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Abstract

We analyse the spectral convergence of high order elliptic differential operators
subject to singular domain perturbations and homogeneous boundary conditions of
intermediate type. We identify sharp assumptions on the domain perturbations im-
proving, in the case of polyharmonic operators of higher order, conditions known to
be sharp in the case of fourth order operators. The optimality is proved by analysing
in detail a boundary homogenization problem, which provides a smooth version of
a polyharmonic Babuska paradox.

1 Introduction

A recurrent topic in the Analysis of Partial Differential Equations, in Spectral Theory,
and their applications is the study of the variation of the solutions to elliptic boundary
value problems on domains subject to boundary perturbation, with contributions root-
ing back in the works of Courant and Hilbert [27], and Keldysh [37]. The mathematical
interest in this type of problems is also given by the possible appearance of an unex-
pected asymptotic behaviour of the solutions, which can be understood as a spectral
instability phenomenon. Probably the most famous example in elasticity theory is the
celebrated Babuska paradox which concerns the approximation of a thin hinged circular
plate by means of an invading sequence of convex polygons. This problem was consid-
ered by Babuska in [[10] and was further discussed by Maz’ya and Nazarov in [38]] where
among various results they present a variant of the Babuska paradox consisting in the
approximation a thin hinged circular plate by means of an invading sequence of non-
convex, indented polygons (see [33] § 1.4] for a recent discussion on this subject and for
more details concerning the related results of Sapondzhyan [44]). We find convenient to
briefly recall the formulation of the paradox.
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Given a circle Q in R? and a datum f € L%(Q), consider the following boundary value
problem

Au =f, in Q,

u=0, on 0Q), (1.1)
% =0, on 09,

in the unknown real-valued function u. Note that here and in the sequel, boundary value
problems will be understood in the weak sense. Thus, problem consists in finding
uew(Q)n Wol’z(Q) such that

/ D?u: D*pdx = / fedx, forall p € W2*(Q) N W, *(Q),
Q Q

where D*u : D% = Z%Zl Us,x; Px;x; 1 the Frobenius product of the two Hessian matrices
of u and ¢. In the theory of elastic plates, u represents the deflection of a hinged thin
plate with midplane Q and normal load f.

Define inside Q an invading sequence of indented polygons Q, obtained by mod-
ifying an inscribed convex polygon with n vertexes p}, j = 1,...,n, and replacing its
contour line in a neighbourhood of each p} by a V-shaped line as in Figure[1]. The small
curvilinear triangles appearing have height equal to h7 and base of length 57, while the
length of the nearby chord (the side of the polygon) is denoted by {i*. Consider now the
same boundary value problem in Q,

Neu, = f, in Q,,

uy, =0, on 0Q,, (1.2)
T oQ
(9712 - Y on n»

in the unknown u, € W2%(Q,) N Wol’2 (Q). The paradox lies in the fact that if

7] I

as n — oo, then the solution u, € W22(Q,) N Wol’z(Qn) of (1.2) does not converge to the
solution u of (1.1, but to the solution v of the boundary value problem

A%v =f, in Q,

v =0, on 0Q, (1.3)
% =0, on 09Q.

Here v represents the deflection of a clamped thin plate. Note that it is possible to choose
|§j”| = 0 for all j and n in order to obtain the wild looking set Q, in Figure 2.

In [7,18] the authors considered a smooth version of this paradox. Given a sufficiently
regular bounded domain W in RN-1 N > 2, they define a family of domains (Q¢)o<e<e,
by setting

Q=Wx(-1,0), Qc={Fxn)eRY:xeW,-1<xy < e®b(x/e)} (1.4)



Figure 1: Indented polygon Figure 2: Degenerate indented polygon

where X = (x1,...,Xxn-1), and b is a non-constant, smooth, positive, periodic function of
period Y = [-1/2,1/2]V"!. The geometry of this perturbation is described in figure [3]
below.

By comparing Figure[3[a) and Figure 2, one realizes that the perturbations look sim-
ilar locally at the boundary. This analogy goes further if we define h? = €” and 5} = ¢,
with € = 1/n. Indeed, in [8] it was proved that if

|’7]n| €
s~ e - O

as € — 0, that is if @ < 3/2, then the same Babuska-type paradox appears. Moreover, it
was also proved that if « > 3/2 then no Babuska paradox appears and there is spectral
stability. The threshold @ = 3/2 is then critical and represents a typical case of study for
homogenization theory: in fact, it was proved in [§] that the limiting problem contains
a ‘strange term’ which could be interpreted as a ‘strange curvature’.

It is then natural to wonder whether Babuska-type paradoxes may be detected in
the case of polyharmonic operators (—A)™, m > 2 subject to intermediate boundary
conditions. The answer is not as straightforward as it may appear, and it is necessary
to clarify first what are the possible boundary conditions for those operators. Indeed,
there exists a whole family of boundary value problems depending on a parameter k =
0,1...,m, the weak formulation of which reads as follows: given a bounded domain

(i.e., a connected open set) Q in RN with sufficiently smooth boundary, m € N, and
f € L3(Q), findu € W™3(Q) N WOk’Z(Q) such that

/Dmu : D™ pdx + / updx = /f(pdx, Yo € W™4(Q) N Wok’Z(Q). (1.5)
Q Q Q

Here we denote by W™?2(Q) the standard Sobolev space of functions in L?(Q) with weak

derivatives up to order m in L?(Q) and by Wok’z(Q) the closure in W*2(Q) of the C*®-
functions with compact support in Q. Note that for k = m one obtains the Dirichlet
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Figure 3: Oscillations of the upper boundary of Q. as € — 0, depending on .

problem

L (1.6)
=0, on 0Q, forallo <l <m-1,

{(—A)mu +u=f, inQ,

while for k = m — 1 one gets the significantly different problem

(“A)"u+u=f, inQ,

% =0, on 0Q, forall0 <! <m-2. (1.7)
% =0, on 0Q.

