
Cosmology with self-interacting sterile neutrinos and dark matter:
A pseudoscalar model

Maria Archidiacono,1 Steen Hannestad,1,2 Rasmus Sloth Hansen,1,3 and Thomas Tram4

1Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
2Aarhus Institute of Advanced Studies, Aarhus University, 8000 Aarhus C, Denmark

3School of Physics, The University of New South Wales, Sydney, NSW 2052, Australia
4Institut de Théorie des Phénomènes Physiques, École Polytechnique Fédérale de Lausanne,

CH-1015 Lausanne, Switzerland
(Received 30 April 2014; revised manuscript received 20 January 2015; published 18 March 2015)

Short baseline neutrino oscillation experiments have shown hints of the existence of additional sterile
neutrinos in the eV mass range. Such sterile neutrinos are incompatible with cosmology because they
suppress structure formation unless they can be prevented from thermalizing in the earlyUniverse or removed
by subsequent decay or annihilation. Here, we present a novel scenario in which both sterile neutrinos and
dark matter are coupled to a new, light pseudoscalar. This can prevent thermalization of sterile neutrinos and
make dark matter sufficiently self-interacting to have an impact on galactic dynamics and possibly resolve
some of the known problems with the standard cold darkmatter scenario. Evenmore importantly it leads to a
strongly self-interacting plasma of sterile neutrinos and pseudoscalars at late times and provides an excellent
fit to cosmic microwave background data. The usual cosmological neutrino mass problem is avoided by
sterile neutrino annihilation to pseudoscalars. The preferred value of H0 is substantially higher than in
standard ΛCDM (lambda cold dark matter) and in much better agreement with local measurements.
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I. INTRODUCTION

Data from a number of neutrino oscillation experiments
point to the existence of a fourth, sterile neutrino with a mass
around 1 eV (see e.g. Refs. [1,2]). However, such a neutrino
would be completely thermalized in the early Universe
through a combination of mixing and scattering [3–5],
and since there are stringent cosmological constraints on
the presence of eV-scale neutrinos [6,7], cosmology seems at
odds with the oscillation experiments unless the sterile
neutrino is somehow prevented from being fully thermalized
in the early Universe [8] (see also Refs. [9–11]).
Several simple solutions exist to this problem. First of

all, it is entirely possible that the underlying cosmological
model differs from the standard ΛCDM universe, and in
more complex models, constraints on light neutrinos can be
severely weakened. Even if ΛCDM does turn out to be the
correct cosmological model, oscillation data can still be
made compatible provided that the sterile neutrino is at
most partly thermalized or is removed by decay and/or
annihilation before the rest mass becomes important for
cosmological structure formation.
The generic condition for producing any given particle

species is that Γ > H at some epoch, where Γ is the
production rate andH is the expansion rate of the Universe.
Partial thermalization can be achieved either by lowering Γ
or by increasing H. Models which lower Γ are for example
models with new interactions in the sterile sector [12–15],
whereasH can be modified for example in models with low
reheating temperature or early dark energy [16].

In this paper we will revisit the possibility of new
interactions in the sterile sector. Previous studies have all
focused on interactions via a new light vector, i.e. a Fermi-
like interaction [12–15]. This has the merit of making
neutrinos strongly interacting at early times while com-
pletely decoupled at late times. Here, we will investigate a
new possibility—coupling neutrinos (and possibly dark
matter) to a massless or very light pseudoscalar such as the
majoron. Couplings to a scalar would lead to the presence
of a new fifth force on which very tight bounds exist.
However, since the pseudoscalar couples only to the spin of
the involved particles and because macroscopic media are
unpolarized, no such problem exists for pseudoscalars.
Interactions via a light pseudoscalar have the interesting

property that they make the sterile neutrinos very strongly
self-interacting at late times and effectively remove sterile
neutrino anisotropic stress. Depending on the density of
sterile neutrinos, this property could allow us to distinguish
between self-interacting and free-streaming sterile neutrinos.
If dark matter couples to the same particle, it has the

possibility to make the scattering cross section strongly
velocity dependent through Sommerfeld enhancement
which is a desirable feature if some of the astrophysics
problems related to cold dark matter are to be addressed.

