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In the lignocellulosic yeast development, metabolic burden relates to redirection of

resources from regular cellular activities toward the needs created by recombinant

protein production. As a result, growth parameters may be greatly affected. Noteworthy,

Saccharomyces cerevisiae M2n[pBKD2-Pccbgl1]-C1, previously developed by multiple

δ-integration of the β-glucosidase BGL3, did not show any detectable metabolic burden.

This work aims to test the hypothesis that the metabolic burden and the metabolomic

perturbation induced by the δ-integration of a yeast strain, could differ significantly. The

engineered strain was evaluated in terms of metabolic performances and metabolomic

alterations in different conditions typical of the bioethanol industry. Results indicate

that the multiple δ-integration did not affect the ability of the engineered strain to

grow on different carbon sources and to tolerate increasing concentrations of ethanol

and inhibitory compounds. Conversely, metabolomic profiles were significantly altered

both under growing and stressing conditions, indicating a large extent of metabolic

reshuffling involved in the maintenance of the metabolic homeostasis. Considering that

four copies of BGL3 gene have been integrated without affecting any parental genes or

promoter sequences, deeper studies are needed to unveil the mechanisms implied in

these metabolomic changes, thus supporting the optimization of protein production in

engineered strains.
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INTRODUCTION

Today, bioethanol as major biofuel is mostly obtained from corn,
wheat, and sugarcane (Mohanty and Swain, 2019). However,
the ideal substrate for bioethanol production is non-edible
lignocellulosic biomass, like energy crops, spruce or birch,
or agricultural by-products (Zhang, 2019). Lignocellulose
represents a complex recalcitrant matrix that requires costly
pre-treatment and enzyme supplementation to yield fermentable
sugars from embedded polysaccharides. During pre-treatment,
lignocellulosic material is partly degraded to inhibitory
compounds, such as furans, weak acids and phenolics, which
are toxic to the microbial metabolism. These inhibitors can
slow down or even stop the fermentation, limiting the process
efficiency (Almeida et al., 2007).

Saccharomyces cerevisiae is unable to directly ferment the
cellulose fibers exposed after lignocellulose pre-treatment.
Therefore, to convert cellulose into glucose, industrial bioethanol
production requires the use of expensive commercial cellulases,
which negatively impacts the feasibility of the overall process.
Consequently, the development of engineered S. cerevisiae
strains able to produce one or more cellulolytic enzymes
is required. Such new phenotypic traits can be obtained by
engineering robust yeast strains to produce one or more
heterologous cellulases (Van Zyl et al., 2007). However,
engineering industrial strains for sufficient production of
functional cellulases still remains a major challenge (Van Zyl
et al., 2007; Den Haan et al., 2015). Although noteworthy
advancement has been made, a deeper understanding of the
mechanisms governing heterologous protein production in
yeast will be crucial for developing more efficient protein
production systems.

The expression of cellulase genes can induce a stressful
condition, known as metabolic burden, that may impair
the metabolic performances of the recombinant strain (Van
Rensburg et al., 2012; Ding et al., 2018; Wei et al., 2018). The
concept of metabolic burden arose from previous investigations
in this area and became a keystone in yeast synthetic biology and
metabolic engineering (Wu et al., 2016; Zahrl et al., 2019). In
the case of lignocellulosic yeast strains development, metabolic
burden often relates to additional energetic costs caused by the
synthesis of recombinant proteins or to the effects of competition
for limited transcriptional and translational resources required in
protein production and secretion. As a result, growth parameters,
such as biomass yield, growth and specific substrate consumption
rate, may be greatly affected. Furthermore, part of the available
sugars may be redirected from desired ethanol to unwanted
glycerol and acetate due to redox imbalances (Van Rensburg et al.,
2012; Ding et al., 2018).

Both the strategy selected for the genetic engineering
(episomal plasmid vs. chromosomal integration) and host strain
(laboratory vs. industrial or natural yeast) are considered among
the major players of metabolic burden related to heterologous
proteins production. Nevertheless, the occurrence and the extent
of metabolic burden is not yet well-understood (Favaro et al.,
2012, 2015; Karim et al., 2013; Wu et al., 2016; Liu et al.,
2017; Papapetridis et al., 2018; Li et al., 2019; Zahrl et al.,
2019) and further studies are imperative to develop mitigation

strategies and increase the recombinant strain performances in
the biotechnological industry.

In a recent paper we demonstrated that the industrial
yeast M2n[pBKD2-Pccbgl1]-C1 with multiple δ-integration of
a specific β-glucosidase gene did not show any detectable
metabolic burden in terms of ethanol production and yield of
the recombinant strain vs. that of the parental yeast (Cagnin
et al., 2019). This result poses the problem on whether the
metabolic burden simply does not exist or cannot be detected
by measuring only parameters such as the ethanol production,
growth rate, and biomass yield. In the latter case, a more detailed
comparison of the physiological status of the recombinant and
of the parental host should shed light on this controversial
situation. It has been already demonstrated that the viability
and the metabolomic fingerprint of yeast cells subject to stress
conditions are not necessarily related and vary in a strain-
specific manner (Favaro et al., 2016; Colabella et al., 2017). This
indicates that the metabolome could be perturbed in a significant
way, without affecting physiological parameters. These evidences
imply that metabolic burden could be present but not detectable
in the case ofM2n[pBKD2-Pccbgl1]-C1 and suggest metabolomic
fingerprinting to elucidate this phenomenon.

