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1 Introduction

A growing strand of the financial economics literature has investigated the role of links between

financial institutions, which serve as channels along which shocks spread through the financial

system, so this strand of the financial economics literature is related to studies on financial conta-

gion. The relationships between financial institutions may vary in nature and, as a consequence,

the way in which we interpret these links may differ, depending on which type of relations are

of interest to us, or which type of link we are monitoring or measuring. As examples, we cite

the input-output relationship (where firms use the output of other companies as input, in their

own production function), the ownership relationship (companies that hold assets of other com-

panies), or the links measured on the grounds of stock market prices, such as causality-based

connections.

The early literature on financial networks focused first on ascertaining the channel through

which financial contagion was spreading within the financial system. The main objective was

therefore to identify the networks by using appropriate criteria to detect the links between

institutions. Following such an approach meant that the networks were, by definition, unique.

Acemoglu et al. (2012) used a network structure based on input-output relationships to show that

aggregate fluctuations may originate from microeconomic shocks to firms. Kelly et al. (2013),

on the other hand, showed how stock firm volatility relates to customer-supplier connectedness.

Billio et al. (2014) used contingent claim analysis and network measures to underscore the

links between sovereign, banks and insurances. There is a constantly growing number of works

proposing competing or alternative approaches for estimating the networks existing between

groups of financial institutions, markets, countries and (not necessarily financial) assets. Among

the many contributions in this area, we refer to Billio et al. (2012), Diebold and Yilmaz (2014,

2015), Hautsch et al. (2012, 2013, 2014, 2015), Barigozzi and Brownlees (2014), Ozdagli and

Weber (2015), and Corsi et al. (2015), which have in common that they all refer to a financial

or economic playground.

Despite the growing interest in the financial network topic, and the increasing understanding

that there might be different channels over which financial contagion spreads, the literature

on combinations of financial or economic networks is still very limited. In fact, the different

approaches taken to estimating networks enable different potential channels for the spread of

contagion or risk to come to light that might co-exist within the same financial system. It is

therefore fundamentally important to allow for the possibility of combining them to obtain a

more complete picture of risk spreading within a financial system.

This paper provides a possible solution based on a multiplex network, or a collection of

networks (called layers) existing between a set of subjects, that we formally define in Section 2.

Ideally, the constituents of the multiplex network represent the outcomes of different approaches

to the estimation or identification of links between the subjects analyzed. Postulating the

existence of a multiplex network, we take a step forward and consider the combination of the

information contained in the various layers of the network for the purpose of analyzing their

impact within a financial economic model. In this case, we focus on the linear factor model

augmented with network dependence introduced by Billio et al. (2016). We show how the model

can be generalized to accommodate the presence of a multiplex network, and we provide a model
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parametrization that offers two useful interpretations of the models estimation output. First,

the model parameters will enable the statistical significance of the information contained in each

multiplex network layer to emerge. This will highlight the relevance of the various approaches

to network measurement/identification within the model, with consequences on the financial

interpretation associated with the model. These analyses might be relevant for policy purposes

and market monitoring, as they may identify the main risk-spreading channel.

Second, the estimated model parameters will reveal a composite network obtained by com-

bining the multiplex network layers. The model-based combination will thus provide an overall

picture of the links existing between the variables analyzed, as measured using the different

approaches (i.e. those behind the various layers of the network), as well as accounting for their

respective relevance.

The model-based combination of networks is the first main contribution provided by the

present paper. The second contribution that we make to the financial network literature concerns

the estimation of networks. As previously mentioned, several authors have already discussed

possible ways to obtain a network of financial assets. Among the various methods, the Granger

causality approach of Billio et al. (2012) is taken as our starting point: Granger causality is used

within a collection of bivariate Vector Auto Regressive (VAR) models to identify the statistically

significant links across the modelled variables; then the network is used to identify the shock

propagation channels and establish the systemic relevance of financial companies.

When focusing on the risk dimension, Granger causality within a VAR model detects mean

causality whether it is on the financial contagion, or on the diffusion of systemic shocks, whereas

we normally focus on variances or, more generally, on systemic and/or systematic risk measures.

We consequently do not believe that using Granger causality will produce the most appropriate

picture for interpreting the risk of the estimated financial networks. This prompts us to discuss

a set of alternative approaches to estimating financial networks based on causality relationships

that go beyond the classical Granger causality. We survey a collection of methods that have

a common denominator: they all resort to the quantile regression approach of Koenker and

Bassett (1978), in either a parametric or a non-parametric representation. Using these methods,

we will show how we can identify causality among quantiles of the modelled variables. These

quantile-based causality detection methods will lead to the estimation of causality networks

mimicking the approach of Billio et al. (2012) but oriented towards a risk dimension. This is

immediate when focusing on left quantiles of a random variable. As a further approach, we

will also show that the non-parametric quantile causality test of Jeong et al. (2012) represents

a further alternative to traditional Granger causality for building causality networks. It is

important to highlight that, although the implemented methods focus on the same object, that

is, a given τ -th quantile of the response variable, they differ in capturing the causal impact of

the explanatory variable and, therefore, provide a different source of information. In particular,

in traditional quantile regression (Koenker and Bassett (1978), see Section A.2) we detect the

linear impact of the explanatory variable without weighting its support, i.e. using its entire

distribution. In the non-parametric causality test (Jeong et al. (2012), see Section A.4) we allow

for a non-linear impact. Finally, in the quantile-on-quantile case (see Section A.3) we allow for

linear impact on the quantile of the response variable but focusing attention in a neighborhood
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of the θ-th quantile of the explanatory variable.

We stress that, by focusing on the quantiles of the modelled variables, we attach a clear risk

interpretation to the estimated networks: on the one hand, the left quantiles are closely related

to traditional risk measures such as the Value-at-Risk and the Expected Shortfall; on the other,

the networks will monitor the spreading of shocks or the links between the modelled variables

when they are in a high-risk state, and not when they are in a mean (or median) state, as

captured by Granger causality. Our purpose is consistent with two other recent contributions,

from Hong et al. (2009) and Corsi et al. (2015), that focus on causality among tail events. The

Granger causality in risk in Hong et al. (2009), and also used by Corsi et al. (2015), is based on

the occurrence of tail events and detects the possible causality among such events. We might

associate the tail with a conditional quantile and estimate it with quantile regressions. We

differ from the previous papers in that we focus on the causality within the assessment of the

conditional quantiles, not on the occurrence of tail events. We thus consider the causality on

the risk measures rather than the causality on the occurrence of extreme events.

We suggest different approaches to constructing causality networks, which involve monitoring

the links across assets with views that might complement the (mean-based) Granger causality.

These competing networks will represent the input for our model-based network combination.

Using our model, we will be able to identify the relevance and the role of the various causality

networks.

We empirically validate our two main proposals concerning the use of quantile causality to

infer the network structure across a set of (financial) variables, and the model-based combina-

tion of causality networks. By using different datasets (US industrial portfolio returns, and a

set of large banks and insurance companies), we first provide evidence of the different network

structures that we can estimate from Granger causality and quantile causality. We show how

the networks differ across methods and over two different samples relating to the global finan-

cial crisis (2006-2008) and to the years 2011-2015. Our results suggest that quantile causality

networks are denser than Granger causality networks, a finding of relevance to systemic risk

interpretation because a denser network is indicative of a much larger set of links, and thus a

possibly greater systemic effect of shocks. The networks based on the non-parametric quantile

causality test of Jeong et al. (2012) also have a clear core-periphery structure, which might help

us to identify the more systemically relevant companies or sectors. Moreover, by resorting to

the model-based combination approach, we show how different networks have a different impact

and relevance on the various datasets, and we estimate a composite network. The model param-

eters indicate that quantile causality networks are much more relevant than Granger causality.

In addition, the linear factor model augmented with a plurality of networks provides residuals

that are much less correlated (on average) than traditional linear factor models, or the network

augmented linear factor model of Billio et al. (2015), which is based on the Granger causality

network alone. This latter finding might be implicated in explaining why the idiosyncratic risk

is priced in the cross section. Since the quantile-based networks are the more relevant, it comes

as no surprise that the composite network has a structure much closer to that of the quantile

causality networks.

The paper proceeds as follows. Section 2 discusses the approach for obtaining a model-based
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composite network, extending the model of Billio et al. (2015). Section 3 presents the various

approaches for estimating a causality network starting from the Granger causality method and

then moving to quantile-based causality detection. Section 4 provides the empirical evidence

with respect to both the estimation of quantile causality networks and the model-based com-

bination of networks. This section also includes some robustness checks. Section 5 concludes.

A Web Appendix accompanies the paper, which contains further tables and graphs, and some

methodological notes.

2 Model-based network combination

In this section, we introduce how we obtain a model-based combination of a collection of net-

works. At this stage, we assume that all the networks are available. We therefore do not estimate

the structure of the various networks, but concentrate only on their optimal combination. We

start with a formal definition of a simple network and of a multiplex or multilayer network.

A network or graph G = (V,E) is a collection of vertexes V and edges E, where the edges

represent the links between the vertexes,1 with E ⊆ (V ×V ). Networks are generally represented

by using the adjacency matrix W , a binary matrix where each element wi,j can take only two

values, 1 and 0. When wi,j is 1, the node j is linked to node i, with an information flow from

i to j. A value of zero identifies the absence of a link. We do not consider self-loops, so the

diagonal of the W matrix is identically equal to zero. If W is symmetric, we associate with each

node a measure called degree, that counts the number of edges for the node concerned. Note

that, when focusing on K assets, W has a dimension K ×K.

The W matrix might not be symmetric because we can have a link from i to j, but the

opposite might not hold. If the matrix W is symmetric, the associated network is undirected as

the information contained in the direction of the links becomes redundant; in this case, edges

represent mutual relationships between nodes. If W is not symmetric, the network is directed

and there may be two edges between a pair of nodes; in this case, unlike the undirected case, we

distinguish between indegree and outdegree. In particular, outdegree is the number of outgoing

links starting from a given node, while indegree is the sum of the ingoing links on that node. If we

relax the assumption of only two possible values for wi,j and allow for values within the (positive)

real axis, the network becomes weighted (as opposed to unweighted) because the connection also

has a size/relevance. In unweighted networks, each edge simply represents the presence of a

connection, while in weighted networks edges also contain information on the strength of the

relation between nodes.

As an example, the matrix in (1) represents the directed and unweighted network existing

between a set of 5 nodes. Figure 1 provides a graphical representation of the network.

1The terms vertex and nodes are equivalent, and both are used interchangeably in this work. In the same way,
edges and links take on the same meaning.
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Figure 1: Network associated to the Matrix W

W =


0 1 0 1 0

1 0 1 0 0

0 1 0 1 0

0 0 1 0 1

0 0 0 1 0

 . (1)

It is worth noting the parallelism between the adjacency matrix and the spatial (proximity)

matrix used in spatial econometrics. The latter describes how the subjects of an analysis are

spatially related. In such a different framework, the distance between subjects is (generally)

measured on a physical (natural) playground, and connections correspond to neighborhood re-

lationships. Therefore, if the element wi,j equals 1, the element j is a neighbor of the element i,

following the spatial econometric nomenclature. The spatial matrices in the standard applica-

tion are symmetric because neighboring relationships are symmetric. It is also common practice

to focus on proximity matrices that are row-normalized. These matrices can therefore be in-

terpreted as directed weighted networks, given that the symmetrical relations might become

asymmetrical after normalization.

Within a financial framework, networks are generally directed and weighted when they are

measured by means of balance sheet quantities. Billio et al. (2016) used BIS cross-holdings,

Diebold and Yilmaz (2014) developed an approach based on variance decompositions of target

series, Acemoglu et al. (2012) used the Input-Output matrix. The network might also be directed

and unweighted like those obtained using Granger causality in Billio et al. (2012), or Granger

Causality in the tails Corsi et al. (2015), or it might even be unweighted and undirected as in

the economic sector case of Caporin and Paruolo (2015).

In the following, we assume that the strength of the edges is normalized at each node, as

in a row normalization of the adjacency matrix W . We also assume that we are dealing with

directed networks (the most general case that we could consider).
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Assuming that we have d different networks, the multiplex (or multilayer) network is a

collection of the d networks organized into d different planes, or layers. In principle, the number

of nodes needs not be the same across networks, so the total number of nodes in a multilayer

network equals
∑d

i=1 Vi, where Vi is the number of nodes or vertexes in the i−th layer.

Assuming that the graphs (associated with the networks) are simple (there are no loops), the

maximum number of edges (connections between nodes) equals
∏d
i=1

Vi(Vi−1)
2 , since connections

across layers are also allowed.

In a financial framework, the multilayer network has an even simpler structure: the nodes

are the same across layers because we have measures of connections over, say, the same financial

institutions, but we use different approaches to estimate the networks. We also assume that

there are no connections between layers, leaving us a collection of networks that are unrelated,

but all referring to the same nodes.

The literature on multiplex networks is relatively recent and, to the best of our knowledge,

only a few papers combine networks in finance, focusing particularly on contagion and topolog-

ical properties. Since institutions are linked in very different ways, it is useful to find a way to

process all this information. Bargigli et al. (2015) analyzed the Italian interbank market using

a multiplex network, distinguishing between five layers: unsecured overnight transactions, un-

secured short-term transactions (up to 12 months), unsecured long-term transactions, secured

short-term transactions and secured long-term transactions; they also considered the aggregated

network, computed as the accumulation of all the layers.According to the authors, each layer

had a different topological property and persistence over time and, among all the layers, only

the overnight market was representative of the aggregate network.

Léon et al. (2014) studied the Colombian sovereign security market and built a multiplex

network with three different layers corresponding to the three Colombian environments trading

and registering sovereign securities. They found a strong nonlinear effect for the aggregate

network value, attributable to the fact that the principal layer did not transfer its properties to

the aggregate network or multiplex.

Montagna and Kok (2013) developed an agent-based multi-layered interbank network model

using a sample of large EU banks, highlighting that there were non-negligible non-linearity effects

influencing shock propagation to the individual banks. In other words, when different layers were

considered simultaneously, the contagion effect was larger than the sum of the contagion-induced

losses when the network layers were analyzed separately.

Molina-Balboa et al. (2014) analyze the multiplex structure of the bank exposures within

the Mexican banking system. By associating layers with different financial instruments and the

authors provides insight on the interdependence among banks with relevant implications from

a systemic risk perspective.

The present contribution aims to combine financial networks by building on a variant of a

financial economic model, the linear factor model augmented with a spatial link following the

approach of Billio et al. (2016).

The advantage of our model lies in that the combination of the various layers of the multiplex

network is weighted with a set of coefficients appearing in the models parametrization. As well

as representing the elements for a convex linear combination of the layers, the coefficients would
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consequently enable the significance and relevance of each layer to be assessed.

In the next subsection we briefly review the model of Billio et al. (2016), and introduce the

models generalization in the presence of a multilayer network. Then we discuss the approach

used to derive a composite network from the models estimates.

2.1 A linear factor model with multilayer spatial dependence

To obtain a composite network, we generalize the model of Billio et al. (2016), a revisited

multifactor model capable of taking into account the contemporaneous links between the assets

(as measured by a network) together with the presence of common factors. In this model, the

returns equation equals

A (Rt − E [Rt]) = β̄Ft + ηt (2)

where A is the matrix of the contemporaneous relationships between endogenous variables,

i.e. the returns, coexisting with the exposure to a set of common factors Ft; Rt, E [Rt] are,

respectively, the asset returns and the expected asset returns, β̄ is the structural asset exposure

to the common factor and ηt are the structural idiosyncratic residuals with a diagonal covariance

matrix Ση.

The standard multifactor model can be seen as the reduced form of equation (2). Under the

invertibility of matrix A, the model has the following reduced-form representation

Rt = E [Rt] +A−1β̄Ft +A−1ηt

= E [Rt] + β?Ft + ε?t (3)

Starting from the reduced form, and in the presence of contemporaneous links across assets,

Billio et al. (2016) make the point that: i) the reduced-form residuals ε?t = A−1ηt are cross-

correlated; and ii) the reduced-form betas, β? = A−1β̄, are a nonlinear function of the structural

betas and of the contemporaneous relation matrix A.

The intuition of Billio et al. (2016) is to provide a structure for A driven by the existence of a

network representing the (contemporaneous) links across the assets. They therefore propose to

make the matrix A an affine function of a network, A = (I−ρW ), where ρ is a scalar parameter

indicating the spatial dependence of the returns on the network, while W is an exogenous

spatial matrix, or adjacency matrix of a network. Such a choice also enables us to cope with

the identification issues of the simultaneous equation system in (2).

Following Anselin (1988) and LeSage and Pace (2009), the model thus includes a spatial

autoregressive component. The estimation of the spatial parameter ρ follows from concentrated

likelihood methods.

Billio et al. (2016) also allow for a more flexible parametrization of the A matrix. In partic-

ular, they consider two relevant extensions:

• the use of asset-specific impacts from the network, which corresponds to a contempora-

neous parameter matrix A with equation-specific network impacts, namely A = I −RW ,
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where R = diag(ρ1, ρ2, . . . , ρK) is a diagonal matrix, and the coefficient ρi represents the

impact of the network on each asset; and

• the possibility of the spatial matrix, or network, varying in time, thus leading to Wt; this

is particularly relevant in finance because W is not related to a physical distance between

subjects, but measures proximity or connections starting from variables liable to temporal

differences.

We refer the reader to the paper by Billio et al. (2016) for further details on the models

interpretation.

In the present paper, for the sake of simplicity, we assume the networks are time-invariant,

though the approach that we introduce can easily be extended to the case of dynamic networks.

In the presence of a multilayer network, we generalize the model of Billio et al. (2016) to

accommodate the presence of several adjacency matrices.

In the spatial econometrics literature, we have some examples associated with the existence of

richer spatial dynamics. In particular, Brandsma and Ketellapper (1979) propose a higher-order

spatial autoregressive model, introducing two spatial matrices and consequently two spatial

autocorrelation parameters: the first matrix based on the first-order neighbors, the second

derived from the higher-order neighboring relations.

In the framework of Billio et al. (2016), the matrix of simultaneous relations A, in the

presence of many networks, is easily generalized to

A = I −
d∑
j=1

ρjWj . (4)

In equation (4), we have d different scalar coefficients, ρj , capturing the impact of the network

Wj on the contemporaneous links across the assets.

Such a parametrization would give rise to a common impact of each network on the whole

collection of modelled asset returns, so we propose to combine the existence of many networks

with a restricted parametrization, accommodating the presence of the various networks, while

also allowing for heterogeneous impacts of the networks on the assets. In detail, we suggest the

following model specification:I −R
 d∑
j=1

δjWj

Rt = ARt = E [Rt] + βFt + ηt (5)

where d is the number of layers or networks, R is a diagonal matrix, and the δj coefficients

satisfy the following constraints:

m∑
j=1

δj = 1, δj ≥ 0, j = 1, 2, . . .m. (6)

The parameter δj controls the impact and role of each layer of the multiplex network, while

the parameters in R determine the heterogeneous impact of the networks on the asset returns.
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We suggest estimating the model using concentrated maximum likelihood, according to stan-

dard practice in spatial econometrics. If matrix A is known, the factor loadings β and the

innovation covariance matrix Ση can be obtained with traditional least square estimators. We

can thus concentrate out the latter parameters and use concentrated maximum likelihood to

estimate the parameters entering A. The maximization must account for the constraints that

we impose on the δj parameters.

The model contains a sort of spatial autoregression, the structure of which is driven by

several spatial proximity matrices. A standard requirement for estimations of spatial econometric

models is the invertibility of matrix A. When the number of networks is restricted to one, or

d = 1, the non-singularity of A−1 is ensured when λ−1min < ρ < λ−1max , where λmax and λmin are,

respectively, the maximum and minimum eigenvalues of the spatial/adjacency matrix W .

In the presence of numerous proximity matrices, the non-singularity of A might be addressed

with analytical tools, but only in specific cases. For instance, Lee and Liu (2010) and Elhorst

et al. (2012) discuss the case of two matrices W , referring to the estimation of a second-order

spatial autoregressive model. These results are not easy to extend to our specification, however,

we control for the invertibility of A within the estimation step.

The coexistence of many networks in the augmented linear factor model of Billio et al. (2016)

has consequences on the identification of the models parameters too, particularly for those in

R.

The identification of the parameters entering the matrix A is guaranteed by the constraints

on the δj parameters, the row normalization in the Wj matrices, and a further set of necessary

(but simple and intuitive) conditions on the adjacency matrices:

i. Wj 6= 0, j = 1, 2, . . . , d;

ii. Wi 6= Wj , i, j = 1, 2, . . . , d, i 6= j;

iii. ρ (Wi,.) > 0 where ρ (A) is the rank of matrix A, Wi,. = [W ′1|.,i W ′2|.,i . . . W ′d|.,i] and

W ′j |.,i denotes the i−th row of Wj .

Condition [i] simply rules out the case of absence of edges between a collection of nodes.

Condition [ii] excludes the case where two networks, measured by two different approaches are

identical. If the latter case realize, we loose identification as the two networks are indistin-

guishable, and one of the two must be excluded from the analysis. The first two conditions are

relevant for the identification of the δj parameters. Condition [iii] refers to the parameters in

R, and ensures that in each row of the combined network

W ? =

d∑
j=1

δjWj . (7)

we do have at least a non-null element. The parameter ρi,i of the diagonal matrix R is

identified if the i−th row of W ? has at least one non-null element. In fact, if a given row of W ?

contains only null elements, the corresponding parameter in R is not identified. Such a case

corresponds to asset i having no spatial dependence on the other assets in the model, so we set

the corresponding parameters in R to zero in the case of null rows in W ?.
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Finally, we note that the model is overidentified, given that the covariance matrix of the

innovation, Ση, is diagonal, thus leaving space for any richer parametrizations in (5), with

heterogeneous impacts on returns from groups of layers, for instance.

2.2 Relevance and combination of networks

The model offers two important insights. The first, and most relevant, concerns the feasibil-

ity of interpreting the summation of the adjacency matrices, matrix W ?, as a new adjacency

matrix representing a composite network. This is a direct consequence of the constraints on

the coefficients leading to a convex linear combination of adjacency matrices, which are all row-

normalized. The composite matrix will therefore also be a row-normalized matrix representing

a combination of a collection of networks. The combination will also be directed and weighted

because the initial networks are directed and weighted. The coefficients δj measure the relevance

of each network layer in obtaining the composite network. The model thus generates both a

composite network and an insight on the impact of each approach used to construct the various

layers.

Secondly, the parameters included in R represent the heterogeneous reaction of the assets

to the composite network, thus making the multiple-network model comparable, in terms of its

economic interpretation, to the network of Billio et al. (2016), but with the important difference

that its underlying network is composite.

2.3 Causality testing and causality networks

The concept of causality and the tools used to test for its existence date back to the seminal

contributions of Granger (1969, 1980, 1988). The purpose of his original contribution was to

identify causal relationships in mean across economic variables, and his work attracted con-

siderable interest in the econometrics literature, see Geweke (1984) and Hoover (2001). The

concept was later extended to the analysis of causality among variances: Granger et al. (1986)

provided a first definition of variance causality, while Comte and Lieberman (2000) extended and

generalized the concept. On the testing side, Cheung and Ng (1996) proposed a test based on

cross-correlations, Hafner (2003) introduced a procedure based on the likelihood of competing

models, and Hafner and Herwartz (2008) presented a Wald-type approach.

More recently, there have been contributions on causality between two random variables that

go well beyond the first- and second-order moments. We refer in particular to causality among

quantiles such as the non-parametric test of Jeong et al. (2012) and the work of Lee and Yang

(2014), and to the work of Candelon and Topkavi (2016) on causality in distributions.

Within a financial framework, the interest in causality and the use of Granger causality tests

to estimate a network stems from the work done by Billio et al. (2012). The authors associated

the statistical evidence of Granger causality in the mean with the existence of an edge connecting

two assets (two nodes) of a financial network. In times of market turmoil, however, or when our

interest lies in estimating systemic risk spreading after local or specific shocks, the causality in

the mean might not be enough, and should be combined with a causality testing that covers the

risk dimension.
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Appendix A provides a brief review of the Granger causality approach adopted by Billio et al.

