
Journal of Cloud Computing:
Advances, Systems and Applications

Li et al. Journal of Cloud Computing: Advances, Systems
and Applications            (2019) 8:21 
https://doi.org/10.1186/s13677-019-0147-6

RESEARCH Open Access

Reliability and capability based
computation offloading strategy for
vehicular ad hoc clouds
Bo Li1, Ziyi Peng1, Peng Hou1, Min He1* , Marco Anisetti2 and Gwanggil Jeon3,4

Abstract

In the Internet of Vehicles (IoV), with the increasing demand for intelligent technologies such as driverless driving,
more and more in-vehicle applications have been put into autonomous driving. For the computationally intensive
task, the vehicle self-organizing network uses other high-performance nodes in the vehicle driving environment to
hand over tasks to these nodes for execution. In this way, the computational load of the cloud alleviated. However,
due to the unreliability of the communication link and the dynamic changes of the vehicle environment, lengthy task
completion time may lead to the increase of task failure rate. Although the flooding algorithm can improve the
success rate of task completion, the offloading expend will be large. Aiming at this problem, we design the partial
flooding algorithm, which is a comprehensive evaluation method based on system reliability in the vehicle
computing environment without infrastructure. Using V2V link to select some nodes with better performance for
partial flooding offloading to reduce the task complete time, improve system reliability and cut down the impact of
vehicle mobility on offloading. The results show that the proposed offloading strategy can not only improve the
utilization of computing resources, but also promote the offloading performance of the system.

Keywords: Vehicle self-organizing cloud, Computing offloading, Task waiting time, Resource utilization, Partial
flooding

Introduction
The rapid development of smart city systems has pro-
moted the development of the IoV. Today, many in-
vehicle applications are applicable to mobile robots and
autonomous driving. But this type of service requires
a lot of complex data processing and calculations. By
acquiring the corresponding computing resources from
the cloud computing center, the unmanned vehicle can
realize advanced application services such as environ-
ment recognition and driving cooperation, and form a
vehicle-mounted cloud computing VCC (Vehicular Cloud
Computing)[1, 2]. However, a large number of computing
tasks and frequent data transmission may cause the cloud
device to be overloaded, so that the calculation cannot be
completed in time. The Vehicular Ad Hoc Cloud com-
bines mobile vehicles into a distributed, self-organizing

*Correspondence: hemin@ynu.edu.cn
1School of Information Science and Engineering, Yunnan University, Kunming
650500, Yunnan, China
Full list of author information is available at the end of the article

cloud computing environment. These nodes communi-
cate with each other through the VENET (Vehicular
Ad Hoc Network)[3, 4]. Part of powerful computing vehi-
cles provide computing resources for other vehicles. They
can share a certain amount of tasks for cloud devices and
reduce the cloud network load and resource waste.
In the vehicle environment, a computationally inten-

sive task must to be processed at a deadline. The vehi-
cle can communicate with other equipment by V2V
(Vehicle to Vehicle)[5], V2I (Vehicle to Infrastructure)[6]
or V2C (Vehicle to Cloud)[7]. Then mapping the task to a
node withmore resources to reduce the hardware require-
ments. This method is called offloading. In the case of
no infrastructure, the in-vehicle task can only be mapped
to other devices with richer resources through V2V. The
offloading scenario is shown in Fig. 1. Within the range of
node connectivity, each node directly or indirectly in the
form of single or multiple hops to offload tasks to high
performance nodes.

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIR Universita degli studi di Milano

https://core.ac.uk/display/286531651?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-019-0147-6&domain=pdf
http://orcid.org/0000-0002-8135-4198
mailto: hemin@ynu.edu.cn
http://creativecommons.org/licenses/by/4.0/


Li et al. Journal of Cloud Computing: Advances, Systems and Applications            (2019) 8:21 Page 2 of 14

Fig. 1 Computational offloading scenario in a vehicle ad hoc network

In the dynamic environment of in-vehicle computing,
the task completion time, resource utilization and sys-
tem stability, is the optimization target. To optimize the
above objectives, The contributions of this paper are as
follows: in the network environment where computing
and communication are integrated, in order to ensure the
Quality of Service(QoS), we propose the partial flooding
algorithm that considers node reliability and computing
power. The offloading network is equivalent to a serial-
and-parallel system, and the system reliability is utilized
as an evaluation indicators to determine the number of
offloading nodes, and after that select which nodes to exe-
cute task based on the computing power of the nodes
and their link reliability. The partial flooding algorithm
outperforms the existing schemes in terms of execution
latency and offloading efficiency. It reduces the proba-
bility of network interruption and improves the resource
utilization of the system.
The rest of this paper is organized as follows. In “Related

work” section, we review the related work. “System model
and problem formulation” section describes the vehicle
self-organizing system and formulate the optimization
problem to maximize the system computation capac-
ity and minimize the offloading nodes number. In “The
optimal solution” section, we promote the system perfor-
mance by jointly optimizing the two parameters of link
reliability and node computing power. Simulation results
are presented in “Performance evaluation” section and the
entire paper is concluded in “Conclusion” section.