Fourier-transform infrared (FTIR) spectroscopy was
introduced in the early nineties to provide the molecular
fingerprint of microorganisms describing the metabolic state
of whole cells in a specific experimental condition (Helm
et al., 1991; Naumann et al., 1991; Corte et al., 2015a). FTIR
spectroscopy is an high-throughput technique to achieve massive
and rapid information at very low running costs (Timmins et al.,
1998; Kohler et al., 2015). A powerful application of this
technique is the characterization of the physiological status of
microbial cells under stress, indicating the type of molecules
involved in a differential response and quantifying the extent
of such stress response(s) (Aguilera et al., 2006; Dean et al.,
2010; Mihoubi et al., 2017; Nguyen et al., 2017; Canal et al.,
2019). Moreover, a FTIR-based assay has been developed in our
laboratory for the rapid evaluation of the stress-induced cell
status in response to different conditions, with the rationale
that stress conditions can alter the cell metabolome long before
cellular death occurs (Corte et al., 2010, 2015b; Favaro et al.,
2016; Moktaduzzaman et al., 2016).

This work aims to test the hypothesis that the metabolic
burden and the metabolomic perturbation induced by the δ-
integration of a yeast strain, could differ significantly. For this
purpose, the location and the extent of the δ -integration
were characterized and a series of comparisons between the
parental and the recombinant strains were performed to assess
their metabolic performances and metabolomic alterations in
different conditions typical of the bioethanol industry. Moreover,
a novel procedure has been introduced to obtain robust statistical
significance of the observed metabolomic variations.

MATERIALS AND METHODS

Cultures and Growth Conditions
The yeast strains employed in this work are: S. cerevisiaeM2n, an
industrial distillery yeast (Favaro et al., 2015) and M2n[pBDK1-
BGL3]-C1, recently developed through the delta-integration of

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 2 November 2019 | Volume 7 | Article 376

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Favaro et al. Metabolomic Alterations by δ-Integration

the BGL3 gene of Phanaerochaete chrysosporium into the M2n
chromosomes (Cagnin et al., 2019).

For the incubation under aerobic condition, each pre-culture
was inoculated at an optical density at 600 nm (OD600) = 0.2 in
500mL bottles containing 50mL of fresh YNB (Yeast Nitrogen
Base, Sigma-Aldrich, Saint Louis, MO, USA) supplemented with
either 0.1% glucose and 1.8% glycerol or the equivalent amount
of cellobiose (2.05%) and grown at 25◦C under shaking at 150
rpm. Growth under oxygen-limited condition was carried out by
inoculating with pre-cultures at OD600 = 0.2 in 100mL bottles
containing 10mL of fresh YNB supplemented with either 2.0%
glucose or the equivalent amount of cellobiose (2.05%). Bottles
were sealed with rubber stoppers, incubated at 25◦C and mixed
at 150 rpm on amagnetic stirrer. Syringe needles pierced through
the bottle stopper served for sampling purposes and carbon
dioxide release.

Cell growth wasmonitored by determiningOD600. At targeted
growth phases (lag, early and late exponential, early and late
stationary, and death stages), cells suspensions were sampled
and prepared for FTIR analysis as detailed in “Metabolomic
fingerprint of growth” paragraph.

Cells suspensions for the FTIR based bioassay were prepared
inoculating each strain at OD600 = 0.2 in YPD medium (yeast
extract 1%, peptone 1%, and dextrose 2% Difco Laboratories,
USA) and grown by shaking at 200 rpm for 18 h at 25◦C. Each
suspension was sampled and prepared for FTIR based bioassay,
as detailed below in the “Cell stressing” paragraph.

Genomic DNA Extraction and Library
Sequencing
Genomic DNA was extracted from overnight yeast cultures by
zymolyase digestion and standard phenol-chloroform extraction
(Treu et al., 2014). A combined sequencing approach was then
applied using Illumina and Oxford Nanopore MinION single
molecule sequencers. Illumina library was generated using the
TruSeq DNA PCR-Free Library Prep Kit (Illumina Inc., San
Diego CA) and Covaris S2 (Woburn, MA) for a 550-bp average
fragment size. Library was loaded onto the flow cell provided
in the NextSeq 500 Reagent kit v2 (150 cycles) (Illumina Inc.,
San Diego CA) and sequenced on a NextSeq 500 (Illumina
Inc., San Diego CA) platform with a paired-end protocol and
read lengths of 151 bp at the CRIBI Biotechnology Center
(Padova, Italy). Nanopore library was prepared according to
SQK-LSK109 ligation sequencing kit and sequenced on a FLO-
MIN106 R9 flowcell.

Next Generation Sequencing Data Analysis
The genome assemblies of M2n and C1 strains were performed
with a de novo approach by in house developed pipeline for
combined Nanopore-Illumina sequences analysis. Briefly, the
long reads were corrected with the Canu software (Koren et al.,
2017) and assembled with SMARTdenovo (Ruan, 2019). The
obtained contigs were polished with Pilon software (Walker et al.,
2014) using the independent high-quality Illumina sequences and
ordered according to the S. cerevisiae S288c reference genome
using Mauve software (Darling et al., 2010). A whole genome
alignment was then obtained with nucmer (Kurtz et al., 2004) to

TABLE 1 | Inhibitor mixtures used in this study.

