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ABSTRACT 

 
The challenge in livestock sector is to maintain a high productivity and food security in a 

sustainable way, reducing the use of antimicrobials. For these reasons, the use of sustainable dietary 

interventions seems to be a valuable approach in order to enhance animal performance, health and 

product quality. So, a nutritional approach, using dietary integration with biotechnological bioactive 

compounds or sustainable integration are investigated. The aim of this thesis was to: 1) summarize 

the dietary intervention with seaweed in pig specie 2) evaluate the effects of dietary integration with 

biotechnological extract in post weaning piglets on growth, immune parameters and oxidative status 

3) evaluate the effectiveness of brown seaweed and polyphenols mixture on rabbit does 

reproductive performances and antioxidant status and 4) evaluate the effect of brown seaweed and 

polyphenols mixture on growth and meat quality parameters in rabbit. 

The present experimental studies highlight that dietary manipulation with natural substances is a 

useful approach to improve rabbits and piglet’s health, productive parameters and product quality in 

a sustainable way. In particular, the use of dietary biotechnological extract and brown seaweed and 

plant polyphenols mixture was investigated. This data highlight that natural extracts are effective 

candidates to improve animal health, reducing the use of antibiotics. This will contribute to the 

development of a sustainable production system, in order to enhance animal health, product quality 

and to reduce the environmental impact, as recommended by the One health approach. Considering 

the heterogeneity of herbs, spices and botanicals, further investigations are required to deepen our 

knowledge about the mechanism of actions and dosage of seaweeds and polyphenols mixture. 
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RIASSUNTO 
 

La principale sfida nel settore zootecnico è mantere un’elevata produttivita e la sicurezza degli 

alimenti in modo sostenibile, riducendo l’utilizzo degli antimicrobici. Diverse strategie alimentari 

risultano indispensabili per il raggiungimento di questi obiettivi, in quanto sono in grado di 

migliorare le performance e la salute degli animali e la qualità dei prodotti. In particolare, sono state 

valutate diverse integrazioni dietetiche con estratti naturali e molecole bioattive. L’obiettivo della 

tesi è stato: 1) Studiare l’utilizzo di integrazioni dietetiche con alghe nella specie suina. 2) Valutare 

gli effetti dell’integrazione dietetica nel suinetto in post svezzamento con estratti naturali 

biotecnologici su performance di crescita, parametri immunitari e lo status antiossidante. 3) 

Valutare gli effetti dell’integrazione dietetica con alghe brune e polifenoli su parametri riproduttivi 

e status antiossidante delle coniglie. 4) Valutare gli effetti dell’integrazione dietetica con alghe 

brune e polifenoli sulle performance di crescita e qualità della carne in conigli in accrescimento. 

 

Gli studi mostrano che l’integrazione dietetica con sostanze naturali riuslta un approccio sostenibile 

per migliorare la salute, i parametri produttivi e la qualità dei prodotti nella specie suina e cunicola. 

In particolare, sono state studiate alcune integrazioni dietetiche con estratti biotecnologici e con una 

miscela di alghe brune e polifenoli. I risultati hanno dimostrato l’efficacia di queste sostanze nel 

modulare positivamente la la salute degli animali, con conseguente riduzione di antibiotici.  

Tali strategie alimentari possono quindi contribuire allo sviluppo di un sistema produttivo 

sostenibile migliorando la salute animale e la qualità dei prodotti, riducendo l’impatto ambientale 

come richiesto dall’approccio One Health. 

Considerando l’eterogeneità delle sostanze naturali, si rendono necessarie ulteriori indagini per 

approfondire le conoscenze relative ai diversi meccanismi d’azione e ai corretti dosaggi da 

applicare nelle diverse specie d’interesse zootrecnico. 
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In livestock animal welfare, health, growth performance, sustainability and meat quality are gaining 

increasing attention not only on the part of the scientific community but also breeders, food 

producers and consumers. 

Disease level is of considerable importance in welfare assessments, and susceptibility to disease is 

also an important indicator. Management, housing system, stressors, “overcrowding on” farms, 

environmental conditions must be considered in order to improve health, growth performance and 

meat quality parameters in different species of pigs, rabbits, cows and poultry. 

For years farmers have used antibiotics to improve the growth performance of animals, as growth 

promoters. Since the ban on the use of synthetic substances, there has been a big increase in animal 

death and diseases, and thus alternative solutions are needed to enhance animal health. Zinc oxide is 

an alternative, but there will be in EC ban on the pharmacological dosages of zinc from zinc oxide 

from 2022.  

Probiotics, prebiotics, organic acids, plant extracts, and enzymes therefore present an opportunity to 

enhance gut health and the productive and reproductive performance of sows, piglets and swine 

when used as dietary supplements.  

Researchers have focused on natural substances that have probiotic, prebiotic, antimicrobial, 

immuno-modulating and antioxidant actions such as seaweeds, polyphenols aimed at improving 

animal health, growth performance and meat quality for consumers in animal production. 

 

 

1.1 ANTIBIOTICS AS GROWTH PROMOTERS IN LIVESTOCK 

  

The benefits of using antimicrobials as antimicrobial growth promoters (AGPs) were first reported 

in 1950 when two researchers noticed that small subtherapeutic doses of penicillin and tetracycline 

could enhance weight gain (Stokstad and Jukes, 1950). AGPs are widely added to animal feed to 

stimulate growth, rapidly increase productivity, and minimize mortality by preventing infections 

(Van Den Bogaard et al., 2000). In the United States, antimicrobials are also regularly used to treat 

infections or illnesses in food-producing animals. Food animals are especially susceptible to 

opportunistic microbes (usually benign or commensal but which can cause disease given the right 

circumstances), such as bacteria. Thus they are often exposed to antimicrobials, such as antibiotics, 

to treat and prevent infectious bacterial diseases and/or to promote growth and improve feed 

efficiency.  

Many of these antimicrobials are identical to or closely resemble drugs used in humans (McEwen 

and Fedorka-Cray, 2002). Typically, the antibiotic is distributed to the animals in the form of 

livestock feed supplements, as it is more efficient to mass-medicate entire groups as opposed to 

individual treatments.The use of antibiotics has a drastic effect on the development and occurrence 

of antibiotic resistance in animals and humans (Devirgiliis, Zinno, & Perozzi., 2013; Barton., 2000). 

The World Health Organization and the World Organization for Animal Health have encouraged 

the health, agriculture, and veterinary sectors to reduce the use of AGPs (Aidara-Kane, 2012). 
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1.2 DEVELOPMENT OF ANTIBIOTIC RESISTANCE 

 

The global situation concerning antibiotic resistance is very alarming. Antibiotics were first studied 

in the late 1800s and it was in the early 1900s that penicillin was first discovered (Abraham and 

Chain, 1940). Since the application of penicillin in the 1940s, antibiotics have played an 

unparalleled role in the prevention, control, and treatment of infectious diseases for humans and 

animals. Unfortunately, today the increasingly widespread use (especially the misuse) of antibiotics 

have led to the rapid appearance of antibiotic resistant strains: more and more infections are caused 

by microorganisms that fail to respond to conventional treatments. In fact, bacteria have a notable 

genetic plasticity that allows them to respond to a wide array of environmental threats, including the 

presence of antimicrobials. Bacterial cells derived from a susceptible population are able to develop 

gene mutations that negatively affect drug activity, causing cell survival in the presence of 

antimicrobial molecules. The mechanism of antimicrobial resistance (AMR) has been extesnively 

described by Munita et al., (2016). 

Antibiotic usage in intensive livestock systems has been associated with AMR, and the WHO has 

declared it a risk for both human and animal health (WHO, 2000). The over‐use of antibiotics has 

resulted in the development of AMR in animal microbial populations, with the potential of 

transferring antibiotic resistance genes from animal to human microbiota (Economou and Gousia, 

2015).  

The use of antibiotics as growth promoters has thus been prohibited in many countries, with 

Sweden being the first to ban antibiotics in 1986. Denmark subsequently banned their use in 1998 

and was followed by the European Union which introduced a total ban in 2006 (Castanon, 2007). 

The prohibition on the subtherapeutic use of antibiotics in animal feed resulted in decreased animal 

production (Cheng et al., 2014) due to higher rates of infections in livestock and has also increased 

the risk of food‐borne infections in consumers (Hao et al., 2014). Ten years later, prophylactic 

antibiotics are still used at high levels in many countries to sustain animal health and welfare 

(Aarestrup, 2012; Callens et al., 2012). 

AMR is in rapid evolution and greatly affects the efficacy of antimicrobial treatment of patients 

infected with multi-drug resistant organisms. Therefore, AMR is currently considered to be one of 

the major public health threats for the near future. Measures are needed worldwide to reduce the use 

of antimicrobials. In the last few decades, a new approach call “One Health” has been adopted. This 

concept recognizes that the health of people is connected to the health of animals and the 

environment. Physicians, veterinarians, ecologists, and many others have been working together to 

monitor public health threats and to learn about how diseases spread among people, animals, and 

the environment. 

It is thus crucial to find a way to improve livestock health and welfare, to decrease antimicrobial use 

and to produce safe products in a sustainable way. The research and development of innovative 

strategies is essential for improving animal health by reducing antimicrobial residues and antibiotic-

resistant microorganisms and ensuring consumer health. The improvement in livestock health and 

welfare, through approaches such as the development of novel non-drug approaches is key in order 

to guarantee the sustainable development of livestock breeding. Several molecules have also been 

studied to help overcome the problems associated with the ban of antibiotics in livestock production 

(Cheng et al., 2014).  

 

https://onlinelibrary.wiley.com/doi/full/10.1111/jam.13690#jam13690-bib-0013
https://onlinelibrary.wiley.com/doi/full/10.1111/jam.13690#jam13690-bib-0015
https://onlinelibrary.wiley.com/doi/full/10.1111/jam.13690#jam13690-bib-0035
https://onlinelibrary.wiley.com/doi/full/10.1111/jam.13690#jam13690-bib-0015
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1.3 ALTERNATIVE SOLUTIONS TO THE USE OF ANTIBIOTICS 

 

Feed and feeding strategies play a key role in affecting animal health and welfare. To overcome the 

increased mortality and morbidity rate due to the ban of antibiotics, a number of alternatives have 

been proposed (Seal et al., 2013). These include immunomodulatory agents, probiotics and 

prebiotics, plant extracts, and enzymes (Cheng et al., 2014). There are also several substances that 

improve the immune function and consequently the host’s resistance to diseases. Since the 1990s, 

vitamins (A, E, C), nucleotides, essential oils and microelements (selenium, copper and zinc) have 

been used as immunostimulants. In addition, probiotics, plants and their extracts have been widely 

studied due to their healthy proprieties  (Cheng et al., 2014). 

 

1.4 PROBIOTICS AND PREBIOTICS 

 

In the last few decades, the interest in alternative solutions to the use of antibiotics in livestock 

nutrition, have assumed great importance. Various strategies are used to reduce the use of synthetic 

substances with significant impacts on animal health, and reductions in the spread of disease 

(Griggs and Jacob, 2005).  

However, the use of a combination of herbs and probiotics as functional feeds has not been widely 

studied. Although individual herbs and probiotics are highly effective, their combinations may 

enhance their performance through synergism (Prakasita et al., 2019). Prevention in the form of an 

immunization program by vaccination could limit the amount of antibiotics needed. 

In the last 15 years, the use of probiotics has greatly increased. The US National Food Ingredient 

Association defines probiotics (direct-fed microbials) as a source of live naturally-occurring 

microorganisms, including bacteria, fungi and yeast (Miles and Bootwalla, 1991) 

The term “probiotics” has been amended by the FAO/ WHO to “Live microorganisms”, which, 

when administered in adequate amounts, confer a health benefit on the host (Fuller, 1989). 

Probiotics are also defined as live microorganisms with a health benefit for the host when 

administered in appropriate and regular quantities. Once ingested, the probiotic microorganisms 

modulate the balance and activities of the gastrointestinal microbiota, whose role is fundamental for 

gut homeostasis. Numerous factors, such as dietary and management constraints, affect the structure 

and activities of gut microbial communities, leading to impaired health and performance in 

livestock animals. The literature describes the important benefits of yeast and bacterial probiotics on 

the gastrointestinal microbial ecosystem in ruminants and monogastric animals (equines, pigs, 

poultry, fish), as well as their implications in terms of animal nutrition and health. (Chaucheyras-

Durand and Durand, 2010) 

Several lactic acid bacteria (LAB) strains belonging to the genera Lactobacillus, Bifidobacterium, 

and Enterococcus, are considered beneficial to the host and have thus been used as probiotics and 

included in several functional foods (Castro et al., 2015). Probiotics enhance intestinal health by 

stimulating the development of a healthy microbiota (predominated by beneficial bacteria), 

preventing enteric pathogens from colonizing the intestine, increasing digestive capacity, lowering 

the pH, and improving mucosal immunity. It is important for the introduced microbes not to disturb 

the indigenous population, which has already adapted to the environment of the gastrointestinal 

tract to work both for and with the host (Tannock, 2007). 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4026712/#B151
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4026712/#B111
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4026712/#B111
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Prebiotics are non-digestible food ingredients which, when consumed in sufficient amounts, 

selectively stimulate the growth and/or activity of one or a limited number of microbes in the gut. 

The impacts of orally-administered probiotics (in this case, referred to as symbiotics) and the 

intrinsic beneficial bacteria of the gastrointestinal tract can be enhanced by the use of prebiotics 

(Gibson et al., 2004)The most common prebiotics used to yield health benefits are carbohydrate 

substrates, such as oligosaccharides or dietary fiber with a low digestibility, which enhance the 

beneficial growth organisms in the gut, or function as competitive attachment sites of pathogenic 

bacteria. Fructooligosaccharides (FOSs) and mannanoligosaccharides (MOSs) are two of the most 

studied prebiotics. Some cereal crops and onions contain FOSs, whereas MOSs are obtained from 

the cell walls of yeast (Saccharomyces cerevisiae). Several studies on the use of prebiotics in 

animal production have highlighted the potential benefits of FOSs and MOSs (Waldroup et al., 

1993). 

 

1.5 ORGANIC ACIDS 

 

For several decades organic acids have been studied to reduce bacteria in livestock production as 

key to ensuring feed preservation and safety. The majority can be added to the drinking water or in 

feed. The use of organic acids in animal nutrition may help to reduce the intestinal colonization of 

Salmonella (Van Immerseel et al., 2006). The supplementation effects of organic acids in the water 

or feed on campylobacter colonization are reported in a study by Chaveerach et al., 2004. They 

observed certain blends, such as formic, and acetic, and found that propionic acids, in ratios of 1:2:3 

and 1:2:5, respectively, were more effective at inhibiting the growth of Campylobacter than the 

commercial products that they tested. At the end of the experiment they concluded that adding 

organic acids to drinking water reduced the transmission of bacteria in the flock. 

The use of acetic acid from vinegar in an in vitro study inhibited the growth of several E. Coli and 

S. typhimurium bacteria, with positive effects and a reduction in bacteria (Entani et al., 1998). 

Among a variety of candidates for the replacement of antibiotic growth promoters, organic acids are 

promising alternatives (Mroz, 2005). 

Organic acids are known to: 

-reduce the buffering capacity of diets,  

-control harmful microorganisms in digestive and respiratory organs by reducing pH levels in the 

stomach and gut,  

-promote the availability of nutrients in the diet and their absorption and digestion, 

-improve immune responses in poultry (Yesilbag and Colpan, 2006; Park et al., 2009; Abudabos et 

al., 2014), which can make a great contribution to the profitability in poultry production and also 

provide people with healthy and nutritious poultry products. 

However, an important limitation is that organic acids are rapidly metabolized in the foregut  (Khan 

and Iqbal, 2016).  

Matrix-coating or encapsulation techniques are a good solution to protect organic acids for targeted 

delivery to different gut segments. A supplementation blend of a dietary matrix-coated organic acid 

maintains the optimum pH in the intestinal tract and improve nutrient digestibility (Upadhaya et al., 

2014). 

Other possible antibiotic replacers are medium-chain fatty acids (MCFAs), which are a type of acid 

with a strong antibacterial activity against Gram-positive cocci (Bergsson et al., 2001) and 
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Escherichia coli (Skřivanová et al., 2009). Such positive changes (e.g., greater villus height) may 

result in improved performance of the poultry. In addition, organic acids could improve the 

antibacterial effects of MCFAs (Zentek et al., 2011).  

A combination of organic acids and MCFAs has beneficial effects on intestinal microecology in 

piglets (Zentek et al., 2013; Kuang et al., 2015) and nutrient digestibility in laying hens (Lee et al., 

2015). They make a fundamental contribution to feed hygiene, as they suppress the growth of 

mould and bacterial pathogens, thus allowing a better use of feed resources. Organic acids are 

currently also the most cost-effective and eco-efficient performance-enhancing option available to 

the feed industry. However, due to their antimicrobial activity, organic acids and their salts not only 

help to preserve feed and silages, they also reduce bacterial content and maintain the nutritional 

value of the feed to ensure animal performance. In addition, they improve nutrient digestibility - 

which in turn leads to stable animal health and increased performance. In animal husbandry, 

reduced feed conversion rates, improved daily gain and a reduced incidence of diarrhoea all 

contribute to an enhanced economic return, through lower feed costs and reduced time-to-market 

weight (Freitag, 2007). 

 

1.6 NATURAL EXTRACTS IN ANIMAL NUTRITION 

Interest in natural substances such as plants, herbs, polyphenols and spices has increased in 

multidisciplinary fields including animal nutrition, health/well–being, and food. 

World wide, interest in herbal products has grown significantly, in fact cattle, horses, sheep, goats 

and pigs represent about 31%, 14%, 17%, 17% and 7%, respectively, of the animals treated with 

herbal remedies, followed by poultry (9.1%), dogs (5.3%) and rabbits(4.3%). The search for 

alternatives to antibiotic growth promoters and the increased demand for natural substances by 

consumers have stimulated the study of the effects and their active compounds in animal feed. 

Public awareness of the potential health risks associated with the use of in–feed antibiotics, growth 

hormones and various synthetic pharmaceuticals, combining natural approaches to food production, 

have changed consumer attitudes (Greathead, 2003).  

For centuries, herbs and spices have been known to be rich sources of molecules with several 

biological properties and thus could become a good solution for reducing the use of antibiotics. 

Plants have become of great importance in animal nutrition due to their high content in bioactive 

molecules, and they produce a wide range of active principles with a low molecular weight, known 

as secondary metabolites. Through secondary biochemical pathways, plants synthesize several 

compounds, often in defence against damage (Reymond et al., 2000). Some of the roles of 

secondary metabolites are relatively simple: they have a protective role (e.g. antioxidant, free 

radical–scavenging) and defend the plant against microorganisms such as bacteria, fungi, and 

viruses. Some of the roles of secondary metabolites are relatively simple: they have a protective role 

(e.g. antioxidant, free radical–scavenging) and defend the plant against microorganisms such as 

bacteria, fungi, and viruses. The range of secondary metabolites can be subdivided into distinct 

groups based on their chemical structure; alkaloids, terpenes, and phenolic compounds. 

Many papers have focused on the clarification of the biochemical structures and their positive role 

as phytochemicals. Phenolic compounds, phenylpropanoid glycosides and extracted from plants, 

have been reported to have many antioxidant, anti–microbial and anti-inflammatory activities 

(Manach et al., 2004; Li et al., 2014).  
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Plants and their extracts are therefore being increasingly used in animal nutrition as appetisers, 

digestive stimulants, stimulants of physiological functions, colorants, and antioxidants, as well as 

for the prevention and treatment of certain pathological conditions. In rabbits, many studies have 

been carried out in order to evaluate the effects of different polyphenols from grape pomace 

(Sgorlon et al., 2005), green tea (Eid et al., 2010). In fact, dietary strategies improve the productive 

performance in intensively-reared animals. 

 

1.6.1 ANTIOXIDANT ACTIVITIES 

In response to recent claims that synthetic antioxidants have possible toxicological effects and the 

increased interest of consumers in purchasing natural products, the meat industry has been 

investigating sources of natural antioxidants (Karre et al., 2013). 

Antioxidants such as vitamin C, vitamin E, carotenoids, and flavonoids have been identified in 

many natural food products. These substances are used to prevent the oxidative deterioration of 

foods and thus minimize the oxidative damage in humans, enhancing health and protecting the 

nutrients during storage. Plants contain a high concentration of redox-active antioxidants, such as 

polyphenols, carotenoids, tocopherols, glutathione, ascorbic acid and enzymes with antioxidant 

activities. Many natural antioxidants such as rosemary and spice extracts are more active than 

synthetic antioxidants, and their use in food needs to be explored. In 2010, the European Union 

(directives 2010/67/EU and 2010/69/EU) authorized the use of rosemary extracts as new food 

additives for use in foodstuffs, and the applications specified by the directives include meats.  

The majority of papers describe in vitro investigations of the potential antioxidant mechanisms (Al–

Mariri and Safi, 2014), however in farm animals antioxidants can have a direct influence on the 

product quality. Several studies have reported that dietary plant polyphenols in pigs enhance the 

oxidative stress responses of the organism (Pastorelli et al., 2012; Rossi et al. 2013). 

Other studies have shown that dietary supplementations with plant extracts improve the animal’s 

antioxidant status and consequently the meat and derived product quality. Dietary supplementation 

with plant extracts containing verbascoside improved the plasma oxidative status in pigs (Pastorelli, 

et al. 2012; Rossi et al. 2013) and in Lacaune ewes (Casamassima, et al. 2012). This antioxidant 

status effect is related to the increased serum levels of vitamins A and E (Palazzo et al., 2011). 

In sows, Amrik and Bilkey (2004) found an improvement in the productive performance, feed 

conversion, feed intake, in sows fed with oregano. This natural substance also controls diarrhoea 

syndrome in piglets and also reduces the mortality rate. 

The use of antioxidants in animal feeding reduces lipid oxidation in pork (Corino at al., 1999), 

rabbit and chicken meat quality. Polyphenols show antioxidant activities compared to other 

phenolic compounds. Rossi et al. (2009) investigated and compared the antioxidant activity of 

extracts from Labiatae and Oleaceae cell cultures and a natural Verbenaceae extract on pig whole 

blood. Another study in piglets showed the positive effects of verbascoside and teupolioside with an 

improvement in oxidative stability (Corino et al., 2007). 
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1.6.2 ANTIMICROBIAL ACTIVITIES 

Several plant extracts have revealed a wide spectrum of antibacterial activities against 

microorganisms, including Escherichia, salmonella, staphylococcus (Dorman and Deans, 2000). 

Various plant extracts have important antimicrobial abilities, and most studies on this topic are in 

vitro, however a few studies have been carried out with live poultry, rabbits and piglets. Natural 

extracts could be used to control Clostridium perfringens, the bacterium that causes nectrotic 

enteritis in broilers (Mitsch et al., 2004). Thymus vulgaris, Curcuma longa, Piper nigrum, 

Origanum vulgare have been used in various studies. For example, thyme inhibits the growth of S. 

typhimurium and E.coli when added in animal nutrition (Karapinar and Aktug, 1987; Helander et 

al., 1998). Carvacron, another component of the essential oil of oregano has been shown in vitro to 

be a strong inhibitor of E. coli (Friedman et al., 2002). Cinnamon oil has also been shown in vitro to 

have an antimicrobial activity against E. coli (Friedman et al., 2004) and garlic (Allium sativum) has 

been shown in vitro to have antimicrobial properties. In recent years, the growing interest in 

evaluating plant constituents and extracts with their properties and good agents constitute an 

interesting research field. In fact, thyme, oregano, and garlic should be of particular interest to 

producers and researchers.  