Related work
Offloading in vehicle network is different from tradi-
tional offloading. Due to the mobility of various nodes in
the vehicular self-organizing network, the computational
offloading is largely restricted by the change of network
structure. To cope with the impact of the dynamic change
of vehicle position on the offloading performance, there

are two main types of existing selection strategies for
proxy resource. First, according to the offloading strat-
egy, the task is offloaded to an optimal node selected by
the strategy to complete the task. For example, for the
scenario of path prediction, the literature[8–10] propose
a path prediction algorithm based on driving habits. By
collecting the position and speed of the vehicle to calcu-
late the future driving path of the vehicle, it is determined
the offloading node with the longest available link time
to reduce the interruption in the course of the offload-
ing process and decrease the failure rate of the task.
Nevertheless, due to the randomness of the vehicle
motion state, the prediction-based algorithm may not
accurately predict the actual driving path of the vehi-
cle node, resulting in a error between the prediction
result and the actual result. Minimum hop algorithm
[11–13]MH (MinimumHop Algorithm) collects available
resource information near the source node, maps the task
to the target node with the smallest number of hops from
the source node, and reduces the communication distance
between the source node and the destination node which
can cut down the completion time of the task. MH algo-
rithm can find an optimum solution. In a dynamic envi-
ronment, mobility node task completion time may lead to
a communication link no longer satisfies the principle of
the minimum number of hops, leading to the communi-
cation time to increase. The second is to use the flooding
method[14, 15]. The task transmit to all available proxy
resource nodes for simultaneous calculation, and the final
result is returned from the earliest completed compute
node to the source node. This method can obtain a glob-
ally optimal solution. However, it will squander quite a few
many resources, and in multitasking scenarios, resource
utilization is an important evaluation indicator. Therefore,
how to reduce the waste of resources while preserv-
ing the advantages of the flooding algorithm is a crucial
issue.



Li et al. Journal of Cloud Computing: Advances, Systems and Applications            (2019) 8:21 Page 3 of 14

Although the above algorithm optimizes the computa-
tional offloading in the vehicular self-organizing network
environment by reducing the task completion time, the
impact on the stability of the performance of the offload-
ing system is not taken into account in the previous
work.

Systemmodel and problem formulation
In this section, we firstly introduce the computational
offloading scenario and system models in the vehicu-
lar self-organizing network. Afterwards, we interpret the
V2V offloading process. Finally, we develop an optimiza-
tion problem to improve the system performance and
minimize the number of nodes being offloaded.

Themodel of computing offloading
When there are multiple resources available, the network
topology in the vehicular ad hoc network is equivalent to
the communication system shown in Fig. 2 below.
The system consists of n high-performance nodes E, vij

represents the jth hop node in the multi-hop link between
the source node i and the target node. The vehicle termi-
nal device vc can perform a plurality of selection policies
to offloading. For example, one node may be selected
as a proxy resource or the task may be offloaded to all
available node. Otherwise, just some of nodes with better
performance may be selected to perform the offloading.
When there is a V2V link between the target node and the
source node, similar to the literature[16], in this paper, the
end-to-end equivalent bandwidth is calculated as follows.

BW = MB
HM

(1)

MB is the base bandwidth in the VANET, andHM is the
number of hops between end-to-end communications.
Due to the dynamic change of the position of the vehi-
cle node with time, the communication link between the
source node and the target node will also change, so the
equivalent bandwidth at each moment is uncertain.

Systemmodel
The vehicle node model is represented by the set Vi:

Vi = {Ri, Fi,RWi} (2)

Ri denotes the communicable radius of the vehicle node
i, and the vehicles communicate with each other through
DSRC (Dedicated Short Range Communications), the
coverage area is a circular area with radius Ri, Fi presents
the computing power of the vehicle node, and RWi rep-
resents the read and write capabilities of the hardware
that the node is configured with. The task model can be
represented by a collection:

Q = {Di,C,Do,Td} (3)

Di represents the amount of uploaded data of the task,C
is the amount of calculation of the task, Do represents the
amount of downloaded data of the task, and Td represents
the deadline of the task, that is, the maximum completion
time that the task can tolerate, which is proportional to the
calculation amount C of the task. Provided that the task is
not completed within the Td period, the task is declared
to fail, and the task is counted as a failed task.

Offloading process
In the scenario, the source node that generates the task
has a certain computing power. If the task is not offloaded,
the time when the task runs locally is expressed as:

tlocal = C
Flocal

(4)

If tlocal > Td, it means that the task cannot be completed
by the local device within the deadline. In this case, we
can consider offloading the task to the high-performance
node to perform the operation. As to Docker uses
lightweight virtualization technology for resource isola-
tion and encapsulates various environmental dependen-
cies into web applications, it can be easily ported and rede-
ployed. Therefore, the Docker container-based offload-
ing system can effectively reduce resource consumption.
The system deployment steps are as follows. S1: Locally,
package Java or other application tasks into Docker

Fig. 2 Network topology in a vehicle-mounted ad hoc network



Li et al. Journal of Cloud Computing: Advances, Systems and Applications            (2019) 8:21 Page 4 of 14

Fig. 3 Schematic diagram of adjacent vehicle nodes

image files and upload them to the Docker repository;
S2: The high-performance node creates a container based
on the uploaded Docker image, runs the Docker instance,
and implements interactive access. According to the sys-
tem deployment steps, the computing offloading can be
divided into three processes of uploading, executing, and
downloading. The execution process of each part is as
follows.
(1) Upload Process
The time the task is packaged locally into a Docker

image file is relevanted to the read/write speed of the hard
disk, so the packaging time is symbolized by:

tpack = Di
RWlocal

(5)

Assume that when the task is uploaded, the bandwidth
of V2V maintain stability for a certain period of time tx,
then the amount of data transmitted during this period
can be expressed as:

Dux = tx × BWx (6)

At a certain moment i, the hop count has changed n
times, and at the time j the nth change occurs, if the
following formula is satisfied:

n−1∑

x=0
tx × BWx + (i − j) × BWn = Di (7)

It means that at time j, the task upload is completed,
and from the start of the uploading time to the time j, the
entire time span ttrans is recorded as the transmission time
of the task. The upload time of the task is recorded as:

tup = tpack + ttrans (8)

(2) Execution Process

When the task is offloaded to the target node idc, its
execution time in the container is:

tex = C
Fidc

(9)