Inhibitors Concentration (mM)

A B C D

Acetic acid 20.00 40.00 60.00 120.00

Formic acid 7.00 13.00 20.00 27.00

Cinnamic acid 0.25 0.51 0.76 1.00

Coniferyl aldehyde 0.25 0.50 0.80 1.00

Furfural 7.00 14.00 22.00 29.00

HMF 6.50 13.00 19.00 25.00

highlight genome completeness. The final genome of S. cerevisiae
C1 was used to create a local database for BLAST analysis.
The integrated genes BGL3, KanMX (kanamycin resistance) and
PGK1 promoter and terminator sequences were used as queries
for BLAST search to determine the copy number of integrated
cassettes. Furthermore, plasmid backbone of the integrative
plasmid used to engineer C1 for the expression of BGL3 was
found in three copies in all the C1 genome: two copies between
the first and second BGL3 integrated cassette and a copy between
the second and third BGL3 integrated cassette. Raw reads of
S. cerevisiae M2n and C1 was deposited at GenBank under the
BioProject accession number PRJNA573579.

Stress Inducing Agents
Formic acid, acetic acid, furfural, 5-hydroxymethyl-2-
furaldehyde (HMF), cinnamic acid, and coniferyl aldehyde
have been selected as representative of three important groups
of inhibitors (aliphatic acids, furaldehydes, and aromatic
compounds) of lignocellulose hydrolysates. Inhibitors were all
obtained from Sigma (Sant Louis, MO, USA) and formulated
into four inhibitor mixtures at increasing concentrations in
distilled sterile water, as detailed in Table 1. Each inhibitor
concentration has been chosen based on literature data (Martin
and Jönsson, 2003; Favaro et al., 2016). Ethanol has been tested
at increasing concentration of 7.5, 15, 25, and 30% (v/v). Each
inhibitors mixture was also tested in absence of ethanol and at
ethanol concentration of 7.5%.

FTIR Analysis
Metabolomic Fingerprint of Growth
Cells suspensions, prepared as detailed in “Cultures and growth
conditions” section, were centrifuged (5min at 5,300 × g),
washed twice with distilled sterile water and re-suspended
in 1.5mL HPLC (High Performance Liquid Chromatography)
grade water to the final concentration of 2.5× 108 cells mL−1. For
each culture, 105 µL volume was sampled for three independent
FTIR readings (35 µL ml each, according to the technique
suggested by Essendoubi et al. (2005).

Cell Stress
A FTIR based assay for stress response analysis was carried out
according to the procedure proposed by Corte et al. (2010).
Briefly, each cells suspension was centrifuged, washed twice
with distilled sterile water and re-suspended in HPLC grade
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water to obtain an optical density of OD600 = 50. Each cell
suspension was distributed in 1.7mL polypropylene tubes, one
for each tested concentration of the chemicals. In each tube
were pipetted 500 µL cell suspension and 500 µL double
concentrate solution of the stress inducing agent, in order to
obtain the final concentrations of the chemicals reported in
Table 1 and a uniform cell density at OD600 = 25. Controls (0%
ethanol concentration, no inhibitor mixtures) was obtained by
re-suspending cells directly in distilled sterile water. All tests were
carried out in triplicate. The polypropylene tubes were incubated
1h at 25◦C in a shaking incubator set at 50 rpm. After the
incubation, cells were centrifuged (5min at 5,300 × g), washed
twice with distilled sterile water and resuspended in 1.5mLHPLC
grade water to the final concentration of 2.5× 108 cells mL−1. For
each culture, 105 µL volume was sampled for three independent
FTIR readings (35 µL each, according to the technique suggested
by Essendoubi et al. (2005).

Spectra Pre-processing
FTIR measurements were performed in transmission mode. All
spectra were recorded in the range between 4,000 and 400 cm−1.
Spectral resolution was set at 4 cm−1, sampling 256 scans per
sample to obtain high quality spectra (signal to noise ratio values
> 4,000 within the 2,100–1,900 cm−1 interval). The software
OPUS version 6.5 (BRUKER Optics GmbH, Ettlingen, Germany)
was used to assess the quality test, subtract the interference of
atmospheric CO2 and water vapor, correct baseline (rubberband
method with 64 points), and to apply vector normalization to the
whole spectra.

Assessment of Cells Viability
The viability assessment was carried out in parallel with the
FTIR analysis to compare the metabolomic alteration with
the loss of viability. One hundred microliters of each cells
suspension prepared for the FTIR analysis were serial diluted
to determine the viable cell counting, in triplicate, on YPDA
+ chloramphenicol (0.5 g L−1) plates. The biocidal effect of the
tested compounds was highlighted as cell mortality induced at
different concentrations. The cell mortality (M) was calculated
as M = (1 – Cv/Ct) × 100, where Cv is the number of viable
cells in the tested sample and Ct the number of viable cells in
the control suspension.

Statistical Analyses
PCA Analysis
Data were analyzed by principal component analysis (PCA),
a multivariate statistical unsupervised method, frequently used
to reduce complex multidimensional data sets to few principal
components. PCA analysis can be applied by using either the
entire spectrum, with or without a baseline subtraction, or
specific integrated areas. The second method is routinely used
(e.g., mass spectrometer elaboration procedures) to reduce noise
and minimize the number of variables that permit to obtain clear
identification of the species. In this work, we adopted the first
method, more common in vibrational spectroscopy applications,
for the analysis of the whole frequency range between 3,800 and
600 cm−1, except the region between 2,800 and 1,800 cm−1,

after baseline subtraction and normalization. This method allows
to take into account both intensity variation of well-defined
peaks and changes in the shape of complex (convoluted) band
structures. “prcomp” and “pca2d” open source R routines (www.
cran.org) have been used for the PCA analysis.