(2012), then suggesst a number of competing methods we might consider for testing the existence

of causality among quantiles of return distributions. In particular, the Appendix discusses the

methods we will then use in the empirical analyses: the already mentioned approach of Billio

et al. (2012) based on Granger causality; a Granger-type causality approach building on the

baseline Quantile Regression (see Koenker (2005)); a generalization of the latter accounting

also for the location of the conditioning variable over its support, that Sim and Zhou (2015)

call Quantile-on-Quantile; finally, the non-parametric quantile causaliy test introduced by Jeong

et al. (2012).

As discussed in the introduction, the lower quantiles of returns acquire a more relevant role

within a financial framework, because they correspond to Value-at-Risk levels. The availability

of a number of competing methods for estimating causality networks enables the construction

of a multiplex network, in which each layer is associated with a specific network. The multiplex

network based on causality links can then be used for the model-based construction of composite

networks, as discussed in the previous section.

The same criteria apply to the estimation of a single causality network, irrespective of the

approach used to identify causality links. It is also important to note that we estimate a causality

network starting from historical information on K assets, generally focusing on asset returns.

The K assets thus represent the nodes in the networks, and our purpose is to identify edges

connecting each pair of nodes. If all assets are connected, and we exclude self-loops, we will have

a total number of K2 −K edges in which case the associated adjacency matrix is symmetric if

the network is unweighted.

In all the cases we discuss below, for any pair of assets i and j, the existence of an edge

connecting the nodes i and j with a specific direction (say, from i to j) is established from a

statistical test. The null hypothesis of the various tests corresponds to the absence of a causality

link, while the null hypothesis is rejected in the presence of some form of causality. The type of

causality detected clearly depends on the hypothesis tested.

For a given test statistic M, and for any pair of assets i and j, we define the edge from i to

j as

wi,j =

{
0 M null hypothesis rejected

1 M null hypothesis accepted
(8)

where wi,j is the element in position i, j within an adjacency matrix. Given the use of

the test statistic M, we denote the corresponding adjacency matrix as WM. The outcome of

the test statistic, either rejecting or accepting the null, thus identifies the edges of a directed

and unweighted network. We do not discuss here the possible generalization to a more flexible

form of network construction that accounts for the strength of the causal relation too: such an

extension is clearly possible but is left to future research. It should be noted that the networks

will be row-normalized before they are used in the model presented in the previous section.
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3 Empirical analyses

3.1 Data description

The empirical analyses are conducted on three different datasets: the first concerns the 48

industry portfolios on the Kenneth R. French website; the second includes the 25 US banks with

the greatest market value; the third the 25 US insurance firms with the highest market value.2

Using the three datasets, we can test for the presence of causality links from a general economic

standpoint, or by looking at the companies that were mostly affected by the recent financial

crisis.

For the three datasets, we use the daily returns over two different samples. The first spans the

open-market business days between 3 January 2006 and 31 December 2008. The second covers

the period between 3 January 2011 and 31 December 2015. The former is characterized by 755

daily returns for each time series, while the latter records 1258 observations for each industry

portfolio or firm. The two samples behave very differently, since the first includes the years

of the global financial crisis, while the second covers a period of upward trend in the financial

market, excluding the initial recovery period after the crisis. Our purpose is to test whether

there is a different dependence structure among the variables during periods of market distress

vis-à-vis periods with a positive market trend. We proceed with our estimation of causality

networks by focusing on the daily returns.

Just as we selected the 25 US banks and the 25 US insurance firms with the highest market

value as at the beginning of 2006, for the first time interval considered, the choice of banks

and insurance companies to consider in the second period was based on their market value as

at the beginning of 2011. This means that most, but not all of these financial institutions are

included in both of the samples. Appendix B contains a list of the selected banks and insurance

companies. We stress that our objective is to obtain an overview of the changes occurring in

the links across nodes (banks, insurance companies, or economic sectors) when we change the

approach used to ascertain the existence of nodes, switching from Granger causality to quantile-

based causality, to arrive at the optimal combination of competing available networks.

Tables C.9-C.10 in Appendix C show the main descriptive statistics computed for the banks

in the first and second time intervals, respectively; Tables C.11-C.12 concern the insurance com-

panies and the statistics for the 48 industry portfolios are given in Tables C.13-C.14. In all

cases, the average returns are lower in 2006-2008 than in 2011-2015. This was expected and is

due to the effects of the global financial crisis. The first time interval is also characterized by a

greater uncertainty, averaging higher standard deviations and interquartile ranges; this was also

expected. The risk affecting the years 2006-2008 is also apparent from the corresponding mini-

mum and maximum returns. The distributions of these returns are fat-tailed (especially in the

first period), consistently with the stylized facts highlighted by Cont (2001). The distributions

are also highly skewed. Finally, we used the Ljung-Box test for mean serial dependence on both

the returns and the squared returns, using 1, 5 and 10 lags. As expected, the outcomes show no

serial dependence on returns, while squared returns (a proxy of variances) are highly correlated,

suggesting the presence of heteroskedasticity. In short, the descriptive analysis shows significant

2The series of industry portfolios are available at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/,
the data on the banks and insurance firms were obtained from Thomson Reuters Datastream.
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differences between the years 2006-2008 and 2011-2015, that are clearly a consequence of the

turmoil affecting the US economy during the former period. We now take a closer look at the

dependence across companies or economic sectors by focusing on causality analyses.

3.2 Granger and quantile causality networks

In building the causality networks, we extend the existing literature by combining the classic

Granger testing approach with methods based on analyses of dependence across quantiles, as

described in Section A.1.

The methods based on quantile regression and quantile causality depend on the quantile at

which the analysis is performed, so we must first specify which quantiles we use to conduct the

dependence or causality analysis. Our analysis illustrates the changes occurring in the causality

networks when we switch from Granger causality to quantile causality, without identifying the

optimal quantile over which to measure quantile causality. We therefore decided to fix the

quantiles of interest a priori: we chose three quantiles, 0.1, 0.5 and 0.9, corresponding to the

tails and the center of the distributions of the returns. Note that, when considering the approach

of Sim and Zhou (2015), where we have quantile causality depending on two different quantiles,

we set both quantiles at the same level (see Appendix A for details on the quantile causality

methods we consider).

In the evaluation of quantile regression parameters, we estimate the standard errors with the

xy-pair bootstrap method, Efron and Tibshirani (1993), with 5000 replications. This approach

provides accurate results without assuming any particular distribution for the error term. When

a kernel function is involved (see Appedinx A for details), we set it always to the Gaussian one.

Following Balcilar et al. (2017) and Bonaccolto et al. (2018), we estimate the optimal bandwidths

involved in the Jeong et al. (2012) test using the least squares cross-validation method of Rudemo

(1982) and Bowman (1984). We also need to specify the lag orders for both the dependent and

the explanatory variables. To limit the computational burden, we fix a-priori both lag orders

to be 1. Finally, as for the quantile-on-quantile method, the objective functions depend also

on a bandwidth(see Appedinx A for details). Larger values of the bandwidth make smaller the

variance of the estimates, but, on the other hand, would increase their bias. The opposite holds

when h takes lower values. Optimizing the value of h by using ad-hoc statistical methods is

still an open issue in a quantile-on-quantile framework; we do not analyze this aspect in the

present study and leave it for future research. In contrast, we follow Sim and Zhou (2015) and

use a plug-in bandwidth equal to 0.1. We remind that the bandwidth applies to a quantile level.

Our choice allows avoiding estimating the parameters with a small number of data points (as

it is the case with smaller bandwidths) and, at the same time, to maintain the focus around

the quantiles of interest. We set the confidence level at 5% for judging the significance of the

coefficients and testing the null hypothesis behind the tests for Granger or quantile causality.

To control for the possible impact of the common dependence on the market, we test for

Granger causality as well as for the various forms of quantile causality, also including the super-

composite US market index within the corresponding models.3

3We obtain the market return from the Fama/French 3 Factors dataset provided by Kenneth R. French and
available at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/.
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In the remainder of this paper, we identify the various networks that we estimate by means

of acronyms. For networks estimated using quantile regression approaches (the baseline case,

the quantile-on-quantile, and the non-parametric test), the acronym consists of four or five

characters. The first and second identify the method: QR for baseline quantile regression;

Qo for quantile-on-quantile; QN for non-parametric quantile. The third and fourth characters

identify the quantile: for instance, QR10 refers to the network estimated by baseline quantile

regression at the 10% quantile. For the quantile-on-quantile cases, the reported quantile is used

for both the dependent and the explanatory variables. For standard Granger causality networks

we use GR. Then we add a final letter F to the acronym if we allow for the presence of a common

factor in our estimation of the causality networks.

Figures 2-4 graphically represent selected networks. Appendix D includes graphs for all the

estimated causality networks.

Figure 2 includes four different networks among the largest US banks: the Granger causal-

ity network and three different quantile causality networks estimated by focusing on the 10%

quantile. We indicate the baseline quantile network, the quantile-on-quantile network and the

non-parametric quantile causality network. All the networks refer to the financial crisis period

(2006 to 2008), and are estimated without any common factors. Figures 3 and 4 show similar

networks estimated for the 25 largest US insurance companies and the US industry portfolios,

respectively. We stress that we report results for the 10% quantile because we wish to shed

some light on the possible differences between Granger causality (which focuses on the mean)

and quantile causality (which places more emphasis on the tails). Networks that are based on

quantile causality in the mean and also pay attention to the upper tail are available in Appendix

D.

Figure 2 shows that the quantile causality network extracted using the baseline quantile

regression method has a majority of isolated nodes, whereas the network extracted with a

non-parametric quantile causality test suggests the presence of a much greater density. The

comparison between the networks of the banks and those of the insurance companies and in-

dustry portfolios shows that the former are less connected whatever methods is used. The

non-parametric quantile causality test also generates networks characterized by a similar topol-

ogy for all institutions and portfolios; in particular, it is easy to distinguish between a kernel

and a periphery.4

Figure 5 shows the dataset of 25 banks over time, comparing the networks estimated for

2006−2008 with those obtained for 2011−2015, using two specific causality network estimation

methods: Granger causality and non-parametric quantile causality (10% quantile). We can see

some changes in the Granger network structure when moving from the earlier to the later period.

These changes are less clear when we consider non-parametric quantile causality, in which case

the network still presents a kernel-periphery structure.

These preliminary graphical analyses suggest that there are potentially relevant differences

between the networks estimated using Granger causality as opposed to quantile-based causality

approaches. The latter have a more clear focus on risk than the former. Before moving on to the

combination of the estimated networks, we run a comparison of the estimated networks using

4We use the Fruchterman & Reingold algorithm for network visualization, Fruchterman and Reingold (1991).
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(a) Granger (b) Baseline Quantile

(c) Quantile on Quantile (d) Non-parametric Quantile

Figure 2: The figure visualizes 4 different networks for the period 2006-2008 relative to the
first 25 banks ordered for market capitalization and listed in Appendix B. Panel a) reports the
network extracted by the standard Granger causality approach of Billio et al. (2012). Panel
b) reports the Network extracted from a baseline quantile regression methodology, at the 10%
quantile. Panel c) plots the network extracted from a quantile-on-quantile methodology at the
10% quantile. Panel d) graphs the network estimated by a non-parametric quantile causality
methodology at the 10% quantile. All the estimates exclude the presence of common factors.
We use the Fruchterman & Reingold algorithm for network visualization.
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(a) Granger (b) Baseline Quantile

(c) Quantile on Quantile (d) Non-parametric Quantile

Figure 3: The figure visualizes 4 different networks for the period 2006-2008 relative to the first
25 insurances ordered for market capitalization and listed in Appendix B. Panel a) reports the
network extracted by the standard Granger causality approach of Billio et al. (2012). Panel
b) reports the Network extracted from a baseline quantile regression methodology, at the 10%
quantile. Panel c) plots the network extracted from a quantile-on-quantile methodology at the
10% quantile. Panel d) graphs the network estimated by a non-parametric quantile causality
methodology at the 10% quantile. All the estimates exclude the presence of common factors.
We use the Fruchterman & Reingold algorithm for network visualization.
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(a) Granger (b) Baseline Quantile

(c) Quantile on Quantile (d) Non-parametric Quantile

Figure 4: The figure visualizes 4 different networks for the period 2006-2008 relative to the 48
Industry portfolios obtained from the Kenneth French website. Panel a) reports the network
extracted by the standard Granger causality approach of Billio et al. (2012). Panel b) reports the
Network extracted from a baseline quantile regression methodology, at the 10% quantile. Panel
c) plots the network extracted from a quantile-on-quantile methodology at the 10% quantile.
Panel d) graphs the network estimated by a non-parametric quantile causality methodology
at the 10% quantile. All the estimates exclude the presence of common factors. We use the
Fruchterman & Reingold algorithm for network visualization.
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(a) Granger 2006-2008 (b) Granger 2011-2015

(c) Non-parametric quantile 2006-2008 (d) Non-parametric quantile 2011-2015

Figure 5: The figure displays the network of the 25 banks ordered for market capitalization (see
Appendix B by contrasting methods and samples. Panels a) and b) report the networks extracted
by using the standard Granger causality methodology for the 2006 − 2008 and 2011 − 2015
samples, respectively. Panels c) and d) report the networks extracted by using the the non-
parametric quantile causality test at the 10% quantile for samples 2006− 2008 and 2011− 2015,
respectively. All the estimates exclude the presence of common factors. We use the Fruchterman
& Reingold algorithm for network visualization.
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summary measures.

We consider four different indicators: Density, Assortativity, and two versions of Eigenvector

centrality. Density monitors the number of connections between nodes. A higher density is the

sign of a large number of connections between nodes, which are consequently more closely related

to one another. Assortativity captures the nodes’ tendency to connect with other nodes having

similar properties; it can take values in the range of (−1, 1). For values close to 1, the network has

an assortative behavior, with nodes being connected to other nodes that have similar degrees;

for values nearing zero, the network becomes similar to a random graph. A disassortative

behavior, when high-degree nodes point to low-degree nodes, corresponds to assortativity values

close to −1.5 Eigenvector centrality monitors the relevance of each node as a function of the

relevance of neighboring nodes. We consider two versions: one based on the non-normalized

adjacency matrix, and one based on the row-normalized adjacency matrix. We also normalize

the eigenvector centrality of each node to the maximum score obtained by the most connected

node. The eigenvector centrality value thus ranges from zero to one, and can easily be compared

across networks. In the summary tables, we focus on the average eigenvector centrality across

nodes. Changes in the eigenvector centrality are a sign of changes in the network structure.

Appendix E provides additional details on the network measures considered. Tables from 1 to

3 contain the summary measures.

Table 1 contains the network measures for the banks dataset. We can see that, on average,

the density is slightly smaller during the crisis, while the disassortative behavior (seen in both

periods) is higher. Granger’s causality networks (with/without the common factor) have small

densities that remain almost constant in the two samples, and a disassortative behavior, and the

average eigenvector centrality increases in the most recent period. The values for the quantile-

based networks are quite different, as the previous graphical analysis suggests. In particular, the

networks derived by means of the non-parametric quantile causality test have the highest density,

combined with a disassortative pattern. These two elements could explain the kernel-periphery

structure exhibited in the Figure 2.

A high density combined with a disassortative pattern is also associated with very high eigen-

vector centrality averages, which indicate that the nodes’ relevance is quite evenly distributed,

a somewhat expected result given that we focus on the largest banks. Notably, the picture is

quite different in the Granger causality networks, which are characterized by a lower average

eigenvector centrality. From a systemic risk perspective, this finding suggests that, while the

Granger causality analysis provides evidence of few relevant nodes that are more central to the

network structure, a non-parametric quantile causality test leads to the construction of a denser

network where the risk is more evenly distributed across nodes, and many nodes (more than

those emerging from Granger causality) are systemically relevant. As the graphs suggest, the

non-parametric quantile causality networks also differ from those based on other quantile-based

approaches. In particular, the baseline quantile case provides summary measures more closely

resembling those of Granger causality, while the quantile-on-quantile cases have density mea-

sures higher than with Granger causality but lower than with non-parametric quantile causality,

5The few blank spaces appearing in the following tables of network summary measures correspond to indeter-
minate forms. The indeterminate forms of the assortativity and eigenvector centrality measures are discussed in
the Appendix E.
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Table 1: This table reports summary measures for the networks estimated from competing
causality methodologies over the 25 Banks listed in Appendix B. QB stands for baseline quantile,
Qo for quantile-on-quantile, QN for non-parametric quantile causality, GR for Granger causality.
Numbers identify the reference quantile for quantile-based causality networks, 10 for 10%, 50
for the median and 90 for 90%. An F at the end of the acronyms specifies that the underlying
models included the market index as a common factor.

Density Assortativity Eigenvector
Centrality

06-08 11-15 06-08 11-15 06-08 11-15

GR 0.12 0.07 -0.37 -0.22 0.12 0.26

QB10 0.03 0.04 0.05 -0.13
QB50 0.05 0.07 0.03 -0.06 0.16
QB90 0.12 0.13 -0.44 -0.22 0.25 0.11

Qo10 0.16 0.36 -0.37 -0.28 0.23 0.45
Qo50 0.06 0.03 -0.43 0.00 0.34
Qo90 0.17 0.35 -0.53 -0.07 0.25 0.44

QN10 0.51 0.63 -0.11 -0.20 0.93 0.83
QN50 0.29 0.33 -0.30 -0.28 0.75 0.72
QN90 0.57 0.52 -0.15 -0.13 0.90 0.83

GRF 0.07 0.07 -0.01 -0.24 0.22 0.31

QB10F 0.04 0.04 -0.26 0.13 0.08
QB50F 0.04 0.09 -0.23 -0.12 0.14 0.29
QB90F 0.10 0.09 -0.37 -0.34 0.21 0.26

Qo10F 0.22 0.50 -0.29 -0.24 0.24 0.50
Qo50F 0.06 0.03 -0.07 -0.25 0.18
Qo90F 0.10 0.51 -0.50 -0.20 0.18 0.57

QN10F 0.52 0.70 -0.14 -0.23 0.88 0.84
QN50F 0.34 0.38 -0.22 -0.21 0.80 0.81
QN90F 0.64 0.64 -0.09 -0.14 0.96 0.89

Average 0.21 0.28 -0.24 -0.17 0.41 0.54
Standard Deviation 0.20 0.24 0.17 0.11 0.33 0.26
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Table 2: This table reports summary measures for the networks estimated from competing
causality methodologies over the 25 Insurance companies listed in Appendix B. QB stands for
baseline quantile, Qo for quantile-on-quantile, QN for non-parametric quantile causality, GR for
Granger causality. Numbers identify the reference quantile for quantile-based causality networks,
10 for 10%, 50 for the median and 90 for 90%. An F at the end of the acronyms specifies that
the underlying models included the market index as a common factor.

Density Assortativity Eigenvector
Centrality

06-08 11-15 06-08 11-15 06-08 11-15

GR 0.20 0.03 -0.29 -0.37 0.34

QB10 0.07 0.06 -0.36 0.15 0.15 0.22
QB50 0.07 0.14 -0.17 -0.15 0.32 0.36
QB90 0.04 0.07 -0.44 -0.03

Qo10 0.17 0.25 -0.31 -0.29 0.29 0.33
Qo50 0.03 0.05 0.00 -0.10
Qo90 0.22 0.21 -0.42 -0.08 0.38 0.30

QN10 0.76 0.56 -0.23 0.96 0.90
QN50 0.41 0.50 -0.35 -0.18 0.70 0.85
QN90 0.76 0.59 -0.02 -0.20 0.96 0.82

GRF 0.15 0.04 -0.31 -0.40 0.26

QB10F 0.04 0.08 -0.49 -0.12 0.22
QB50F 0.05 0.12 -0.06 -0.05 0.27
QB90F 0.04 0.10 -0.44 -0.08 0.37

Qo10F 0.08 0.43 -0.06 -0.28 0.18 0.44
Qo50F 0.04 0.05 0.13 0.21 0.21
Qo90F 0.10 0.45 -0.43 -0.31 0.24 0.46

QN10F 0.76 0.66 -0.11 0.96 0.93
QN50F 0.54 0.55 -0.13 -0.11 0.92 0.93
QN90F 0.76 0.62 -0.18 0.96 0.86

Average 0.26 0.28 -0.24 -0.14 0.54 0.53
Standard Deviation 0.29 0.23 0.19 0.15 0.34 0.29

and they show the most disassortative behaviors. We note some interesting differences across

quantiles, with higher densities on the extreme quantiles (10% and 90%) than on the median

case, which comes the closest to the Granger causality. Notably, this would mean that the net-

work structure changes if we move away from the mean (median), an important aspect to bear

in mind if our purpose is to analyze the spread of risk in times of market turmoil. Finally, the

introduction of a common market factor seems to have a limited impact.

Table 2 indicates that the insurance companies dataset behaves in much the same way as the

banks dataset (thus confirming our previous comments), with a marked change in the network

structure when moving from Granger causality to quantile causality. The most relevant difference

concerns network density, which is much higher in the tails than in the mean (which coincides

with Granger causality). We also find the highest average eigenvector centrality coinciding with

non-parametric quantile causality.

Table 3 shows the summary measures for the causality network estimated from the 48 indus-
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Table 3: This table reports summary measures for the networks estimated from competing
causality methodologies over the 48 Industry portfolios recovered from the Kenneth French web-
site. QB stands for baseline quantile, Qo for quantile-on-quantile, QN for non-parametric quan-
tile causality, GR for Granger causality. Numbers identify the reference quantile for quantile-
based causality networks, 10 for 10%, 50 for the median and 90 for 90%. An F at the end of the
acronyms specifies that the underlying models included the market index as a common factor.

Density Assortativity Eigenvector
Centrality

06-08 11-15 06-08 11-15 06-08 11-15

GR 0.14 0.02 -0.49 -0.74 0.15 0.36

QB10 0.09 0.06 -0.39 -0.20 0.24 0.24
QB50 0.16 0.06 -0.27 -0.13 0.21 0.27
QB90 0.14 0.07 -0.24 -0.37 0.29 0.29

Qo10 0.20 0.52 -0.06 -0.10 0.29 0.60
Qo50 0.08 0.06 0.09 -0.13 0.25 0.13
Qo90 0.14 0.48 -0.29 -0.15 0.26 0.56

QN10 0.52 0.42 -0.25 -0.14 0.88 0.90
QN50 0.32 0.28 -0.22 -0.23 0.82 0.83
QN90 0.57 0.48 -0.14 -0.18 0.93 0.90

GRF 0.15 0.02 -0.33 -0.71 0.18 0.16

QB10F 0.14 0.04 -0.11 -0.11 0.17 0.18
QB50F 0.15 0.06 -0.17 -0.21 0.20 0.16
QB90F 0.09 0.08 -0.12 0.02 0.17 0.18

Qo10F 0.39 0.79 -0.28 -0.12 0.43 0.79
Qo50F 0.09 0.07 -0.19 -0.10 0.13 0.10
Qo90F 0.35 0.82 -0.27 -0.09 0.39 0.82

QN10F 0.59 0.47 -0.12 -0.18 0.95 0.88
QN50F 0.33 0.33 -0.18 -0.22 0.85 0.81
QN90F 0.59 0.51 -0.15 -0.11 0.93 0.93

Average 0.26 0.28 -0.21 -0.21 0.44 0.51
Standard Deviation 0.18 0.26 0.12 0.19 0.32 0.32

try portfolios. Here again, we find relevant differences between the summary measures for the

Granger and quantile causality networks. This holds particularly for network density and aver-

age eigenvector centrality. We note, however, that the structure of the non-parametric quantile

causality networks differs considerably from the other quantile causality networks in all three

datasets.