1.6.3 ANTI-INFLAMMATORY ACTIVITIES 

 

Inflammation usually occurs when viruses or fungi invade the body in particular tissues and/or 

circulate in the blood (Isailovic et al., 2015). Hundreds of research and review articles have been 

published regarding the anti-inflammatory activities of plants, involving both in vitro and in vivo 

study results. The Black cumin (Nigella sativa) seed oil fraction contains thymo-quinone, which 

exerts anti-inflammatory effects in vitro (Bordoni et al., 2019). 

The anti-inflammatory activities of natural substances such as flavones extracted from the 

Eucommia ulmoides leaf have shown that the dietary supplementation of this substance can 

alleviate the inflammatory response in piglets (Daixiu et al., 2017). 

The most established anti-inflammatory effects of mushrooms containing polysaccharides, 

proteoglucans, terpenoids, phenolic compounds, steroids, and lectins are highlighted by Elsayed in a 

review. One of the aims of this study has shown that mushrooms have significant anti-inflammatory 

properties, in fact the biologically active compounds and the important mechanisms of action of this 

natural source are well described and are exhibited through the downregulation of different types of 

inflammatory activities (Elsayed et al., 2014). 
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CHAPTER 2  

AIM 

 
Take in account the importance of functional nutrition in enhancing animal performance and health 

in livestock, the aim of the present work is to deepen the knowledge about the effects of dietary 

integration with natural bioactive compounds in pigs and rabbits. Considering that the consumers 

and institutions need is moving towards a sustainable agrifood sector, the experimental trials 

regarding the dietary supplementation with biotechnological extract in piglets (second study) and 

dietary integration with different levels of brown seaweed and plant polyphenols mixture in does 

and growing rabbit (third and four studies). Moreover, a review about dietary intervention with 

seaweed in pig specie was performed (first study), to focus the attention on a sustainable and 

innovative integration in livestock. 
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3.1 SIMPLE SUMMARY 

In pig nutrition, alternative and safe supplements are needed to enhance the pigs’ health and 

welfare. Natural feed components, such as herbs and plant extracts, are of great importance in 

animal nutrition, and marine macroalgae can be considered as supplements positively influence 

animal health parameters. Seaweeds possess several bioactive molecules that are studied for their 

prebiotic, anti-microbial, antioxidant, anti-inflammatory and immunomodulatory effects. Seaweed 

benefits are related to their content of sulfated polysaccharides, phlorotannins, diterpenes, omega-3 

polyunsaturated fatty acids, minerals and vitamins. This paper reviews the following biological 

functions of seaweeds and seaweed extracts in pig nutrition: prebiotics, anti-microbial, antioxidant, 

anti-inflammatory and immunomodulatory effects, promoting intestinal well-being and improving 

digestibility. 

3.2 ABSTRACT 

Seaweeds are macroalgae, with different sizes, colors and composition. They consist of brown 

algae, red algae and green algae, which all have a different chemical composition and bioactive 

molecule content. The polysaccharides, laminarin and fucoidan are commonly present in brown 

seaweeds, ulvans are found in green seaweeds and, red algae contain a large amount of 

carrageenans. These bioactive compounds may have several positive effects on health in livestock. 

In order to reduce the antimicrobials used in livestock, research has recently focused on finding 

natural and sustainable molecules that boost animal performance and health. The present study thus 

summarizes research on the dietary integration of seaweeds in swine. In particular the influence on 

growth performance, nutrients digestibility, prebiotic, antioxidant, anti-inflammatory, and 

immunomodulatory activities were considered. The review highlights that brown seaweeds seem to 

be a promising dietary intervention in pigs in order to boost the immune system, antioxidant status 

and gut health. Data on the use of green seaweeds as a dietary supplementation seems to be lacking 

at present and merit further investigation. 

3.3 INTRODUCTION 

Marine-derived bioactive compounds are valuable as food and feed ingredients due to their  

biological activities (Rajauria et al., 2015). The term “algae” includes photosynthetic organisms that 

are usually divided in microscopic unicellular organisms, identified as microalgae and multicellular 

large-size organisms defined as macroalgae or seaweed.  Microalgae usually grow in seawater and 

freshwater environments and can be prokaryotic, similar to cyanobacteria (Chloroxybacteria), or 

eukaryotic, similar to green algae (Chlorophyta). Diatoms (Bacillariophyceae), green algae 

(Chlorophyceae), and golden algae (Chrysophyceae) are the most abundant but blue-green algae 

(Cyanophyceae) are also defined as microalgae (Guedes et al., 2011). The bioactive molecules of 

microalgae are used as food and feed supplements (Garcia et al., 2017). Seaweeds are marine 

organisms and comprise thousands of species, which are classified on the basis of their 

pigmentation: brown seaweeds (Phaeophyceae), red seaweeds (Rhodophyceae) and green seaweeds 

(Chlorophyceae). There are around 1800 species of brown seaweeds include, only 1% of which are 

recognized from freshwater and the size range varies from 20 m to 30 cm long. The brown color of 

these algae is related to the main content of carotenoid fucoxanthin, which masks β-carotene, 



28 
 

violaxanthin, diatoxanthin, and chlorophyll. The main reserves are laminarin, fucoidans, and 

alginates, and the cell walls are composed of cellulose and alginic acid (Peng et al., 2011). Like  

brown seaweeds, red algae (about 6100 species) are marine, but are able to photosynthesize in 

deeper water. The size ranges from thin films to filamentous and membranous forms of 1 m. The 

color results from the presence of the pigments, phycoerythrin and phycocyanin which mask α, β 

carotene, lutein, zeaxanthin and chlorophyll (O’Sullivan et al., 2010; Koizumi et al., 2018). The 

main reserves are typically floridean starch and floridoside, and the cells wall are made up of long-

chain polysaccharide agars, carrageenans and cellulose (Usov, 2011). There are around 2200 

species of green seaweeds. They are a similar size to red seaweeds, only 10% are marine and their 

color is related to the presence of chlorophyll. The reserves are composed of starch, and the cells 

wall are made up of polysaccharide ulvan (Kidgell et al., 2019). In 2015, world production of algae 

amounted to 30.4 million tons, of which about 96% from aquaculture and only 1 million tons from 

harvesting of wild stock (Fao, 2018). Due to their nutritional value and the content of bioactive 

molecules, seaweeds are often used as food, herbal medicines, dietary supplements, as a source of 

agar, alginate and carrageenan for several industrial applications, and as a fertilizer (Lee et al., 

2011; Yaich et al., 2011).  

3.4 CHEMICAL COMPOSITION 

Several studies have been carried out in order to identify the nutritional composition and secondary 

metabolites of various seaweed species. In fact, it has been reported that seaweed contains several 

metabolites, such as the sulfated form of polysaccharides, omega 3 fatty acids, phlorotannin, 

diterpenes, vitamins and minerals, thus demonstrating health effects such as antibacterial, 

antioxidant, anti-inflammatory functions (Ganesan et al., 2019).  

The chemical composition of seaweeds was found to vary in relation to their species and genera, 

harvesting period, and habitat condition (water temperature, light, salinity, nutrients) (Marsham et 

al., 2007). The chemical composition and mineral content of brown, red and green seaweeds are 

reported in table 1. As shown, there is a different nutritional composition range for brown, red and 

green seaweed, although in the same genus, the values are comparable (Wong and Cheung, 2001).  

Of the brown seaweeds, common species such as Ascophyllum, Laminaria, Saccharina, 

Macrocystis, Fucus, and Sargassum were considered (Murty and Banerjee, 2012).  

Brown seaweed shows a highly variable composition but presented a low protein (7.6-12.6 % DM) 

and fat content (0.8-6 % DM). The Fucus species presents the highest protein content (12.9 % DM), 

followed by Sargassum (10 % DM), Laminaria (9.4 % DM) and the Ascophillum nodosum (7.4 % 

DM), as observed by Fleurence et al., (1999). The fat content of brown seaweeds is generally lower 

with an average value of 3.2 % DM, and high values are observed in Fucus spp and Ascophillum 

nodosum (Makkar et al., 2016; Lorenzo et al., 2017).   

Red seaweeds contain a higher protein content (16.9 % DM) and fat content (8.9 % DM) than 

brown seaweeds (Cabrita et al., 2016).  

The green seaweed Ulva lactuca has a protein content (16.2 % DM) compared to red seaweeds and 

a comparable fat content (1.3 % DM) with brown seaweeds (Burtin, 2003). The fat content of the 

studied seaweeds varies between 0.8 to 8.9 % which is a similar range reported for other seaweeds 

species (Marsham et al., 2007). All seaweeds are characterized by a higher ash content (19.3-27.8 % 

DM) than those observed in edible plants, in fact they are a considerable source of minerals for 

livestock nutrition (Cabrita al. 2016; Lorenzo et al., 2017).Seaweeds are rich in potassium, sodium 

and calcium. Although there is a high variability, in general, the sodium and potassium contents in 
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Ulva spp. are lower than those reported for red and brown seaweeds. A higher content of potassium 

has been observed in Palmaria palmita, Macrocystis pyrifera and Laminaria spp.(Cabrita et al., 

2016). All seaweeds present higher levels of calcium than phosphorous, and thus may be a possible 

natural source of calcium in livestock. Seaweeds are also a source of essential trace elements such 

as iron, manganese, copper, zinc, cobalt, selenium and iodine. In particular, iron is abundant in all 

the species considered, and the iodine content is higher in brown than in red and green seaweeds 

(Laminaria spp., with a range 833-5100 mg/kg DM), and a higher zinc content has been observed in 

red and brown than in green seaweed. The bioavailability of minerals is related to the fiber content 

of seaweeds. In addition, the interactions with several polysaccharides, such as alginates and agar or 

carrageenan, lead to the formation insoluble complexes with minerals, decreasing their 

biovailability (Circuncisão et al., 2018). The mineral content in the insoluble indigestible fraction 

residues was higher in brown than in red seaweeds with a range of 150-260 g/kg (Ruperez and 

Toledano, 2003). Some studies in vitro and in rats have been performed on the biovailability of 

minerals (Circuncisão et al., 2018). In an in vitro study of 13 seaweed species, only Palmaria 

palmata and  Ulva lactuca showed higher Fe bioavailability than spinach, although six species had 

a higher Fe content. The apparent absorption values of Na and K were significantly higher in rats 

supplemented with Laminaria spp., while Mg absorption was not affected. It has also been reported 

that Laminaria spp. is rich in alginates, which probably hampers the biovailability of Ca. The 

absorption of inorganic I, which is the predominant form in brown seaweeds, was observed to be 

moderate (20-70%). Therefore, the low bioavailability may be related to the iodine interaction with 

other compounds in the seaweed matrix. The vitamin content showed that seaweeds are a source of 

water-soluble vitamins (B1, B2, B3 and C) and fat-soluble vitamins (E and provitamins carotenoids, 

with vitamin A activity). Seasonal effects have a great influence on vitamin content. Most of the red 

seaweeds, such as Palmaria Palmata contained a considerable amount of provitamin A and 

vitamins B1 and B2. The brown seaweeds Laminaria spp., Ascophillum nodosum and Fucus spp. 

showed a high content of vitamins E and C (Dominguez, 2013). 

The amino acid composition of different seaweeds species is reported in table 2. Red seaweeds have 

a higher quality of protein than brown and green seaweeds (Angell et al., 2016), however there is 

considerable difference in the amino acidic content among seaweeds, in relation to the different 

seasons. It has been reported that seaweeds have a low content of methionine and histidine 

(Galland-Irmouli et al., 1999; Biancarosa et al., 2017). Leucine was the most abundant amino acid, 

ranging from 2.43 g/kg DM to 6.63 g/Kg DM for Palmaria palmata and Ascophillum nodosum 

respectively, followed by lysine (1.42-7.60 g/Kg DM), threonine (1.26-5.17 g/Kg DM) and valine 

(2.25-5.87 g/Kg DM). Glutamic and aspartic acids are the most common amino acids found in the 

non-essential fraction which are responsible of flavor and taste of seaweeds (Saini et al. 2013).   

The in vitro protein digestibility ( IVPD) was mid-range (82-87%) for Saccharina latissima and 

Palmaria palmata, and lower (79%) for Ascophillum nodosum and Fucus spp. The Red seaweed 

IVPD of red seaweeds had an average value of 85%, while the brown seaweeds had a lower IVPD, 

with an average value of 79,7%.  A significant  inverse correlation the IVPD and total phenolic 

content was also observed (Tibbetts et al., 2016). 

Seaweeds also possess several biological activities due to the presence of several bioactive 

compounds, such as phenolic compounds, carotenoids, tocopherols, polysaccharides, and peptides. 

Seaweeds are rich in carboxylated and sulfated polysaccharides, such as alginates, ulvans and 

fucoidans: their composition and content depend on the algae species and of environmental factors 
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such as the season and temperature. The total polysaccharide content (% DM) is 29-67% in green 

algae (Chlorophyta), 10-59% in red algae (Rhodophita) and 10-75% in brown algae (Phaecophyta) 

(Sardari and Norberg Karlsson, 2018). A major component of brown seaweed cell walls is a salt 

form of alginic acid, alginate with the content ranging from 140-400 g/Kg DM (Øverland et al., 

2019). Brown seaweed walls are also rich in fucoidans, which are saccharide units with different 

degrees of sulphation. Several species contained fucoidan with distinct structural characteristics, 

and thus the different types of functional components have various biological applications. The 

fucoidan content varies in relation to seaweed species and season, although the content ranges from 

20 to 200 g/Kg DM, with the highest value in Fucus vesiculosus (Makkar et al., 2016; Øverland et 

al., 2019; Tanna and Mishra, 2019). Laminarin, composed of (1,3)-b-D-glucopyranose residues, is 

the main reserve carbohydrate of brown seaweeds with a content ranging from 0 to 300 g/Kg DM. 

In Laminaria spp.and Saccharina latissima a high content of laminarin has been reported, while, 

Ascophyllum nodosum and, Fucus spp. presented a low laminarin content (Makkar et al., 2016; 

Øverland et al., 2019; Tanna and Mishra, 2019). Laminarin presents prebiotic, immunomodulator 

and antioxidant activities (Balboa et al., 2013). The cell walls of red seaweeds are mainly composed 

of sulfated galactan such as carrageenans (content range: 220-770 g/Kg DM) and agars (content 

range: 210-420 g/Kg DM). Some red seaweed species contain xylan (in Palmaria palmita 

approximately 350 g/Kg DM) and porphyran (average content 480 g/Kg DM). The floridean starch 

is the main carbohydrate reserve with a content ranging from 250 to 420 g/Kg DM (Makkar et al., 

2016; Øverland et al., 2019; Tanna and Mishra, 2019). Ulvan is one of the main sulfated 

polysaccharides from green seaweed cell walls with anticancer, antioxidant, antihyperlipidemic, and 

anticoagulant activities (Pangestuti et al., 2017) and a content ranging from 400 to 500 g/Kg DM 

(Øverland et al., 2019). For details and information on the monosaccharide composition of the 

different polysaccharides mentioned, some excellent reviews are available (Xu et al., 2017; Cherry 

et al., 2019). Considering their valuable source of bioactive molecules, seaweeds have been studied 

as feed supplements in livestock, particularly in pigs in order to boost growth performance and 

health (Maghin et al., 2014). Seaweeds exhibit prebiotics, anti-microbial, antioxidant, anti-

inflammatory and immunostimulant properties and obviously effective absorption of dietary 

nutrients.  
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Table 1. Chemical composition of brown, red and green seaweeds (on DM basis)
1
. 

    BROWN   RED GREEN 

Seaweeds Laminaria 

spp. * 

Ascophillum 

nodosus 

Sargassum 

spp.⁑ 

Fucus 

spp. # 

Saccharina 

latissima 

Macrocystis 

pyrifera 

Palmaria 

palmata 

Ulva 

lactuca 

Crude protein, % 9.4 

(5.3-16.1) 

7.4 

(4.9-8.7) 

10 

(8.5-13.6) 

12.6 

(12.2-12.9) 

7.6 

(7.1-8.1) 

8.3 

(8-10) 

21.9 

(15.1-31.4) 

16.2 

(7.06-23.1) 

Ether extract, % 1.1 

(0.8-2.4) 

5.3 

(3.9-8.6) 

0.8 

(0.5-1.2) 

6.1 

(3.7-8.4) 
5.5 

1.8 

(0.5-3.9) 

8.9 

(4.9-12.9) 

1.3 

(0.25-1.64) 

Crude Fiber % 11.6 

(6.6-16.6) 

5.5 

(5.4-5.5) 

18.2 

(6.4-38) 

10.7 

(5.4-16) 

23 

(6.6-40) 

33.4 

(5.5-50) 

1.5 

(1.49-1.50) 

9.6 

(6.9-12.3) 

Ash, % 27.8 

(19.6-31.5) 

24.8 

(21.1-30.9) 

27.6 

(19.4-35.9) 

21.6 

(20.7-22.5) 

22.5 

(13.3-31.7) 

25.8 

(20-35) 

19.3 

(9-24.5) 

25.7 

(21.3-26.2) 

Gross energy, 

MJ/kg 

12.7 

(12.5-13) 
14.1 9.1 

15.7 

(15.5-16) 
11.1 9 16.9 

15.2 

(14.7-15.7) 

Ca, g/kg 10 

(8-12.55) 

16.4 

(9.8-20) 

14,7 

(3.8-27.2) 

9.9 

(8.9-12.8) 

9.8 

(9.6-10) 

14.1 

(11.6-16.6) 

2.6 

(1-4.2) 

12.6 

(6.1-29.2) 

P, g/kg 2.2 

(1.2-3) 
1 

1.7 

(1-2.2) 

1.9 

(1.4-2.3) 

2.7 

(2.2-3.1) 

2.9 

(2.6-3.2) 

4.0 

(3-5) 

2.1 

(1.3-2.7) 

K, g/kg 54 

(48.6-59.5) 

28.5 

(20-37.7) 
46.2 

22.9 

(0.4-36.1) 
52.5 

67.5 

(44.8-112.3) 

37.1 

(27-47.2) 

14.4 

(1.5-22.1) 

Na, g/kg 23.9 

(22.5-25.3) 

37.5 

(25-45.7) 
- 

24.2 

(0.2-45.8) 
33 

36.9 

(17.1-56.7) 

7.2 

(3.3-11) 

13.9 

(2.9-20.2) 

Mg, g/kg 6.3 
(5.5-7.2) 

6.8 
(1-8.6) 

6.4 
(4-7.7) 

7.5 
(7-8.33) 

6.3 
(5.1-7.4) 

39 
(16.2-61.8) 

2.3 
13 
(1.9-20.5) 

Mn, mg/kg 7.1 

(3.1-11) 

17.8 

(12-25) 

88.3 

(26.7-214) 

104.7 

(8.2-177.8) 

8.2 

(3.9-12.4) 
11 

71.6 

(11-168) 

38.7 

(10.1-122) 

Zn, mg/kg 22.6 
(11-31.5) 

116.8 
(30.3-181) 

79.3 
(12-214) 

118.1 
(45.3-275.3) 

35.4 
(29.2-41.55) 

12 
65.1 
(23.6-143) 

29 
(16.1-45) 

Cu, mg/kg 2.4 

(1.2-5.9) 

17.8 

(4.2-28) 

6.0 

(2.3-7) 

9.3 

(2-23.5) 

4.5 

(1.1-7.9) 
2 

11.1 

(3.8-24) 

8.5 

(3.3-12) 

Fe, mg/kg 107.3 
(58-179) 

157.8 
(122-241) 

2678 
(307-7291) 

351.9 
(189-559) 

529 
(30-1028) 

117 
202.5 
(139-315) 

462.2 
(105-1481) 

I, mg/kg 2991.7 

(833-5100) 
777 

399.5 

(216-583) 

376 

(232-677) 

1448.5 

(957-1940) 
- 278 56.7 

Se mg/kg 0.6 
(0.29-0.93) 

0.5 
1.2 
(1.1-1.4) 

0.8 
(0.2-1.2) 

1.1 
(0.9-1.3) 

- 0.1 
1.2 
(0.4-1.9) 

Co mg/kg 0.1 

(0.08-0.11) 
0.6 

0.4 

(0.36-0.47) 

1.1 

(0.8-1.4) 
0.4 - 0.03 

0.5 

(0.3-0.6) 

Vitamin E 
mg/Kg 

672 
(3-2000) 

230 
(80-500) 

10 
164 
(100-356) 

1.6 928 
69.6 
(22-152) 

12.95 
(2.8-3.5) 

Vitamin A 

mg/Kg ** 

154.6 

(22-229) 

57 

(35-80) 
51 

17.8 

(7-28.6) 
0.42 12.39 

142.9 

(15.2-270) 

3.5 

(0.1-7) 

Vitamin C 
mg/Kg ** 

632 
(355-910) 

860 
(81-1650) 

560 
383 
(141-770) 

11.5 
(3.5-18.8) 

- 
78.3 
(0.7-156) 

141.5 
(42-241) 

Vitamin B1 

mg/Kg ** 

7.45 

(2.4-12.5) 
14(1-27) 4 0.2 

0.72 

(0.5-0.94) 
- 

18 

(0.7-40) 
40 

Vitamin B2 

mg/Kg ** 
4.9 

(1.4-8.5) 

7.5 

(5-10) 
65 0.35 

1.7 

(1.4-2.1) 
- 

16 

(4.3-19) 

5.1 

(5-5.3) 

Vitamin B3 

mg/Kg ** 

314 

(158-612) 
15 20 - - - 

45 

(10.1-83) 
- 

 
References 

 
Marsham et 

al., 2007 

Makkar et 
al., 2016 

Cabrita et 

al., 2016 

Circuncisão 

et al., 2018 

Chandini et 

al., 2008 

Kolb et al., 

2004 

 
Makkar et 

al., 2016 

Lorenzo et 
al., 2017 

Circuncisão 

et al., 2018 

Angell et al., 

2016 

Tibbets et 

al.,  2018 

Chandini et 

al., 2008 

Dierick et 

al., 2009 

Marín et al., 

2009 

 

 

Makkar et al., 
2016 

Cabrita et al., 

2016 

Angell et al., 

2016 

Chandini et 

al., 2008 

Marín et al., 

2009 

 

 

 

Lorenzo et 

al., 2017 

Cabrita et al., 

2016 

Circuncisão 

et al., 2018 

Dominguez 

et al., 2013 

Tibbets et al., 

2016 

Chandini et 

al., 2008 

Pomin et al., 

2011 

 

 

Cabrita et al., 

2016 

Circuncisão et 

al., 2018 

Dominguez et 

al., 2013 

Tibbets et al., 

2016 

Schiener et al., 

2015 

 

 

Makkar et 

al., 2016 

Sanz-Pintos 

et al., 2017 

Duis et al., 

1995 

 

 

Makkar et al., 

2016 

Dominguez et 

al., 2013 

Tibbets et al.,  

2018 

Chandini et al., 

2008 

Hagen Rødde 

R. et al., 2004 

 

 

Makkar et al., 

2016 

Cabrita et al., 

2016 

Dominguez et 

al., 2013 

Chandini et al., 

2008 

Park et al., 1997 

Ortiz et al., 2006 

Wong et al., 

2000 

 

 

1 data are reported as mean values and ranges. * values from Laminaria digitata and hyperarborea. ⁑ values from Sargassum Patens, hemifhyllum, 
henslowianum.  # values from Fucus vesciculosus, giuryi, serratus, spiralys. ** as provitamin carotenoids. 



32 
 

Table 2. Aminoacid profile of brown, red and green seaweeds (mg/g DM)
1
. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 data are reported as mean values.⁑value from Sargassum Patens and hemifhyllum.  # values from Fucus vesciculosus and serratus. 