Significant Wavelengths Analysis Throughout the

Spectra
In order to show and select the spectral regions with statistically
significant differences, an R script (www.cran.org) was employed
to reiteratively carry out the following operations:

a. Pairs of spectra, each with at least three replicas, were
compared using the Student t-test for each wavelength
separately, or with a moving average covering 10
wave numbers.

b. For each wave number, the calculated p-value was recorded.
This operation produced, for each pair of spectra, a vector of
p-values, that were subsequently transformed in 1 (for p <

0.01) and 0 (for p > 0.01). These vectors were collected in two
types of matrices:

i. One containing the vectors for all possible pairwise
comparisons, i.e., the (n2 – n)/2 comparisons among the
n conditions under test.

ii. One containing only the (n – 1) comparisons of the n
conditions with the control condition.

c. The matrix data were plotted with wave numbers in the x
axis and comparisons in the y axis. These plots reported
the presence of a wavelength with statistically significant
difference (p < 0.01) as a dot. The plots were separated by an
offset for better visualization.

d. The average number of significant wave numbers were
recorded in a square matrix in order to show the percentage
of significant differences for each pairwise comparison.

RESULTS

Metabolic Performances of M2n and
M2n[pBKD2-Pccbgl1]-C1 Strains Under
Aerobic and Oxygen Limited Conditions
The yeast strain M2n[pBKD2-Pccbgl1]-C1, hereafter referred to
as C1, was recently engineered to ferment cellobiose into ethanol
through the multiple δ-integration of the β-glucosidase BGL3
gene of P. chrysosporium under the constitutive transcriptional
control of PGK1 (Cagnin et al., 2019). The evidence that both
parental M2n and recombinant C1 strains displayed similar
ethanol yield and growth rate from glucose suggested us that
the multiple δ-integration and expression of the BGL3 genes
did not result in any evident metabolic burden when strains
were grown in glucose under oxygen limiting conditions (Cagnin
et al., 2019). Moreover, aerobic growth determined in microtiter
plates on glycerol (1.8%) and the equivalent amount of glucose
(2%) showed similar µmax values for both strains, confirming
that the integration of multiple copies of this cellulase does
not impose metabolic burdens on yeast metabolism in terms of
growth performances.
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In this study, a more detailed analysis has been carried out to
further investigate the physiological status of the recombinant
strain C1 by comparing their metabolic performances when
exposed to different carbon courses and incubation settings
typical of the bioethanol industry. This evaluation takes into
account the expected catabolism of the yeast S. cerevisiae in
a Consolidated BioProcessing (CBP) bioethanol scenario. In
this context, a cellobiose-fermenting yeast is likely to start the
cellobiose hydrolysis under aerobic conditions and then ferment
the resulting glucose. Since the glucose concentration is expected
to exceed the Crabtree threshold (around 0.2% glucose), the
catabolism will presumably proceed by fermentation even in
presence of oxygen (Gombert et al., 2001). Following these
considerations, the growth kinetics were carried out aerobically
in glycerol to test the respiration conditions and under oxygen-
limited conditions in glucose, typical of a cell biomass under
intensive CO2 flushing.

When utilizing glycerol aerobically, both strains showed
similar growth kinetics (Figure 1A), suggesting that the δ-
integration and expression of the BGL3 genes did not affect
the ability of S. cerevisiae C1 to use glycerol as carbon source
under aerobic conditions. Once incubated under oxygen-limited
settings, glucose consumption of the parental, and recombinant
strains did not significantly vary upon the time and growth curves
were very similar (Figure 1B). Moreover, both strains produced
ethanol levels of nearly 6.00 g/L, corresponding to 66% of the
maximum theoretical yield. It was assumed that, the similarity
of parameters such as growth rate and yield between strains, was
due to the lack of a metabolic burden in the engineered strain.

Sequencing and Assembly of M2n and C1
Genomes
The likely absence of metabolic burden suggests that no key
genes for the catabolism have been deleted or truncated by the
δ-integration. To confirm this hypothesis, the genome sequences
of both parental and recombinant strains were sequenced
combining long single-molecule reads (MiniIon) with short high-
quality reads (Illumina) in order to produce robust scaffolds
against which the Illumina reads can be mapped to increase the
overall assembly quality.

The average number of paired-end reads (2 × 150 bp) for
both strains was 2,605,232, resulting in a 64- and 62-fold genome
coverage for S. cerevisiae M2n and C1, respectively. In the
case of S. cerevisiae C1, the number of MinION sequences
were 198,892 with an average length of 8,948 bp. The parental
genome sequencing gave similar results with 176,882 MinION
sequences having an average length of 7,972 bp. For the
recombinant S. cerevisiae C1, de novo assembly generated 23
contigs having a total length of 12.2Mb, with a N50 of 187,462.
Notably, 14 chromosomes were assembled in a single contig.
Similarly, assembly of the parental S. cerevisiae M2n resulted
in 28 contigs, having a total length of 12.1Mb and a N50 of
170,717, with 12 chromosomes assembled in a single contig.
As reported in Figure 2, four copies of BGL3 sequence were
found in Chromosome XV of the recombinant yeast (see also
Table S1). A manual inspection of the recombinant site showed

that no alterations occurred in the flanking regions (Figure 2).
Additionally, the comparison between the parental and the
recombinant genomes did not reveal other major translocations
or deletions.