The graphical analysis and summary measures confirm that, changing our approach to es-

timating a causality network, coincides with important changes in the network structure. To

examine the possible relevance of either the Granger causality network or the quantile causality

networks, we therefore proceed, in the following section, with the estimation of a composite

network.
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3.3 The composite causality network

Starting from the availability of causality networks estimated using four different methods

(Granger, Quantile Regression, Quantile-on-Quantile and Non-parametric Quantile causality),

and over different quantiles (10%, the median and 90%) for three of them, we now proceed to

estimate composite networks.

We estimate the model in equation (5), accounting for the presence of common factors, for

which we follow the usual practice and introduce the market factor, the size factor, the book-to-

market factor, and the momentum factor, following Fama and French (1993), Fama and French

(1995), and Carhart (1997). We have no information a priori to suggest a possible preference

for particular network, so we estimate the composite network starting from four different layers,

where the quantile-based networks are associated with the same reference quantile. We provide

a sensitivity analysis on the effect of excluding a single network in the robustness checks section.

Then we estimate the linear factor model, focusing on weekly returns. While it is more

common to consider the monthly frequency when estimating factor models, this would leave us

with only 36 observations in the first sample, while we have 60 monthly returns in the second.

Hence our decision to focus on the weekly frequency, which enables us to increase the number

of returns for the factor model (augmented with network dependence) to 108 in the first sample

and 316 in the second. This choice has advantages in terms of model estimation and parameter

inference. We do not consider daily data as they would be bound to require the introduction

of heteroskedastic dynamics in the variance of the residuals, adding to the complexity of the

estimation due to the well-known curse of dimensionality. Estimates of the network combination

on monthly returns are nonetheless provided in the robustness checks sections.

The estimates of the linear factor model with network dependence generate different outputs.

First, there are the model parameters: the weight of each network, as measured by the δi

parameters, and the impact of the composite network on the asset returns, the parameters

included in R. Second, comes the composite network, obtained by combining the primitive

networks weighted with the δi coefficients. Finally, there are the model residuals, which contain

information useful for assessing the advantages of moving to a composite network as opposed

to the benchmark cases of no network dependence (where the contemporaneous link matrix

A is an identity), or a network dependence captured by Granger causality. The latter is a

valuable benchmark as we would like to underscore the potential improvement associated with

measuring asset links going beyond the mean (i.e. on the quantiles). To compare models,

we use the residuals average correlation: if we see improvements, we expect to have residuals

characterized by a smaller correlation level, i.e. more whitened residuals.

Table 4 shows the parameters estimated for the combined network in the three datasets and

over sample periods. Bearing in mind that the sum of these parameters is 1 and they are all

positive, a higher value of a parameter indicates a greater relevance of the associated network.

We also assess the significance of the estimated parameters. Within the banks dataset, we note

that the non-parametric quantile causality network is the most relevant during the financial

crisis period and across all quantiles. Notably, the estimated δ parameter for this network

ranges between 0.736 and 0.883, and it is always statistically significant when the estimation of

the networks takes the presence of a common market factor into account.
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Table 4: The table reports the δ of model (5) that represent the weights for networks combina-
tion. The top panel focused on the banks dataset, the middle panel on the insurance companies
dataset and the bottom panel on the industry portfolios dataset. The first column identifies
the quantiles used to estimate the quantile-based network, and the second column indicates if
a common factor was used (Y) or not used (N) in the estimation of the causality networks.
Columns 3 to 6 refer to the crisis sample while columns 7 to 10 to the most recent sample.
The second row identifies the four different networks which are optimally combined: baseline
quantile causality - QB; quantile-on-quantile causality Qo; non-parametric quantile causality -
QN; Granger causality. Parameters are, by construction, positive and sum up to one (within
each row and within each period). A star identifies parameters significant at the 5% confidence
level.

2006-2008 2010-2015

Quantile Factor QB Qo QN GR QB Qo QN GR

25 Banks

10% N 0.061 0.055 0.875 0.010 0.000 0.630* 0.354* 0.017*
50% N 0.146 0.108 0.736* 0.010 0.091* 0.065* 0.773* 0.071
90% N 0.005 0.008 0.883 0.104 0.000 0.706* 0.243 0.051*
10% Y 0.022 0.073 0.827* 0.077 0.000 0.538* 0.428* 0.034*
50% Y 0.052 0.057 0.842* 0.050 0.107 0.072* 0.649* 0.173*
90% Y 0.134 0.000* 0.762* 0.104* 0.000 0.876* 0.121 0.003*

25 Insurance Companies

10% N 0.000 0.022* 0.951* 0.027 0.058 0.831 0.111 0.000
50% N 0.865* 0.000 0.032* 0.103 0.059 0.045 0.886* 0.010
90% N 0.000 0.028 0.972* 0.000 0.000 0.364* 0.436* 0.201
10% Y 0.001 0.006 0.948* 0.045 0.000 0.488 0.512 0.000
50% Y 0.731* 0.054 0.188* 0.027* 0.051 0.040 0.837* 0.072
90% Y 0.000 0.046 0.954* 0.000 0.000 0.554 0.446 0.000

48 Industry Portfolios

10% N 0.000 1.000* 0.000 0.000 0.032 0.968* 0.000 0.000
50% N 0.212 0.000 0.478 0.310 0.021 0.031* 0.848* 0.100
90% N 0.108 0.892* 0.000 0.000 0.000 1.000* 0.000 0.000
10% Y 0.178 0.471 0.000 0.351 0.036 0.695* 0.228 0.041
50% Y 0.123 0.000 0.000 0.877* 0.092 0.007* 0.836* 0.064
90% Y 0.000 0.810 0.000 0.190 0.107 0.808 0.030 0.055

We stress that, from a systemic risk perspective, this result suggests that the risk is more

widespread across banks, as the non-parametric quantile network is much denser than the other

causality networks. This greater relevance of the non-parametric quantile causality network also

emerges for the median and for the lower and upper tails. In all cases, the Granger causality

network has a very small weight (which is non-significant in five cases out of six). Switching

to the more recent period considered, both the non-parametric quantile causality network and

the quantile-on-quantile causality network are relevant, with and without the introduction of

common market factors. Here again, although it is more statistically significant, the Granger

causality network has smaller weights than the quantile-based causality networks. Overall, in

both samples, the baseline quantile regression network has the least relevant role. Finally, in
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the second sample, we see a clear change in the combined network parameters when moving

from median networks to the use of networks estimated on either the lower or upper tails.

In particular, the impact of the quantile-on-quantile networks increases, thus supporting the

importance of looking at quantile causality too when accounting for interdependence across

assets in a linear factor model, and showing that a double conditioning (on both the dependent

and the explanatory variables) is important when estimating causality at quantile level.

Table 5: The table reports summary measures of the composite networks estimated from model
(5) over the different datasets, sample periods, and reference quantiles. In all cases the composite
networks is formed by the combination of four networks: the baseline quantile causality network,
the quantile-on-quantile causality network, the non-parametric quantile causality network, the
Granger causality network. The top panel focused on the banks dataset, the middle panel on the
insurance companies dataset and the bottom panel on the industry portfolios dataset. The first
column identifies the quantiles used to estimate the quantile-based networks, and the second
column indicates if a common factor was used (Y) or not used (N) in the estimation of the
causality networks.

Measures Density Assortativity Eigenvector Eigenvector
Centrality Centrality

Adj Weighted
Quantile Factor 06-08 11-15 06-08 11-15 06-08 11-15 06-08 11-15

25 Banks

10% N 0.63 0.79 -0.30 -0.23 0.70 0.83 0.35 0.47
50% N 0.45 0.43 -0.28 -0.28 0.62 0.61 0.24 0.43
90% N 0.69 0.76 -0.32 -0.25 0.70 0.77 0.32 0.57
10% Y 0.65 0.87 -0.36 -0.25 0.67 0.87 0.39 0.64
50% Y 0.45 0.48 -0.31 -0.36 0.65 0.69 0.31 0.41
90% Y 0.72 0.85 -0.28 -0.25 0.75 0.85 0.39 0.64

25 Insurance Companies

10% N 0.88 0.72 -0.17 -0.29 0.88 0.74 0.66 0.45
50% N 0.59 0.61 -0.22 -0.21 0.72 0.85 0.37 0.60
90% N 0.87 0.72 -0.15 -0.24 0.91 0.77 0.66 0.50
10% Y 0.82 0.82 -0.22 -0.30 0.85 0.82 0.55 0.59
50% Y 0.66 0.64 -0.25 -0.23 0.79 0.84 0.55 0.51
90% Y 0.83 0.83 -0.22 -0.26 0.83 0.83 0.60 0.59

48 Industry Portfolios

10% N 0.71 0.74 -0.22 -0.26 0.77 0.78 0.46 0.62
50% N 0.50 0.37 -0.30 -0.29 0.58 0.51 0.29 0.19
90% N 0.71 0.74 -0.21 -0.24 0.76 0.76 0.38 0.62
10% Y 0.83 0.89 -0.24 -0.24 0.83 0.90 0.51 0.69
50% Y 0.53 0.42 -0.35 -0.37 0.56 0.55 0.24 0.23
90% Y 0.80 0.92 -0.29 -0.15 0.80 0.92 0.47 0.70

The insurance companies dataset produces somewhat similar results. In both periods,

Granger causality networks are the least relevant, being associated with small coefficients (and

only one in twelve is statistically significant). In the first period considered, non-parametric

quantile causality is the most relevant, although baseline quantile causality network receives a
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much larger weight in the median case (unlike the picture emerging from the banks dataset).

In the second sample, both non-parametric quantile causality and quantile-on-quantile causality

are relevant, with a change in the estimated parameters when moving from networks estimated

on the median to networks estimated on the 10% or 90% quantiles.

Finally, for the industry portfolio dataset, the results are more heterogeneous in the first

sample, while in the second they are consistent with the two previous cases. In the first period,

the significance is limited in many cases, particularly for the quantile-based causality networks

estimated at the median. In the second period, there is a marked difference between the quantile-

based causality estimated at the median and those estimated on the tails. Be that as it may,

Granger causality networks receive the smallest weight (and are never statistically significant).

Table 5 shows the summary measures for the combined networks. The various composite

networks are similar in all the quantities we report (for a given sample period, and a given

dataset). The heterogeneity identified is much smaller than was seen for the primitive networks.

Figures 6 to 8 show the combined networks for the period 2006− 2008.

We link this finding to the use of a linear factor model augmented with network dependence.

The contemporaneous relation across the modelled variables captures the correlation across these

variables and goes beyond what we associate with common factors. It might be that the various

composite networks capture the dependence across the returns (beyond common factors in a

similar way. The differences we find depend partly on the heterogeneity across networks and

partly on the different weights assigned to the primitive networks.

Figure 6: The figure visualizes the network for the Banks companies dataset. The network is
extracted by combining causality network by using quantile regression (QB, Qo and QN) at the
10% quantile, and the standard granger causality method, during the period 2006-2008. In this
case we do not allow the presence of the common factor for network estimations.

To shed further light on the differences between the composite networks and generate some

evidence of the improvement gained by the linear factor model augmented with network combi-

nation, we provide descriptive analyses -in Tables 6 to 8- of the correlations between the model

residuals (5). The tables include two benchmarks: a standard linear factor model, the Carhart
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Figure 7: The figure visualizes the network for the Insurers companies dataset. The network is
extracted by combining causality network by using quantile regression (QB, Qo and QN) at the
10% quantile, and the standard granger causality method, during the period 2006-2008. In this
case we do not allow the presence of the common factor for network estimations.

Figure 8: The figure visualizes the network for the Industry portfolios dataset. The network is
extracted by combining causality network by using quantile regression (QB, Qo and QN) at the
10% quantile, and the standard granger causality method, during the period 2006-2008. In this
case we do not allow the presence of the common factor for network estimations.

(1997) 4-factors CAPM; and a linear factor augmented with network dependence where the

latter is the Granger causality network (with or without the inclusion of a common factor in es-

timating causal relationships). For the datasets concerning the banks and insurance companies,

the results are much the same. The residuals of the 4-factors CAPM have the largest median

correlations, and a distribution of these correlations shifted to the right, with a clear prevalence
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of positive values. The introduction of network dependence, when measured by Granger causal-

ity, improves the model fit, but the predominance of positive values in the correlation remains

(see the small fraction of correlations below -0.1), and the median correlation remains above

0.1. With the introduction of a plurality of networks, the model fit improves considerably: the

residual correlations are centered at zero, with a higher fraction of correlations below -0.1, and a

marked reduction in the presence of large positive residual correlations. We thus conclude that

our approach based on combining several networks within a network augmented linear factor

model constitutes an improvement over the use of simple Granger causality. The improvement

achieved by the latter, over the multifactor model, was already documented in Billio et al. (2015).

Table 6: The table reports residual correlation descriptive analyses for the Banks dataset. The
first column identify the various models, while the second column indicates the number of
networks used in the model. In the first column Q (10%) identifies the use of a combination of
causality networks from quantile regression (QB, Qo and QN) at the 10% quantile, combined
with the Granger causality network. Similarly, when the reference quantile is 50% or 90%. With
G we denote the model using just the Granger casuality network, while the last line refers to
the 4-factor CAPM. The table reports statistics for the residuals correlations: the minimum,
maximum, the 10% quantile q10, the median q50, the 90% quantile and the number of elements
of the correlation matrix lower than −0.1.

Model N Factor Min Max q10 q50 q90 % elements
Networks ≤ −0.1

2006-2008

Q(10%) 4 N -0.279 0.584 -0.106 0.071 0.282 11.7%
Q(50%) 4 N -0.345 0.596 -0.109 0.062 0.311 10.7%
Q(90%) 4 N -0.269 0.600 -0.146 0.050 0.276 16.0%
Q(10%) 4 Y -0.297 0.566 -0.135 0.035 0.238 17.7%
Q(50%) 4 Y -0.349 0.503 -0.119 0.047 0.242 14.7%
Q(90%) 4 Y -0.297 0.455 -0.161 0.020 0.218 18.3%

G 1 N -0.381 0.670 -0.128 0.111 0.372 13.3%
G 1 Y -0.394 0.641 -0.128 0.089 0.378 11.7%

4-F-CAPM — — -0.358 0.678 -0.108 0.257 0.502 10.7%

2011-2015

Q(10%) 4 N -0.263 0.422 -0.122 -0.013 0.135 15.3%
Q(50%) 4 N -0.397 0.537 -0.129 0.055 0.224 13.7%
Q(90%) 4 N -0.253 0.431 -0.127 0.010 0.138 15.7%
Q(10%) 4 Y -0.283 0.503 -0.132 -0.008 0.140 19.0%
Q(50%) 4 Y -0.330 0.505 -0.126 0.041 0.197 14.7%
Q(90%) 4 Y -0.304 0.508 -0.140 0.001 0.132 17.7%
Granger 1 N -0.211 0.598 -0.027 0.151 0.362 3.0%
Granger 1 Y -0.211 0.598 -0.027 0.146 0.361 3.3%

Multifactor — — -0.122 0.669 0.054 0.266 0.487 0.3%

For the industry portfolio dataset, the results are less clear, since the various approaches

produced very similar findings. This is in line with the heterogeneous results seen for the weights

of the various networks, where we were unable to identify a clear preference. We interpret this

as evidence to suggest that network augmented linear factor models might usefully improve on
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Table 7: The table reports residual correlation descriptive analyses for the Insurance Companies
dataset. The first column identify the various models, while the second column indicates the
number of networks used in the model. In the first column Q (10%) identifies the use of a com-
bination of causality networks from quantile regression (QB, Qo and QN) at the 10% quantile,
combined with the Granger causality network. Similarly, when the reference quantile is 50%
or 90%. With G we denote the model using just the Granger casuality network, while the last
line refers to the 4-factor CAPM. The table reports statistics for the residuals correlations: the
minimum, maximum, the 10% quantile q10, the median q50, the 90% quantile and the number
of elements of the correlation matrix lower than −0.1.

Model N Factor Min Max q10 q50 q90 % elements
Networks ≤ −0.1

2006-2008

Q(10%) 4 N -0.437 0.686 -0.205 0.003 0.250 27.7%
Q(50%) 4 N -0.429 0.669 -0.167 0.039 0.258 15.3%
Q(90%) 4 N -0.448 0.676 -0.207 0.009 0.255 25.7%
Q(10%) 4 Y -0.436 0.684 -0.203 0.004 0.246 28.0%
Q(50%) 4 Y -0.417 0.473 -0.176 0.023 0.226 19.3%
Q(90%) 4 Y -0.464 0.671 -0.214 0.001 0.253 27.0%

G 1 N -0.466 0.831 -0.166 0.044 0.316 17.7%
G 1 Y -0.460 0.714 -0.166 0.048 0.323 15.0%

4-F-CAPM — — -0.370 0.847 -0.149 0.089 0.422 14.0%

2011-2015

Q(10%) 4 N -0.290 0.504 -0.121 0.009 0.157 14.7%
Q(50%) 4 N -0.258 0.548 -0.149 0.019 0.202 16.7%
Q(90%) 4 N -0.289 0.348 -0.137 -0.006 0.167 19.3%
Q(10%) 4 Y -0.333 0.503 -0.153 -0.012 0.189 20.7%
Q(50%) 4 Y -0.267 0.592 -0.156 0.016 0.192 18.3%
Q(90%) 4 Y -0.299 0.398 -0.152 -0.001 0.199 21.3%

G 1 N -0.136 0.658 -0.005 0.121 0.317 1.7%
G 1 Y -0.136 0.658 -0.014 0.116 0.315 1.7%

4-F-CAPM — — -0.103 0.658 0.017 0.138 0.332 0.3%

traditional linear factor models when we fit the model over single assets and not over portfolios.

The aggregation of assets into portfolios probably distorts the dependence structure across assets

and limits its impact. There might be a different reason linking the datasets of the banks and

insurance companies to the potential presence of a sector-specific factor in the analysis - but if

that were the case, we should have seen no such clear improvement in the residual correlations

of the composite network cases. We consequently believe that the idea of a missing factor is

inconsistent with our findings. Further analyses are needed on this topic, but we leave them to

future research.

We close this section with a few comments on the coefficients for monitoring the impact of the

composite networks on the various assets, as included in the diagonal of matrixR in equation (5).

Appendix J shows the plots of the coefficients for each bank, insurance company and industrial

portfolio, across the various combined networks. Overall, we note that the coefficients are usually

positive and significant for banks and insurance companies, while the networks impact is more

30



Table 8: The table reports residual correlation descriptive analyses for the Industry portfolios
dataset. The first column identify the various models, while the second column indicates the
number of networks used in the model. In the first column Q (10%) identifies the use of a com-
bination of causality networks from quantile regression (QB, Qo and QN) at the 10% quantile,
combined with the Granger causality network. Similarly, when the reference quantile is 50%
or 90%. With G we denote the model using just the Granger casuality network, while the last
line refers to the 4-factor CAPM. The table reports statistics for the residuals correlations: the
minimum, maximum, the 10% quantile q10, the median q50, the 90% quantile and the number
of elements of the correlation matrix lower than −0.1.

Model N Factor Min Max q10 q50 q90 % elements
Networks ≤ −0.1

2006-2008

Q(10%) 4 N -0.465 0.611 -0.191 -0.001 0.201 25.6%
Q(50%) 4 N -0.369 0.663 -0.161 0.018 0.249 20.6%
Q(90%) 4 N -0.443 0.608 -0.195 -0.006 0.206 25.9%
Q(10%) 4 Y -0.417 0.625 -0.187 0.006 0.220 24.1%
Q(50%) 4 Y -0.454 0.627 -0.159 0.011 0.233 20.4%
Q(90%) 4 Y -0.508 0.592 -0.187 -0.007 0.215 23.8%

G 1 N -0.384 0.687 -0.146 0.025 0.257 18.6%
G 1 Y -0.401 0.687 -0.157 0.011 0.239 19.8%

4-F-CAPM — — -0.486 0.733 -0.219 0.003 0.267 27.1%

2011-2015

Q(10%) 4 N -0.463 0.567 -0.140 -0.008 0.135 19.7%
Q(50%) 4 N -0.454 0.518 -0.136 0.005 0.169 16.7%
Q(90%) 4 N -0.471 0.572 -0.144 -0.013 0.139 19.9%
Q(10%) 4 Y -0.432 0.497 -0.147 -0.004 0.148 18.9%
Q(50%) 4 Y -0.470 0.511 -0.135 0.001 0.155 16.6%
Q(90%) 4 Y -0.438 0.565 -0.143 -0.006 0.154 17.9%

G 1 N -0.470 0.577 -0.140 0.007 0.199 18.0%
G 1 Y -0.503 0.577 -0.139 0.006 0.177 17.7%

4-F-CAPM — — -0.456 0.592 -0.147 0.007 0.208 18.4%

heterogeneous and of limited significance for industrial portfolios. These results deserve a more

thorough analysis, but this goes beyond the scope of the present paper.

3.4 Robustness checks

The previously-reported results focus on the combination of all four different networks, where

the model providing the optimal combination makes use of weekly data and allows for a het-

erogeneous impact of the composite network on the assets. Here we provide some additional

comments on variations to the model-based combination design. In particular, we estimate the

model on monthly data, we consider combining just three networks, and we control for the

optimal combination when the network’s impact is homogeneous across assets.

Section G contains tables assessing the model-based network combination when we exclude a

network. We consider two specific cases: the first excludes the network estimated from Granger

causality in order to highlight the relevance of competing quantile causality networks; the second
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disregards the less relevant quantile causality network (the so-called baseline quantile causal-

ity). All the analyses are based on weekly data. The results confirm the relevance of the

non-parametric approach for the purpose of obtaining a quantile causality that, in several cases,

generates the largest and statistically most significant coefficients. The baseline quantile causal-

ity is the least relevant, even when the Granger causality network is excluded from the layers.

The results for the industry portfolios are the most heterogeneous in terms of network relevance,

and they show little improvement with respect to the contraction of the residual correlations.

For the banks and insurance companies, there is a marked gain in moving from linear factor

models, or Granger causality augmented factor models, to a model that accounts for the presence

of quantile causality; the average residual correlation decreases considerably.

Section H contains estimates of the network combination modelled on monthly data (as

opposed to the weekly data considered in the previous section).6 We confirmed the importance

of non-parametric quantile causality and the limited impact of Granger causality. Once again,

the outcome is clearer for the datasets concerning banks and insurance companies than the

industry portfolio dataset. In addition, contrary to the evidence emerging from the weekly data,

the contraction on the residual correlations for the insurance company dataset is less evident

during the financial crisis, while it is striking in the second period.

Given the heterogeneity of the network’s impact on returns, as mentioned at the end of

the previous section, we check the model’s performance when we impose a common reaction of

the returns to exposure to the network. Section I illustrates the outcomes for the composite

network and the impact of the network on returns in the three datasets and two sample periods,

when the model is estimated on weekly data. The only notable changes concern the composite

network parameters: we now find a larger number of statistically significant coefficients. In

addition, Granger causality seems to become more relevant, in the insurance companies dataset

at least. The non-parametric quantile causality network nonetheless retains its role and receives

the highest coefficients. Moving to the model-based combination confirms the previous results

and enables a reduction in the average residual correlations in the banks and insurance companies

datasets.

4 Concluding remarks

Causality networks have attracted some attention in the financial economics literature in recent

years for the purposes of systemic risk interpretation. We show that the structure of causality

networks changes considerably if we move from the mean, commonly associated with traditional

Granger causality, to the quantiles. In the latter case, the causality across assets can be measured

by means of quantile regression-based approaches. Here we illustrate three different possibilities:

the simple quantile regression, its generalization to the quantile-on-quantile approach of Sim and

Zhou (2015) and the non-parametric test due to Jeong et al. (2012). We show that changing the

approach to network estimation gives rise to networks in which a systemic risk interpretation

points to the existence of dense networks with a broader systemic relevance. By focusing on

a linear factor model augmented with a multi-layer network dependence, we also demonstrate

6In this case too, we ran a sensitivity analysis on the effects of excluding a network. The results are available
on request.
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that causality networks are useful for capturing this dependence across financial returns, going

beyond what can be explained by a market factor. This paves the way to further analyses, and

has an associated impact on diversification analyses and portfolio construction, as well as on

asset pricing.
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Appendix

A Estimating causality networks

A.1 Granger causality networks

We start from the discussion of Granger causality testing, and the estimation of a Granger

causality network in which case the framework for testing the presence of causality in mean

between two variables xt and yt is the Vector Auto Regressive (VAR). We focus on the simplest

VAR model with a single lag, that is[
yt

xt

]
=

[
b11 b12

b21 b22

][
yt−1

xt−1

]
+

[
εy,t

εx,t

]
(A.1)

where we assume, for the sake of simplicity, that the innovation term is identically and

independently distributed.