II. MODEL FRAMEWORK

Instead of constructing an explicit model, we base our
discussion on a simplified setup which, however, does
contain all the relevant physics. The sterile neutrino is
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coupled to a new light pseudoscalar with mass mϕ ≪ 1 eV
via

L ∼ gsϕν̄γ5ν: ð1Þ

Later we will look at dark matter with a similar coupling
to ϕ,

L ∼ gdϕχ̄γ5χ: ð2Þ

One important note is in order at this point: We assume the
coupling to be diagonal in mass basis, such that the three
mainly active mass states are completely uncoupled. This is
the most natural assumption given that ϕ is associated with
new physics and not related to standard model flavor. The
new interaction is also felt partly by the active Standard
Model neutrinos, although suppressed by the mixing angle.
Limits from cosmology [17] are not relevant, as the active
neutrino mass states do not feel the new coupling, but
constraints from supernovae [18,19] and laboratory mea-
surements [20] do apply. The supernova bounds are derived
by requiring that the pseudoscalars do not carry away a
significant amount of the energy released by the supernova
which results in a bound on the coupling of electron
neutrinos to the pseudoscalar [18], ge ≲ 4 × 10−7. If the
coupling becomes much larger, the pseudoscalars will be
caught in the supernova, and the bound disappears again.
However, almost all of these values are excluded by
laboratory experiments [20], and we will only consider
the supernova limit here. For the sterile neutrinos, the
bound on ge comes from the process νeνe → ϕ, and it
translates into the bound gs ≲ ge=sin2θs ¼ 3 × 10−5, using
sin22θs ∼ 0.05 from the short baseline experiments [1,2],
where θs is a mixing angle representative for ðνe; νsÞ
mixing or ðνμ; νsÞ mixing. Although supernovae give the
strongest bounds on the coupling strength, they are quite
dependent on details in the assumptions about the super-
nova, and it might be more appropriate to quote the bound
as gs ≲ 10−4.
Let us now go through the implications of this new

interaction, first for the sterile neutrinos and subsequently
for the dark matter.

III. STERILE NEUTRINOS

The new interaction introduces a matter potential for
sterile neutrinos of the form [21,22]

VsðpsÞ ¼
g2s

8π2ps

Z
pdpðfϕ þ fsÞ; ð3Þ

where fϕ is the Bose–Einstein distribution for the pseu-
doscalar and fs is the distribution for the sterile neutrinos
(see e.g. Refs. [3,23–26] for a discussion of matter
potentials in the standard model). Note that the potential

in Eq. (3) arises from bubble diagrams and is nonzero even
in a CP-symmetric medium.
Before proceeding with a quantitative calculation, we

can estimate how large gs needs to be in order to block
thermalization. Consider a scenario with thermal ϕ and νs
distributions characterized by a common temperature T.
The potential is then

Vs ∼ 10−1g2sT: ð4Þ

In the absence of nonstandard effects, the sterile neutrinos
would be thermalized through oscillations at T ∼
10ðδm2=eV2Þ1=6MeV ∼ 10 MeV [3]. To prevent this
effect, we need to suppress the mixing angle in matter,
θm, as the production rate is proportional to sin22θm.
This is achieved if the matter potential dominates
the energy difference associated with vacuum oscillation,
i.e.

V ≳ δm2
νs

2E
∼
δm2

νs

T
; ð5Þ

prior to neutrino decoupling at T ∼ 1 MeV so that

g2s ≳ 10
δm2

νs

T2
∼ 10−11: ð6Þ

So a priori we expect that a value of gs ∼ 3 × 10−6 is
sufficient to block thermalization. It should be noted here
that since the pseudoscalar coupling is diagonal in the mass
basis the active state feels an additional matter potential
associated with the ϕ background. The magnitude of the
potential felt by the active state is approximately
V ∼ sin2ðθsÞVs ∼ 0.01Vs. The only effect is a minute shift
in the effective mass difference, corresponding to a shift of
less than 1% in gs.