We do not consider the dynamic changes in the com-
puting power of the vehicle, assuming that the computing
power provided by each vehicle is stable.
(3) Download Process
When the task calculation is completed, the target node

returns the calculation result to the source node, which
is similar to the upload process of the task. At a certain
moment α, the hop count has changed n times, and the
time at the nth change is β . If

n−1∑

x=0
tx × BWx + (α − β) × BWn = Do (10)

At this point, the task download is completed, and the
entire period is recorded as tdown. The total completion
time tsum and total communication time tcom of the task
are respectively expressed as:

tsum = tup + tex + tdown (11)

tcommu = tup + tdown (12)

Problem analysis
In order to comprehensively and objectively evaluate the
importance of each link in the communication network,
the concept of communication link reliability[17–20] is
introduced in the partial flooding algorithm. The two fac-
tors of link reliability and node computing power, on the
condition that the completion time is guaranteed, the reli-
ability of the system is improved. Since the offloading
includes two sub-processes of communication and com-
putation, to optimize the system, the problem can be split
into two sub-problems. One is to solve the reliability of
the communication link of the node, and the other issue
is to systematically evaluate the offloading performance
according to the computing power and link reliability, and
finally solve the two sub-problems comprehensively, so
that the offloading strategy finally selected can improve
the offloading performance and save some resource costs.

Link reliability analysis
Ad hoc network is a wireless communication self-
organizing network system composed of many mobile
nodes. On account of the dynamic change of network
topology and the unreliability of wireless communication
links, the network scale expands and the routing com-
munication overhead in the offloading system becomes
more and more difficult to control. Factors such as the
mobility of the nodes in the network and the uncertainty
of the state may lead to network Partition, which result



Li et al. Journal of Cloud Computing: Advances, Systems and Applications            (2019) 8:21 Page 5 of 14

in the link to be broken. Route failure is a vital factor
affecting the reliability of the offloading system. During
the task uploading or downloading process, the link break-
age will inevitably lead to data retransmission, which
greatly increases the network overhead and task comple-
tion delay. Therefore, selecting a target node with a V2V
link with higher reliability is also an important problem
that needs to be solved.
Networked vehicles can obtain the position information

of each vehicle in the network through GPS positioning
system[21]. Themoving speed and heading information of
each vehicle can also be acquired by using sensors[22](for
instance, speed sensor, acceleration sensor, etc.) equipped
with the vehicle. Therefore, if the motion parameters of
two adjacent nodes (such as speed, direction, available
communication distance, etc.) are known we can pre-
dict the connection time between the two nodes to judge
the reliability of the communication link. In the scenario
shown in Fig. 3, at time t, the position of node i can
be expressed as (xi(t), yi(t)), its communication radius is
Ri, the velocity is vi(t), and the node motion direction is
αi. Similarly, the motion states of adjacent nodes can be
obtained.
Considering the traveling speed of the vehicle in the

road, the motion state information of the vehicle is
refreshed at intervals of 1s, and thus it is known that
the distance between the two nodes after �t satisfied the
following relationship:

Dij(t + �t) =
√

(xi(t + �t) − xj(t + �t))2 + (yi(t + �t) − yj(t + �t))2

(13)

When the distance between the two nodes satisfies
Dij(t + �t) = Ri + Rj, and the next moment the distance
meetsDij > Ri+Rj, as shown in Fig. 4. The communicable
range of node i and node j no longer intersects. The max-
imum communication distance between the two nodes is
reached, marked as the critical communication point.
Thus, based on the motion state information of the

node, the available connection time between the nodes
can be calculated:

�t=
√(

�vi2+�vj2
)
(Ri+Rj)

2−(�vi · �y−�vj · �x)2−(�vi · �x+�vj · �y)
�vi2 + �vj2

(14)

�vi = vi(t) cosαi − vj(t) cosαj
�vj = vi(t)sinαi − vj(t)sinαj
�x = xi(t) − xj(t)
�y = yi(t) − yj(t)

(15)

To deal with�t, as an indicator to evaluate the link com-
munication quality, the reliability of link between nodes is
introduced:

Pij = Cij(�t)
Cij(�T)

(16)

�T represents the time between the nodes i and j to
ensure that the offloading task is completed, and �t rep-
resents the time actually available during �T .Cij(�T) and
Cij(�t) represent the amount of data that this link can
transmit in �T and �t, respectively. It is defined as the
product of the bandwidth BW and the corresponding link
time. Link reliability can be further expressed as:

Fig. 4 Critical communication point



Li et al. Journal of Cloud Computing: Advances, Systems and Applications            (2019) 8:21 Page 6 of 14

Pij = Cij(�t)
Cij(�T)

= BW × �t
BW × �T

=
{

�t
�T ,

�t
�T < 1

1, �t
�T ≥ 1 (17)

The value range of Pij is [0, 1]. The larger the value, the
better the link reliability. When the available connection
time is greater than the task required, it means that the
link disconnection does not occur during the task trans-
mission, and the reliability between the two nodes is set
to 1. Assuming that the source node generates the task
computing demand at a certain moment, the vehicle sends
a request to the nearby computing resources through the
Internet of vehicles broadcast[23], and the nearby vehi-
cles with powerful computing capability send a reply to
the source node after receiving the request, including their
own computing power and storage capacity. After that,
the source node establishes the link reliability model for
n high performance nodes in the system according to the
received reply information, which is used for the complete
evaluation of the reliability of the whole system.
In the vehicle self-organizing network, when the source

node and the target node require communicating indi-
rectly through the multi-hop mode, the communication
link can be regarded as a serial system, as shown in Fig. 5.
Each can be viewed as a single hop link between each

pair of neighboring nodes. The reliability of the tandem
system with a total hop count of Ji to the target node Ei
can be expressed as:

PEi =
Ji∏

j=1
Pij (18)