Testing for causality from xt to yt is tantamount to testing for the significance of the coeffi-

cient b12, while the significance of b21 provides information on the causality from yt to xt. The

framework can easily be generalized to the presence of more than one lag, in which case causality

is associated with the null hypothesis of zero restrictions on a subset of the model parameters.

Furthermore, we might extend the approach for testing causality among a number of variables

larger than two. In the latter case, the characterization of causality tests is properly defined

on the moving average representation of the model; see Lütkepohl (2005). Test statistics for

hypotheses on VAR coefficients might be recovered by resorting to a likelihood ratio framework.

Consequently, the test statistics have the usual Chi-square density.

The testing equation can also be extended by introducing further lagged or contemporaneous

explanatory variables that affect both the dependent variables. This would bring to light a form

of common behavior that might hide or distort the identification of causal relations. Notably,

by replacing the series levels with their squares, or by focusing on realized volatility sequences,

the Granger causality framework also enables us to test for causality between risk measures.

Billio et al. (2012) were the first to adopt Granger causality to estimate a relationship-

based network among financial institutions. The connections between nodes in their network

denote the presence of a causality relation in the Granger sense. The intuition of Billio et al.

(2012) is that Granger causality relationships might be interpreted as a channel through which

microeconomic shocks would spread between financial institutions.

The approach used by Billio et al. (2012) starts from a collection of series of K asset returns

over a daily sample of size T , which we denote by Ri,t, with i = 1, 2, . . . , N and t = 1, 2, . . . T .

Returns are first filtered by means of a GARCH(1,1) model to eliminate the well-known het-

eroskedastic behavior. The authors thus estimate

Ri,t = µi + ηi,t i = 1, 2, . . . N (A.2)

where µi is the unconditional mean and ηi,t is the innovation for asset i. Following the

standard literature, ηit = σitεit, where σt is the conditional standard deviation. The conditional
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variance follows a simple GARCH(1,1) process

σ2i,t = ωi + αiη
2
i,t−1 + βiσ

2
i,t−1 i = 1, 2, . . . N (A.3)

with ωi ≥ 0, αi,1 ≥ 0, βi ≥ 0, and αi+βi < 1. As usual in the GARCH literature, εi,t is assumed

to be a sequence of i.i.d random variables with zero mean and unit variance. After the model

estimation, we can therefore obtain the so-called standardized residuals εi,t =
ηi,t
σi,t

.

The next step develops Granger’s causality test on each pair of standardized asset residuals,

but the simple framework of equation (A.1) might lead to the detection of spurious causality.

In fact, if we take three assets, i, j and z, and we have i→G j (the series i causes the series j in

the sense of Granger causality) and j →G z, then by using the standard Granger causality test

we might also find that i→G z, but such a causality could be a by-product of the presence of j,

and not a real direct causality impact. To control for such effects, typical of VAR models with a

cross-sectional dimension larger than two, Billio et al. (2012) augment the model in (A.1) with

a so-called background series and/or a set of common factors, leading to the following model[
εi,t

εj,t

]
=

[
b11 b12

b21 b22

][
εi,t−1

εj,t−1

]
+

[
c1

c2

]
εz,t−1 + βFt−1 +

[
ϕi,t

ϕj,t

]
(A.4)

where Ft might contain common factors, and with i, j, z = 1, 2, . . . N , and i 6= j 6= z.

Obviously, we have N − 2 possible background series for each pair of GARCH standardized

residuals i, j.

The Granger causality test must therefore discriminate between the various choices of z,

conditional to the possible presence of common factors Ft. The approach of Billio et al. (2012)

made use of information criteria to specify the VAR lag structure and select the background

series. Once the background series had been selected, the authors ran a set of Granger causality

tests including/excluding the background series and/or the common factors, and selected the

test outcome with the highest p-value (of the Granger’s causality test) to produce more robust

results.

We point out that the approach is computationally intensive because detecting the causality

from i to j, for a specific choice of i and j, involves estimating N − 2 bivariate systems to select

the background series, and then further estimates to perform the causality testing.

For each pair of GARCH standardized residuals i and j, the test enables us to check for

the presence of causality from i to j, with a decision rule associated with the above-described

procedure. The decision rule provides for just two outcomes, a 0 or a 1: if causality is present,

the approach of Billio et al. (2012) leads to the creation of a connection from node i to node j.

The adjacency matrix gives rise to a directed and unweighted network.

Following the intuition of Billio et al. (2012), we interpret the adjacency matrix based on

Granger causality as a proxy for a channel of shocks spreading and we take it as exogenous.

Furthermore, before estimating our model, we proceed to a normalization of the network.
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A.2 Quantile causality: a baseline case

Granger causality tests focus on the possible presence of causality relations affecting the mean

dynamic evolution of xt and yt. As noted earlier, this approach might easily be extended to

testing causality among higher-order moments.

Despite the usefulness and simplicity of this approach, focusing on the moments alone might

prove too restrictive, since it could preclude or limit the possibility of studying the causal rela-

tions between xt and yt in specific regions of their distributions, or the risk measures associated

with the distributions of the two variables, such as quantiles or conditional moments.

For instance, there might be situations where xt and yt are not linked by causal relations in

the center of their distributions, or in the mean, but they might still be strongly dependent on

one another in the tails of their distributions. This phenomenon could be crucial in the context

of financial returns (given that their distributions are typically characterized by fat tails, Cont

(2001)), or when we are interested in the existence of causal relations during periods of market

turmoil (when both the variables analyzed take values in their tails), or during a negative period

for the target variable (when only the dependent variable takes values in its tail). There might

also be more interesting cases in which the causal relations are asymmetrical between the left

and right tails. The classical Granger’s test and its baseline variants are obviously unable to

detect such structural features.

This shortcoming can be overcome by building causality tests based on the quantile regression

method introduced by Koenker and Bassett (1978). In such a framework, we postulate the

existence of a linear relationship between the quantile of a target variable and the values taken

by an explanatory variable. If we deal with two variables, we thus have two equations, and the

bivariate system becomes:

Qyt(τ) = β0,1(τ) + β1,1(τ)yt−1 + β2,1(τ)xt−1

Qxt(θ) = β0,2(θ) + β1,2(θ)yt−1 + β2,2(θ)xt−1
(A.5)

where Qyt(τ) and Qxt(θ) denote the τ -th and θ-th conditional quantiles of yt and xt, respectively.

As in the idea behind Granger causality, testing for causality from xt to the τ -th conditional

quantile of yt involves testing the significance of the coefficient β2,1(τ). Likewise, testing for

causality from yt to the θ-th conditional quantile of xt involves testing the significance of β1,2(θ).

Unlike the Granger causality testing approach, the estimation of the conditional quantiles is

based on the marginal model for each target variable. We therefore test for causality from xt

to yt, and from yt to xt using two different models (i.e. two different conditional quantile linear

models, one for each target variables). A recently-developed system approach is also viable, as

discussed later on.

Financial variables are often highly correlated, due mainly to their sensitivity to market

trends and shocks. The influence of these common factors can be isolated by including one or

more control variables reproducing the market movements in the bivariate system (A.5). If we

let Ft be the vector of these common factor variables observed in t, we rewrite the (A.5) as

Qyt(τ) = β0,1(τ) + β1,1(τ)yt−1 + β2,1(τ)xt−1 + γ1F
′
t−1

Qxt(θ) = β0,2(θ) + β1,2(θ)yt−1 + β2,2(θ)xt−1 + γ2F
′
t−1

(A.6)
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The latter conditional quantiles thus mimic the presence of common factors used in the Billio

et al. (2012) approach. Similarly, we can introduce a further background variable, and increase

the lag structure within the conditional quantile specification. Note that we could introduce

lags for both the conditioning and the modelled variables.

If we focus on the conditional quantile for xt (similarly for yt), with or without additional

control or background variables, the detection of causality is associated with the presence of a

significant impact of yt−1 (or all lags if the models structure is more complex) on the conditional

quantile of xt.

Within a quantile regression framework, we can also assess the causality impact of xt by

comparing the first equation in (A.5) with its restricted version:

Q(r)
yt (τ) = β

(r)
0,1(τ) + β

(r)
1,1(τ)yt−1, (A.7)

on the basis of the testing procedure proposed by Koenker and Bassett (1982). The test verifies

the null hypothesis that the additional variable in the first equation belonging to the system

(A.5), i.e. xt−1, does not improve on the goodness-of-fit achieved with the restricted model given

in (A.7). If the null hypothesis of the test, which reads like the F-test, is rejected at a given

significance level, then there is evidence of causality from xt to the τ -th conditional quantile of

yt. The same method could likewise be applied to test the causality relations from yt to the θ-th

conditional quantile of xt.

Finally, we note that the quantile causality network is specific to the τ quantile used to test

the link between xt and yt. The above-outlined method might therefore generate a collection of

quantile causality networks. When the focus is on the risk, however, our interest lies in the left

tail of the distribution, and therefore on small values of τ , ideally between 1% and 10%.

Using conditional quantile causality testing based on an assessment of the significance of

the coefficients, we thus obtain the quantile causality network at quantile τ . We stress that the

estimated network depends on the chosen quantile, so we can estimate a collection of quantile-

based causality networks.

A.3 Quantile-on-quantile causality

So far, we have considered the causal impact of one variable on another, focusing either on

moments (within a Granger causality framework) or on conditional quantiles. We can take the

analysis further by directly linking the quantiles of both the causal and the dependent variables.

In other words, our aim is to check whether the θ-th quantile of xt causes the τ -th quantile of

yt, and vice versa, for θ equaling or differing from τ . In this way, we can test whether the power

of xt in causing the τ -th quantile of yt changes over θ ∈ (0, 1).

From a different viewpoint, while in traditional quantile regression we analyze the possible

impact of the values taken by xt−1 (across its whole density) on the conditional quantile of yt,

for instance, we are interested here in testing the existence of causality when we restrict our

attention to a neighborhood of a quantile of xt−1. This would enable us to seek causal relations

when both the analyzed variables take values in the respective tails, for example.

Two different approaches can be used for this purpose. The first is based on the method
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introduced by Sim and Zhou (2015), who proposed a modified version of quantile regression

in which observations (and then the corresponding loss function) are weighted using a kernel

function. In particular, Sim and Zhou (2015) use kernel-based weights to estimate the relations

in quantiles between oil prices and stock returns. In our framework, following Sim and Zhou

(2015), the conditional quantiles in (A.5) are rewritten, respectively, as follows:

Qyt(τ, θ) = β0,1(τ, θ) + β1,1(τ, θ)yt−1 + β2,1(τ, θ)xt−1

Qxt(θ, τ) = β0,2(θ, τ) + β1,2(θ, τ)yt−1 + β2,2(θ, τ)xt−1
(A.8)

where the only difference lies in the fact that the parameters have both τ and θ subscripts. In

fact, the estimated parameters depend on the quantile levels of both yt and xt. Despite the

similarities in the form, the equations in system (A.8) differ from those in (A.5) in the manner

in which the unknown parameters are estimated. Notably, the coefficients belonging to the first

equation of the system (A.8) come from the following minimization problem:

min
β0,1(τ,θ),β1,1(τ,θ),β2,1(τ,θ)

T∑
t=1

ρτ [yt − β0,1(τ, θ)− β1,1(τ, θ)yt−1 − β2,1(τ, θ)xt−1] ∗

∗K
(
FT (xt)− θ

h

)
, (A.9)

where ρτ (e) = e(τ−I{e<0}) is the asymmetric loss function on the basis of the quantile regression

method introduced by Koenker and Bassett (1978), and I{·} is the indicator function, taking a

value of 1 if the condition in {·} is true, and a value of 0 otherwise. The difference with respect

to the classical quantile regression of Koenker and Bassett (1978) lies in K(·), i.e. the kernel

function, with bandwidth h, where FT (xt) = T−1
∑T

k=1 I{xk<xt}, to focus on the impact of xt

in the neighborhood of its θ-th quantile. The parameters in the second equation of the system

(A.8) are likewise estimated from

min
β0,2(θ,τ),β1,2(θ,τ),β2,2(θ,τ)

T∑
t=1

ρθ [xt − β0,2(θ, τ)− β1,2(θ, τ)yt−1 − β2,2(θ, τ)xt−1] ∗

∗K
(
FT (yt)− τ

h

)
. (A.10)

If we remove the kernel function, the parameters no longer depend on θ, and we return

to the traditional quantile regression estimator. As discussed in the previous section, we can

generalize the conditional quantiles in (A.8) by adding common factors and background variables.

Notably, what Sim and Zhou (2015) call the quantile-on-quantile approach corresponds to a non-

parametric quantile regression where the knots used to obtain the local quantiles are fixed at

specific quantiles of the dependent variable, Koenker (2005).

The construction of a quantile-causality network by following the quantile-on-quantile ap-

proach of Sim and Zhou (2015) builds on the significance of the coefficients associated with the

impact of the covariates quantiles. In particular, focusing on xt, the existence of causality from

the θ quantile of yt to the τ quantile of xt depends on the coefficient β1,2 (θ, τ). If the conditional

quantiles have a more complex structure, including several lags, the number of coefficients to be

tested naturally increases. When accounting for the presence of common factors and background
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variables, we can again follow a procedure similar to that of Billio et al. (2012).

When estimating the quantile causality network by means of the quantile-on-quantile method,

the estimated network depends on two quantile levels: one referring to the dependent variable

and the other to the explanatory variable. As in the previous section, if we are interested in

monitoring the causality networks during periods of financial turmoil, both quantiles would be

placed in the range of 1%− 10%.

We note that such an approach has some similarities with the VAR for VaR model introduced

by White et al. (2015), which, in a multivariate framework, estimates the dependence across

quantiles for a collection of series, also accounting for the possible presence of an auto-regressive

structure, in the spirit of the CAViaR by Engle and Manganelli (2004). Clearly, the quantile-

on-quantile dependence might be seen as a special case.

A.4 Quantile causality: a nonparametric test

The previous quantile regression-based approaches for detecting causality have a relevant feature

in common, that is their parametric nature. In this section, we refer to another approach that

is non-parametric. Non-parametric techniques offer the important advantage of requiring no

particular assumption concerning the distributions for the processes underlying the variables of

interest. We refer here to the nonparametric testing procedure proposed by Jeong et al. (2012).

First, we assume that the conditional variable is xt, and we define the following vectors:

Yt−1 ≡ (yt−1, ..., yt−p), Xt−1 ≡ (xt−1, ..., xt−q), Zt−1 ≡ (yt−1, ..., yt−p, xt−1, ..., xt−q), for (p, q) >

1. Note that the vectors refer to the lags of one or both the variables of interest. Further,

Fyt|Zt−1
(yt|Zt−1) and Fyt|Yt−1

(yt|Yt−1) denote the distributions of yt, conditional on Zt−1 and

Yt−1, respectively; the distribution of yt is assumed to be absolutely continuous in y for almost

all ν = (Y,Z). For the sake of simplicity, we denote the τ -th quantile of yt conditional on Zt−1
as Qτ (Zt−1) and the τ -th quantile of yt conditional on Yt−1 as Qτ (Yt−1).

The definition of causality in quantiles in Jeong et al. (2012) focuses on the conditional

quantiles of the series densities: xt does not cause yt in its τ -th quantile, with respect to Zt−1,
if Qτ (Zt−1) = Qτ (Yt−1); conversely, xt causes yt in its τ -th quantile, with respect to Zt−1, if

Qτ (Zt−1) 6= Qτ (Yt−1). From the previous definition, the hypotheses to be tested read as follows:H0 : P [Fyt|Zt−1
(Qτ (Yt−1)|Zt−1) = τ ] = 1

H1 : P [Fyt|Zt−1
(Qτ (Yt−1)|Zt−1) = τ ] < 1

(A.11)

The non-parametric test developed by Jeong et al. (2012) is based on a measure of distance

defined as:

JT = E
[
[Fyt|Zt−1

(Qτ (Yt−1)|Zt−1)− τ ]2gZt−1(Zt−1)
]
, (A.12)

where gZt−1(Zt−1) is the marginal density function of Zt−1. JT is estimated using the feasible

kernel-based estimator:

ĴT =
1

T (T − 1)hm

T∑
t=1

∑
s 6=t

K

(
Zt−1 −Zs−1

h

)
ε̃tε̃s, (A.13)
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where m = p + q, K(·) is the kernel function with bandwidth h, ε̃t = I{yt≤Q̃τ (Yt−1)} − τ , I{·}

being the indicator function that takes a value of 1 if the condition in {·} is true, and zero

otherwise. In Jeong et al. (2012), Q̃τ (Yt−1) ≡ F̃−1yt|Yt−1
(τ |Yt−1), where

F̃yt|Yt−1
(yt|Yt−1) =

∑
s 6=tCt−1,s−11{ys≤yt}∑

s 6=tCt−1,s−1
(A.14)

is the Nadaraya-Watson kernel estimator of Fyt|Yt−1
(yt|Yt−1), with the kernel function Ct−1,s−1 =

C(Yt−1 − Ys−1)/a, and a is the bandwidth.

Under a set of precise assumptions, Jeong et al. (2012) derived the limiting distribution for

the test statistic

Thm/2ĴT
L→ N (0, σ20), (A.15)

where

σ20 = 2E
[
σ4ε (Zt−1)gZt−1(Zt−1)

](∫
K2(u)du

)
, (A.16)

and σ2ε (Zt−1) = τ(1− τ).

The unknown parameter σ20 is estimated as

σ̂20 =
2τ2(1− τ)2

T (T − 1)hm

∑
s 6=t

K2

(
Zt−1 −Zs−1

h

)
. (A.17)

Then, after estimating all the quantities of interest, the standardized statistic can be com-

puted:

Ĵ∗T =
Thm/2ĴT

σ̂0
. (A.18)

The above-described method could likewise be applied to test the causality impact of yt on

the quantiles of xt, simply by inverting the roles of xt and yt.

If we detect quantile causality using the non-parametric test of Jeong et al. (2012), then we

have a dependence on the chosen quantile, as in the previous quantile-based causality cases. To

keep the focus on the risk side, we suggest using quantile levels in the range 1%-10%.

B Banks and Insurance companies

In the empirical analyses we use the bank or the insurance companies as in the following lists.

Within parentheses we report the ticker. A single star ? identifies companies included only in

the first sample - 2006 to 2008 - while a double star identifies companies included only in the

second sample - 2011-2015. When stars are not present, the companies are included in both

samples.

Banks:

Astoria Financial Corporation (AF?), Associated Banc-Corp (ASB), Bank of America (BAC),

Bancfirst Corporation (BANF?), Credicorp (BAP), BB&T (BBT), Bbx Capital Corporation
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(BBX?), Bank Mutual Corporation (BKMU?), Bank of Hawaii (BOH), Bok Financial Corpora-

tion (BOKF), Boston Private Financial Holdings (BPFH?), Brookline Bancorp (BRKL?), Ban-

corpsouth (BXS?), Citigroup (C), Cathay General Bancorp (CATY?), Commerce Bancshares

(CBSH), Capitol Federal Financial (CFFN), Cullen/Frost Bankers (CFR), Chemical Financial

Corporation (CHFC?), Comerica (CMA), City National (CN), Central Pacific Financial Corpo-

ration (CPF?), CVB Financial Corporation (CVBF?), Doral Financial Corporation (DRLCQ?),

East West Bancorp (EWBC), First Horizon National (FHN??), Fifth Third Bancorp (FITB??),

Firstmerit (FMER??), First Niagara Financial Group (FNFG??), First Republic Bank (FRC??),

Fulton Financial Corporation (FULT??), Huntington Bancshares Incorporated (HBAN??), Hud-

son City Bancorp (HCB??), Investors Bancorp (ISBC??), Jp Morgan Chase & Co. (JPM??),

Keycorp (KEY??), M&T Bank (MTB??).

Insurances:

American Financial Group (AFG??), Aflac (AFL), American International Group (AIG), As-

surant (AIZ), The Allstate Corporation (ALL), Berkshire Hathaway (BRKA), Brown & Brown

(BRO), Cincinnati Financial Corporation (CINF), Cna Financial Corporation (CNA), Cno

Financial Group (CNO?), Erie Indemnity Company (ERIE??), Genworth Financial (GNW),

The Hartford Financial Services Group (HIG), Kemper (KMPR?), Loews (L), Lincoln Na-

tional (LNC), Mbia (MBI?), Metlife (MET), Markel (MKL??), Marsh & Mclennan (MMC),

Old Republic International Corporation (ORI?), Principal Financial Group (PFG), Progressive

Ohio (PGR), Prudential Financial (PRU), Reinsurance Group of America (RGA??), Torchmark

(TMK), The Travelers Companies (TRV), Unum Group (UNM), W.R. Berkley Corporation

(WRB).