1

IV. THERMAL HISTORY OF
THE STERILE NEUTRINO

The sterile neutrino can in principle be thermalized via
incoherent processes such as ϕϕ↔ν̄sνs, assuming that
there is a preexisting background of ϕ. The thermally
averaged cross section in the highly relativistic limit can be
calculated to be [27]

hσjvji ¼ g4s
8πT2

: ð7Þ

Conservatively assuming that gs ∼ 10−4, we find that νs and
ϕ come into equilibrium at a temperature of T ∼ 1 GeV, i.e.

1For active-active oscillations, this additional potential is
important, but effects from active-active oscillations are expected
to be small as all active neutrinos have almost identical spectra in
the early Universe.
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significantly before the oscillation process becomes impor-
tant [28]. However, since the dark sector is decoupled, it
does not share the entropy transfer to the standard model
particles, and the end result is that when oscillations
become important at T ∼ 10 MeV a low-temperature back-
ground of ϕ and νs exists. However, if gs is significantly
lower, no thermalization occurs before the oscillation
period.

V. RESULTS AND NUMERICAL
IMPLEMENTATION

We compute the thermalization process by solving the
quantum kinetic equations (QKEs) for a simplified two-
neutrino framework with oscillations between νμ and νs
using a modified version of our public code LASAGNA [29].
The formulation of the QKEs [3,4,23–25,30,31] is based on
an expansion of the density matrices, ρ, in terms of Pa, Ps,
Px, and Py,

ρ ¼ 1

2
f0

�
Pa Px − iPy

Px þ iPy Ps

�
;

where f0 is the Fermi–Dirac distribution function. The
QKEs are now

_Pa ¼ VxPy þ Γa½2 − Pa�;
_Ps ¼ −VxPy þ Γs

�
2
feq;sðTνs ; μνsÞ

f0
− Ps

�
;

_Px ¼ −VzPy −DPx;

_Py ¼ VzPx −
1

2
VxðPa − PsÞ −DPy:

Here, the potentials are given by

Vx ¼
δm2

νs

2p
sin 2θs;

Vz ¼ −
δm2

νs

2p
cos 2θs −

14π2

45
ffiffiffi
2

p p
GF

M2
Z
T4nνs þ Vs;

where p is the momentum, GF is the Fermi coupling
constant, MZ is the mass of the Z boson, and nνs ¼R
fsd3p=ð2πÞ3 is the number density of sterile neutrinos.

For the repopulation of the active neutrinos, we use the
expression

Γa ¼ CμG2
FpT

4; Cμ ≈ 0.92:

For the sterile neutrino redistribution, we choose Tνs and
μνs to conserve energy and number density, when
feq;s ¼ ðep=Tνs−μνs =Tνs þ 1Þ−1, and we approximate the
rate by

Γs ¼
g4s

4πT2
νs

nνs : ð8Þ

Finally, we approximate the damping term by
D ¼ 1

2
ðΓa þ ΓsÞ.

We compute the sterile neutrino contribution to the
potential in Eq. (3) from the actual numerical distribution.
The contribution from the ϕ-background is computed
analytically assuming that the ϕ-particles were produced
thermally above a TeV. They will then follow a Bose–
Einstein distribution with a reduced temperature of

Tϕ ¼
�

g⋆ðTγÞ
g⋆ð1 TeVÞ

�1
3

Tγ ≃
�
10.75
106.7

�1
3

Tγ ≃ 0.47Tγ; ð9Þ

where the approximation is valid in the temperature range
of interest. We are ignoring momentum transfer between
the sterile neutrinos and the pseudoscalars for simplicity,
but we suspect that including it would have a negligible
effect on our results. When sterile neutrinos are produced,
they will create nonthermal distortions in the sterile
neutrino distribution, and the sterile neutrino spectrum
might end up being somewhat nonthermal. In Fig. 1 we
show the final contribution to the energy density Neff,

