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Human Mucosal Melanoma (hMM) is an aggressive neoplasm of neuroectodermal

origin with distinctive features from the more common cutaneous form of malignant

melanoma (cMM). At the molecular level, hMMs are characterized by large chromosomal

aberrations rather than single-nucleotide mutations, typically observed in cMM. Given

the scarcity of available cases, there have been many attempts to establish a reliable

animal model. In pet dogs, Canine Oral Melanoma (COM) is the most common

malignant tumor of the oral cavity, sharing clinical and histological aspects with hMM.

To improve the knowledge about COM’s genomic DNA alterations, in the present work,

formalin-fixed, paraffin-embedded (FFPE) samples of COM from different European

archives were collected to set up an array Comparative Genomic Hybridization (aCGH)

analysis to estimate recurrent Copy Number Aberrations (CNAs). DNA was extracted

in parallel from tumor and healthy fractions and 19 specimens were successfully

submitted to labeling and competitive hybridization. Data were statistically analyzed

through GISTIC2.0 and a pathway-enrichment analysis was performed with ClueGO.

Recurrent gained regions were detected, affecting chromosomes CFA 10, 13 and 30,

while lost regions involved chromosomes CFA 10, 11, 22, and 30. In particular, CFA

13 showed a whole-chromosome gain in 37% of the samples, while CFA 22 showed

a whole-chromosome loss in 25%. A distinctive sigmoidal trend was observed in CFA

10 and 30 in 25 and 30% of the samples, respectively. Comparative analysis revealed

that COM and hMM share common chromosomal changes in 32 regions. MAPK- and

PI3K-related genes were the most frequently involved, while pathway analysis revealed

statistically significant perturbation of cancer-related biological processes such as

immune response, drug metabolism, melanocytes homeostasis, and neo-angiogenesis.

The latter is a new evidence of a significant involvement of neovascularization-related

pathways in COMs and can provide the rationale for future application in anti-cancer

targeted therapies.

Keywords: angiogenesis, array comparative genomic hybridization, canine oral melanoma, comparative oncology,

copy number aberrations, mucosal melanoma, pathway enrichment analysis
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INTRODUCTION

Human melanomas of mucosal sites (human Mucosal
Melanoma, hMM) are neoplastic diseases of neuroectodermal
origin, arising from non-cutaneous melanocytes migrated from
the neural crest during embryogenesis (1–4). Although still
not fully characterized, hMMs show to rely on numerous copy
number changes and whole chromosomes gains or losses, rather
than on single-nucleotide mutations, and they lack the typical
UV-signature of the cutaneous malignant melanomas (cMM)
(4–8). Large chromosomal aberrations, known to be deeply
involved in solid tumors development (9), were investigated in
hMMs through numerous techniques. Up to date, promising
recurrent regions of gains and losses were identified (5) and
confirmed by several investigations (4, 7, 8), in particular
amplified portions of HSA 12q and 5p, which encode for genes
as CDK4 and TERT, respectively (7). In addition, CCND1, KIT,
and VEGFRA were proposed by a recent review (10) as targets
for future investigations. hMMs represent only the 1.3% of all
reported melanomas (1) and they may arise from different sites,
as head-and-neck, female genital tract, and anal/rectal mucosa,
with a respective 5 years survival rate of 31.7, 11.4, and 19.8%,
while cMM has a 5 years survival rate of 80.8% (1). The highly
aggressive biological behavior of hMMs (11) and the scarcity of
available cases led to many attempts to establish a reliable animal
model for the study of this life-threatening disease. Various in
vivomodels have been proposed for melanocytic derived-tumors
through genetically engineered mice and zebrafish (12). Relevant
limitations of these models are the lack of tumor population
heterogeneity, combined with the longtime of tumor formation
(12, 13). Altogether, these studies revealed the necessity of a
spontaneous tumor model in non-engineered animals. Among
companion animals, equine’s primary melanomas have been
taken into consideration as a model for hMMs’ aberrations
(8); however, they showed to have fewer copy number changes
compared to hMM, making them a non-fitting model. On
the basis of their greater genetic proximity with humans than
other models proposed, dogs appear to be a more adequate
preclinical surrogate (14). Canine tumors arise spontaneously
in an intact immune system, often at a higher rate than in
humans, and pet dogs share the same environmental risk factors
with the owners. Moreover, dogs have a shorter lifespan and
a more rapid neoplastic disease course (15, 16). Canine Oral
Melanomas (COMs), the most common malignant tumor of
the canine oral cavity (2, 17, 18), are characterized by a clinical
evolution and progression, a tendency for local invasion and
metastasis (2, 19–22), and a resistance to chemotherapy and
radiation therapy (15, 20, 23), similar to hMM. In 2012, the
National Cancer Institute Comparative Melanoma Tumor Board
compared histological features of COM and canine melanomas
arising in other sites (skin and acral) with hMM and cMM,
finding a complete concordance between COMs and hMMs,
and suggesting a common enrichment of PI3K and MAPK
pathways (13). Given these promising results, the Board strongly
encouraged validation of COM as a clinical model for hMM, by
deepening the correlation of possible chromosomal, epigenetic
and transcriptomic alterations. Molecular studies on COMs

detected recurrent gains in CFA 13 and 17, and recurrent losses
in CFA 2 and 22 (8, 24). A distinctive sigmoidal trend was
also highlighted in CFA 30, with the alternation of gained and
lost regions (8, 24). Although a large variety of gained and
deleted genes was detected, some studies revealed discordant
results indicating the need for further investigation on COMs’
genetic landscape. In this work, DNA from formalin-fixed,
paraffin-embedded (FFPE) samples of COM was collected
from two European archives and analyzed through array
Comparative Genomic Hybridization (aCGH). This technique
takes advantage of the competitive hybridization of matched
healthy and pathologic genomic DNA in parallel-extracted from
FFPE samples, to estimate recurrent somatic Copy Number
Aberrations (CNAs) characteristic of the cluster analyzed.