C Descriptive statistics
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STOCK MEAN MED ST DEV MIN MAX 1st Q 3rd Q SKEW KURT LB1 LB5 LB10 SLB1 SLB5 SLB10 MV

C -0.262 -0.127 4.296 -30.661 45.632 -1.113 0.711 0.673 30.033 5.716 0.000 0.002 0.000 0.000 0.000 236630.90
BAC -0.157 -0.039 3.765 -30.416 24.060 -0.977 0.688 -0.468 19.555 72.686 0.295 0.126 0.000 0.000 0.000 212543.10
BBT -0.056 -0.070 3.108 -26.608 21.198 -1.167 0.849 -0.094 18.219 0.326 1.159 0.000 0.000 0.000 0.000 21015.19
CMA -0.139 -0.102 3.361 -20.720 18.805 -1.266 0.885 0.049 10.555 23.288 6.167 0.032 0.000 0.000 0.000 9392.46
ASB -0.058 -0.030 2.905 -18.999 19.354 -0.916 0.705 0.076 14.517 94.558 0.339 0.009 0.107 0.000 0.000 4619.78
CN -0.053 0.000 2.730 -17.379 20.213 -0.964 0.827 0.048 13.119 0.080 0.035 0.003 0.000 0.000 0.000 3763.18

CBSH -0.003 -0.040 2.113 -12.894 15.113 -0.808 0.651 0.696 13.581 0.000 0.000 0.000 0.000 0.000 0.000 3428.85
AF -0.077 -0.096 2.676 -18.972 13.698 -1.172 0.820 -0.251 11.170 0.054 0.032 0.011 0.000 0.000 0.000 3162.41

BOKF -0.016 -0.018 2.228 -13.426 12.315 -0.848 0.764 0.055 12.242 63.004 0.283 0.052 0.000 0.000 0.000 3135.55
CFR -0.008 -0.051 2.302 -13.183 16.306 -0.915 0.852 0.539 13.505 0.007 0.000 0.000 0.000 0.000 0.000 2853.67
BOH -0.017 -0.019 2.458 -25.508 12.946 -0.859 0.834 -1.279 23.778 0.009 0.002 0.006 0.000 0.000 0.000 2695.89
BAP 0.104 0.089 2.572 -17.439 11.226 -1.017 1.368 -0.507 8.735 76.155 6.593 1.739 0.000 0.000 0.000 2572.86

CFFN 0.043 0.052 1.636 -7.664 6.606 -0.619 0.755 -0.127 6.254 10.379 14.081 0.059 0.000 0.000 0.000 2366.73
EWBC -0.109 -0.155 3.730 -23.669 24.166 -1.255 0.869 0.263 12.930 47.310 11.160 19.360 0.000 0.000 0.000 2089.00

BXS 0.008 -0.077 2.854 -15.116 19.711 -1.165 1.088 0.592 11.463 6.615 0.065 0.173 0.000 0.000 0.000 1895.44
CATY -0.055 -0.121 3.631 -23.886 21.314 -1.504 1.227 0.167 11.957 39.151 1.648 1.971 0.000 0.000 0.000 1865.30
CVBF -0.029 -0.145 3.257 -18.965 20.210 -1.419 1.101 0.702 10.139 1.833 1.097 3.680 0.000 0.000 0.000 1241.16
BPFH -0.198 -0.138 3.671 -30.902 17.640 -1.403 1.161 -1.226 17.170 13.155 2.258 2.606 0.007 0.001 0.000 1171.49

DRLCQ -0.443 -0.522 6.085 -36.564 36.891 -2.885 1.968 -0.166 9.962 84.586 85.266 69.825 1.543 0.144 0.000 1097.65
CPF -0.169 -0.199 3.925 -22.119 29.376 -1.668 1.259 0.553 12.079 99.950 0.257 1.170 0.000 0.000 0.000 1042.41

BRKL -0.038 -0.076 2.461 -14.973 11.878 -1.119 0.990 0.158 7.816 0.088 0.175 0.259 0.000 0.000 0.000 918.22
BBX -0.330 -0.235 6.086 -48.290 35.188 -2.062 1.308 -0.797 16.628 15.046 30.970 3.020 0.000 0.000 0.000 828.74

CHFC -0.017 -0.034 2.904 -19.297 17.823 -1.368 1.131 0.267 10.009 0.173 1.038 6.583 0.035 0.000 0.000 775.59
BKMU 0.011 -0.080 1.970 -14.235 9.307 -0.844 0.917 -0.048 9.507 0.000 0.000 0.000 0.076 0.000 0.000 718.23
BANF 0.039 0.000 2.709 -24.878 21.243 -1.325 1.233 0.039 19.231 0.158 0.044 0.667 0.000 0.000 0.000 675.88

Table C.9: Descriptive statistics of the daily returns generated by the 25 U.S. banks with the largest market value, as recorded at the beginning of
2006, in the period between January 3, 2006 and December 31, 2008. From left to right the table reports, for each stock, the mean (%), the median
(%), the standard deviation (%), the minimum (%), the maximum (%), the first and the third quartiles (%), the skewness, the kurtosis, the p-value
of the Ljung-Box test (%), at the significance level of the 5%, applied for both the returns (LB) and the squared returns (SLB) with lags equal to
1, 5 and 10, respectively, and the market value recorded in January 2006.
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STOCK MEAN MED ST DEV MIN MAX 1st Q 3rd Q SKEW KURT LB1 LB5 LB10 SLB1 SLB5 SLB10 MV

JPM 0.035 0.048 1.698 -9.888 8.101 -0.789 0.901 -0.206 7.043 0.338 0.628 0.272 0.000 0.000 0.000 186018.60
BAC 0.018 0.000 2.295 -22.713 15.481 -1.050 1.103 -0.508 14.427 1.340 0.000 0.000 0.000 0.000 0.000 136331.90

C 0.007 0.000 2.129 -17.934 12.968 -0.944 0.981 -0.533 10.310 8.722 0.001 0.001 0.000 0.000 0.000 132889.30
BBT 0.029 0.065 1.497 -11.274 6.693 -0.716 0.890 -0.685 8.638 0.001 0.000 0.000 0.000 0.000 0.000 18978.31
FITB 0.025 0.106 1.736 -12.067 8.709 -0.817 0.908 -0.430 8.619 0.001 0.000 0.000 0.000 0.000 0.000 12549.82
MTB 0.026 0.034 1.355 -8.059 6.554 -0.624 0.732 -0.222 6.892 0.008 0.000 0.001 0.000 0.000 0.000 10488.55
KEY 0.032 0.074 1.807 -10.987 8.319 -0.906 1.031 -0.228 7.187 0.000 0.000 0.000 0.000 0.000 0.000 8339.36
BAP -0.016 -0.009 1.711 -20.843 6.231 -0.918 0.894 -1.487 21.228 41.290 15.174 10.460 9.994 0.071 1.654 7814.11
CMA -0.001 0.041 1.772 -11.118 6.100 -0.879 0.942 -0.701 7.149 18.082 0.247 0.554 0.000 0.000 0.000 6795.13

HBAN 0.038 0.102 1.794 -10.472 8.542 -0.931 1.059 -0.301 6.869 0.000 0.000 0.000 0.000 0.000 0.000 5750.23
HCB -0.018 0.000 1.805 -11.304 14.569 -0.748 0.793 -0.325 11.772 0.010 0.178 1.702 0.001 0.000 0.000 5161.57
FRC 0.065 0.064 1.546 -16.359 8.376 -0.715 0.921 -0.901 15.518 0.004 0.016 0.081 0.064 0.013 0.047 3821.80
CFR -0.001 0.066 1.396 -8.121 7.493 -0.677 0.758 -0.102 6.964 0.004 0.000 0.001 0.000 0.000 0.000 3667.12

BOKF 0.009 0.059 1.403 -9.594 6.062 -0.709 0.720 -0.390 7.708 0.005 0.003 0.097 0.000 0.000 0.000 3553.32
CBSH 0.025 0.090 1.316 -6.635 6.047 -0.697 0.776 -0.307 5.971 0.002 0.001 0.004 0.000 0.000 0.000 3552.96
EWBC 0.060 0.091 1.747 -9.353 8.752 -0.867 0.992 -0.158 6.443 0.412 0.009 0.000 0.000 0.000 0.000 3321.22

CN 0.030 0.000 1.577 -8.200 17.330 -0.687 0.821 0.850 17.467 6.143 0.012 0.009 8.723 0.002 0.000 3083.03
FHN 0.017 0.032 1.884 -11.185 7.559 -1.003 1.034 -0.415 6.255 6.398 0.799 2.454 0.000 0.000 0.000 2999.39

FNFG -0.020 0.017 1.708 -14.511 13.548 -0.878 0.922 -0.556 13.534 3.662 2.318 0.807 4.568 2.718 1.949 2907.62
ASB 0.017 0.059 1.666 -12.420 7.165 -0.858 1.005 -0.669 8.529 0.003 0.000 0.000 0.000 0.000 0.000 2538.15
BOH 0.023 0.085 1.323 -8.229 5.795 -0.671 0.799 -0.296 6.328 0.027 0.005 0.031 0.000 0.000 0.000 2272.40
FULT 0.018 0.085 1.678 -10.064 8.031 -0.806 0.913 -0.389 7.399 0.006 0.000 0.001 0.000 0.000 0.000 2216.42
CFFN 0.004 0.000 0.915 -5.721 5.001 -0.504 0.498 -0.252 7.127 0.000 0.000 0.001 0.000 0.000 0.000 1880.95
FMER -0.005 0.058 1.765 -11.931 9.523 -0.951 0.999 -0.422 8.063 2.032 0.284 0.080 0.000 0.000 0.000 1855.60
ISBC 0.070 0.056 1.326 -8.360 7.474 -0.570 0.734 0.004 7.640 0.000 0.000 0.000 0.000 0.000 0.000 1645.87

Table C.10: Descriptive statistics of the daily returns generated by the 25 U.S. banks with the largest market value, as recorded at the beginning of
2011, in the period between January 3, 2011 and December 31, 2015. From left to right the table reports, for each stock, the mean (%), the median
(%), the standard deviation (%), the minimum (%), the maximum (%), the first and the third quartiles (%), the skewness, the kurtosis, the p-value
of the Ljung-Box test (%), at the significance level of the 5%, applied for both the returns (LB) and the squared returns (SLB) with lags equal to
1, 5 and 10, respectively, and the market value recorded in January 2011.
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STOCK MEAN MED ST DEV MIN MAX 1st Q 3rd Q SKEW KURT LB1 LB5 LB10 SLB1 SLB5 SLB10 MV

AIG -0.500 -0.055 6.469 -93.626 35.853 -0.853 0.681 -5.387 75.716 0.000 0.000 0.000 0.000 0.000 0.000 164653.50
BRKA 0.011 -0.001 1.717 -12.883 14.953 -0.523 0.536 0.622 24.924 93.137 0.610 0.965 0.000 0.000 0.000 110164.70
MET -0.045 0.000 3.687 -31.156 24.686 -0.991 0.915 -0.396 23.343 40.365 1.162 3.180 0.000 0.000 0.000 37890.41
PRU -0.117 -0.055 3.973 -26.327 32.390 -0.989 0.964 0.207 22.244 20.640 0.081 0.203 0.000 0.000 0.000 36860.64
ALL -0.066 0.000 2.761 -23.799 19.628 -0.735 0.621 -0.579 28.043 93.526 0.017 0.000 0.000 0.000 0.000 32610.33
TRV 0.002 0.000 2.655 -20.067 22.758 -0.917 0.850 0.438 20.729 0.000 0.000 0.000 0.000 0.000 0.000 28563.55
HIG -0.219 -0.034 6.060 -72.486 70.487 -1.020 0.935 -0.386 64.131 15.143 0.000 0.000 36.736 0.000 0.000 24387.18
AFL -0.002 0.021 2.601 -18.902 14.961 -0.801 0.700 -0.530 18.381 0.100 0.001 0.000 0.000 0.000 0.000 22472.57
PGR -0.090 -0.082 2.382 -13.947 21.490 -1.010 0.888 0.536 17.712 6.330 0.000 0.000 0.006 0.000 0.000 20556.40

L -0.015 0.091 2.745 -19.939 21.220 -0.906 0.946 -0.820 20.944 0.010 0.001 0.011 0.000 0.000 0.000 18655.31
LNC -0.137 0.018 4.884 -50.891 36.235 -0.981 0.931 -1.672 39.635 3.661 0.073 0.093 0.000 0.000 0.000 16040.52
MMC -0.036 -0.038 2.033 -13.075 11.690 -0.924 0.829 0.078 10.357 0.000 0.000 0.000 0.000 0.000 0.000 15753.62
PFG -0.098 0.000 4.252 -31.978 34.190 -0.938 1.053 0.098 20.411 61.640 0.000 0.001 0.000 0.000 0.000 13717.85
GNW -0.332 -0.088 7.528 -78.552 63.599 -1.295 0.939 -0.014 44.676 0.255 0.000 0.000 0.000 0.000 0.000 13158.24
CNA -0.091 0.000 3.326 -39.476 24.106 -1.058 0.935 -2.559 39.779 97.177 5.119 0.584 0.000 0.000 0.000 7953.97
MBI -0.357 -0.087 6.493 -41.264 38.219 -1.786 1.198 -0.076 12.808 4.703 0.584 5.430 0.000 0.000 0.000 7842.20
WRB -0.003 -0.095 2.284 -11.607 15.049 -1.062 0.903 0.931 12.003 0.007 0.003 0.008 0.000 0.000 0.000 7607.63
CINF -0.057 -0.022 2.653 -22.399 16.765 -0.836 0.729 -0.559 18.647 0.001 0.000 0.000 0.000 0.000 0.000 7239.32
AIZ -0.049 0.034 3.069 -28.679 19.721 -0.869 0.903 -0.962 24.650 29.164 0.012 0.000 0.000 0.000 0.000 6239.33

TMK -0.029 0.017 2.208 -15.228 13.967 -0.633 0.691 -0.495 17.199 54.298 0.005 0.079 0.000 0.000 0.000 5853.66
UNM -0.027 -0.049 3.428 -35.145 20.010 -1.051 0.984 -1.268 28.910 0.282 0.000 0.005 0.000 0.000 0.000 5751.81
ORI -0.075 0.000 3.340 -29.214 31.979 -0.932 0.792 0.115 28.746 1.547 0.000 0.000 0.000 0.000 0.000 5033.62
BRO -0.050 0.000 2.077 -17.218 11.196 -0.867 0.835 -0.630 13.710 18.359 15.353 23.086 0.378 0.001 0.000 4632.19
CNO -0.198 0.000 6.043 -55.048 59.157 -1.009 0.851 -0.891 36.127 0.000 0.000 0.000 0.000 0.000 0.000 3741.03

KMPR -0.138 -0.045 2.827 -16.981 20.799 -1.066 0.871 -0.261 16.077 36.300 0.347 0.002 0.000 0.000 0.000 3326.30

Table C.11: Descriptive statistics of the daily returns generated by the 25 U.S. insurance companies with the largest market value, as recorded at
the beginning of 2006, in the period between January 3, 2006 and December 31, 2008. From left to right the table reports, for each stock, the
mean (%), the median (%), the standard deviation (%), the minimum (%), the maximum (%), the first and the third quartiles (%), the skewness,
the kurtosis, the p-value of the Ljung-Box test (%), at the significance level of the 5%, applied for both the returns (LB) and the squared returns
(SLB) with lags equal to 1, 5 and 10, respectively, and the market value recorded in January 2006.
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STOCK MEAN MED ST DEV MIN MAX 1st Q 3rd Q SKEW KURT LB1 LB5 LB10 SLB1 SLB5 SLB10 MV

BRKA 0.039 0.004 1.089 -6.289 7.791 -0.558 0.601 0.454 9.381 0.000 0.000 0.000 0.000 0.000 0.000 115505.80
AIG 0.020 0.071 1.892 -10.580 9.819 -0.831 0.962 -0.272 6.851 18.211 0.000 0.001 0.000 0.000 0.000 61232.09
MET 0.006 0.018 1.897 -10.460 8.551 -0.923 1.067 -0.299 5.819 21.753 0.372 0.823 0.000 0.000 0.000 47239.25
PRU 0.026 0.037 1.864 -11.469 8.822 -0.929 1.134 -0.386 6.904 2.498 0.004 0.002 0.000 0.000 0.000 29888.47
TRV 0.056 0.085 1.154 -7.893 6.205 -0.554 0.685 -0.181 7.791 0.017 0.346 0.141 0.000 0.000 0.000 25156.82
AFL 0.005 0.037 1.588 -10.758 8.334 -0.751 0.772 -0.288 8.789 11.965 0.421 0.745 0.000 0.000 0.000 24977.64

L -0.001 0.021 1.130 -6.089 5.547 -0.598 0.620 -0.177 6.179 0.485 0.062 0.182 0.000 0.000 0.000 17509.66
ALL 0.053 0.045 1.294 -10.700 7.294 -0.602 0.725 -0.297 10.258 0.013 0.000 0.000 0.022 0.000 0.000 16607.85

MMC 0.056 0.034 1.166 -8.679 8.926 -0.561 0.706 0.128 9.663 0.001 0.000 0.002 0.000 0.000 0.000 16043.64
PGR 0.037 0.051 1.215 -7.178 6.798 -0.601 0.702 -0.294 7.486 0.147 0.173 1.376 0.000 0.000 0.000 14019.72
HIG 0.039 0.104 2.068 -15.366 14.438 -0.912 1.020 -0.071 10.936 0.031 0.000 0.000 0.000 0.000 0.000 11897.86
PFG 0.026 0.136 1.835 -12.159 8.351 -0.849 1.004 -0.422 7.102 0.107 0.000 0.001 0.000 0.000 0.000 10108.24
LNC 0.047 0.096 2.169 -13.056 9.641 -1.007 1.132 -0.329 6.844 8.444 0.014 0.004 0.000 0.000 0.000 9350.80
UNM 0.025 0.057 1.527 -11.128 9.625 -0.762 0.945 -0.285 7.207 0.013 0.000 0.000 0.000 0.000 0.000 8137.82
CNA 0.021 0.035 1.348 -9.850 8.464 -0.648 0.666 -0.188 9.603 0.004 0.004 0.120 0.000 0.000 0.000 7966.17
GNW -0.100 0.077 3.460 -48.533 15.461 -1.468 1.431 -2.801 39.098 20.702 0.816 8.069 46.063 83.411 99.480 6219.79
CINF 0.050 0.086 1.188 -7.681 6.446 -0.590 0.706 -0.183 7.535 0.000 0.000 0.000 0.000 0.000 0.000 5292.70
TMK 0.061 0.115 1.216 -9.837 8.233 -0.548 0.706 -0.303 10.318 0.000 0.000 0.000 0.000 0.000 0.000 5184.13
WRB 0.055 0.080 1.095 -6.691 5.396 -0.540 0.651 -0.018 6.488 0.140 0.853 0.484 0.000 0.000 0.000 4491.24
RGA 0.037 0.086 1.461 -11.464 10.052 -0.613 0.779 -0.880 12.999 0.024 0.000 0.004 0.000 0.000 0.000 4464.94
MKL 0.067 0.057 1.125 -10.812 6.529 -0.509 0.598 -0.560 14.716 0.004 0.008 0.093 0.000 0.000 0.000 4084.38
AIZ 0.059 0.097 1.395 -7.794 6.927 -0.736 0.884 -0.279 6.412 0.076 0.000 0.014 0.001 0.000 0.000 3730.86
BRO 0.023 0.030 1.271 -9.392 9.262 -0.624 0.688 -0.253 11.251 95.429 0.122 0.010 0.000 0.000 0.000 3726.44
AFG 0.064 0.102 1.092 -7.551 6.529 -0.529 0.659 -0.219 7.525 0.008 0.004 0.030 0.000 0.000 0.000 3648.48
ERIE 0.030 0.042 1.275 -9.423 8.906 -0.616 0.667 -0.089 10.218 0.014 0.272 1.656 0.000 0.000 0.000 3541.31

Table C.12: Descriptive statistics of the daily returns generated by the 25 U.S. insurance companies with the largest market value, as recorded at
the beginning of 2011, in the period between January 3, 2011 and December 31, 2015. From left to right the table reports, for each stock, the
mean (%), the median (%), the standard deviation (%), the minimum (%), the maximum (%), the first and the third quartiles (%), the skewness,
the kurtosis, the p-value of the Ljung-Box test (%), at the significance level of the 5%, applied for both the returns (LB) and the squared returns
(SLB) with lags equal to 1, 5 and 10, respectively, and the market value recorded in January 2011.
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POR MEA MED STD MIN MAX 1st Q 3rd Q SKE KUR LB1 LB5 LB10 SLB1 SLB5 SLB10

Agric 0.096 0.050 2.701 -15.270 18.240 -0.930 1.140 0.078 10.597 35.606 0.424 0.016 0.268 0.000 0.000
Food 0.010 0.030 1.165 -7.250 7.400 -0.485 0.580 -0.076 12.281 1.713 0.000 0.000 0.000 0.000 0.000
Soda -0.012 0.070 1.629 -8.020 11.140 -0.675 0.715 0.054 10.820 93.185 3.668 0.045 0.000 0.000 0.000
Beer 0.031 0.040 1.187 -7.700 10.120 -0.480 0.530 0.811 18.398 0.018 0.000 0.000 0.000 0.000 0.000

Smoke 0.030 0.070 1.479 -7.400 13.310 -0.600 0.725 0.338 16.033 12.642 0.000 0.000 0.665 0.000 0.000
Toys -0.040 0.010 1.791 -9.630 9.250 -0.855 0.780 -0.140 8.508 37.202 2.289 0.544 0.000 0.000 0.000
Fun -0.083 0.050 2.423 -12.170 16.580 -0.900 0.830 0.023 11.578 0.003 0.000 0.002 0.000 0.000 0.000

Books -0.124 -0.060 1.953 -11.240 11.180 -0.785 0.590 0.004 11.861 42.319 0.069 0.341 0.000 0.000 0.000
Hshld 0.010 0.030 1.260 -7.250 9.440 -0.455 0.520 0.077 13.616 0.002 0.000 0.000 0.000 0.000 0.000
Clths -0.023 -0.010 2.012 -11.520 12.690 -0.905 0.895 0.099 8.974 48.150 0.212 0.680 0.000 0.000 0.000
Hlth -0.038 0.020 1.348 -9.020 8.290 -0.610 0.545 -1.041 15.622 19.523 0.002 0.000 0.000 0.000 0.000

MedEq -0.026 0.030 1.349 -7.210 11.690 -0.560 0.560 0.153 15.334 55.714 0.057 0.319 0.000 0.000 0.000
Drugs 0.004 0.020 1.258 -6.530 11.140 -0.485 0.580 0.459 16.120 0.017 0.000 0.000 0.000 0.000 0.000
Chems -0.010 0.110 2.039 -11.380 13.060 -0.720 0.880 -0.416 11.100 4.333 0.002 0.010 0.000 0.000 0.000
Rubbr -0.015 0.000 1.701 -10.140 7.800 -0.740 0.840 -0.384 7.555 0.178 1.160 11.422 0.000 0.000 0.000
Txtls -0.052 -0.010 2.114 -12.230 10.030 -1.010 0.820 -0.143 8.827 14.373 2.701 0.045 0.002 0.000 0.000
BldMt -0.050 0.020 1.889 -10.670 8.540 -0.835 0.795 -0.365 8.230 61.661 2.884 4.807 0.000 0.000 0.000
Cnstr -0.057 -0.050 2.767 -12.400 15.560 -1.355 1.280 0.091 7.184 28.169 3.002 9.516 0.000 0.000 0.000
Steel 0.011 0.160 3.015 -15.930 20.060 -1.190 1.430 -0.033 10.453 54.236 0.540 0.193 0.000 0.000 0.000

FabPr -0.023 0.100 2.126 -11.830 10.520 -0.965 0.900 -0.702 8.651 15.807 0.124 0.381 0.000 0.000 0.000
Mach -0.016 0.150 2.144 -12.250 13.910 -0.895 1.025 -0.315 11.089 18.366 0.000 0.000 0.000 0.000 0.000
ElcEq 0.000 0.100 2.006 -13.100 14.080 -0.740 0.875 -0.039 12.589 0.492 0.000 0.000 0.000 0.000 0.000
Autos -0.080 0.070 2.349 -11.230 11.700 -0.995 1.010 -0.062 8.630 99.063 1.838 3.530 0.000 0.000 0.000
Aero -0.009 0.070 1.777 -7.650 13.570 -0.725 0.805 0.497 12.728 2.192 0.000 0.000 0.000 0.000 0.000
Ships 0.004 0.030 1.715 -9.400 10.620 -0.810 0.815 -0.110 9.046 0.011 0.001 0.001 0.000 0.000 0.000
Guns 0.050 0.040 1.669 -9.000 10.220 -0.670 0.855 -0.316 9.248 0.000 0.000 0.000 0.000 0.000 0.000
Gold 0.017 -0.050 3.120 -14.160 25.560 -1.505 1.530 1.087 14.187 3.891 0.245 0.399 0.000 0.000 0.000
Mines 0.059 0.210 3.299 -16.990 19.850 -1.425 1.690 0.090 8.463 63.781 4.439 19.951 0.000 0.000 0.000
Coal 0.014 0.000 4.170 -19.340 21.360 -1.805 1.885 -0.204 7.777 37.757 0.120 0.013 0.000 0.000 0.000
Oil 0.039 0.120 2.417 -15.380 19.270 -1.030 1.230 0.181 14.674 0.004 0.000 0.000 0.000 0.000 0.000
Util 0.016 0.100 1.608 -8.920 14.430 -0.545 0.660 0.934 18.802 0.001 0.000 0.000 0.000 0.000 0.000