Neff ≡ ρνa þ ρνs
ρν0

; where ρν0 ≡
7

8

�
4

11

�
4=3

ργ;

from a sterile neutrino with mixing parameter sin22θs ¼
0.05 and mνs ¼ 1 eV, close to the best fit value from
neutrino oscillation data [1,2]. The transition from full
thermalization to zero thermalization happens in the
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FIG. 1. The contribution of the sterile neutrino to the relativistic
energy density δNeff ¼ Neff − 3 as a function of the coupling
parameter gs.
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region 10−6 < gs < 10−5, confirming the simple estimate
in Eq. (6).2

VI. LATE-TIME PHENOMENOLOGY

In a recent paper by Mirizzi et al. [32] it was pointed out
that even if strong self-interactions prevent thermalization of
the sterile neutrino before active neutrino decoupling the
active and the sterile neutrino species will eventually be
almost equilibrated by oscillations at late times. This leads to
a scenario in which active and sterile neutrino distributions
have similar temperatures and both contribute to the com-
bined Neff . Even if early thermalization is prevented, this
still leads to a sterile neutrino population with a temperature
only slightly below that of standard model active neutrinos,
and therefore the usual cosmological neutrino mass bound
still applies to this model.
However, unlike the previously studied Fermi-like inter-

action, sterile neutrinos and pseudoscalars interact via a
variety of 2↔2 processes which in general have a scattering
rate of order Γ ∼ g4sT because there is no mass scale
involved. This is true for example for the pair annihilation
process νsν̄s → ϕϕ where we already found the thermally
averaged cross section to be hσjvji ¼ g4s=ð8πT2Þ in the
relativistic limit, implying a reaction rate Γ ¼ hσjvjinνs ≈
3.6 × 10−3g4sT. This should be compared to the Hubble
expansion rate H ∼ 10T2=mPl. As long as gs ≳ 10−6, the
νs − ϕ plasma becomes strongly self-interacting before the
sterile neutrinos become nonrelativistic around recombina-
tion. Therefore, the rest mass constraint does not apply to
this model; as soon as sterile neutrinos become nonrelativ-
istic, they annihilate into ϕ. This annihilation has two
immediate effects. It leads to an overall increase in the
energy density of the νs − ϕ fluid, and it leads to a temporary
decrease in the equation of state parameter for the fluid. Both
of these effects were discussed in detail in Ref. [33].
The strong self-interactions of the combined fluid also

leads to a complete absence of free-streaming and in turn
an absence of anisotropic stress in the νs − ϕ plasma. The
scenario where all neutrinos are strongly interacting is
strongly disfavoured by current data (see e.g. [17,33–40]
for discussions of self-interacting neutrinos and cosmic
structure formation). However, this is not necessarily true
for models in which standard model neutrinos are free
streaming, and the interaction is confined to the sterile
sector. We note here that since the pseudoscalar coupling is
diagonal in mass basis it does not induce self-interactions in
the three active mass states.
We have performed a study of how this model is

constrained by current cosmic microwave background

(CMB) data through a Markov chain Monte Carlo
(MCMC) sampling of the cosmological parameter space
performed with COSMOMC [41] and using CMB data from
the Planck mission as well as CMB polarization data from
the WMAP satellite [42] (we refer to this data combination
as “PlanckþWP”). We describe the neutrino sector by the
overall energy density after thermalization, Neff , and
assume a sterile mass of 1 eV. We assume that all neutrino
species and the pseudoscalar equilibrate at some temper-
ature between the thermalization scale at a fewMeVand the
CMB scale (T ∼ 1 eV), so that the energy density in the
active sector is 21=32Neff with the remaining 11=32Neff in
the νs − ϕ fluid.
In the top panel of Fig. 2 we show the one-dimensional

marginalized posterior for Neff for the PlanckþWP data,

N
eff

P/
P M

A
X

 Planck + WP
 Planck + WP + H

0

2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

 Planck + WP

 Planck + WP + H0
 ΛCDM, Planck + WP

 ΛCDM, Planck + WP + H
0

H
0
 [km/s/Mpc]

