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On a Babuška paradox for polyharmonic
operators: spectral stability and boundary
homogenization for intermediate problems

Francesco Ferraresso∗ and Pier Domenico Lamberti†

November 26, 2019

Abstract

We analyse the spectral convergence of high order elliptic di�erential operators
subject to singular domain perturbations and homogeneous boundary conditions of
intermediate type. We identify sharp assumptions on the domain perturbations im-
proving, in the case of polyharmonic operators of higher order, conditions known to
be sharp in the case of fourth order operators. The optimality is proved by analysing
in detail a boundary homogenization problem, which provides a smooth version of
a polyharmonic Babuška paradox.

1 Introduction
A recurrent topic in the Analysis of Partial Di�erential Equations, in Spectral Theory,
and their applications is the study of the variation of the solutions to elliptic boundary
value problems on domains subject to boundary perturbation, with contributions root-
ing back in the works of Courant and Hilbert [27], and Keldysh [37]. The mathematical
interest in this type of problems is also given by the possible appearance of an unex-
pected asymptotic behaviour of the solutions, which can be understood as a spectral
instability phenomenon. Probably the most famous example in elasticity theory is the
celebrated Babuška paradox which concerns the approximation of a thin hinged circular
plate by means of an invading sequence of convex polygons. This problem was consid-
ered by Babuška in [10] and was further discussed by Maz’ya and Nazarov in [38] where
among various results they present a variant of the Babuška paradox consisting in the
approximation a thin hinged circular plate by means of an invading sequence of non-
convex, indented polygons (see [33, § 1.4] for a recent discussion on this subject and for
more details concerning the related results of Sapondžhyan [44]). We �nd convenient to
brie�y recall the formulation of the paradox.
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Given a circle Ω inR2 and a datum f ∈ L2(Ω), consider the following boundary value
problem 

∆2u = f , in Ω,

u = 0, on ∂Ω,
∂2u
∂n2 = 0, on ∂Ω,

(1.1)

in the unknown real-valued functionu. Note that here and in the sequel, boundary value
problems will be understood in the weak sense. Thus, problem (1.1) consists in �nding
u ∈W 2,2(Ω) ∩W 1,2

0 (Ω) such that∫
Ω
D2u : D2φ dx =

∫
Ω
f φ dx , for all φ ∈W 2,2(Ω) ∩W 1,2

0 (Ω),

where D2u : D2φ =
∑N

i,j=1uxix jφxix j is the Frobenius product of the two Hessian matrices
of u and φ. In the theory of elastic plates, u represents the de�ection of a hinged thin
plate with midplane Ω and normal load f .

De�ne inside Ω an invading sequence of indented polygons Ωn obtained by mod-
ifying an inscribed convex polygon with n vertexes pnj , j = 1, . . . ,n, and replacing its
contour line in a neighbourhood of each pnj by aV -shaped line as in Figure[1]. The small
curvilinear triangles appearing have height equal to hnj and base of length ηnj , while the
length of the nearby chord (the side of the polygon) is denoted by ζ nj . Consider now the
same boundary value problem in Ωn

∆2un = f , in Ωn,

un = 0, on ∂Ωn,
∂2un
∂n2 = 0, on ∂Ωn,

(1.2)

in the unknown un ∈W 2,2(Ωn) ∩W 1,2
0 (Ωn). The paradox lies in the fact that if

max
1≤j≤n

|ζ nj |
|ηnj |
= O(1), max

1≤j≤n

|ηnj |
|hnj |2/3

= o(1),

as n →∞, then the solution un ∈W 2,2(Ωn) ∩W 1,2
0 (Ωn) of (1.2) does not converge to the

solution u of (1.1), but to the solution v of the boundary value problem
∆2v = f , in Ω,

v = 0, on ∂Ω,
∂v
∂n = 0, on ∂Ω.

(1.3)

Herev represents the de�ection of a clamped thin plate. Note that it is possible to choose
|ζ nj | = 0 for all j and n in order to obtain the wild looking set Ωn in Figure 2.

In [7, 8] the authors considered a smooth version of this paradox. Given a su�ciently
regular bounded domainW in RN−1, N ≥ 2, they de�ne a family of domains (Ωϵ )0<ϵ<ϵ0

by setting

Ω =W × (−1, 0), Ωϵ = {(x̄ ,xN ) ∈ RN : x̄ ∈W ,−1 < xN < ϵ
αb(x̄/ϵ)} (1.4)
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ζ nj
ηnj

hnj

Figure 1: Indented polygon Figure 2: Degenerate indented polygon

where x̄ = (x1, . . . ,xN−1), and b is a non-constant, smooth, positive, periodic function of
period Y = [−1/2, 1/2]N−1. The geometry of this perturbation is described in �gure [3]
below.

By comparing Figure 3(a) and Figure 2, one realizes that the perturbations look sim-
ilar locally at the boundary. This analogy goes further if we de�ne hnj = ϵ

α and ηnj = ϵ ,
with ϵ = 1/n. Indeed, in [8] it was proved that if

|ηnj |
|hnj |2/3

=
ϵ

ϵ2/3α = o(1),

as ϵ → 0, that is if α < 3/2, then the same Babuška-type paradox appears. Moreover, it
was also proved that if α > 3/2 then no Babuška paradox appears and there is spectral
stability. The threshold α = 3/2 is then critical and represents a typical case of study for
homogenization theory: in fact, it was proved in [8] that the limiting problem contains
a ‘strange term’ which could be interpreted as a ‘strange curvature’.

It is then natural to wonder whether Babuška-type paradoxes may be detected in
the case of polyharmonic operators (−∆)m, m > 2 subject to intermediate boundary
conditions. The answer is not as straightforward as it may appear, and it is necessary
to clarify �rst what are the possible boundary conditions for those operators. Indeed,
there exists a whole family of boundary value problems depending on a parameter k =
0, 1 . . . ,m, the weak formulation of which reads as follows: given a bounded domain
(i.e., a connected open set) Ω in RN with su�ciently smooth boundary, m ∈ N, and
f ∈ L2(Ω), �nd u ∈Wm,2(Ω) ∩W k,2

0 (Ω) such that∫
Ω
Dmu : Dmφdx +

∫
Ω
uφdx =

∫
Ω
f φdx , ∀φ ∈Wm,2(Ω) ∩W k,2

0 (Ω). (1.5)

Here we denote byWm,2(Ω) the standard Sobolev space of functions in L2(Ω)with weak
derivatives up to order m in L2(Ω) and by W k,2

0 (Ω) the closure in W k,2(Ω) of the C∞-
functions with compact support in Ω. Note that for k = m one obtains the Dirichlet
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Figure 3: Oscillations of the upper boundary of Ωϵ as ϵ → 0, depending on α .

problem {
(−∆)mu + u = f , in Ω,
∂lu
∂nl
= 0, on ∂Ω, for all 0 ≤ l ≤ m − 1,

(1.6)

while for k =m − 1 one gets the signi�cantly di�erent problem
(−∆)mu + u = f , in Ω,
∂lu
∂nl
= 0, on ∂Ω, for all 0 ≤ l ≤ m − 2.

∂mu
∂nm = 0, on ∂Ω.

(1.7)

Finally, for k = 0 one gets the problem with natural boundary conditions, also known as
Neumann problem, and this explains why problem (1.7) is called intermediate. Actually,
in this paper we refer to problem (1.7) as to the strong intermediate problem to empha-
sise the fact that (1.7) is the intermediate problem with the largest k and to distinguish
it from the other cases where 0 < k < m − 1 which are called here weak intermediate
problems. According to these considerations, one is led to ask the following:

Question: Are there Babuška-type paradoxes for polyharmonic operators (−∆)m, m > 2
satisfying intermediate boundary conditions, and which are the natural assumptions which
prevent the appearance of this paradox?

We are able to answer to this question in the geometric setting given by (1.4). Since
whenm = 2 problem (1.7) coincides with the hinged plate (1.1), the Babuška paradox will
be discussed for polyharmonic operators with strong intermediate boundary conditions
(in short, (SIBC)), being the natural higher order version of the intermediate boundary
conditions for the biharmonic operator.

Let us describe one of the two main results of this paper. Let Ωϵ and Ω be as in (1.4),

4



V (Ωϵ ) =Wm,2(Ωϵ ) ∩Wm−1,2
0 (Ωϵ ). For every ϵ > 0, let uϵ ∈ V (Ωϵ ) be the solution of∫

Ωϵ

Dmuϵ : Dmφ + uϵφ dx =

∫
Ωϵ

f φ dx , for all φ ∈ V (Ωϵ ). (1.8)

Recall that this is the weak formulation of the Poisson problem for (−∆)m+Iwith (SIBC).
For u ∈ Wm,2(Ω), de�ne Tϵu = u ◦ Φϵ where Φϵ is a smooth di�eomorphism mapping
Ωϵ into Ω that coincides with the identity on a large part Kϵ of Ω, with |Ω \ Kϵ | → 0 as
ϵ → 0, see (3.5). Let u be such that ‖uϵ −Tϵu‖L2(Ωϵ ) → 0 as ϵ → 0.

Theorem 7 states that the limit u solves di�erent di�erential problems according to
the values of the parameter α . More precisely, we have the following trichotomy:

(i) (Stability) If α > 3/2, then u solves (1.8) in Ω, that is, u satis�es (−∆)mu +u = f in
Ω and (SIBC) on ∂Ω;

(ii) (Degeneration) If α < 3/2, then u satis�es (−∆)mu + u = f in Ω, with Dirichlet
boundary conditions onW × {0}, that is

∂lu

∂nl
= 0, for all 0 ≤ l ≤ m − 1,

and (SIBC) on the rest of the boundary of Ω;

(iii) (Strange term) If α = 3/2, then u satis�es (−∆)mu +u = f in Ω with the following
boundary conditions onW × {0}{

Dlu = 0, for all 0 ≤ l ≤ m − 2,
∂mu
∂nm + K

∂m−1u
∂nm−1 = 0,

and (SIBC) on the rest of the boundary of Ω. Here K is a certain positive constant
that can be characterized as the energy of a suitable m-harmonic function in Y ×
(−∞, 0).

It follows that if α < 3/2 a polyharmonic Babuška paradox appears. It is interesting
to observe that the critical value 3/2 is the same for all the polyharmonic operators with
(SIBC).

The techniques used to prove Theorem 7 vary drastically depending on the case
(i) − (iii) considered. Theorem 7(i) is a consequence of Theorem 2, which is the second
main result of the paper and provides a general stability criterion for self-adjoint elliptic
di�erential operators of order 2m with non-constant coe�cients and compact resolvents
(or, more precisely, for their realization in the spaceWm,2(Ω) ∩W k,2

0 (Ω), 0 < k < m) on
varying domains featuring a fast oscillating boundary.

Theorem 2 is an improvement of a previous result (see [8, Lemma 6.2]) and can be
summarized and simpli�ed in the following way. Let Ω and Ωϵ be bounded domains in
RN de�ned as follows:

Ω = {(x̄ ,xN ) ∈W × (a,b) : x̄ ∈W ,a < д(x̄) < b},
Ωϵ = {(x̄ ,xN ) ∈W × (a,b) : x̄ ∈W ,a < дϵ (x̄) < b},

5



where W ⊂ Rn−1 is as above, a + ρ < д,дϵ < b − ρ, a,b ∈ R, and д,дϵ ∈ Cm(W ). If
‖д−дϵ ‖∞ converges to zero as ϵ goes to zero and, for all |β | =m, ‖Dβ (д−дϵ )‖∞ converges
to zero or diverges to in�nity with a suitable rate expressed in terms of a power of ‖д −
дϵ ‖∞, then the spectrum of the realization of a self-adjoint elliptic di�erential operator
in Wm,2(Ωϵ ) ∩W k,2

0 (Ωϵ ), 1 ≤ k ≤ m − 1 is stable as ϵ → 0 . We note that [8, Lemma
6.2] is sharp in the case m = 2 and k = 1. In Theorem 2 we allow a rate of convergence
or divergence for ‖Dβ (д − дϵ )‖∞ which is much better when k > 1. For example, going
back to Theorem 7(i), we note the following fact: upon considering pro�le functions дϵ
of the type дϵ (x̄) = ϵαb( x̄ϵ ), where b is a non-constant periodic function, we could apply
[8, Lemma 6.2] to the polyharmonic problem in a straightofrward way; however, this
would only guarantee the spectral stability for α > m − 1/2. Our improved stability
Theorem2 guarantees the spectral stability for the better range α > m − k + 1/2.

The proof of Theorem 7(ii) is based on a consequence of a degeneration argument
that was introduced in [21], and which was already exploited in [8].

The reader may wonder if it is possible to push the arguments contained in the proof
of Theorem 7 in order to discuss the general case of weak intermediate problems for
polyharmonic operators. The main issue is that the degeneration argument in Theo-
rem 7(ii) is restricted to the case of (SIBC). Hence, a detailed analysis of the various
possible situations seems to us much more involved and almost prohibitive for arbitrary
values of m and k . We mention that the case m = 3, k = 1 will be the object of a
forthcoming paper and we refer to [30] for a number of results in this direction.

We remark that our main results, in particular Theorem 2 and Theorem 7, are based
on the notion of E-convergence in the sense of Vainikko [46] which is related to Stum-
mel’s discrete convergence and to Anselone and Palmer’s collective compactness, see
[45] and [2] respectively. For a recent survey on these topics and further generalisa-
tions, we refer to [11].

Finally, we mention that, in the case of second-order operators, counterexamples
to the spectral stability with respect to domain perturbation are well-known, see for
example the classical [27, Chp. VI, 2.6]. Related problems for the Neumann Laplace
operator and for the Schrödinger operator with Neumann boundary conditions have
been considered in [6, 22] and [3] respectively. Regarding higher order elliptic operators
on variable domains, several contributions can be found in [4, 12, 13, 14, 17, 16, 18, 32].
In particular, for a possible approach to these topics via asymptotic analysis, we refer to
the articles [19, 26, 34] and to the monographs [39, 40]. We refer also to the monograph
[33] and the articles [31, 43] where polyharmonic operators are considered. For a wider
discussion about perturbation theory for linear operators we mention the monographs
[35, 36, 41].

This paper is organised as follows. Section 2 is devoted to preliminaries and notation,
in particular to the de�nition of the class of operators and open sets under considera-
tion. Section 3 contains a general discussion concerning the spectral stability of elliptic
operators, and the proof of Theorem 2 and its corollaries, see in particular Theorem 4. In
Section 4 we prove a Polyharmonic Green Formula which is used in the sequel and has
its own interest. Section 5 is devoted to the analysis of strong intermediate boundary
conditions and to the proof of Theorem 7. In the Appendix we prove a technical lemma
used in the proof of Theorem 7(iii).
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2 Preliminaries and notation
In the sequel, we will use the following basic notation:

• N denotes the set of positive integers. Moreover, N0 := N ∪ {0};

• Given a normed space X , L(X ) is the space of bounded linear operators on X ;

• If not otherwise speci�ed,m ∈ N will always be greater or equal to 2;

• Ω, Ωϵ , ϵ0 ≥ ϵ > 0 will always denote bounded domains (i.e., open connected open
sets in RN );

• The standard Sobolev spaces with summability order 2 and smoothness order m
are denoted byWm,2

0 (Ω) andWm,2(Ω).