Pij represents the reliability of the jth hop link to the
edge server Ei. It can be seen from the above formula that
to ensure the reliability of the system, the reliability of
each subunit is higher and the number of series is less,
and the system is more stable. When only one multi-hop
communication link still cannot guarantee the reliability
that the whole system needs to meet, the partial flooding
algorithm proposed in this paper assumes that the num-
ber of all available edge servers isN, and only K(> 0,≤ N)

nodes are offloaded, and the system reliability is:

Ps = 1 −
K∏

i=1
[ 1 − PEi ] (19)

The reliability definition of the parallel system can be
derived that the better the reliability of each subunit,
the better the reliability of the system. Contrary to the
series system, the more parallel branches, the higher the

stability that the system can achieve. In the vehicular
self-organizing network environment, the communication
network based on the partial flooding algorithm equiv-
alent to a serial-and-parallel system, that is, each target
node and the source node may need to go through mul-
tiple hops before proceeding indirect communication. If
the system selects k nodes as the target node and Ji rep-
resents the serial cascade hop count of the ith branch, the
reliability of the serial-to-parallel system can be expressed
by the following formula:

Ps = 1 −
K∏

i=1
[ 1 −

Ji∏

j=1
Pij] (20)

Problem formulation
The current researches on the strategy focuses on offload-
ing tasks is selecting a node for offloading. In the in-
vehicle dynamic environment, the randomness of node
motion may cause the communication link to be bro-
ken, affecting the completion time of the task; though the
flooding strategy can greatly reduce the impact of vehi-
cle node mobility on computing offload, for it occupies
too much system resources, it will cause a certain waste of
resources. Therefore, selecting the appropriate number of
offloading nodes can improve the reliability of the system
while reducing the completion time of the task.
According to the above definition, the smaller the series

number Ji is, the more reliable the system is. The smaller
the parallel count k is, the less reliable the system is. The
more the number of offloading nodes selected, the more
reliable the system and the better the performance, but
the problem of excessive resource usage will be brought
about. However, if the number of target nodes is too small,
the reliability of the system is reduced, which may result
in the task being impossibly completed within the speci-
fied deadline. To balance the performance of the system
and the resource performance, each of the offloading can
get a certain gain, first, it is necessary to ensure the mini-
mum number of the series, and each parallel branch of the
communication link can be solved by the minimum hop
algorithm [24]. Furthermore, based on the above analysis,
we attach importance to the selection of the number of
offloaded nodes and how to choose, in order to improve
the success rate of task completion, and reduce the sys-
tem resource consumption, then the problem can be
expressed as:

Fig. 5 Series system logic diagram



Li et al. Journal of Cloud Computing: Advances, Systems and Applications            (2019) 8:21 Page 7 of 14

Fig. 6Multi-resource execution computing offloading

P1 : argmin
k

(Ps − PT )

s.t.Ps ≥ PT (a)
Tsum ≤ Td (b)

(21)

In the formula, argmin represents the value of the
variable when the objective function takes the minimum
value, that is, the value of the selected number of nodes
k can minimize the difference between the system reli-
ability Ps and the set certain threshold PT . The smaller
the number of offloading nodes selected, the smaller the
system overhead. The constraint condition (a) guarantees
that the reliability of the offloading systemmust be greater
than the set system reliability threshold, that is to say, the
influence of the reliability of the system on the offload-
ing cannot be neglected for the minimum value obtained;
the constraint condition (b) Considering the performance
of each resource, required that the time Tsum for the
selected k nodes to complete the task is enough to meet
the deadline, to reduce the failure rate of the task. Where
Tsum includes the communication time of the task, exe-
cution time and the waiting time of the task when the
communications link is broken, namely:

Tsum = tsum + twait (22)

The optimal solution
To satisfy constraint conditions (a) and (b), the influence
of node computing power and communication link reli-
ability on offloading should be considered. System insta-
bility can weaken the performance of the entire system to
some extent. If the selected node has strong computing
power, but the communication link reliability of the node
is poverty, the constraint condition (a) cannot be met. At
this time, the increase of the communication time may
cause the performance of the offloading system to fail to
achieve the expected offloading effect. Selecting a node

with a stable communication link performs the offloading,
but the computing power of the node is small, and the
task may not be completed within the deadline, and the
constraint condition (b) cannot be met, causing the task
failed. Partial flooding algorithm not only needs to con-
sider the computing power of the node, but also needs the
reliability of the communication link as another parameter
indicator that affects the offloading, and makes a compre-
hensive evaluation of the system. Since the value of the
communications link reliability, PEi ranges from 0 to 1,
when PEi = 1, the source node can transmit the task to
the target node within the available communication time,
and the communication quality will not affect the offload-
ing. The entire offloading process is equivalent to static
offloading; when 0 < PEi < 1, the communication link is
unstable, and the offloading performance will change with
the link reliability. Therefore, the impact of the reliability
of the communication link on the offloading performance
is Expressed as:

Cs = Ci × PEi , 0 <PEi ≤ 1 (23)

In the above formula, Ci is equal to the computing
power of node i; Cs is the node performance size after
equivalent processing of link reliability and node com-
puting power. In order to solve the minimum value of k
satisfying the condition, the Cs of each node are sorted in
descending order, and the node with the higher ranking
indicates that the comprehensive performance is better.
Therefore, the nodes are selected in the order of com-
prehensive performance, and Ps and Tsum are updated
according to equations (19), (20), and (22). The mini-
mum k value can be found to make the constraint con-
ditional and reduce the waste of system resources. With
the increase in the number of selected nodes, the values
of Ps and Tsum will be prone to converge. At this time,



Li et al. Journal of Cloud Computing: Advances, Systems and Applications            (2019) 8:21 Page 8 of 14

the number of offloading nodes has little effect on the
system performance, on the contrary, the effect of sev-
eral offloading nodes on system resource utilization has
been increased. It is obvious that the number of nodes
selected based on the partial flooding algorithm can meet
the requirements of performance and reduce the waste of
resources of the entire system.
If all the R times are combined and the above con-

straints are still not met, task selection executes locally;
if k nodes are selected, based on the flooding concept,
the task is uploaded to the selected node for computing.
Finally, the result is returned from the fastest completed
node to the source node. At this point, the node that has
not been completed discards the task cleans up the mem-
ory space and prepares for the next task. The algorithm
flow is shown in Algorithm 1.