3.5 INFLUENCE ON GROWTH PERFORMANCE 

Brown seaweeds have a generally positive effect on growth, as reported in Table 3. Some 

interactions between seaweeds bioactive molecules and dietary components should be probable, but 

considering the heterogeneity of seaweeds species, the effects on growth performances have to be 

firstly analyzed in relation to seaweed supplement, and bioactive molecules content. With dietary 

integration in sows at the end of gestation and during lactation, an increase in average daily gain 

(ADG) of suckling piglets has been observed (from +11.8 to +32.3% compared to the control 

group). Most of the studies we reviewed involve the dietary supplementation of brown seaweeds in 

weaned piglets. In weaned piglets, improvements of ADG are observed. The ADG of piglets fed 

brown seaweeds is higher than the ADG of piglets fed a control diet with an increase between +4.6 

and +40.8%. Draper et al. (2016) and Ruiz et al. (2018) appear to be the only two authors to report 

the effects of long-term dietary supplementation with brown seaweed from weaning to slaughter on 

ADG. In this case, the influence on ADG was limited but statistically significant, and ranged from 

+1.2 to +3.3%. Bouwhuis et al. (2017a, b) evaluated the effects of brown seaweed supplementation 

on pig’s growth performance after being challenged with Salmonella Typhimurium. When the 

challenge occured in post-weaning, no significant effect was observed; in pigs with a live weight of 

30 kg the seaweed supplement led to a significant increase in growth (+ 16%). It is possible that the 

bioactive compounds of seaweeds are not able to positively modulate the immune system of the 

   BROWN    RED GREEN 

Seaweeds Laminaria 

digitata 

Ascophillum 

nodosus 

Sargassum 

spp.⁑ 
Fucus 

spp. # 

Saccharina 

latissima 

Macrocystis 

pyrifera 

Palmaria 

palmata 

Ulva 

lactuca 

Lysine 
4.41 

(4.1-4.8) 

4.77 

(4.3-5.4) 

3.57 

(2.8-4.3) 

7.60 

(6.7-8.2) 

4.05 

(4.0-4.1) 

6.63 

(5.2-7.5) 

1.42 

(1.2-1.65) 

2.09 

(0.5-1.9) 

Histidine 
1,82 
(1.3-2.4) 

1.63 
(1.4-1.9) 

0.82 
(0.6-1) 

1.33 
(0.4-2) 

2.2 
(1.2-3.2) 

2.33 
(2.0-2.9) 

0.4 
(0.3-0.5) 

0.83 
(0.1-2.0) 

Isoleucine 
2.91 

(2.6-3.2) 

3.76 

(3.1-4.3) 

2.70 

(1.9-3.5) 

3.70 

(0.9-6) 

3.1 

(3.0-3.1) 

4.47 

(3.2-5.6) 

1.31 

(0.7-1.9) 

1.50 

(0.4-5.2) 

Leucine 
4.93 
(4.4-5.4) 

6.63 
(5.3-7.5) 

5.11 
(4.4-5.8) 

6.42 
(1.6-10.5) 

5.06 
(4.2-5.9) 

7.53 
(5.5-9.2) 

2.42 
(1.3-3.6) 

2.90 
(0.7-6.6) 

Arginine 
3.2 

(2.9-3.4) 

5.06 

(4.2-6.0) 

1.6 

(1.3-1.9) 

3.24 

(1.1-4.6) 

4.0 

(3.9-4.1) 

4.87 

(3.5-6.1) 

1.9 

(1.2-2.6) 

2.12 

(0.5-1.3) 

Methionine 
1.50 

(1.4-1.5) 

1.91 

(1.3-2.5) 

0.69 

(0.68-0.7) 

0.81 

(0.2-1.8) 

2 

(1.9-2.1) 

2.18 

(1.6-2.6) 

0.91 

(0.5-2.3) 

1.21 

(0.2-1.8) 

Phenylalanine 
3.24 

(2.8-3.6) 

4.23 

(3.2-5.0) 

2.98 

(2.2-3.7) 

3.56 

(0.9-5.2) 

3.82 

 

5.42 

(4.1-6.2) 

1.7 

(0.8-2.6) 

2.40 

(0.2-3.6) 

Threonine 
3.68 
(3.4-3.9) 

4.6 
(3.6-5.4) 

3.09 
(1.2-5.1) 

3.09 
(1.2-5.1) 

4.3 
(4.2-4.4) 

5.17 
(3.6-6.7) 

1.26 
(0.7-2.8) 

2.17 
(0.5-3.8) 

Tryptophan 
1.74 

(1.72-1.76) 

- - 1.22 

(0.5-1.9) 

- - 0.4 

(0.2-0.6) 

0.51 

(0.4-0.6) 

Valine 
5.38 
(4.7-6.0) 

4.76 
(4.1-5.5) 

3.84 
(2.9-4.8) 

4.65 
(1.1-8.0) 

4.10 
(3.7-4.5) 

5.87 
(4.3-7.1) 

2.25 
(1.1-3.4) 

2.03 
(0.9-4.4) 

Tyrosine 
1.74 

(1.7-1.8) 

2.05 

(0.9-3.2) 

2.35 

(1.8-2.9) 

2.26 

(1.9-2.6) 

- 2.80 

(2.1-3.5) 

1.15 

(0.6-1.7) 

1.03 

(0.5-1.4) 

Alanine 
6.68 
(4.5-8.8) 

5.95 
(5.4-6.5) 

4.23 
(3.3-5.1) 

1.58 
(1.5-1.6) 

6.8 
(5.0-8.5) 

4.81 
(4.5-5.0) 

2.23 
(1.1-3.3) 

3.22 
(0.7-5.9) 

Glutamine 
7.3 

(4.6-9.9) 

14.5 

(1.4-11.6) 

19.5 

(18.9-20.1) 

20.1 

(19.6-20.3) 

10.5 

(10.6-10.4) 

14.1 

(9.7-18.3) 

16.6 

(11.0-18.7) 

13.2 

(11.5-14.8) 

Asparagine 
6 
(3.9-8.1) 

8.4 
(8.3-8.5) 

12 
(11.5-12.5) 

12.8 
(10.9-16.7) 

9.4 
(8.8-9.8) 

10.8 
(8.3-13.3) 

11.3 
(9.9-14.3) 

10.4 
(7.9-12.2) 
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post-weaning piglet which is still immature. Positive effects on growth are related to the 

improvement of digestibility and overall health conditions of piglets due to the prebiotic effects of 

seaweed polysaccharides, as described in the following sections. The effects of seaweed dietary 

supplementation on the improvement in antioxidant status and the decrease in inflammatory 

condition may contribute to reduce energy and amino acidic expenditure.  

Table 3. Effect of seaweed supplement on average daily gain (ADG) in pigs. 

 
 

Algae Supplement 

 

Dose Animal Control Supplemented Diff. % 

 

Ref. 

 

 

Dried seaweed 2.5-5-10 g/kg 

  0.209 -5.0 
Michiels et al., 

2012 
A. nodosum Weaning to 28 d 0.220 0.198 -10.0 

   0.213 -3.18 

A. nodosum Dried seaweed 10-20 g/Kg Weaning to 11 d 0.027 
0.054 +100 Dierick et al., 

2009 0.040 +48.14 

 Brown seaweed 
Alginic acid olisaccharides 

(50-100-200 mg/kg) 
Weaning to 14 d 0.216 

0.248 (50) +14.81 
Wan et al., 

2016 
0.304* (100) +40.78 

0.301* (200) +39.35 

Brown seaweed 
Alginates olisaccharides 

(100 mg/ kg) 

 

Weaning to 21 d 
 

0.441 0.516 +17.01 

 

Wan et al., 
2017 

   Ecklonia cava FUC = 0.05 – 0.10 – 0.156 g/kg Weaning to 28 d 0.344 

0.347 +0.87 
Choi et al., 

2017 
0.368* +6.98 

0.360* +4.65 

Laminaria digitata 
LAM + FUC (0.314 -0.250 g/kg) – 

lactose 15 or 25%) 
Weaning to 25 d 

0.275 0.293 (15% lact.) +6.55 O’Doherty et 

al., 2010 0.287 0.350** (25% lact.) +21.95 

Laminaria spp. 

LAM (1g/day) – sows, 109d until 

weaning at 20d 

20 d lactation 

Weaning to 26 d 
Challenge Salmonella 

Typhimurium at 10 d 

post weaning 

0.340 0.450 ** 

 

+32.35 
 

Bouwhuis et 
al., 2017 a 

 
LAM (0.3 g/kg) – piglets 0.410 0.370 -16.13 

Laminaria spp. 
LAM + FUC 

(0.18 + 0.34 g/kg) 

 

30.9 kg pigs for 28 d  
Challenge Salmonella 

Typhimurium at 10 d 

 
0.620 

 
0.720*** 

 

 
+16.13 

Bouwhuis et 
al., 2017 b 

 

Laminaria spp. 
LAM (0.112 g/kg) y 
FUC (0.089 g/kg) z 

Weaning to 25d 0.281 0.322** +14.59 
Dillon et al., 

2010 

Laminaria spp. 

LAM + FUC 

(1 g + 0.8 day) – sows 
Weaning to 126 d 

0.760 0.850 ** (lactation effect) +11.84 
Draper et al., 

2016 LAM + FUC 
(0.3 + 0.24 g/kg) – piglets 

0.800  0.810 (weaning effect) +1.23 

 Extract (1-2-4 g/Kg) x   0.274 *** (1g/Kg) +10.04 
Gahan et al., 
2009 

Laminaria spp. LAM = 0.11-0.22-0.44 Weaning to 21 d 0.249  0.313 *** (2 g/Kg) +25.70 

 
FUC = 0.09-0.18-0.36  

 
0.303 *** (4 g/Kg) +21.69 

Laminaria spp. LAM (0.30 g/Kg) Weaning to 32 d  0.280 0.353 * +26.07 
Heim et al., 

2014 

Laminaria spp. 
LAM+FUC 

 (0.30 + 0.24 g/Kg) 
Weaning to 40 d 0.356 0.374 +5.06 

McAlpine et 

al., 2012 

Laminaria spp. 

LAM (0.3 g/kg) 

Weaning to 21 d 0.288 

0.319 * LAM 0.3 +10.7 
McDonnell et 

al., 2010 
FUC (0.36 g/kg) 0.302 FUC 0.36 +4.86 

LAM + FUC (0.3 + 0.36 g/kg) 0.328 LAM + FUC +13.89 

Laminaria spp. 
   LAM + FUC  

(0.30 + 0.24 g/Kg) k 

Weaning to 21 d 

21-40 d 

0.235 0.239 +1.70 O’Shea et al., 

2014 0.489 0.523 +6.25 

 LAM (0.15-0.30 g/kg) 

FUC (0.24 g/Kg) 
LAM + FUC (0.15 + 0.24 

and 0.30 + 0.24 g/kg) 
Weaning to 35 d 0.340 

0.351 FUC 0.24 +3.24 

Walsh et al., 
2013a 

 

Laminaria spp. 0.334 LAM 0.15 -1.76 

 0.347 FUC 0.24 LAM 0.15 +2.06 

 0.390 * LAM 300 +14.71 

  0.358 FUC 0.24 LAM 0.3 +5.29 

OceanFeedSwine 
Seaweeed extract 

(5 g/Kg) 

21 to 56 d 0.401 0.380 -5.24 Ruiz et al., 

2018 56-160 d 0.798 0.824 * +3.26 

Means marked whith *, **, *** showed a significant effect of supplement for p  <  0.05,  p < 0.01 and p < 0.001 respectively; 
LAM, laminarin; FUC, fucoidan. 
y 990 g/kg Laminarin. 
z 720 g/kg Fucoidan. 
x 112 g/kg Laminarin, 89 g/kg Fucoidan and 799 g/kg ash. 
k 455 g/kg Laminarin and 360 g/kg Fucoidan. 
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3.6 INFLUENCE ON DIGESTIBILITY  

Many authors have evaluated the effects of algae supplementation on the digestibility of the diet in 

pigs, as reported in Table 4. All digestibility trials were conducted in weaned piglets, except for the 

study by Gardiner et al. (2008) which investigated male pigs 45 kg live weight. The Ascophyllum 

nodosum does not appear to have significant influence on diet digestibility (Gardiner et al., 2008 

and Dierick et al., 2009). On the other hand, Laminaria digitata, Laminaria spp., Ecklonia cava and 

brown seaweed, titrated in alginates, showed positive effects on the digestibility of nitrogen (N), 

gross energy (GE), fiber (NDF) and ash in various experiments. Significant improvements from 

+5.1 and +8% in N digestibility are reported. Also for GE, dietary integration with seaweed 

improved the digestibility with an increase of between +3.3 and +10%. Some authors have also 

observed that introducing laminarin and fucoidans in the formula increases the digestibility of the 

fibrous fraction (NDF). The animals fed seaweed showed a higher digestibility of the NDF (+39 to 

+73%) compared to the control group. Finally, ash digestibility presented values that in the seaweed 

group were 25.9-82.4% higher than in the control. The improvement in nutrient digestibility is 

related to the influence of the seaweed constituents, in particular carbohydrates and antioxidants, on 

microbiota and on the villous architecture with an increase in absorptive capacity and nutrients 

transporters (Sweeney and O’Doherty, 2016). These effects are also related to the trophic effect on 

the intestinal mucosal cells of volatile fatty acids production (i.e., butirric acid). 
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Table 4. Influence of seaweed on digestibility in swine. 
 
      

     Algae 

Supplement 

 

Dose g/kg 

 

Animal 

 

Effects on digestibility 

 

Treatment vs. 

Control, % 

 

Ref. 

A. nodosum 
Dried intact 
(2.5 g/kg) 

Male Pigs, 
45 kg LW 

NS 
 

- Sweeney and 
O’Doherty, 2016 

A. nodosum Dried intact (10-20 g/kg) Weaned piglets, (35 d age) NS - Dierick et al., 2009 

Brown seaweed 

Alginates olisaccharides 
(100 mg/kg) 

 

Weaned piglets, 6.2 kg LW 
 

Improved digestibility of 
N, 

fat, 

ash 
GE 

 
+6.7% 

+10.8% 

+25.9% 
+4.0% 

Wan et al., 2017 

Ecklonia cava 
Seaweed 

(0.5-1-1.5 g/kg) s 
Weaned piglets, 7.8 kg LW Improved digestibility of GE +3.3% (1g/kg) Choi et al., 2017 

Laminaria 

digitata 

LAM + FUC 

(0.314 - 0.250 g/kg) 

 

 

Weaned piglets, 

7.2 kg LW 
 

Improved digestibility of 

OM, 

N, 
NDF 

GE 

 

+4.5% 

+7.3% 

+73.3% 
+5.9% 

 

O’Doherty et al., 

2010 

Laminaria spp. Extract (1-2-4 g/kg) x Weaned piglets, (24 d age) 

 

NS 

 

 

Gahan et al., 2009 

Laminaria spp. 

Seaweed extract 

LAM (0.112 g/kg) y 

FUC (0.089 g/kg) z 

Weaned piglets, (24 d age) 

Improved digestibility of 

N 

GE 

 

+6.7% 

+5.2% 

Dillon et al.,2010 
 

Laminaria spp. 

 

LAM+FUC (0.30 + 0.24g/kg) 
 

Weaned piglets, (22 d age) 

 

Improved digestibility of 
DM, 

N, 

NDF 

 
+8.8% 

+8.9% 

+57.5% 

McAlpine et al., 

2012 

 

Laminaria spp. 

 

LAM (0,15-0,30 g/kg) 

FUC (0,24 g/kg) 
LAM + FUC (0,15 + 0.24 and 

0.30+0.24 g/kg) 

 

 

Weaned piglets, (24 d age) 

 

Improved digestibility of 

DM, LAM and LAM+FUC 

OM, LAM and LAM+FUC 
N, LAM 

NDF, LAM and LAM+FUC 

GE, LAM and LAM+FUC 

 

+7.0% - +4.5% 

+5.9% - +3.5% 
+5.1% 

54.5% - 39.7% 

+7.3% - +4.3% 

Walsh et al., 2013a 

 

Laminaria spp. 

LAM (0.30 g/kg) 

FUC (0.24 g/kg 
LAM + FUC (0.30 + 0.24 g/kg) 

 

 

Weaned piglets, (24 d age) 
 

Improved digestibility of 

DM, LAM and LAM + FUC 
N, LAM 

Ash, LAM and LAM + FUC 

GE, LAM and LAM + FUC 

 

+7.9% -+4.5% 
+6.6% 

58.0% - 42.6% 

+8.5% - +4.3% 

   Heim et al., 2014 

 

Laminaria spp. 

  

Extract (0.66 g/kg) k 

 

Weaned piglets,  (24 d age) 
 

Improved digestibility of 

OM, 
N, 

ash 

NDF 
GE 

 

+8.8% 
+8.9% 

+82.4% 

+57.5% 
+10.9% 

 

 
 

O’Shea et al., 2014 

 
x 112 g/kg Laminarin, 89 g/kg Fucoidan and 799 g/kg ash. 
k 455 g/kg Laminarin and 360 g/kg Fucoidan 
s 112 g/kg Fucoidan 
z 720 g/kg Fucoidan 
y 990 g/kg Laminarin 

FUC, Fucoidan;  

LAM, laminarin;  

LW, live weight;  

DM, dry matter;  

GE, gross energy;  

N, nitrogen;  

NDF neutral detergent fibre;  

OM, organic matter. 
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3.7 PREBIOTIC FUNCTION 

Seaweeds are rich in carboxylated and sulfated polysaccharides, such as alginates, ulvans and 

fucoidans which all act as prebiotics with positive effects on gut health. According to FAO (2007) a 

prebiotic is a ‘non-viable food component that confers a health benefit on the host associated with 

the modulation of microbiota’. The health benefit is associated with the stimulated activity/growth 

of beneficial bacteria and the higher production of short chain fatty acids (SCFAs) with direct 

impact on gut health and also an immunomodulatory effect, as reported below. Several papers have 

analyzed the prebiotic effects of algae (O’Sullivan et al., 2010; Sardari and Norberg Karlsson,2018; 

Sweeney and O’Doherty, 2016; Evans and Critchley, 2014; Chen et al., 2018). In swine, 24 studies 

have been published in the last 10 years on the effects of supplementation with brown seaweeds, or 

their extracts, on gut health: Ascophyllum nodosum (Dierick et al., 2009; Michiels et al., 2012; 

Gardiner et al., 2008), Ecklonia cava (Choi et al., 2017), Laminaria digitata (O’Doherty et al., 

2010; Mukhopadhya et al., 2012, Murphy et al., 2013), Laminaria hyperborea (Lynch et al., 

2010a,b), Laminaria digitata and Laminaria hyperborea association (Reilly et al., 2008), Laminaria 

spp. (Bouwhuis et al., 2017a, b; Dillon et al., 2010; Heim et al., 2014 ; McDonnel et al., 2010; 

Walsh et al., 2013a; Leonard et al., 2012 ; McDonnel et al., 2016). Brown seaweeds titrated in 

alginic acid polysaccharides have also been studied (Choi et al., 2017). Most of the studies were 

carried out in weaned piglets (14 trials), considering that weaning phase is a critical period with 

high incidence of enteric pathologies. Some studies were carried out on growing pigs ranging 

between 14 and 65 kg LW, and some others on gestating and lactating sows. In general the 

compounds present in the brown seaweeds (in 20 trials the supplement is titrated in laminarin 

and/or fucoidans) stimulated the growth of Lactobacilli (Wan et al., 2016; O’Doherty et al., 2010; 

Dillon et al., 2010; O’Shea et al., 2014; Gardiner et al., 2008; Murphy et al., 2013; Reilly et al., 

2008) and reduced the enterobacteria population or Escherichia coli (Dierick et al., 2009; Bouwhuis 

et al., 2017a; Wan et al., 2016; , Choi et al., 2017; O’Doherty et al., 2010; McDonnel et al., 2010; 

Walsh et al., 2013a; Gardiner et al., 2008; Lynch et al., 2010b; Leonard et al., 2012; , Heim et al., 

2015a).  Brown seaweed supplements supported the growth of Bifidobacteria species in the ileum 

in piglets (Wan et al., 2016; Mukhopadhya et al., 2012; Murphy et al., 2013). Gut health is 

modulated by laminarin and/or fucoidans, with the microbial production of short-chain fatty acids 

(SCFAs), in particular butyrate (Murphy et al., 2013; Reilly et al., 2008; Walsh et al., 2013b). 

Glucose are the main energy source for small intestinal epithelial cells, and SCFAs are the main 

energy source for caecum and colon cells, stimulating cell growth (Rossi et al., 2010). Several 

studies have reported that brown seaweed have a positive influence on gut morphology (Choi et al., 

2017; Heim et al., 2015a; Heim et al. 2015b; Wan et al., 2018). Supplementation with Ecklonia 

cava (0.05 and 0.15% of dietary inclusion), linearly improved villi height in ileum (Choi et al., 

2017). In weaning piglets, maternal dietary supplementation with laminarin and fucoidan (1 and 0.8 

g/day) after 83 days of gestation and during lactation increased villi height in the jejunum and ileum 

(+43 and +88% respectively) (Heim et al., 2015a). According to Heim et al. (2015b) maternal 

dietary treatment with fucoidans (0.8 g/day) had no influence on the small intestine morphology, 

while laminarin increased the villus height in the ileum (+13%) at day 8 post-weaning. In vitro and 

in vivo experiments carried out by Dierick et al. (2009) revealed that native seaweeds Ascophyllum 

nodosum suppresed in vitro the gut flora counts and metabolic activity (production of organic 

acids), while in vivo, a significant better lactobacilli/E.coli ratio was found in the small intestine. 
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Michiels et al., 2012 on the other hand observed no significant effects on gut health with the use of 

the same seaweed in weaned piglets, most probably due to the already high digestible basal diet, 

including lactose. To probiotic activity algae associate bacteriostatic and antibacterial activities 

recently reviewed by Perez et al, 2016. 

In particular potential application in acquaculture (Vatsos et al., 2015) and in the pharmaceutical 

and food industry (Eom et al., 2012) have been evaluated. 

 

3.8 ANTIBACTERIAL FUNCTION 

In addition to the probiotic action that positively modulates the intestinal microbiota, the seaweeds 

and their extracts show a specific anti-bacterial and / or bacteriostatic action (Kidgell et al., 2019; 

Pina-Pérez et al., 2017; Shannon and Abu-Ghannam, 2016). Phlorotannins, fatty acids, peptides, 

terpenes, polysaccharides and sulphated polysaccharides, and several other bioactive compounds 

have been reported as bacterial inhibitors (Table 5). A very interesting action of seaweed extracts is 

the effectiveness against methicillin resistant Staphylococcus aureus and vancomycin–resistant 

Enterococcus faecium (Lane et al., 2009). 

 

Table 5. Antibacterial activity of seaweeds. 

Strain Seaweed Functional Group Seaweed Ref. 