Telcm -0.001 0.070 1.748 -9.670 14.510 -0.645 0.665 0.698 17.768 3.763 0.000 0.000 0.007 0.000 0.000
PerSv -0.004 0.000 1.749 -8.690 8.950 -0.740 0.795 -0.139 7.585 9.509 0.008 0.003 0.000 0.000 0.000
BusSv -0.022 0.040 1.616 -7.890 11.940 -0.670 0.660 0.301 11.959 0.398 0.000 0.000 0.000 0.000 0.000
Comps -0.011 0.040 1.830 -9.890 11.870 -0.830 0.795 0.166 9.166 0.426 0.011 0.110 0.000 0.000 0.000
Chips -0.051 0.020 1.841 -8.900 10.700 -0.905 0.860 0.002 8.591 0.486 0.001 0.004 0.000 0.000 0.000
LabEq -0.014 0.070 1.655 -9.000 12.700 -0.700 0.760 -0.023 11.949 60.608 0.006 0.020 0.000 0.000 0.000
Paper -0.043 0.050 1.535 -9.610 8.630 -0.610 0.630 -0.275 10.620 0.123 0.000 0.000 0.002 0.000 0.000
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Boxes 0.028 0.110 1.881 -9.040 10.920 -0.855 0.800 -0.016 7.738 78.496 4.496 8.536 0.000 0.000 0.000
Trans -0.006 0.020 1.785 -8.760 9.330 -0.870 0.890 -0.229 7.122 5.101 0.082 0.289 0.003 0.000 0.000
Whlsl -0.028 0.030 1.476 -8.500 9.740 -0.585 0.650 -0.210 11.386 6.327 0.135 0.228 0.000 0.000 0.000
Rtail -0.016 -0.040 1.612 -8.310 11.750 -0.745 0.710 0.375 9.746 7.334 0.006 0.011 0.000 0.000 0.000
Meals 0.015 0.060 1.580 -8.290 8.910 -0.805 0.800 0.048 7.214 92.449 0.753 0.790 0.000 0.000 0.000
Banks -0.060 -0.040 2.735 -16.280 16.750 -0.860 0.665 0.314 12.215 1.838 0.093 0.102 0.000 0.000 0.000
Insur -0.062 0.000 2.124 -11.530 17.840 -0.650 0.600 0.362 16.953 18.539 0.000 0.001 0.000 0.000 0.000
RlEst -0.119 -0.080 2.740 -15.500 18.650 -1.180 1.065 0.125 10.400 45.850 0.253 1.581 0.000 0.000 0.000
Fin -0.046 0.030 2.824 -16.270 17.940 -1.035 1.045 0.232 11.047 33.562 0.005 0.046 0.000 0.000 0.000

Other -0.033 0.020 1.570 -9.880 9.990 -0.540 0.550 -0.270 12.982 44.794 1.394 0.069 0.000 0.000 0.000

Table C.13: Descriptive statistics of the daily returns generated by the 48 industry portfolios in the period between January 3, 2006 and December
31, 2008. From left to right the table reports, for each stock, the mean (%), the median (%), the standard deviation (%), the minimum (%), the
maximum (%), the first and the third quartiles (%), the skewness, the kurtosis, and the p-value of the Ljung-Box test (%), at the significance level
of the 5%, applied for both the returns (LB) and the squared returns (SLB) with lags equal to 1, 5 and 10, respectively.
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POR MEA MED STD MIN MAX 1st Q 3rd Q SKE KUR LB1 LB5 LB10 SLB1 SLB5 SLB10

Agric 0.045 0.050 1.399 -6.940 7.650 -0.700 0.840 0.175 6.106 74.914 11.260 12.269 0.000 0.000 0.000
Food 0.063 0.100 0.855 -4.620 3.670 -0.420 0.550 -0.274 5.070 8.731 0.316 0.581 0.000 0.000 0.000
Soda 0.062 0.060 1.066 -6.570 5.150 -0.490 0.650 -0.202 6.850 0.007 0.000 0.000 0.000 0.000 0.000
Beer 0.064 0.075 0.833 -4.280 4.020 -0.430 0.520 -0.139 4.934 14.505 0.010 0.023 0.000 0.000 0.000

Smoke 0.075 0.090 0.966 -4.780 4.390 -0.488 0.640 -0.165 4.698 35.988 17.203 21.629 0.000 0.000 0.000
Toys 0.043 0.070 1.300 -8.290 6.680 -0.600 0.790 -0.270 6.759 34.771 50.545 67.397 0.000 0.000 0.000
Fun 0.060 0.120 1.624 -8.960 6.410 -0.840 0.968 -0.127 5.209 26.336 1.394 3.720 0.000 0.000 0.000

Books 0.055 0.090 1.332 -8.720 6.910 -0.650 0.820 -0.567 7.973 94.914 0.490 1.377 0.000 0.000 0.000
Hshld 0.039 0.050 0.851 -4.090 4.010 -0.430 0.540 -0.300 5.228 39.275 1.251 6.061 0.000 0.000 0.000
Clths 0.066 0.070 1.332 -8.330 6.790 -0.610 0.818 -0.286 6.471 81.731 0.000 0.000 0.000 0.000 0.000
Hlth 0.058 0.130 1.264 -10.100 5.040 -0.580 0.770 -0.971 9.741 91.847 9.331 0.267 0.001 0.000 0.000

MedEq 0.062 0.100 1.075 -6.910 4.780 -0.480 0.708 -0.528 6.520 17.852 1.430 0.098 0.000 0.000 0.000
Drugs 0.083 0.110 1.034 -4.720 4.550 -0.430 0.670 -0.312 5.204 68.920 7.524 1.500 0.000 0.000 0.000
Chems 0.044 0.080 1.299 -8.210 6.620 -0.600 0.748 -0.383 7.219 40.159 0.001 0.001 0.000 0.000 0.000
Rubbr 0.069 0.100 1.204 -5.960 6.710 -0.620 0.730 -0.177 5.742 34.775 0.009 0.137 0.000 0.000 0.000
Txtls 0.107 0.130 1.534 -8.130 6.830 -0.700 0.988 -0.262 5.268 94.660 0.008 0.048 0.000 0.000 0.000
BldMt 0.055 0.100 1.434 -8.410 6.330 -0.720 0.850 -0.204 5.708 49.169 0.003 0.017 0.000 0.000 0.000
Cnstr 0.039 0.080 1.646 -10.030 6.020 -0.860 0.978 -0.398 5.522 98.631 0.011 0.139 0.000 0.000 0.000
Steel -0.016 0.000 1.730 -10.760 8.600 -0.945 0.960 -0.163 6.304 88.503 0.044 0.281 0.000 0.000 0.000

FabPr -0.009 0.060 2.007 -15.450 8.170 -1.108 1.070 -0.266 7.224 94.000 0.034 0.211 0.000 0.000 0.000
Mach 0.022 0.060 1.392 -8.790 6.790 -0.690 0.750 -0.169 6.720 42.870 0.001 0.003 0.000 0.000 0.000
ElcEq 0.025 0.040 1.351 -7.740 7.560 -0.718 0.740 -0.069 6.608 57.250 0.049 0.335 0.000 0.000 0.000
Autos 0.034 0.080 1.456 -8.530 6.380 -0.660 0.850 -0.374 6.056 12.214 0.070 0.295 0.000 0.000 0.000
Aero 0.059 0.095 1.167 -7.030 5.050 -0.568 0.740 -0.457 6.455 85.949 0.328 3.428 0.000 0.000 0.000
Ships 0.091 0.195 1.733 -8.900 7.180 -0.880 1.070 -0.173 5.049 25.610 2.883 11.182 0.000 0.000 0.000
Guns 0.106 0.120 1.069 -5.730 3.740 -0.488 0.770 -0.345 4.931 32.729 6.839 18.811 0.000 0.000 0.000
Gold -0.079 -0.150 2.375 -11.760 8.760 -1.480 1.298 0.074 4.495 33.125 70.504 68.383 0.586 0.000 0.000
Mines -0.043 -0.045 1.882 -8.500 10.040 -1.010 0.970 0.060 5.541 6.054 0.108 0.554 0.000 0.000 0.000
Coal -0.206 -0.135 2.886 -18.440 18.080 -1.795 1.288 -0.012 7.057 20.566 0.015 0.176 0.001 0.000 0.000
Oil 0.009 0.020 1.422 -8.350 5.480 -0.720 0.780 -0.342 6.057 54.006 0.005 0.001 0.003 0.000 0.000
Util 0.039 0.070 0.886 -6.050 4.550 -0.470 0.558 -0.311 6.626 8.517 0.007 0.020 0.000 0.000 0.000

Telcm 0.058 0.110 0.960 -6.600 4.650 -0.440 0.628 -0.521 6.756 52.461 0.002 0.013 0.000 0.000 0.000
PerSv 0.033 0.080 1.345 -8.650 4.810 -0.700 0.888 -0.457 5.261 25.112 29.973 29.929 0.000 0.000 0.000
BusSv 0.060 0.090 1.106 -6.310 4.870 -0.490 0.678 -0.290 5.843 91.176 0.049 0.141 0.000 0.000 0.000
Comps 0.027 0.100 1.251 -6.260 5.500 -0.660 0.770 -0.190 5.481 74.150 10.162 7.555 0.001 0.000 0.000
Chips 0.057 0.090 1.245 -5.760 5.070 -0.600 0.760 -0.117 4.863 99.802 1.614 0.298 0.000 0.000 0.000
LabEq 0.062 0.100 1.318 -7.460 5.740 -0.620 0.780 -0.283 6.327 73.759 0.251 0.216 0.000 0.000 0.000
Paper 0.056 0.100 1.084 -6.330 5.170 -0.460 0.630 -0.356 6.220 5.275 0.090 0.533 0.000 0.000 0.000
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Boxes 0.045 0.090 1.218 -8.280 7.420 -0.570 0.720 -0.340 6.851 11.874 0.035 0.526 0.000 0.000 0.000
Trans 0.053 0.130 1.187 -6.010 4.760 -0.588 0.720 -0.321 5.009 90.781 0.800 1.182 0.000 0.000 0.000
Whlsl 0.057 0.090 1.039 -6.710 5.440 -0.470 0.650 -0.239 6.954 42.801 0.029 0.089 0.000 0.000 0.000
Rtail 0.067 0.095 0.936 -5.990 4.790 -0.428 0.620 -0.369 6.227 11.008 0.213 0.118 0.000 0.000 0.000
Meals 0.063 0.090 0.982 -5.440 4.870 -0.468 0.638 -0.313 6.208 4.122 0.084 0.000 0.000 0.000 0.000
Banks 0.055 0.070 1.384 -10.670 7.950 -0.638 0.770 -0.316 9.177 0.001 0.000 0.000 0.000 0.000 0.000
Insur 0.066 0.115 1.149 -8.520 6.940 -0.510 0.690 -0.342 9.017 0.021 0.000 0.000 0.000 0.000 0.000
RlEst 0.048 0.070 1.427 -10.310 6.600 -0.680 0.820 -0.367 7.586 54.196 0.036 0.024 0.000 0.000 0.000
Fin 0.044 0.100 1.421 -8.930 8.900 -0.668 0.790 -0.207 7.838 0.456 0.000 0.000 0.000 0.000 0.000

Other 0.049 0.050 1.070 -6.750 5.890 -0.510 0.618 -0.078 7.505 0.098 0.000 0.000 0.000 0.000 0.000

Table C.14: Descriptive statistics of the daily returns generated by the 48 industry portfolios in the period between January 3, 2011 and December
31, 2015. From left to right the table reports, for each stock, the mean (%), the median (%), the standard deviation (%), the minimum (%), the
maximum (%), the first and the third quartiles (%), the skewness, the kurtosis, and the p-value of the Ljung-Box test (%), at the significance level
of the 5%, applied for both the returns (LB) and the squared returns (SLB) with lags equal to 1, 5 and 10, respectively.
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D Figures of primitive causality networks

(a) Granger (b) Q10 Base Quantile

(c) Q10 Quantile on Quantile (d) Q10 Not Parametric

Figure D.9: This figure visualizes 4 different networks for the period 2006-2008 relative to the
first 25 banks ordered for market capitalization. In this case the networks visualized are some
of the primitive networks used for the resulting network computations. Panel a) reports the
network extracted by the standard granger causality. Panel b) indicates the network extracted
by a quantile baseline regression methodology on the 10% quantile q10. Panel c) indicates the
network extracted by a quantile on quantile methodology on the 10% quantile q10. Panel d)
reports the network extracted by a not parametric methodologie on the 10% quantile q10. All
the causality regression are computed without the market factor.
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(a) Granger (b) Q50 Base Quantile

(c) Q50 Quantile on Quantile (d) Q50 Not Parametric

Figure D.10: This figure visualizes 4 different networks for the period 2006-2008 relative to the
first 25 banks ordered for market capitalization. In this case the networks visualized are some
of the primitive networks used for the resulting network computations. Panel a) reports the
network extracted by the standard granger causality. Panel b) indicates the network extracted
by a quantile baseline regression methodology on the 50% quantile q50. Panel c) indicates the
network extracted by a quantile on quantile methodology on the 50% quantile q50. Panel d)
reports the network extracted by a not parametric methodology on the 50% quantile q50. All
the causality regression are computed without the market factor.
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(a) Granger (b) Q90 Base Quantile

(c) Q90 Quantile on Quantile (d) Q90 Not Parametric

Figure D.11: This figure visualizes 4 different networks for the period 2006-2008 relative to the
first 25 banks ordered for market capitalization. In this case the networks visualized are some
of the primitive networks used for the resulting network computations. Panel a) reports the
network extracted by the standard granger causality. Panel b) indicates the network extracted
by a quantile baseline regression methodology on the 90% quantile q90. Panel c) indicates the
network extracted by a quantile on quantile methodology on the 90% quantile q90. Panel d)
reports the network extracted by a not parametric methodology on the 90% quantile q90. All
the causality regression are computed without the market factor.
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(a) Granger (b) Q10 Base Quantile

(c) Q10 Quantile on Quantile (d) Q10 Not Parametric

Figure D.12: This figure visualizes 4 different networks for the period 2006-2008 relative to the
first 25 Insurers ordered for market capitalization. In this case the networks visualized are some
of the primitive networks used for the resulting network computations. Panel a) reports the
network extracted by the standard granger causality. Panel b) indicates the network extracted
by a quantile baseline regression methodology on the 10% quantile q10. Panel c) indicates the
network extracted by a quantile on quantile methodology on the 10% quantile q10. Panel d)
reports the network extracted by a not parametric methodologie on the 10% quantile q10. All
the causality regression are computed without the market factor.
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(a) Granger (b) Q50 Base Quantile

(c) Q50 Quantile on Quantile (d) Q50 Not Parametric

Figure D.13: This figure visualizes 4 different networks for the period 2006-2008 relative to the
first 25 Insurers ordered for market capitalization. In this case the networks visualized are some
of the primitive networks used for the resulting network computations. Panel a) reports the
network extracted by the standard granger causality. Panel b) indicates the network extracted
by a quantile baseline regression methodology on the 50% quantile q50. Panel c) indicates the
network extracted by a quantile on quantile methodology on the 50% quantile q50. Panel d)
reports the network extracted by a not parametric methodology on the 50% quantile q50. All
the causality regression are computed without the market factor.
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(a) Granger (b) Q90 Base Quantile

(c) Q90 Quantile on Quantile (d) Q90 Not Parametric

Figure D.14: This figure visualizes 4 different networks for the period 2006-2008 relative to the
first 25 Insurers ordered for market capitalization. In this case the networks visualized are some
of the primitive networks used for the resulting network computations. Panel a) reports the
network extracted by the standard granger causality. Panel b) indicates the network extracted
by a quantile baseline regression methodology on the 90% quantile q90. Panel c) indicates the
network extracted by a quantile on quantile methodology on the 90% quantile q90. Panel d)
reports the network extracted by a not parametric methodology on the 90% quantile q90. All
the causality regression are computed without the market factor.
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(a) Granger (b) Q10 Base Quantile

(c) Q10 Quantile on Quantile (d) Q10 Not Parametric

Figure D.15: This figure visualizes 4 different networks for the period 2006-2008 relative to
the 48 Fama and French industry portofolios. In this case the networks visualized are some
of the primitive networks used for the resulting network computations. Panel a) reports the
network extracted by the standard granger causality. Panel b) indicates the network extracted
by a quantile baseline regression methodology on the 10% quantile q10. Panel c) indicates the
network extracted by a quantile on quantile methodology on the 10% quantile q10. Panel d)
reports the network extracted by a not parametric methodologie on the 10% quantile q10. All
the causality regression are computed without the market factor.
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(a) Granger (b) Q50 Base Quantile

(c) Q50 Quantile on Quantile (d) Q50 Not Parametric

Figure D.16: This figure visualizes 4 different networks for the period 2006-2008 relative to
the 48 Fama and French industry portofolios. In this case the networks visualized are some
of the primitive networks used for the resulting network computations. Panel a) reports the
network extracted by the standard granger causality. Panel b) indicates the network extracted
by a quantile baseline regression methodology on the 50% quantile q50. Panel c) indicates the
network extracted by a quantile on quantile methodology on the 50% quantile q50. Panel d)
reports the network extracted by a not parametric methodology on the 50% quantile q50. All
the causality regression are computed without the market factor.
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(a) Granger (b) Q90 Base Quantile

(c) Q90 Quantile on Quantile (d) Q90 Not Parametric

Figure D.17: This figure visualizes 4 different networks for the period 2006-2008 relative to
the 48 Fama and French industry portofolios. In this case the networks visualized are some
of the primitive networks used for the resulting network computations. Panel a) reports the
network extracted by the standard granger causality. Panel b) indicates the network extracted
by a quantile baseline regression methodology on the 90% quantile q90. Panel c) indicates the
network extracted by a quantile on quantile methodology on the 90% quantile q90. Panel d)
reports the network extracted by a not parametric methodology on the 90% quantile q90. All
the causality regression are computed without the market factor.
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(a) Q10 Not Parametric (b) Q50 Quantile on Quantile

(c) Q90 Base Quantile (d) Granger

Figure D.18: This figure visualizes 4 different networks for the period 2006-2008 relative to the
first 25 banks ordered for market capitalization. In this case the networks visualized are some of
the primitive networks used for the resulting network computations. Panel a) reports the network
extracted by a Not parametric methodologie on the 10% quantile q10. Panel b) indicates the
network extracted by a quantile on quantile methodology on the median q50. Panel c) displays
the network extracted by a Not parametric methodologie on the 10% quantile q10. Panel b)
indicates the network extracted by a quantile on quantile methodology on the 90% quantile q90.
Panel d) reports the network extracted by the standard granger causality. All the causality
regression are computed without the market factor.
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(a) Q10 Not Parametric (b) Q50 Quantile on Quantile

(c) Q90 Base Quantile (d) Granger

Figure D.19: This figure visualizes 4 different networks for the period 2006-2008 relative to
the first 25 Insurers ordered for market capitalization. In this case the networks visualized are
some of the primitive networks used for the resulting network computations. Panel a) reports
the network extracted by a Not parametric methodologie on the 10% quantile q10. Panel b)
indicates the network extracted by a quantile on quantile methodology on the median q50.
Panel c) displays the network extracted by a Not parametric methodologie on the 10% quantile
q10. Panel b) indicates the network extracted by a quantile on quantile methodology on the 90%
quantile q90. Panel d) reports the network extracted by the standard granger causality. All the
causality regression are computed without the market factor.
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(a) Q10 Not Parametric (b) Q50 Quantile on Quantile

(c) Q90 Base Quantile (d) Granger

Figure D.20: This figure visualizes 4 different networks for the period 2006-2008 relative to the
first 48 Fama and French industry portfolios. In this case the networks visualized are some of the
primitive networks used for the resulting network computations. Panel a) reports the network
extracted by a Not parametric methodology on the 10% quantile q10. Panel b) indicates the
network extracted by a quantile on quantile methodology on the median q50. Panel c) displays
the network extracted by a Not parametric methodology on the 10% quantile q10. Panel b)
indicates the network extracted by a quantile on quantile methodology on the 90% quantile q90.
Panel d) reports the network extracted by the standard granger causality. All the causality
regression are computed without the market factor.
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E Networks summary measures

The network Density monitors the number of edges of the network relative to the maximum

number of edges that the network might present. The Density equals D =
E

V (V − 1)
where E

is the total number of edges observed in a given network and V is the number of nodes of the

network. For further details we refer to Wasserman and Faust (1994).

The second measure we consider is Assortativity, denote by r, also called homophily, which

captures the nodes tendency to connect with nodes having similar properties. In this work,

we use a special type of assortativity, called assortativity by degree, see Newman (2010) and

Newman (2002). This measure monitors the node willingness to create links with nodes having

similar degree. In this case, the degree ki, i = 1, 2, . . . V, has a double role, the first (the

standard one) represents the number of links ending at node i, the second one is the value

assigned to that node i for computing the assortativity. In the latter case, the degree might be

a measure of the number of edges connecting the node to other nodes of the network, but could

also be any continuous variable, for instance associated with the relevance of the edges. In order

to distinguish between these two roles, we denote the degree by ki in the first case, and xi in the

second case. Note that, the two values might be identical. We define the mean value µ of xi as:

µ =

∑K
i

∑K
j Wijxi

2E
=

∑
i kixi
2E

(E.19)

where 2E are the ends for all edges across the network, and Wij is the element of the un-

normalized and un-weighted adjacency matrix W . The covariance between xi and xj is a way

to measure the co-variation between node i and node j with respect to the variable x, which is,

in the simplest case, the degree. Across the edges, this covariance can be formally defined as:

cov(xi, xj) =

∑
ijWij(xi − µ)(xj − µ)∑

ijWij
=

1

2E

∑
ij

Wij(xi − µ)(xj − µ) (E.20)

=
1

2E

∑
ij

Wij(xixj − µxi − µxj + µ2)

=
1

2E

∑
ij

Wijxixj −
∑

ijWijxiµ

2E
−
∑

ijWijxjµ

2E
−
∑

ijWijµ
2

2E

=
1

2E

∑
ij

Wijxixj − µ2

=
1

2E

∑
ij

Wijxixj −
∑

ij kikjxixj

(2E)2
=

1

2E

∑
ij

(
Wij −

kikj
2E

)
xixj

In order to bound the assortativity coefficient in −1 ≤ r ≤ 1, the covariance is normalized

by the maximum covariance value that can be reached by the network. The latter corresponds

to the case where all the nodes share edges with nodes having the same degree (or xi = xj).

cov(xi, xj)max = cov(xi, xi) =
1

2E

∑
ij

(
Wij −

kikj
2E

)
x2i (E.21)
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Finally, as out interest lies in the evaluation of the assortativity by degree, we substitute xi and

xj with ki and kj , and obtain:

r =

∑
ij (Wij − kikj/2E) kikj∑
ij (Wij − kikj/2E) k2i

(E.22)

If the W matrix is not symmetric, then the network associated with this matrix is directed,

and equation (E.22) must be modified.7 In that case, 2E becomes
∑

ijWij = M and we

distinguish the degree in indegree kini and outdegree kouti , respectively, for the i− th node.

Formula E.23 must be slightly modified. We are not using directly kin and kout but the excess

degree, labeled with the symbol e. For an un-directed network, the excess degree or remaining

degree is the number of edges leaving a given vertex minus one. As an example, if the l− th edge

links the vertex i with the vertex j, and the two vertexes have degree ki and kj , respectively,

then the excess degree for the ith and jth node is ei = ki − 1 and ej = kj − 1, respectively. If

we have a directed network, each node has an excess outdegree eout and an excess indegree ein.

Thus, if the l − th edge starts from vertex i and goes to vertex j, then the excess outdegree for

the i− th node is eouti = kouti − 1 and excess indegree for the j − th node is einj = kinj − 1.

In the case of a directed network, to compute the assortativity by degree we use:

r =

∑
ij e

in
i e

out
j −

1

M

∑
i e
in
i

∑
j e

out
j√(∑

i(e
in
i )2 − 1

M
(
∑

i e
in
i )2

)(∑
j(e

out
j )2 − 1

M
(
∑

j e
out
j )2

) . (E.23)

Since the assortativity measure is a ratio, indeterminate forms are also possible. The proba-

bility having indeterminate forms
0

0
increases with a limited number of nodes and high number

of edges. In this circumstances the actual number of links among the nodes is almost equal

to that we would expect if the links were random, the effect is therefore the reduction of the

numerator to zero. In addition, the almost completeness of the network makes null denominator

because all the nodes have the same degree and consequently they behave as in a perfect as-

sortativity mixing pattern (nodes with same degree are connected with node having exactly the

same degree) where there is only one category given by the degree. Therefore, the indetermi-

nateness arises for the impossibility to capture the network homophily tendency, because of the

coexistence of two scenarios: a fully assortative pattern from one side and completely random

from the other.