Algorithm 1 The offloading algorithm based on partial
flooding.
Input: The set of available resources,En; The set of node

reliability,PEi ; The set of node computing power, Ci;
Output: The optimal number of offloading nodes,k∗;

The system reliability,Ps; The task completion
time,Tsum;

1: for each Ei ∈ En do
2: Cs(i) = Ci × PEi ;
3: end for
4: Sort nodes according to the obtained Cs(i) in descend-

ing order;
5: Select k by sorting results;
6: initial k = 1 and Ps = Cs(1);
7: while Ps < PT ,Tsum > Td do
8: k ← k + 1.
9: update Ps and Tsum;

10: end while
11: k∗ = k.
12: return k∗.

The computational complexity of the partial flood-
ing algorithm is O(n2). Compared with the flooding
algorithm, the partial flooding algorithm reduces the
scope of flooding and thus decrease the system overhead.
When there are multiple resources available, in the par-

tial flooding algorithm, as one of the reference data for
evaluating the number of offloading nodes, the resource
validity ue is defined as:

ue = uac
usum

(24)

uac indicates the size of the resource consumed by the
proxy resource whose execution result is adopted, and

usum indicates the total resource size consumed in the sys-
tem during the entire offloading process. Resource over-
head can be divided into the communication overhead
and the computational overhead. The communication
overhead of node i is the size of the network bandwidth
occupied during the offloading process, indicating the
amount of data actually passing through a certain network
during the communication time tcom:

ucom = BWi × tcom_i (25)

The node i computational overhead is the computa-
tional resource size consumed during the computation
time tex:

uex = Fi × tex_i (26)

Generally, the ratio of the communication time of the
task to the calculation (execution) time of the task is
defined as the Communication Computation Rate (CCR),
which can be expressed as:

CCR = (D/BW )

(C/Fi)
= tcom

tex
(27)

According to the CCR definition, when the calculation
amount C of the task is determined, the data amount of
the task can be derived by the above formula. Then we
can get the weight of the communication process and the
execution process when the task is offloaded:

ωc = tcom
tcom + tex

(28)

ωe = tex
tcom + tex

(29)

For different nodes, the offloading overhead is as shown
in the figure below. tup and tdown are the task upload time
and download time of the node respectively, tcom = tup +
tdown.
It is assumed that k nodes are selected as proxy

resources to perform computational offloading since the
execution result is downloaded from node a that first
completed the calculation to the source node. When the
result is successfully downloaded, the offloading is com-
plete. Therefore, the actual useful resource consumption
in the whole process is the computational overhead of
node a and the communication overhead of task upload-
ing and downloading, and the resource utilization of the
system can be obtained by the following formula:

ue = ωc × BWa × tcom_a
k∑

i=1
BWi × tup_i +

k∑
i=1

BWi × tdown_i
+ ωe × Fa × tex_a

k∑
i=1

Fi × tex_i

(30)

ωc and ωe are the weighting values of the communi-
cation process and the execution process, respectively,
obtained from the CCR. Fig. 6 shows an example of



Li et al. Journal of Cloud Computing: Advances, Systems and Applications            (2019) 8:21 Page 9 of 14

calculating the CCR, when the task on the node a is
completed, the node 2 and the node k have not yet com-
pleted the task download. Then, the download time of
this type of the node is from the task download time
of the node to the task completion time of the node a.
For nodes like node 1, since the node a task is com-
pleted, they have not started the task download process,
and the download time tdown = 0. Similarly, for the
execution time, when the task is completed at node a,
node 1 has not completed the calculation. Thereafter, the
execution time of the node is the time from the start
of the calculation of the node to the task completion
time of the node a, and if the node has not started the
calculation, the execution time tcom = 0. The larger ue
is, the less resources is wasted during the offloading pro-
cess and the higher the resource utilization. Compared
to the flooding offloading algorithm, the partial flood-
ing algorithm reduces the number of offloading nodes
and improves resource utilization under the condition of
guaranteeing constraints.

Performance evaluation
In this section, we will present simulation results to the
performance enhancement of the proposed partial flood-
ing algorithm based on link reliability and computing
power. Commonly used node movement models can be
divided into geographically restricted and geographically

unrestricted. To accurately simulate the simulation sce-
nario under the unmanned scene, this paper uses the
Manhattan network model as the moving model of the
vehicle node, as shown in Fig. 7.
In the Manhattan model, the movement of the vehi-

cle is limited by surrounding roads or else traffic lights
at buildings and intersections. When the vehicle arrives
at the intersection, the probability that the vehicle keeps
on moving in the same direction can be recorded as p1,
while the probability of traveling left and right are p2 and
p3, respectively. In this paper, the experimental simulation
environment simulates the environment of urban roads.
The simulation area is 2500m × 2500m, and one intersec-
tion is set every 500m in the x-axis and y-axis directions.
The intersection traffic light length is generated according
to a certain proportion, and there are 30 vehicle nodes in
the setting scene. In the predicted scene, the initial turn-
ing probability of the vehicle is: straight line p1 = 0.5, left
turn p2 = 0.25, right turn p3 = 0.25. Vehicles can com-
municate by multi-hop. The parameter settings are shown
in Table 1.
The experimental data of this experiment are the sys-

tem reliability Ps, the task offloading time tsum(including
the task communication time and the task computation
time), the time twait of the node waiting for the link
when the link is disconnected, the task completion time
tfinish, and the resource utilization rate ue. among them,