Campylobacter jejuni Delisea pulchra Halogenated furanone Red Castillo et al., 2015 

Enterococcus faecium 

vancomycin-resistant  
Callophycus serratus Diterpene-benzoate Red Lane et al., 2009 

      Escherichia coli 

Ascophyllum nodosum and 
Laminaria hyperborea 

Laminarin Brown Kadam et al., 2015 

Shaerococcus coronopifolius  Sphaerane bromoditerpenes Red Rodrigues et al.. 2015 

Pterocladia capillacea 
Water-extracted 

polysaccharides  
Red Abou Zeid et al., 2014 

Sargassum swartzii Sulphated polysaccharides Red Vijayabaskar et al., 2012 

Delisea pulchra Halogenated furanone Red Ren et al., 2004 

Laminaria monocytogenes 
Ascophyllum nodosum and 

Laminaria hyperborea 
Laminarin Brown Kadam et al., 2015 

Pseudomonas aeruginosa 

Soliera filiformis Lectin Red Holanda et al., 2005 

Shaerococcus  
coronopifolius 

Sphaerane  
bromoditerpenes 

Red Rodrigues et al., 2015 

Delisea pulchra Halogenated furarone Red 

Brameyer and Heermann, 2015; 

Hentzer and Givskov, 2003 

 

Propionibacterium Eisenia bicyclis Phlorofucofuroeckol Brown Lee et al., 2014; Lee et al., 2015 

Salmonella typhimurium 
Ascophyllum nodosum and 

Laminaria hyperborea 
Laminarin Brown Kadam et al., 2015 

Staphylococcus aureus  

Eisenia bicyclis Phlorofucofuroeckol Brown Eom et al., 2014 

Ascophyllum nodosum and 

Laminaria hyperborea 
Laminarin Brown Kadam et al., 2015 

 Pterocladia capillacea 
Water-extracted 
polysaccharides 

Red Abou Zeid et al., 2014 

Staphylococcus aureus 
methicillin resistant 

Saccharina longicruris 
Extracted peptides  

(>10 kDa) 
Brown Beaulieu et al, 2015 

Shaerococcus  
coronopifolius 

Sphaerane  
bromoditerpenes 

Red Rodrigues et al., 2015 

Callophycus serratus Diterpenes-benzoate Red Lane et al., 2009 
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Antibacterial activity is expressed across multiple mechanisms: inhibition of oxidative 

phosphorylation and link with compounds in the bacterial cell wall and increased permeability of 

the cytoplasmic membrane causing cell lysis (Shannon et al., 2016). At the same time some 

seaweed compounds, in particular polysaccharides, contribute significantly to the health and well-

being of the animals by enhancing the in vivo immune response. The variability of bioactive 

compounds in seaweeds influences the lab techniques used to obtain antimicrobials ranging from 

traditional extraction techniques, solid–liquid extraction or liquid–liquid extraction, to the most 

modern process of supercritical fluid extraction using CO2 ultrasonically-assisted extraction (Pérez 

et al., 2016). The potential applications in aquaculture (Vatsos and Rebours, 2015) and in the 

pharmaceutical and food industry (Eom et al., 2012) have been evaluated, while studies on food 

producing animals, and in pigs in particular, are limited. Berri et al., 2016 evaluated the effect of 

marine-sulfated polysaccharide extract from the green macroalga Ulva armoricana against seven 

bacterial strains found in pigs (Table 6). 

 

Table 6. Minimum inhibitory concentration (MIC) of marine-sulfated polysaccharides extract from 

Ulva armoricana (Berri et al., 2016). 

 

Strain MIC (mg/mL) 

Pasteurella multocida  1.56 

Pasteurella multocida subsp. multocida 3.125 

Streptococcus suis 6.25 

Trueperella pyogenes 50 

Bordetella bronchiseptica 50 

Escherichia coli K85 >50 

Escherichia coli K88(F4) >50 

 

3.9 INFLUENCE ON ANTIOXIDANT FUNCTION 

Seaweeds have antioxidant properties due to the presence of phenols, carotenoid fucoxanthin, 

tannins and phlorotannins, polysaccharides (fucoidans, laminarans in brown seaweeds, ulvans in 

green seaweeds and carrageenans, porphyrin and agar in red seaweeds) (Jacobsen et al., 2019). The 

highest concentrations of phenols and phlorotannins have been observed in brown seaweed, up to 

12-14% DM in Ascophhyllum nodosum, Fucus spp. and Sargassum spp. (Holdt and Kraan, 2011). 

In green and red seaweeds concentrations lower than 1% have been reported (Holdt and Kraan, 

2011; Farvin and Jacobsen, 2013). The carotenoid fucoxanthin has only been detected in brown 

seaweeds with concentrations of up to 5,000 mg/kg (Ramus et al., 1977; Narayani et al., 2016). 

Tocopherols are present in all seaweed, with variables concentrations. In brown seaweed higher 

values have been reported for Fucus spp. and Ascophyllum nodosum (up to 600 mg/kg DM), 

(Jensen et al., 1969a, b) than in Laminaria spp. (Wen et al., 2006). Lower concentrations were 

observed in red seaweeds (Wen et al., 2006; Naseri et al., 2019), and green seaweeds showed up to 

1070 mg/kg DM in Ulva spp.) (Ortiz et al., 2006). The effects of dietary seaweeds are reported on 

serum and plasma antioxidant status, duodenum, jejunum and ileum antioxidant markers and  

Longissimus dorsi muscle oxidative stability (Table 7). 

At the blood level, dietary supplementation with Laminaria spp. extract (laminarin 0.18 g/kg and 

fucoidans 0.33 g/kg) or of brown seaweed (alginates 100 mg/kg) has a strong antioxidant effect in 

growing pigs (Rajauria et al., 2016) and weaned piglets (Wan et al., 2016, 2017). The total 
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antioxidant capacity (TAS), superoxide dismutase (SOD), glutathione (GSH) and catalase activities  

increased from +14 to +37% with respect to the control group.  

At the same time, there was a reduction in lipid oxidation with lower values of malondialdehyde 

(MDA) ranging from 10% to 26% than in the controls. Other authors reported the non-significant 

effects on serum MDA, using dietary Ascophyllum nodosum (Michiels et al., 2012) and brown 

seaweeds (Wan et al., 2017). Wan et al. (2018) observed a significant reduction in the MDA 

concentration  in duodenum, jejunum and ileum of between -35 and -40% and an increase in 

catalase activity. Finally, some studies have evaluated the oxidative stability of pork during storage 

time by evaluating thiobarbituric acid-reactive substances (TBARS). The reduction in TBARS 

concentration for long refrigerated storage times of 14 d, ranged between -21% and -60%. The 

administration of an extract of Laminaria digitata in liquid form instead of spray-dried appears to 

affect the antioxidant potential of the extract. The liquid form better exploits the antioxidant 

potential of the extract, with reductions in TBARS production of -47% compared to -29% of spray-

dried form (Moroney et al., 2012). 

 

Table 7. Effects of seaweed on antioxidant capacity in pigs. 

 
Algae 

Supplement 

Dose 

g/Kg or g/day 
Animal Antioxidant effects 

Treatment 

vs. Control, % 
Ref. 

A. nodosum 
Dried seaweed 

5-10 g/kg 

Weaned piglets, 

6.59 kg LW 

Plasma TBARS a, FRAP b, 

-tocopherol 
NS 

Michiels et al., 

2012 

Brown seaweed 
Alginic acid olisaccharides 

(100 mg/kg) 

Weaned piglets, 

7.8 kg LW 

Serum 

T-AOC e 
SOD f 

CAT g 

MDA h 

 

+14% 
+20% 

+37% 

-26% 

Wan et al., 2016 

Brown seaweed 
Alginates olisaccharides 

 (100 mg/kg) 

Weaned piglets, 

6.2 kg LW 
 

Serum 

T-AOC 

CAT 
GSHi 

MDA 

 

+21% 

+28% 
+28% 

-10% NS 

Wan et al., 2017 

Brown seaweed 
Alginates olisaccharides  

(100 mg/kg) 

Weaned piglets, 

6.2 kg LW 

 

Duodenum  

 

Wan et al., 2018 
 

 

T-AOC +45% 

MDA -40% 

Jejunum  

T-AOC +39% 

CAT +22% 

MDA -36% 

Ileum  

T-AOC +58% 

CAT +72% 

MDA -35% 

Laminaria 

digitata 

Wet (W) or spray dried (SD) 

seaweed 
LAM + FUC 

(0.5+0.4 g/kg) 

 

Pigs, 14.5 kg LW 
Plasma TAS c 

LD muscle TBARS 

(refrig. storage 14 d) 

 

NS 

-29% SD 
-47% W 

Moroney et al., 

2012 

Laminaria 

digitata 

LAM + FUC 
(0.45 or 0.9 g/kg) 

3 or 6 weeks pre slaughter 

 

Pigs, 82 kg LW 

Plasma TAS 

LD muscle (refrig. storage 

14d) TBARS 
0.45 for 3 weeks 

0.90 for 3 weeks 

NS 

 

 
-57% 

-60% 

Moroney et al., 

2015 

Laminaria spp. 
 

LAM + FUC 

(0.18+0.33 g/kg) 
 

Pigs, 71 kg LW 

Serum 

DPPH d 
LD muscle TBARS 

(refrig. storage 14 d) 

 

+400% 
-41% 

Rajauria et al., 
2016 

 
LAM = Laminarin, FUC = Fucoidan 
a TBARS, thiobarbituric acid-reactive substances; b FRAP, ferric reducing ability of plasma; c TAS, total antioxidant status; d DPPH, 2,2-diphenyl-1-

picrylhydrazyl assay; e T-AOC, total antioxidant capacity; f SOD, superoxide dismutase; g CAT, catalase; h MDA, malondialdehyde; i GSH, 
glutathione. 
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3.10 ANTI-INFLAMMATORY FUNCTION 

Many studies have evaluated the anti-inflammatory activity of the brown seaweeds, in particular 

Laminaria digitata, Laminaria hyperborea and Laminaria spp., usually titrated in laminarin and 

fucoidans (Bouwhuis et al., 2017a,b; Wan et al., 2016; Walsh et al., 2013a; Mukhopadhya et al., 

2012; Leonard et al., 2012; Heim et al., 2015a,b; McDonnel et al., 2016;Wan et al., 2018). In 

addition, non-specific brown seaweeds titrated in alginic acid have been evaluated by Wan et al., 

(2016, 2018). Of these authors, 8/10 showed anti-inflammatory effects. Walsh et al. (2013a) 

reported a lower expression of pro-inflammatory cytokines in the colon of piglets after dietary 

supplementation with laminarin, but not with fucoidans. Dietary treatment of gestation and lactating 

sows with laminarin (1g/d) and fucoidans (0.8 g/d) reduced the ileal gene expression of IL-6, IL-8, 

IL-10, of piglets at weaning (Heim et al., 2015a). Similarly, in piglets born from sows fed diets 

supplemented with laminarin from 109 d gestation and during lactation, a reduction on the colon IL-

6 concentration at weaning and of ileal IL-8 concentration eight days post weaning were observed 

(Heim et al., 2015b). 

In a 28-days trial, Bouwhuis et al. (2017b) observed the effects of a diet supplemented with 

laminarin 0.18 g/kg and fucoidans 0.34 g/kg, in 30 kg LW female pigs. After 11-day adaptation 

period, pigs were orally challenged with Salmonella Typhimurium. Dietary treatment reduced colon 

cytokine expression (IL-6, IL-18, IL-22 and TNF-α) 17 days post challenge, thus revealing an anti-

inflammatory effect. In addition, in 18 kg LW pigs, laminarin from Laminaria digitata dietary 

supplementation (0.6 g/kg) significantly increased gut mucins gene expression (MUC2 and MUC4) 

from 20% to 33% with a protective effect on epithelial cells (Smith et al, 2011). McDonnel et al. 

(2016) observed an increase of 16% in mucin gene expression (MUC2) in the ileal in female pigs 

fed diets supplemented with Laminaria spp. (0.18 g of laminarin and 0.34 g of fucoidan per kg of 

feed). A study using an in vitro system of porcine intestinal epithelial cells showed that ulvans from 

Ulva armoricana, a green seaweed, upregulated the gene expression of of cytokines such as IL1α, 

IL1β, L6, IL8, TNFα (Berri et al., 2016, 2017). 
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3.11 IMMUNOMODULATORY FUNCTION   

Many studies have evaluated the immunomodulatory activity of seaweeds (Wan et al., 2016; Choi 

et al., 2017; Leonard et al., 2012; Katayama et al., 2011; Bussy et al., 2019). In addition to an anti-

inflammatory action, laminarin also has an immunomodulatory function. Leonard et al. (2012) 

reported that the dietary supplementation of sows from 109 days of gestation until weaning with 

Laminaria spp. extract (1 g laminarin and 0.8 g fucoidans / day) increased immunoglobulin G (IgG) 

and immunoglobulin A (IgA) in sow colostrum by 19% to 25%, respectively. Consequently, an 

increase of piglet serum IgG was observed (10%).   

In another study, the effects were evaluated of sow supplementation with 30 g/day of an extract of  

Ascophyllum nodosum and Fucus from the 85th day of gestation until weaning on liver and 

lymphoid organs of piglets. The relative population of CD4+CD8+ T cells was higher in piglets 

from treated sows in the thymus, spleen, mesenteric node, liver and in peripheral blood, thus  

suggesting an important effect of maternal diet on immune status of 40-day-old piglets (Azizi et al., 

2018). The immunomodulatory effect of green seaweed extract (Ulva armoricana) was evaluated in 

sows by Bussy et al. (2019). Different levels of inclusion were tested: 2, 8 and 16 g/day during two 

periods of three days: 34 days before farrowing, before the last vaccine booster against Bordetella 

bronchiseptica and one week before farrowing. The higher dietary level increased anti-Bordetella 

IgG in sow’s blood and colostrum, while with the middle dietary integration, the authors observed 

an increase in milk IgA. Wan et al. (2016) and Choi et al. (2017) evaluated the immunomodulatory 

effects of seaweed fed to weaned piglets. Alginic acid oligosaccharides from brown seaweed 

increased IgG and IgA concentrations in piglet serum by 20 and 53 % respectively after 21 days of 

treatment (Wan et al., 2016). No immunomodulatory effect was observed in weaned piglets fed a 

diet supplemented with different Ecklonia cava concentrations (Choi et al., 2017). According to the 

authors, the result may be consequence of the low dosage and consequently the low content of 

fucoidan in the diets (0.056 – 0.112 – 0.168 g/kg respectively). In growing pigs (29 kg LW), 0.8% 

seaweed enhanced the immune function. Pigs were sensitized with the subcutaneous inoculum of 

sheep red blood cells at days 42 and 49. Seaweed increased the saliva IgA production five times 

more than the control after 56 days (Katayama et al., 2011). The concentration of antigen-specific 

IgG in peripheral blood was higher in seaweed group, but not significantly due to the high standard 

deviation.  
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3.12 POTENTIAL TOXICITY  

The use of seaweed in swine nutrition may have the following limitations: mineral elements and 

potentially toxic minerals content. Generally, seaweeds are introduced in pigs diet as 

ingredients/raw materials in a low percentage, thus there is no risk of potential toxicity in this case. 

In terms of microelements, the first limiting factor is the iodine content which, as reported in Table 

1, can reach particularly high concentrations in brown seaweeds. According to NRC (2012), 

tolerance levels in growing pigs and sows are 400 and 1500-2500 mg/kg DM for iodine from iodine 

salt, respectively. Of the potentially toxic minerals, the first limiting element is arsenic (As) which 

is found in high concentrations in brown seaweed (Table 8). However, a low content of the most 

toxic form of arsenic, inorganic arsenic, has been observed in seaweeds. The arsenic content of 

green seaweed is below the maximum level of 40 mg/kg feed (12% moisture content) sets by 

European feed legislation (Commission Directive 2002/32/EC and amendments). 

 

Table 8. Potentially toxic trace element concentrations in seaweed (mg/kg DM). 

Trace Element 
Brown 

seaweed1 

Green 

seaweed2 
Red seaweed3 Feed4 

Feed 

ingredient4 
Ref. 

       

Cadmium 0.05-8 0.03-4 0.04-3.8 0.5 (1*) 1 Cabrita et al., 2016 

Circuncisão et al.,2018, 

Maehre et al.,2014;  
Duinker et al., 2016 

 

Mercury <0.005-0.16 0.005-0.07 <0.005-0.03 0.1 (0.2*) 0.1 Cabrita et al., 2016., 
Circuncisão et al.,2018, 

Maehre et al.,2014;  

Duinker et al., 2016 
 

Lead 0.01-7 0.05-7 0.01-19 5 10 Cabrita et al., 2016 

Circuncisão et al.,2018, 
Duinker et al., 2016 

  

Arsenic 8-120 0.8-18 1-50 2 (10*) 40 Cabrita et al., 2016., 
Circuncisão et al.,2018, 

Maehre et al.,2014 

Duinker et al., 2016 
  

Inorganic arsenic 0.03-7.7 0.2-0.4 0.03-0.6 - - Circuncisão et al.,2018, 

Duinker et al., 2016 

 

 

 
1Brown seaweed: Alaria esculenta, Ascophyllum nodosum, Fucus spiralis, Fucus vesicolosus, Himanthalia elongate, Laminaria 

digitata, Lamibaria hyperborea, Laminaria spp., Pelvetia canaliculata, Saccharina latissima Sargassum fusiformis, Undaria 

pinnatififda 
2Green seaweed: Cladophora rupestris, Codium adhaerens, Codium vermilara, Enteromorpha intestinalis, Ulva lactuca, Ulva spp.  
3Red seaweed: Chondrus crispus, Gigartina spp., Gracilaria vericulophylla, Gracilaria spp., Palmaria palmata, Polysiphonia 

lanosa, Porphyra spp. 
4UE directive 2002/32/EC and amendments 

* Fish feed 
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3.13 CONCLUSIONS  

The biological activities of brown seaweeds could be used to improve health and welfare of pigs. 

The prebiotic effects and the antimicrobial activities of laminarin and fucoidans may have 

beneficial effects in the prevention of gastrointestinal diseases and to enhance diet digestibility in 

the post-weaning piglets. Laminarin also has an anti-inflammatory activity, which reduce the pro-

inflammatory cytokine response. The seaweed content of antioxidant molecules enhances the 

antioxidant status and meat oxidative stability. Dietary supplementation with brown seaweed may 

positively affect the immune system, enhancing immunoglobulin production and modulating 

cytokine production. In conclusion, brown seaweeds seem to be a promising dietary intervention in 

pigs in order to enhance immune system, antioxidant status and gut health. Data on the dietary 

supplementation with green seaweeds in pigs seem to be lacking at present and merit further 

investigations. 
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4.1 ABSTRACT 

 

The effect of dietary supplementation with a biotechnological extract of Ajuga Reptans on growth 

performance, oxidative status and immune parameters was evaluated in post weaning piglets. At 

weaning, 120 piglets with an average live weight of 8.1  1.3 kg, were assigned to one of three 

experimental groups. The first group was fed a control diet (C). The second and third groups were 

fed the same diet supplemented with 5 mg (T1) and 10 mg (T2) of teupolioside/kg feed from a 

biotechnological plant extract. Growth performances were recorded and blood samples were 

collected at the beginning, at 14 days, and at the end of the trial (56 days). Serum biochemical 

parameters, oxidative status and immunoglobulin titres were determined. Average daily gain tended 

to be higher (P=0.057) and live weight was higher in piglets (P<0.05) fed with different amounts of 

plant extract (T1 and T2) than the controls. The production of reactive oxygen metabolites (ROMs) 

was higher (P<0.05) in the control group than in the groups receiving teupolioside (T1 and T2). 

Concentration of serum immunoglobulin of class G improved (P<0.001) in piglets fed the T1 and 

T2 diets than the controls. Overall, the results suggested that the biotechnological extract of Ajuga 

Reptans containing teupolioside has an antioxidant and immunomodulant effect. 

 

4.2 INTRODUCTION 

 

Antimicrobial resistance is an important concern for both animal and human health (WHO, 2017). 

Approximately, 75% of the antimicrobials sold, including those for human consumption, are 

intended for animals (67% in USA, FDA 2013). Antimicrobials are used in intensively farmed 

animals for disease prevention and growth promotion effect. The use of antibiotics has been linked 

with the development of resistant bacteria in chickens and swine gut microbiota (Brüssow, 2017; 

Looft et al., 2012). Van Boeckel et al. (2015) estimated that the global average annual consumption 

of antimicrobials per kilogram of animal produced was: 45 mg·kg
−1

 for cattle, 148 mg·kg
−1

 for 

chickens and 172 mg·kg
−1 

for pigs. Italy, where the present study was carried out, has the third 

highest use of antibiotics in livestock in Europe (ESVAC, 2016).  

According to the World Health Organization, the reduction in antimicrobial consumption cannot be 

delayed. It is thus essential to find new strategies to support animal health and growth 

performances. Dietary integration with bioactive molecules from natural sources is a sustainable 

way to reduce the use of antimicrobial and synthetic additives.  

Some studies have reported that dietary supplementation with natural extracts in swine and poultry 

production lead to a better growth performances compared with antimicrobials (Kamel, 2001; 

Gheisar and Kim, 2018). Phenylpropanoid glycosides (PPGs) belong to the largest group of 

bioactive molecules in plants and derive mainly from phenylalanine synthesized by a metabolic 

pathway, which is efficient only in microorganisms and plants (Sangwan et al., 2001). 

Phenylpropanoid glycosides have shown several biological activities such as antitumoral, antiviral, 

anti-inflammatory, antibacterial, antioxidative, and free radical scavenging (Dembitsky, 2005). 

PPGs are thus a very interesting group of molecules for producing immunostimulant, 

hepatoprotective, antimicrobial, and antinflammatory phyto-preparations (Korkina et al., 2006).  

In the group of PPGs, teupolioside (also known as Lamiuside A) is a promising biologically active 

compound from Ajuga reptans (Di Paola et al., 2009).  

http://jds.fass.org/cgi/content/full/90/6/2580#KAMEL-2001#KAMEL-2001
http://jds.fass.org/cgi/content/full/90/6/2580#SANGWAN-ETAL-2001#SANGWAN-ETAL-2001
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Teupolioside is structurally characterized by caffeic acid and 4,5 hydroxyphenylethanol bound to a 

β-[D]-glucopyranoside through ester and glycosidic links respectively. Two other carbohydrates, 

i.e. rhamnose and galactose, are linked in sequence to the glucose molecule (Figure 1).  

 

 
 

Figure 1. Chemical structure of teupolioside (Di Paola et al., 2009). 

 

Teupolioside is a secondary metabolite produced in order to protect the plant from UV radiation. 

From a technological point of view, it is difficult to extract this molecule using industrial methods 

due to its low content in the whole plant. In fact, the chemical synthesis of the molecule, due to the 

structure of teupolioside, is complex and very expensive. The Biotecnological Research Institute 

(I.R.B. S.p.A, Altavilla Vicentina, Italy) has developed a platform for the production of teupolioside 

using cell cultures in suspension of Ajuga reptans. The biotechnological processes also improve the 

safety profile and guarantee the highly standardized composition of the extract, thus reducing the 

environmental impact (Dal Toso and Melandri, 2009). The aim of the present study was to 

investigate the effects of dietary supplementation with teupolioside produced by cell cultures of 

Ajuga reptans (Laminaceae spp.) on growth performance, oxidative status and immunological 

parameters in post weaning piglets.  
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4.3 MATERIALS AND METHODS 

 

Animals and experimental design 

 

The animals used in this experiment were cared for following the European Union guidelines (No. 

2010/63/EU) and approved by the Italian Ministry of Health. One hundred and twenty weaned 

piglets (Goland), half castrated males and half females, aged 24 ± 2 days, were randomly selected 

and divided into three experimental groups, balanced for body weight (BW) and gender. During the 

period of adaptation (7 days), the piglets received a commercial diet for ad libitum consumption.  

After 7 days of adaptation, at an average body weight of 8.1  1.3 kg, the piglets were assigned to 

three dietary treatments (8 piglets per pen; 5 pens per treatment) and reared in an environmentally-

controlled room. The control group (C) received a commercial diet, and groups T1 and T2 received 

the same diet supplemented with the biotechnological plant extract in order to ensure 5 mg or 10 mg 

teupolioside per kg feed.The plant extract is produced by cell cultures of Ajuga reptans 

(Laminaceae spp.) and prepared on an industrial scale by a standardised procedure (I.R.B. s.r.l., 

Altavilla Vicentina, Vicenza, Italy). To prevent oxidation, the supplement was microencapsulated 

within a protective matrix of hydrogenated vegetable lipids using spray cooling technology (Sintal 

Zootecnica, Isola Vicentina, Vicenza, Italy). The experimental diets were formulated to meet the 

requirements for all nutrients (NRC 1998). The composition of the experimental diets is reported in 

Table 1.The animals had free access to water and were fed ad libitum. The experimental trial lasted 

56 days. Piglets were weighed at the beginning and at the end of the trial. The amounts of feed 

offered and refused were recorded daily to calculate the feed intake. These data were used to 

calculate the average daily gain (ADG), gain feed ratio (G : F), and average daily feed intake 

(ADFI) of each pen.  
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Table 1. Composition of the experimental diets (g/kg, as-fed basis). 