60 70 80 90 100

P/
P

M
A

X

0

0.2

0.4

0.6

0.8

1

FIG. 2 (color online). One-dimensional marginalized posteriors
for Neff (top panel) and H0 (bottom panel) obtained by assuming
the pseudoscalar scenario and using only CMB data (black/solid
line) and CMB data plus the H0 prior (red/dashed line). (Top
panel) The green dash-dot line refers to the ΛCDM model
(Neff ¼ 3.046), and the purple line is the complete thermalization
case (Neff ≃ 4). (Bottom panel) The green and the blue dash-dot
lines show the posteriors obtained in the ΛCDM model using
Planck and PlanckþH0, respectively. The H0 prior is marked by
the gray shaded region [43].

2Note that in the absence of a preexisting population of ϕ and
νs, sterile neutrino production would still be suppressed for the
same values of gs as soon as a small amount of νs has been
produced through oscillations. The assumption is thus not crucial
to the scenario.
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as well as for the same data, but with the direct measure-
ment of H0 from Ref. [43] included. The data show a clear
preference for high values of Neff , and the most extreme
case with complete thermalization of the sterile neutrino,
corresponding to Neff ≃ 4, is well within the 1σ
allowed region. It is also of interest to compare the
difference in χ2 between this model and the standard
ΛCDM cosmology. We find that Δχ2 of the pseudoscalar
model compared to the reference ΛCDM model is
Δχ2 ¼ χ2pseudoscalar − χ2ΛCDM ¼ 1.3, while if in our model we
assume Neff ≃ 4, then Δχ2 ¼ 0.6.
Interestingly for this model with a subdominant, strongly

interacting neutrino sector, we also find a preference for a
higher value of H0. This effect was seen already in
Ref. [33] but with a much more dramatic increase in H0

because all neutrinos were assumed to be strongly inter-
acting. In the bottom panel of Fig. 2, we show the one-
dimensional marginalized posterior forH0 for this model as
well as for ΛCDM. The increase inH0 alleviates the tension
between the locally measured value of H0 and the much
lower value inferred from Planck data when the standard
model is assumed. We see this effect very directly when
comparing χ2 values, Δχ2 ¼ χ2pseudoscalar − χ2ΛCDM ¼ −2.5,
while if in our model we assume Neff ≃ 4, then
Δχ2 ¼ −3.9. We thus find that in this case the model with
a strongly interacting νs − ϕ sector is a better fit to current
data than ΛCDM (and of course a vastly better fit than
ΛCDM with an additional 1 eV sterile neutrino).

VII. DARK MATTER

We will now investigate the possibility that dark matter
also couples to the new pseudoscalar with a dimensionless
coupling strength, gd. We assume that the dark matter is
produced at a very high temperature by e.g. inflaton decay.
Once dark matter is coupled to the new interaction, there is
the potential worry that it will pair annihilate via the process
χχ̄ → ϕϕ with the same cross section as in Eq. (7). If the
annihilation process is in equilibrium where χ goes non-
relativistic, it will dilute the density of χ while transferring
an unacceptable amount of entropy to ϕ. Due to the nature
of the interaction, it is decoupled at high temperatures, and
the cross section likewise drops when the dark matter
becomes nonrelativistic. Therefore, we only need to ensure
that the dark matter annihilation rate is low enough at
Tmax ∼mχ . We assume that the cross section is given by the
highly relativistic expression for hσjvji in Eq. (7) and use
the condition ΓðTmaxÞ ¼ hσjvjinχ < HðTmaxÞ to derive the
condition,

gd ≲ 2 × 10−5
�

mχ

MeV

�
1=4

; ð10Þ

for the new interaction not to overly dilute the density of χ.
Additionally, the new coupling also induces a Yukawa-

type potential between the dark matter particles. This in

turn leads to dark matter self-interactions which might have
observable consequences for galactic dynamics. Rather
than going through a detailed calculation, we will simply
estimate the mean time between dark matter scatterings in
order to estimate whether self-interactions are important. To
do so we will follow the prescription given in Ref. [44].
First, following Ref. [45] we write