Metabolomic Fingerprint of Growth Under
Aerobic and Oxygen-Limited Conditions in
Glycerol and Glucose
FTIR spectra collected along cultivations of both strains in
glycerol and glucose were pre-processed and analyzed in order
to test the hypothesis that the metabolic burden may be coupled
or uncoupled with the metabolomic perturbation. A novel “R”
script named SWA (Significant Wavelengths Analysis) has been
developed to examine all the statistically relevant differences
between pairs of spectra from different experimental conditions.
SWA script compares pairs of spectra, each with three or more
replicas, using the Student t-test for each wavelength separately
and produces a plot where all the statistically significant
difference wavelengths (p < 0.01) are reported as dots. SWA
analysis was carried out in order to highlight in which spectral
region and, more in detail, at which spectral wavelengths,
the metabolomic FTIR fingerprint of recombinant strain was
statistically different from that of parental. SWA was performed
on IR spectra from both exponential and stationary growth
phases to obtain a metabolomic fingerprint of primary and
secondary metabolism (Figures 1C,D). Significant differences
among spectra were found during the stationary growth phase of
the recombinant strain in both glycerol (Figure 1C) and glucose
(Figure 1D). Under aerobic growth in glycerol, 41, 50, and 16%
wavelengths of C1 spectrum were significantly different from
that of M2n at 32, 48, and 72 h, respectively (Figure 1C). The
multiple integration and expression of the β-glucosidase BGL3
genes induced a significant metabolomic alteration during the
stationary growth of S. cerevisiae C1 in glucose. Metabolomic
patterns of Figure 1D displayed an increase percentage of
significant different wavelengths between the fingerprints of the
two strains shifting from 11% after 24 h to 93 and 82% after
48 and 72 h, respectively. All these differences are detailed in
Table S2.

In contrast to growth kinetics data, metabolomic analysis
revealed that the expression of the BGL3 genes produced a
significant alteration in cell’s physiology during the stationary
growth phase. The integration and expression of the BGL3
genes seems to play a role in the switch between primary
and secondary metabolism, changing the quality, and/or the
quantity of metabolites produced by the catabolism of the
recombinant strain.

Noteworthy, SWA revealed constant patterns of statistically
different wavelengths during the stationary growth in glycerol
and glucose (Table 2). Specifically, 95 wavelengths in glycerol
and 29 wavelengths in glucose were always significantly different
between the metabolomic fingerprints of the parental and
recombinant strain. These variations affected the Amides
(W2) and Mixed (W3) regions and the Amides and Typing
(W5) regions in glycerol and glucose, respectively (Table 2).
Moreover, wavelengths from 1,638 to 1,611 cm−1 (Amide I
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FIGURE 1 | Kinetic and metabolomic patterns of M2n and C1 strains during growth in glycerol and glucose. (A,B) Growth kinetics (filled symbols) and glycerol

consumption (empty symbols) of M2n and C1 strains (A); growth kinetics (filled symbols), glucose consumption (empty symbols), and ethanol production (dashed

lines) of M2n and C1 strains (B). Data shown are the mean values of three replicates and relative standard errors were reported. (C,D) FTIR spectroscopy assessment

of biochemical variation occurring during exponential (gray box) and stationary (red box) growth in glycerol (C) and glucose (D). All significant different wavelengths (p

< 0.01) between M2n and C1 strains are reported as red dots. The percentages (%) of wavelengths of C1 spectrum significantly different from that of M2n are also

reported.

FIGURE 2 | Mauve multi-alignment of the sequences of Chromosome XV of the parental S. cerevisiae M2n (contig 575) and the engineered strain C1 (contig 4). The

green plots above each sequence show the identity between the two strains. The dashed lines show the inserted region in respect to the M2n parental strain. The

white boxes beneath each sequence indicate the annotated genes and the purple ones show the δ-elements of Ty retrotransposon. In the case of the recombinant S.

cerevisiae C1, the colored boxes show the inserted cassette where green are the promoter sequences, cyan the BGL3 gene, red the terminator sequences and blue

the kanamycin resistance gene.

band components resulting from antiparallel plated sheets and
β-turns) and from 1,518 to 1,507 cm−1 (Amide II) were stably
different between strains regardless of the carbon source or
the type of metabolism. These bands, and particularly the
Amide I band, has been extensively studied for the role in the

secondary structure of proteins (Barth, 2007), suggesting that the
integration and/or expression of the BGL3 genes were somehow
linked to protein denaturation.

Differences detected by FTIR analysis in the molecular
fingerprint of the two strains during stationary growth
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TABLE 2 | Constantly patterns of significant different wavelengths (p < 0.01) throughout stationary growth of S. cerevisiae C1 in glucose and glycerol under

limited-oxygen and aerobic conditions, respectively.

Incubation Carbon source Spectral Region Wavelengths (cm−1) Functional groups*

From To

Aerobiosis Glycerol Amides (W2) 1,742 1,711 C=O (1,741);

1,705 1,699 Amide I

1,692 1,686 β-turn (1,686)

1,638 Amide I of β-Sheet

1,624 1,568 Amide I of β-Sheet

1,559 1,555 Urea/triglycerides

1,541 1,501 Amide II (1,540);

Mixed region (W3) 1,500 1,483 O=C–O−1 stretch (1,490);

1,474 1,470

1,458 1,454 CH2 (1,457);

Limited-oxygen conditions Glucose Amides (W2) 1,638 1,634 Amide I of β-sheet

1,626 1,611 Amide I of β-sheet

1,672 Turns

1,518 1,507 Shoulder

Typing region (W5) 723 Phosphate group—Nucleic acid

716 702 Phosphate group—Nucleic acid

*Sene et al., 1994; Lasch et al., 2002; Mordehai et al., 2003; Fabian and Naumann, 2004; Yu and Irudayaraj, 2005; Downes et al., 2010; Bellisola and Sorio, 2012; Abidi et al., 2014.

could be due to a depletion in cellular energy status in
both glycerol and glucose cultivation. Glycerol consumption
stopped after 24 h, although more than 12 g/L of this sugar
was still available (Figure 1A), and the major metabolomic
differences were registered after 32, 48, and 72 h of incubation
(Figure 1C). Furthermore, in the case of glucose growth
kinetics, significant metabolomic alterations among the
strains were detected in cells after 24 h (Figure 1D) when
glucose had been already depleted by the strains within 8 h
(Figure 1B).