• The notationV (Ω),V (Ωϵ )will often be used for subspaces ofWm,2(Ω) (resp.Wm,2(Ωϵ )),
containingWm,2

0 (Ω) (resp. Wm,2
0 (Ωϵ )).

2.1 Classes of operators
Let M be the number of multiindices α = (α1, . . . ,αN ) ∈ NN

0 with length |α | = α1 + · · ·+
αN = m. For all α , β ∈ NN

0 such that |α | = |β | = m, let Aαβ be bounded measurable
real-valued functions de�ned on RN satisfying Aαβ = Aβα and the condition∑

|α |=|β |=m
Aαβ (x)ξαξβ ≥ 0, (2.1)

for all x ∈ RN , (ξα )|α |=m ∈ RM . For all open subsets Ω of RN we de�ne

QΩ(u,v) =
∑

|α |=|β |=m

∫
Ω
AαβD

αuDβv dx +

∫
Ω
uv dx , (2.2)

for all u,v ∈ Wm,2(Ω) and we set QΩ(u) = QΩ(u,u). Note that by (2.1) QΩ is a positive
quadratic form, densely de�ned in the Hilbert space L2(Ω). Hence, QΩ(·, ·) de�nes a
scalar product inWm,2(Ω).

LetV (Ω) be a linear subspace ofWm,2(Ω) containingWm,2
0 (Ω). By standard Spectral

Theory, if V (Ω) is complete with respect to the norm Q1/2
Ω , then there exists a uniquely

determined non-negative self-adjoint operator HV (Ω) such that D(H 1/2
V (Ω)) = V (Ω) and

QΩ(u,v) =
(
H 1/2
V (Ω)u, H

1/2
V (Ω)v

)
L2(Ω), for all u,v ∈ V (Ω). (2.3)

By [29, Lemma 4.4.1] it follows that the domain D(HV (Ω)) of HV (Ω) is the subset of
Wm,2(Ω) containing all the functions u ∈ V (Ω) for which there exists f ∈ L2(Ω) such
that

QΩ(u,v) = (f ,v)L2(Ω), for all v ∈ V (Ω), (2.4)
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in which case HV (Ω)u = f . If u is a smooth function satisfying identity (2.4) and the
coe�cients Aαβ are smooth, by integration by parts it is immediate to verify that (2.4) is
the weak formulation of problem Lu = f in Ω, where L is the operator de�ned by

Lu = (−1)m
∑

|α |=|β |=m
Dα (AαβD

βu) + u,

and the unknown u is subject to suitable boundary conditions depending on the choice
of V (Ω).

If the embedding V (Ω) ⊂ L2(Ω) is compact, then the operator HV (Ω) has compact
resolvent. Consequently, its spectrum is discrete, and it consists of a sequence of isolated
eigenvalues λn[V (Ω)] of �nite multiplicity diverging to +∞. By [29, Theorem 4.5.3] the
eigenvalues λn[V (Ω)] are determined by the following Min-Max principle:

λn[V (Ω)] = min
E⊂V (Ω)
dimE=n

max
u∈E
u,0

QΩ(u)
‖u‖2L2(Ω)

,

for all n ≥ 1. Furthermore, there exists an orthonormal basis in L2(Ω) of eigenfunctions
φn[V (Ω)] associated with the eigenvalues λn[V (Ω)].
We remark that in our assumptions there exist two positive constants c,C ∈ R indepen-
dent of u such that

c ‖u‖Wm,2(Ω) ≤ Q1/2
Ω (u) ≤ C‖u‖Wm,2(Ω),

which means that the two norms Q1/2
Ω and ‖·‖Wm,2(Ω) are equivalent on V (Ω). Note that

in general the constant c may depend on Ω. However, if the coe�cients Aαβ satisfy the
uniform ellipticity condition ∑

|α |=|β |=m
Aαβ (x)ξαξβ ≥ θ

∑
|α |=m
|ξα |2, (2.5)

for all x ∈ RN , (ξα )|α |=m ∈ RM and for someθ > 0, then c can be chosen independent of Ω.

2.2 Classes of open sets
We recall the following de�nition from [16, De�nition 2.4] where for any given set V ∈
RN and δ > 0, Vδ is the set {x ∈ RN : d(x , ∂Ω) > δ }, and by a cuboid we mean any
rotation of a rectangular parallelepiped in RN .

De�nition 1. Let ρ > 0, s, s′ ∈ N with s′ < s . Let also {Vj}sj=1 be a family of bounded open
cuboids and {rj}sj=1 be a family of rotations inRN . We say thatA = (ρ, s, s′, {Vj}sj=1, {rj}sj=1)
is an atlas in RN with parameters ρ, s, s′, {Vj}sj=1, {rj}sj=1, brie�y an atlas in RN . Moreover,
we consider the family of all open sets Ω ⊂ RN satisfying the following:

i) Ω ⊂ ∪sj=1(Vj)ρ and (Vj)ρ ∩ Ω , ∅
ii) Vj ∩ ∂Ω , ∅ for j = 1, . . . , s′ and Vj ∩ ∂Ω = ∅ for s′ < j ≤ s

8



iii) for j = 1, . . . , s we have

rj(Vj) = {x ∈ RN : aij < xi < bij , i = 1, . . . ,N }, j = 1, . . . , s
rj(Vj ∩ Ω) = {x ∈ RN : aN j < xN < дj(x̄)}, j = 1, . . . , s′

where x̄ = (x1, . . . ,xN−1), Wj = {x ∈ RN−1 : aij < xi < bij , i = 1, . . . ,N − 1} and
дj ∈ Ck,γ (Wj) for j = 1, . . . , s′, with k ∈ N0 and 0 ≤ γ ≤ 1. Moreover, for j = 1, . . . , s′ we
have aN j + ρ ≤ дj(x̄) ≤ bN j − ρ, for all x̄ ∈Wj .

We say that an open set Ω is of classCk,γ
M (A) if all the functions дj , j = 1, . . . , s′ de�ned

above are of class Ck,γ (Wj) and ‖дj ‖Ck,γ (Wj ) ≤ M . We say that an open set Ω is of class

Ck,γ (A) if it is of classCk,γ
M (A) for someM > 0. Also, we say that an open set Ω is of class

Ck,γ if it is of class Ck,γ
M (A) for some atlas A and some M > 0. Finally, we denote by Ck

the class Ck,0 for k ∈ N ∪ {0}.

It is important to note that if Ω is a C0 bounded open set then the Sobolev space
Wm,2(Ω) (and consequently all the spacesWm,2(Ω) ∩W k,2

0 (Ω), 1 ≤ k ≤ m) is compactly
embedded in L2(Ω), see e.g., Burenkov [15]. Moreover, by using a common atlas as in
De�nition 1, it is possible to de�ne a distance.

De�nition 2. (Atlas distance) Let A = (ρ, s, s′, {Vj}sj=1, {rj}sj=1) be an atlas in RN . For
all Ω1,Ω2 ∈ Cm(A) and for all h = 0, . . . ,m we set

d (h)A (Ω1,Ω2) = max
j=1,...,s ′

sup
0≤|β |≤h

sup
(x̄ ,xN )∈r j (Vj )

��Dβд1j(x̄) − Dβд2j(x̄)
�� ,

whereд1j ,д2j respectively, are the functions describing the boundaries of Ω1,Ω2 respectively,
as in De�nition 1. Moreover, we set dA = d

(0)
A and we call dA ‘atlas distance’.

2.3 Formulae for higher order derivatives of composite functions
We recall here few well-known multidimensional formulae for the derivatives of com-
posite functions. We will use the following notation: by P(A) we denote the set of all
subsets of a given �nite non-empty set A and by Part(A) we denote the set of all pos-
sible partitions of A. Namely, π ∈ Part(A) is a set the elements of which are pairwise
disjoint subsets of A whose union is A. Given n ∈ N, we often write Part(n) in place of
Part({1, . . . , n}) and P(n) in place of P({1, . . . ,n}). Moreover we use the symbol |A| to
denote the cardinality of A; hence, for example |π | with π ∈ Part(A) is the number of
subsets of A in the partition π . Let Ω be an open set in RN . If I is an open set in R and
f is a Cn-function from I to R and Φ is a Cn function from Ω to I , then the Faà di Bruno
formula reads

∂n f (Φ(x))
∂xi1 · · · ∂xin

=
∑

π∈Part(n)
f (|π |)(Φ(x))

∏
S∈π

∂ |S |Φ(x)∏
j∈S ∂xi j

. (2.6)

Moreover, the Leibnitz formula for the derivatives of the product of two functions u,v
of class Cn(Ω) can can be written as follows

∂n(uv)
∂xi1 · · · ∂xin

=
∑

S∈P(n)

∂ |S |u∏
j∈S ∂xi j

∂(n−|S |)v∏
j<S ∂xi j

, (2.7)

9



where j < S means that j lies in the complementary of S in {1, . . . ,n}. We recall that in
general, if Φ is a Cn function from an open subset U of RN to an open subset V of Rr ,
and f is a function inW n,1

loc
(V ) then the Faà di Bruno formula reads

∂n f (Φ(x))
∂xi1 · · · ∂xin

=
∑

π ∈Part(n)

∑
j1, ..., j |π | ∈{1, ...,r }

∂ |π | f∏ |π |
k=1 ∂x jk

(Φ(x))
|π |∏
k=1

∂ |Sk |Φ(jk )∏
l ∈Sk ∂xil

(2.8)

3 Higher order operators on domains with perturbed
boundaries

Let m ∈ N, m ≥ 2 and let ϵ > 0. Let V (Ω),V (Ωϵ ) be subspaces of Wm,2(Ω), Wm,2(Ωϵ )
respectively, containing Wm,2

0 (Ω), W
m,2
0 (Ωϵ ) respectively. Moreover, let HV (Ω), HV (Ωϵ ),

QΩ,QΩϵ be as in (2.3). A fundamental part of our analysis will be based on the following:

De�nition 3. ([8, De�nition 3.1]). Given open sets Ωϵ , ϵ > 0 and Ω ∈ RN with correspond-
ing elliptic operators HV (Ωϵ ), HV (Ω) de�ned on Ωϵ , Ω respectively, we say that condition (C)
is satis�ed if there exists open sets Kϵ ⊂ Ω ∩ Ωϵ such that

lim
ϵ→0
|Ω \ Kϵ | = 0, (3.1)

and the following conditions are satis�ed:
(C1) If vϵ ∈ V (Ωϵ ) and supϵ>0QΩϵ (vϵ ) < ∞ then limϵ→0‖vϵ ‖L2(Ωϵ \Kϵ ) = 0.
(C2) For each ϵ > 0 there exists an operator Tϵ from V (Ω) to V (Ωϵ ) such that for all �xed
φ ∈ V (Ω)

(i) limϵ→0QKϵ (Tϵφ − φ) = 0;

(ii) limϵ→0QΩϵ \Kϵ (Tϵφ) = 0;

(iii) limϵ→0‖Tϵφ‖L2(Ωϵ ) < ∞.

(C3) For each ϵ > 0 there exists an operator Eϵ from V (Ωϵ ) toWm,2(Ω) such that the set
Eϵ (V (Ωϵ )) is compactly embedded in L2(Ω) and such that

(i) Ifvϵ ∈ V (Ωϵ ) is a sequence such that supϵ>0QV (Ωϵ )(vϵ ) < ∞, then limϵ→0QKϵ (Eϵvϵ−
vϵ ) = 0;

(ii)

sup
ϵ>0

sup
v∈V (Ωϵ )\{0}

‖Eϵv ‖Wm,2(Ω)

Q1/2
Ωϵ
(v)

< ∞;

(iii) If vϵ ∈ V (Ωϵ ) for all ϵ > 0, supϵ>0QΩϵ (vϵ ) < ∞ and there exists v ∈ L2(Ω) such
that, up to a subsequence, we have ‖Eϵvϵ −v ‖L2(Ω) → 0, then v ∈ V (Ω).
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It is proved in [8, Theorem 3.5] that Condition (C) guarantees the spectral conver-
gence of the operators HV (Ωϵ ) to the operator HV (Ω) as ϵ → 0.
The convergence of the operators is understood in the sense of the compact conver-
gence, as de�ned in [46]. Let us brie�y recall the setting. Let E be the extension-by-zero
operator, mapping any given real-valued function u de�ned on some subset A of RN , to
the function Eu such that Eu = u a.e. in A and Eu = 0 a.e. in RN \ A. By using E
we can map functions in L2(Ω) to the space L2(Ωϵ ), for every ϵ > 0, so that E de�nes
a “connecting system” between L2(Ω) and the family of spaces (L2(Ωϵ ))ϵ>0. We then say
that:

• vϵ ∈ L2(Ωϵ ) E-converges to v ∈ L2(Ω) if ‖vϵ − Ev ‖L2(Ωϵ )→ 0 as ϵ → 0;

• a family of bounded linear operatorsBϵ ∈ L(L2(Ωϵ )) EE- converges toB ∈ L(L2(Ω))
if Bϵvϵ E-converges to Bv whenever vϵ E-converges to v ;

• a family of bounded, compact linear operators Bϵ ∈ L(L2(Ωϵ )) is said to E-compact
converges to B ∈ L(L2(Ω)) if Bϵ EE-converges to B and for any family of functions
vϵ ∈ L2(Ωϵ ) with ‖vϵ ‖L2(Ωϵ ) ≤ 1 there exists a subsequence, denoted by vϵ again,
and a function w ∈ L2(Ω) such that Bϵvϵ E-converges to w .

We refer to [8, Section 2.2], for further information on this type of convergence. Impor-
tantly, in our assumptions on the operators HV (Ωϵ ), HV (Ω), the compact convergence of
the resolvent operators is a su�cient condition for the spectral convergence. In partic-
ular, we have the following

Theorem 1. Let Ωϵ , ϵ > 0 and Ω be open sets in RN . Let HV (Ωϵ ), HV (Ω) be operators
with compact resolvents, associated with V (Ωϵ ), V (Ω), respectively, as in (2.3), such that
condition (C) is satis�ed. Let λk , λϵk be the k-th eigenvalue of HV (Ω), HV (Ωϵ ), respectively.
Then H−1

V (Ωϵ ) E-compact converges to H−1
V (Ω) as ϵ → 0. Moreover,

(i) λϵn → λn as ϵ → 0, for all n ∈ N.

(ii) If λn = λn+1 = · · · = λn+h−1 is an eigenvalue ofmultiplicityh andφϵn,φ
ϵ
n+1, . . . ,φ

ϵ
n+h−1

is an orthonormal set in L2(Ωϵ ) of eigenfunctions associated with the correspond-
ing eigenvalues λϵn, λ

ϵ
n+1, . . . , λ

ϵ
n+h−1, then there exists an orthonormal set φn, φn+1,

. . . ,φn+h−1 in L2(Ω) of eigenfunctions associated with the eigenvalues (λn+t−1)ht=1
such that, possibly passing to a suitable subsequence, φϵn+i−1 E-converges to φn+i−1 as
ϵ → 0 for all i = 1, . . . ,h.

(iii) If λn = λn+1 = · · · = λn+h−1 is an eigenvalue of multiplicity h and φn, φn+1,
. . . ,φn+h−1 is an orthonormal set L2(Ω) of eigenfunctions associated with (λn+t−1)ht=1
then for every ϵ > 0 there exists an orthonormal set in L2(Ωϵ ) of eigenfunctions φϵn,
φϵn+1, . . . ,φ

ϵ
n+h−1 associated with the corresponding eigenvalues λϵn, λ

ϵ
n+1, . . . , λ

ϵ
n+h−1

such that φϵn+i−1 E-converges to φn+i−1 as ϵ → 0 for all i = 1, . . . ,h.

