quenching of the high-energy transfer tails with respect
to the corresponding CBF predictions. This is consis-
tent with the fact that the nuclear potential employed
in the SCGF approach is softer than the one included
in the CBF formalism, as highlighted in the analysis of
the single-nucleon momentum distributions carried out
in Ref. [77].

The results for the NC double differential cross sec-
tions of νµ and ν̄µ scattering off 12C and 16O nuclei are
displayed in Fig. 5 and Fig. 6, respectively. We consider
the same kinematics as before, namely Eν = 1 GeV and
θµ = 30◦ and θµ = 70◦. There is an overall good agree-
ment between the CBF and SCGF predictions, particu-
larly apparent for the 12C nucleus, as already observed
for CC transitions. Consistently with the CC case, two-
body terms mostly affect the dip region, although for
anti-neutrino scattering and 70◦ they also provide excess
strength in the quasielastic-peak region.

In Fig. 7 we display the total cross section per nu-
cleon as a function of the neutrino energy, compared to
the values extracted from the analysis carried out by the
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FIG. 4. The upper panel correspond to the charged-current inclusive differential cross section of νµ scattering on 12C for
Eν=1 GeV and θµ = 30◦, and 70◦, respectively. The dotted (green) and short-dashed (purple) line correspond to the CBF
calculation were only one- body and two-body contributions in the charged current are accounted for. The solid (blue) line
displays the total result. The lowest panels are the same as the upper but for ν̄µ scattering on 16O.

MiniBooNE collaboration [28, 78]. Consistently with our
findings relative to the double-differential cross sections,
MEC substantially increase one-body results over the en-
tire range of incoming neutrino energy. We also note
that the curves referring to the CBF and SCGF hole SFs
are almost superimposed, a further validation of the ro-
bustness of our predictions. The overall good agreement
with experimental values, achieved once that two-body
currents are accounted for, must not be overrated, for
at least two main reasons. When reconstructing the in-
coming energy, a relativistic Fermi gas is employed in
the event-generator and only one-body scattering pro-
cesses are accounted for. It has been argued that both
two-body currents [17, 79, 80] and a realistic description

of the target state are likely to alter the reconstructed
value of Eν,ν̄ . In addition, the MiniBooNE analysis of
the data corrects (through a Monte Carlo estimate) for
some of these events, where in the neutrino interaction
a real pion is produced, but it escapes detection because
it is reabsorbed in the nucleus, leading to multi-nucleon
emission.

VII. CONCLUSIONS

In this work we have set the stage to include relativistic
MEC currents relevant for both CC and NC transitions
within realistic models of nuclear dynamics. We stud-
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FIG. 5. Same as for Fig. 3 but for the NC inclusive differential cross sections.

ied their behavior in neutrino and anti-neutrino scatter-
ing off 12C and 16O nuclei, which constitute the targets
of current [78, 81, 82], and next-generation [5] neutrino-
oscillation experiments. In this regard, we computed the
double-differential cross sections for incoming energy of
Eν,ν̄ = 1 GeV and two values of the scattering angle:
θµ = 30◦ and θµ = 70◦. The total cross section for
neutrino and anti-neutrino 12C scattering has also been
evaluated and compared with the values extracted by the
MiniBooNE collaboration.

We use the relativistic meson-exchange currents origi-
nally derived in Ref. [23] to describe pion-production pro-
cesses. Subsequently, these currents were implemented
in the relativistic Fermi gas model to account for two-
particle two-hole final state channels in electron- and
neutrino-nucleus scattering [22]. Calculations performed
combining this contribution to the SUSAv2 prediction for

the quasielastic region show that the inclusion of MEC
appreciably improves the agreement with electron- and
neutrino-nucleus scattering data [71, 72, 83].

We developed an highly-optimized parallel code, based
on the Metropolis Monte Carlo algorithm, to efficiently
evaluate the NC and CC cross sections and response func-
tions. As for the latter, within the Fermi gas model we
have carried out a successful comparison with the results
reported in Ref. [22] for two values of the momentum
transfer that supports the correctness of both calcula-
tions. Capitalizing on medium-size computer clusters al-
lows us to avoid approximations, such as the frozen nu-
cleon one, often adopted when employing deterministic
integration procedures [84, 85]. In addition, when com-
puting neutrino-nucleus cross sections, we do not make
use of ad hoc parameterizations of the response func-
tions [71, 83].
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FIG. 6. Same as for Fig. 4 but for the NC inclusive differential cross sections.

In order to combine a realistic description of the target
nucleus with relativistic currents and kinematics, we em-
ploy the formalism based on factorization using realistic
hole SFs, and follow the scheme devised in Ref. [20, 21]
to account for two-nucleon emission processes. The re-
quired nuclear amplitudes and the consistent hole SFs
are obtained from two different many body schemes, and
using different models of nuclear dynamics.

The CBF theory and the SCGF approach, both rely
upon a non-relativistic nuclear Hamiltonian to describe
the interactions among nucleons. However, the phe-
nomenological Hamiltonian employed to perform the
CBF calculation has been derived from a fit of the prop-
erties of the exactly solvable two- and three-nucleon sys-
tems—including the measured scattering phase-shifts at
laboratory energies up to 300 MeV—and fails to provide
an accurate description of the spectra and radii of nuclei

with A > 4 [86]. The chiral Hamiltonian employed in
the SCGF calculation, on the other hand, is designed to
reproduce the the properties of light and medium-mass
nuclei [87], but fails to describe nucleon-nucleon scatter-
ing above 35 MeV.

It has to be pointed out that the procedure followed to
obtain the NNLOsat potential implies a significant depar-
ture from the so-called ab initio approach, in which the
determination of nuclear dynamics is decoupled from the
theoretical uncertainty associated with the calculation of
nuclear observables for A > 4.

In view of above observation, the interpretation of the
substantial agreement between the CC and NC cross-
sections obtained from the two approaches, obtained
without adjusting any parameters, is not straightforward.
The ability of the SCGF spectral function to predict a
high energy tail of the cross section necessarily reflects
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FIG. 7. CCQE νµ-12C total cross section per nucleon as a
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the presence of high momentum components. However,
this feature can hardly be reconciled with the inability
of the NNLOsat to reproduce the phase shifts at high
energies.

Consistently with Refs. [20, 21], we found that, for CC
transitions, MEC provide excess strength primarily in
the dip region. Only for the larger value of the scatter-
ing angles we considered, θµ = 70◦, and for anti-neutrino

processes, we find that two-body currents enhance the
quasielastic peak region. A similar behavior is also ob-
served for NC-induced processes, somehow at variance
with the GFMC results of Ref. [13]. There, MEC were
found to significantly increase the NC cross section for
quasielastic kinematics, primarily because of the inter-
ference between the one-and two-body current matrix el-
ement. The latter process, which was found to be rel-
atively small for two-nucleon knockout final states, has
been disregarded in the present analysis. The interfer-
ence term and FSI will be accounted for in the forthcom-
ing calculation of the flux-folded double-differential cross
section, which allows for a more direct comparison with
experimental data.

This work represents a significant step forward towards
the realization of the strategy, advocated by the Authors
of Ref. [88] to describe neutrino-nucleus scattering in the
whole kinematical region relevant for neutrino-oscillation
experiments. In this regards, it has to be noted that the
same formalism used in this work is suitable to consis-
tently describe the resonance-production region; work
in this direction, aimed at extending the results
of Ref.[33], is underway. Both the CBF and the
SCGF approaches are currently being developed to tackle
the formidable problem of neutrino scattering off 40Ar;
preliminary electron-scattering results obtained with the
SCGF hole SF are encouraging.
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