Fig. 7 Vehicle-based self-organizing network based on Manhattan motion model



Li et al. Journal of Cloud Computing: Advances, Systems and Applications            (2019) 8:21 Page 10 of 14

Table 1 Simulation parameter table

Parameter Value/unit Parameter Value/unit

Number of simulations 1000(time) Simulation area 2500 × 2500(m2)

Number of vehicles 30 Junction width 15(m)

High performance node ratio 20% end-to-end delay [100 500] (ms)

V2V single hop bandwidth 11(Mbps) communicable distance [200 300](m)

Task calculation [ 8 10]×106(MI) Vehicle speed range [15 30] (m/s)

Task data volume [50 100](M) Vehicle computing power 82332×[ 1 2] (MIPS)

Result data volume [50 100](M) High-performance vehicle computing power 82332×[ 5 6] (MIPS)

tfinish = tsum + twait . To evaluate the efficiency of the par-
tial flooding algorithm, we compared it to the following
scenarios.
Minimum hop algorithm: At the time of task generation,

the hop count of the current source node to the target
node is calculated, and the node with the smallest hop
count is selected as the target node for offloading.
Path prediction algorithm: By predicting themotion tra-

jectory of the node in the future time, the node with the
shortest task completion time is judged, and it is selected
as the target node.
As shown in Fig. 8, compared with the traditional

offloading algorithm based on the MH algorithm and the
prediction based offloading algorithm, the partial flooding
algorithm selects a group of nodes with better offloading
performance as target nodes. According to the content of
the system reliability mentioned above, it can be seen that
the partial flooding algorithm is effectively improved in
link reliability. The selected set of offloading nodes con-
stitutes a string-and-parallel system that is more reliable
than the tandem system that selects only one node. For the
flooding algorithm, since the task is offloaded to all nodes
to perform computation, the increase in parallel branches

increases the reliability of the system. However, the flood-
ing algorithm will lead to excessive waste of resources. For
the comparison of system resource utilization, a detailed
analysis will be made below.
Figure 9 shows that the reliability of the communica-

tion system increases as the number of offloading nodes.
And the task completion time decreases as the number of
nodes. It can be seen from the figure that the number of
nodes is selected from 2 to 4, the rate of system reliabil-
ity is gradually reduced, and the rate of task completion
time is gradually reduced. Although with the number of
nodes selected for offloading increasing, the system is
more reliable and the task completion time is smaller, the
system performance improvement effect is not obvious,
and the system resource occupancy rate is proportion-
ally increased. Therefore, the number of offloading nodes
is controlled to be about two to four depending on the
set threshold of system reliability. Compared with the tra-
ditional algorithm that only offloads tasks to one node,
the proposed algorithm not only improves the system
reliability but also reduces the task completion time.
As shown in Fig. 10, for the three items task offload-

ing time, waiting time and completion time, the proposed

Fig. 8 Comparison of system reliability of different offloading strategies



Li et al. Journal of Cloud Computing: Advances, Systems and Applications            (2019) 8:21 Page 11 of 14

Fig. 9 Resource utilization and complete time comparison

partial offloading algorithm based on the traditional algo-
rithm has different degrees of improvement compared
with the traditional computing offloading algorithm.
Specifically, as for the completion time of the task,

since the accuracy based on the prediction algorithm is
affected by the random motion of the vehicle, the pre-
diction result may be inaccurate with the actual situation.
This will result in the selected node not being the
actual optimal node. Therefore, the partial flooding
algorithm is improved by 35.04% compared with the
path prediction algorithm, and the minimum hopping
algorithm is the shortest distance of the current time.
In a dynamic environment, the distance between nodes

can vary greatly. And the performance of the selected
node may not be globally optimal. Therefore, the perfor-
mance comparison andminimum hopping algorithm pro-
posed in this paper improve the performance by 35.82%.
For the offloading time of the task, a group of nodes
with strong communication stability is selected as the
candidate offloading node based on the partial flooding
algorithm. It reduces the risk of the communication link
disconnected when the task is transmitted. Compared
with the algorithm such as MH and path prediction, the
performance of the partial flooding algorithm is improved
by 46.52% and 44.06%, respectively, which ensures the
stability of the V2V communication link. The time at

Fig. 10 Comparison of task completion performance of different offloading strategies



Li et al. Journal of Cloud Computing: Advances, Systems and Applications            (2019) 8:21 Page 12 of 14

Fig. 11 Resource utilization comparison

which the task waits for the upload and download to
start depends on the task generation time and the task
execution time where the node at the completion time
is calculated on the proxy resource. There is not much
difference in the algorithm.
By comparing these three performance indicators, it

prove that the partial offloading algorithm can effectively
improve the offloading performance. At the same time,
the experimental results illustrate the performance dif-
ference between the partial offloading algorithm and the
flooding algorithm is not large, and the advantage of the
completion time of the flooding offloading algorithm is
retained.
In multi-user multi-tasking systems, resource utiliza-

tion is one of the important factors affecting sys-
tem offload performance. Compared with the flooding

offloading strategy, we only select some better-performing
nodes as the target nodes for offloading, which improves
the system reliability, further, optimizes the effectiveness
of resource utilization.
As shown in Fig. 11, it is verified by multiple exper-

iments that the resource utilization rate of the partial
flooding algorithm corresponds to the case where the
number of selected offloading points in Fig. 12 is 2 or 3.
In comparison with the flooding offloading strategy, while
ensuring the completion time of the task, the number
of selected nodes is reduced, which saves the comput-
ing resources and communication resources required in
the offloading process. The algorithm proposed in this
paper improves the resource availability of the system,
and the offloading nodes that execute the task will have a
greater probability of being the final adopted node. Since