When the claims (i) − (ii) − (iii) of the previous theorem are veri�ed, we say that
HV (Ωϵ ) spectrally converges to HV (Ω) as ϵ → 0.
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3.1 An explicit condition for the spectral stability
We consider now the following geometric setting:

(G1) There exists a cuboid V of the form W × (a,b), where W ⊂ RN−1 is an open,
connected and bounded set of class Cm, and д,дϵ ∈ Cm(W ) such that

Ω ∩V = {(x̄ ,xN ) ∈W × (a,b) : a < xN < д(x̄)}, (3.2)
Ωϵ ∩V = {(x̄ ,xN ) ∈W × (a,b) : a < xN < дϵ (x̄)}. (3.3)

Assume that Ω \V = Ωϵ \V for all ϵ > 0.

It is convenient to set Ω0 = Ω. According to Def. 1, if Ωϵ ∈ Cm(A) for all ϵ ≥ 0,
then we can assume (G1) without loss of generality. For all ϵ ≥ 0, let us consider the
quadratic formsQΩϵ on Ωϵ de�ned as in (2.2), where the coe�cientsAαβ are independent
of ϵ ≥ 0 and satisfy the uniform ellipticity condition (2.5). Then we consider the non-
negative self-adjoint operators HV (Ωϵ ) de�ned by (2.3) with V (Ω) replaced by V (Ωϵ ) =
Wm,2(Ωϵ ) ∩W k,2

0 (Ωϵ ) for some 1 ≤ k < m. Since Ωϵ is of class Cm, V (Ωϵ ) is compactly
embedded in L2(Ωϵ ) hence HV (Ωϵ ) has compact resolvent.

We now state our �rst result, concerning an explicit condition su�cient to guarantee
the spectral convergence of the operators HV (Ωϵ ). This theorem is a generalisation of [8,
Lemma 6.2].

Theorem 2. Let Ωϵ , ϵ ≥ 0 satisfy assumption (G1). Suppose that for some k ∈ N, with
1 ≤ k < m,V (Ωϵ ) =Wm,2(Ωϵ ) ∩W k,2

0 (Ωϵ ) for all ϵ ≥ 0. If for all ϵ > 0 there exists κϵ > 0
such that

(i) κϵ > ‖дϵ − д‖∞, ∀ϵ > 0, limϵ→0 κϵ = 0,

(ii) limϵ→0
‖Dβ (дϵ−д)‖∞
κ
m−|β |−k+1/2
ϵ

= 0, ∀β ∈ NN
0 with |β | ≤ m,

then H−1
V (Ωϵ ) E-compact converges to H−1

V (Ω) as ϵ → 0. In particular, HV (Ωϵ ) spectrally con-
verges to HV (Ω) as ϵ → 0

Proof. We �rst observe that the last statement is a direct consequence of Theorem 1.
The case k = 1 is proved in [8, Lemma 6.2]. Thus, we suppose k > 1. It is possible to
assume directly that Ω = Ω∩V and Ωϵ = Ωϵ ∩V as in (3.2) and (3.3) respectively. De�ne
kϵ = Mκϵ for a suitable constant M > 2m. Let д̃ϵ = дϵ − kϵ and

Kϵ = {(x̄ ,xN ) ∈W×]a,b[: a < xN < д̃ϵ (x̄)}.

Note that with this de�nition of Kϵ (3.1) is satis�ed. By the standard one dimensional
estimate

‖ f ‖L∞(a,b) ≤ C‖ f ‖W 1,2(a,b), (3.4)

and Tonelli Theorem it follows that condition (C1) is satis�ed.
We now de�ne a suitable family of di�eomorphisms Φϵ : Ωϵ → Ω by setting

Φϵ (x̄ ,xN ) = (x̄ ,xN − hϵ (x̄ ,xN )),
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for all (x̄ ,xN ) ∈ Ωϵ , where

hϵ (x̄ ,xN ) =


0, if a ≤ xN ≤ д̃ϵ (x̄),

(дϵ (x̄) − д(x̄))
(

xN−д̃ϵ (x̄)
дϵ (x̄)−д̃ϵ (x̄)

)m+1
if д̃ϵ (x̄) < xN ≤ дϵ (x̄).

Then consider the map Tϵ from V (Ω) to V (Ωϵ ) de�ned by

Tϵφ = φ ◦ Φϵ , (3.5)

for all φ ∈ V (Ω). One can check that Tϵ is well-de�ned and that condition (C2)(i) is
satis�ed. We now want to prove that conditions (C2)(ii), (iii) are satis�ed. We need to
estimate the derivatives of φ ◦Φϵ . Here we can improve the estimate given in [8, Lemma
6.2] by taking advantage of the decay of Dγφ in a neighbourhood of ∂Ω, for |γ | ≤ k − 1.
We divide the proof in two steps.

Step 1. We aim at proving a decay estimates for the L2-norms of the derivatives of
φ near the boundary, namely estimate (3.12). First, note that

Φϵ (Ωϵ \ Kϵ ) = Ω \ Kϵ = {(x̄ ,xN ) ∈ Ω : x̄ ∈W , дϵ (x̄) − kϵ ≤ xN ≤ д(x̄)},

for any ϵ > 0. Fix x ∈ Φϵ (Ωϵ \ Kϵ ) and β ∈ NN
0 , |β | ≤ k − 1. Suppose for the moment

φ ∈ Cm(Ω). By the Taylor’s formula with remainder in integral form, we get that

Dβφ(x) =
k−1−|β |∑
l=0

1
l !
∂l (Dβφ(x̄ ,д(x̄)))

∂xlN
(xN − д(x̄))l + R(β ,x),

where

R(β,x) :=
(xN − д(x̄))k−|β |
(k − |β | − 1)!

∫ 1

0
(1 − t)k−1−|β | ∂

k−|β |

∂x
k−|β |
N

Dβφ(x̄ ,д(x̄) + t(xN − д(x̄)) dt .

Note that −2kϵ ≤ дϵ (x̄) − д(x̄) − kϵ ≤ xN − д(x̄) ≤ 0. By Jensen’s inequality,

|R(β,x)|2 ≤ (2kϵ )2(k−|β |)
∫ 1

0

����� ∂k−|β |∂x
k−|β |
N

Dβφ(x̄ ,д(x̄) + t(xN − д(x̄))
�����2 dt . (3.6)

An integration in the variable xN in (3.6) and inequality (3.4) applied to the interval
(a,д(x̄)) yield∫ д(x̄ )

дϵ (x̄ )−kϵ
|R(β ,x)|2 dxN ≤ Ck

2(k−|β |)+1
ϵ






 ∂k−|β |+1

∂x
k−|β |+1
N

Dβφ(x̄ , ·)





2

W 2,2(a,д(x̄ ))
(3.7)

By integrating both sides of (3.7) with respect to x̄ ∈W , we �nally get∫
Φϵ (Ωϵ \Kϵ )

|R(β,x)|2 dx ≤ Ck
2(k−|β |)+1
ϵ ‖φ‖2Wm,2(Ω), (3.8)
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for su�ciently small ϵ , for all |β | ≤ k − 1. Thus, by (3.1) we get∫
Φϵ (Ωϵ \Kϵ )

|Dβφ(x)|2 dx ≤ Ck
2(k−|β |)+1
ϵ ‖φ‖2Wm,2(Ω)

+C

∫
W

∫ д(x̄)

дϵ (x̄)−kϵ

����� k−1−|β |∑
l=0

∂l (Dβφ(x̄ ,д(x̄))
∂xlN

�����2 |xN − д(x̄)|2ldx̄ dxN ,
(3.9)

for all su�ciently small ϵ , and |β | ≤ k − 1. We now estimate the last integral in the
right-hand side of (3.9) in the following way

k−1−|β |∑
l=0

∫
W

∫ д(x̄)

дϵ (x̄)−kϵ

�����∂l (Dβφ(x̄ ,д(x̄))
∂xlN

�����2 |xN − д(x̄)|2ldx̄ dxN

≤
k−1−|β |∑
l=0

k2l+1
ϵ

∫
W

�����∂l (Dβφ(x̄ ,д(x̄))
∂xlN

�����2dx̄

=

k−1−|β |∑
l=0

Ck2l+1
ϵ






∂l (Dβφ)
∂xlN






2

L2(Γ)
,

(3.10)

where Γ := {(x̄ ,д(x̄)) : x̄ ∈W }. Thus, by (3.9), (3.10) we obtain∫
Φϵ (Ωϵ \Kϵ )

|Dβφ(x)|2 dx

≤
k−1−|β |∑
l=0

Ck2l+1
ϵ






∂l (Dβφ)
∂xlN






2

L2(Γ)
+Ck

2(k−|β |)+1
ϵ ‖φ‖2Wm,2(Ω).

(3.11)

Inequality (3.11) holds for smooth functions. If φ ∈ Wm,2(Ω) ∩W k,2
0 (Ω), then we can

choose a sequence (ψn)n≥1 ⊂ C∞(Ω) such that ψn → φ in Wm,2(Ω) (this is possible
because ∂Ω is Lipschitz continuous). We then use (3.11) forψn, and we pass to the limit
as n → ∞ by using the continuity of the trace operator and standard estimates on the
intermediate derivatives of Sobolev functions (see e.g., [15, §4.4]). We deduce that∫

Φϵ (Ωϵ \Kϵ )
|Dβφ(x)|2 dx ≤ Ck

2(k−|β |)+1
ϵ ‖φ‖2Wm,2(Ω), (3.12)

for all su�ciently small ϵ . Actually, inequality (3.12) holds also for |β | = k (possibly
modifying the constant in the right hand side). Indeed, Dβφ ∈W 2,2(Ω), for any |β | = k ,
hence by standard boundedness of Sobolev functions on almost all vertical lines (see
(3.4)) we �nd that∫

W

∫ д(x̄)

дϵ−kϵ
|Dβφ(x)|2 dxN dx̄ ≤ 2kϵ

∫
W
‖Dβφ(x̄ , ·)‖2∞dx̄ ≤ 2Ckϵ ‖φ‖2Wm,2(Ω).

This concludes Step 1.

14



Step 2. We claim that Condition (C2)(ii) holds. Let φ ∈ V (Ω) and let α be a �xed
multiindex such that |α | =m. We write

Dαφ(Φϵ (x)) =
∑

1≤|β |≤m
Dβφ(Φϵ (x))pαm,β (Φϵ )(x), (3.13)

where pα
m,β
(Φϵ ) is a homogeneous polynomial of degree |β | in derivatives of Φϵ of order

not exceeding m − |β | + 1. Note that the polynomial pα
m,β
(Φϵ ) appearing in (3.13) is the

sum of several terms Θ in the following form

Θ = Dk1

(
δj1,N −

∂hϵ
∂xj1

)
· · ·Dkn

(
δjn ,N −

∂hϵ
∂xjn

)
∂Φ(in+1)

∂xin+1

· · · ∂Φ
(i |β |)

∂xi |β |
,

where1 1 ≤ n ≤ |β |, 1 ≤ ji ≤ N for all i = 1, . . . ,n, in+1, . . . , i |β | are in {1, . . . ,N −1}, and
k1, . . . ,kn are multiindexes satisfying |k1 | + · · · + |kn | = m − |β |. Moreover, Θ is a sum
of terms of the type DL1hϵ · · ·DLlhϵ , for all 1 ≤ l ≤ n, for suitable multiindexes L1, ...,Ll
satisfying

|L1 | + · · · + |Ll | =m − |β | + l . (3.14)

Now by [8, Inequality (6.7)] and hypothesis (iii) we have

‖DL1hϵ · · ·DLlhϵ ‖∞

≤ C

( ∑
|γ1 |≤|L1 |

‖Dγ1(дϵ − д)‖∞
κ
|L1 |−|γ1 |
ϵ

)
· · ·

( ∑
|γl |≤|Ll |

‖Dγl (дϵ − д)‖∞
κ
|Ll |−|γl |
ϵ

)
≤ o(1)

( ∑
|γ1 |≤|L1 |

κ
m−|γ1 |−k+1/2
ϵ

κ
|L1 |−|γ1 |
ϵ

)
· · ·

( ∑
|γl |≤|Ll |

κ
m−|γl |−k+1/2
ϵ

κ
|Ll |−|γl |
ϵ

)
≤ o(1)κl(m−k+1/2)−∑i |Li |

ϵ = o(1)κl(m−k+1/2)−∑i |Li |−|β |+k+1/2
ϵ · κ |β |−k−1/2

ϵ

≤ o(1)κ |β |−k−1/2
ϵ

where the last inequality holds provided that

l(m − k + 1/2) −
∑
i

|Li | − |β | + k + 1/2 ≥ 0.

By (3.14), we have to check that l(m − k + 1/2) − (m − |β | + l) − |β | + k + 1/2 ≥ 0,
which is veri�ed if and only if l(m − k − 1/2) ≥ m − k − 1/2, and this holds true because
m − k − 1/2 > 0 and l ≥ 1. Hence we have proved that

‖pαm,β (Φϵ )‖∞ ≤ o(1)κ |β |−k−1/2
ϵ . (3.15)

1Here it is understood that for |β | = 1 the terms ∂Φ(jn+1)

∂xin+1
· · · ∂Φ

(j |β | )

∂xi |β |
are not present; recall thatm ≥ 2.
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By inequalities (3.12) and (3.15), we deduce that

QΩϵ \Kϵ (Tϵφ) ≤
∫
Ωϵ \Kϵ

|φ(Φϵ )|2 dx +C
∑
|α |=m

∫
Ωϵ \Kϵ

|Dαφ(Φϵ )|2 dx

≤ C

∫
Φϵ (Ωϵ \Kϵ )

|φ |2 dx +C
∑
|α |=m

1≤|β |≤k

‖pαm,β (Φϵ )‖
2
∞

∫
Ωϵ \Kϵ

|Dβφ(Φϵ (x))|2 dx

+C
∑
|α |=m

k< |β |≤m

‖pαm,β (Φϵ )‖
2
∞

∫
Ωϵ \Kϵ

|Dβφ(Φϵ (x))|2 dx

≤ C‖φ‖2L2(Ω\Kϵ ) + o(1)κ
2(|β |−k−1/2)
ϵ κ

2(k−|β |)+1
ϵ + o(1)‖φ‖2Wm,2(Ω\Kϵ ),

(3.16)

for all ϵ > 0 su�ciently small. Since the right-hand side of (3.16) vanishes as ϵ → 0 we
conclude that condition (C2)(ii) is satis�ed.
It remains to prove condition (C3). To prove that conditions (C3)(i), (C3)(ii) are satis�ed
it is su�cient to set Eϵu = (ExtΩϵu)|Ω for all u ∈ V (Ωϵ ), where ExtΩϵ is the standard
Sobolev extension operator mapping Wm,2(Ωϵ ) to Wm,2(RN ). Finally, in order to prove
condition (C3)(iii) it is su�cient to prove that the weak limitv of the uniformly bounded
sequence vϵ (appearing in the statement of condition (C3)(iii)) lies in W k,2

0 (Ω). This is
easily achieved by considering the extension-by-zero of the functions vϵ outside Ωϵ ,
passing to the limit and recalling that the limit set Ω has Lipschitz boundary. �

Theorem 2 can be actually applied to open sets Ω in the atlas classCm(A) by requir-
ing that the assumptions of Lemma 2 are satis�ed by all the pro�le functionsдj describing
their boundaries. Then we can prove the following

Theorem3. LetA be an atlas inRN ,M > 0,m ∈ N,m ≥ 2. For all ϵ ≥ 0, letΩϵ ∈ Cm
M (A).

