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AN EXTENSION THEOREM FOR REGULAR FUNCTIONS OF

TWO QUATERNIONIC VARIABLES

LUCA BARACCO, MARTINO FASSINA, AND STEFANO PINTON

Abstract. For functions of two quaternionic variables that are regular in the
sense of Fueter, we establish a result similar in spirit to the Hanges and Trèves
theorem. Namely, we show that a ball contained in the boundary of a domain
is a propagator of regular extendability across the boundary.

1. Introduction and Main Results

The algebra H of quaternions was introduced in 1843 by William R. Hamilton
in the attempt to extend the system of complex numbers. Recall that a quaternion
p ∈ H can be written as

p = x0 + x1i+ x2j+ x3k, xi ∈ R, (1.1)

where i, j,k are imaginary units (i2 = j2 = k2 = −1) satisfying the following
multiplicative relations:

ij = −ji = k, jk = −kj = i, ki = −ik = j.

It is natural to ask if there exists a class of functions on quaternions that replicates
the classical theory of holomorphic functions in one and several complex variables.
One approach to this question is to define the so called Cauchy-Fueter operator

∂̄ := ∂x0
+ i∂x1

+ j∂x2
+ k∂x3

,

and declare a function to be (left) regular if it satisfies ∂̄f = 0, in analogy with the
usual Cauchy-Riemann equations. This formulation is due to Moisil [13]. Fueter and
his students then gave a great impulse to the development of the theory of regular
functions [5, 6, 8]. (See also the survey paper [15]).

Fueter and his school were able to obtain a quaternionic counterpart for regular
functions of many classical theorems of complex analysis in one variable such as
Cauchy’s theorem, Liouville’s theorem and Laurent series expansion. (See [4] for
a survey of these results). Since then, the theory of regular functions has been
greatly developed, and the parallel with holomorphic functions has been extended to
several variables. For instance, Pertici [14] established a Bochner-Martinelli integral
formula for regular functions in Hn, and used it to prove an analog of Hartogs
extension theorem in the quaternionic setting. A purely algebraic proof of Hartogs
extension for regular functions appears in [3].

In this paper we consider (left) regular functions in the sense described above.
We pursue the parallel with holomorphic functions by proving an analog of two
classical results in the theory of several complex variables.
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A famous theorem of Hartogs states that a function is holomorphic in Cn if and
only if it satisfies the Cauchy-Riemann equations in each variable separately ([10,
Theorem 2.2.8]). In other words, no joint regularity whatsoever is required to ensure
analyticity. We observe that a similar result holds for regular functions in Hn.

Proposition 1.1. (Proposition 3.3) Let Ω be an open domain in Hn and f : Ω → H

a function satisfying the Cauchy-Fueter equations in each variable separately. Then
f is regular in Ω.

Proposition 1.1 follows easily from a theorem of Avanissian [1, Theorem 1] on
separately harmonic functions (see Remark 3.4). We decided to present a detailed
proof in order to introduce the complexification techniques from [1], which play a
crucial role in the proof of the main result.

The main theorem of the paper extends to the quaternionic setting a well-known
general principle in complex analysis: complex curves in a hypersurface M are
propagators of holomorphic extendability from either side of M . (See [16, Chapter
1.7]). The main result in this direction is due to Hanges and Trèves [9], and was
proved using microlocal techniques. See the papers [2] and [12] for other instances
of this phenomenon. Here is our result.

Theorem 1.2. (Theorem 4.3) Let Ω ⊂ H
2 be a domain with C2 boundary ∂Ω. Let

B1 denote the unit ball in H centered at the origin, and assume that γ := B1 × {0}
is contained in ∂Ω. Let U be a neighborhood of (1, 0) in H2, and suppose that f is
a regular function on Ω∪U . Then there exists a neighborhood W of γ in H2 and a
regular function F on W such that F|W∩Ω = f|W∩Ω. That is, there exists a regular
extension of f to a neighborhood of γ.

Figure 1 gives a simple illustration of Theorem 1.2. One starts with a function f
that is regular in the grey region Ω∪U . The ball γ in the boundary ∂Ω propagates
the regular extension of f across ∂Ω to a full neighborhood W of γ.