Fig. 12 Resource utilization and system reliability comparison



Li et al. Journal of Cloud Computing: Advances, Systems and Applications            (2019) 8:21 Page 13 of 14

the traditional algorithm only occupies one computing
resource, although its resource utilization rate is higher
than the partial flooding algorithm, the system reliabil-
ity is much lower than the partial flooding algorithm, as
shown in the figure below.
From the analysis in Fig. 12. Although the partial

flooding algorithm reduces the reliability of the system,
its resource utilization rate is 43.71% higher than that
of the flooding algorithm. For the traditional algorithm
(MH algorithm and path prediction algorithm) that only
offloads to one node, the partial flooding algorithm estab-
lishes a parallel system, which has greatly improved
the system reliability. That is to say, the partial flood-
ing strategy based on link reliability and node comput-
ing power balances the two performance parameters of
resource utilization and reliability of the system. At this
point, the offloading performance reaches an equaliza-
tion, which not only improves the reliability of the system,
but also ensures that the task is completed within the
deadline, and reduces the resource utilization of the
system. From the user’s point of view, the user ter-
minal can receive the result of the application execu-
tion more quickly, and improve the QoS. In addition,
from the perspective of the proxy resource, the waste of
resources is reduced, and the execution cost is greatly
reduced.

Conclusion
This paper studies the computational offloading strategy
in vehicle self-organizing network and optimizes the tra-
ditional computing offloading strategy. Compared with
the algorithm only offloading to one node, the partial
flooding algorithm proposed in this paper improves the
reliability of the system. At the same time, the influ-
ence of the high-speed motion of the vehicle node on
the execution and offloading is reduced. It also reduces
task completion time and enhances the user experience.
Different from the flooding algorithm, since the partial
flooding algorithm considers the performance param-
eters such as system reliability and node computing
ability, only the appropriate number of target nodes are
selected for execution and offloading. Therefore, the par-
tial flooding algorithm consumes less computational and
communication resources than the flooding algorithm
during the offloading process, which greatly reduces the
waste of system resources. The results show that the
partial flooding algorithm proposed in this paper can
guarantee the delay-sensitive task to complete in the
deadline, improve resource utilization, balance the sys-
tem performance and resource availability, and effec-
tively improve the offloading performance of the whole
system.
In future research, we will consider multi-target offload-

ing strategies with infrastructure to reduce the execution

energy consumption of task execution, maximize sys-
tem offloading performance, and minimize computation
completion time to optimize overall offloading overhead.

Acknowledgements
There is no acknowledgement.

Authors’ contributions
BL, ZP, and PH are the main researcher, MH, MA and GJ are coauthor. All
authors read and approved the final manuscript.

Authors’ information
Bo Li is a Professor at Yunnan University, received his Ph.D. degree in
Information and Communication Engineering from Huazhong University of
Science and Technology, China, in 2005.
Ziyi Peng and Peng Hou are master students under the advising of Bo Li.
Min He is an Associate Professor at Yunnan University, received her Ph.D.
degree in Computer Science from University of Electronics Science and
Technology of China, in 2006.
Marco Anisetti is an Associate Professor at the Università degli Studi di Milano.
He received his Ph.D. degree from Ottawa University in Computer Science in
2006.
Gwanggil Jeon is an Assistant Professor with the Department of Embedded
Systems Engineering, Incheon National University, Incheon, Korea. He received
his Ph.D. degree from the Department of Electronics and Computer
Engineering, Hanyang University, Seoul, Korea, in 2008.

Funding
This work has been institutionally supported by the National Natural Science
Foundation of China with grant number 61562092 and the Science and
Technology Plan of Yunnan Province with grant number 2014AB016.

Availability of data andmaterials
There is no supporting data available.

Competing interests
The authors declare that they have no competing interests.

Author details
1School of Information Science and Engineering, Yunnan University, Kunming
650500, Yunnan, China. 2Dipartimento di Informatica (DI), Università degli
Studi di Milano, Via Celoria 18, Milano 20133, (MI), Italy. 3School of Electronic
Engineering, Xidian University, Xi’an 710071, China. 4Department of Embedded
Systems Engineering, Incheon National University, Incheon 22012, Korea.

Received: 25 September 2019 Accepted: 28 November 2019

References
1. Ahmed B, Malik AW, Hafeez T, Ahmed N. Services and simulation

frameworks for vehicular cloud computing: a contemporary survey.
EURASIP J Wirel Commun Netw. 2019;2019(1):4.

2. Aliyu A, Abdullah AH, Kaiwartya O, Cao Y, Usman MJ, Kumar S, Lobiyal
DK, Raw RS. Cloud computing in vanets: Architecture, taxonomy, and
challenges. Iete Tech Rev. 2018;5(5):523–547.

3. Wu H-T, Horng G-J. Establishing an intelligent transportation system with
a network security mechanism in an internet of vehicle environment. IEEE
Access. 2017;5:19239–19247.

4. Arif M, Wang G, Bhuiyan MZA, Wang T, Chen J. A survey on security
attacks in vanets: Communication, applications and challenges. Veh
Commun. 2019100179. https://doi.org/10.1016/j.vehcom.2019.100179.

5. Abbas F, Fan P, Khan Z. A novel low-latency v2v resource allocation
scheme based on cellular v2x communications. IEEE Trans Intell Transp
Syst. 2018;20(6):2185–2197.

6. Huang C-M, Wu Z-Y, Lin S-Y. The mobile edge computing (mec)-based
vanet data offloading using the staying-time-oriented k-hop away
offloading agent. In: 2019 International Conference on Information
Networking (ICOIN). IEEE; 2019. p. 357–62. https://doi.org/10.1109/icoin.
2019.8718188.

https://doi.org/10.1016/j.vehcom.2019.100179
https://doi.org/10.1109/icoin.2019.8718188
https://doi.org/10.1109/icoin.2019.8718188


Li et al. Journal of Cloud Computing: Advances, Systems and Applications            (2019) 8:21 Page 14 of 14

7. Lin X, Li J, Yang W, Wu J, Zong Z, Wang X. Vehicle-to-cloudlet:
Game-based computation demand response for mobile edge
computing through vehicles. In: 2019 IEEE 89th Vehicular Technology
Conference (VTC2019-Spring). IEEE; 2019. p. 1–6. https://doi.org/10.1109/
vtcspring.2019.8746335.