The last two measures we consider are closely related. The first, is the Eigenvector Centrality

introduced by Bonacich (1987) This measure captures the nodes relevance (or centrality) as a

function of the relevance of neighbor nodes. In other words, we make the prestige of the node

proportional to the prestige of its neighbors. Formally, if we define with xi the prestige of the

ith node and W the adjacency matrix, we assume that

xi =
∑
j

Wijxj . (E.24)

We can rewrite the previous expression E.24 by using a matrix notation. We denote by x

7For details see Newman (2002) and Newman (2003).
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the V -dimensional vector collecting the centrality score. The vector must satisfy the following

equality:

x = Wx (E.25)

The estimation of the eigenvector centrality requires the use of an iterative procedure. In

particular, starting from an initial guess for the centrality scores, x0, which we set equal to a

vector of ones, the centrality scores are updated following

xt = Wxt−1 = W tx0 (E.26)

where t denotes th t − th iteration. The vector x0 can also be seen as a decomposition of

linear independent vectors, where ci is the scalar associated with the i− th component.

x0 =

N∑
i

civi (E.27)

If we plug equation E.27 into equation E.26, by using the equivalence that Wx = λx we obtain:

xt = W tx0 = W t
N∑
i

civi =
N∑
i

ciW
tvi =

N∑
i

ciW
t−1λivi =

N∑
i

ciλ
t
ivi (E.28)

=

(
λ1
λ1

)t N∑
i

ciλ
t
ivi = λt1

N∑
i

ci

(
λi
λ1

)t
vi

where λi is the i− th eigenvalue associated to the i− th eigenvector, and λ1 is the maximum

eigenvalue.8 What we learn from the expression in E.29 is the following:

since λ1 is the maximum eigenvalue, as soon t→∞ the
∑N

i ci

(
λi
λ1

)t
vi tends to c1v1 and thus

the eigenvector centrality is proportional to the first eigenvalue as in the equation E.29 we have9

xt = λt1c1v1 (E.29)

In other words, combining equation E.29 with E.24, we can observe that the centrality score

is a function of the first eigenvalue

xi =
1

λ1

∑
j

Wijxj . (E.30)

The eigenvector centrality can be computed not only for adjacency matrix W but also for

the normalized adjacency matrix.

8The existence of the maximum eigenvalue is guaranteed by the Perron- Frobenius theorem.
9The eigenvector centrality does not converge when the maximum eigenvalue λ1 tends to zero. The maximum

eigenvalue coefficient decreases with the sparsity of the adjacency matrix, Van Mieghem (2010)

67



F Figures of Combined Network

(a) Q10 (b) Q50

(c) Q90

Figure F.21: This figure visualizes the 3 different resulting networks for the period 2006-2008
relative to the first 25 banks ordered for market capitalization. Panel a) reports the network
extracted by combining causality network by using quantile regression (QB, Qo and QN) at
the 10% quantile, and the standard granger causality method. Panel b) reports the network
extracted by combining causality network by using quantile regression (QB, Qo and QN) at
the 50% quantile, and the standard granger causality method. Panel c) reports the network
extracted by combining causality network by using quantile regression (QB, Qo and QN) at
the 90% quantile, and the standard granger causality method. All the causality regression are
computed without the market factor.
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(a) Q10 (b) Q50

(c) Q90

Figure F.22: This figure visualizes the 3 different resulting networks for the period 2011-2015
relative to the first 25 banks ordered for market capitalization. Panel a) reports the network
extracted by combining causality network by using quantile regression (QB, Qo and QN) at
the 10% quantile, and the standard granger causality method. Panel b) reports the network
extracted by combining causality network by using quantile regression (QB, Qo and QN) at
the 50% quantile, and the standard granger causality method. Panel c) reports the network
extracted by combining causality network by using quantile regression (QB, Qo and QN) at
the 90% quantile, and the standard granger causality method. All the causality regression are
computed without the market factor.
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(a) Q10 (b) Q50

(c) Q90

Figure F.23: This figure visualizes the 3 different resulting networks for the period 2006-2008
relative to the first 25 Insurance companies ordered for market capitalization. Panel a) reports
the network extracted by combining causality network by using quantile regression (QB, Qo
and QN) at the 10% quantile, and the standard granger causality method. Panel b) reports
the network extracted by combining causality network by using quantile regression (QB, Qo
and QN) at the 50% quantile, and the standard granger causality method. Panel c) reports
the network extracted by combining causality network by using quantile regression (QB, Qo
and QN) at the 90% quantile, and the standard granger causality method. All the causality
regression are computed without the market factor.
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(a) Q10 (b) Q50

(c) Q90

Figure F.24: This figure visualizes the 3 different resulting networks for the period 2011-2015
relative to the first 25 Insurance companies ordered for market capitalization. Panel a) reports
the network extracted by combining causality network by using quantile regression (QB, Qo
and QN) at the 10% quantile, and the standard granger causality method. Panel b) reports
the network extracted by combining causality network by using quantile regression (QB, Qo
and QN) at the 50% quantile, and the standard granger causality method. Panel c) reports
the network extracted by combining causality network by using quantile regression (QB, Qo
and QN) at the 90% quantile, and the standard granger causality method. All the causality
regression are computed without the market factor.

71



(a) Q10 (b) Q50

(c) Q90

Figure F.25: This figure visualizes the 3 different resulting networks for the period 2006-2008
relative to 48 Industry portfolios. Panel a) reports the network extracted by combining causality
network by using quantile regression (QB, Qo and QN) at the 10% quantile, and the standard
granger causality method. Panel b) reports the network extracted by combining causality net-
work by using quantile regression (QB, Qo and QN) at the 50% quantile, and the standard
granger causality method. Panel c) reports the network extracted by combining causality net-
work by using quantile regression (QB, Qo and QN) at the 90% quantile, and the standard
granger causality method. All the causality regression are computed without the market factor.
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(a) Q10 (b) Q50

(c) Q90

Figure F.26: This figure visualizes the 3 different resulting networks for the period 2011-2015
relative to 48 Industry portfolios. Panel a) reports the network extracted by combining causality
network by using quantile regression (QB, Qo and QN) at the 10% quantile, and the standard
granger causality method. Panel b) reports the network extracted by combining causality net-
work by using quantile regression (QB, Qo and QN) at the 50% quantile, and the standard
granger causality method. Panel c) reports the network extracted by combining causality net-
work by using quantile regression (QB, Qo and QN) at the 90% quantile, and the standard
granger causality method. All the causality regression are computed without the market factor.
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G Sensitivity analysis for weekly Returns

Table G.15: The table reports the δ of model (5) that represent the weights for networks
combination. The top panel focused on the banks dataset, the middle panel on the insurance
companies dataset and the bottom panel on the industry portfolios dataset. The first column
identifies the quantiles used to estimate the quantile-based network, and the second column
indicates if a common factor was used (Y) or not used (N) in the estimation of the causality
networks. Columns 3 to 5 refer to the crisis sample while columns 6 to 8 to the most recent
sample. The second row identifies the three different networks which are optimally combined:
baseline quantile causality - QB; quantile-on-quantile causality Qo; non-parametric quantile
causality - QN. Parameters are, by construction, positive and sum up to one (within each row
and within each period). A star identifies parameters significant at the 5% confidence level.

2006-2008 2010-2015

Quantile Factor QB Qo QN QB Qo QN

25 Banks

10% N 0.060 0.054* 0.885* 0.001 0.625 0.374
50% N 0.142 0.108* 0.750* 0.094 0.067 0.838*
90% N 0.028 0.026 0.946* 0.000 0.725* 0.275*
10% Y 0.024 0.109 0.868* 0.000* 0.526* 0.474*
50% Y 0.054 0.062* 0.885* 0.201 0.066* 0.733*
90% Y 0.123 0.020 0.857* 0.000 0.877* 0.123*

25 Insurance Companies

10% N 0.000 0.034 0.966* 0.058 0.831* 0.111*
50% N 0.842* 0.125 0.034 0.059 0.045 0.896*
90% N 0.000 0.028 0.972* 0.000 0.456* 0.544*
10% Y 0.001 0.028 0.972* 0.000 0.488* 0.512*
50% Y 0.678* 0.106 0.216* 0.053 0.041 0.907*
90% Y 0.000 0.046 0.954 0.000 0.554 0.446

48 Industry Portfolio

10% N 0.000 1.000* 0.000 0.032 0.968* 0.000
50% N 0.202 0.000 0.798 0.214 0.023 0.763
90% N 0.108 0.892* 0.000 0.016 0.984* 0.000
10% Y 0.390 0.540 0.071 0.038 0.755* 0.207
50% Y 0.237 0.613 0.150 0.089 0.024 0.888*
90% Y 0.000 1.000* 0.000 0.111 0.857* 0.032
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Table G.16: The table reports residual correlation descriptive analyses for the Banks dataset.
The first column identify the various models, while the second column indicates the number of
networks used in the model. In the first column Q (10%) identifies the use of a combination of
causality networks from quantile regression (QB, Qo and QN) at the 10% quantile. Similarly,
when the reference quantile is 50% or 90%. With G we denote the model using just the Granger
casuality network, while the last line refers to the 4-factor CAPM. The table reports statistics
for the residuals correlations: the minimum, maximum, the 10% quantile q10, the median q50,
the 90% quantile and the number of elements of the correlation matrix lower than −0.1.

2006-2008

Model N Factor Min Max q10 q50 q90 % elements
Networks ≤ −0.1

Q(10%) 4 N -0.279 0.584 -0.108 0.071 0.279 11.3%
Q(50%) 4 N -0.344 0.597 -0.106 0.060 0.316 11.0%
Q(90%) 4 N -0.297 0.597 -0.127 0.062 0.299 14.0%
Q(10%) 4 Y -0.291 0.567 -0.135 0.046 0.253 16.0%
Q(50%) 4 Y -0.346 0.479 -0.118 0.055 0.251 11.7%
Q(90%) 4 Y -0.301 0.533 -0.137 0.038 0.235 16.3%

G 1 N -0.381 0.670 -0.128 0.111 0.372 13.3%
G 1 Y -0.394 0.641 -0.128 0.089 0.378 11.7%

4-F-CAPM 0 N.A -0.358 0.678 -0.108 0.257 0.502 10.7%

2011-2015

Model N Factor Min Max q10 q50 q90 % elements
Networks ≤ −0.1

Q(10%) 4 N -0.265 0.424 -0.121 -0.015 0.137 14.7%
Q(50%) 4 N -0.390 0.643 -0.107 0.053 0.282 13.3%
Q(90%) 4 N -0.248 0.432 -0.125 0.010 0.136 15.3%
Q(10%) 4 Y -0.281 0.505 -0.131 -0.011 0.145 18.7%
Q(50%) 4 Y -0.316 0.609 -0.127 0.054 0.245 15.0%
Q(90%) 4 Y -0.304 0.508 -0.139 0.001 0.132 17.7%

G 1 N -0.211 0.598 -0.027 0.151 0.362 3.0%
G 1 Y -0.211 0.598 -0.027 0.146 0.361 3.3%

4-F-CAPM 0 NA -0.122 0.669 0.054 0.266 0.487 0.3%
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Table G.17: The table reports residual correlation descriptive analyses for the Insurance Com-
panies dataset. The first column identify the various models, while the second column indicates
the number of networks used in the model. In the first column Q (10%) identifies the use of a
combination of causality networks from quantile regression (QB, Qo and QN) at the 10% quan-
tile. Similarly, when the reference quantile is 50% or 90%. With G we denote the model using
just the Granger casuality network, while the last line refers to the 4-factor CAPM. The table
reports statistics for the residuals correlations: the minimum, maximum, the 10% quantile q10,
the median q50, the 90% quantile and the number of elements of the correlation matrix lower
than −0.1.

2006-2008

Model N Factor Min Max q10 q50 q90 % elements
Networks ≤ −0.1

Q(10%) 4 N -0.440 0.682 -0.222 0.002 0.248 27.0%
Q(50%) 4 N -0.423 0.694 -0.161 0.044 0.260 16.7%
Q(90%) 4 N -0.448 0.676 -0.207 0.009 0.255 25.7%
Q(10%) 4 Y -0.455 0.686 -0.212 0.002 0.257 26.7%
Q(50%) 4 Y -0.369 0.515 -0.181 0.018 0.225 20.7%
Q(90%) 4 Y -0.464 0.671 -0.214 0.001 0.253 27.0%

G 1 N -0.466 0.831 -0.166 0.044 0.316 17.7%
G 1 Y -0.460 0.714 -0.166 0.048 0.323 15.0%

4-F-CAPM 0 N.A -0.370 0.847 -0.149 0.089 0.422 14.0%

2011-2015

Model N Factor Min Max q10 q50 q90 % elements
Networks ≤ −0.1

Q(10%) 4 N -0.290 0.504 -0.121 0.009 0.157 14.7%
Q(50%) 4 N -0.258 0.547 -0.149 0.019 0.202 16.7%
Q(90%) 4 N -0.289 0.345 -0.140 -0.004 0.168 18.3%
Q(10%) 4 Y -0.333 0.503 -0.153 -0.012 0.189 20.7%
Q(50%) 4 Y -0.268 0.590 -0.157 0.019 0.191 18.3%
Q(90%) 4 Y -0.299 0.398 -0.152 -0.001 0.199 21.3%

G 1 N -0.136 0.658 -0.005 0.121 0.317 1.7%
G 1 Y -0.136 0.658 -0.014 0.116 0.315 1.7%

4-F-CAPM 0 N.A -0.103 0.658 0.017 0.138 0.332 0.3%
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Table G.18: The table reports residual correlation descriptive analyses for the Industry portfo-
lios dataset. The first column identify the various models, while the second column indicates
the number of networks used in the model. In the first column Q (10%) identifies the use of a
combination of causality networks from quantile regression (QB, Qo and QN) at the 10% quan-
tile. Similarly, when the reference quantile is 50% or 90%. With G we denote the model using
just the Granger casuality network, while the last line refers to the 4-factor CAPM. The table
reports statistics for the residuals correlations: the minimum, maximum, the 10% quantile q10,
the median q50, the 90% quantile and the number of elements of the correlation matrix lower
than −0.1.

2006-2008

Model N Factor Min Max q10 q50 q90 % elements
Networks ≤ −0.1

Q(10%) 4 N -0.465 0.611 -0.191 -0.001 0.201 25.6%
Q(50%) 4 N -0.380 0.661 -0.176 0.011 0.247 22.9%
Q(90%) 4 N -0.443 0.608 -0.195 -0.006 0.206 25.9%
Q(10%) 4 Y -0.517 0.624 -0.217 -0.011 0.211 27.1%
Q(50%) 4 Y -0.467 0.690 -0.199 0.006 0.237 25.2%
Q(90%) 4 Y -0.533 0.599 -0.195 -0.014 0.216 25.2%

G 1 N -0.384 0.687 -0.146 0.025 0.257 18.6%
G 1 Y -0.401 0.687 -0.157 0.011 0.239 19.8%

4-F-CAPM 0 N.A -0.486 0.733 -0.219 0.003 0.267 27.1%

2011-2015

Model N Factor Min Max q10 q50 q90 % elements
Networks ≤ −0.1

Q(10%) 4 N -0.463 0.567 -0.140 -0.008 0.135 19.7%
Q(50%) 4 N -0.447 0.519 -0.138 0.007 0.176 16.6%
Q(90%) 4 N -0.470 0.572 -0.144 -0.013 0.138 19.6%
Q(10%) 4 Y -0.442 0.501 -0.148 -0.003 0.145 19.3%
Q(50%) 4 Y -0.454 0.508 -0.136 0.003 0.160 16.7%
Q(90%) 4 Y -0.443 0.567 -0.144 -0.005 0.153 18.4%

G 1 N -0.470 0.577 -0.140 0.007 0.199 18.0%
G 1 Y -0.503 0.577 -0.139 0.006 0.177 17.7%

4-F-CAPM 0 N.A -0.456 0.592 -0.147 0.007 0.208 18.4%
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Table G.19: The table report the δ of model (5) that represent the weights for networks combina-
tion. The top panel focused on the banks dataset, the middle panel on the insurance companies
dataset and the bottom panel on the industry portfolios dataset. The first column identifies the
quantiles used to estimate the quantile-based network, and the second column indicates if a com-
mon factor was used (Y) or not used (N) in the estimation of the causality networks. Columns
3 to 5 refer to the crisis sample while columns 6 to 8 to the most recent sample. The second
row identifies the three different networks which are optimally combined: quantile-on-quantile
causality Qo; non-parametric quantile causality - QN and Granger Causality. Parameters are,
by construction, positive and sum up to one (within each row and within each period). A star
identifies parameters significant at the 5% confidence level.

2006-2008 2010-2015

Quantile Factor Qo QN GR Qo QN GR

25 Banks

10% N 0.071 0.915* 0.014 0.630 0.354 0.017
50% N 0.128 0.848* 0.024 0.132 0.714* 0.154
90% N 0.008 0.884* 0.108 0.706* 0.243* 0.051*
10% Y 0.082 0.843* 0.076 0.538 0.428* 0.034*
50% Y 0.094 0.726 0.180 0.092 0.745* 0.163
90% Y 0.002 0.893* 0.105 0.876* 0.121* 0.003*

25 Insurance Companies

10% N 0.034 0.966* 0.000 0.804 0.141 0.055*
50% N 0.000 0.942* 0.058 0.054 0.615 0.331
90% N 0.028 0.972 0.000 0.364 0.436 0.200
10% Y 0.006 0.949* 0.045 0.489 0.511 0.000
50% Y 0.516 0.474 0.009 0.051 0.846* 0.102
90% Y 0.046 0.954* 0.000 0.554 0.446 0.000*

48 Industry Portfolio

10% N 0.173 0.057 0.770 1.000* 0.000 0.000*
50% N 0.079 0.248 0.673 0.030 0.868* 0.102
90% N 1.000* 0.000 0.000 1.000* 0.000 0.000*
10% Y 0.619 0.052 0.329 0.640 0.320 0.039
50% Y 0.000 0.676 0.324 0.029 0.876* 0.095
90% Y 0.810 0.000* 0.190 0.918 0.032 0.050
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Table G.20: The table reports residual correlation descriptive analyses for the Banks dataset.
The first column identify the various models, while the second column indicates the number of
networks used in the model. In the first column Q (10%) identifies the use of a combination of
causality networks from quantile regression (Qo and QN) at the 10% quantile, combined with
the Granger Causality Network. Similarly, when the reference quantile is 50% or 90%. With
G we denote the model using just the Granger casuality network, while the last line refers to
the 4-factor CAPM. The table reports statistics for the residuals correlations: the minimum,
maximum, the 10% quantile q10, the median q50, the 90% quantile and the number of elements
of the correlation matrix lower than −0.1.

2006-2008

Model N Factor Min Max q10 q50 q90 % elements
Networks ≤ −0.1

Q(10%) 4 N -0.304 0.584 -0.117 0.067 0.273 12.0%
Q(50%) 4 N -0.319 0.587 -0.105 0.072 0.342 11.0%
Q(90%) 4 N -0.269 0.600 -0.147 0.050 0.278 16.0%
Q(10%) 4 Y -0.295 0.571 -0.136 0.035 0.236 15.3%
Q(50%) 4 Y -0.346 0.490 -0.119 0.048 0.288 12.3%
Q(90%) 4 Y -0.313 0.485 -0.142 0.031 0.244 18.0%

G 1 N -0.381 0.670 -0.128 0.111 0.372 13.3%
G 1 Y -0.394 0.641 -0.128 0.089 0.378 11.7%

4-F-CAPM 0 N.A -0.358 0.678 -0.108 0.257 0.502 10.7%

2011-2015

Model N Factor Min Max q10 q50 q90 % elements
Networks ≤ −0.1

Q(10%) 4 N -0.263 0.422 -0.122 -0.013 0.135 15.3%
Q(50%) 4 N -0.332 0.528 -0.116 0.052 0.243 12.7%
Q(90%) 4 N -0.253 0.431 -0.127 0.010 0.138 15.7%
Q(10%) 4 Y -0.283 0.503 -0.132 -0.008 0.140 19.0%
Q(50%) 4 Y -0.311 0.522 -0.122 0.052 0.237 13.0%
Q(90%) 4 Y -0.304 0.508 -0.140 0.001 0.132 17.7%

G 1 N -0.211 0.598 -0.027 0.151 0.362 3.0%
G 1 Y -0.211 0.598 -0.027 0.146 0.361 3.3%

4-F-CAPM 0 NA -0.122 0.669 0.054 0.266 0.487 0.3%
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Table G.21: The table reports residual correlation descriptive analyses for the Insurance Com-
panies dataset. The first column identify the various models, while the second column indicates
the number of networks used in the model. In the first column Q (10%) identifies the use of a
combination of causality networks from quantile regression (Qo and QN) at the 10% quantile,
combined with the Granger Causality Network. Similarly, when the reference quantile is 50%
or 90%. With G we denote the model using just the Granger casuality network, while the last
line refers to the 4-factor CAPM. The table reports statistics for the residuals correlations: the
minimum, maximum, the 10% quantile q10, the median q50, the 90% quantile and the number
of elements of the correlation matrix lower than −0.1.

2006-2008

Model N Factor Min Max q10 q50 q90 % elements
Networks ≤ −0.1

Q(10%) 4 N -0.441 0.682 -0.222 0.002 0.248 27.0%
Q(50%) 4 N -0.435 0.756 -0.169 0.027 0.335 20.7%
Q(90%) 4 N -0.448 0.676 -0.207 0.009 0.255 25.7%
Q(10%) 4 Y -0.436 0.684 -0.203 0.005 0.246 28.0%
Q(50%) 4 Y -0.468 0.574 -0.185 0.016 0.238 22.7%
Q(90%) 4 Y -0.464 0.671 -0.214 0.001 0.253 27.0%

G 1 N -0.466 0.831 -0.166 0.044 0.316 17.7%
G 1 Y -0.460 0.714 -0.166 0.048 0.323 15.0%

4-F-CAPM 0 N.A -0.370 0.847 -0.149 0.089 0.422 14.0%

2011-2015

Model N Factor Min Max q10 q50 q90 % elements
Networks ≤ −0.1

Q(10%) 4 N -0.293 0.482 -0.123 0.009 0.158 14.7%
Q(50%) 4 N -0.238 0.593 -0.132 0.025 0.217 15.0%
Q(90%) 4 N -0.289 0.348 -0.137 -0.006 0.167 19.3%
Q(10%) 4 Y -0.333 0.503 -0.153 -0.012 0.189 20.7%
Q(50%) 4 Y -0.276 0.590 -0.140 0.020 0.210 17.0%
Q(90%) 4 Y -0.299 0.398 -0.152 -0.001 0.199 21.3%

G 1 N -0.136 0.658 -0.005 0.121 0.317 1.7%
G 1 Y -0.136 0.658 -0.014 0.116 0.315 1.7%

4-F-CAPM 0 N.A -0.103 0.658 0.017 0.138 0.332 0.3%
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Table G.22: The table reports residual correlation descriptive analyses for the Industry portfolios
dataset. The first column identify the various models, while the second column indicates the
number of networks used in the model. In the first column Q (10%) identifies the use of a
combination of causality networks from quantile regression (Qo and QN) at the 10% quantile,
combined with the Granger Causality Network. Similarly, when the reference quantile is 50%
or 90%. With G we denote the model using just the Granger casuality network, while the last
line refers to the 4-factor CAPM. The table reports statistics for the residuals correlations: the
minimum, maximum, the 10% quantile q10, the median q50, the 90% quantile and the number
of elements of the correlation matrix lower than −0.1.