VðrÞ ¼ −
g2d
m2

χ

e−mϕr

4πr3
hðmϕrÞS; ð11Þ

where hðmϕ; rÞ ¼ 1þmϕrþ 1
3
ðmϕrÞ2 and S is a spin-

dependent factor which we assume to be 1.
The interaction potential in Eq. (11) causes elastic

scattering of dark matter, and following the prescription
in Ref. [44], we can estimate the value of gd needed in order
to have a significant impact on galactic dynamics. The
calculation in Ref. [44] was performed for a massless Uð1Þ
vector, so the potential is Coulomb-like. This in turn leads
to both “soft” and “hard” scattering of roughly equal
importance. Here, we can safely neglect the contribution
from soft scatterings because of the steepness of the
potential.
The ratio of the scattering time scale τscat. to the

dynamical time scale in the galaxy τdyn. is given by
Eq. (17) in Ref. [44],

τscat
τdyn

¼ 2R2

3Nσ
; ð12Þ

where R is the radius of the galaxy, N is the number of dark
matter (DM) particles in the galaxy, and σ is the scattering
cross section. For a hard scatter, we have σ ≃ b2 where the
impact parameter b is the radial distance such that the sum
of kinetic and potential energy is zero,

αd
m2

χb3
¼ 1

2
mχv2; ð13Þ

where we have used thatmϕb ∼mϕ=mχ ≪ 1which leads to
the approximation VðrÞ ≈ −αd=ðm2

χr3Þ where αd ¼ g2d=4π.
We then find that

�
τscat
τdyn

�
3

¼ 2R4m8
χG2

27Nα2d
; ð14Þ

where G is Newton’s constant. The condition for the time
scale of scattering to be less than the age of the Universe is3

τscat=τdyn ≲ 50. Plugging in numbers for a Milky Way-size
halo and using αd ¼ g2d=4π, we find

3We take τdyn. to be the dynamical time scale of a Milky Way-
size halo.

COSMOLOGY WITH SELF-INTERACTING STERILE … PHYSICAL REVIEW D 91, 065021 (2015)

065021-5



gd ≳ 6 × 10−8
�

mχ

MeV

�9
4

: ð15Þ

The value of gd in Eq. (15) can be seen as a lower bound on
the value required to have a significant effect. The actual
value required might be somewhat larger.
For elastic scattering to be important in itself, the mass of

the dark matter particle is therefore required to be quite
small. For example, gd ∼ 10−5 leads to the requirement that
mχ ≲ 10 MeV. So depending on the unknown mass of the
dark matter particle, hard scattering on this potential could
have a direct impact on galactic dynamics. Even if this is
not the case, the potential could still have a very important
indirect effect through the Sommerfeld mechanism [45].
The idea is that the dark matter particles could have some
weak short-range scattering cross section generated by
beyond the standard model (BSM) physics, which is then
enhanced by a velocity-dependent boost factor SðvÞ such
that σðvÞ ¼ SðvÞσ0. If this new BSM physics enters at a
scale ΛBSM, we could expect σ0 ∼ 1=Λ2

BSM.

VIII. SOMMERFELD ENHANCED SCATTERING

The potential in Eq. (11) diverges faster than r−2, so it is
singular and leads to an unbounded Hamilton operator [46].
This is of course not physical, since the potential will
ultimately be regularized by UV physics. While the boost
factor can be made independent of the regularization
procedure, it will depend a bit on the UV completion
[45,46]. We are just trying to estimate this effect, so we
follow the simplified version of the regularization pro-
cedure outlined in Ref. [45]: We introduce a cutoff in the
potential defined by VðrcutÞ ¼ ΛBSM and set Vðr < rcutÞ≡
VðrcutÞ such that the potential is continuous at rcut.
To compute the Sommerfeld factor, we follow Ref. [45]

and write the radial part of the Schrödinger equation as

Φ00
lðxÞ ¼

�
mχ

p2
V

�
x
p

�
þ lðlþ 1Þ

x2
− 1

�
ΦlðxÞ;