Live weight range                                                           8-15 kg 15-30 kg 

Ingredient: 

Steam-rolled corn                                                                                                      280 180 

Corn yellow                                                                                                               150 200 

Barley 150 200 

Wheat middings                                                                                                        80 80 

Dried whey                                                                                                                   50 20 

Soy protein concentrate, 64% CP                                                                                40 44 

Soybean meal, 48% CP                                                                                                                                                                       60 80 

Fish meal, 70% CP                                                                                                                                                                                                                                                         28 - 

Rice protein meal, 65% CP 24 20 

Dextrose                                                                                              25 10 

Wheat bran                                                                       30 80 

Soy oil                                                     30 30 

Experimental supplement 
1
                                         1 1 

Vitamin- mineral premix 
2 

34 34 

Dicalcium phosphate                                                                                  10 14 

L-Lysine  HCl                                                                                     5 4 

Preservative 
3
                                                                   3 3 

Calculated chemical composition 
4
                                                                              

Crude protein                                                                                                  206.1 195.4 

Ether extract                                                               83.3 75.6 

Crude fiber                                                                                                          30.9 39.9 

Ash                                                                         61.3 65.9 

Lysine                                                                                                           13.1 11.9 

Methionine + cysteine                                                                            7.9 7.2 

Threonine                                                                                                        8.5 7.7 

Tryptophan                                                                        2.6 2.4 

 
1
quantities of plant extract standardized for teupolioside provided per 1 kg of complete diet: 0 

(maltodextrins), for control, 5 mg teupolioside (T1), and 10 mg teupolioside (T2) groups 

respectively. 
2
provided per 1 kg of complete diet: Ca 2.8 g, P 0.14 g, Na 1.33 g, vit. A 16 000 IU, vit. D3 2000 

IU, vit. E 175 IU, vit. K (menadione sodium bisulfite) 3.8 mg, vit. B1 4.9 mg, vit. B2 9.8 mg, 

calcium D-pantothenate 40 mg, niacin 57.8 mg, vit. B12 0.09 mg, vit. B6 7.7 mg, folic acid 3.4 mg, 

biotin 0.33 mg, choline chloride 1000 mg, Zn (ZnO) 85 mg, Cu (CuSO4) 85 mg, Mn (MnO) 108 

mg, Fe (FeCO3) 470 mg, I (KI) 3.85 mg, Co (CoSO4) 1.4 mg, Se (as Na2SeO3) 490 μg. Premix 

containing calcium formiate, Saccharomices cerevisiae, sodium chloride, barley, butyric acid, dL-

tryptophan, dL-methionine, L-treonine. 
3
composition per 1 kg of complete feed: formic acid 0.3 g, lactic acid 1.1 g, colloidal silica carrier 

1.6g. 
4
calculation based on INRA (2004). 
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Sample Collection 

 

Blood samples were obtained, by anterior vena cava puncture before the morning feeding, from 10 

randomly selected castrated male piglets per treatment (2 piglets/pen), at the beginning of the trial, 

and at days 14 and 56. The blood samples were collected in 10 mL vacutainer glass tubes 

(Venoject®, Terumo Europe N.V., Leuven, Belgium) and immediately placed on ice.  Serum was 

harvested by centrifugation (8,500 x g for 15 min. 4 °C) and stored at -80 °C pending analysis.  

 

Determination of antioxidant activity of plant extract 

 

The antioxidant activities of the biotechnological extract of Ajuga reptans, was evaluated using the 

Kit Radicaux Libres (KRL) biological test (Prost, 1992). This ex-vivo test is based on free radical-

induced haemolysis and tests the antioxidant capacity of several molecules in a biological condition. 

A control blood sample was used as the biological medium (Astra for medics S.R.L, Milan, Italy). 

The direct effect of the phenolic compounds on the control blood was tested without free radical 

addition, also verifying that the blank did not present any interference (cytotoxic assays). The 

phenolic compounds were dissolved in aqueous solution at different concentrations. Blood solutions 

were incubated at 37 °C with different ranges of concentration (from 0 to 1 mg by liter of reaction 

medium) of the extract for 15 min before being submitted to free radicals produced by a final 50 

mM solution of 2,20-azobis (2-amidinopropane) dihydrochloride (AAPH). Diluted blood samples 

without and in the presence of different amounts of the extract were submitted to organic free 

radicals produced at 37°C under air atmosphere from the thermal decomposition of a 50 mM 

solution of AAPH. Hemolysis was recorded using a 96-well microplate reader by measuring the 

optical density decay at 450 nm (Laboratoires Spiral, France). The results were expressed as the 

percentage increase in KRL value, which is the time required to reach 50% haemolysis compared to 

the control blood. A range from 0 to 100 mg/L of Trolox® (MW 250.29 g/mole), a water-soluble 

analogue of vitamin E, enabled us to standardize the global antioxidant capacity of the product 

compared to vitamin E. Mean values of three independent determinations were used for the 

calculation.  

 

Haematochemical parameters 

 

Total cholesterol, high-density lipoprotein (HDL) cholesterol, triglycerides, glucose and urea were 

determined by enzymatic spectrophotometric assay (Alfa Wasserman, Milano, Italy).  The 

concentration of low-density lipoprotein (LDL) cholesterol was calculated using the Friedewald 

equation according to Johnson et al., (1997). 
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Oxidative status 

 

The serum reactive oxygen metabolite (ROM) was determined using a spectrophotometric assay 

(“D-Roms test” Diacron s.r.l., Grosseto, Italy). The D-Roms test is based on the concept that the 

amount of
 
organic hydroperoxides present in serum is related to the free

 
radicals from which they 

are formed (Cesarone et al., 1999; Alberti et al., 2000). When the serum sample is
 
dissolved in an 

acidic buffer, the hydroperoxides react with
 
the transition metal ions freed from the proteins in the

 

acidic medium and are converted to alkoxy and peroxy radicals.
 
These newly-formed radicals are 

able to oxidize an additive
 
(N,N-diethyl-para-phenylendiamine) to the corresponding radical

 
cation. 

The concentration of this persistent species can be
 
easily determined through spectrophotometric 

procedures (absorption
 
at 505 nm). The results are expressed in U CARR (Carratelli Units) where 1 

U CARR corresponds to 0.024 mmol/l H2O2 or 0.8 mg/L H2O2. 

 

Serum Immunoglobulin Concentration 

 

Serum concentrations of class G (IgG) and A (IgA) immunoglobulin were measured at T0 and T56 

using the ELISA method, as described by the manufacturer (Bethyl, Montgomery, TX). Briefly, 

plasma samples were diluted 1:4000 and 1:60,000 to detect IgA and IgG, respectively, in Tris–

buffered saline and added to plates coated with class specific immunoglobulin pig antibody. The 

different subsets were detected with the appropriate peroxidase anti-pig IgA or IgG (Bethyl) and 

were quantified with reference to standard curves constructed with known amounts of pig 

immunoglobulin subsets. Absorbance was read at 450 nm using an ELISA plate reader (Spectra 

thermo, Tecan, NC, USA). 

 

4.4 STATISTICAL ANALYSES  

 

All parameters were analyzed using SPSS (SPSS/PC Statistics 24 SPSS Inc., IBM). Live weight 

data were analysed by GLM (General Linear Model) procedure with treatment as the main effect 

and the value at the beginning of the trial entered as a covariate. Biochemical parameters and serum 

oxidative status were analysed by repeated measure analysis of variance (ANOVA) to assess the 

main effect of treatment and time and value at the beginning of the trial entered as a covariate.  Pen 

was the experimental unit for the productive performance. Piglet was considered the experimental 

unit of all serum metabolites and immunological variables. Data are presented as means ± SEM, 

and a value of P ≤ 0.05 is used to indicate statistical significance. 
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 4.5 RESULTS 

 

Antioxidant activity of plant extract  

 

The results underline that teupolioside from the cell culture of Ajuga Reptans has an important 

antioxidant capacity in vitro, which increases linearly with the dose of the extract up to a 

concentration of 100 mg/L (Figure 2). The plant extract from the cell culture of Ajuga reptans 

(standardized at 50% in teupolioside) showed an antioxidant activity equivalent to 3.73 μmoles of 

Trolox per mg of extract.  

 

Growth Performance 

 

The piglets’ growth parameters in relation to dietary treatments are reported in Table 2. At the end 

of the experimental trial, group T2 showed a higher (P<0.05) body weight compared to the others 

(C and T1). Therefore, also the ADG tended to be higher (P<0.10) in piglets fed with the highest 

dosage of Teupolioside (T2). The gain to feed ratio and ADFI were unaffected (P>0.05) by dietary 

treatments.No differences among experimental group were observed in piglet’s health status during 

all experimental trial. 

 

Table 2. Growth performances of piglets fed control diet or diet supplemented with 

biotechnological plant extract containing teupolioside. 

 

 

 

Parameters
1,3

 

Dietary Treatment
2
 

    Control                    T1                      T2 

 

 P-value 

Final BW, kg 29.8 ± 0.54
a
 29.1 ± 0.55

a
 31.4 ± 0.56

b
 0.016 

ADG, g/d 386 ± 9.4 380 ± 10.6 414 ± 11.5 0.057 

G:F, kg/kg 0.495 ± 0.04 0.509 ± 0.05 0.513 ± 0.06 0.853 

ADFI, kg/day 0.782 ± 0.06 0.747 ± 0.08 0.748 ± 0.07 0.134 

 
 

1
Data are reported as mean ± standard error of the mean. n=5;  

2
 T1, diet supplemented with plant extract to supply 5 mg teupolioside /kg feed, T2, diet 

supplemented with plant extract to supply 10 mg teupolioside /kg feed. 
3
BW, body weight; ADG, average daily gain; G:F, gain to feed ratio; ADFI, average daily feed 

intake;  
a, b

 values in rows with different superscript letters differ significantly (P≤0.05). 
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Figure 2. Antioxidant activity of teupolioside measured by biological test KRL. 

 

 

 

Oxidative status    

A significant difference in the effect of dietary treatment (P=0.037) was found in d-ROM 

production between the control and treatment groups at the end of the trial (Table 3). No significant 

differences were observed for the time effect (P=0.860) and the time x treatment effect (P=0.868). 

Immune parameters  

 

Dietary supplementation with the plant extract increased (P=0.001) the IgG serum concentration in 

T1 and T2 groups compared to control (8.38± 0.61 g/L in control vs 11.77±0.62 g/L and 11.79±0.56 

g/L in groups T1 and T2, respectively). Figure 3 provides the descriptive analysis (box plot) of IgG 

serum concentration after 56 days of dietary supplementation with biotechnological plant extract. 

The IgA serum concentration was unaffected (P=0.260) by dietary treatments (0.64 ± 0.09 g/L in 

control vs 0.65±0.01 g/L and 0.83 ± 0.09 g/L in groups T1 and T2, respectively). 
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Table 3. Serum biochemical parameters of piglets fed control diet or diet supplemented with 

biotechnological plant extract containing teupolioside (T1 and T2). 

 

 Dietary Treatment
2
 P-value  

Measure
1 

Control T1 T2 Time Treatment 

HDL cholesterol mmol/L
3
 

Day 14 0.341 ± 0.021 0.380 ± 0.021 0.383 ± 0.020  

0.810 

 

0.793 Day 56 0.431 ± 0.013 0.413 ± 0.013 0.415 ± 0.012 

Total cholesterol mmol/L 

Day 14 0.944 ± 0.033 0.972 ± 0.034 0.909 ± 0.033  

0.661 

 

0.463 Day 56 1.192 ± 0.084 1.200 ± 0.084 1.117 ± 0.083 

LDL cholesterol, mmol/L
3
 

Day 14                      0.462 ± 0.041        0.448 ± 0.040          0.438 ± 0.035 

Day 56                      0.672 ± 0.024         0.701 ± 0.023         0.718 ± 0.020     0.942           0.147 

Glucose mmol/L 

Day 14 4.78 ± 0.26 4.30 ± 0.26 4.19 ± 0.26  

0.234 

 

0.341 Day 56 3.87 ± 0.30 4.11 ± 0.30 3.62 ± 0.30 

Triglycerides mmol/L 

Day 14 0.67 ± 0.05 0.70 ± 0.05 0.51 ± 0.05  

0.495 

 

0.130 Day 56 0.48 ± 0.03 0.52 ± 0.35 0.52 ± 0.03 

Urea mmol/L 

Day 14 2.84 ± 0.73 2.94 ± 0.73 3.09 ± 0.73  

0.152 

 

0.703 Day 56 7.55 ± 1.22 7.35 ± 1.22 5.92 ± 1.22 

d-Rom (U carr) 

Day 14 

Day 56 

 

    433 ± 9.0 

    528 ± 8.2 

 

     415 ± 8.1 

     471 ± 8.4 

 

    414 ± 7.2 

    485 ± 8.4 

 

  0.860 

 

     0.037 

1 
Data are reported as mean ± standard error of the mean;

 
n = 10. 

2
T1, diet supplemented with plant extract to supply 5 mg teupolioside/kg feed, T2, diet 

supplemented with plant extract to supply 10 mg teupolioside /kg feed. 
3
HDL, high density lipoprotein, LDL low density lipoprotein. 

 

Biochemical parameters  

The serum biochemical parameters of piglets fed the control or plant extract supplemented diet are 

reported in Table 3. Dietary treatment and sampling time did not affect (P>0.05) HDL, LDL and 

total cholesterol, glucose, triglycerides and urea. No significant differences were observed in the 

time x treatment effect (P>0.05). Data fall within the reference values for all the parameters 

analysed. 
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Figure 3. Boxplot of serum IgG in piglets fed control diet or diet supplemented with 

biotechnological plant extract titrated in Teupolioside (T1 and T2) after 56 d of dietary treatment
1
. 

 

 
 n=10; T1, diet supplemented with plant extract to supply 5 mg teupolioside /kg feed, T2, diet 

supplemented with plant extract to supply 10 mg teupolioside /kg feed. 

Treatment effect, P <0.001.      
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4.6 DISCUSSION  

 

Regarding phenylpropanoids, many studies have been conducted on several bioactive principles in 

livestock, but few data are available on plant extracts containing teupolioside. An in vitro study 

reported that teupolioside has demonstrated anti-inflammatory, anti-oxidant and chelating properties 

(Korkina et al., 2006). Pastore et al., (2009) also reported that teupolioside could decrease the 

expression of proinflammatory cytokine which was correlated with the antioxidant, scavenging, and 

iron-chelating activities of this polyphenol (Korkina et al., 2006). In the present study a higher 

antioxidant activity of teupolioside was observed in comparison with the vitamin E soluble 

analogue (Trolox). The KRL test could be a promising approach which allows a dynamic evaluation 

of the overall antioxidant activity of the plant extract against oxidative stress in a biological system 

(Maghin et al., 2016). 

At weaning, piglets have to deal with many changes and nutritional, environmental and 

immunological stresses (Le Dividich and Sève 2000; Montagne et al., 2007). The use of natural 

supplements in animal nutrition is a good way to improve piglet health and performance as well as 

to increase the sustainability of the pig sector. In recent years, plants extracts have attracted interest 

as an innovative dietary strategy to replace antimicrobials (Cheng et al., 2014). No previous study 

has reported the effects of dietary supplementation with a biotechnological extract of Ajuga Reptans 

containing teupolioside.  

The present results showed an improvement in final weight and ADG in piglets fed the high dosage 

of biotechnological plant extract (T2).  These results agree with other studies reporting that dietary 

natural extracts containing polyphenols improve growth performance in post-weaning piglets 

(Maass et al., 2005; Devi et al., 2015).  The effects of PPG dietary supplementation on growth 

performance in livestock are conflicting. In previous studies, supplementation with a water-soluble 

extract of Verbenaceae (Lippia spp.) leaves containing the PPG verbascoside, had a positive effect 

on growth performance in suckling lambs (Casamassima et al., 2009). On the other hand, no effect 

on growth performance was reported in pigs, broilers, hares and horses with a supplementation of 

5 mg verbascoside/kg feed (De Marco et al., 2015; Rossi et al., 2013; Rossi et al., 2017; Vizzarri et 

al., 2014).  

Weaning is a crucial phase in pig husbandry. A sudden dietary change from milk to solid feed 

induces transient anorexia, intestinal inflammation and unbalanced gut microbiota, which are 

important causes of post weaning diarrhea and associated infections in piglets (Gresse et al., 2017). 

In this situation, an imbalance between reactive oxygen species production and their neutralization 

by the antioxidant system of the organism has also been observed, leading to oxidative stress which 

negatively affects piglet health (Rossi et al., 2009; Buchet et al., 2017).  This situation is more 

serious in the presence of post weaning diarrhea. In fact it has been reported that inflammation 

increases oxidative stress in animals (Lykkesfeldt et al., 2007). In addition, a study performed by 

Sauerwein et al., (2007) highlighted that the high d-ROMs values in the first week after weaning is 

associated with decreasing growth rates.  

The present data show that serum d-ROMs in piglets fed with teupolioside was lower than the 

controls, thus demonstrating the antioxidant activity of the active principle. These data agree with 

the literature that reports a reduction in d-ROM production or an enhancement in antioxidant status 

in livestock after dietary supplementation with a natural extract containing PPG (Casamassima et 

al., 2012; Casamassima et al., 2013; Rossi et al., 2013). In fact, polyphenols prevent the oxidation 
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of low-molecular-weight antioxidants, such as vitamin A and E, thus increasing their amount of 

serum (Palazzo et al., 2011; Paszkiewicz et al., 2012). Additionally, previous studies in piglets have 

reported that dietary supplementation with verbascoside can restore liver antioxidant status induced 

by the high intake of n-6 PUFA, leading to oxidative stress (Di Giancamillo et al., 2015). As 

recently reported in the literature, polyphenols protect cells against oxidative stress caused by free 

radicals thought several mechanisms, thus reducing the risk of associated diseases (Lipiński et al., 

2017). The polyphenol metabolism has not been fully clarified and their availability is related to its 

chemical characteristics and functional groups (Landete, 2012). The present data showed that blood 

biochemical parameters were not affected by dietary integration with the biotechnological extract, 

in agreement with a previous study in weaned piglets fed a natural extract containing verbascoside 

(Pastorelli et al., 2012). On the other hand, other studies in livestock have reported that dietary 

supplementation with a plant extract containing verbascoside improved the lipid blood profile, 

decreasing total cholesterol, LDL cholesterol and triglycerides (Palazzo et al., 2011; Casamassima 

et al., 2014; D’Alessandro et al., 2017).  

Several studies have reported that dietary polyphenols from several sources have an 

immunomodulatory effect on immune cell populations (Cuevas et al., 2013). One important 

lymphocytes class are B cells which are involved in humoral immunity and produce 

immunoglobulins. In the literature, the effects of a natural extract containing polyphenols on 

immunoglobulin production have not been described sufficiently in depth. An in vitro study on 

human peripheral blood mononuclear cells reported that resveratrol did not affect IgM and IgG 

production (Zunino et al., 2009). Other in vitro studies have reported that polyphenols from several 

sources are able to the modulate B cell function, downregulating IgE and IgG production (Sanbongi 

et al., 1997; Hassanain et al., 2010).  

Our data showed that dietary supplementation with a biotechnological plant extract increased serum 

IgG without affecting IgA production. The modulation in immunoglobulin production by a dietary 

supplement with a natural extract in post weaning piglets has been reported by Pastorelli et al. 

(2012). The authors reported that dietary supplementation with different amounts of plant extract 

titrated in verbascoside increased both serum IgG and IgA concentrations, thus reflecting the active 

synthesis of antibodies by the piglets’ immune system (Kanitz et al., 2004). 

 

4.7 CONCLUSION 

 

Overall, the results suggest that dietary supplementation with a biotechnological extract of Ajuga 

Reptans containing teupolioside in the post-weaning phase improves piglet health. In fact, piglets 

fed the high dosage of teupolioside showed a higher body weight at the end of the trial. In addition, 

dietary supplementation with teupolioside in piglets positively affected serum d-ROM production 

and IgG title, without affecting other biochemical parameters. These data demonstrate the 

antioxidant and immunomodulant effects of the biotechnological extract of Ajuga Reptans 

containing teupolioside. Further studies are needed to explore the mechanism of action of 

teupolioside and to clarify the optimal length and dosage of the dietary treatment. 
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5.1 ABSTRACT 

 

The present study evaluates the effects of natural extracts on reproductive performances, 

haematochemical parameters, and antioxidant status of rabbit does. A total of sixty New Zealand 

White second parity does were divided into three groups: the first group was fed a control diet 

(CON), the second (T1) and the third groups (T2), were fed the same diet supplemented with 

prebiotic polysaccharides from brown seaweeds (Laminaria spp.) plus phenolic acid, 

hydroxycinnamic acids, tannins, flavonoids from plant extracts (0.3% and 0.6% respectively). The 

trial was conducted for two consecutive reproductive cycles (75 days). Reproductive performance 

was recorded. Blood samples were collected before the first insemination, 10 d after the first 

kindling and 10 d after the second one. At the first reproductive cycle, productive parameters were 

negatively affected (P < 0.05) by high dosage of dietary supplement (T2 group). At the second 

reproductive cycle no difference (P > 0.05) between dietary treatments on reproductive and 

productive performances were observed. Bilirubin was affected by dietary treatment (P < 0.001) 

and decreased in relation to sampling time (P < 0.001) and decreased in relation to sampling time 

(P < 0.001). The HDL cholesterol decreased by dietary treatment (P < 0.01). All the plasma 

antioxidant markers were positively affected (P < 0.001) by dietary supplementation and sampling 

time. No previous study has reported the effects of brown seaweeds and polyphenols in rabbit does 

and the present data shows that this natural extract supplement improved the antioxidant status of 

rabbits does. 
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5.2 INTRODUCTION 

 

There has been increasing global concern regarding the development of antimicrobial resistance and 

the transfer of resistance genes from animal to human strains (Devirgiliis et al., 2013). Due to the 

ban on using  antibiotic growth promoter in animal feed (1831/2003/EC EU), natural alternatives to 

support animal health and performance have been studied (Lillehoj et al., 2018). Phytogenic and 

plant extracts are an effective strategy to support a sustainable animal production (Pastorelli et al., 

2012; Yang et al., 2015; Casamassima et al., 2014; Attia et al., 2017a & Attia et al., 2017b;  

Valenzuela-Grijalva et al., 2017; Attia et al., 2018). Brown seaweeds are an excellent source of 

vitamins, minerals (Descamps, 2006). It also contains sulfur polysaccharides, phlorotannin, 

catechins, carotenoids, tocopherols and diterpenes, which are characterized by antimicrobial, 

antioxidant, antinflammatory and immunomodulatory activities (Maghin et al., 2014). These 

properties make these compounds promising in livestock for the improvement of animal health and 

welfare. As reviewed by Makkar et al. (2016) dietary supplementation with brown seaweed in 

rabbits has been shown to have different effects. In particular, dietary Laminaria spp. appears to 

improve the blood lipid profile, however Ascophillum nodosum supplementation should be avoided 

because it was shown to have a toxic effect. Previous studies have reported that tannins, a 

heterogeneous group of polyphenols, show antibacterial and antioxidant activities (Huang et al., 

2018). Rabbit production is based on high reproductive efficiency, growth rate, feed utilization and 

meat nutritional parameters (Djakalia et al., 2012). Enteric pathologies are one of the main causes of 

mortality (Grilli et al., 2006). Natural extract supplementation could thus enhance rabbit doe health 

and performances during pregnancy and lactation. These phases are critical in does and are 

characterized by several physiological changes and an increase in the production of reactive oxygen 

species production (Abdel-Khalek et al., 2008). The number of weaned rabbits needs to increase to 

enhance the does’productive performance, and nutrition has been largely recognized as a key factor 

in pregnancy and lactation phases (Chavatte-Palmer et al., 2016). The productive performance of 

does thus needs to be improved using sustainable dietary supplement (Okab et al., 2013; 

Casamassima et al., 2017; Uhlirova and Volek 2019). Having focused attention on the animals 

livestock welfare and the fully expression of their productivity, the present study aims to evaluate 

the effects of dietary natural supplementation with a brown seaweed and polyphenol extract mixture 

on reproductive performance, biochemical parameters, and antioxidant markers of New Zealand 

White rabbit does. 
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5.3 MATERIAL AND METHODS 

 

Animals and experimental design 

 

Does were handled following the guidelines for animal experiments, indicated in EU Directive 

2010/63/EU, and national guidelines for the care and use of animals were followed. All 

experimental procedures involving animals were approved by ethical committee (No. NPPC 18-10-

2016). The trial was performed during January–May period in the experimental rabbit farm at the 

National Agricultural and Food Centre (Nitra, Slovak Republic). Second parity New Zealand White 

does (n = 60) were enrolled for two consecutive reproductive cycles (75 days). Lactating does were 

artificially inseminated at 12 days after kindling. Fourteen days after artificial insemination, the 

does were tested for pregnancy by palpation, and non-pregnant does were discarded from the 

experiment. Does were individually housed in wire cages arranged in flat-decks measuring 600 x 

500 x 330 mm high on one level. Cages were equipped with a hopper for feed and an automatic 

nipple drinking system. A Lighting cycle of 16h of light and 8h of dark was used throughout the 

trial. Heating and forced ventilation systems maintained the building temperature within 18 ± 4°C. 