MATERIALS AND METHODS

Samples Collection and Selection
FFPE samples were collected from the archives of the Universities
of Padua and Madrid. Initial inclusion criteria for the collection
of the samples were a certain diagnosis of COM and sufficient
material for nucleic acid extraction. Once collected, one 4 µm-
thick slide was cut from each block and stained with a routine
hematoxylin-eosin (H&E) protocol for a second evaluation.
To be included in the study, the H&E slides were reviewed
independently by two board-certified veterinary pathologists
(American and European) and one expert veterinary pathologist
to unequivocally confirm the initial diagnosis of COM, and to
assess the presence of an adequate amount of healthy tissue
suitable for the nucleic acid extraction. Diagnostic criteria were
based upon the guidelines of theWorld Health Organization (25)
and amelanotic specimens were evaluated through anti-Melan-A
and anti-PNL2 antibodies. Forty samples were finally evaluated
as adequate.

Nucleic Acid Extraction and Purification
From FFPE Tissue
By using H&E stained slides as a guide, the paraffin blocks
were incised in order to separate the tumor bulk from the
healthy tissue. Sections 20 µm-thick were then cut from the
blocks using a microtome with disposable blades. Tumor and
healthy tissues were then scraped from the slides and put in
two different 1.5ml Eppendorf to be extracted separately. When
necessary, more sections were cut in order to provide an adequate
amount of healthy tissue material. Care was taken to avoid any
possible contamination between tumor and healthy tissue and
between different samples, by cleaning microtome, blades, and
instruments after processing each specimen. Genomic DNA was
extracted using the All-Prep DNA-RNA FFPE KIT (Qiagen R©)
according to the manufacturer’s instructions, with the use of a
heptane solution for deparaffinization steps. Quality and quantity
of the extracted DNA were assessed via spectrophotometry with
a Nanodrop ND-1000 (Life Technologies R©), while its integrity
was checked with an agarose gel electrophoresis, showing a
marked degree of degradation in all samples. Only samples with
a A260/A230 ratio of at least 1.5 and a yield of DNA of at least 450
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ng (for both pathological and healthy sections) were admitted to
the following steps.

Array Comparative Genomic Hybridization
Genomic DNA from 24 samples was subjected to the
cyanine labeling using the SureTag DNA Labeling Kit: DNA
extracted from pathological and healthy fractions was labeled
independently with Cy 3-deoxyuridine triphosphate (dUTP)
and cyanine 5-dUTP, respectively. Cyanine incorporation and
final concentration were calculated via spectrophotometry with
a Nanodrop ND-1000 and the specific activity was calculated
for each sample. Twenty samples, which reached an adequate
matched tumor/healthy Cy3 and Cy5 specific activity, were
then co-hybridized to a 180,000-feature SurePrint G3 Canine
CGH Microarray (4–180K, Agilent Technologies), comprising
repeat-masked 60-mer oligonucleotides distributed at ∼2.7 Kb
intervals throughout the dog CanFam2 genome assembly. After
24 h of incubation at 65◦ and 20 rpm, arrays were washed
following the manufacturer’s instruction and scanned at 3µm
using an Agilent G2565CA scanner. Image data were processed
using Feature Extraction version 11.5, and Genomic Workbench
version 7.0.

CNAs Analysis
Data were filtered to exclude probes exhibiting non-uniform
hybridization or signal saturation and were normalized using the
centralization algorithm with a threshold of eight and fuzzy ON.
The ADM-2 algorithm was applied to define CNAs using a “three
probes minimum” filter. Only autosomes were analyzed. The
Cy5/Cy3 intensity ratios for each spot were converted into log2
ratios. Aberrant chromosome intervals were selected by using
Agilent Genomic Workbench v. 7.0. A copy number gain was
defined as a log2 ratio >0.25 and a copy number loss was defined
as a log2 ratio <-0.25. Chromosomal locations were defined in
terms of their Megabase (Mb) position. To identify significant
CNAs the Genomic Identification of Significant Targets in Cancer
(GISTIC2.0) (26) algorithm was also applied, as implemented
in CGHtools software. The GISTIC2.0 module identifies regions
of the genome that are significantly amplified or deleted across
samples. Each aberration is assigned a G-score that considers
the amplitude as well as the frequency of its occurrence across
samples. False Discovery Rate q-values are then calculated for
the aberrant regions, and regions with q-values below a user-
defined threshold are considered significant. Log2ratios ≥0.25
and ≤–0.25 were assigned as the threshold for gain and loss
detection, while amplification and deletion were defined as
having a log2 ratio ≥1 and ≤–1. False Discovery Rate (FDR)
≤0.05 was set as the limit of significance.