In both glucose and glycerol stationary phases, the cells had
a limited, if any, catabolic activity: in the latter case, this is due
to the lack of carbon source, whereas in the former case, oxygen
limitation is likely the factor constraining energy production.
The question remains on why the effect of the residual and
limiting energy (or energy rich compounds) was observed in the
recombinant strain earlier than in the wild type.

Metabolic and Metabolomic Evaluation of
Recombinant C1 Strain in Cellobiose
To compare the metabolic performances and the metabolomic
profiles during growth on this xenobiotic carbon and energy
source, the recombinant C1 strain was incubated in cellobiose
under aerobic and oxygen-limiting conditions (Figures 3A,B).
As expected, the parental yeast S. cerevisiae M2n, included as
benchmark, did not grow using this carbon source. On contrary,
the engineered C1 strain was able to consume the dimer and
grow, confirming the phenotype recently described by our group
(Cagnin et al., 2019). Under oxygen-limited conditions, ethanol
levels of about 3 g/L were produced, with an ethanol yield

corresponding to 79% of the theoretical (0.51 g ethanol per g of
consumed glucose equivalent).

The growth of S. cerevisiae C1 is not directly comparable with
that of wild type on any carbon source, since the concentration
of the glucose released from cellobiose remained likely below the
Crabtree effect threshold and thus induced a respiration behavior
similar to that recorded on glycerol. On the other hand, glycerol
utilization, requires a two-step degradation process (Sprague and
Cronan, 1977) before entering into glycolysis.

For this reason, SWA analysis compared spectra of the
recombinant strain in cellobiose in aerobic and oxygen-limited
incubations with those from the same physiological conditions
in glycerol and glucose. The analysis has been focused on
the middle-exponential and late-stationary growth phases
(Figures 3C,D). Once incubated under aerobic conditions,
the metabolome of recombinant strain in cellobiose was
different from that in glycerol, both at exponential and
stationary phases. Differences were observed in all the
spectral regions (Table S3) and increased from 47 to 70%
of wavelengths from exponential to stationary growth
(Figure 3C). Conversely, under oxygen-limited conditions,
the footprint of recombinant strain during exponential growth
in cellobiose was drastically different from that in glucose
(90% significant differences) whereas no variation has been
highlighted matching the two metabolomic fingerprints of the
stationary phase.

As expected, the detected metabolomic differences are
ascribed to the different type and availability of carbon
sources. When cells were grown in the presence of oxygen,
the availability of glucose is strictly linked to the cellobiose
hydrolysis rate and to the time required for glycerol conversion
into glucose (Sprague and Cronan, 1977). On contrary, under

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 7 November 2019 | Volume 7 | Article 376

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Favaro et al. Metabolomic Alterations by δ-Integration

FIGURE 3 | Growth kinetics, ethanol production and metabolic variation of S. cerevisiae M2n[pBKD2-Pccbgl1]-C1 in cellobiose (2.05%) under aerobic and

oxygen-limited conditions. (A,B) Growth kinetics (filled symbols). cellobiose consumption (g/L) (empty symbols) and ethanol production (red symbol) of C1 strain under

aerobic (A) and oxygen limited conditions (B). C1 growth in glycerol and glucose, under aerobic and oxygen limiting conditions, is reported as dashed orange line in

(A,B), respectively. The parental M2n yeast, not able to grow in cellobiose, is included as benchmark (dark gray lines). Data shown are the mean values of three

replicates and relative standard errors were reported. Gray circle and red triangle symbols indicate middle-exponential and late-stationary phase samples employed for

FTIR analysis. (C,D) FTIR spectroscopy assessment of biochemical variation occurring during exponential (gray box) and stationary (red box) growth in cellobiose

(2.05%) under aerobic and oxygen-limited conditions. SWA analysis was carried out by comparing spectra of the C1 strain in cellobiose with those from the same

physiological conditions in (C) glycerol and (D) glucose. All significant different wavelengths (p < 0.01) are reported as red dots. The percentages (%) of spectrum

wavelengths of C1 cells grown in cellobiose significantly different from those of C1 cells grown in glycerol or glucose are also reported.

oxygen-limited conditions (Figure 3D), the two profiles are
totally divergent (exponential growth) until stationary phase
when glucose has been depleted (Figure 1B) and cellobiose
hydrolysis stopped (Figure 3B).

Stress Response
A FTIR-based assay, already employed for ecotoxicological
assessment (Corte et al., 2010; Favaro et al., 2016; Roscini
et al., 2019), was carried out to evaluate the type and
extent of perturbations induced by stress conditions. Attention
was focused on growth conditions typical of lignocellulosic
ethanol industry such as high ethanol and lignocellulosic
inhibitors concentrations.