Let k ∈ N with 1 ≤ k < m and de�ne, for all ϵ ≥ 0, V (Ωϵ ) =Wm,2(Ωϵ ) ∩W k,2
0 (Ωϵ ). If

lim
ϵ→0

d (m−k)A (Ωϵ ,Ω) = 0,

then condition (C) is satis�ed, hence H−1
V (Ωϵ ) E-compact converges to H−1

V (Ω) as ϵ → 0.

Proof. By using a standard partition of unity argument, it su�ces to prove that the as-
sumptions of Theorem 2 are satis�ed by all the pro�le functions дj,ϵ , дj describing the
boundaries of Ωϵ ,Ω, respectively, and this follows by choosing κϵ = (d (m−k)A (Ωϵ ,Ω))

1
m .
�

In order to prove that the assumptions of Lemma 2 are sharp, we now consider a the
following geometric setting:
(G2) Let α ∈ R, α > 0. Let b ∈ C∞(W ) a positive, non-constant periodic function, with
periodicity cell given by Y =] − 1/2, 1/2[N−1. Let us set

дϵ (x̄) = ϵαb
(
x̄

ϵ

)
, д(x̄) = 0,
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for all x̄ ∈W . For simplicity, we set д0 = д and for all ϵ ≥ 0 we consider the open sets

Ωϵ = {(x̄ ,xN ) ∈ RN : x̄ ∈W , −1 < xN < дϵ (x̄)}

Then we have the following

Theorem 4. Let Ωϵ , ϵ ≥ 0 be as in (G2) and let k ∈ N satisfy 1 ≤ k ≤ m − 1. Let
V (Ωϵ ) = Wm,2(Ωϵ ) ∩W k,2

0 (Ωϵ ) for all ϵ ≥ 0. If α > m − k + 1
2 , then H−1

V (Ωϵ ) E-compact
converges to H−1

V (Ω) as ϵ → 0.

Proof. We aim at applying Theorem 2 with κϵ = ϵαθ ‖b‖∞, for some θ ∈ (0, 1) to be
speci�ed. By the classical Gagliardo-Nirenberg interpolation inequality

‖Dβ f ‖∞ ≤ C(
∑
|α |=m
‖Dα f ‖∞)|β |/m‖ f ‖

1−|β |/m
∞ ,

for all f ∈Wm,∞(Ω) (see e.g., [42, p.125]), in order to verify condition (iii) in Theorem 2
it is su�cient to verify it for |β | = 0 and |β | = m (see also [8, Proposition 6.17]). When
|β | = 0 we have

lim
ϵ→0

‖дϵ − д‖∞
κm−k+1/2
ϵ

= c lim
ϵ→0

ϵα

ϵαθ (m−k+1/2) = c lim
ϵ→0

ϵα(1−θ (m−k−1/2)),

where c is a constant depending only on ‖b‖∞. The right-hand side clearly tends to 0 as
soon as θ < 1

m−k+1/2 .

When |β | =m, we must check that limϵ→0
Dβдϵ

κ−k+1/2
ϵ

= 0. Note that




 Dβдϵ

κ−k+1/2
ϵ







∞
= c

ϵα−m

ϵαθ (−k+1/2) = ϵ
α(1−θ (−k+1/2))−m,

and the right hand side tends to zero if and only if

α
(
1 + θ

(
k − 1

2

))
−m > 0. (3.17)

By letting θ → 1
m−k+1/2 in (3.17) we obtain that inequality (3.17) is satis�ed when α >

m − k + 1/2, true by assumption. By Lemma 2 we deduce the validity of Theorem 4. �

Remark 1. When k = m − 1, Theorem 4 states that if α > 3
2 , H

−1
V (Ωϵ )

C→ H−1
V (Ω) as ϵ → 0,

independently on m ≥ 2. Actually, it is possible to prove that α = 3/2 in this case is the
critical exponent, in the sense that when α ≤ 3/2 the operator H−1

V (Ωϵ ) does not converge to
H−1
V (Ω). We refer to Theorem 7 for a complete discussion about the spectral convergence of

HV (Ωϵ ) depending on α .
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4 A polyharmonic Green formula
In this section we provide a formula which turns out to be useful in recognising the
possible natural boundary conditions for polyharmonic operators of any order. Let us
begin by stating an easy integration-by-parts formula.

Proposition 1. Let Ω be a bounded domain of class C0,1 in RN . Letm ∈ N and let f ∈
Cm+1(Ω), φ ∈ Cm(Ω). Then∫

Ω
Dm f : Dmφ dx = −

∫
Ω
Dm−1(∆f ) : Dm−1φ dx

+

∫
∂Ω

Dm f : (n ⊗ Dm−1φ) dS,
(4.1)

where the symbol : stands for the Frobenius product, n is the unit outer normal to ∂Ω, and ⊗
is the tensor product, de�ned by (n⊗Dm−1φ)i,j1,··· ,jm−1 = ni

∂m−1φ
∂x j1 ···∂x jm−1

for all i, j1, · · · , jm−1 ∈
{1, · · · ,N }.

Proof. The proof is a simple integration by parts. Indeed, dropping the summation sym-
bols we get∫

Ω
Dm f : Dmφ dx =

∫
Ω

∂m f

∂x j1 · · · ∂x jm
∂mφ

∂x j1 · · · ∂x jm
dx

= −
∫
Ω

∂m+1 f

∂x2
j1 · · · ∂x jm

∂m−1φ

∂x j2 · · · ∂x jm
dx +

∫
∂Ω

∂m f

∂x j1 · · · ∂x jm
∂m−1φ

∂x j2 · · · ∂x jm
nj1 dS

= −
∫
Ω
Dm−1(∆f ) : Dm−1φ dx +

∫
∂Ω
(Dm f ) : (n ⊗ Dm−1φ) dS .

�

By applying m times the integration by parts argument used in the proof of for-
mula (4.1), we deduce the validity of the following

Corollary 1. Letm ∈ N. Let f ∈ C2m(Ω), φ ∈ Cm(Ω).∫
Ω
Dm f : Dmφ dx = (−1)m

∫
Ω
∆m f φ dx

+

m−1∑
k=0
(−1)k

∫
∂Ω
(Dm−k(∆k f )) : (n ⊗ Dm−k−1φ) dS . (4.2)

Theorem 5 (Polyharmonic Green Formula - Flat case). Let H be the half-space H =
{(x̄ ,xN ) ∈ RN : xN < 0}. Letm ∈ N. Let f ∈ C2m(H ), φ ∈ Cm(H ) with compact support in
H . Then, ∫

H
Dm f : Dmφ dx = (−1)m

∫
H
∆m f φ dx +

m−1∑
t=0

∫
RN−1

Bt (f )
∂tφ

∂xtN
dx̄ , (4.3)
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where Bt : C2m(∂H ) → Ct+1(∂H ) is de�ned by

Bt (f ) =
m−1∑
l=t

(−1)m−t−1
(
l

t

)
∆l−t
N−1

(
∂t+1

∂xt+1
N

(∆m−l−1 f )
)
, (4.4)

and ∆N−1 is the Laplace operator in the �rst N − 1 variables.

Proof. Let r =m − k − 1. First note that we can write∫
RN−1

(
Dr

(
∆k

(
∂ f

∂xN

)))
: Drφ dx̄

=

r∑
t=0

(
r

t

) ∫
RN−1

(
Dr−t
x̄

(
∆k

(
∂t+1 f

∂x t+1
N

)))
:
(
Dr−t
x̄

(
∂tφ

∂x tN

))
dx̄ . (4.5)

Then, by using (4.5) in the last integral in the right-hand side of (4.2) we get the following
as boundary term

m−1∑
k=0
(−1)k

r∑
t=0

(
r

t

) ∫
RN−1

Dr−t
x̄

(
∂t+1(∆k f )
∂xt+1

N

)
: Dr−t

x̄

(
∂tφ

∂xtN

)
dx̄ . (4.6)

By dropping the summation symbols, the integrand in (4.6) becomes∫
RN−1

∂r−t

∂xi1 · · · ∂xir−t

(
∂t+1(∆k f )
∂xt+1

N

)
∂r−t

∂xi1 · · · ∂xir−t

(
∂tφ

∂xtN

)
dx̄ , (4.7)

where the indexes ij run on the �rst N − 1 coordinates. By integrating by parts r − t
times in i1, . . . , ir−t in (4.7) we deduce that (4.6) equals

m−1∑
k=0
(−1)m−t−1

r∑
t=0

(
r

t

) ∫
RN−1

∂2(r−t)

∂2xi1 · · · ∂2xir−t

(
∂t+1(∆k f )
∂xt+1

N

)
∂tφ

∂xtN
dx̄ ,

where we have no other boundary terms because φ has compact support. We rewrite
the last expression as

m−1∑
k=0
(−1)m−t−1

r∑
t=0

(
r

t

) ∫
RN−1

∆r−t
N−1

(
∂t+1(∆k f )
∂xt+1

N

)
∂tφ

∂xtN
dx̄ . (4.8)

We now apply the change of summation index r =m−k − 1 in the �rst sum of (4.8). We
deduce that (4.8) equals

m−1∑
r=0
(−1)m−t−1

r∑
t=0

(
r

t

) ∫
RN−1

∆r−t
N−1

(
∂t+1(∆m−r−1 f )
∂xt+1

N

)
∂tφ

∂xtN
dx̄ . (4.9)

By exchanging the two sums in (4.9) we get (4.3). �
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Remark 2. Ifm = 2, then (4.3) reads∫
H
D2 f : D2φ dx =

∫
H
∆2 f φ dx +

∫
RN−1

∂2 f

∂x2
N

∂φ

∂xN
dx̄

−
∫
RN−1

(
∆N−1

(
∂ f

∂xN

)
+ ∆

(
∂ f

∂xN

))
φ dx̄ ,

which is consistent with the formula provided in [8, Lemma 8.56]. Indeed, if the domain is
a hyperplane, the boundary integral

∫
∂H
(div∂H (D2 f · n)∂Ω)φ dS appearing in [8, Lemma

8.56] coincides with
∫
RN−1 ∆N−1( ∂ f∂xN )φ dx̄ .

Theorem 6. Let Ω be a bounded domain of RN of class C0,1, m ∈ N, m ≥ 2. Let f ∈
W 2m,2(Ω) ∩Wm−1,2

0 (Ω) and φ ∈Wm,2(Ω) ∩Wm−1,2
0 (Ω). Then∫

Ω
Dm f : Dmφ dx = (−1)m

∫
Ω
∆m f φdx +

∫
∂Ω

∂m f

∂nm
∂m−1φ

∂nm−1 dS . (4.10)

Proof. By (4.2) it is easy to see that∫
Ω
Dm f : Dmφ dx = (−1)m

∫
Ω
∆m f φ dx +

∫
∂Ω

Dm f : (n ⊗ Dm−1φ)dS, (4.11)

for all φ ∈Wm,2(Ω) ∩Wm−1,2
0 (Ω), since Dlφ = 0 on ∂Ω for all l ≤ m − 2. We note that

Dm f : (n⊗Dm−1φ) = (nTDm f ) : Dm−1φ.Moreover we claim that Dm−1φ =
∂m−1φ
∂nm−1

⊗m−1
i=1 n

on ∂Ω and we prove it by induction. If m = 2 the claim is a direct consequence of the
gradient decomposition ∇|∂Ω = ∇∂Ω + ∂

∂nn. Now we assume that m > 2 and that the
claim holds for m − 1. Then, by using the fact that Dm−2φ |∂Ω = 0, for all φ ∈Wm,2(Ω) ∩
Wm−1,2

0 (Ω), we get

Dm−1φ |∂Ω = D(Dm−2φ)|∂Ω =
(
D

(
∂m−2φ

∂nm−2

m−2⊗
i=1

n

)
n

)
⊗ n = ∂

m−1φ

∂nm−1

m−1⊗
i=1

n,

for all φ ∈Wm,2(Ω) ∩Wm−1,2
0 (Ω). This proves the claim. Then we can rewrite (4.11) as∫

Ω
Dm f : Dmφ dx = (−1)m

∫
Ω
∆m f φ dx +

∫
∂Ω

∂m−1φ

∂nm−1 (n
TDm f ) :

( m−1⊗
i=1

n

)
dS, (4.12)

and since (nTDm f ) :
(⊗m−1

i=1 n
)
= Dm f :

(⊗m
i=1 n

)
=
∂m f
∂nm we deduce (4.10). �

5 Polyharmonic operators with strong intermediate
boundary conditions

Let Ωϵ , ϵ ≥ 0 be as in (G2). Consider the polyharmonic operators (−∆)m + I sub-
ject to strong intermediate boundary conditions, corresponding to the energy space
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V (Ωϵ ) := Wm,2(Ωϵ ) ∩Wm−1,2
0 (Ωϵ ). More precisely, let HΩϵ ,S be the non-negative self-

adjoint operator such that

(HΩϵ ,Su,v)L2(Ωϵ ) = (H
1/2
Ωϵ ,S

u, H 1/2
Ωϵ ,S

v)L2(Ωϵ ) = QΩϵ (u,v), (5.1)

for all functionsu,v ∈Wm,2(Ωϵ )∩Wm−1,2
0 (Ωϵ ), whereQΩϵ (u,v) :=

∫
Ωϵ

Dmu : Dmv+uv dx ,

is the quadratic form canonically associated withHΩϵ ,S . As it is explained in Section 2 the
equation HΩϵ ,Su = f with datum f ∈ L2(Ωϵ ), corresponds exactly to the weak Poisson
problem (1.8).

LetHΩ,D be the polyharmonic operator satisfying strong intermediate boundary con-
ditions on ∂Ω \W and Dirichlet boundary conditions onW , whose associated boundary
value problem reads

(−∆)mu + u = f , in Ωϵ ,
∂lu
∂nl
= 0, onW , for all 0 ≤ l ≤ m − 1,

∂lu
∂nl
= 0, on ∂Ωϵ \W , for all 0 ≤ l ≤ m − 2,

∂mu
∂nm = 0, on ∂Ωϵ \W .

(5.2)

Note that we are identifyingW withW × {0}. Then the following theorem holds.

Theorem 7. Let m ∈ N, m ≥ 2, Ωϵ as in (G2), HΩϵ as in (5.1), for all ϵ > 0. Then the
following statements hold true.

(i) [Spectral stability] If α > 3/2, then H−1
Ωϵ ,S

C→ H−1
Ω,S as ϵ → 0.

(ii) [Instability] If α < 3/2, thenH−1
Ωϵ ,S

C→ H−1
Ω,D as ϵ → 0, whereHΩ,D is de�ned in (5.2).