2006-2008

Model N Factor Min Max q10 q50 q90 % elements
Networks ≤ −0.1

Q(10%) 4 N -0.370 0.592 -0.153 0.013 0.237 20.0%
Q(50%) 4 N -0.357 0.604 -0.151 0.020 0.251 19.3%
Q(90%) 4 N -0.465 0.660 -0.196 -0.002 0.212 25.8%
Q(10%) 4 Y -0.431 0.595 -0.182 0.007 0.221 22.5%
Q(50%) 4 Y -0.415 0.687 -0.169 0.006 0.231 21.5%
Q(90%) 4 Y -0.508 0.592 -0.187 -0.007 0.215 23.8%

G 1 N -0.384 0.687 -0.146 0.025 0.257 18.6%
G 1 Y -0.401 0.687 -0.157 0.011 0.239 19.8%

4-F-CAPM 0 N.A -0.486 0.733 -0.219 0.003 0.267 27.1%
2011-2015

Model N Factor Min Max q10 q50 q90 % elements
Networks ≤ −0.1

Q(10%) 4 N -0.463 0.567 -0.138 -0.008 0.133 19.3%
Q(50%) 4 N -0.464 0.519 -0.137 0.003 0.172 16.8%
Q(90%) 4 N -0.471 0.572 -0.144 -0.013 0.139 20.0%
Q(10%) 4 Y -0.434 0.495 -0.148 -0.005 0.145 19.1%
Q(50%) 4 Y -0.509 0.513 -0.141 0.004 0.163 16.5%
Q(90%) 4 Y -0.424 0.563 -0.144 -0.004 0.150 19.3%

G 1 N -0.470 0.577 -0.140 0.007 0.199 18.0%
G 1 Y -0.503 0.577 -0.139 0.006 0.177 17.7%
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H Tables for Monthly returns

Table H.23: The table reports the δ of model (5) that represent the weights for networks
combination. The top panel focused on the banks dataset, the middle panel on the insurance
companies dataset and the bottom panel on the industry portfolios dataset. The first column
identifies the quantiles used to estimate the quantile-based network, and the second column
indicates if a common factor was used (Y) or not used (N) in the estimation of the causality
networks. Columns 3 to 6 refer to the crisis sample while columns 7 to 10 to the most recent
sample. The second row identifies the four different networks which are optimally combined:
baseline quantile causality - QB; quantile-on-quantile causality Qo; non-parametric quantile
causality - QN; Granger causality. Parameters are, by construction, positive and sum up to one
(within each row and within each period). A star identifies parameters significant at the 5%
confidence level.

2006-2008 2010-2015

Quantile Factor QB Qo QN QR QB Qo QN QR

25 Banks

10% N 0.031 0.091 0.878 0.000 0.000 0.692* 0.271 0.037
50% N 0.495 0.000* 0.345 0.159 0.083 0.123* 0.689* 0.105
90% N 0.002 0.007 0.872* 0.119 0.000 0.739* 0.142 0.119
10% Y 0.061 0.182 0.681* 0.077 0.000 0.604 0.375 0.022
50% Y 0.131 0.109* 0.451* 0.310* 0.075 0.046* 0.746* 0.132
90% Y 0.131 0.022 0.639* 0.207 0.000 0.954* 0.000 0.046

25 Insurance Companies

10% N 0.248 0.000* 0.638* 0.115 0.000 0.651 0.137 0.213
50% N 0.689 0.000 0.175* 0.136 0.052 0.063 0.637 0.248
90% N 0.000 0.042* 0.829* 0.129 0.000 0.449 0.453 0.098
10% Y 0.000 0.005* 0.916* 0.079 0.000 1.000* 0.000 0.000
50% Y 0.000 0.071* 0.831* 0.098 0.082 0.054 0.862 0.003
90% Y 0.000 0.000 0.907 0.093 0.000 0.186 0.814* 0.000

48 Industry Portfolio

10% N 0.149 0.253 0.599 0.000 0.020 0.980 0.000 0.000
50% N 0.085 0.119 0.000 0.797 0.309 0.031 0.520 0.141
90% N 0.140 0.000 0.860 0.000 0.014 0.203 0.633* 0.150
10% Y 0.304 0.226 0.356* 0.114 0.012 0.576 0.294 0.118
50% Y 0.426 0.137 0.000 0.437 0.093 0.027 0.767* 0.113
90% Y 0.166 0.030 0.749 0.055 0.103 0.668 0.106 0.123
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Table H.24: The table reports residual correlation descriptive analyses for the Banks dataset.
The first column identify the various models, while the second column indicates the number of
networks used in the model. In the first column Q (10%) identifies the use of a combination of
causality networks from quantile regression (QB, Qo and QN) at the 10% quantile, combined
with the Granger causality network. Similarly, when the reference quantile is 50% or 90%. With
G we denote the model using just the Granger casuality network, while the last line refers to
the 4-factor CAPM. The table reports statistics for the residuals correlations: the minimum,
maximum, the 10% quantile q10, the median q50, the 90% quantile and the number of elements
of the correlation matrix lower than −0.1.

Table H.25: Add caption

2006-2008

Model N Factor Min Max q10 q50 q90 % elements
Networks ≤ −0.1

Q(10%) 4 N -0.485 0.748 -0.229 0.062 0.358 23.7%
Q(50%) 4 N -0.401 0.736 -0.193 0.095 0.412 20.7%
Q(90%) 4 N -0.496 0.696 -0.236 0.071 0.367 26.3%
Q(10%) 4 Y -0.499 0.797 -0.248 0.034 0.325 30.3%
Q(50%) 4 Y -0.495 0.755 -0.226 0.055 0.351 26.3%
Q(90%) 4 Y -0.504 0.737 -0.257 0.050 0.323 28.3%

G 1 N -0.605 0.756 -0.172 0.190 0.528 17.0%
G 1 Y -0.599 0.826 -0.190 0.141 0.505 18.0%

4-F-CAPM 0 N.A -0.404 0.826 0.040 0.417 0.699 7.0%

2011-2015

Model N Factor Min Max q10 q50 q90 % elements
Networks ≤ −0.1

Q(10%) 4 N -0.415 0.527 -0.209 -0.007 0.209 28.0%
Q(50%) 4 N -0.536 0.602 -0.189 0.033 0.288 21.3%
Q(90%) 4 N -0.455 0.512 -0.200 0.007 0.227 27.7%
Q(10%) 4 Y -0.382 0.563 -0.226 -0.011 0.228 28.0%
Q(50%) 4 Y -0.449 0.582 -0.201 0.038 0.280 22.7%
Q(90%) 4 Y -0.423 0.564 -0.223 -0.003 0.224 27.7%

G 1 N -0.314 0.677 -0.083 0.165 0.460 8.3%
G 1 Y -0.388 0.677 -0.083 0.162 0.455 8.3%

4-F-CAPM 0 NA -0.155 0.793 0.098 0.385 0.604 0.7%
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Table H.26: The table reports residual correlation descriptive analyses for the Insurance Com-
panies dataset. The first column identify the various models, while the second column indicates
the number of networks used in the model. In the first column Q (10%) identifies the use of a
combination of causality networks from quantile regression (QB, Qo and QN) at the 10% quan-
tile, combined with the Granger causality network. Similarly, when the reference quantile is 50%
or 90%. With G we denote the model using just the Granger casuality network, while the last
line refers to the 4-factor CAPM. The table reports statistics for the residuals correlations: the
minimum, maximum, the 10% quantile q10, the median q50, the 90% quantile and the number
of elements of the correlation matrix lower than −0.1.

2006-2008

Model N Factor Min Max q10 q50 q90 % elements
Networks ≤ −0.1

Q(10%) 4 N -0.684 0.693 -0.264 0.040 0.372 26.3%
Q(50%) 4 N -0.674 0.760 -0.261 0.039 0.366 26.0%
Q(90%) 4 N -0.694 0.744 -0.276 0.044 0.367 27.3%
Q(10%) 4 Y -0.674 0.734 -0.277 0.054 0.383 29.0%
Q(50%) 4 Y -0.694 0.755 -0.271 0.041 0.370 28.7%
Q(90%) 4 Y -0.679 0.734 -0.270 0.055 0.383 28.3%

G 1 N -0.665 0.771 -0.267 0.055 0.399 27.7%
G 1 Y -0.629 0.771 -0.240 0.065 0.398 24.7%

4-F-CAPM 0 N.A -0.639 0.886 -0.190 0.157 0.519 16.7%

2011-2015

Model N Factor Min Max q10 q50 q90 % elements
Networks ≤ −0.1

Q(10%) 4 N -0.543 0.610 -0.206 0.010 0.236 26.0%
Q(50%) 4 N -0.428 0.648 -0.224 0.037 0.283 24.3%
Q(90%) 4 N -0.450 0.577 -0.229 0.001 0.247 27.7%
Q(10%) 4 Y -0.533 0.629 -0.239 0.008 0.264 31.7%
Q(50%) 4 Y -0.442 0.697 -0.236 0.036 0.287 26.7%
Q(90%) 4 Y -0.446 0.626 -0.242 0.002 0.280 31.0%

G 1 N -0.230 0.826 -0.015 0.221 0.473 2.3%
G 1 Y -0.230 0.826 -0.023 0.218 0.473 2.7%

4-F-CAPM 0 N.A -0.204 0.826 0.045 0.246 0.475 0.7%
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Table H.27: The table reports residual correlation descriptive analyses for the Industry portfo-
lios dataset. The first column identify the various models, while the second column indicates the
number of networks used in the model. In the first column Q (10%) identifies the use of a com-
bination of causality networks from quantile regression (QB, Qo and QN) at the 10% quantile,
combined with the Granger causality network. Similarly, when the reference quantile is 50%
or 90%. With G we denote the model using just the Granger casuality network, while the last
line refers to the 4-factor CAPM. The table reports statistics for the residuals correlations: the
minimum, maximum, the 10% quantile q10, the median q50, the 90% quantile and the number
of elements of the correlation matrix lower than −0.1.

2006-2008

Model N Factor Min Max q10 q50 q90 % elements
Networks \le -0.1

Q(10%) 4 N -0.702 0.653 -0.338 -0.029 0.267 39.0%
Q(50%) 4 N -0.654 0.680 -0.353 -0.032 0.296 39.7%
Q(90%) 4 N -0.619 0.658 -0.347 -0.027 0.289 38.7%
Q(10%) 4 Y -0.749 0.638 -0.319 -0.022 0.265 37.3%
Q(50%) 4 Y -0.675 0.675 -0.371 -0.031 0.318 40.8%
Q(90%) 4 Y -0.690 0.689 -0.348 -0.030 0.277 39.5%

G 1 N -0.654 0.685 -0.368 -0.023 0.293 39.2%
G 1 Y -0.695 0.705 -0.373 -0.020 0.301 40.3%

4-F-CAPM 0 N.A -0.667 0.713 -0.378 -0.025 0.309 39.5%

2011-2015

Model N Factor Min Max q10 q50 q90 % elements
Networks ≤ −0.1

Q(10%) 4 N -0.583 0.623 -0.234 -0.008 0.210 30.4%
Q(50%) 4 N -0.499 0.617 -0.206 0.014 0.248 26.1%
Q(90%) 4 N -0.551 0.589 -0.224 -0.006 0.244 29.1%
Q(10%) 4 Y -0.534 0.543 -0.228 -0.002 0.244 29.5%
Q(50%) 4 Y -0.443 0.529 -0.216 0.008 0.241 25.3%
Q(90%) 4 Y -0.446 0.585 -0.230 -0.002 0.242 29.5%

G 1 N -0.502 0.579 -0.228 0.009 0.259 28.0%
G 1 Y -0.478 0.594 -0.220 0.010 0.251 27.7%

4-F-CAPM 0 N.A -0.502 0.626 -0.231 0.021 0.283 28.4%
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I Homogeneity

Table I.28: The table reports the δ of model (5), that represent the weights for networks com-
bination. The model replaces the matrix R with a scalar coefficient, and thus we have, across
assets, a homogeneous impact of the network. The top panel focused on the banks dataset,
the middle panel on the insurance companies dataset and the bottom panel on the industry
portfolios dataset. The first column identifies the quantiles used to estimate the quantile-based
network, and the second column indicates if a common factor was used (Y) or not used (N)
in the estimation of the causality networks. Columns 3 to 6 refer to the crisis sample while
columns 7 to 10 to the most recent sample. The second row identifies the four different networks
which are optimally combined: baseline quantile causality - QB; quantile-on-quantile causality
Qo; non-parametric quantile causality - QN; Granger causality. Parameters are, by construc-
tion, positive and sum up to one (within each row and within each period). A star identifies
parameters significant at the 5% confidence level.

2006-2008 2010-2015

Quantile Factor QB Qo QN QG QB Qo QN QG

25 Banks

10% N 0.000 0.159 0.841* 0.000 0.028 0.656* 0.264* 0.052
50% N 0.199 0.146* 0.589* 0.066* 0.140* 0.273* 0.349* 0.238*
90% N 0.001 0.000 0.984* 0.000 0.048 0.565* 0.281* 0.106
10% Y 0.000* 0.398* 0.403* 0.199* 0.036 0.771* 0.160 0.033*
50% Y 0.140* 0.204* 0.444* 0.212* 0.198* 0.187* 0.409* 0.206*
90% Y 0.247* 0.000* 0.471* 0.282* 0.000 0.939* 0.061* 0.000*

25 Insurance Companies

10% N 0.061 0.151* 0.789* 0.000* 0.078 0.922* 0.000 0.000
50% N 0.193 0.099* 0.495* 0.212* 0.158 0.111* 0.659* 0.072*
90% N 0.000* 0.000* 1.000* 0.000* 0.000* 0.492* 0.508* 0.000*
10% Y 0.040 0.082 0.856* 0.022 0.007 0.645* 0.347* 0.000
50% Y 0.090 0.218* 0.631* 0.060 0.038 0.072 0.831* 0.058
90% Y 0.000 0.000 0.973* 0.027 0.000* 0.566* 0.434* 0.000*

48 Industry Portfolio

10% N 0.000* 0.000* 0.000* 1.000* 0.074 0.926* 0.000* 0.000*
50% N 0.000 0.213 0.177 0.610 0.000* 1.000* 0.000* 0.000*
90% N 0.000* 0.000* 0.000* 1.000* 0.000* 1.000* 0.000* 0.000*
10% Y 1.000* 0.000* 0.000* 0.000* 0.000* 1.000* 0.000* 0.000*
50% Y 1.000* 0.000* 0.000* 0.000* 0.705 0.001* 0.294* 0.000*
90% Y 0.782* 0.218* 0.000* 0.000* 0.000* 1.000* 0.000* 0.000*
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Table I.29: The table reports scalar coefficient ρ replacing matrix R in model (5), to impose
homogeneous reaction of the assets to network exposure. The top panel focused on the banks
dataset, the middle panel on the insurance companies dataset and the bottom panel on the in-
dustry portfolios dataset. The first column identifies the quantiles used to estimate the quantile-
based network, and the second column indicates if a common factor was used (Y) or not used
(N) in the estimation of the causality networks. The results identify the four different networks
which are optimally combined: baseline quantile causality; quantile-on-quantile causality; non-
parametric quantile causality; Granger causality. A star identifies parameters significant at the
5% confidence level.

Quantile Factor 2006-2008 2011-2015

25 Banks

10% N 0.687* 0.727*
50% N 0.756* 0.851*
90% N 0.604* 0.774*
10% Y 0.656* 0.713*
50% Y 0.894* 0.886*
90% Y 0.639* 0.673*

25 Insurance Companies

10% N 0.497* 0.554*
50% N 0.301* 0.613*
90% N 0.469* 0.618*
10% Y 0.491* 0.581*
50% Y 0.472* 0.638*
90% Y 0.477* 0.564*

48 Industry companies

10% N -0.077* 0.460*
50% N -0.117* 0.025*
90% N -0.077* 0.324*
10% Y 0.175* 0.282*
50% Y 0.129* 0.123*
90% Y 0.100* 0.252*
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Table I.30: The table reports residual correlation descriptive analyses for the Banks dataset.
The first column identify the various models, while the second column indicates the number of
networks used in the model. In the first column Q (10%) identifies the use of a combination of
causality networks from quantile regression (QB, Qo and QN) at the 10% quantile, combined
with the Granger causality network. Similarly, when the reference quantile is 50% or 90%. With
G we denote the model using just the Granger casuality network, while the last line refers to
the 4-factor CAPM. The table reports statistics for the residuals correlations: the minimum,
maximum, the 10% quantile q10, the median q50, the 90% quantile and the number of elements
of the correlation matrix lower than −0.1.

2006-2008

Model N Factor Min Max q10 q50 q90 % elements
Networks ≤ −0.1

10% 4 N -0.443 0.578 -0.207 0.082 0.364 23.0%
50% 4 N -0.469 0.640 -0.205 0.114 0.425 19.3%
90% 4 N -0.461 0.602 -0.193 0.031 0.371 23.3%
10% 4 Y -0.377 0.573 -0.198 0.061 0.322 21.3%
50% 4 Y -0.526 0.558 -0.184 0.057 0.329 18.0%
90% 4 Y -0.588 0.546 -0.206 0.061 0.347 19.3%

Granger 1 N -0.366 0.662 -0.120 0.221 0.475 12.3%
Granger 1 Y -0.591 0.626 -0.143 0.155 0.428 12.3%

Multifactor - - -0.358 0.678 -0.108 0.257 0.502 10.7%

2011-2015

Model N Factor Min Max q10 q50 q90 % elements
Networks ≤ −0.1

10% 4 N -0.450 0.394 -0.146 -0.019 0.186 20.0%
50% 4 N -0.416 0.594 -0.145 0.091 0.308 15.7%
90% 4 N -0.639 0.444 -0.136 0.005 0.169 17.7%
10% 4 Y -0.320 0.462 -0.154 -0.013 0.181 22.0%
50% 4 Y -0.423 0.560 -0.168 0.071 0.290 17.7%
90% 4 Y -0.369 0.482 -0.156 -0.005 0.166 23.0%

Granger 1 N -0.468 0.598 -0.052 0.169 0.369 6.7%
Granger 1 Y -0.472 0.598 -0.053 0.167 0.369 6.7%

Multifactor - - -0.122 0.669 0.054 0.266 0.487 0.3%
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Table I.31: The table reports residual correlation descriptive analyses for the Insurance Com-
panies dataset. The first column identify the various models, while the second column indicates
the number of networks used in the model. In the first column Q (10%) identifies the use of a
combination of causality networks from quantile regression (QB, Qo and QN) at the 10% quan-
tile, combined with the Granger causality network. Similarly, when the reference quantile is 50%
or 90%. With G we denote the model using just the Granger casuality network, while the last
line refers to the 4-factor CAPM. The table reports statistics for the residuals correlations: the
minimum, maximum, the 10% quantile q10, the median q50, the 90% quantile and the number
of elements of the correlation matrix lower than −0.1.

2006-2008

Model N Factor Min Max q10 q50 q90 % elements
Networks ≤ −0.1

Q(10%) 4 N -0.499 0.809 -0.261 -0.004 0.294 31.7%
Q(50%) 4 N -0.468 0.812 -0.213 0.018 0.379 23.3%
Q(90%) 4 N -0.477 0.804 -0.257 -0.008 0.315 30.7%
Q(10%) 4 Y -0.475 0.806 -0.259 -0.008 0.325 30.7%
Q(50%) 4 Y -0.461 0.810 -0.243 0.009 0.346 26.3%
Q(90%) 4 Y -0.485 0.802 -0.266 -0.011 0.314 30.7%

G 1 N -0.425 0.831 -0.190 0.047 0.398 20.0%
G 1 Y -0.420 0.836 -0.188 0.046 0.384 20.0%

4-F-CAPM - - -0.370 0.847 -0.149 0.089 0.422 14.0%

2011-2015

Model N Factor Min Max q10 q50 q90 % elements
Networks ≤ −0.1

Q(10%) 4 N -0.302 0.554 -0.115 0.002 0.182 14.7%
Q(50%) 4 N -0.293 0.636 -0.135 0.032 0.235 15.3%
Q(90%) 4 N -0.313 0.510 -0.136 0.001 0.181 18.0%
Q(10%) 4 Y -0.314 0.593 -0.152 -0.002 0.193 21.0%
Q(50%) 4 Y -0.249 0.650 -0.142 0.031 0.220 19.0%
Q(90%) 4 Y -0.292 0.545 -0.149 0.006 0.194 22.0%

G 1 N -0.109 0.658 0.001 0.116 0.322 1.0%
G 1 Y -0.103 0.658 -0.011 0.120 0.318 1.0%

4-F-CAPM - - -0.103 0.658 0.017 0.138 0.332 0.3%
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Table I.32: The table reports residual correlation descriptive analyses for the Industry portfolios
dataset. The first column identify the various models, while the second column indicates the
number of networks used in the model. In the first column Q (10%) identifies the use of a com-
bination of causality networks from quantile regression (QB, Qo and QN) at the 10% quantile,
combined with the Granger causality network. Similarly, when the reference quantile is 50%
or 90%. With G we denote the model using just the Granger casuality network, while the last
line refers to the 4-factor CAPM. The table reports statistics for the residuals correlations: the
minimum, maximum, the 10% quantile q10, the median q50, the 90% quantile and the number
of elements of the correlation matrix lower than −0.1.

2006-2008

Model N Factor Min Max q10 q50 q90 % elements
Networks ≤ −0.1

Q(10%) 4 N -0.444 0.756 -0.204 0.007 0.274 25.6%
Q(50%) 4 N -0.449 0.757 -0.198 0.014 0.276 24.9%
Q(90%) 4 N -0.444 0.756 -0.204 0.007 0.274 25.6%
Q(10%) 4 Y -0.476 0.731 -0.226 -0.013 0.253 28.2%
Q(50%) 4 Y -0.494 0.733 -0.228 -0.007 0.265 28.2%
Q(90%) 4 Y -0.463 0.728 -0.227 -0.005 0.261 28.5%

G 1 N -0.444 0.756 -0.204 0.007 0.274 25.6%
G 1 Y -0.415 0.752 -0.203 0.009 0.273 25.4%

4-F-CAPM - - -0.486 0.733 -0.219 0.003 0.267 27.1%

2011-2015

Model N Factor Min Max q10 q50 q90 % elements
Networks ≤ −0.1

Q(10%) 4 N -0.434 0.560 -0.161 -0.015 0.154 24.3%
Q(50%) 4 N -0.450 0.588 -0.148 0.007 0.204 18.8%
Q(90%) 4 N -0.424 0.551 -0.159 -0.010 0.170 23.5%
Q(10%) 4 Y -0.431 0.564 -0.166 -0.010 0.179 23.0%
Q(50%) 4 Y -0.461 0.589 -0.152 0.007 0.191 19.1%
Q(90%) 4 Y -0.432 0.567 -0.166 -0.005 0.183 22.6%

G 1 N -0.467 0.589 -0.144 0.009 0.208 18.4%
G 1 Y -0.445 0.592 -0.148 0.008 0.208 18.4%

4-F-CAPM - - -0.456 0.592 -0.147 0.007 0.208 18.4%

90



J Estimated Parameters

(a) 2006 − 2008

(b) 2011 − 2015

Figure J.27: This figure exhibits the ρ′s coefficients signficant (blue asterisks ’*’) and not signifi-
cant (green circle ’o’) by using different resulting networks obtained combining different causality
methodologies. The ρ′s parameters are relative to first 25 banks monthly returns ordered for
market capitalization. Panel a) reports the coefficients relative to the period 2006−2008. Panel
b) reports the coefficients relative to the period 2011− 2015.
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(a) 2006 − 2008

(b) 2011 − 2015

Figure J.28: This figure exhibits the ρ′s coefficients signficant (blue asterisks ’*’) and not signifi-
cant (green circle ’o’) by using different resulting networks obtained combining different causality
methodologies. The ρ′s parameters are relative to first 25 Insurers monthly returns ordered for
market capitalization. Panel a) reports the coefficients relative to the period 2006−2008. Panel
b) reports the coefficients relative to the period 2011− 2015.
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(a) 2006 − 2008

(b) 2011 − 2015

Figure J.29: This figure exhibits the ρ′s coefficients signficant (blue asterisks ’*’) and not signif-
icant (green circle ’o’) by using different resulting networks obtained combining different causal-
ity methodologies. The ρ′s parameters are relative to 48 Fama and French industry portfolios
monthly returns ordered for market capitalization. Panel a) reports the coefficients relative to
the period 2006− 2008. Panel b) reports the coefficients relative to the period 2011− 2015.
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