(1, 0)γ

Ω

∂Ω

U

W

Figure 1

The paper is organized as follows. In Section 2 we give a self-contained exposition
of all the results that we need from the theory of regular functions in one quater-
nionic variable. Most of the material in this section is well known. In Section 3 and
Section 4 we present the proofs of Proposition 1.1 and Theorem 1.2 respectively.

2. Regular functions of one quaternionic variable

We start by recalling some definitions and setting the notation. For an element
p ∈ H as in (1.1), we define the conjugate p̄ := x0 − x1i− x2j− x3k. We then let

|p| := √
pp̄ =

√

x2
0 + x2

1 + x2
2 + x2

3.
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Note that if p ∈ H, p 6= 0, then p−1 = p̄/|p|2.
We now introduce the Cauchy-Fueter operators

∂̄ := ∂x0
+ i∂x1

+ j∂x2
+ k∂x3

∂ := ∂x0
− i∂x1

− j∂x2
− k∂x3

∂̄R := ∂x0
+ ∂x1

i+ ∂x2
j+ ∂x3

k ∂R := ∂x0
− ∂x1

i− ∂x2
j− ∂x3

k.

Definition 2.1. Let Ω ⊂ H be an open set. A C1 function f : Ω → H is said to be
left regular if ∂̄f = 0 in Ω and right regular if ∂̄Rf = 0 in Ω.

Throughout the paper we will deal with left regular functions. We will thus use
the term regular function to mean a left regular function. Obviously, a similar theory
can be formulated for right regular functions.

As stated in the next theorem, regular functions satisfy an analog of the Cauchy
integral representation formula.

Theorem 2.2. Let Ω ⊂ H be an open set and f : Ω → H a left regular function.
Let Ω′ be an open bounded set with smooth boundary such that Ω′ ⊂ Ω. Then, for
every p0 ∈ Ω′, we have

f(p0) =
1

2π2

∫

∂Ω′

(p− p0)
−1

|p− p0|2
D(p)f(p), (2.1)

where D(p) := dx1∧dx2∧dx3−idx0∧dx2∧dx3+jdx0∧dx1∧dx3−kdx0∧dx1∧dx2.

It follows from the Cauchy-Fueter integral formula (2.1) that regular functions
are real analytic and satisfy the maximum principle. The proofs are similar to those
of the corresponding statements for holomorphic functions of one complex variable.

The next lemma shows another important consequence of the integral represen-
tation formula (2.1): a bounded regular function admits an estimate for its partial
derivatives, uniform on compact sets.

Lemma 2.3. Let Ω ⊂ H be an open set and f : Ω → H a left regular function.
Assume that |f | ≤ M on Ω for some constant M ≥ 0. Then, for each p0 ∈ Ω and
i = 0, 1, 2, 3, we have

|∂xi
f(p0)| ≤ C

M

dist(p0, ∂Ω)
,

where C is a universal constant independent of f and Ω.

As we noted above, regular functions are real analytic. Unlike the case of holo-
morphic functions, however, the power series of a regular function does not have a
natural domain of convergence. The following lemma gives a lower bound for the
radius of convergence of the Taylor series at 0 of a regular function on a ball.

Lemma 2.4. Let BR ⊂ H be the ball of radius R centered at 0 and f : BR → H

a regular function. Then the Taylor series of f at 0 converges to f on the ball of
radius R(

√
2− 1) centered at the origin.

Proof. It is not restrictive to assume that f is continuous up to the boundary ∂BR.
The Cauchy-Fueter formula (2.1) implies, for every p0 ∈ BR, that

f(p0) =
1

2π2

∫

∂BR

p− p0
|p− p0|4

D(p)f(p). (2.2)

We rewrite the kernel as

p− p0
|p− p0|4

=
p

|p|4 (1 − p−1p0)
1

(|1− p−1p0|2)2
.
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Applying the identity

1

(1− x)2
=

+∞
∑

n=1

nxn−1, with x = 2Re(p−1p0)− |p−1p0|2,

we obtain

p− p0
|p− p0|4

=
p̄

|p|4 (1 − p−1p0)

+∞
∑

n=1

n(−2Re(p−1p0) + |p−1p0|2)n−1

=
p̄

|p|4 (1 − p−1p0)

+∞
∑

n=1

n

n−1
∑

k=0

(|p−1p0|2)k(−2Re(p−1p0))
n−1−k

(

n− 1

k

)

.