8. Naresh M, Raje A, Varsha K. Link prediction algorithm for efficient routing
in vanets. IEEE; 2019. p. 1156–1161. https://doi.org/10.1109/iccmc.2019.
8819723.

9. Kim W, Kang CM, Son YS, Lee S-H, Chung CC. Vehicle path prediction
using yaw acceleration for adaptive cruise control. IEEE Trans Intell Transp
Syst. 2018;19(12):3818–3829.

10. Ye M, Guan L, Quddus M. Mpbrp-mobility prediction based routing
protocol in vanets. IEEE; 2019. p. 1–7. https://doi.org/10.1109/commnet.
2019.8742389.

11. Lei T, Wang S, Li J, Yang F. A cooperative route choice approach via
virtual vehicle in internet of vehicles. Springer; 2016. p. 194–205. https://
doi.org/10.1007/978-3-319-51969-2_16.

12. He X, Zhao H, Yu BJ, Zhu J. Design and implementation of minimum
hop routing algorithm with reliability assurance for wsn. In: Advanced
Materials Research, vol. 268. Trans Tech Publ; 2011. p. 975–980. https://
doi.org/10.4028/www.scientific.net/amr.268-270.975.

13. Fan SP, Bao-Ying MA, Gao CG, Yao NM, University MN. Minimum hop
routing algorithm for clustering wireless sensor networks. J Chin Comput
Syst. 2014;35(8):1775–1779.

14. Le HQ, Al-Shatri H, Klein A. Efficient resource allocation in mobile-edge
computation offloading: Completion time minimization. IEEE; 2017.
p. 2513–2517. https://doi.org/10.1109/isit.2017.8006982.

15. Toh C-K, Bunchua S. Performance evaluation of flooding-based and
associativity-based ad hoc mobile multicast routing protocols. IEEE; 2000.
p. 1274–1279. https://doi.org/10.1109/wcnc.2000.904815.

16. Li J, Blake C, De Couto DSJ, et al. Capacity of ad hoc wireless networks. In:
Proceedings of the 7th annual international on mobile computing and
networking. New York: ACM; 2001. p. 61–69.

17. Eiza MH, Ni Q. An evolving graph-based reliable routing scheme for
vanets. IEEE Trans Veh Technol. 2013;62(4):1493–1504.

18. Chaturvedi SK. Network reliability: measures and evaluation. New York:
John Wiley & Sons; 2016.

19. Khanna G, Chaturvedi S, Soh S. Reliability evaluation of mobile ad hoc
networks by considering link expiration time and border time. Int J Syst
Assur Eng Manag. 2019;10(3):399–415.

20. Ünlü B, Özceylan B, Baykal B. Ipbm: an energy efficient reliable
interference-aware periodic broadcast messaging protocol for manets.
Wirel Netw. 2019;25(5):2769–2787.

21. Ylianttila M, Mäkelä J, Pahlavan K. Analysis of handoff in a location-aware
vertical multi-access network. Comput Netw. 2005;47(2):185–201.

22. Su W, Lee S-J, Gerla M. Mobility prediction and routing in ad hoc wireless
networks. Int J Netw Manag. 2001;11(1):3–30.

23. Zhang Y, Zhao J, Cao G. Roadcast: a popularity aware content sharing
scheme in vanets. ACM SIGMOBILE Mob Comput Commun Rev.
2010;13(4):1–14.

24. Peng S, Chai R, Chen Q, Qin Y. Minimum end-to-end transmission delay
based routing algorithm for vanets. IEEE; 2017. p. 176–181. https://doi.
org/10.1109/icait.2017.8388910.

25. Hussain S, Keung J, Khan AA, Ahmad A, Cuomo S, Piccialli F, Jeon G,
Akhunzada A. Implications of deep learning for the automation of design
patterns organization. J Parallel Distrib Comput. 2018;117:256–266.

26. Chianese A, Marulli F, Piccialli F. Cultural heritage and social pulse: A
semantic approach for ch sensitivity discovery in social media data. IEEE;
2016. p. 459–464. https://doi.org/10.1109/icsc.2016.50.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://doi.org/10.1109/vtcspring.2019.8746335
https://doi.org/10.1109/vtcspring.2019.8746335
https://doi.org/10.1109/iccmc.2019.8819723
https://doi.org/10.1109/iccmc.2019.8819723
https://doi.org/10.1109/commnet.2019.8742389
https://doi.org/10.1109/commnet.2019.8742389
https://doi.org/10.1007/978-3-319-51969-2_16
https://doi.org/10.1007/978-3-319-51969-2_16
https://doi.org/10.4028/www.scientific.net/amr.268-270.975
https://doi.org/10.4028/www.scientific.net/amr.268-270.975
https://doi.org/10.1109/isit.2017.8006982
https://doi.org/10.1109/wcnc.2000.904815
https://doi.org/10.1109/icait.2017.8388910
https://doi.org/10.1109/icait.2017.8388910
https://doi.org/10.1109/icsc.2016.50

	Abstract
	Keywords

	Introduction
	Related work
	System model and problem formulation
	The model of computing offloading
	System model
	Offloading process
	Problem analysis
	Link reliability analysis
	Problem formulation


	The optimal solution
	Performance evaluation
	Conclusion
	Acknowledgements
	Authors' contributions
	Authors' information
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher's Note