Comparison Between Canine and Human
CNAs
To compare the canine CNA profile with aberrations already
described in the recent human literature, orthologous regions
were identified using the Liftover Batch Coordinate Conversion
Tool (http://genome.ucsc.edu/cgi-bin/hgLiftOver), as already
done in previous studies (8, 24). In summary, the genome
coordinates of the 180.000 60-mer probes of each array were

mapped firstly to the canine reference genome CanFam3.1,
and then to the human reference genome GRCh38/hg38. The
syntenic human regions were then compared with published
data (5, 7, 8, 24), to detect those regions shared by both hMMs
and COMs. A comparative analysis between data produced
herein, and recently published studies regarding the detection
of CNAs in the canine genome through several techniques
(as WES, WGS, aCGH, and FISH) (8, 24, 27, 28), was
also performed.

Pathway Enrichment Analysis
Orthologous human genes were identified using the Ensemble
Genome Browser (http://www.ensembl.org/index.html) and four
lists of genes were employed for pathway analysis: (i) Gains
with penetrance≥25% (GR25), (ii) Gains with penetrance≥40%
(GR40), (iii) Losses with penetrance ≥25% (LR25) and (iv)
regions highlighted as significant by Gistic analysis (GS). Genes
were analyzed as human orthologs using the ClueGo plugin
(29) for the software Cytoscape 3.7.1, an open-source Java tool
that extracts the non-redundant biological information for large
clusters of genes. In ClueGO, the kappa score is used to define
term-term interrelations (edges), and functional groups based
on shared genes between terms. Here, Homo sapiens was used
as the control organism, and genes were uploaded as human
orthologs named by the SymbolID. The genes were assigned to a
network based on the updated ontologies: KEGG, GO Biological
process, GO Immuno, REACTOME, and WIKIPATHWAYS.
The significance of each term was calculated with a standard
hypergeometric two-sided test. Networks were created on the
basis of a kappa score threshold of 0.5 and a minimum of
3 genes in every network forming at least 10% of the total
associated genes in each particular network, as previously
done (28). Pathways’ P-values were adjusted with Benjamini-
Hochberg and the “fusion” option was also applied to reduce the
redundancy. Pathways were then represented taking advantage of
Cytoscape’s complex visualization environment, as kappa score-
based functional groups, and named by the most significant term
of each group.

Immunohistochemistry and
Immunohistochemical Assessment
For each of the 20 samples analyzed through the aCGH
technique, a 4 µm-thick section was cut and mounted on a
polarized glass slide (Superfrost R© Plus, Thermo Scientific R©),
and tested with the mouse monoclonal antibody Ki67 (Dako R©)
diluted 1:50. Immunohistochemistry was performed with
an automatic immunostainer (Ventana Benchmark GX,
Roche-Diagnostic) using an ultraView universal alkaline
phosphatase RED detection kit (Ventana Medical System Inc.),
which provides a red chromogen reaction, and hematoxylin
counterstain. The use of the red chromogen allowed avoiding
bleaching reactions in pigmented COMs, in which DAB
chromogen is often unusable, preserving the integrity of
antigens. A Ki67 index was established for each sample on the
base of the methodology described by Bergin et al. (30), which
showed to be prognostic with a cutoff of 19.5 average cells per
high power field (hpf).
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Data Access
The data discussed in this publication have been deposited
in NCBI’s Gene Expression Omnibus (31), and are accessible
through GEO Series accession number GSE131923 (https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=~GSE131923).

RESULTS

Collected Samples and
Immunohistochemical Analysis
A total of 20 samples, inclusive of the tumor and matched
normal tissue, were selected for cyanine labeling and showed
both an adequate yield and an adequate specific activity to be
further subjected to the aCGH analysis. Only one case showed
poor quality of hybridization and was excluded from this study,
bringing the number of samples to 19. For each sample, an IHC
with the Ki67 antibody was successfully performed, and the Ki67
index was established. Based on the study conducted by Bergin
et al. (30), we established a threshold Ki67 value of >19.5 for
the prediction of death (or euthanasia) due to melanoma by 1
year post-diagnosis. Based on the Ki67 value, samples were then
classified as with a GOOD (G) or BAD (B) possible prognosis.
The G group included 5/20 samples, and the B group 15/20
(including the one excluded from the aCGH cohort). Samples
and available clinical data of dogs from which they were collected
are listed in Table S1 in Supplementary Materials.

Genomic Pattern of Aberration
CNA analysis allowed the identification of both focal and broad
(near the size of a chromosome arm) chromosomal aberrations,
distinguished in gains and losses (Figure 1). Two samples (A5,
A35) did not present any aberration, while in the remaining ones,

the mean number of aberrations per sample was 27.6 (range: 2–
71). The pattern of genomic aberrations was evaluated for gained
and lost regions with a penetrance ≥25% and consisted of 53
gained regions, with size ranging from 12.7 Kb to 30.9Mb (with
a mean length of 0.7Mb), and 20 lost regions ranging from 60 bp
to 40.5Mb (mean length of 2 Mb).