(2.3)

Note that the series in (2.3) is absolutely convergent for |p−1p0|2+2|Re(p−1p0)| < 1.
The most restrictive situation is when p−1p0 is real, in which case we have

|p−1p0|2 + 2|(p−1p0)| < 1 ⇐⇒ |(p−1p0)| <
√
2− 1.

If we therefore assume |p0| < (
√
2− 1)R, then we can group the terms with homo-

geneus powers of p0, substitute (2.3) into (2.2) and integrate term by term. This
concludes the proof. �

Remark 2.5. The region of convergence of the power series of a regular function
is a widely studied subject [7], and better bounds than the one proved in Lemma
2.4 are available in the literature. We decided to include Lemma 2.4 because the
proof is elementary and self-contained, and the estimate obtained is sufficient for
our purposes.

We recall a standard fact about power series.

Proposition 2.6. Let In
l :=

∏n

i=1(−l, l) ⊂ Rn be the n-dimensional cube of side
2l centered at 0. Let

∑

α∈Nn aαx
α be a power series in Rn. Let |α| =

∑n

j=1 αj and

c := lim sup
|α|→+∞

|aα|
1

|α| ∈ [0,+∞].

Then the series
∑

α∈Nn aαx
α conveges on In

l if and only if 1 ≥ lc.

Remark 2.7. Assume that the regular function f is uniformly bounded in BR by a
positive constant M . For α ∈ Nn let ∂α = ∂α1

x1
∂α2

x2
∂α3

x3
∂α4

x4
. It follows from Lemma

2.4 and Proposition 2.6 that
∣

∣

∣

∣

∂αf(0)

α!

∣

∣

∣

∣

≤ 2|α|CM

((
√
2− 1)R)|α|

. (2.4)

for some constant C independent of α and f .

We will need the following theorem of Lelong.

Theorem 2.8. [11, Theorem 10] Let Ω ⊂ Cn be an open connected domain and
let D = Ω ∩ Rn denote its intersection with the real subspace. Let un : Ω → R be
a sequence of plurisubharmonic functions that are locally uniformly bounded from
above. Assume that there exists a continuous function g : Ω → R such that

lim sup
n→+∞

un(x) ≤ g(x) ∀x ∈ D.
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Then for every relatively compact subset K ⊂⊂ D and every ǫ > 0, there exists a
positive integer nK,ǫ such that, for every n ≥ nK,ǫ,

un(x) ≤ g(x) + ǫ ∀x ∈ K.

3. Regular functions of several quaternionic variables

We turn our attention to functions of several quaternionic variables. We denote
by p1, . . . , pn the coordinates in Hn and write ∂̄pi

for the Cauchy-Fueter derivative
in the direction of the variable pi.

Definition 3.1. Let Ω ⊂ Hn be an open set. We say that a function f : Ω → H

is (left) regular if f ∈ C1(Ω) and it satisfies the Cauchy-Fueter equations in all
variables, that is, ∂̄pi

f = 0 in Ω for i = 1, . . . , n.

Exploiting the Cauchy-Fueter integral formula of Theorem 2.2, it is easy to show
that regular functions are real analytic. In this section we show that real analyticity
follows even if the hypothesis f ∈ C1(Ω) is dropped. We thus formulate this a priori
weaker definition.

Definition 3.2. Let Ω ⊂ Hn be an open set. We say that a function f : Ω → H is
separately (left) regular if f is regular in each variable pj when the other variables
are given arbitrary fixed values.

It is obvious that a regular function on an open domain Ω ⊂ Hn is also separately
regular. In the next proposition we establish the converse.

Proposition 3.3. Let Ω be an open domain in Hn and f : Ω → H a separately
regular function. Then f is regular in Ω.