¼
�
−g2dv
8πx3m

hðFxmÞe−Fxm þ lðlþ 1Þ
x2

− 1

�
ΦlðxÞ;

ð16Þ

with x≡ pr and F≡ 2mϕ

mχv
. The continuous box renormal-

ization has been implemented by simply using xm ≡
maxðx; xcutÞ inside the potential term. The equation
determining the cutoff xcut is

1 ¼
�

mχ

ΛBSM

�
g2dv

3

32πx3cut
hðFxcutÞe−Fxcut : ð17Þ

In the limit x → 0, the complete solution to Eq. (16) is
Axlþ1 þ Bx−l for l ≥ 0. As usual, requiring the solution to
be regular at x ¼ 0 forces B ¼ 0. A can be absorbed into the

overall normalization of the wave function; i.e. we put
A ¼ 1. In the asymptotic limit x → ∞, the solution just
becomes a sinewith an amplitude and a phase shift.We have

ΦlðxÞ → xlþ1; x → 0; ð18Þ

ΦlðxÞ → C sinðx − lπ=2þ δlÞ; x → ∞: ð19Þ

To compute the Sommerfeld factor numerically, we use
Eq. (18) to set initial conditions at xini, 0 < xini < xcut. We
then evolve the wave until it has reached its asymptote in
Eq. (19), and we denote this point by xasym. This happens
when the wave no longer feels the potential and, for l > 0,
the centrifugal barrier. The Sommerfeld factor is related to
the asymptotic amplitude C (through the overall normali-
zation) by the formula [45]

Sl ¼ ½ð2lþ 1Þ!!�2
C2

¼ ½ð2lþ 1Þ!!�2
Φ2

lðxasymÞ þ Φ02
l ðxasymÞ

: ð20Þ

The last expression is obtained from Eq. (19) and is
numerically convenient. Note that the equation for the
boost factor does not depend on the masses but only on Φl.

FIG. 3 (color online). Sommerfeld enhancement factor for l ¼
0 due to the potential in Eq. (11) for two extreme values of the
ratio ðmχ=ΛBSMÞ. Top panel: ðmχ=ΛBSMÞ ¼ 1.0. Bottom panel:
ðmχ=ΛBSMÞ ¼ 10−5. As discussed in the text, the dependence on
the ratio ðmϕ=mχÞ is negligible.
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The mass dependence in Eq. (16) enters only through the
ratio mϕ=mχ in the factor hðFxÞe−Fx. This factor is ∼1
when Fx≲ 1, and it is easy to show that this is the case for
all values of x where the potential is non-negligible,
provided that mϕ

mχ
< ðv=gdÞ23. This inequality is easily sat-

isfied for the parameter space that we are considering. The
regularization procedure introduces another possible mass
dependence through Eq. (17). The previous argument
applies again to the factor hðFxÞe−Fx, ruling out a depend-
ence on the ðmϕ=mχÞ ratio. So the only mass dependence
will enter through the ratio ðmχ=ΛBSMÞ. We have shown the
boost factor in Fig. 3 for two extreme values of this ratio.
Evidently, the effect of Sommerfeld enhancement can be
safely neglected for all reasonable values of gd.

IX. DARK ACOUSTIC OSCILLATIONS?

Since our model couples dark matter to a background of
dark radiation, we might worry that the χ − ϕ system can
undergo acoustic oscillations close to the epoch of recom-
bination and thus distort the observed CMB spectrum (see
e.g. Ref. [47] for a recent discussion). The interaction
around the epoch of CMB formation is primarily Compton
scattering, χϕ → χϕ, and we can directly compare it to the
normal Compton scattering rate of photons and electrons.
The Compton cross section scales as σ ∝ α2=m2 wherem is
the fermion mass. As long as g2d ≪ α and mχ ≫ me, the
dark sector acoustic oscillations will be completely negli-
gible and therefore cosmologically safe. This of course also
means that late-time Compton scatterings can be safely
ignored since they have no impact on the ability of χ to
cluster gravitationally. Scaling relative to the electron-
photon process, we can formulate the bound as