Effect of Ethanol Exposure on the Intracellular

Metabolite Profiles of M2n and C1 Strains
PCA analysis of M2n and C1 metabolomic profiles showed that
spectral data variance was mainly distributed according to the
first principal component PC1 (90.71%), which clearly separates
the spectra at high ethanol concentrations (25 and 30%) from all
the other levels (Figure 4A). These data confirmed the outcomes
of cell viability analysis indicating that both strains were able to

tolerate 7.5 and 15% of alcohol without any viability loss, whereas
100% mortality was observed at 25 and 30% ethanol.

SWA patterns pointed out that the lower ethanol
concentration (7.5%) did not significantly alter the metabolome
of parental and recombinant strains (Figure 4B). Conversely,
15% ethanol induced different alterations of the metabolomic
profiles, evidencing an involvement of the fatty acids region
(W1) in the M2n strain, and a widespread effect on all the
other regions in the recombinant C1 (Figure 4C; Table S4).
These results are in agreement with previous studies describing
S. cerevisiae response to ethanol. Ethanol exposure has been
reported to mainly induce changes in metabolites involved in
the metabolism of carbohydrates, lipids and aminoacids. S.
cerevisiae ethanol-treated cells change the level of fatty acids
to decrease membrane fluidity, maintaining the integrity of
the plasma membrane (Aguilera et al., 2006). Under ethanol
stress, glycolysis was inhibited and changes in the levels of fatty
acids and amino acids might confer ethanol tolerance to S.
cerevisiae (Li et al., 2012). The global perturbation observed
at higher ethanol concentrations (25 and 30%) was associated
to an increased membrane permeability or to the chemical
reactions occurring during cell death (post-mortem reaction)
(Corte et al., 2015b).
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FIGURE 4 | Stress response of S. cerevisiae M2n and C1 strains to increasing ethanol concentrations. (A) PCA score plot obtained from the IR spectra of M2n (black)

and C1 (red) strains at 0, 7.5, 15, 25, and 30% (v/v) ethanol. (B,C) SWA patterns of (B) M2n and (C) C1 strains at 0, 7.5, 15, 25, and 30% (v/v) ethanol. All significant

different wavelengths (p < 0.01) between M2n and C1 spectra at the tested concentrations and those of the respective controls (cells directly resuspended in water)

are reported as dots.

TABLE 3 | Mortality (%) induced by four concentrations of inhibitors mixture with

or without 7.5% ethanol.

Strain Ethanol % (v/v) Inhibitor mixtures

A B C D

M2n 0 11 39 100 100

C1 14 47 100 100

M2n 7.5 18 74 100 100

C1 20 83 100 100

Stress Induced by Exposure to Inhibitory Mixtures

and Ethanol
FTIR spectroscopy was also used to investigate the response of
the parental and recombinant strains to the stress induced by
the exposure to increasing concentrations of inhibitory mixtures,
with or without 7.5% ethanol.

The four inhibitors mixtures caused similar mortality in
the two strains, both with or without 7.5% ethanol: the lower
inhibitors concentrations the lower biocidal activity, whereas
inhibitors mixtures C and D completely hindered cell viability of
both strains (Table 3).

PCA score plot explained 97.69% of the total variance
(Figure 5A), mainly accounted by the first principal component
PC1 (96.15%). PC1 produced a clear separation of spectra of dead
cells (treated with C and D mixtures) from those of living cells
(treated with A and B mixtures), with or without ethanol.

SWA patterns allowed to make a more detailed analysis of
the response of M2n and C1 strains to these stress conditions
(Figures 5B–E). No significant differences were detected between

control and M2n stressed cells exposed to mixtures A and
B (Figure 5B) whereas, at higher inhibitors concentrations
(C and D mixtures), significant spectral alterations were
observed (Table S5). On the other hand, the recombinant C1
strain responded differently to these stress conditions, showing
a metabolomic reaction that involved all spectral regions
and wavelengths already at the lowest inhibitory mixtures
concentrations (Table S5), independently from cell viability
(Figure 5C). Spectral alterations induced by mixtures C and
D corresponds to a post-mortem metabolomic damage (100%
mortality), while those induced by A and B represent the active
response of yeast cells.

A similar picture has been detected when cells were
exposed to 7.5% ethanol and inhibitors mixtures (Figures 5D,E;
Table S6). At lower inhibitors concentrations (mixtures A and
B), M2n cells did not alter their metabolic activity although
showed an increased sensitivity to these stress compounds
(Table 3). Conversely, supplementing 7.5% ethanol to the
higher inhibitors concentrations (mixtures C and D) resulted
in a complete biocidal effect (Table 3) accompanied by an
amplified metabolomic reaction (Figure 5D). In the case of S.
cerevisiae C1, the exposure to ethanol resulted in a different
cell reaction, showing an increased mortality, reaching 100%
already at mixture B concentration, and a significant decreased
metabolomic response to A and B mixtures compared to that
observed in absence of ethanol (Figure 5E).