The most frequently gained regions (penetrance ≥25%)
affected chromosomes CFA 10, 13, and 30, while lost regions
involved most frequently chromosomes CFA 10, 11, 22, and 30.
Among the regions with gains, 8 showed a penetrance ≥40%,
with regions chr30:17522685–17773010 and chr30:17847674–
18058012 showing 45% penetrance. Among regions with losses,
nine had a penetrance ≥30% and the most frequent loss was
chr11:41248370–41248429, with a 35% penetrance. CNAs with
penetrance≥25% and corresponding genes are listed in Table S2

in Supplementary Materials. Chromosomes that appeared to
be more affected by gains and losses were CFA 13 and 22.
CFA 13 showed a whole-chromosome gain in the 37% (7/19)
of the samples, while CFA 22 showed a whole-chromosome
loss in the 25% (5/19) of the samples, with the loss of region
0.2 to 54Mb that reached a 30% penetrance. Additionally, a
recurrent and distinctive alternation of gained and lost regions
(sigmoidal trend) was observed on CFA 10 (25% of the samples,
5/19) and 30 (30% of the samples, 6/19). No aberrations
significantly associated with a Ki67 index greater or lower than
19.5 were identified. The most frequent aberration observed was
the loss of region chr11:41248370–41248429 in the G group,
recurrent in three out of five samples. Microarray data were
then interrogated using the GISTIC2.0 algorithm, to identify
CNAs with a statistically significant frequency. A total of 20
significant gained regions were located on CFA 9, 10, 13, and
30. Those regions and the corresponding genes (reported in
Table S3 in Supplementary Materials) were mostly overlapping

FIGURE 1 | CNAs in COM. Copy number gains and amplification are indicated in orange and red, respectively representing a log2 ratio ≥0.25 and ≥1. Copy number

losses and deletion are indicated in light and dark blue, respectively representing a log2 ratio ≤–0.25 and ≤–1.
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FIGURE 2 | Graphic representation of the results obtained from the pathway enrichment analysis. These pathways were obtained subjecting the genes extrapolated

from gained regions with a penetrance ≥25% (GR25 list) to ClueGO. They are represented all together in a circular shape as functional groups, which are visible in

more detail inside the circle.

with those showing higher penetrance across samples. The
regions’ size ranged from 33.9 Kb to 52.3Mb, with a mean length
of 4.2Mb. CFA 10 and CFA 30 were affected by significant
amplification in 36.8% (7/19) and 26.3% (5/19) of the samples,
respectively. The threemost frequent minimum common regions
(MCRs) of CFA 10 were 1.7 to 1.9Mb, 10.9 to 11.8Mb and
43.6 to 45Mb, while the most frequent MCRs of CFA 30
were 13.6 to 13.9Mb, and 16.2 to 17.9Mb. The GISTIC2.0
algorithm failed to identify statistically significant lost regions.
A hierarchical clustering technique aimed to identify molecular
features potentially correlated with the Ki67 index showed
inconsistent results.

Pathway Enrichment Analysis
To generate a summary of the pathways likely involved in the
tumorigenesis of COMs, four separate lists (i.e., GR25, GR40,
LR25, and GS, see Methods) were submitted to the ClueGO
tool to identify significantly enriched pathways. Pathways were
considered significant if having an adjusted Benjamini-Hochberg
P < 0.05. The enrichment analysis identified 60 significant
pathways for the group GR25 (Figure 2), 10 significant pathways
for the group LR25, and 49 significant pathways for the group GS.
No pathways were found significantly enriched when analyzing
the GR40 group. The complete list of significant pathways and
genes is reported in Table S4 in Supplementary Materials, while
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TABLE 1 | List of part of the significantly enriched pathways.

Pathways cPValue Associated genes found Source

Angiogenesis <0.01 ANGPT1, KDR, PDGFRA, PTK2 GR25, GS

Glucuronidation <0.01 UGT2A1, UGT2A3, UGT2B10, UGT2B11, UGT2B15, UGT2B17,

UGT2B28, UGT2B4, UGT2B7

GR25, GS

Highly calcium permeable nicotinic acetylcholine receptors <0.01 CHRNA3, CHRNA5, CHRNB4 GR25, GS

Wnt/beta-catenin Signaling Pathway in Leukemia 0.03 FZD6, MYC, PYGO1, WIF1 GR25, GS

Drug metabolism <0.01 DPYS, DUT, MGST3, RRM2B, UGT2A1, UGT2A3, UGT2B10,

UGT2B11, UGT2B15, UGT2B17, UGT2B28, UGT2B4, UGT2B7

GR25, GS

Tamoxifen metabolism 0.02 SULT1E1, UGT2B15, UGT2B7 GR25, GS

Imatinib and Chronic Myeloid Leukemia 0.02 KIT, MYC, PDGFRA GR25, GS

Gastric Cancer Network 2 0.01 ATAD2, DSCC1, FAM91A1, MYC GR25, GS

Chemical carcinogenesis <0.01 MGST3, UGT2A1, UGT2A3, UGT2B10, UGT2B11, UGT2B15,

UGT2B17,

UGT2B28, UGT2B4, UGT2B7

GR25, GS

Regulation of odontogenesis of dentin-containing tooth <0.01 AMTN, ENAM, RSPO2, TNFRSF11B GR25, GS

Insulin processing 0.01 EXOC1, MYO5A, RAB27A, SLC30A8 GR25

Melanocyte differentiation <0.01 BLOC1S6, KIT, MYO5A, RAB27A, SLC24A5 GR25

T-helper 1 type immune response <0.01 IL18R1, IL18RAP, IL1RL1, SOCS5, TRAPPC9, UTP3 GS