Remark 3.4. Proposition 3.3 can be easily proved by first observing that the com-
ponents of a regular function of a quaternionic variable are harmonic, and then
applying [1, Theorem 1], which states that separately harmonic functions are har-
monic. We present a full proof below, mainly following the reasoning of [1], with
some simplifications given by the Cauchy-Fueter integral formula. Spelling out the
argument in full gives us an opportunity to introduce the complexification tech-
niques that will be also used in the proof of Theorem 4.3.

We start the proof of Proposition 3.3 by showing that if f is also assumed to be
continuous in Ω, then the result follows easily.

Lemma 3.5. Let Ω ⊂ Hn be an open domain and f : Ω → H a separately regular
function which is also continuous in Ω. Then f is regular in Ω.

Proof. The only thing to prove is that f ∈ C1(Ω). We argue just for the case n = 2,
since the general case follows from iterating the same argument. Hence assume
Ω ⊂ H2, and let (p0, q0) ∈ Ω. Recall that we denote by Br(p0) ⊂ H a ball of radius
r centered at p0. Consider now the product of two balls Br1(p0)×Br2(q0) ⊂ Ω. The
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Cauchy-Fueter integral formula (2.1) implies

f(p0, q0) =
1

2π2

∫

∂Br1
(p0)

(p− p0)
−1

|p− p0|2
D(p) f(p, q0)

=
1

2π2

∫

∂Br1
(p0)

(p− p0)
−1

|p− p0|2
D(p)

(

1

2π2

∫

∂Br2
(q0)

(q − q0)
−1

|q − q0|2
D(q) f(p, q)

)

=
1

4π4

∫

∂Br1
(p0)×∂Br2

(q0)

(p− p0)
−1

|p− p0|2
D(p)

(q − q0)
−1

|q − q0|2
D(q) f(p, q),

where the last equality follows from Fubini’s theorem. Hence f is of class C1 (and
actually real analytic) in Ω. �

The next lemma shows that continuity for a separately regular function f is a
consequence of being uniformly bounded on compact sets.

Lemma 3.6. Let Ω ⊂ Hn be an open domain and f : Ω → H a separately regular
function which is uniformly bounded on compact subsets of Ω. Then f is regular in
Ω.

Proof. Lemma 2.3 implies that f is uniformly Lipschitz separately in the variables
pj with the same Lipschitz constant for all j = 1, . . . , n. Hence f is jointly continuous
in the variables pj , and therefore regular by Lemma 3.5. �

Proof of Proposition 3.3. We will only prove the statement for regular functions
of two quaternionic variables, since the general case then follows by iteration. It
is also not restrictive to assume that the domain of the function f is the product
B1 ×B1 ⊂ H2 of two unitary balls centered at the origin. Additionally, we can take
f to be defined up to the boundary. For each n ∈ N, let

En := {q ∈ B : |f(p, q)| ≤ n ∀p ∈ B1}.
Clearly En ⊂ En+1 for every n ∈ N. Moreover,

⋃

n∈N

En = B1.

The continuity of f(p, ·) for fixed p implies that if qk → q, with qk ∈ En for all k,
then q ∈ En. Thus En is closed for every n. By the Baire category theorem, there
exists M such that EM has non-empty interior. Assume that 0 is in the interior of
EM . Then f is uniformly bounded on B1 × Bǫ for some ǫ > 0. Indeed

|f(p, q)| ≤ M ∀(p, q) ∈ B1 × Bǫ.

It follows from Lemma 3.6 that f is regular and hence analytic on B1 ×Bǫ. At this
stage, we can even forget that f is separately regular in p outside the strip B1×Bǫ.
We will exploit the separate regularity in the variable q to prove that f is regular
in B1 × B1.