Relative humidity was about 70 ± 5%. For an adaptation period of one week, does were fed a 

commercial diet and the insemination was at the beginning of the trial, in which does were 

randomly assigned to one of three experimental groups (n = 20 replicates per treatment) 

homogeneous for body weight (4.83 ± 0.19 kg) and parity order (second). The first group (CON) 

received a control diet, and groups T1 and T2 received the same diet supplemented with 0.3% and 

0.6% of a natural feed additive consisting of prebiotic polysaccharides from brown seaweeds 

(Laminaria spp.) plus phenolic acid, hydroxycinnamic acids, tannins, flavonoids from plant 

extracts. The diets did not include anticoccidials, antibiotics or any other medications. The two 

dosages of the natural extract were chosen after an in vitro evaluation of the minimal inhibitory 

concentration (MIC) against Clostridium spp, Staphylococcus spp and Escherichia coli spp. (Tosi, 

personal communication). The ingredients and the chemical composition of experimental diets are 

reported in Table 1. The chemical composition of experimental diet and the brown seaweeds and 

the polyphenols extract mixture was performed in accordance with the methods of the Association 

of Analytical Chemists (AOAC, 2000). The quantitative analysis of the phenolic compounds of the 

dietary plant supplement was performed by HPLC-UV–DAD (Russo et al., 2017). The chemical 

and phenolic compositions of the feed supplement are reported in Table 2. Does were fed ad 

libitum, and the average daily feed intake (ADFI) of does was recorded. The body weight of the 

does was recorded the days before insemination. 
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Table 1. Ingredients and chemical composition of experimental diets (g/kg). 

 

 Experimental diet 
1
 

Ingredients CON T1 T2 

Maize 282 279 276 

Alfalfa hay 305 305 305 

Sunflower meal  135 135 135 

Palm seed oil 8 8 8 

Soybean oil 7 7 7 

Wheat 80 80 80 

Cane molasses 20 20 20 

Carob bean meal 90 90 90 

Oat 53 53 53 

Calcium carbonate 7 7 7 

Sodium Chloride 3 3 3 

Dicalcium phosphate 2 2 2 

DL-Methionine (99%) 2.5 2.5 2.5 

L-Lysine HCl (78.5%) 1.6 1.6 1.6 

Choline (75%) 1.4 1.4 1.4 

Vitamin and mineral 

premix
*
 

2.5 2.5 2.5 

Dietary supplement  0 3 6 

Chemical composition, 
2
    

   Crude protein 184 183.6 183.5 

   Ether extract 35.7 35.5 35.5 

   Crude fibre 187 186.8 187 

   Ash 86 85.7 85.8 

   Nitrogen free extract 507 507.1 506.9 

   NDF 302.1 301.5 301.7 

   ADF 195.8 195.4 195.3 

   ADL 39.9 39.5 39.5 
 

1
 CON= control group; T1= group supplemented with 0.3% of brown seaweed and plant 

polyphenols; T2= group supplemented with 0.6% of brown seaweed and plant polyphenols ;   
*
Supplied per kg diet: 13,500 I.U. vitamin A (trans-retinyl acetate);  

800 I.U. vitamin D3 (cholecalciferol); 

35 mg vitamin E (α-tocopherol min 91%),  

35 mg copper (cupric sulphate pentahydrate);  
2 

 analyses determined in triplicate.  

 

 

 

 



83 
 

Table 2. Chemical composition and polyphenols content of the dietary supplement. 

 

Item 
1
 % on dry matter 

Dry matter 93.58 ± 5.05 

Crude Protein 7.21 ± 0.99 

Ether extract 0.32 ± 0.01 

Carbohydrates 60.84 ± 3.18 

Ash 32.68 ± 1.38 

Compounds, mg/kg dry weight  

Phenolic Acid:  

Dihydroxybenzoic acid ≤ LOD 
2
 

Syringic acid 1059.79 ± 62.82 

Hydroxycinnamic acids:  

Neochlorogenic acid 7979.23 ± 468.11 

Rosmarinic acid 126.54 ± 8.67 

Trans sinapic acid 105.54 ± 8.09 

Chlorogenic acid 21.45 ± 3.65 

Tannins:  

Ellagic acid 2440.88 ± 148.29 

Rutin 272.37 ± 20.82 

Flavonoids:  

Myricetin 53.88 ± 5.68 

Kaempferol ≤ LOD 
 

1
 values are expressed as means (n= 4) ± standard deviation. 

 

2
 Limit of detection;  
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Reproductive performances  

Cross-fostering was applied within groups with a maximum of eight offspring/litter. The number of 

offspring born alive and stillborn, the number of weaned offspring per litter, and the body weight of 

offspring at birth and at weaning per doe were recorded for two reproductive cycle (75 days). 

 

Blood sampling 

The first blood sampling was performed after 12 h fasting, at the beginning of the dietary 

supplementation (t0). After two days, the rabbit does were artificially inseminated. The second 

blood sampling was performed 10 days after the first kindling (t1). The third blood sampling (t2) 

was performed et 10 days after the second kindling. Blood samples were taken from the vena 

auricolaris marginalis and were collected in 5 mL vacutainer glass tubes (Venoject®, Terumo 

Europe N.V., Leuven, Belgium) with lithium heparin. The blood samples were immediately stored 

at 4°C. All blood analyses were performed at the laboratory of Animal Physiology Department at 

the Slovak University of Agriculture in Nitra, Slovak Republic, where samples were then 

centrifuged for 20 min at 3000 rpm at 4°C to obtain plasma.   

 

Biochemical parameters  

Triglycerides, total cholesterol, HDL cholesterol and LDL cholesterol, bilirubin, alanine 

aminotransferase (ALT), aspartate aminotransferase (AST), were determined in blood plasma using 

a semi-automatic clinical chemistry Analyzer Arco model (Biotechnical Instruments, S.p.A., Italy). 

 

Plasma oxidative markers 

The superoxide dismutase (SOD) was determined using a colorimetric assay (Zhou and Prognon, 

2006). The SOD activity was expressed in units per milligram of protein (U/mg). The ferric ion 

reducing antioxidant power (FRAP) test was determined using Benzie and Strain (1996) method, 

which measures the antioxidant capacity of plasma. One unit FRAP is expressed in mmol/mL and 

indicates the number of moles of ferric ion (FeIII) reduced to ferrous ion (FeII) from one mol of 

tested antioxidants. The total antioxidant status (TAS) was measured on blood plasma by 2,2'-

azinobis (3-ethylbenzothiazoline-6-sulfonate) (ABTS) radical cation decolorization assay, following 

Re et al. (1999). Trolox was used as the standard. The TAS value of samples was defined as the 

concentration of Trolox with an equivalent activity as units per liter of plasma. 

The determination of thiobarbituric acid reactive substances (TBARS) was spectrophotometrically 

performed according to Esterbauer and Zollner (1989), using a standard curve with 1,1,3,3-tetra-

methoxypropane (Sigma Aldrich, St. Louis, USA). The results were expressed as g of 

malondialdehyde (MDA)/mL of plasma. Vitamins A and E were extracted from plasma samples 

with chloroform, according to Zhao et al. (2004). The amount of vitamins was detected by HPLC 

(Kontron Instruments, Italy), which consisted of an automatic auto-sampler (HPLC Autosampler 

360) with a loop of 20 μl, pump system (HPLC Pump 422), a column C18, 5 μm, 250 × 4.60 mm, 

(Phenomenex, Torrance, Ca, USA). The mobile phase consisted of a mixture of acetonitrile and 

methanol (85:15 v/v) with a flow value of 1 mL/min. Vitamins A and E were identified by 

comparing the retention time of the samples with the retention time of pure standards (> 97%) 

purchased by Sigma Aldrich (St. Louis, USA). The quantification was performed using the 

Gyminix system (version 1.8.1) by comparing the peak of the area with that of the reference 

standard curve. Results were expressed as g/mL of plasma.  
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5.4 STATISTICAL ANALYSES 

Statistical analyses of the data were performed using SPSS (SPSS/24 PC Statistics 24.0 IBM). After 

assessing whether the frequency distribution assumed normality with the Shapiro-Wilk Test, data 

on reproductive performances were analyzed by one-way analysis of variance (ANOVA) to 

evaluate the effects of dietary treatments at first and second partum. Data on biochemical 

parameters and antioxidant status were submitted to a repeated measure ANOVA to assess the main 

effect of treatment and time and their interaction. Rabbit does were considered as experimental unit 

for all parameters. Data were reposted as means ± pooled SEM. Differences were considered 

statistically significant at level of P<0.05.  

 

5.5 RESULTS 

 

Productive and reproductive parameters 

During the experimental trial, 30% of does in the CON and T1 groups and 35% in the T2 group 

were removed from the experiment due to lack of occurring pregnancy after artificial insemination 

and the data were removed from the analyses. No difference in body weight of the does at the 

second and third insemination was observed (P > 0.05). The average feed intake of does during 

pregnancy and lactation were not affected (P > 0.05) by the dietary treatment. During pregnancy, 

the average daily feed intake was 318 ± 8.5 g in the CON group, and 314 ± 8.7 g and 320 ± 9.7 g in 

groups T1 and T2 respectively. During lactation the average daily feed intake was 364 ± 7.5 g in 

CON group and 395 ± 9.9 g and 395 ± 10.6 g in groups T1 and T2 respectively.  

Tables 3 and 4 reported the reproductive parameters of rabbit does evaluated at the first and second 

kindling cycle respectively. The dietary treatments did not influence (P > 0.05) the number of kits 

per litter, the mortality and weight of kits at birth and weaning in the first reproductive cycle. 

Although there was a difference in the number of offspring after cross-fostering and at 14 days of 

lactation (lower number in T2 than in CON and T1; P < 0.05) there was a greater mortality and a 

lower weight of the animals in T2 at weaning, although not significant. At weaning (35 days) the 

number of offspring per litter tended to be lower (P = 0.055) in T2 than in the other groups.  
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Table 3. Productive parameters at first reproductive cycle of rabbit does fed control diet (CON) and 

diets supplemented with two levels of brown seaweed and plant polyphenols (0.3% and 0.6% in T1 

and T2 groups respectively). 

 Diet   

Item 
1
 CON T1 T2 SEM P-value 

Number of offspring per litter:  

total born 10.38 9.47  9.93 0.463 0.732 

born alive 9.81 9.07  9.40 0.487 0.827 

born dead 0.56 0.40  0.53 0.203 0.944 

after cross-fostering 7.73
a
 7.94

a
   7.13

b
 0.128  0.021 

14 days of lactation 7.60
a
 7.63

a
   6.69

b
 0.189  0.022 

35 days (weaning) 7.27 7.31  6.25 0.220  0.055 

Dead, no. 0.47 0.63  0.88  0.126 0.425 

Mortality during lactation, % 6.05 7.94 12.35   2.04 0.187 

Weight of the litter, kg:  

after cross-fostering 0.596 0.514 0.557 0.028 0.508 

14 days 2.17 2.12 1.81 0.099 0.072 

35 days (weaning) 6.08 6.03 5.08 2.202 0.073 

Weight of offspring, g:  

birth 64.67 58.00 59.33 1.75 0.264 

35 days (weaning) 841.9 820.7 810.9 12.92 0.676 

ADG 
2
, g/d 22.10 21.55 21.03 0.410 0.580 

1
 data are reported as mean ± pooled standard error of means. 

a,b
 Within the same row, means with different letters differ significantly (P < 0.05);  

2
 Average daily gain.  

Table 4. Productive parameters at second reproductive cycle of rabbit does fed control diet (CON) 

and diets supplemented with two levels of brown seaweed and plant polyphenols (0.3% and 0.6% in 

T1 and T2 groups respectively).  

 Diet SEM P-value 

Item 
1
 CON T1 T2   

Number of offspring per litter:       

total born 8.31  8.64  9.46 0.504 0.648 

born alive 7.85  8.00  8.77 0.477 0.714 

born dead 0.46  0.64  0.69 0.133 0.771 

after cross-fostering 7.00  7.14  7.08 0.169 0.943 

14 days lactation 6.93  7.00  7.08 0.189 0.942 

35 days (weaning) 6.71  7.00  6.85 0.162 0.776 

Dead, no.    0.29   0.14    0.23 0.082   0.777 

Mortality during lactation, %   4.14   1.97    3.25 1.030 0.775 

Weight of litter, kg:      

birth 0.523 0.475 0.500 0.023 0.704 

14 days 2.02 1.97 2.08 0.702 0.824 

35 days (weaning) 7.28 7.12 6.94 0.203 0.798 

Weight of offspring, g:      

birth 66.15 62.14 60.00 2.32 0.164 

35 days (weaning) 1075 1028 1015 18.49 0.381 

ADG 
2
, g/d 28.72 27.44 27.22 0.515 0.447 

 
1
 data are reported as mean ± pooled standard error of means, 

2
 Average daily gain. 
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Biochemical parameters   

 

Table 5 shows the data on does’ plasma biochemical parameters in relation to dietary treatments 

and sampling time. Bilirubin values were affected by dietary treatments (P<0.01) and decreased in 

relation to sampling time (P<0.001). Comparing dietary treatments at the last sampling, bilirubin 

values resulted lower (P<0.05) in T2 than T1 and CON rabbit does. An increase (P=0.005) in HDL 

cholesterol was observed in T1 group at the second and third sampling time. No other biochemical 

parameters were affected (P>0.05) by dietary supplementation. Triglycerides values decreased in 

relation to sampling time (P<0.001).  No other parameters were affected by dietary treatments and 

sampling time. 

 

Table 5. Blood values of rabbit does fed control diet (CON) and diets supplemented with two levels 

of brown seaweed and plant polyphenols (0.3% and 0.6% in T1 and T2 groups respectively) in 

relation to sampling time. 

 

 Diet  P-value 
3
 

Item 
1
 CON T1 T2 SEM D T T*D 

Bilirubin, mg/dL 
3
        

t0 
2 

0.72 0.72 0.71 0.011    

t1 0.64 0.63 0.57 0.014    

t2 0.66 0.55 0.46 0.017 <0.001 <0.001 <0.001 

Tryglicerides, mg/dL        

t0 66.43 64.03 67.96 1.165    

t1 65.44 60.47 63.82 0.977    

t2 63.44 59.86 63.03 1.139 0.195 <0.001 0.753 

        

Total cholesterol, mg/dL        

t0 56.68 54.69 53.15 0.727    

t1 55.28 54.14 51.16 0.904    

t2 57.79 53.43 53.17 0.873 0.072 0.103 0.333 

LDL cholesterol, mg/dL        

t0 35.91 35.36 37.34 0.624    

t1 36.72 34.65 36.75 0.650    

t2 36.43 34.18 37.97 0.674 0.145 0.957 0.537 

HDL cholesterol, mg/dL        

t0 31.50 33.47 31.15 0.714    

t1 29.58 36.80 32.69 0.732    

t2    30.03 36.00 32.80 0.896 0.005 0.311 0.039 

Aspartate aminotransferase, UI/L        

t0  26.90   25.14 25.11 0.589    

t1  27.42 24.55 27.77 0.554    

t2  27.30 26.38 27.20 0.424 0.134 0.116 0.199 

Alanine aminotransferase, UI/L        

t0 41.60 38.82 43.61 0.857    

t1 40.56 40.28 42.71 0.779    

t2 41.37 41.56 40.07 0.892 0.574 0.886 0.009 

        
1 
data are reported as mean values ± pooled standard error of means. 

2  
t0, beginning of the dietary supplementation; t1, 10 days after the first kindling; t2 10 days after the second kindling. 

3 
D=fixed effect of dietary supplementation; T=fixed effect of time; D x T=interaction dietary supplementation x time;  
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Plasma antioxidant markers 

 

The plasma antioxidant status of does in relation to dietary treatment and sampling time is reported 

in Table 6. All the parameters were affected by dietary treatments and sampling time (P<0.001). An 

interaction between time and treatment effects was also observed (P<0.01). The antioxidant 

parameters SOD, FRAP and TAS resulted higher (P<0.001) in groups fed seaweeds and the 

polyphenols mixture and increased in relation to sampling time (P<0.001).  Vitamin A and E 

significantly increased in T1 and T2 groups and in relation to sampling time (P<0.001). The MDA 

decreased in relation to sampling time in groups fed the natural extract mixture (P<0.001).  

 

Table 6. Plasma antioxidant markers
*
 of rabbit does fed control diet (CON) and diets supplemented 

with two levels of brown seaweed and plant polyphenols (0.3% and 0.6% in T1 and T2 groups 

respectively) in relation to sampling time. 

  Diet   P-value 
3
 

Item
1
 CON T1 T2 SEM D T T*D 

Superoxide dismutase, U/mg        

t0 
2 

   41.57 41.41 41.94 0.177    

t1 41.60 40.13 44.93 0.306 <0.001 <0.001 <0.001 

t2 41.91 56.54 59.88 1.056    

        

FRAP, µmol Fe2+/L 
4
        

t0 365.70 367.30 381.74 1.339    

t1 360.90 448.95 464.05 6.516 <0.001 <0.001 <0.001 

t2 362.10 486.85 489.11 8.077    

        

Total antioxidant status, U/L        

t0 11.45 11.99 12.07 0.110    

t1 11.86 19.92 22.86 0.632 <0.001 <0.001 0.038 

t2 11.82 20.59 23.18 0.654    

        

Malondialdehyde, µg/mL        

t0 2.83 2.84 2.87 0.012    

t1 2.97 2.41 2.50 0.035 <0.001 <0.001 <0.001 

t2 3.01 2.11 2.16 0.056    

        

Vitamin A, µg/mL        

t0 0.32 0.32 0.34 0.006    

t1 0.31 0.34 0.38 0.006 <0.001 <0.001 0.003 

t2 0.33
 a
 0.35

 
 0.40

 
 0.007    

        

Vitamin E, µg/mL        

t0 1.65
 
 1.71

 
 1.71

 
 0.008    

t1 1.69
 
 1.95

 
 2.04

 
 0.022 <0.001 <0.001 <0.001 

t2 1.69
 
 2.33

 
 2.28

 
 0.039    

1 
data are reported as mean values ± pooled standard error of means; 

2  
t0, beginning of the dietary supplementation; t1, 10 days after the first kindling; t2, 10 days after the second kindling 

3 
D=fixed effect of dietary supplementation; T=fixed effect of time; D x T=interaction dietary supplementation x time.

 
 

4 
ferric ion reducing antioxidant power 
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5.6 DISCUSSION 

 

Productive and reproductive parameters 

The lower number of offspring per litter in the T2 group, compared with the other two groups, 

could indicate an adverse effect of the high dosage of the natural extract. In fact, up to weaning, 

milk is the main feed of kits, and the number of kits in a litter is closely related to the does’milk 

production. In addition, the physiological mechanisms that regulate the milk secretion can be 

influenced by natural bioactive compounds (Albert-Puleo, 1980). It is possible that the high dosage 

of natural extract negatively affected milk production and resulted in a lower survival rate and 

weaning weight. However, in the second reproductive cycle, no effect of dietary supplementation 

with brown seaweed and polyphenols extract mixture was observed on the productive parameters, 

thus suggesting that tolerance increases with the advanced age of does. In the present experiment a 

high prebiotic activity from brown seaweeds was expected, however it is possible that the feed 

additive has no effects on productive and reproductive performances due to the good breeding 

conditions and low pathogen pressure (Attia et al., 2017c). Thus, studies in field conditions are 

needed in order to validate the present data. In a similar study on rabbit does, Okab et al. (2013) 

observed an improvement in kindling rate, litter size, and offspring ratio, after supplementation of 

2% of brown seaweed. The authors linked the results with an enhancement of sexual receptivity, 

highlighting the positive correlation between fertility and prolificacy in artificially inseminated 

rabbits. The difference between our data and the literature could be related to the different feed 

supplement and lengh of the dietary supplementation. 

 

Biochemical parameters   

The feed additive decreased the bilirubin value in the plasma of does in the treated groups (T1 and 

T2), which could be related to the antioxidant activity of polyphenols. In fact, inflammatory and 

oxidative injuries can up-regulate the cellular antioxidant status by generating antioxidants such as 

bilirubin. The low bilirubin plasma concentration at the last sampling time should be indicative of a 

better defense from oxidative damage (Aliyu et al., 2007).  

An increase in plasma HDL values in the supplemented groups was observed at the end of the trial. 

Brites et al. (2017) reported that the HDL values showed antioxidant and antiatherogenic activities 

that suggest it protects LDL from oxidation. The improved blood lipid profile may be related to the 

effects of polyphenols, which are involved in the regulation of lipid and glucose metabolism (Attia 

et al., 2018). According to some authors (Bursill and Roach, 2007), this bioactive compounds 

activate the PPAR-α receptor, with an increased stimulation effect in the liver of the expression of 

key proteins involved in the metabolism of HDL. Triglycerides also seem to be involved in the 

same mechanism of activation of PPAR-α by polyphenols, with an induction in lipoprotein lipase 

expression in peripheral tissues and increased lipolysis, but in our study, no dietary effect on the 

triglyceride was observed. 

Our previous study in sheep, hare and piglets fed with polyphenols revealed a significant reduction 

in triglycerides, total cholesterol, and LDL cholesterol along with an increased HDL cholesterol 

(Corino et al. 2007; Palazzo et al. 2011; Casamassima et al. 2012). The present data suggest that 

natural extracts contain several hypocholesterolemic agents that might prove valuable for the 

modulation of lipid metabolism and prevention of cardiovascular diseases (Attia et al., 2018). 

 



90 
 

Plasma antioxidant markers 

The dietary supplementation with the brown seaweed and plant polyphenols mixture  improved the 

markers of plasma oxidative status. The bioactive compounds contained in the feed additive 

(phenolic acid, hydroxycinnamic acids, tannins and flavonoids), are redox-active molecules, and 

can be oxidised and reduced without becoming highly reactive-radical; they thus, protect against 

free radicals (Attia et al., 2018). A consequent reduction in lipid peroxidation was observed, as also 

highlighted by the improvement in the enzymatic marker levels. The reduction in lipid peroxidation 

could be related to the direct capture of free radicals due to the antioxidant activity of bioactive 

molecules during the propagation phase of the chain reaction. In addition, the initial oxidative 

process may be blocked through the inhibition of the pro-oxidant enzymes that produce free radicals 

(Kamiloglu et al., 2006). The increase in plasma liposoluble vitamins may also be attributed to the 

ability of the natural compounds to strengthen the endogenous antioxidant system. This is achieved 

by controlling the oxidative metabolism, by reducing the production of reactive oxygen radicals, 

and by inducing enzymes with antioxidant activities (Zhu et al., 1999). Comparable data have been 

obtained in previous studies on hares, on naturally milk-fed lambs and ewes, all fed a diet 

supplemented with a natural extract rich in polyphenols (Palazzo et al., 2011; Casamassima et al., 

2012, 2013a). Also, in pigs (Rossi et al., 2013, 2017) and broilers (Attia et al., 2017a; 2017b; 2018), 

a dietary supplementation with natural extracts increased the blood antioxidant activity, which in 

pigs was measured with a biological KRL test. 