Hippo-Yap signaling 0.01 MAP4K4, NDRG1, STK3 GS

Negative regulation of cell migration involved in sprouting

angiogenesis

<0.01 DLL4, SPRED1, THBS1 LR25

Hydrolysis of LPC <0.01 JMJD7-PLA2G4B, PLA2G4B, PLA2G4D, PLA2G4E LR25

cPValue, P-value corrected with Benjamini-Hochberg; GR25, gains with penetrance≥25%; LR25, losses with penetrance≥25%; GS, regions highlighted as significant by Gistic analysis.

the most interesting, together with corresponding genes, are
listed in Table 1. Pathways found enriched in the GR25 group
included Angiogenesis (P < 0.01), Glucuronidation (P < 0.01),
Highly calcium permeable nicotinic acetylcholine receptors (P <

0.01), andWnt/beta-catenin Signaling Pathway in Leukemia (P=

0.03). Interestingly, many pathways related to Drug metabolism
(P < 0.01) were also found significantly enriched (see Table 1).
Other significant pathways were Gastric Cancer Network 2 (P =

0.01), Chemical carcinogenesis (P < 0.01), and Insulin processing
(P = 0.01). Most of the other pathways found to be enriched
were melanocytes-related, such as Melanocyte differentiation (P
< 0.01), or linked to the dental apparatus, e.g., Regulation of
odontogenesis of dentin-containing tooth (P < 0.01). Noteworthy,
in the GR25 group and GS group, enriched pathways were mostly
overlapping. Additionally, GS enriched pathways included the
T-helper 1 type immune response (P < 0.01) and Hippo-Yap
signaling pathways (P = 0.01). Regarding the LR25 group, the
most enriched pathways wereNegative regulation of cell migration
involved in sprouting angiogenesis (P < 0.01), and Hydrolysis of
LPC (P < 0.01).

Comparative Analysis Between Canine and
Human CNAs
Orthologous chromosomal regions in canine and human genome
were examined to assess conserved CNAs between COMs and
hMMs. In human literature, frequent gains of regions of human
chromosomes HSA 1, 4, 5, 6, 7, 8, 11, 12, 17, 20, and losses
of regions of HSA 3, 4, 6, 8, 9, 10, 11, 17, 21, have been
reported (5, 7). The comparative analysis revealed 32 regions
shared between COMs and hMMs, and regarded gains on CFA

9, 10, and 13, orthologous to HSA 17, 12, and 8–4 (respectively),
and losses on CFA 11, 22 and 30, orthologous to HSA 9, 13,
and 15 (respectively). A representation is visible in Tables 2A–C,
while more details about the syntenic human regions are given
in Table 3. In particular, the region characterized by the greatest
recurrence was CFA 13:1722286–32543593, corresponding to
HSA 8:99748261–136957380, already reported (5, 8, 24), and
detected with a penetrance of 35% in this work. Regarding genes
proposed as candidates for the tumorigenesis by other studies,
a further concordance between COMs and hMMs was observed
with the detection from gained regions of MYC, KIT and, for
the first time, PDGFRA, although the latter was found gained
only in the 12.5% of the hMMs analyzed (6) (Table 4A). A
concordance can also be found in the loss of regions coding
for BUB1B, KNSTRN, CYSLTR2, and SPRED1 (8) (Table 4B).
Interestingly, also B2M was found imbalanced in both COMs
and hMMs (8), but affected by a gain in the present work,
instead of a loss. Other frequently reported events in hMMs
are usually gains of BRAF (6, 8, 24), MDM2 (6, 8), CDK4
(5–7, 24), and CCND1 (5, 6, 24); losses of CDKN2A, PTEN
(5, 6, 24), and TP53 (4, 6). However, aberrations involving the
latter candidate genes were not found in the present study. A new
promising target gene was also absent: PTPRJ was found lost in
both hMMs and COMs (8), and was reported as inactivated by
somatic mutations in COMs (28), but was not involved in the
present cohort.

Comparison With Published Canine CNAs
Recently, several studies focused on COM’s genetic
landscape. The most frequently reported aberrations
are gains on CFA 13, 17, and losses on CFA 11, 15,
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TABLE 2 | Representation of the aberrated regions detected in the present study (CanFam3.1 annotation), showing a correspondent canine or human syntenic region in

other studies, which are indicated through the bibliographic number: Wong et al. (8), Poorman et al. (24), Giannuzzi et al. (27), Hendricks et al. (28), Hayward et al. (6),

Curtin et al. (5), Lyu et al. (7), and Furney et al. (4). CNAs are listed on the base of the chromosomal location, and divided into 3 groups: (A) gained regions with a

penetrance ≥25% (GR25); (B) lost regions with a penetrance ≥25% (LR25); (C) represents gained regions found statistically significant by Gistic analysis (GS).

CANINE studies HUMAN studies

CHR Present study Wong

et al. (8)

Poorman

et al.

(24)

Giannuzzi

et al.

(27)

Hendricks

et al.

(28)

Wong

et al. (8)

Poorman

et al.