g2d ≪ 1.6 × 10−2
�

mχ

MeV

�
: ð21Þ

X. DISCUSSION

We have studied a model with secret sterile neutrino
interactions mediated by a massless or very light pseudo-
scalar. The model has some of the same features as the
previously studied models based on Fermi-like interactions
mediated by heavy vector bosons in the sense that it
provides a background potential which can block the
production of sterile neutrinos and resolve the apparent
inconsistency between cosmology and short baseline
neutrino oscillation data.
However, the model has very different late-time phe-

nomenology. The very low mass of the pseudoscalar makes
the sterile neutrino strongly self-interacting at late times, an
effect which is perfectly consistent with current cosmo-
logical data but might be used to uniquely identify the
model once more precise measurements become available.
To accommodate the mass bound from cosmological large

scale structure [32], we need gs ≳ 10−6 to allow the sterile
neutrinos to annihilate when they become nonrelativistic.
Our analysis of the CMB suggests Neff ≈ 4, and this
suggestion is amplified if we also consider the direct
measurements of H0. At 95% confidence we can rule
out Neff ¼ 3.046 when we include the H0 measurement,
and this formally corresponds to an upper limit on gs of
gs ≲ 10−5 according to Fig. 1. However, this bound is very
dependent on the set of data we have used and might both
be strengthened and weakened by including more data. We
finally arrive at a combined bound on gs of

10−6 ≲ gs ≲ 10−5ðCMBþ H0Þ: ð22Þ

A more robust determination of Neff would allow the
possible values for gs to be further confined, and a precise
value of Neff > 3.046 would allow us to pinpoint a
corresponding coupling strength. We also note that since
the fundamental coupling strength is very low and
restricted to the sterile sector in this model it is unlikely
to produce observable effects on neutrino physics in
general (see e.g. Ref. [20] for laboratory constraints).
Considering nonstandard energy loss from the protoneu-
tron star in SN1987a also leads to an upper bound on gs in
the ∼few × 10−5 range (see e.g. Ref. [48] for a discussion).
In addition to the coupling to sterile neutrinos, we

hypothesize that the pseudoscalar also couples to the dark
matter particle. Provided that the dark matter particle is
sufficiently light, this can lead to significant effects on dark
matter clustering in galaxies and clusters and possibly
resolve some of the apparent discrepancies between the
standard ΛCDM model and observations [49]. These dis-
crepancies include the “too big to fail” problem [50] and the
“cusp vs core” problem (see Ref. [51] and references herein)
but not the “missing satellites” problem [52] which would
require a stronger coupling between neutrinos and DM.
For the model to be viable, the dark matter coupling must

be sufficiently low that the pair annihilations do not transfer
excess entropy to the plasma of sterile neutrinos and
pseudoscalars. Conversely, the dark matter coupling must
be strong enough to produce an observable effect on galactic
dynamics. In Fig. 4 we show these two constraints simulta-
neously and include the bound from warm dark matter [53].
We are left with a viable DM candidate with a mass between
few keVand∼10 MeV and couplings from 10−13 to 10−5. A
more detailed treatment of the cusp vs core and too big to fail
problems could probably constrain the dark matter further,
but that is beyond the scope of this article. The type of dark
matter, that we have described, is very different from the
normal weakly interactingmassive particle cold darkmatter.
However, it is entirely possible that dark matter consists of
an additional sterile neutrino species with extremely sup-
pressed mixing to the active sector. If this is the case, it
cannot be produced via the usual scattering and oscillation
mechanism. However, unlike an MeV sterile neutrino
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produced via the normal oscillation and scattering mecha-
nism, it also remains stable on cosmological time scales. The
actual production mechanism for the dark matter particle
might be via direct inflaton decay at reheating or from the
thermal background at very high temperature.
In summary, sterile neutrino and dark matter interactions

via a light pseudoscalar seem an extremely interesting
possibility for explaining a variety of different problems in
cosmology and certainly merit further study.
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