(iii) [Strange term] If α = 3/2, then H−1
Ωϵ ,I

C→ Ĥ−1
Ω as ϵ → 0, where ĤΩ is the operator

(−∆)m+Iwith strong intermediate boundary conditions on ∂Ω\W and the following
boundary conditions onW : Dlu = 0, for all l ≤ m − 2, ∂mxNu + K∂

m−1
xN u = 0, where

the factor K is given by

K =

∫
Y×(−∞,0)

|DmV |2 dy = −
∫
Y

(
∂m−1(∆V )
∂xm−1

N

+ (m − 1)∆N−1

(
∂m−1V

∂xm−1
N

))
b(ȳ)dȳ,

and the function V is Y -periodic in the variable ȳ and satis�es the following micro-
scopic problem 

(−∆)mV = 0, in Y × (−∞, 0),
∂lV
∂nl
(ȳ, 0) = 0, on Y , for all 0 ≤ l ≤ m − 3,

∂m−2V
∂ym−2

N
(ȳ, 0) = b(ȳ), on Y ,

∂mV
∂ymN
(ȳ, 0) = 0, on Y .
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Proof. Statement (i) is a straightforward application of Theorem 4 with k = m − 1. To
prove (ii)we check that Condition (C) in De�nition 3 is satis�ed withV (Ω) =Wm,2

0,W (Ω)∩
Wm−1,2

0 (Ω), andV (Ωϵ ) =Wm,2(Ωϵ )∩Wm−1,2
0 (Ωϵ ). HereWm,2

0,W (Ω) is the closure inWm,2(Ω)
of the space of functions vanishing in a neighborhood of W . Let Kϵ = Ω for all ϵ > 0.
Then we see immediately that condition (3.1) and condition (C1) are satis�ed. We de�ne
nowTϵ as the extension by zero operator fromWm,2

0,W (Ω) toW
m,2(W ×(−1,+∞)) and Eϵ as

the restriction operator to Ω. With these de�nitions it is not di�cult to prove that con-
ditions (C2) and (C3)(i),(ii) are satis�ed. It remains to prove that condition (C3)(iii) holds.
Let vϵ ∈ Wm,2(Ωϵ ) ∩Wm−1,2

0 (Ωϵ ) be such that ‖vϵ ‖Wm,2(Ωϵ ) ≤ C for all ϵ > 0. Possibly
passing to a subsequence there exists a function v ∈ Wm−1,2(Ω) such that vϵ |Ω ⇀ v in
Wm,2(Ω) andvϵ |Ω → v inWm−1,2(Ω). By considering the sequence of functionsTϵ (vϵ |Ω)
it is not di�cult to prove that v ∈ Wm−1,2

0 (Ω). It remains to check that ∂
m−1v
∂xm−1

N
= 0 on

W × {0}. This is proven exactly as in [8, Theorem 7.3] by applying Lemma 4.3 from [20]
to the vector �eld V i

ϵ de�ned by

V i
ϵ =

(
0, · · · , 0,−∂

m−1vϵ

∂xm−1
N

, 0, · · · , 0, ∂
m−1vϵ

∂xm−2
N ∂xi

)
,

for all i = 1, . . . ,N − 1, where the only non-zero entries are the i-th and the N -th ones.
We remark that it is possible to apply Lemma 4.3 from [20] because by Theorem 4 the
critical threshold for all the polyharmonics operator with strong intermediate boundary
conditions is α = 3/2, which coincides with the critical value in [20]. We then deduce
that ∂

m−1v(x̄ ,0)
∂xm−1

N

∂b(ȳ)
∂yi
= 0, a.e. W × Y . Since b is a non-constant smooth function we must

have ∂
m−1v(x̄ ,0)
∂xm−1

N
= 0 a.e. onW . This concludes the proof of condition (C3)(iii).

We provide a proof of (iii) in Sections 5.1 and 5.2. �

Remark 3. We take the chance to point out a misprint in [5, Theorem 1, (ii)] where the
condition ∂mxNu + K∂m−1

xN u = 0 in our Theorem 7 (iii) above, appears for m = 3 with −K
instead of +K as it should be.

5.1 Critical case - Macroscopic problem.
In this section we prove Theore 7 (iii). Let us de�ne a di�eomorphism Φϵ from Ωϵ to Ω
by

Φϵ (x̄ ,xN ) = (x̄ ,xN − hϵ (x̄ ,xN )), for all x = (x̄ ,xN ) ∈ Ωϵ ,

where hϵ is de�ned by

hϵ (x̄ ,xN ) =


0, if −1 ≤ xN ≤ −ϵ,
дϵ (x̄)

(
xN+ϵ
дϵ (x̄)+ϵ

)m+1
, if −ϵ ≤ xN ≤ дϵ (x̄).

By standard calculus one can prove the following

Lemma 1. The map Φϵ is a di�eomorphism of class Cm and there exists a constant c > 0
independent of ϵ such that |hϵ | ≤ cϵα and

��Dlhϵ
�� ≤ cϵα−l , for all l = 1, . . . ,m, ϵ > 0

su�ciently small.
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As in [8, Section 8.1], we introduce the pullback operator Tϵ from L2(Ω) to L2(Ωϵ )
given by Tϵu = u ◦ Φϵ for all u ∈ L2(Ω).

In order to proceed we �nd convenient to recall some notation and results in ho-
mogenization theory regarding the unfolding operator. We refer to [1, 23, 24, 28] for the
proof of the main properties of the operator, and we mention that recent developments
can be found in the article [9].
For any k ∈ ZN−1 and ϵ > 0 we de�ne

Ck
ϵ = ϵk + ϵY ,

IW ,ϵ = {k ∈ ZN−1 : Ck
ϵ ⊂W },

Ŵϵ =
⋃

k∈IW ,ϵ

Ck
ϵ .

(5.3)

Then we give the following

De�nition 4. Letu be a real-valued function de�ned in Ω. For any ϵ > 0 su�ciently small
the unfolding û of u is the real-valued function de�ned on Ŵϵ × Y × (−1/ϵ, 0) by

û(x̄ , ȳ,yN ) = u
(
ϵ
[ x̄
ϵ

]
+ ϵȳ, ϵyN

)
,

for almost all (x̄ , ȳ,yN )) ∈ Ŵϵ × Y × (−1/ϵ, 0), where
[
x̄
ϵ

]
denotes the integer part of the

vector x̄ϵ−1 with respect to Y , i.e., [x̄ϵ−1] = k if and only if x̄ ∈ Ck
ϵ .

The following lemma will be often used in the sequel. For a proof we refer to [25,
Proposition 2.5(i)].

Lemma 2. Let a ∈ [−1, 0[ be �xed. Then∫
Ŵϵ×(a,0)

u(x)dx = ϵ
∫
Ŵϵ×Y×(a/ϵ,0)

û(x̄ ,y)dx̄dy (5.4)

for all u ∈ L1(Ω) and ϵ > 0 su�ciently small. Moreover∫
Ŵϵ×(a,0)

���� ∂lu(x)
∂xi1 · · · ∂xil

����2 dx = ϵ1−2l
∫
Ŵϵ×Y×(a/ϵ,0)

���� ∂lû

∂yi1 · · · ∂yil
(x̄ ,y)dx̄

����2 dy,
for all l ≤ m, u ∈Wm,2(Ω) and ϵ > 0 su�ciently small.

Let Wm,2
PerY ,loc(Y × (−∞, 0)) be the subspace of Wm,2

loc (R
N−1 × (−∞, 0)) containing Y -

periodic functions in the �rst (N − 1) variables ȳ. We then de�neWm,2
loc
(Y × (−∞, 0)) to

be the space of functions in Wm,2
PerY ,loc(Y × (−∞, 0)) restricted to Y × (−∞, 0). Finally we

set

wm,2
PerY (Y × (−∞, 0)) :=

{
u ∈Wm,2

PerY ,loc(Y × (−∞, 0))
: ‖Dγu‖L2(Y×(−∞,0)) < ∞,∀|γ | =m

}
. (5.5)
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For any d < 0, let Pl
hom,y
(Y × (d, 0)) be the space of homogeneous polynomials of degree

at most l restricted to the domain (Y ×(d, 0)). Let ϵ > 0 be �xed. We de�ne the projectors
Pi from L2(Ŵϵ ,W

m,2(Y × (−1/ϵ, 0))) to L2(Ŵϵ ,Pi
hom,y
(−1/ϵ, 0)) by setting

Pi(ψ ) =
∑
|η |=i

∫
Y
Dηψ (x̄ , ζ̄ , 0)dζ̄ y

η

η!

for all i = 0, . . . ,m − 1. We now set Qm−1 = Pm−1, Qm−2 = Pm−2(I − Qm−1), etc., up
to Q0 = P0

(
I − ∑m−1

j=1 Qj
)
. Note that Qm−j , j = 1, . . . ,m is a projection on the space of

homogeneous polynomials of degree m − j, with the property that Qm−k(p) = 0 for all
polynomials p of degreem − k with k , j. We �nally set

P = Q0 +Q1 + · · · +Qm−1, (5.6)

which is a projector on the space of polynomials in y of degree at mostm − 1. Note that
D
β
yP(ψ )(x̄ , ȳ, 0) =

∫
Y
D
β
yψ (x̄ , ȳ, 0)dȳ for all |β | = 0, . . . ,m−1. In particular, it follows that∫

Y
(Dβ

yψ (x̄ , ȳ, 0) −D
β
yP(ψ )(x̄ , ȳ, 0))dȳ = 0 for almost all x̄ in Ŵϵ , for all |β | = 0, . . . ,m − 1.

Lemma 3. Letm ∈ N,m ≥ 2 be �xed. The following statements hold:

(i) Let vϵ ∈Wm,2(Ω) with ‖v̂ϵ ‖Wm,2(Ω) ≤ M , for all ϵ > 0. Let Vϵ be de�ned by

Vϵ (x̄ ,y) =v̂ϵ (x̄ ,y) − P(vϵ )(x̄ ,y),

for (x̄ ,y) ∈ Ŵϵ × Y × (−1/ϵ, 0), where P is de�ned by (5.6) . Then there exists a
function v̂ ∈ L2(W ,wm,2

PerY (Y × (−∞, 0))) such that, possibly passing to a subsequence,
for every d < 0

(a)
D
γ
yVϵ

ϵm−1/2 ⇀ D
γ
yv̂ in L2(W × Y × (d, 0)) as ϵ → 0, for any γ ∈ NN

0 , |γ | ≤ m − 1.

(b)
D
γ
yVϵ

ϵm−1/2 ⇀ D
γ
yv̂ in L2(W × Y × (−∞, 0)) as ϵ → 0, for any γ ∈ NN

0 , |γ | =m,

where it is understood that the functions Vϵ ,D
γ
yVϵ are extended by zero to the whole

ofW × Y × (−∞, 0) outside their natural domain of de�nition Ŵϵ × Y × (−1/ϵ, 0).

(ii) Ifψ ∈W 1,2(Ω), then limϵ→0 �(Tϵψ )|Ω = ψ (x̄ , 0) in L2(W × Y × (−1, 0)).

Proof. The proof follows as in the proof [8, Lemma 8.9] by noting that P is a projector
on the space of polynomials of degree at most m − 1, so that a Poincaré-Wirtinger-type
inequality still holds. �

Let fϵ ∈ L2(Ωϵ ) and f ∈ L2(Ω) be such that fϵ ⇀ f in L2(RN ) as ϵ → 0, with the
understanding that the functions are extended by zero outside their natural domains.
Let vϵ ∈ V (Ωϵ ) =Wm,2(Ωϵ ) ∩Wm−1,2

0 (Ωϵ ) be such that for all ϵ > 0 small enough

HΩϵ ,Svϵ = fϵ . (5.7)

Then ‖vϵ ‖Wm,2(Ωϵ ) ≤ M for all ϵ > 0 su�ciently small, hence, possibly passing to a
subsequence there exists v ∈ Wm,2(Ω) ∩Wm−1,2

0 (Ω) such that vϵ ⇀ v in Wm,2(Ω) and
vϵ → v in L2(RN ).
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Let φ ∈ V (Ω) =Wm,2(Ω) ∩Wm−1,2
0 (Ω) be �xed. Since Tϵφ ∈ V (Ωϵ ), by (5.7) we have∫

Ωϵ

Dmvϵ : DmTϵφ dx +
∫
Ωϵ

vϵTϵφ dx =
∫
Ωϵ

fϵTϵφ dx , (5.8)

and passing to the limit as ϵ → 0 we get
∫
Ωϵ
vϵTϵφ dx →

∫
Ω
vφ dx and

∫
Ωϵ

fϵTϵφ dx →∫
Ω
f φ dx .
Now consider the �rst integral in the right hand-side of (5.8). Set Kϵ =W × (−1,−ϵ).

By splitting the integral in three terms corresponding to Ωϵ \ Ω, Ω \ Kϵ and Kϵ and by
arguing as in [8, Section 8.3] one can show that

∫
Kϵ

Dmvϵ : Dmφ dx →
∫
Ω
Dmv : Dmφ dx

and
∫
Ωϵ \Ω Dmvϵ : DmTϵφ dx → 0, as ϵ → 0. Let us de�ne Qϵ by

Qϵ = Ŵϵ × (−ϵ, 0).
We split again the remaining integral in two summands as follows:∫

Ωϵ \Kϵ
Dmvϵ : DmTϵφ dx

=

∫
Ωϵ \(Kϵ∪Qϵ )

Dmvϵ : DmTϵφ dx +
∫
Qϵ

Dmvϵ : DmTϵφ dx . (5.9)

As in [8, Section 8.3],
∫
Ωϵ \(Kϵ∪Qϵ )D

mvϵ : DmTϵφ dx → 0, as ϵ → 0. It remains to analyse
the limit as ϵ → 0 of the last summand in the right-hand side of (5.9). To do so, we also
need the following lemma in the proof of which we use notation and rules of calculus
recalled in Section 2.
Lemma 4. Let l ∈ N, l ≤ m, and let i1, . . . , il ∈ {1, . . . ,N }. The functions ĥϵ (x̄ ,y),�∂lhϵ
∂xi1 ···∂xil

(x̄ ,y) de�ned fory ∈ Y×(−1, 0), are independent of x̄ . Moreover, ‖ĥϵ ‖L∞ = O(ϵ3/2),



 �∂lhϵ
∂xi1 ···∂xil

(x̄ ,y)





L∞
= O(ϵ3/2−l ) as ϵ → 0, and if l ≥ 2 we have ϵl−3/2 �∂lhϵ

∂xi1 ···∂xil
(x̄ ,y) →

∂l (b(ȳ)(yN+1)m+1)
∂yi1 ···∂yil

as ϵ → 0, uniformly in y ∈ Y × (−1, 0).

Proof. First, note that the part of the statement involving the asymptotic behaviour of
ĥϵ as ϵ → 0 follows directly from Lemma 1 and De�nition 4. Assume now that l ≥ 2.
By applying formula (2.7) we have that�∂lhϵ

∂xi1 · · · ∂xil
(x̄ ,y) =

∑
S ∈P(l )

ϵα

ϵ |S |
∂ |S |b(ȳ)∏
j ∈S ∂yi j

�∂l−|S |∏
j<S ∂xi j

(
xN + ϵ

дϵ (x̄) + ϵ

)m+1

(5.10)

Standard Calculus computations based on Formulas (2.6) and (2.7) give�∂l−|S |∏
j<S ∂xi j

(
xN + ϵ

дϵ (x̄) + ϵ

)m+1
= C

(
|S |

)
ϵ−l+ |S |

(yN + 1)m+1−l+ |S |

(ϵα−1b(ȳ) + 1)m+1

∏
j<S

δi jN

+
∑

Λ∈P(SC )
Λ,∅

∑
π ∈Part(Λ)

ϵα |π |− |π |−l+ |S |(−1) |π | (m + |π |)!
m!