(24)

Hayward

et al. (6)

Curtin

et al. (5)

Lyu

et al. (7)

Furney

et al. (4)

(A) GR25

10 7814333–7827061 V

7827061–7896552 V

7896552–8860169 V

8860169–8889136 V

8889136–9197582 V

9225870–9593296 V

9593296–9724425 V

9724425–9752955 V

13 1722286–32543593 V V V V

32543593–34917864 V V

34917864–60030824*
V V

V V

60030824–60110727 V

30 16069762:16221290 V V

16221290:16599297 V V

16599298:16724522 V

16724522:16973676 V

16973676:17914975 V

(B) LR25

11 38095457–38199500 V

38199500–38219624 V

38219624–38219683 V

38219683–38263483 V

38263483–38372087 V

22 102563–10473893 V

30 1305764–2530849 V

2530849–2552538 V

2552538–2770691 V

2770691–4634866 V

4634866–5314049 V

5314049–9109654 V

(C) GS

9 1839468–1890597 V

2038907–2071775 V

10 6204314–9752896 V

9948113–10047999 V

13 101–23829651 V V V

23906345–60168042* V V V

V

Canine regions marked with * were syntenic to human regions belonging to two different chromosomes, and were split accordingly (view Table 3 for details).

22 (8, 24, 27, 28) together with a sigmoidal trend (a
complex alternation of copy number gains followed
immediately by copy number losses), in CFA 10 and
30 (8, 24, 28). In this study, CFA 10 and CFA 30 also

showed the sigmoidal trend, and 7 of the regions found
imbalanced were already reported in recent literature
(Tables 2A,C). Among them, CFA 30:16069762:16221290
and 30:16221290:16599297, in particular, are reported in 2 other
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studies (24, 28), and had a penetrance ≥30% and ≥25% in this
work, respectively.

Several genes which have been indicated to play a significant
role in the development of COMs and hMMs were involved
in CNAs, comprising gains of TRPM7 (24, 27), MYC (8, 24),
KIT (24, 28), WIF1 (8), SLC27A2, GABPB1, USP8, SPPL2A,
CYP19A1 (27) (Table 4A) and losses of RB1 (8, 24), LCP1,
BUB1B, KNSTRN, CYSLTR2 (8), SPRED1 (24, 27), and FAM98B
(27) (Table 4B). On the contrary, other genes such as MDM2
(27, 28) or CDK4 (8, 28), were not confirmed by our study.
Finally, it is noteworthy that other genes involved in CNAs such
as ADAM10, and genes belonging to gene families SNORA,
SNORD, SLC25A, RPL, and RBM, have been recently shown to
be highly expressed in metastatic COMs (32).

More details about the target genes taken into consideration
(from both canine and human studies) are graphically
represented in Tables 4A,B.

DISCUSSION

In the present study, more than 250 FFPE samples have been
collected from archive material. However, due to the stringent
inclusion criteria aimed to analyze only samples with a sufficient
amount of paired healthy DNA, only 40 were considered
adequate candidates for the aCGH analysis. The low number
of samples has been a limitation, and a likely cause of the
inconsistent results obtained from the hierarchical clustering,
with only 5/20 cases with a Ki67 value <19.5. Since the presence
of healthy tissue was a major restriction in the recruitment
of cases, to ease future analysis the inclusion of a portion of
presumed healthy tissue in the diagnostic sample is therefore
recommended. The highly homogeneous cohort of samples
obtained and the matching DNA for each sample allowed to
overcome all potential discrepancies deriving from the use of
genomic dog pools, which could have led to false correlations
with race, age, sex, and health conditions.

A 50% increase in the DNA extraction yield was obtained
by using the heptane as deparaffinization agent instead of the
more toxic xylene (33). Precipitation of the extracted DNA with
ethanol allowed to obtain a good DNA quality in some of the
samples with an initial poor A260/A230 ratio.

Chromosomal aberrations detected in this study partially
overlap with those already documented in other works on canine
species, and the software analysis showed both new and known
enriched pathways. Only the GR40 group failed to identify
significantly enriched pathways, probably due to the limited
number of genes included in the list.

The most characteristic aberration is confirmed to be
the sigmoidal pattern of CFA 10 and CFA30 (8, 24, 28).
However, the biological significance of these recurrently
lost-gained regions is still unclear. Future studies correlating
the presence of lost-gained regions and clinical data could
improve our understanding of this specific molecular
feature of COM.

MDM2 (8, 27, 28), CDK4 (8, 28), and CDKN2A (24, 27,
28), which were found altered by other authors, were not
identified as significantly aberrated by GISTIC algorithm in
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TABLE 4 | Comparison of the target genes found gained (A) or lost (B) in this and other studies, which are indicated through the bibliographic number: Wong et al. (8),

Poorman et al. (24), Giannuzzi et al. (27), Hendricks et al. (28), Hayward et al. (6), Curtin et al. (5), Lyu et al. (7), and Furney et al. (4).

Present

study

CANINE studies HUMAN studies

Wong

et al. (8)

Poorman

et al. (24)

Giannuzzi

et al. (27)

Hendricks

et al. (28)

Wong

et al. (8)

Poorman

et al. (24)

Hayward

et al. (6)

Curtin

et al. (5)

Lyu et al.