 

 

5.7 CONCLUSION 

Our data on the productive and reproductive performances suggest that the lower dosage of dietary 

supplement containing prebiotic polysaccharides from brown seaweeds (Laminaria spp.) plus 

phenolic acid, hydroxycinnamic acids, tannins, flavonoids from plant extracts positively affect the 

antioxidant status of does without influence other parameters. An environmentally-friendly dietary 

integration seems to be promising in supporting the does’ health, by enhancing the antioxidant 

status. Further studies in field condition are needed to evaluate the effects of feed supplements on 

rabbit does’ zootechnical parameters an to explore the mechanism of action on gut health.  
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6.1 ABSTRACT 

Growth performances, carcass characteristics and meat quality parameters from growing rabbit fed 

with two levels of dietary brown seaweed (Laminaria spp) and plant polyphenols were investigated. 

One hundred and forty-four New Zealand White rabbits were allotted into three dietary treatments 

containing 0 (C), 0.3% (T1), and 0.6% (T2) of brown seaweed and plant polyphenols mixture for 42 

days. Growth performances and carcass weight were improved in T1 group. Vitamin A and E 

content in Longissimus thoracis and lumborum (LTL) and Semimembranosus (SM) muscle were 

enhanced in the treated groups. In the SM muscle, the oxidative stability was improved in rabbit fed 

with both dosages of dietary supplement, and the cholesterol content tended to be lower in T1 than 

in T2 and C groups. The LTL and SM muscle sensory characteristics were improved. In conclusion, 

dietary integration with a low dosage of brown seaweed and plant polyphenols is a valid strategy for 

enhance growth performance and produce healthier rabbit meat.  

 

6.2 INTRODUCTION 

Animal welfare and farm sustainability are key factors in animal production systems (Dawkins, 

2016). Consumers increasingly demand products of animal origin that come from production chains 

certified for animal welfare. Production institutions also restrict antibiotic use to prevent antibiotic 

resistance (Roca et al., 2015). Therefore, sustainable nutritional strategies able to support animal 

health and enhance product quality are required.  

In recent years, herbs and spices containing polyphenols have been investigated as feed 

supplements to improve rabbit health and meat quality parameters, due to their effects on the 

digestive function and growth performance and their antioxidant and antimicrobial properties (Dalle 

Zotte, Celia & Szendrő, 2016). In this context, seaweeds are also potentially important in animal 

nutrition due to their high content of bioactive molecules (Makkar et al., 2016). In particular, brown 

seaweed has been of interest as a functional dietary ingredient, due to its various health benefits 

related to its sulfated polysaccharides, phlorotannin, diterpenes, minerals and vitamins content 

(Maghin, Ratti & Corino, 2014).  

Rabbit meat is particularly appreciated by consumers due to its healthy properties (Wang, Su, Elzo, 

Jia, Chen, & Lai, 2016). Compared to other meats, rabbit has low fat and cholesterol content and 

high levels of protein with essential amino acids, and with a high digestibility value (Dalle Zotte, 

2002). The high degree of unsaturation of fatty acids makes this meat particularly susceptible to 

oxidative processes during storage, with negative effects on sensory parameters and nutritional 

value (Dal Bosco et al., 2014). Previous studies have reported that in rabbit meat lipid oxidation can 

be prevented using vitamin E or natural extract supplements, which are good sources of dietary 

antioxidants (Corino, Pastorelli, Pantaleo, Oriani, & Salvatori, 1999; Dal Bosco et al., 2014; Dalle 

Zotte et al., 2016; Vizzarri, Palazzo, D’Alessandro, & Casamassima, 2017). 

There is a growing interest in the use of natural supplements in rabbit nutrition to enhance 

productive performance, thus improving rabbit health and meat quality parameters (Hassan, 

Mahrose, &  Basyony, 2016). Dalle Zotte et al., (2016) reported that several herbs and spices 

containing polyphenols have shown positive effects such as being growth promoters, antimicrobials 

and antioxidants in rabbit species. Makkar et al. (2016) reported that dietary supplementation with 

brown seaweed in rabbit has different effects: Laminaria spp. improved blood lipid profiles, but the 

use of Ascophillum nodosum should be avoided because it had a toxic effect. No previous studies 

have reported the effects of dietary brown seaweed in association with plant polyphenols in growing 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Wang%20J%5BAuthor%5D&cauthor=true&cauthor_uid=27499668
https://www.ncbi.nlm.nih.gov/pubmed/?term=Su%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=27499668
https://www.ncbi.nlm.nih.gov/pubmed/?term=Elzo%20MA%5BAuthor%5D&cauthor=true&cauthor_uid=27499668
https://www.ncbi.nlm.nih.gov/pubmed/?term=Jia%20X%5BAuthor%5D&cauthor=true&cauthor_uid=27499668
https://www.ncbi.nlm.nih.gov/pubmed/?term=Chen%20S%5BAuthor%5D&cauthor=true&cauthor_uid=27499668
https://www.ncbi.nlm.nih.gov/pubmed/?term=Hassan%20FA%5BAuthor%5D&cauthor=true&cauthor_uid=26829476
https://www.ncbi.nlm.nih.gov/pubmed/?term=Hassan%20FA%5BAuthor%5D&cauthor=true&cauthor_uid=26829476
https://www.ncbi.nlm.nih.gov/pubmed/?term=Mahrose%20KM%5BAuthor%5D&cauthor=true&cauthor_uid=26829476
https://www.ncbi.nlm.nih.gov/pubmed/?term=Basyony%20MM%5BAuthor%5D&cauthor=true&cauthor_uid=26829476
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rabbit and on growth performances and meat quality parameters. Thus, the aim of the study was to 

investigate the effects of a dietary brown seaweeds and plant polyphenols mixture on productive 

performance, carcass characteristics, and meat quality parameters in growing rabbits. 

 

6.3 MATERIAL AND METHODS 
 

Animal and experimental treatments  

Rabbits were handled following the guidelines for animal experiments, indicated in the EU 

Directive 2010/63/EU and national guidelines for the care and use of animals were followed and all 

experimental procedures involving animals were approved by the National Agricultural and Food 

Centre ethical committee (No. NPPC 18-10-2016).  

A total of 144 New Zealand White rabbits, half males and half females, were housed at the National 

Agricultural and Food Centre, Nitra (Slovak Republic). At weaning, the 35-day-old rabbits were 

randomly allotted into three experimental groups balanced for sex (48 rabbits per treatment). 

Rabbits were housed in cages (2 females and 2 males cage) and the trial lasted 42 days. The cages 

were equipped with a hopper for feed and an automatic nipple drinking system. The lighting cycle 

throughout the trial was 16h of light and 8h of dark. Heating and forced ventilation system allowed 

the building temperature to be maintained within 18 ± 4° C. The relative humidity was about 70 ± 

5%. Rabbits were fed a control diet (C) or T1 and T2 diets, which were supplemented with 0.3% 

and 0.6% of feed additive consisting of prebiotic polysaccharides from brown seaweeds (Laminaria 

Digitate and Hyperborea, ratio 1:1) plus phenolic acid, hydroxycinnamic acids, tannins, and 

flavonoids from plant extracts.  

The diets included no anticoccidials, antibiotics or other medications. The supplement was included 

in the basal mashed diet. All the experimental diets were pelleted. The two dosages of the natural 

extract were chosen after an in vitro evaluation of the minimal inhibitory concentration (MIC) 

against Clostridium spp., Staphylococcus spp., and Escherichia coli spp. (Tosi, personal 

communication). The ingredients and chemical composition of the experimental diets are reported 

in Table 1.  

The chemical composition of the diets and feed supplement were in accordance with the methods of 

the Association of Analytical Chemists (AOAC, 2002). The quantitative analysis of the phenolic 

compounds of the supplement was performed using HPLC-UV-DAD, according to Russo et al. 

(2017). The quantification of beta-carotene of the feed supplement was performed in accordance 

with the method proposed by Rakusa, Srecnik, & Roskar (2017). The chemical composition, 

phenolic composition and carotenoid content of the feed supplement is reported in Table 2.  

Throughout the study feed was available ad libitum and animals were monitored daily to assess 

their health conditions. They were weighted at the beginning (0 day), at 21 days and at the end of 

the experiment trial (42 days). The daily feed intake was calculated from the amounts of feed 

offered and refused weekly.These data were used to calculate the average daily gain (ADG), 

average daily feed intake (ADFI), and feed convertion ratio (FCR). 

At 77 days old all rabbits were weighted, and after 6 h fasting, 12 animals per group (1 male 

rabbit/cage) were randomly selected and slaughtered at the research center slaughterhouse. Rabbits 

were subjected to electrical stunning and sacrificed by bleeding according with the guidelines 

established by the European Community (1099/2009/EC) for the protection of animals during 

slaughter. Carcasses were chilled for 24 h at +4°C and then dissected, according to the 



99 
 

recommendations of the WRSA (Blasco & Ouhayoun, 1996), discarding the skin, the distal part of 

the limbs, genitals, bladder, and gastrointestinal tract, and carcass measurements and meat quality 

analyses were conducted. The Longissimus thoracis and lumborum (LTL) muscle and thighs (n = 

12) were removed from each carcass. Samples were vacuum packed and stored at -20°C until lab 

analyses. The Semimembranosus (SM) and the LTL muscles (n = 12) were subjected to lab 

analyses to investigate their meat quality parameters.  

 

Table 1. Ingredients and chemical composition of experimental diets (g/kg). 

 Experimental diet 
a
 

Ingredients CON T1 T2 

Maize 282 279 276 

Alfalfa hay 305 305 305 

Sunflower meal  135 135 135 

Palm seed oil 8 8 8 

Soybean oil 7 7 7 

Wheat 80 80 80 

Cane molasses 20 20 20 

Carob bean meal 90 90 90 

Oat 53 53 53 

Calcium carbonate 7 7 7 

Sodium Chloride 3 3 3 

Dicalcium phosphate 2 2 2 

DL-Methionine (99%) 2.5 2.5 2.5 

L-Lysine HCl (78.5%) 1.6 1.6 1.6 

Choline (75%) 1.4 1.4 1.4 

Vitamin and mineral premix 
c
 2.5 2.5 2.5 

Dietary supplement  0 3 6 

Chemical composition, 
b
    

   Crude protein 184 183.6 183.5 

   Ether extract 35.7 35.5 35.5 

   Crude fibre 187 186.8 187 

   Ash 86 85.7 85.8 

   Nitrogen free extract 507 507.1 506.9 

   NDF 302.1 301.5 301.7 

   ADF 195.8 195.4 195.3 

   ADL 39.9 39.5 39.5 
 

a
 CON= control group; T1= group supplemented with 0.3% of brown seaweed and plant 

polyphenols ; T2= group supplemented with 0.6% of brown seaweed and plant polyphenols ;  
b 

Analyses determined in triplicate. 
c 

Supplied per kg diet: 13,500 I.U. vitamin A (trans-retinyl acetate); 800 I.U. vitamin D3 

(cholecalciferol); 35 mg vitamin E (α-tocopherol min 91%), 35 mg copper (cupric sulphate 

pentahydrate).  
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Table 2. Chemical composition and polyphenols content of the dietary supplement. 

 

Item % on dry matter 

Dry matter 93.58 ± 5.05 

Crude Protein 7.21 ± 0.99 

Ether extract 0.32 ± 0.01 

Crude fibre 11.20 ± 1.02 

Carbohydrates 60.84 ± 3.18 

Ash 32.68 ± 1.38 

Compounds:
 b 

mg/kg dry weight 

β-Carotene 402 ± 30.89 

Phenolic Acid:  

Dihydroxybenzoic acid ≤ LOD
 a 

Syringic acid 1059.79 ± 62.82 

Hydroxycinnamic acids:  

Neochlorogenic acid 7979.23 ± 468.11 

Rosmarinic acid 126.54 ± 8.67 

Trans sinapic acid 105.54 ± 8.09 

Chlorogenic acid 21.45 ± 3.65 

Tannins:  

Ellagic acid 2440.88 ± 148.29 

Rutin 272.37 ± 20.82 

Flavonoids:  

Myricetin 53.88 ± 5.68 

Kaempferol ≤ LOD 
 

a
 Limit of detection;  

b
 value are expressed as means (n= 4) ± standard deviation. 
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Physical parameters 

The pH and color parameters were measured 24 h after slaughter. The pH was performed using a 

pH meter (HI98191 microcomputer; Hanna Instruments, Vila do Conde, Portugal). The pH probe 

was calibrated using standard buffers of pH 4.0 and 7.0 and the maintenance of calibration was 

monitored between samples. 

The International Commission on Illumination’s (CIE) lightness (L*), redness (a*), and yellowness 

(b*) values were measured for the samples using a CR-300 Chroma Meter (Minolta Camera, Co., 

Osaka, Japan). The instrument was calibrated on the Commission Internationale d’Eclairage (CIE) 

LAB color space system using a white calibration plate (Calibration Plate CR-A43; Minolta Camera 

Co.). The colorimeter had an 8-mm measuring area and was illuminated with a pulsed Xenon arc 

lamp (illuminat C) at a viewing angle of 0°. Reflectance measurements were obtained at a viewing 

angle of 0° and the spectral component was included. The color variables were measured at three 

different points on the central part of the samples. Moreover, total color differences (TDC) were 

calculated using the following equation: ΔE*=(ΔL* 2+Δa* 2+Δb* 2 ) 1/2 . 

 

Chemical parameters 

Dry matter (DM), protein, ether extract (EE), and ash contents of the LTL and SM muscles were 

determined according to AOAC (2002) methods. Dry matter was determined by the oven drying 

method at 105°C until constant weight (method 950.46), protein by the Kjeldahl method (method 

990.03) using a 6.25 factor to convert the nitrogen content into total protein, the ether extract by 

Soxhlet extraction (method 920.39), and ash by using a muffle furnace for 12 h at 550°C (method 

920.153).  

The cholesterol content of the LTL and SM muscles was determined in accordance with the 

procedure of Du and Ahn (2002). Lipids were extracted from 1.5 g of minced meat homogenate 

with 33% KOH (ratio of 94:6), using Ultra-Turrax T18 Homogenizer (IKA, Cincinnati, USA) and 

keeping in ice to avoid oxidation processes. Cholesterol was extracted with 5 ml of hexane, and 1 μl 

was injected into the gas chromatograph. The cholesterol was identified based on the retention time 

of the standard (Sigma Aldrich, St. Louis, USA), and quantified with the Chrom Card Data System 

(version 1.17) software by comparing the peak area with the reference standard curve. All samples 

were analyzed in triplicate. 

 

Oxidative stability  

Meat oxidative stability was measured by evaluating the thiobarbituric acid-reactive substances 

(TBARS) content of 4°C chilling SM meat samples at 0 h, and then at 24 h and 72 h, in accordance 

with Meineri, Cornale, Tassone, and Peiretti (2010). The implemented method was as follows: 500 

mg of meat was homogenized with 10 mL of distilled water using a Homogenizer Ultra Turrax T25 

(IKA, Cincinnati, USA), and 2.5 mL of 25% trichloroacetic acid was added to the homogenized 

sample, cooled at 4°C for 15 min, and then centrifuged at 4000 g at 4°C for 5 min. The supernatant 

was filtered through Whatman 52 filter paper, and an aliquot of 3.5 mL was added to 1.5 mL of 

0.67% thiobarbituric acid and incubated at 70°C for 30 min. 

Immediately after cooling, the absorbance of the sample was read in a spectrophotometer at 532 nm 

and compared to a standard curve of malondialdehyde (MDA; Sigma Aldrich, St. Louis, USA). All 

analyses were performed in duplicate and the results were expressed as mg of MDA per kg of meat. 
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Vitamin E and A content   

Alpha-tocopherol and retinol were determined in both muscles using a procedure modified from 

Zaspel and Csallany (1983). The muscles were analyzed using an HPLC system (Kontron 

Instruments, Milan, Italy) consisting of an autosampler (HPLC autosampler 360, Kontron 

Instruments, Milan, Italy) with a loop of 20 μL, a high-pressure pump and a C18 column 5 μm, 150 

mm x 4.6 mm (Phenomenex, Torrance, CA, USA). The mobile phase consisted of acetonitrile and 

methanol (75: 25 v/v) and a flow rate of 1 mL per min was used. The alpha-tocopherol and retinol 

were identified using a fluorimeter detector and comparing the samples’ retention time with the 

pure standards (97%) purchased from Sigma Aldrich (St. Louis, USA). The quantification was 

carried out using the Geminyx system (version 1.91) by comparing the area sample peak with that 

of the reference standards curve. 

 

Sensory evaluation 

The LTL muscle and thigh preparation for sensory analysis was conducted after thawing for 24h at 

4°C. Both samples were then prepared as single pieces in an uncovered stainless-steel dish in a 

conventional oven (REX, Italy) at 180°C. A thermocouple (Pentronic AB, Gunnebobruk, Sweden) 

was inserted into the center of each piece of meat to register the core temperature. The samples 

were removed from the oven at 75-80°C to allow for post-heating rise. After cooling the entire LTL 

muscle and thigh were cut into 1.5cm thick slices (Electrolux 50, 220-24, kW0.2). The slices were 

warmed to 60°C before the evaluation.  

A trained sensory panel, consisting of eight members familiar with descriptive analysis procedures 

(EN ISO 13299, 2010), was established. All assessments were carried out in a sensory laboratory 

equipped according to EN ISO 8598, (1989) recommendations. The list of descriptors, definitions, 

and standards are reported in Palazzo, Vizzarri, Nardoia, Ratti, Pastorelli, and Casamassima (2015). 

The sensory profile was assessed according to EN ISO 13299 (2010) and the panel evaluated the 

two samples (thigh and LTL) on different days in triplicate. Within each session the design was 

balanced for order and carry-over effects (MacFie, Bratchell, Greenhoff, & Vallis, 1989). During 

training and sampling, the panelists had access to unlimited water and unsalted crackers. They were 

requested to evaluate the intensity of each attribute by assigning a score between 1 (absence of the 

sensation) and 9 (extremely intense). 
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6.4 STATISTICAL ANALYSIS 

 

Data on productive performance and slaughter parameters, were analyzed using one-way analysis of 

variance (ANOVA), with diet as fixed effect and cage as random effect (SPSS/PC Statistics 25.0 

SPSS Inc., IBM). Meat physical and chemical parameters were processed with a one way ANOVA, 

with diet as fixed effect. A repeated measure ANOVA with diet, storage time and their interaction 

as fixed effects, was used to analyzed TBARS data. Means were compared according to the 

Duncan’s test. The sensory data were submitted to ANOVA with samples, judges, replicates, and 

their interactions as effects (EN ISO 13299, 2010). The significance of these effects was tested with 

F tests. Post-hoc pairwise contrasts were evaluated by Duncan’s test. The cage was considered as 

the experimental unit for growth performance and the rabbit for the meat quality parameters. Data 

are reported as mean ± SEM. Differences among treatments were considered significant at P < .05. 

 

6.5 RESULTS AND DISCUSSION 

 

Productive performance and carcass characteristics 

The data of the productive performance of growing rabbits are reported in Table 3. The live weight 

was improved at 21 days (P < .05) and tended to be higher at 42 days (P = .06) in rabbit fed a lower 

dosage of the dietary supplement (T1 group) than the other two groups. Therefore, the ADG          

(0-42 d) tended to be higher (P = .06) in the T1 group. The feed conversion ratio was also improved 

(P < .01) in rabbits fed with a diet containing 0.3% of the natural extract mixture. The ADFI was 

lower in T2 than in C groups (P < .05) in the first period of the trial (0-21 d).  Considering the ADFI 

in the first period of the trial, it is possible that the high dosage of bioactive compounds of the 

supplement negatively affected diet palatability and consequently growth as previously observed in 

rat fed high dosage of ellagic acid (Cerdá, Cerón, Tomás-Barberán & Espín 2003). 

The slaughter weight (2.71 ± 0.067 kg C vs 2.91 ± 0.035 kg T1 vs 2.80 ± 0.052 kg T2; P = .013) and 

carcass weight (1.61 ± 0.041 kg C vs 1.75 ± 0.026 kg T1 vs 1.66 ± 0.029 kg T2; P = .012) of the 

sampled rabbits were higher in the T1 group than in the others. The dressing percentage was not 

affected by the dietary treatments (59.4 ± 0.434 % C vs 59.6 ± 0.327 % T1 vs 59.7 ± 0.446 % T2;   

P = .929). The data is thus in agreement with previous studies of post-weaning piglets that reported 

an improvement in ADG due to dietary supplementation with Laminaria spp. extract (Gahan, 

Lynch, Callan, O’Sullivan, & O’Doherty, 2009; McDonnell, Figat, & O’Doherty, 2010). An 

enhancement of growth performance was also observed in broilers with a dietary supplementation 

of Ascophillum nodosum meal (Evans & Critchley, 2014). Brown seaweed contains a high amount 

of water-soluble polysaccharides such as laminarins, fucoidans, and alginates. These constituents 

have been shown to have prebiotic effects and to reduce pathogenic microorganisms in the 

gastrointestinal tract in both in vitro and in vivo studies (Chen et al., 2018; Sweeney et al., 2011). In 

vitro prebiotic activity of fucoidans and alginates from brown seaweed has been found with an 

increase in the growth rate of Lactobacillus spp. (Okolie, Rajendran, Udenigwe, Aryee, & Mason, 

2017). In addition, Lynch, Sweeney, Callan, O’Sullivan, and O’Doherty (2010) reported that 

laminarins have antibacterial properties, stimulate Bifidobacteria, and increase the production of 

short chain fatty acid (SFA) in the gut.  

Studies have reported conflicting data on plant polyphenols supplementation and the enhancement 

of growth performance. Zhao, Xu, Du, Li, and Zhang (2005) found an improvement in feed intake 
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and growth performance in growing rabbits fed traditional Chinese herbs, which contain 

polyphenols. In another study, dietary supplementation with microalgae spirulina and thyme was 

not found to affect rabbit performance (Dalle Zotte, Sartori, Bohatir, Remignon, & Ricci, 2013). 

Palazzo et al. (2015) also reported no differences in ADG and the final weight of rabbit fed Lippia 

citriodora extract.  

In the present study, the active principles of brown seaweed and plant polyphenols had a positive 

effect on antioxidant status, as shown in the TBARS values and the vitamin E content of the 

muscles, and probably on gut bacteria populations, due to more efficient feed utilization and 

consequently an improvement in growth performance. Indeed, positive effects on digestibility of 

nitrogen (N), gross energy (GE), fibers (NDF), and ash have been reported in post-weaning weaned 

piglets (O’Doherty, Dillon, Figat, Callan, & Sweeney, 2010; O’Shea, McAlpine, Sweeney Varley & 

O’Doherty, 2014). 

 

Table 3. Productive performances of growing rabbits fed control diet and diets supplemented with 

0.3 or 0.6% of brown seaweed and plant polyphenols mixture (T1 and T2 respectively). 

 

Data are reported as mean ± pooled SEM n=12 (cages with 4 rabbits per cage) 

C= Control; T1 = dietary supplementation of 0.3% of polyphenols and seaweeds mixture and T2 = 

dietary supplementation of 0.6% of polyphenols and seaweeds 
a
 Values in the same row are different at P < .05. 

 b
 Values in the same row are different at P < .05. 

c 
ADG= average daily gain;

  

d 
ADFI= feed intake;  

e 
FC = feed conversion ratio. 