(m + 1)!
(m + 1 − l + |S | + |Λ|)!

· (yN + 1)m+1−l+ |S |+ |Λ |

(ϵα−1b(ȳ) + 1)m+1+ |π |

∏
k ∈(SC \Λ)

δikN
∏
B∈π

∂ |B |b(ȳ)∏
l ∈B ∂yil

. (5.11)
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where C
(
|S |

)
=

(m+1)!
(m+1−l+|S |)! . By (5.10) and (5.11) we deduce that

ϵ l−α
�∂lhϵ
∂xi1 · · · ∂xil

(x̄ ,y)

= ϵ l−α
∑

S ∈P(l )
ϵα−|S |

∂ |S |b(ȳ)∏
j ∈S ∂yi j

C
(
|S |

)
ϵ−l+ |S |

(yN + 1)m+1−l+ |S |

(ϵα−1b(ȳ) + 1)m+1

∏
j<S

δi jN

+ ϵ l−α
∑

S ∈P(l )
ϵα−|S |

∂ |S |b(ȳ)∏
j ∈S ∂yi j

∑
Λ∈P(SC )

Λ,∅

∑
π ∈Part(Λ)

ϵ |Λ |− |π |−l+ |S |(−1) |π | (m + |π |)!
m!

·C(|S ∪ Λ|) (yN + 1)m+1−l+ |S |+ |Λ |

(ϵα−1 + 1)m+1+ |π |

∏
k ∈(SC \Λ)

δikN
∏
B∈π

ϵα−|B |
∂ |B |b(ȳ)∏
l ∈B ∂yil

.

(5.12)

It is possible to prove by direct computation that all the summands appearing in the
second line in the right-hand side of (5.12) are vanishing as ϵ → 0. By letting ϵ → 0 in
(5.12) we see that

lim
ϵ→0

ϵ l−α
�∂lhϵ
∂xi1 · · · ∂xil

(x̄ ,y) =
∑

S ∈P(l )

∂ |S |b(ȳ)∏
j ∈S ∂yi j

C(|S |) (yN + 1)m+1−l+ |S |
∏
j<S

δi jN

=
∂l

∂yi1 · · · ∂yil
(
b(ȳ)(yN + 1)m+1),

concluding the proof. �

Finally, we are ready to prove the following

Proposition 2. Let vϵ ∈ V (Ωϵ ) be such that ‖vϵ ‖Wm,2(Ωϵ ) ≤ M for all ϵ > 0. Let Ỹ = Y ×
(−1, 0) andд(y) = b(ȳ)(1+yN )m+1 for ally ∈ Ỹ . Moreover, let v̂ ∈ L2(W ,wm,2

PerY
(Y×(−∞, 0)))

be as in Lemma 3. Then∫
Qϵ

Dmvϵ : Dm(Tϵφ) dx →

−
m−1∑
l=1

(
m

l + 1

) ∫
W

∫
Ỹ

yl−1
N

(l − 1)!D
l+1
y

(
∂m−l−1v̂(x̄ ,y)
∂ym−l−1

N

)
: Dl+1

y д(y) dy ∂
m−1φ

∂xm−1
N
(x̄ , 0)dx̄ ,

for all φ ∈Wm,2(Ω) ∩Wm−1,2
0 (Ω), as ϵ → 0.

Proof. We set

P1(t) = {π = (S1, . . . , St ) ∈ Part({1, . . . ,m}) : ∃! Sk with |Sk | > 1},
P2(t) = {π ∈ Part({1, . . . ,m}) : |π | = t ,π < P1(t)}.

We note that in the de�nition of P1(t) we may assume without loss of generality that
the only element Sk with cardinality strictly bigger than 1 is S1. In the sequel, we always
assume that a given partition π of cardinality t is represented by π = {S1, . . . , St }. In the
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following calculations, we use the index notation and we drop the summation symbols∑N
j1,...,j |π |=1 and

∑N
i1,··· ,im=1. With the help of (2.8) we compute∫

Qϵ

Dmvϵ : Dm(Tϵφ) dx =
∫
Qϵ

∂mvϵ
∂xi1 · · · ∂xim

∂m(φ ◦ Φϵ )
∂xi1 · · · ∂xim

dx

=
∑

π∈Part({1,...,m})
π={S1,...,S |π |}

∫
Qϵ

∂mvϵ
∂xi1 · · · ∂xim

∂ |π |φ∏|π |
k=1 ∂xjk

(Φϵ (x))
|π |∏
k=1

∂ |Sk |Φ(jk )ϵ∏
l∈Sk ∂xil

dx

=

∫
Qϵ

∂mvϵ
∂xi1 · · · ∂xim

∂mφ

∂xj1 · · · ∂xjm
(Φϵ (x))

∂Φ(j1)ϵ

∂xi1
· · · ∂Φ

(jm)
ϵ

∂xim
dx ,

+

m−1∑
t=1

∑
π∈P1(t)

∫
Qϵ

∂mvϵ
∂xi1 · · · ∂xim

∂tφ∏t
k=1 ∂xjk

(Φϵ (x))
t∏

k=1

∂ |Sk |Φ(jk )ϵ∏
l∈Sk ∂xil

dx

+

m−2∑
t=2

Ft (vϵ ,φ,Φϵ ),

(5.13)

where Ft (vϵ ,φ,Φϵ ) is de�ned by

Ft (vϵ ,φ,Φϵ ) =
∑

π∈P2(t)

∫
Qϵ

∂mvϵ
∂xi1 · · · ∂xim

∂tφ∏t
k=1 ∂xjk

t∏
k=1

∂ |Sk |Φ(jk )ϵ∏
l∈Sk ∂xil

dx .

We consider separately the three summands in the right hand side of (5.13). Let us
remark for future use that

∂Φ(k)ϵ
∂xi

=

{
δki , if k , N ,

δNi − ∂hϵ∂xi , if k = N ,

∂lΦ(k)ϵ
∂xi1 · · · ∂xil

=

{
0, if k , N ,

− ∂lhϵ
∂xi1 ···∂xil

, if k = N .

for all 2 ≤ l ≤ m. Consider now the �rst term in the right hand side of (5.13). We unfold
it by taking into account (5.4) in order to obtain�����ϵ ∫

Ŵϵ

∫
Ỹ

�∂mvϵ
∂xi1 · · · ∂xim

∂mφ

∂xj1 · · · ∂xjm
(Φ̂ϵ (y))

�
∂Φ(j1)ϵ

∂xi1
· · ·

�
∂Φ(jm)ϵ

∂xim
dydx̄

�����
= ϵ−2m+1

����� ∫Ŵϵ

∫
Ỹ

∂mv̂ϵ
∂yi1 · · · ∂yim

∂mφ

∂xj1 · · · ∂xjm
(Φ̂ϵ (y))

∂Φ̂(j1)ϵ

∂yi1
· · · ∂Φ̂

(jm)
ϵ

∂yim
dydx̄

�����
≤ Cϵ−m+1ϵm−1/2

∫
Ŵϵ

∫
Ỹ

�����ϵ−m+1/2 ∂mv̂ϵ
∂yi1 · · · ∂yim

∂mφ

∂xj1 · · · ∂xjm
(Φ̂ϵ (y))

�����dydx̄
≤ Cϵ1/2





ϵ−m+1/2 ∂mv̂ϵ
∂yi1 · · · ∂yim






L2(Ŵϵ×Ỹ )





 ∂mφ

∂xj1 · · · ∂xjm
(Φ̂ϵ (y))






L2(Ŵϵ×Ỹ )

≤ Cϵ1/2




 ∂mφ

∂xj1 · · · ∂xjm
(Φ̂ϵ (y))






L2(Ŵϵ×Ỹ )

≤ C





 ∂mφ

∂xj1 · · · ∂xjm






L2(Φϵ (Qϵ ))

,
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which vanishes as ϵ → 0. In the �rst inequality we have used the fact that
��� ∂Φ̂(k )ϵ∂yi ��� ≤ Cϵ,

for su�ciently small ϵ > 0. Let now 1 ≤ t ≤ m − 1 be �xed and consider∑
π ∈P1(t )

∫
Qϵ

∂mvϵ
∂xi1 · · · ∂xim

∂tφ∏t
k=1 ∂x jk

(Φϵ (x))
t∏

k=1

∂ |Sk |Φ(jk )ϵ∏
l ∈Sk ∂xil

dx

=
∑

π ∈P1(t )

∫
Qϵ

∂mvϵ
∂xi1 · · · ∂xim

∂tφ∏t
k=1 ∂x jk

(Φϵ (x))
∂m−t+1Φ(j1)ϵ∏

l ∈S1 ∂xil

∂Φ(j2)ϵ

∂xiS2

· · · ∂Φ
(jt )
ϵ

∂xiSt
dx , (5.14)

where to shorten the notation we have identi�ed S2, . . . , St with the only element they
contain. Note that if j1 , N then the integral in (5.14) is zero. Thus, without loss of
generality we set j1 = N . Note that we have ∂Φ

(N )
ϵ
∂xit

= δNit +
∂hϵ
∂xit

and
��� ∂hϵ∂xit ��� ≤ Cϵ1/2 as

ϵ → 0. In order to simplify the expressions we will not write down the higher order
terms in ϵ . Hence, by setting j1 = N in (5.14) we deduce that the lower order terms in
(5.14) are given by∑

π ∈P1(t )

∫
Qϵ

∂mvϵ
∂xi1 · · · ∂xim

∂tφ

∂xN ∂x jS2
· · · ∂x jSt

(Φϵ )
∂m−t+1Φ(N )ϵ∏

l ∈S1 ∂xil
δiS2 j2 · · · δiSt jN dx

=
∑

π ∈P1(t )

∫
Qϵ

∂tφ

∂xN ∂xiS2
· · · ∂xiSt

(Φϵ )
∂mvϵ∏

l ∈S1 ∂xil ∂xiS2
· · · ∂xiSt

∂m−t+1Φ(N )ϵ∏
l ∈S1 ∂xil

dx

=

(
m

t − 1

)∫
Qϵ

∂tφ

∂xN ∂xiS2
· · · ∂xiSt

(Φϵ )
∂mvϵ∏

l ∈S1∂xil ∂xiS2
· · · ∂xiSt

∂m−t+1Φ(N )ϵ∏
l ∈S1∂xil

dx ,

(5.15)

where in the last equality in (5.15) we have used the fact that each of the summands∫
Qϵ

∂tφ

∂xN ∂xiS2
· · · ∂xiSt

(Φϵ )
∂mvϵ∏

l∈S1 ∂xil ∂xiS2
· · · ∂xiSt

∂m−t+1Φ(N )ϵ∏
l∈S1 ∂xil

dx

equals ∫
Qϵ

∂tφ

∂xN ∂xiS2
· · · ∂xiSt

(Φϵ )Dm−t+1

(
∂t−1vϵ

∂xiS2
· · · ∂xiSt

)
: Dm−t+1Φ(N )ϵ dx .

and in particular they do not depend on the choice of π (note that the cardinality of
P1(t) equals

( m
t−1

)
). By unfolding the right-hand side of (5.15) and using the fact that

m − t + 1 ≥ 2 we have that(
m

t − 1

)
ϵ

∫
Ŵϵ

∫
Ỹ

∂tφ

∂xN ∂xiS2
· · · ∂xiSt

(Φ̂ϵ (y))
�∂mvϵ∏

l ∈S1 ∂xil ∂xiS2
· · · ∂xiSt

�
∂m−t+1Φ(N )ϵ∏

l ∈S1 ∂xil
dydx̄

= −
(
m

t + 1

)
ϵ

ϵm

∫
Ŵϵ

∫
Ỹ

∂mv̂ϵ∏
l ∈S1 ∂yil ∂yiS2

· · · ∂yiSt
∂tφ

∂xN ∂xiS2
· · · ∂xiSt

(Φ̂ϵ (y))
�∂m−t+1hϵ∏
l ∈S1 ∂xil

dydx̄ .

(5.16)

It is easy to see that the �nal expression appearing in the right-hand side of (5.16) can
be written as

−
(
m

t + 1

) ∫
Ŵϵ

∫
Ỹ

[
ϵ−m+1/2 ∂mv̂ϵ∏

l ∈S1 ∂yil ∂yiS2
· · · ∂yiSt

]
·
[

1
ϵm−t−1

∂tφ

∂xN ∂yiS2
· · · ∂yiSt

(Φ̂ϵ (y))
] [
ϵm−t+1−3/2

�∂m−t+1hϵ∏
l ∈S1 ∂xil

]
dydx̄ . (5.17)
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Now
ϵ−m+1/2 ∂mv̂ϵ∏

l∈S1 ∂yil ∂yiS2
· · · ∂yiSt

→ ∂mv̂∏
l∈S1 ∂yil ∂yiS2

· · · ∂yiSt
,

weakly in L2(Ŵϵ × Y × (−1, 0)) as ϵ → 0, by Lemma 3, and

ϵm−t+1−3/2
�∂m−t+1hϵ∏
l∈S1 ∂xil

→ ∂
m−t+1(b(ȳ)(1 + yN )m+1)∏

l∈S1 ∂yil
,

in L∞(Ŵϵ × Y × (−1, 0)) as ϵ → 0, by Lemma 4. Moreover, by Lemma 6 in the Appendix
it follows that

1
ϵm−t−1

∂tφ

∂xtN
(Φ̂ϵ (y)) →

ym−t−1
N

(m − t − 1)!
∂m−1φ

∂xm−1
N

(x̄ , 0),

and
1

ϵm−t−1
∂tφ

∂xN ∂xiS2
· · · ∂xiSt

(Φ̂ϵ (y)) → 0,

strongly in L2(W × Y × (−1, 0)) as ϵ → 0, if at least one of the indexes iS2, . . . , iSN is not
equal to N . Hence (5.17) tends to

−
(
m

t + 1

) ∫
W

∫
Y×(−1,0)

ym−t−1
N

(m − t − 1)!D
m−t+1
y

(
∂t−1v̂

∂yt−1
N

)
: Dm−t+1

y

(
b(ȳ)(1+yN )m+1

)
dy
∂m−1φ

∂xm−1
N
(x̄ , 0)dx̄ .