Consider the Taylor series of f at 0 with respect to the variable q:

f(p, q) =
∑

α∈N4

∂αf(p, 0)

α!
qα. (3.1)

We have used the notation qα(p) := yα0

0 yα1

1 yα2

2 yα3

3 , ∂α(p) := ∂α0

y0
∂α1

y1
∂α2

y2
∂α3

y3
, where

the yj are real coordinates for q, that is, q = y0 + y1i+ y2j+ y3k.
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For every multi-index α, the function

gα(p) :=
∂αf(p, 0)

α!

is regular in p = x0 + x1i+ x2j+ x3k. By Remark 2.7 we have

|gα(p)| ≤
2|α|CM

((
√
2− 1)ǫ)|α|

∀p ∈ B1. (3.2)

Since gα is left regular, the Cauchy-Fueter formula implies

gα(p) =
1

2π2

∫

∂BR

(ξ0 − x0)− (ξ1 − x1)i− (ξ2 − x2)j− (ξ3 − x3)k

((ξ0 − x0)2 + (ξ1 − x1)2 + (ξ2 − x2)2 + (ξ3 − x3)2)2
D(ζ)gα(ζ),

(3.3)
where ξ = ξ0+ξ1i+ξ2j+ξ3k. Since the kernel in the integral is a rational function, we
can follow the method of Avanissian [1, Section 3] and consider a complexification
of gα by taking xj ∈ C in equation (3.3). We thus obtain a function g̃α of the
complexified variable pC with values in C⊗H defined on an open subset Γ of C⊗H.
Under the natural identification of C⊗H with C4, we have

Γ =
{

x = (x0, x1, x2, x3) ∈ C
4
∣

∣

3
∑

l=0

(ξl − xl)
2 6= 0 for all ξ ∈ ∂B1

}

.

Consider the connected component of Γ that contains B1 and call it again Γ. The
fact that gα is uniformly bounded on B1 propagates to the complexification. Indeed,
exploiting the integral formula (3.3) and the estimate (3.2), we see that for every
compact set K ⊂ Γ there exists a constant τK > 0 such that

sup
K

|g̃α| ≤
2|α|CM

((
√
2− 1)ǫ)|α|

(1 + τK). (3.4)

For every multi-index α, consider the function uα defined on Γ by

uα(x) := log |g̃α(x)|
1

|α| .

The functions uα are plurisubharmonic and by (3.4) they are locally uniformly
bounded from above. Since f is regular in the variable q on the ball B1, Lemma 2.4
implies that the series (3.1) converges on the ball of radius

√
2−1, and in particular

on the cube I√
2−1

2

of side
√
2− 1 centered at 0. By Proposition 2.6, we have

lim sup
|α|→+∞

uα(x) ≤ log

(

2√
2− 1

)

.

Theorem 2.8 then implies that the series (3.1) converges uniformly on B1 × I√
2−1

2

,

and so f is smooth there. By repeating this argument, one can prove that f is
smooth everywhere in B1 × B1, and therefore regular there. �

4. Propagation of regular extension across the boundary

We begin this section by recalling some notation. We denote by BR(p) a ball
of radius R in H centered at a point p ∈ H, and by B

C

R(p
C) a ball of radius R in

C ⊗ H centered at a point pC ∈ C ⊗ H. Moreover, we write IR(p) for the cube
∏3

j=0(xj −R, xj +R) in H of side 2R centered at p = x0 + x1i+ x2j+ x3k ∈ H. If

the center (either of the ball or the cube) is not specified, then it is assumed to be
the origin.
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Definition 4.1. Let Ω ⊂ H2 be an open set and let f be a regular function on Ω.
For every point (p0, q0) ∈ Ω we define the quantity

rq(p0, q0) :=

(

lim sup
|α|→+∞

∣

∣

∣

∣

(∂αf(p0, q))|q=q0

α!

∣

∣

∣

∣

1

|α|
)−1

.

Note that rq(p0, q0) measures the convergence of the Taylor series of f at (p0, q0)
with respect to the variable q. Such series converges for q varying in the cube
Irq(p0,q0)(q0). If p0 × BR(q0) ⊂ Ω, then Lemma 2.4 implies rq(p0, q0) ≥ R(

√
2− 1).

Proposition 4.2. Let f be a regular function on B1 × Bǫ, and suppose that

rq(p, 0) ≥ R for all p ∈ B1.

Then there exists a regular function F on B1 × IR such that F|B1×Bǫ
= f .