(7)

Furney

et al. (4)

(A) GAINED GENES

MYC V V V V V

KIT V V V V

PDGFRA V V

B2M* V V V

BRAF V V V

MDM2 V V V V V

CDK4 V V V V V V

CCND1* V V V V V V

TRPM7 V V V

WIF1 V V

SLC27A2 V V

GABPB1 V V

USP8 V V

SPPL2A V V

CYP19A1 V V

NOTCH1 V

SMO V V

TERT V

(B) LOST GENES

BUB1B V V V

KNSTRN V V V

CYSLTR2 V V V

SPRED1 V V V V

CDKN2A V V V V V V

PTEN V V V V

TP53 V V

RB1 V V V

LCP1 V V

FAM98B V V

PTPRJ V V

ARID1B V

With * the genes B2M and CCND1: B2M was found gained in the present study, but was reported as lost by Wong et al. (8); CCND1 was reported as gained in hMMs, but lost in

COMs, by Wong et al. (8) and Poorman et al. (24).

this study. As reported also in hMM (4), MDM2 is known
to favor tumor formation by acting on the tumor suppressor
gene p53 (34). Although the reason for this discrepancy is
not known, a significant gain of the MDM2 binding protein
(MTBP) was instead present in our samples. These data,
together with a copy number gain involving the p53 binding
protein (TP53BP1), confirm the dysregulation of p53 family
members in COMs. Moreover, a significant enrichment of the
Hippo-Yap signaling pathway, which is strongly and sometimes
contradictorily intertwined with the p53 pathway (35), was
also detected.

CDK4 and its inhibitor CDKN2A are main actors of the
cell cycle proliferation since they regulate Cyclin D1, allowing

or not the transition from G1 to S phase. Although a direct
involvement of CCND1 has been identified only in human
acral and mucosal melanomas (5), and not in COMs (24),
high expression of Cyclin D1 protein in COMs has been
recently documented (36). Furthermore, a gain of the coding
gene for Cyclin B2 (CCNB2), and a copy number imbalance
of Eukaryotic Translation Initiation Factor family members
(EIF2C2, EIF2AK4, EIF3E, EIF3H, EIF3J), were detected.
Interestingly, the member EIF4E of the family is reported to
increase the level of Cyclin D1 protein in vitro (37, 38), while
other members (components of the EIF3 complex, in particular),
have been correlated to human cancer (39–49), and human
melanoma (41, 50, 51).
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Another notable aberration is the loss of the tumor suppressor
gene Retinoblastoma 1 (RB1), considered the governor of the cell
cycle. RB1 has been already associated with other human and
canine cancer types and it is strictly correlated to the cyclins’
family. Even if with a mechanism different from those proposed
in other works, cyclins activation appears then highly involved
also in our cohort of COMs.

Among the genes related to cell proliferation and mitosis,
GRHL2, a transcription factor able to bind the promoter region of
TERT, was found to be gained. Although TERT is one of the most
frequently involved genes in human nonUV-inducedmelanomas
(7, 10) it has never been found amplified in COMs. However, the
gain of GRHL2 suggests that TERT expression may play a role
in COMs.

A loss of mitosis-related genes was also highlighted. Loss of
KNSTRN, required for correct chromosome segregation, BUB1,
a checkpoint for mitosis progression, and TACC3, a stabilizer of
the mitotic spindle, were detected.

COM is known to share with hMM the activation of
MAPK and PI3K pathways, showing also similar responses to
targeted therapies (52, 53). Aberrations are recognized to be
part of the activation mechanism, and many MAPK-related
genes are encoded by CFA 30 (orthologous to HSA 15) (8,
24, 28). Genes responsible for MAPK and PI3K activation
found in this work comprise RASGRP1, MYC, FGF7, ANGPT1,
TRPM7 (gained), and SPRED1 (lost). As reported in other
works (6, 24), an imbalance of a wide variety of genes coding
for tyrosine kinases receptors was also detected. These genes
are abnormally activated in a wide range of human and
animal tumors, inducing uncontrolled tumor proliferation (54).
Our data showed an imbalance of the proto-oncogene c-KIT,
and of other kinases such as PTK2, STK3, TEC, PDGFRA,
VEGFR2, and CD63. It is noteworthy that VEGF receptors are
involved in metastatic behavior in human melanoma studies
(55), while PDGF receptors’ expression has been shown to bear
prognostic significance in COMs (22). Finally, CD63, a well-
known melanoma-associated antigen (also called “Melanoma-
Associated Antigen ME491”), has a role in VEGFA signaling.

As reported by other authors (28), the involvement of
PI3K/mTOR/AKT signaling pathway is also suggested by the
significant enrichment of the Insulin processing pathway, which
is well-known to activate PI3K. The latter is also regulated by
DEPTOR and MAP2K1 genes, which have been found altered
in our study. Noteworthy, PI3K and mTOR are essential for the
maintenance of the stem cell status in neural progenitor cells
(56), and their abnormal involvement appears strategical for the
tumorigenesis of neural crest-derived tumors such as COM.