 

 

Item 
            Dietary treatment   

C T1 T2 SEM   P-value 

Live weight, g      

 0d 830.2 846.0
 

789.4
 

21.02 0.161 

  21d 1860.9 
b 

1996.3 
a 

1825.3 
b 

44.15 0.024 

  42d 2655.9 2834.8 2725.2 52.40 0.066 

ADG 
c
, g/d

 
     

0d-21d 49.1 54.8 49.3 1.84 0.062 

21d-42d 37.9 39.9 42.9 2.19 0.284 

0d-42d 43.5 47.4 46.1 1.15 0.067 

ADFI 
d
, g/d  

0d-21d 154.9
a 

142.0 
ab 

136.8 
b 

5.07 0.046 

21d-42d 188.8 175.6 192.6 8.99 0.382 

0d-42d 171.8 158.8 164.7 6.54 0.379 

FC 
e
, kg/kg  

 0d-21d 3.20      2.59        2.89 0.17 0.057 

 21d-42d   5.03 
a 

 4.41 
b 

4.58 
ab 

0.18 0.049 

 0d-42d   3.94 
a 

 3.35 
b 

3.60 
ab

 0.11
 

0.003 
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Meat quality parameters of LTL and SM muscles 

The data on the physical and chemical parameters of the LTL and SM muscles are reported in Table 

4 and 5, respectively. The pH values were affected by dietary treatments in both LTL and SM 

muscles (P < .05), but the ranges fall within the values reported in previous studies (Maj, Bieniek, 

& Łapa, 2008; Carrilho, López, & Campo, 2009). 

No difference (P > .05) was observed for the color indexes in either muscle in terms of dietary 

treatments, in agreement with the data reported for the LTL and SM muscles (Daszkiewicz, 

Gugolek, Janiszewski, Kubiak, & Czoik, 2012; Tůmová, Bízková, Skřivanová, Chodová, Martinec, 

& Volek, 2014). The TCD values resulted 1.41 and 1.33 for T1 and T2 treatment respectively, 

indicating small difference in perceivable colour (TCD < 1.5) (Adekunte, Tiwari, Cullen, Scannell, 

& O’donnell, 2010). The chemical composition of the LTL muscle was not affected by the dietary 

treatment, except that the ash content was lower (P < .001) in muscles from rabbit in the T1 group 

than those in the C and T2 groups. These data are in line with the results of previous studies on 

growing rabbit (Dal Bosco, Castellini, Bianchi, & Mugnai, 2004; Daszkiewicz et al., 2012). 

 

Table 4. Physical parameters of Longissimus thoracis and lumborum and Semimembranosus 

muscle of rabbits fed control diet (C) or diet supplemented with 0.3 or 0.6% of brown seaweed and 

plant polyphenols mixture (T1 and T2 respectively). 

  

  Dietary treatment   

Item C T1 T2 SEM P-value 

Longissimus thoracis and lumborum      

pH, 24 h 5.86
 b

 5.92
 a

 5.86 
b

 0.010 0.020 

Color indexes: 

L* 

a* 

b* 

  

55.91 

4.01 

11.89 

  

55.38 

3.90 

11.71 

  

57.41 

3.96 

11.58 

 

0.460 

0.252 

0.212 

 

0.180 

0.944 

0.845 

Semimembranosus muscle      

pH, 24 h SM 5.75 
a 

5.75
 a 

5.84
 b 

0.015 0.021 

Color indexes: 

L* 

a* 

b* 

 

64.24 

5.46 

3.97 

 

63.44 

6.25 

4.23 

 

64.31 

6.31 

2.95 

 

3.391 

0.523 

0.392 

 

0.994 

0.776 

0.394 

n=12; data are reported as mean ± pooled SEM;   
a
 Values in the same row are different at P < 0.05. 

b
 Values in the same row are different at P < 0.05.  
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Table 5. Chemical composition of Longissimus thoracis and lumborum and Semimembranosus 

muscle of rabbits fed control diet (C) or diet supplemented with 0.3 or 0.6% of brown seaweed and 

plant polyphenols mixture (T1 and T2 respectively). 

          Dietary treatment   

Item C T1 T2 SEM P-value 

Longissimus thoracic and lumborum      

Moisture, % 72.82 73.02 73.41 0.182 0.412 

Crude protein, % 24.50 23.76 24.40 0.176 0.210 

Ether extract, % 1.17 0.90 0.95 0.064 0.123 

Ash, % 1.20
A
 0.94

 B
 1.04

 B
 0.030 <0.001 

Cholesterol, mg/100g 32.72 27.22 34.62 2.210 0.373 

Semimembranosus muscle      

Moisture, % 73.79 73.67 73.67 0.269 0.533 

Crude protein, % 22.62 22.82 22.81 0.176 0.803 

Ether extract, % 1.52 1.91 1.52 0.015 0.981 

Ash, % 1.21 1.19 1.15 0.030 0.329 

Cholesterol, mg/100g 53.25 30.47 42.08 4.052 0.056 

n=12; data are reported as mean ± pooled SEM;  
A, B

 values in the same row are different at P < 0.01. 

In the SM muscle, the cholesterol content tended to be lower (P = .052) in rabbit fed with the low 

dosage of dietary supplement (T1) than in those in the T2 and C groups. A previous study showed 

that dietary Laminaria spp. (1 g/d for 14 days) lowered cholesterol and triglycerides in rabbits with 

experimental hyperlipoproteinemia (Tang & Shen, 1989). In addition, Vizzarri et al. (2017) reported 

a lower cholesterol content in rabbit LTL muscle due to dietary supplementation with plant 

polyphenols, which can modulate the activity of enzyme 5-hydroxy-3-methylglutaryl-coenzyme A 

(HMG-CoA) reductase, which regulates the metabolic pathway for cholesterol synthesis (Kowalska 

& Bielański, 2009).   

In other animal species such as pigs, donkeys, horses and lambs dietary supplementation with 

natural extracts containing plant polyphenols was found to slightly affect the pH, color indexes and 

muscle chemical composition (Rossi, Pastorelli, Cannata, Tavaniello, Maiorano, & Corino, 2013; 

Rossi et al., 2017a; Valenti et al., 2019). 

 

 

 

 

 

 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/hmg-coa-reductase
https://www.sciencedirect.com/science/article/pii/S187114131730121X#bib30
https://www.sciencedirect.com/science/article/pii/S187114131730121X#bib30
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Vitamin content of LTL and SM muscles  

Figure 1 (A, B) shows the vitamin A and E content of LTL and SM muscles in terms of the dietary 

treatments. The vitamin A content was higher (P < .001) in the LTL muscle of rabbit fed brown 

seaweed and plant polyphenols (T1 and T2 groups) than in the control. In the SM muscle a higher 

content (P < .001) of vitamin A was observed in the T1 group than in the C and T2 groups. Vitamin 

E content was higher in the LTL muscles of rabbit in the T1 and T2 groups than in the control 

group. In the SM muscle a higher content (P < .001) of vitamin E was observed in the T1 group 

than in the C and T2 groups. 

The higher content of vitamin A in muscles from rabbit of T1 and T2 groups than control should be 

related to the carotene content and the several antioxidant compounds from the dietary supplement. 

The carotenoids are present in Laminaria spp. in amount variable from 468 to 1065 mg/kg DM as 

reported by Jacobsen, Sorensen Holdt, Akoh, & Hermund (2019). 

The dietary supplement contained several polyphenol compounds such as neochlorogenic acid, 

syringic acid and ellagic acids that possess a high antioxidant activity. As observed in rat the  

dietary hydroxycinnamic acid derivatives protecting vitamin E from oxidation in all tissues (Frank, 

Kamal-Eldin, Razdan, Lundh, & Vessby, 2003). Moreover, it is reported by Kumar, Prahalathan, & 

Raja (2012) that dietary supplementation with syringic acid in hypertensive rat positively affect  

vitamin E and C serum and tissue, reducing oxidative stress. 

A previous study reported that Ascophyllum nodosum extract increases serum vitamin A in lamb 

and liver vitamin E in beef (Allen et al., 2001). Other studies of pigs reported that dietary 

supplementation with brown seaweed (Ascophyllum spp.; Laminaria spp.) increased the antioxidant 

status of piglets, measured as plasma superoxide dismutase, catalase, and muscle TBARS (Wang et 

al., 2016; Moroney, O'Grady, Robertson, Stanton, O' Doherty, & Kerry, 2015). The present data 

agree with Palazzo et al. (2015), who reported an increase in vitamin E content in the LTL muscle 

of New Zealand white rabbit fed a high dosage of Lippia Citriodora extract. Palazzo, Schiavitto, 

Cinone, and Vizzarri (2019) recently reported an increase in fat-soluble vitamins (vitamin A and 

vitamin E) in LTL muscles of rabbit fed natural extract containing the hydroxycinnamic ester 

derivative widely distributed in plants, called verbascoside, with a high antioxidant activity (Gil, 

Enache, & Oliveira-Brett, 2013). Thus, the higher muscle vitamin A and E content is related to the 

content of phenols, carotenoid fucoxanthin, tannins and phlorotannins and polysaccharides in brown 

seaweed as fucoidans, laminarans and vitamins (Jacobsen, Sorensen Holdt, Akoh, & Hermund, 

2019) and to the antioxidant activity of plant polyphenols that preserve vitamin E oxidation through 

several well-known mechanisms (Cimmino et al., 2018). 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.sciencedirect.com/science/article/abs/pii/S0309174014002812#!
https://www.sciencedirect.com/science/article/abs/pii/S0309174014002812#!
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Figure 1. Vitamin A (A) and Vitamin E (B) content of Longissimus thoracis and lumborum (LTL) 

and Semimembranosus muscle (SM) of rabbits fed control diet (C) or diet supplemented with 0.3 or 

0.6% of brown seaweed and plant polyphenols mixture (T1 and T2 respectively; n=12). Data are 

reported as mean ± SEM; 
A, B, C

 values with differ superscript letters are different at P < .001. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article).  

 

 
 

Oxidative stability of SM muscle 

The oxidative stability of the SM muscle in terms of the dietary treatments and time of storage is 

reported in Figure 2. We analyzed the SM muscle to verify the antioxidant activity of the natural 

mixture on a muscle with a higher fat content than the LTL muscle and a different oxidative 

metabolism (Gondret et al., 2004). The oxidative stability of the SM muscle was affected (P < .001) 

by dietary treatments and storage time. A significant interaction between storage time and dietary 

treatment was also observed (P < .001). The oxidative stability at both sampling times was higher in 

groups fed the brown seaweed and polyphenols mixture than in the control. In agreement with the 

present data, Moroney, O' Grady, O'Doherty, and Kerry (2012) reported a high oxidative stability in 

the Longissimus dorsi muscle of pigs fed with seaweed extract (Laminaria digitata). In beef fed 

Ascophyllum nodosum extract a high muscle oxidative stability was also observed (Allen et al., 

2001). A high oxidative stability in the LTL muscles of animals fed plant polyphenols was also 

reported in pigs, Equidae, goats and rabbit (Cimmino et al., 2018; Rossi et al., 2017a; Rossi, Stella, 

Ratti, Maghin, Tirloni, & Corino, 2017b; Palazzo et al., 2015; Palazzo et al., 2019). Usually natural 

antioxidant can reduce lipid oxidation, enhancing meat shelf-life, since they are able to block the 

oxidative chain propagation reactions.  

https://www.sciencedirect.com/science/article/abs/pii/S0309174012001696#!
https://www.sciencedirect.com/science/article/abs/pii/S0309174012001696#!
https://www.sciencedirect.com/science/article/abs/pii/S0309174012001696#!
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Polyphenols have a high antioxidant activity, through several mechanisms: as a scavenger of free 

radicals (Zheng et al., 2009), as transition metal chelators (Andjelković et al., 2006) and as 

quencher of free singlet oxygen (Mukai, Nagai, & Ohara 2003). 

 

Figure 2. Oxidative stability of Semimembranosus muscle of rabbits fed control diet (C) or diet 

supplemented with 0.3 or 0.6% of brown seaweed and plant polyphenols mixture (T1 and T2 

respectively) in relation to dietary treatments and time of refrigerated storage at 4°C.  

 

 

 

 
 

 

Results are expressed as mean values ± SEM (n=12). Time effect for P < .001, Treatment effect for 

P < .001, interaction between time x Treatment for P < .001. (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article). 

 

Sensory profile 

The F values for the aroma, taste, flavor and texture parameters of the LTL sensory profile are 

reported in Table 6. The results indicate that dietary supplementation with brown seaweed and plant 

polyphenols affected the aroma and flavor of the LTL muscle (P <. 05) The F values for replicates 

and interactions were not affected (P > .05) in all the descriptors, while judges presented differences 

(P < .01) for aroma and flavor. Differences between judges are common in sensory evaluations, due 

to the different use of the scale (Lea, Naes, & Rodbotten, 1997). No interaction between panelists × 

replicates and samples × replicates were observed.  

In Table 7, the F values for aroma, taste, flavor, and texture parameters of the thigh sensory profile 

are reported. The data showed that dietary supplementation with brown seaweed and plant 

polyphenols affected the aroma and texture of the thigh (P <. 05). The F values for replicates were 

not affected (P > .05) for all the descriptors, while judges presented differences (P < .05) for aroma, 

flavor and texture. No interaction between judges × replicates and samples × replicates were 

observed in LTL, while in thigh, the interaction judges × samples was significant (P < .05). It is 

probably due to the type of samples analyzed. In fact, the thigh is more variable from a chemical 

point of view than LTL muscle that is more homogeneous, where we did not observe any statistical 
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interaction. These results did not influence the overall sensory evaluation, in fact no differences 

were reported for the same attributed perceived as flavour. 

The F values for aroma, taste, flavor, and texture parameters in both the LTL muscle and the thigh 

highlight the excellent reproducibility of the scores given by the panelists and the homogeneity of 

samples during replicates.  

The least squares mean of the different attributes for the LTL muscle and thigh are reported in 

Table 8 and Table 9, respectively. The data shows that taste and texture parameters were 

comparable in all the experimental groups. In the LTL muscle, a difference (P < .05) for aroma 

(rabbit, liver and rancid) and rabbit flavor were observed. The intensity of rabbit aroma and flavour 

was higher (P < .05) in the T1 and T2 groups than in the control, and the same result was observed 

for liver aroma. The rancid aroma was higher (P < .05) in the T2 group than in the T1 and control 

groups.  

In the thigh, dietary treatments affected (P < .05) the aroma (rabbit, liver, and metallic) and the 

texture parameters. The rabbit aroma and flavor were higher (P < .01) in the T1 and T2 groups than 

in the controls and the same result was observed for liver aroma. The rancid aroma was higher       

(P < .05) in the T2 group than in T1 and the control groups. In terms of texture data, higher scores 

for tenderness and juiciness were observed in thighs from animals fed the natural supplement (T1 

and T2) than in the control, while a lower score was given for stringiness (P < .05) in T1 and T2 

than in the control. As previously observed in rabbit fed natural antioxidants, the high values for 

tenderness may be a result of the protection against the oxidation process (Palazzo et al., 2015). In 

our previous study of Equidae, dietary supplementation with an extract containing plant 

polyphenols enhanced meat texture parameters (Rossi et al., 2017a). This parameter is important for 

consumers’ eating habits and is closely linked with consumer expectations of rabbit meat quality. 

The results of the present study indicate that the mean scores for each descriptor could be assumed 

to be satisfactory for the sensory profile of rabbit meat. The sensory evaluation showed that dietary 

supplementation with natural extract mixture containing brown seaweeds and plant polyphenols 

affects aroma in the LTL muscle and the aroma and texture in the thigh. 
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Table 6. Sensory evaluation of Longissumus thoracis and lumborum muscle: F value and statistical 

significance of treatments (n=3), judges (n = 8), replicates (n = 3) and their interaction for each 

sensory descriptor. 

  F value 

Descriptors Samples Judges Replicates  SxJ
 a
 SxR JxR 

Aroma 

  

  

 

  

Rabbit 10.75*** 1.40 0.92 1.21 1.16 0.64 

Liver 7.88** 3.65** 0.31 2.86 0.12 0.27 

Rancid 5.97* 4.17** 1.05 1.65 1.83 1.20 

Taste   

 

  

 

  

Sweet 1.25 1.80 0.90 1.08 1.66 0.57 

Salty 1.55 1.30 1.88 0.50 1.11 0.94 

Flavour     

 

  

 

  

Rabbit 11.56*** 4.07** 0.34 2.43 1.51 0.85 

Liver 2.77 2.39** 0.81 1.49 0.60 0.31 

Rancid 1.74 4.26** 0.32 2.20 0.39 0.56 

Texture 

      Tender 1.57 1.37 0.50 0.81 0.78 1.11 

Juicy 0.24 1.39 1.89 0.76 0.83 1.33 

           Stringy 2.80 1.66 1.12 0.87 2.00 1.20 
             

Significant: ***= 99,9%; ** = 99%; * = 95%; n.s. = no significant 
             a

 SxJ = Samples x Judges; SxR= Samples x Replicates; JxR= Judges x Replicates.           

 

Table 7. Sensory evaluation of thigh: F value and statistical significance of treatments, judges (n = 

8), replicates (n = 3) and their interaction for each sensory descriptor. 

  F value 

Descriptors Samples Judges Replicates  SxJ
 a 

SxR JxR 

Aroma 

  

  

 

  

Rabbit 4.88* 1.51  1.54  0.60  0.67  1.13  

Liver 3.92* 11.73*** 1.38  5.31*** 0.53 1.44  

Metallic 3.61* 9.96*** 0.20  4.90*** 0.61  2.00  

Taste   

 

  

 

  

Sweet 0.63  1.10  1.04  1.21  0.62  1.17  

Salty 2.16  0.76  1.43  0.28  0.51  1.65  

Flavour     

 

  

 

  

Rabbit 2.04  0.67  1.52  0.25  0.57  2.00  

Liver 0.25  4.20  0.21  1.30  0.54  0.75  

Metallic 0.29  4.26** 1.44 1.25  0.43  0.79  

Texture 

      Tender 3.30* 5.34  0.19  1.78  0.43  1.40  

Juicy 8.70** 2.95* 1.30  0.84  0.69  0.97  

           Stringy 3.38* 4.26** 1.88  2.45* 0.97  1.09  

Significant: ***= 99,9%; ** = 99%; * = 95%; n.s. = no significant. 
a
 SxJ = Samples x Judges; SxR= Samples x Replicates; JxR= Judges x Replicates.           



112 
 

Table 8. Mean values of sensory attributes of Longissimus thoracis and lumborum and 

Semimembranosus muscle of rabbits fed control diet (C) or diet supplemented with 0.3 or 0.6% of 

brown seaweed and plant polyphenols mixture (T1 and T2 respectively). 

 

 

Dietary treatment 

Descriptors C T1       T2 

Aroma 

  Rabbit 5.0 
a
 5.8 

b
 6.4 

b
 

Liver 5.0 
a
 5.4 

b
 5.7 

b
 

Rancid 5.0 
a
 5.1 

a
 5.5

b
 

Taste   

 Sweet 5.0 4.4 5.0 

Salty 5.0 5.4 5.4 

Flavour     

 Rabbit 5.0 
a 

  5.8 
b
    6.1 

b
 

Liver 5.0 5.4 5.6 

Rancid 5.0 5.2 5.3 

Texture 

   Tender 5.0 5.3  5.5  

Juicy 5.0 4.8 5.0  

           Stringy 5.0 5.6 5.7  

 

 
a, b

 means within rows with different superscript letters differ significantly for P < 0.05. 
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Table 9. Mean values of sensory attributes of thigh of rabbits fed control diet (C) or diet 

supplemented with 0.3% or 0.6% of brown seaweed and plant polyphenols mixture (T1 and T2 

respectively). 

 

Dietary treatment 

Descriptors C T1       T2 

Aroma 

  Rabbit 5.0 
a
      5.0 

a
    5.8 

b
 

Liver 5.0 
b
      4.5 

a
    4.9 

b
 

Rancid 5.0 
b
     4.6 

a
    5.0 

b
 

Taste   

 Sweet 5.0      5.1  5.3 

Salty 5.0 5.4  5.4 

Flavour     

 Rabbit 5.0 
 

     5.4   5.5 

Liver 5.0  4.8   4.8 

Rancid 5.0  4.9   4.8 

Texture 

  

  

Tender  5.0 
a
  5.3

 ab
      5.5 

b
 

Juicy 5.0 
a
 4.8 

b
     5.8 

b
 

           Stringy 5.0 
b
 4.2 

a
      4.4 

ab
 

 
a, b

 means within rows with different superscript letters differ significantly for P < 0.05. 

 

6.6 CONCLUSION 

Dietary supplementation with the low dosage of brown seaweeds and plant polyphenols mixture can 

be considered a useful nutritional strategy in rabbit meat production, since an  improvement of feed 

conversion ratio and muscles vitamin A and E content was achieved. The  higher muscle vitamin 

content enhances both nutritional quality and oxidative stability. Sensory parameters related to 

aroma, flavour and texture are positively affected by dietary treatment. In the  present experimental 

condition, the low dosage of the natural extract mixture seems to be useful for enhancing rabbit 

meat production. The higher dosage of supplement does not produce any adverse effects on rabbit 

performance or meat quality parameters and should be utilized in a more stressful breeding 

condition.   
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This thesis has focused on verifying the effects of different natural extracts in animal nutrition on 

reproductive and growth performance, physiological parameters and meat quality. It highlights the 

effects of plant and seaweed extracts as dietary treatments in piglets and rabbits in different 

physiological periods.  

In the first experiment, Ajuga Reptans containing teupolioside improved piglet health in the post-

weaning phase. Our group found that plant extracts containing teupolioside have a greater 

antioxidant activity compared to other phenolic compounds. Further studies are needed to specify 

the mechanism of action and find the optimal dosage and length of experiment in order to improve 

the antioxidant and immunomodulant effects of teupolioside. 

In the second experiment, dietary supplementation with brown seaweeds and polyphenols showed 

positive effects on the antioxidant status in rabbit does. No significant effects of the supplemented 

diet were observed on the reproductive performance, thus further studies are needed with a greater 

number of animals targeted for treatment and in standard breeding conditions. 

In the last experiment, results showed that the natural mixture positively affected the growth and 

meat quality parameters in growing rabbits. This mixed dietary supplementation could include 

antioxidants, prebiotics, immunomodulators and antimicrobial compounds that enhance not only the 

growth and animal health of growing rabbits but also without affecting the nutritional 

characteristics of the food and consumers' preferences. 

In conclusion, I believe that this thesis improves knowledge on the beneficial effects of various 

plant extracts and seaweed. The dietary inclusion of bioactive components contained in natural 

extracts is an innovative nutritional approach that improves rabbit and piglets production without 

negative effects on the animals. Our study on growing rabbits presented important and interesting 

results, and the use of seaweeds and polyphenols could be considered as an innovative nutritional 

strategy.  

To the best of our knowledge, this topic has never been investigated before in the scientific 

literature.  

Increased consumer awareness and the consumption of safe, natural foods have prompted research 

into alternative animal feeding strategies that replace antibiotic growth promoters (AGPs) and 

synthetic antioxidants.  

 

Suggestions for future studies: the following topics may be of interest for future research:  

 

- More studies to evaluate the efficacy of algae and polyphenols at different inclusion levels 

in different species at different physiological periods aimed at enhancing animal health and 

productivity; 

 

- Researchers should focus on the polyphenol content to clarify the optimal length of the plant 

extract dietary supplementation in order to enhance quality parameters in rabbit meat; 

 

- Seaweeds have been shown to offer a wide range of activities, including improving animal 

performance and increasing nutrient availability. It is thus important to share the results of 

new experiments that show the effects of botanically and chemically well-characterized 

seaweed . 
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