Proof. The function f is jointly regular in the strip B1 × Bǫ. Moreover, we have
by hypothesis that for every fixed p ∈ B1 the function f(p, q) is regular in IR as a
function of the variable q. We wish to conclude that f is regular in B1 × IR. This
has already been achieved in the proof of Theorem 3.3. Recall thet a key role in
this step was played by Lelong’s Theorem 2.8. �

Theorem 4.3. Let Ω ⊂ H
2 be a domain with C2 boundary ∂Ω, and assume that

γ := B1 × {0} is contained in ∂Ω. Let U be a neighborhood of (1, 0) in H2, and
suppose that f is a regular function on Ω ∪ U . Then there exists a neighborhood
W of γ in H2 and a regular function F on W such that F|W∩Ω = f|W∩Ω. That is,
there exists a regular extension of f to a neighborhood of γ.

Proof. Let Ω be locally defined by ρ(p, q) < 0. We can assume without loss of
generality that

ρ(p, q) = ρ(x0, . . . , x3, y0, . . . , y3) = y0 + o(x2, y2).

Moreover, we can assume that ∇ρ (p, 0) = (0, 1 + σ(p)), where |σ(p)| ≤ ǫ′|p| for ǫ′
small. For ǫ > 0 consider the translated ball B1 × {−ǫ}. Note that for some ǫ′ > 0
we have that B1 ×Bǫ(1−ǫ′)(−ǫ) is contained in Ω. We complexify f with respect to
both variables p and q and consider the Taylor series with respect to q at (0,−ǫ) of

the complexified function f̃ . Then

f̃(pC, qC) =

+∞
∑

|α|=1

∂α
q f̃(p

C,−ǫ)

α!
(qC − ǫ)α. (4.1)

Here pC and qC denote the complexified variables in the sense already described in
the proof of Proposition 3.3. We now consider the complex disc D parameterized
by τ → (τ, 0, 0, 0,−ǫ, 0, 0, 0), |τ | ≤ 1− ǫ′′. For some small value of ǫ′′, the disc D lies

entirely inside the domain of the complexified function f̃ . For simplicity, we rescale
to make the radius of D equal to 1. We now consider the restriction to D of the
coefficients of the series (4.1). We let

uα(τ) := log

∣

∣

∣

∣

∣

∂α
q f̃(τ,−ǫ)

α!

∣

∣

∣

∣

∣

1

|α|

.
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The functions uα are subharmonic and uniformly bounded from above by Remark
2.7 and equation (3.4). By the submean property we have

uα(0) ≤
1

2π

∫ 2π

0

uα(e
iθ)dθ.

Fatou’s lemma yields

lim sup
|α|→+∞

uα(0) ≤
1

2π

∫ 2π

0

lim sup
|α|→+∞

uα(e
iθ)dθ. (4.2)

By the convergence of (4.1) we have that, up to taking a slightly smaller ǫ,

lim sup
|α|→+∞

uα(e
iθ) ≤ − log((

√
2− 1)ǫ) ∀θ. (4.3)

By hypothesis, the function f is regular on the product of two small balls of radius
2δ centered at the point (1,−ǫ). It is therefore possible to complexify f on the
product BC

δ (1)× BC

δ (−ǫ). Hence, when θ is close to 0, the series in (4.1) evaluated
at pC = eiθ converges on a ball of radius at least δ. For these values of θ, the
estimate (4.3) can be therefore improved to

lim sup
|α|→+∞

uα(e
iθ) ≤ − log(δ).

We obtain

lim sup
|α|→+∞

uα(0) ≤
1

2π

(

− (2π − δ) log((
√
2− 1)ǫ)− δ log((

√
2− 1)δ)

)

=
δ

2π
log

ǫ

δ
− log((

√
2− 1)ǫ).

By taking the exponential we have

lim sup
|α|→+∞

∣

∣

∣

∣

∣

∂α
q f̃(0,−ǫ)

α!

∣

∣

∣

∣

∣

1

|α|

≤ 1

(
√
2− 1)ǫ

( ǫ

δ

)
δ
2π

,

which implies that rq(0,−ǫ) ≥ ǫ(
√
2 − 1)

(

δ
ǫ

)
δ
2π . This estimate holds true for all

p close to 0. By choosing ǫ small enough, the radius of convegence is uniformly
greater than ǫ, and therefore the series defining f converges on a neighborhood of
(0, 0), thus extending f past the boundary by Proposition 4.2. �
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