Interestingly, the Angiogenesis pathway was enriched in both
GR25 and GS lists (derived from the gained regions), and
its suppressive pathway (Negative regulation of cell migration
involved in sprouting angiogenesis) was enriched in LR25 list
(derived from the lost regions). In addition, other vascular-
related pathways, such as Neovascularization processes, were
found enriched. Vessels proliferation, which plays an important
role in several types of human melanomas (57), appears then to
be deeply implicated in COMs’ pathogenesis, and likely in their
metastatic behavior. Neoangiogenesis is an obligatory phenotypic

step for the establishment of distant metastases throughout the
body: without an angiogenic process, the freshly-proliferated
cells would incur into hypoxia and lack of nutrients, making
the microenvironment adverse for the metastases survival
(57). The main genes involved in endothelial and vascular
cell proliferation, and reported by the ClueGo analysis, were
ANGPT1, VEGFR2, PDGFRA, PTK2 for both GR25 and GS
groups, and DLL4, SPRED1, THBS1, which are involved in the
negative regulation of vessel sprouting, for LR25. Additionally,
an imbalance (gains and losses) on the endothelin receptor
type B gene (EDNRB), which role is crucial for melanocytes
development (3) and for vessel homeostasis, was also detected.
Interestingly, antibody-drug conjugates (ADC) targeting the
endothelin B receptor (ETBR) both in vitro and in vivo systems
(58, 59), show anti-tumor activity (even if partial) in hMMs (59).
Given these premises, further evaluation of ETBR’s expression in
COMs could be promising to evaluate the application of ADC
therapies also in dogs.

Furthermore, our data show the involvement of many
other genes closely related to an angiogenic phenotype. Many
genes coding for interleukin receptors, inflammatory molecules
that contribute to neovascularization through endothelial cells
migration and proliferation, and through metalloproteinases
overexpression (as MMP19), were found gained in this study.
Significantly, in hMM, a close relationship between IL-8, its
receptor CXCR2, and MMP-2, is well-established (60, 61).
Additional involved genes were those coding for fibroblast
growth factors (FGF7 and FGF14), for lipid lysophosphatidic
acids (LPAR6)—which are known to contribute to angiogenesis
and lymphangiogenesis (57)—and for melanoma proliferation-
and migration-related properties such as ZIC5 (62).

The GISTIC2.0 algorithm indicated the T-helper 1 type
immune response pathway was significantly enriched (genes are
listed in Table 1). Although in dogs therapeutic trials based on
immunomodulation did not reach consistent results (63–65),
these data strengthen the view of melanoma as a promising target
for immunogenic therapies (66).

A general loss of many components of the T-cell homeostasis
such as LCP1, TNFSF11, LRCH1, TRIM13 (which acts together
with MDM2), RASGRP1, and GPR18 was found. On the
contrary, the gain of PDCD7, involved in glucocorticoid-induced
apoptosis in mouse T-cells (67), was detected.

Pathways related to drug metabolism were also found to
be enriched, with Glucuronidation being the most significant.
The cause is attributable to the high representation of the
UGT-family genes, which are involved in the activity of the
enzyme glucuronosyltransferase and phase II metabolism, and
constitute an important pathway for xenobiotic elimination from
the organism. Although the involvement of Glucuronidation in
COM’s behavior is still unclear, its potential role should be taken
into consideration for future clinical trials and drug testing.

Not surprisingly, genes involved in the pathogenesis of
other tumors were found to be altered. Significant gains of
genes ATAD2, DSCC1, FAM91A1, and MYC brought to the
enrichment of the Gastric Cancer Network 2 pathway, and
ATAD2 is a cancer-associated protein which can also induce the
expression of Cyclin D1 and MYC (68).
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Another enriched pathway, which has been frequently
associated with cancer, was the Wnt/beta-catenin Signaling
Pathway in Leukemia, which mediates the cell transduction
signal. Gains of genes such as FZD6, PYGO1, and WIF1, causing
Wnt inhibition, and MYC, were found. The involvement of Wnt
signaling has been associated to numerous types of cancer, as
glioblastoma (69), esophageal (70), ovarian (71), breast (72),
colorectal (73), prostate (74), and lung (75) cancers and also to
cutaneous melanomas (76). Gains of Wnt inhibitory genes in
COMmay still have a role in the complex deregulation of theWnt
pathway, which leads to carcinogenesis. However, further studies
are needed to clarify this point.

The enrichment of pathways related to melanocytes’
development (from neural stem cells) and pigmentation
have been already reported in hMMs (7). In accordance, a
significant enrichment of the Highly calcium permeable nicotinic
acetylcholine receptors, and of the Melanocyte differentiation
pathways were found in our study. Finally, the Regulation
of odontogenesis of dentin-containing tooth pathway was also
significantly enriched. Genes involved in the enrichment
of this last pathway, namely AMTN, ENAM, RSPO2, and
TNFRSF11B, encode, respectively, for the ameloblast protein
amelotin, teeth component enamelin (a Wnt activator), and a
TNF receptor. The involvement of these genes may be related
to the frequent tendency of COMs to affect the oral cavity,
and gingiva in particular (77). The application of aCGH on
19 COMs contributed to increase our knowledge of genetic
aberrations in this canine tumor. We confirmed aberrational
patterns noted also by other authors, as the sigmoidal trend
in CFA 10 and 30. Thirty-two regions here detected showed
to be syntenic with hMM-related regions and confirmed
a common involvement of MAPK and PI3K pathways in
COMs and hMMs. Moreover, our data suggest a strong
involvement in COM’s tumorigenesis of neovascularization-
related pathways. These new data, together with the encouraging
evidence of anti-angiogenic factors target therapies in human
melanomas, remark the role of the dog as a model for hMMs
and encourage new studies aimed to test the application of
anti-angiogenic factors in the treatment of advanced and/or
metastatic COMs.
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