By settingm − t = l we recover the limiting expression in the statement. Then, in order
to conclude the proof it is su�cient to prove that the integrals in Ft (vϵ ,φ,Φϵ ) vanish as
ϵ → 0. We will show this by comparing each integral appearing in the de�nition of
Ft (vϵ ,φ,Φϵ ) with the corresponding integral of the form (5.14), which is convergent as
ϵ → 0, hence it is uniformly bounded in ϵ . Note that by Lemma 4

∂m−t+1Φ̂(j1)ϵ∏
l∈S1 ∂yil

∂Φ̂(j2)ϵ

∂yiS2

· · · ∂Φ̂
(jt )
ϵ

∂yiSt
= O(ϵ3/2+t−1) = O(ϵ1/2+t ),

for all π ∈ P1(t), whereas if we consider π ′ = (S′1, . . . , S′t ) ∈ P2(t) with |S′1 | = m − t <
m − t + 1 there must exists S′

k
, k > 1 with |S′

k
| = 2. Let us assume that k = 2. Then we

have
∂m−t Φ̂(j1)ϵ∏
l∈S ′1 ∂yil

∂2Φ̂(j2)ϵ∏
l∈S ′2 ∂yil

∂Φ̂(j3)ϵ

∂yiS ′3

· · · ∂Φ̂
(jt )
ϵ

∂yiS ′t

= O(ϵ3/2+tϵ3/2−2) = O(ϵ1+t ),

and since ϵ1+t = o
(
ϵ1/2+t ) as ϵ → 0 and the integral (5.14) is bounded, we deduce that

the integral in Ft (vϵ ,φ,Φϵ ) involving

∂mvϵ
∂xi1 · · · ∂xim

∂tφ∏t
k=1 ∂xjk

∂m−t Φ̂(j1)ϵ∏
l∈S ′1 ∂yil

∂2Φ̂(j2)ϵ∏
l∈S ′2 ∂yil

∂Φ̂(j3)ϵ

∂yiS ′3

· · · ∂Φ̂
(jt )
ϵ

∂yiS ′t

,

for all π ′ ∈ P2(t) de�ned above, vanishes as ϵ → 0. By arguing in a similar way for all
the terms in Ft (vϵ ,φ,Φϵ ) we deduce the validity of the statement. �

We summarise the previous discussion in the following

29



Theorem 8. Let fϵ ∈ L2(Ωϵ ), f ∈ L2(Ω) be such that fϵ ⇀ f in L2(Ω). Let д(y) = b(ȳ)(1+
yN )m+1 for all y ∈ Y × (−1, 0). Moreover, let us assume that vϵ ∈Wm,2(Ωϵ ) ∩Wm−1,2

0 (Ωϵ )
is the solution to HΩϵ ,Svϵ = fϵ for all ϵ > 0. Then there exist v ∈ Wm,2(Ω) ∩Wm−1,2

0 (Ω)
and a function v̂ in the space L2(W ,wm,2

PerY
(Y × (−∞, 0))) such that, possibly passing to a

subsequence,vϵ ⇀ v inWm,2(Ω),vϵ → v in L2(RN ), and statements (a) and (b) in Lemma 3
hold. Moreover, the following integral equality holds

−
m−1∑
l=1

(
m

l + 1

) ∫
W

∫
Y×(−1,0)

[
yl−1
N

(l − 1)!D
l+1
y

(
∂m−l−1v̂(x̄ ,y)
∂ym−l−1

N

)
: Dl+1

y д(y)
]

dy
∂m−1φ

∂xm−1
N
(x̄ , 0)dx̄

+

∫
Ω
Dmv : Dmφ + uφ dx =

∫
Ω
f φ dx . (5.18)

for all φ ∈Wm,2(Ω) ∩Wm−1,2
0 (Ω).

Notation. We will use the following notation:

qY (f ,д) :=
m−1∑
l=1

(
m

l + 1

) ∫
Y×(−1,0)

[
yl−1
N

(l − 1)!D
l+1
y

(
∂m−l−1 f (x̄ ,y)
∂ym−l−1

N

)
: Dl+1

y д(y)
]

dy

for all f ∈ L2(W ,wm,2
PerY
(Y × (−∞, 0))), д ∈ Cm

PerY
(Y × (−1, 0)). We refer to

−
∫
W
qY (v̂,д)

∂m−1φ

∂xm−1
N

(x̄ , 0)dx̄ (5.19)

as the strange term appearing in the homogenization.

5.2 Critical case - Microscopic problem.
The aim of this section is to characterize the strange term (5.19) as the energy of a suitable
polyharmonic function and in particular to conclude that it is di�erent from zero. We
will use periodically oscillating test functions matching the intrinsic ϵ-scaling of the
problem.
Let thenψ ∈ C∞(W ×Y×]−∞, 0]) be such that suppψ ⊂ C ×Y ×[d, 0] for some compact
setC ⊂W and for some d ∈ (−∞, 0). Moreover, assume thatψ (x̄ , ȳ, 0) = Dlψ (x̄ , ȳ, 0) = 0
for all (x̄ , ȳ) ∈W × Y , for all 1 ≤ l ≤ m − 2 . Let also ψ be Y -periodic in the variable ȳ.
We set

ψϵ (x) = ϵm−
1
2ψ

(
x̄ ,

x̄

ϵ
,
xN
ϵ

)
,

for all ϵ > 0, x ∈W×] − ∞, 0]. Then Tϵψϵ ∈ V (Ωϵ ) for all su�ciently small ϵ , hence we
can use it as a test function in the weak formulation of the problem in Ωϵ , getting∫

Ωϵ

Dmvϵ : DmTϵψϵ dx +
∫
Ωϵ

vϵTϵψϵ dx =
∫
Ωϵ

fϵTϵψϵ dx .

It is not di�cult to prove that∫
Ωϵ

vϵTϵψϵ dx → 0,
∫
Ωϵ

fϵTϵψϵ dx → 0 (5.20)
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as ϵ → 0. By arguing as in [8, §8.4], it is also possible to prove that∫
Ωϵ \Ω

Dmvϵ : DmTϵψϵ dx → 0, (5.21)

as ϵ → 0. Moreover, a suitable modi�cation of [8, Lemma 8.47] yields∫
Ω
Dmvϵ : DmTϵψϵ dx →

∫
W×Y×(−∞,0)

Dm
y v̂(x̄ ,y) : Dm

y ψ (x̄ ,y) dx̄dy. (5.22)

Theorem 9. Let v̂ ∈ L2(W ,wm,2
PerY
(Y × (∞, 0))) be the function from Theorem 8. Then∫

W×Y×(−∞,0)
Dm
y v̂(x̄ ,y) : Dm

y ψ (x̄ ,y) dx̄ dy = 0, (5.23)

for allψ ∈ L2(W ,wm,2
PerY
(Y × (∞, 0))) such thatψ (x̄ , ȳ, 0) = Dl

yψ (x̄ , ȳ, 0) = 0 for all (x̄ , ȳ) ∈
W × Y , for all 1 ≤ l ≤ m − 2. Moreover, for any j = 1, . . . ,N − 1, we have

∂m−1v̂

∂yj∂y
m−2
N

(x̄ , ȳ, 0) = − ∂b
∂yj
(ȳ)∂

m−1v

∂xm−1
N

(x̄ , 0), onW × Y , (5.24)

and
∂m−1v̂

∂yi1 · · · ∂yim−1

(x̄ , ȳ, 0) = 0, onW × Y , (5.25)

for all i1, . . . , im−1 = 1, . . . ,N − 1.

Proof. The �rst part of the statement follows from (5.20), (5.21) and (5.22) by arguing
as in [8, Theorem 8.53]. In order to prove formulas (5.24) and (5.25) we note that, since
Dm−2vϵ (x̄ ,дϵ (x̄)) = 0 for all x̄ ∈W , we have

∂m−2vϵ
∂xi1 · · · ∂xim−2

(x̄ ,дϵ (x̄)) = 0, for all i1, . . . , im−2 = 1, . . . ,N , x̄ ∈W .

Di�erentiating with respect to xj , j ∈ {1, . . . ,N − 1} yields

∂m−1vϵ
∂xi1 · · · ∂xim−2∂xj

(x̄ ,дϵ (x̄)) +
∂m−1vϵ

∂xi1 · · · ∂xim−2∂xN
(x̄ ,дϵ (x̄))

∂дϵ (x̄)
∂xj

= 0,

for all x̄ ∈W . Hence, by setting

V j
ϵ =

(
0, . . . , 0,− ∂m−1vϵ

∂xN ∂xi1 · · · ∂xim−2

, 0, . . . , 0,
∂m−1vϵ

∂xj∂xi1 · · · ∂xim−2

)
,

for all i1, . . . , im−2 = 1, . . . ,N , j = 1, . . . ,N − 1, where the only non-zero entries are the
j-th and the N -th, we obtain that V j

ϵ · nϵ = 0, on Γϵ , where nϵ is the outer normal to
Γϵ ≡ {(x̄ ,дϵ (x̄)) : x̄ ∈W }. By using Lemma 3

�∂m−1vϵ
∂xi1 ···∂xim−2∂x j

−
∫
Y

�∂m−1vϵ
∂xi1 ···∂xim−2∂x j

(x̄ , ȳ, 0)dȳ
√
ϵ

ϵ→0
⇀

∂m−1v̂

∂yi1 · · · ∂yim−2∂yj
,
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in L2(W × Y×]d, 0[) for any d < 0. This combined with [20, Lemma 4.3] (see also [8,
Lemma 8.56]) yields

∂m−1v̂

∂yi1 · · · ∂yim−2∂yj
(x̄ , ȳ, 0) = − ∂b

∂yj
(ȳ) ∂m−1v

∂xN ∂xi1 · · · ∂xim−2

(x̄ , 0),

for all (x̄ , ȳ) ∈ W × Y , i1, . . . , im−2 = 1, . . . ,N , j = 1, . . . ,N − 1. We deduce that since
v ∈Wm,2(Ω) ∩Wm−1,2

0 (Ω), then Dm−2v(x̄ , 0) = 0 for all x ∈W . This implies that all the
derivatives ∂m−1v

∂xN ∂xi1 ···∂xim−2
(x̄ , 0), where one of the indexes ik is di�erent from N , are zero.

This concludes the proof. �

Now we have the following

Lemma 5. There exists V ∈ wm,2
PerY
(Y × (−∞, 0)) satisfying the equation∫

Y×(−∞,0)
DmV : Dmψ dy = 0, (5.26)

for allψ ∈ wm,2
PerY
(Y × (−∞, 0)) such that Dlψ (ȳ, 0) = 0 on Y , for all

0 ≤ l ≤ m − 2, and the boundary conditions
∂lV
∂ylN
(ȳ, 0) = 0, for all l = 0, . . . ,m − 3, on Y ,

∂m−2V
∂ym−2

N
(ȳ, 0) = b(ȳ), on Y .

The function V is unique up to the sum of a monomial in yN of degreem − 1 of the type
aym−1

N with a ∈ R. Moreover V ∈ W 2m,2
PerY
(Y × (d, 0)) for any d < 0 and it satis�es the

equation
(−∆)mV = 0, in Y × (d, 0),

subject to the boundary conditions
∂lV
∂nl
(ȳ, 0) = 0, on Y , for all 0 ≤ l ≤ m − 3,

∂m−2V
∂ym−2

N
(ȳ, 0) = b(ȳ), on Y ,

∂mV
∂ymN
(ȳ, 0) = 0, on Y .

Proof. Similar to the proof of [8, Lemma 8.60]. We just note that in order to deduce the
classical formulation of problem (5.26) it is su�cient to choose test functionsψ as in the
statement with bounded support in the yN direction. By using the Polyharmonic Green
Formula (4.3) we then deduce that∫

Y×(−∞,0)
DmV : Dmψ dy = (−1)m

∫
Y×(−∞,0)

∆mVψ dy +
∫
Y

∂mV

∂ymN

∂m−1ψ

∂ym−1
N

dȳ.

By the arbitrariness ofψ it is then easy to conclude the proof. �

Theorem 10. LetV be as in Lemma 5 and д(y) = b(ȳ)(1+yN )m+1, for all y ∈ Y × (−1, 0).
Then

qY (V ,д) =
∫
Y×(−∞,0)

|DmV |2 dy. (5.27)
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Furthermore∫
Y×(−∞,0)

|DmV |2 dy = −
∫
Y

(
∂m−1(∆V )
∂xm−1

N

+ (m − 1)∆N−1

(
∂m−1V

∂xm−1
N

))
b(ȳ) dȳ. (5.28)

Proof. Let ϕ be the real-valued function de�ned on Y×] − ∞, 0] by ϕ(y) = ym−2
N
(m−2)!д(y) if

−1 ≤ yN ≤ 0 and ϕ(y) = 0 if yN < −1. Then ϕ ∈Wm,2(Y × (−∞, 0)), ∂
lϕ

∂ylN
(ȳ, 0) = 0 for all

0 ≤ l ≤ m − 3, and
∂m−2ϕ

∂ym−2
N

(ȳ, 0) = b(ȳ), for all y ∈ Y . (5.29)

Now note that the function ψ = V − ϕ is a suitable test-function in equation (5.26); by
plugging it in (5.26) we deduce that

∫
Y×(−∞,0) |D

mV |2 dy =
∫
Y×(−1,0)D

mV : Dmϕ dy. By the
Leibnitz rule we have that∫

Y×(−1,0)
DmV : Dmϕ dy

=

∫
Y×(−1,0)

∂mV

∂xj1 · · · ∂xjm

∑
S∈P(m)

1
(m − 2)!

∂ |S |ym−2
N∏

j∈S ∂xi j

∂(n−|S |)д∏
j<S ∂xi j

dy. (5.30)

Using the obvious fact that

∂m−kym−2
N

∂xi1 · · · ∂xim−k
=

{
0, if k = 0, 1;
yk−2
N δi1N · · · δim−kN , for k ≥ 2.

we can rewrite the right-hand side of (5.30) as follows
m∑
k=2

(
m

k

) ∫
Y×(−1,0)

Dk

(
∂m−kV (y)
∂ym−kN

)
:
(
yk−2
N

(k − 2)!D
kд(y)

)
dy

=

m∑
k=2

(
m

k

) ∫
Y×(−1,0)

yk−2
N

(k − 2)!D
k

(
∂m−kV (y)
∂ym−kN

)
: Dkд(y)dy,

which coincides with the left-hand side of (5.27) up to the change of summation index
de�ned by k = l +1. Finally, (5.28) follows by applying the polyharmonic Green formula
(4.3) on

∫
Y×(−1,0)D

mV : Dmϕ dy. Indeed, we note that the boundary integrals on ∂Y ×
(−1, 0) are zero, due to the periodicity of V and b. Moreover the boundary integral on
∂Y × {−1} is zero since ϕ vanishes there together with all its derivatives. Then, the only
non-trivial boundary integral is supported on Y × {0}. More precisely, we have∫

Y×(−1,0)
DmV : Dmϕ dy = (−1)m

∫
Y×(−1,0)

∆mVϕ dy +
m−1∑
t=0

∫
Y
Bt (V )(ȳ, 0)

∂tϕ(ȳ, 0)
∂ytN

dȳ, (5.31)

and by recalling that ∆mV = 0 in Y × (−1, 0), ∂mV∂ymN = 0 on Y × {0}, ∂
lϕ

∂ylN
= 0 on Y × {0},

for all 0 ≤ l ≤ m − 3 and by (5.29), we deduce that∫
Y×(−1,0)

DmV : Dmϕ dy =
∫
Y
Bm−2(V )(ȳ, 0)b(ȳ) dȳ
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and by formula (4.3) Bm−2(V )(ȳ, 0) = −
∑m−1

l=m−2
( l
m−2

)
∆l−m+2
N−1 (

∂m−1

∂ym−1
N
(∆m−l−1V )), from which

we deduce (5.28). �

Theorem 11. Letm ∈ N,m ≥ 2. LetV be as in Lemma 5. Letv , v̂ be the functions de�ned
in Theorem 8. Let also д(y) = b(ȳ)(1 + yN )m+1 for all y ∈ Y × (−1, 0). Then

v̂(x̄ ,y) = −V (y)∂
m−1v

∂xm−1
N

(x̄ , 0) + a(x)ym−1,

for some a(x̄) ∈ L2(W ). Moreover, the strange term (5.19) is given by

−
∫
W
qY (v̂,д)

∂m−1φ

∂xm−1
N
(x̄ , 0)dx̄ =

∫
Y×(−∞,0)

|DmV |2dy
∫
W

∂m−1v

∂xm−1
N
(x̄ , 0)∂

m−1φ

∂xm−1
N
(x̄ , 0)dx̄

= −
∫
Y

(
∂m−1(∆V )
∂xm−1

N
+ (m − 1)∆N−1

(
∂m−1V

∂xm−1
N

))
b(ȳ)dȳ

∫
W

∂m−1v

∂xm−1
N
(x̄ , 0)∂

m−1φ

∂xm−1
N
(x̄ , 0)dx̄ .