In general, the two strains displayed a different behavior in the
presence of these stressful conditions. S. cerevisiae M2n seems
to react as a resistant strain, coupling low mortality and low
metabolomic response (Table 3; Figures 5B–D). On contrary,
despite the mortality values similar to those of the parental yeast,
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FIGURE 5 | Stress response of S. cerevisiae M2n and C1 strains to increasing concentrations of lignocellulosic inhibitors mixtures formulated with 0 or 7.5% of

ethanol. (A) PCA score plot obtained from the IR spectra of M2n and C1 strains at 0% (blue) and 7.5% (red) ethanol. (B,C) SWA patterns of significant wavelengths (p

< 0.01) throughout spectra of (B) M2n and (C) C1 cells exposed to increasing concentrations of inhibitor mixture at 0 or 7.5% ethanol, respectively. (D,E) SWA

patterns of significant wavelengths (p < 0.01) throughout spectra of (D) M2n and (E) C1 cells exposed to increasing concentrations of inhibitor mixture with 0 or 7.5%

of ethanol, respectively. The percentages (%) of wavelengths of C1 spectrum significantly different from that of M2n are also reported.

the recombinant C1 appears to behave as a sensitive strain, which
reacts to stressors changing the quality and/or the quantity of the
endo-metabolites produced (Figures 5C–E).

DISCUSSION

Metabolic burden is a longstanding problem in the engineering of
microbes which often leads to undesirable physiological changes
(Ding et al., 2018; Wei et al., 2018). In the case of lignocellulosic
yeast strains development, physiological responses to metabolic
burden are usually evaluated as metabolic performances of the
engineered strains such as growth rate, biomass yield and specific
substrate consumption rate (Van Rensburg et al., 2012; Ding
et al., 2018).

Overall, this study indicates that themultiple δ-integration of a
recombinant β-glucosidase gene in Chromosome XV (Figure 2)
did not differentially affect the ability of the engineered strain to
grow in the presence of different carbon sources both aerobically
and under oxygen-limiting conditions (Figures 1A,B, 3A,B).
Furthermore, once exposed to increasing concentrations of
ethanol and inhibitory compounds, the recombinant strain was
found to be as tolerant as the parental yeast (Table 3).

On the contrary, the metabolomic profiles of the recombinant
strain were completely altered both under growth (Figures 1,

3C,D) and stress conditions (Figures 4, 5). Under growth
conditions, the metabolome of S. cerevisiae C1 rapidly changed
once the cells entered the stationary phase (Figures 1C,D,
3C,D). This finding could be explained by considering that
the production rate of the recombinant enzyme is proportional
to the growth rate, implying that proteins and metabolites
concentration remained fairly constant. Assuming that the
heterologous protein production continued during the stationary
phase, an accumulation of the protein can be expected. Similarly,
if some metabolites are produced due to the presence of BGL3, it
would accumulate for the same reasons described above, likewise
to the reported accumulation of an internal inducer due to a
gal7 mutation in Kluyveromyces lactis (Cardinali et al., 1997).
The hydrolysing activity of BGL3 was indeed mostly found to
be evident at stationary phase (Cagnin et al., 2019). As such,
during the exponential phase, the synthesis of the recombinant
protein achieved a threshold thus accumulating metabolites and
shaping differentially the metabolome of the stationary phase.
Whether the metabolomic alteration was directly due to BGL3
production or indirectly determined via some yet to discover
metabolites, is matter of further investigation already planned in
our laboratories.

One possibility to explain this sudden and large metabolomic
change is to hypothesize that it is partly due to the alteration
induced directly or indirectly by multiple integration and
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expression of BGL3 and partly to other alterations to compensate
the former ones. In this way, our hypothesis is that the
metabolomic change can be dissected in “alterative” and
“compensative”, with a null output in terms of metabolic
performances. In this sort of altered metabolomic homeostasis,
changes induced by the genetic engineering are continuously
balanced by compensative metabolomic alterations as in a
cantilever, up to reach a final steady state by attenuating the
oscillations after each single perturbation. The fact that the
metabolomic alterations last throughout the whole stationary
phase could indicate that the perturbation is generated
continuously, therefore producing an equally continuous
compensation. The reasons for choosing the metabolomic
fingerprint rather than a full metabolomic analysis is threefold.
Firstly, the metabolomic fingerprint gives a holistic view of the
metabolome and is well-established as a method to qualify and
quantify the stress response of microorganisms (Aguilera et al.,
2006; Corte et al., 2010; Mihoubi et al., 2017; Nguyen et al.,
2017; Canal et al., 2019). Secondly, fingerprinting approach is
suitable for large and complex experimental designs to explore
several conditions, the most significant of which could be deeply
analyzed by means of metabolomic, transcriptomic, and/or
proteomic insights. Finally, the metabolomic fingerprint has less
details than the full metabolomics, implying that only relatively
gross changes are displayed and that the full “omics” approach
will show also changes not detectable at the fingerprint level.
This means that, if metabolomic changes are detected with FTIR,
they are supposedly rather stable and significant. Further studies
dealing with full omics are in progress also to give insights on
the differences to be expected by the metabolomic fingerprinting
and full “omics” analyses.

CONCLUSIONS

This research indicates that, even in the absence of a
metabolic burden, the introduction of a heterologous gene
induced huge metabolomic alterations. Considering that
four copies of the BGL3 gene have been integrated into
the Chromosome XV without truncating or deleting any
parental genes, or promoter sequences, future studies are
needed to unveil the mechanisms implied in the hypothesis

of alterative and compensative metabolomic changes.
Transcriptomic, metabolomics, and proteomic insights will
be useful to investigate this fascinating phenomenon and
will be instrumental to elucidate the mechanism induced by
this δ-integration in an industrial host strain. Beyond the
general and speculative interest, this topic is also important
at applicative level because a deeper understanding of the
interplay between metabolic performances and metabolomic
responses is a key factor toward the optimization of protein
production in engineered strains for efficient second-generation
bioethanol applications.
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