Proof. The proof follows by Lemma 5 and Theorems 9, 10 and by observing that−V (y) ∂m−1v
∂xm−1

N
(x̄ , 0)

satis�es problem (5.23) with the boundary conditions (5.24). �

We are now ready to conclude the proof of (iii) of Theorem 7.

Proof of Theorem 7(iii). De�ne д(y) = b(ȳ)(1 + yN )m+1 for all y = (ȳ,yN ) in Y × (−1, 0).
The function v in Theorem 8 satis�es∫

W
qY (V ,д)

∂m−1v

∂xm−1
N
(x̄ , 0)∂

m−1φ

∂xm−1
N
(x̄ , 0)dx̄ +

∫
Ω
Dmv : Dmφ + uφ dx =

∫
Ω
f φ dx . (5.32)

for all φ ∈Wm,2(Ω) ∩Wm−1,2
0 (Ω). By Theorem 11 we can rewrite the �rst integral on the

left-hand side of (5.32) as∫
Y×(−∞,0)

|DmV |2dy
∫
W

∂m−1v

∂xm−1
N

(x̄ , 0)∂
m−1φ

∂xm−1
N

(x̄ , 0) dx̄

and by the Green Formula (4.10) for all φ ∈Wm,2(Ω) ∩Wm−1,2
0 (Ω)∫

Ω
Dmv : Dmφ dx = (−1)m

∫
Ω
∆mvφ +

∫
∂Ω

∂mv

∂nm
∂m−1φ

∂nm−1 dS . (5.33)

Hence, in the weak formulation of the limiting problem we �nd the following boundary
integral∫

W

(
∂mv

∂xmN
(x̄ , 0) +

( ∫
Y×(−∞,0)

|DmV |2 dy
)
∂m−1v

∂xm−1
N

(x̄ , 0)
)
∂m−1φ

∂xm−1
N

(x̄ , 0) dx̄ , (5.34)

for all φ ∈ Wm,2(Ω) ∩Wm−1,2
0 (Ω). By (5.32), (5.33), (5.34) and the arbitrariness of φ we

deduce the statement of Theorem 7, part (iii). �
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6 Appendix
In this section we prove the following technical result used in the proof of Proposition
2.

Lemma 6. Let l ,m ∈ N,m ≥ 2, 1 ≤ l ≤ m − 1, i1, . . . , im−l−1 ∈ {1, . . . ,N }. Then for all
φ ∈Wm,2(Ω) ∩Wm−1,2

0 (Ω) we have

1
ϵl−1
∂m−lφ

∂xm−lN

(Φ̂ϵ (y)) →
yl−1
N

(l − 1)!
∂m−1φ

∂xm−1
N

(x̄ , 0),

in L2(W × Y × (−1, 0) as ϵ → 0 and if at least one of the indexes i1, . . . , im−l−1 does not
coincide with N we also have

1
ϵl−1

∂m−lφ

∂xN ∂xi1 · · · ∂xim−l−1

(Φ̂ϵ (y)) → 0

in L2(W × Y × (−1, 0) as ϵ → 0.

Proof. Note that for l = 1 the claim follows by Lemma 3. Then assume l > 1. Fix
φ ∈Wm,2(Ω) ∩Wm−1,2

0 (Ω) ∩C∞(Ω). Then∫
Ŵϵ×Y×(−1,0)

����� 1
ϵ l−1
∂m−lφ

∂xm−lN

(Φ̂ϵ (y)) −
yl−1
N

(l − 1)!
∂m−1φ

∂xm−1
N
(x̄ , 0)

�����2dx̄dy
=

∫ 0

−1

∑
k ∈IW ,ϵ

∫
Ck
ϵ

∫
Y

����� 1
ϵ l−1
∂m−lφ

∂xm−lN

(
ϵ
[ x̄
ϵ

]
+ ϵȳ, ϵyN − hϵ

(
ϵ
[ x̄
ϵ

]
+ ϵȳ, ϵyN

))
−

yl−1
N

(l − 1)!
∂m−1φ

∂xm−1
N
(x̄ , 0)

�����2dȳdx̄dyN
=

∫ 0

−1

∑
k ∈IW ,ϵ

∫
Ck
ϵ

∫
Ck
ϵ

����� 1
ϵ l−1
∂m−lφ

∂xm−lN

(
z̄, ϵyN − hϵ

(
z̄, ϵyN

))
−

yl−1
N

(l − 1)!
∂m−1φ

∂xm−1
N
(x̄ , 0)

�����2dx̄ dz̄

ϵN−1dyN .

(6.1)

Now, let z̄ ∈ Ck
ϵ be �xed. By expanding φ in Taylor’s series with remainder in Lagrange

form we deduce that

∂m−lφ

∂xm−lN

(
z̄, ϵyN − hϵ (z̄, ϵyN )

)
=
∂m−1φ

∂xm−1
N

(z̄, ξ ) (ϵyN − hϵ (z̄, ϵyN ))
l−1

(l − 1)! ,

for some ξ ∈ (0, ϵyN −hϵ (z̄, ϵyN )). We then deduce that the term appearing in the right-
hand side of (6.1) can be rewritten as∫ 0

−1

∑
k ∈IW ,ϵ

∫
Ck
ϵ

∫
Ck
ϵ

����� 1
ϵ l−1
∂m−1φ

∂xm−1
N
(z̄, ξ ) (ϵyN − hϵ (z̄, ϵyN ))

l−1

(l − 1)!
yl−1
N

(l − 1)!
∂m−1φ

∂xm−1
N
(x̄ , 0)

�����2dx̄ dz̄

ϵN−1dyN .

(6.2)
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We then estimate (6.2) from above. Note that∫ 0

−1

∑
k ∈IW ,ϵ

∫
Ck
ϵ

∫
Ck
ϵ

����� 1
ϵ l−1
∂m−1φ

∂xm−1
N
(z̄, ξ ) (ϵyN − hϵ (z̄, ϵyN ))

l−1

(l − 1)!
yl−1
N

(l − 1)!
∂m−1φ

∂xm−1
N
(x̄ , 0)

�����2dx̄ dz̄

ϵN−1dyN

≤
∫ 0

−1

∑
k ∈IW ,ϵ

∫
Ck
ϵ

∫
Ck
ϵ

�����
(
∂m−1φ

∂xm−1
N
(z̄, ξ ) − ∂

m−1φ

∂xm−1
N
(x̄ , 0)

)
yl−1
N

(l − 1)!

+

l−1∑
s=1

(
l − 1
s

)
1

ϵ l−1
∂m−1φ

∂xm−1
N
(z̄, ξ )(ϵyN )l−1−s (−hϵ (z̄, ϵyN ))s

�����2dx̄ dz̄

ϵN−1dyN

(6.3)

and the right-hand side of (6.3) is estimated from above by

≤ C

∫ 0

−1

∑
k ∈IW ,ϵ

∫
Ck
ϵ

∫
Ck
ϵ

�����∂m−1φ

∂xm−1
N
(z̄, ξ ) − ∂

m−1φ

∂xm−1
N
(z̄, 0)

�����2dx̄ dz̄

ϵN−1dyN

+C

∫ 0

−1

∑
k ∈IW ,ϵ

∫
Ck
ϵ

∫
Ck
ϵ

�����∂m−1φ

∂xm−1
N
(z̄, 0) − ∂

m−1φ

∂xm−1
N
(x̄ , 0)

�����2dx̄ dz̄

ϵN−1dyN

+C
l−1∑
s=1

∫ 0

−1

∑
k ∈IW ,ϵ

∫
Ck
ϵ

∫
Ck
ϵ

�����∂m−1φ

∂xm−1
N
(z̄, ξ )

�����2
����� 1
ϵ l−1 (ϵyN )

l−1−s |hϵ (z̄, ϵyN )|s
�����2dx̄ dz̄

ϵN−1dyN .

(6.4)

Now we consider separately the three integrals on the right-hand side of (6.4). The �rst
integral can be estimated in the following way∫ 0

−1

∑
k∈IW ,ϵ

∫
Ck
ϵ

∫
Ck
ϵ

�����∂m−1φ

∂xm−1
N

(z̄, ξ ) − ∂
m−1φ

∂xm−1
N

(z̄, 0)
�����2dx̄ dz̄

ϵN−1dyN

=

∫ 0

−1

∑
k∈IW ,ϵ

∫
Ck
ϵ

∫
Ck
ϵ

����� ∫ ξ

0

∂mφ

∂xmN
(z̄, t)dt

�����2dx̄ dz̄

ϵN−1dyN ≤ Cϵ





∂mφ∂xmN




2

L2(W×(−cϵ,0))
,

(6.5)

Now consider the second integral in (6.4). We have the following estimate∫ 0

−1

∑
k∈IW ,ϵ

∫
Ck
ϵ

∫
Ck
ϵ

�����∂m−1φ

∂xm−1
N

(z̄, 0) − ∂
m−1φ

∂xm−1
N

(x̄ , 0)
�����2dx̄ dz̄

ϵN−1dyN

=
∑

k∈IW ,ϵ

∫
Ck
ϵ

∫
Ck
ϵ

�����∂m−1φ

∂xm−1
N

(z̄, 0) − ∂
m−1φ

∂xm−1
N

(x̄ , 0)
�����2 |z̄ − x̄ |N|z̄ − x̄ |N dx̄

dz̄

ϵN−1

≤ C
∑

k∈IW ,ϵ

∫
Ck
ϵ

∫
Ck
ϵ

�����
∂m−1φ

∂xm−1
N
(z̄, 0) − ∂

m−1φ

∂xm−1
N
(x̄ , 0)

|z̄ − x̄ |N /2

�����2ϵNdx̄ dz̄

ϵN−1

≤ Cϵ






∂m−1φ

∂xm−1
N

(x̄ , 0)





2

B1/2
2 (W )

≤ Cϵ






∂m−1φ

∂xm−1
N

(x̄ , 0)





2

W 2,2(Ω)
,

(6.6)
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where we have used the classical Trace Theorem and the standard Besov space B1/2
2 (W )

of exponents 2, 1/2. Finally we consider the third integral in (6.4), which is easily esti-
mated by using Lemma 1 as follows:

l−1∑
s=1

∫ 0

−1

∑
k ∈IW ,ϵ

∫
Ck
ϵ

∫
Ck
ϵ

�����∂m−1φ

∂xm−1
N
(z̄, ξ )

�����2
����� 1
ϵ l−1 (ϵyN )

l−1−s |hϵ (z̄, ϵyN )|s
�����2dx̄ dz̄

ϵN−1dyN

≤ CϵN−1
l−1∑
s=1

∫ 0

−1

∑
k ∈IW ,ϵ

∫
Ck
ϵ

�����∂m−1φ

∂xm−1
N
(z̄, ξ )

�����2
(

1
ϵ l−1 (ϵ)

l−1−s |Cϵ3/2 |s
)2

dz̄

ϵN−1dyN

≤ C
l−1∑
s=1

∫ 0

−1

∑
k ∈IW ,ϵ

∫
Ck
ϵ

�����∂m−1φ

∂xm−1
N
(z̄, ξ )

�����2ϵsdz̄dyN ≤ Cϵ






∂m−1φ

∂xm−1
N






2

W 1,2(Ω)
.

(6.7)

By using (6.5), (6.6), (6.7) in (6.2) we deduce that∫ 0

−1

∑
k ∈IW ,ϵ

∫
Ck
ϵ

∫
Ck
ϵ

����� 1
ϵ l−1
∂m−1φ

∂xm−1
N
(z̄, ξ ) (ϵyN − hϵ (z̄, ϵyN ))

l−1

(l − 1)!

−
yl−1
N

(l − 1)!
∂m−1φ

∂xm−1
N
(x̄ , 0)

�����2dx̄ dz̄

ϵN−1dyN ≤ Cϵ ‖φ‖Wm,2(Ω) → 0, (6.8)

as ϵ → 0. This concludes the proof in the case of smooth functions.
Now, if φ ∈Wm,2(Ω) ∩Wm−1,2

0 (Ω), by [15, Theorem 9, p.77] there exists a sequence
(φn)n∈N ⊂Wm,2(Ω) ∩Wm−1,2

0 (Ω) ∩C∞(Ω) such that

φn → φ, inWm,2(Ωϵ ),

as n →∞ hence Tr∂ΩDηφn = Tr∂ΩDηφ for all |η | ≤ m − 1. Then




 1
ϵl−1
∂m−lφ

∂xm−lN

(Φ̂ϵ (y)) −
yl−1
N

(l − 1)!
∂m−1φ

∂xm−1
N

(x̄ , 0)






L2(Ŵϵ×Y×(−1,0))

≤





 1
ϵl−1
∂m−lφ

∂xm−lN

(Φ̂ϵ (y)) −
1
ϵl−1
∂m−lφn

∂xm−lN

(Φ̂ϵ (y))






L2(Ŵϵ×Y×(−1,0))

+






 1
ϵl−1
∂m−lφn

∂xm−lN

(Φ̂ϵ (y)) −
yl−1
N

(l − 1)!
∂m−1φn

∂xm−1
N

(x̄ , 0)






L2(Ŵϵ×Y×(−1,0))

+






 yl−1
N

(l − 1)!
∂m−1φn

∂xm−1
N

(x̄ , 0) −
yl−1
N

(l − 1)!
∂m−1φ

∂xm−1
N

(x̄ , 0)






L2(Ŵϵ×Y×(−1,0))

.

(6.9)

By using Lemma 2, a Trace Theorem, Poincaré inequality and a typical diagonal ar-
gument, it is not di�cult to see that right hand-side of (6.9) tends to zero as ϵ → 0,
concluding the proof of the �rst part of the statement.

The second part of the second statement can be proved as follows. By assump-
tion, at least one of the indexes ij it is di�erent from N . This implies that the function

∂m−lφ
∂xN ∂xi1 ···∂xim−l−1

is not only in W l ,2(Ω) ∩W l−1,2
0 (Ω) but also in W l ,2

0,W (Ω). Thus, formula
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(5.4) and an iterated application of the Poincaré inequality in the xN direction, l−1 times,
yield




 1

ϵl−1
∂m−lφ

∂xN ∂xi1 · · · ∂xim−l−1

(Φ̂ϵ (y))






L2(W×Y×(−1,0)

≤ C






 ∂m−1φ

∂xlN ∂xi1 · · · ∂xim−l−1

(Φ̂ϵ (y))






L2(W×Y×(−1,0)

which allows to conclude since the right-hand side of the previous inequality tends to
zero as ϵ → 0 in virtue of Lemma 3(ii) and of the vanishing of the trace of ∂m−1φ

∂x lN ∂xi1 ···∂xim−l−1
onW .
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