Finally, for k = 0 one gets the problem with natural boundary conditions, also known as
Neumann problem, and this explains why problem is called intermediate. Actually,
in this paper we refer to problem as to the strong intermediate problem to empha-
sise the fact that is the intermediate problem with the largest k and to distinguish
it from the other cases where 0 < k < m — 1 which are called here weak intermediate
problems. According to these considerations, one is led to ask the following:

Question: Are there Babuska-type paradoxes for polyharmonic operators (—A)™, m > 2
satisfying intermediate boundary conditions, and which are the natural assumptions which
prevent the appearance of this paradox?

We are able to answer to this question in the geometric setting given by (1.4). Since
when m = 2 problem coincides with the hinged plate (1.1), the Babuska paradox will
be discussed for polyharmonic operators with strong intermediate boundary conditions
(in short, (SIBC)), being the natural higher order version of the intermediate boundary
conditions for the biharmonic operator.

Let us describe one of the two main results of this paper. Let Q. and Q be as in (1.4),



V(Qo) = Wm2(Q) N Wom_l’z(Qe). For every € > 0, let u. € V(Q,) be the solution of

/ D™uc : D™p + ucpdx = / fodx, forall ¢ € V(Q). (1.8)
Q. Qe

Recall that this is the weak formulation of the Poisson problem for (—A)™ +1 with (SIBC).
For u € W™%(Q), define T.u = u o ®, where @, is a smooth diffeomorphism mapping
Q. into Q that coincides with the identity on a large part K, of Q, with |Q \ K¢| — 0 as
€ — 0, see (3.5). Let u be such that ||u, — Teullj2(q,) — 0as e — 0.

Theorem [7| states that the limit u solves different differential problems according to
the values of the parameter a. More precisely, we have the following trichotomy:

(i) (Stability)If a > 3/2, then u solves in Q, that is, u satisfies (-A)"u+u = f in
Q and (SIBC) on 0Q;

(ii) (Degeneration)If @ < 3/2, then u satisfies (—A)™u + u = f in Q, with Dirichlet
boundary conditions on W x {0}, that is

al
au =0, forall0<I<m-1,
on!
and (SIBC) on the rest of the boundary of Q;
(iii) (Strange term)If @ = 3/2, then u satisfies (—A)™u + u = f in Q with the following
boundary conditions on W x {0}

{Dluzo, forall0 <l <m-2,
0™u 0™ lu _
o + K1 =0,

and (SIBC) on the rest of the boundary of Q. Here K is a certain positive constant
that can be characterized as the energy of a suitable m-harmonic function in Y X
(_Oo’ 0)

It follows that if @ < 3/2 a polyharmonic Babuska paradox appears. It is interesting
to observe that the critical value 3/2 is the same for all the polyharmonic operators with
(SIBC).

The techniques used to prove Theorem [7| vary drastically depending on the case
(i) — (iii) considered. Theorem [7(i) is a consequence of Theorem [2| which is the second
main result of the paper and provides a general stability criterion for self-adjoint elliptic
differential operators of order 2m with non-constant coefficients and compact resolvents
(or, more precisely, for their realization in the space W™%(Q) N Wok’z(Q), 0 <k <m)on
varying domains featuring a fast oscillating boundary:.

Theorem [2|is an improvement of a previous result (see [8, Lemma 6.2]) and can be
summarized and simplified in the following way. Let Q and Q. be bounded domains in
RY defined as follows:

Q={(x,xy) € WX (a,b): x € W,a < g(x) < b},
Q. = {(x,xn) € WX (a,b) : x € W,a < g.(x) < b},



where W ¢ R" ! is as above, a + p < ¢,gc < b—p, a,b € R, and g,g. € C™(W). If
lg—gell converges to zero as € goes to zero and, for all | 3| = m, ||D?(g—gc)|| converges
to zero or diverges to infinity with a suitable rate expressed in terms of a power of ||g —
Jello> then the spectrum of the realization of a self-adjoint elliptic differential operator
in W™(Q.) N Wok’z(Qe), 1 < k < m—1is stable as € — 0. We note that [8, Lemma
6.2] is sharp in the case m = 2 and k = 1. In Theorem [2] we allow a rate of convergence
or divergence for ||D?(g — g¢)||c which is much better when k > 1. For example, going
back to Theorem [7|i), we note the following fact: upon considering profile functions g,
of the type ge(x) = €b(£), where b is a non-constant periodic function, we could apply
[8, Lemma 6.2] to the polyharmonic problem in a straightofrward way; however, this
would only guarantee the spectral stability for « > m — 1/2. Our improved stability
Theorem2| guarantees the spectral stability for the better range @ > m — k + 1/2.

The proof of Theorem [7(ii) is based on a consequence of a degeneration argument
that was introduced in [21]], and which was already exploited in [8]].

The reader may wonder if it is possible to push the arguments contained in the proof
of Theorem [7|in order to discuss the general case of weak intermediate problems for
polyharmonic operators. The main issue is that the degeneration argument in Theo-
rem [7|(ii) is restricted to the case of (SIBC). Hence, a detailed analysis of the various
possible situations seems to us much more involved and almost prohibitive for arbitrary
values of m and k. We mention that the case m = 3, k = 1 will be the object of a
forthcoming paper and we refer to [30] for a number of results in this direction.

We remark that our main results, in particular Theorem [2/and Theorem|7} are based
on the notion of &-convergence in the sense of Vainikko [46]] which is related to Stum-
mel’s discrete convergence and to Anselone and Palmer’s collective compactness, see
[45] and [2] respectively. For a recent survey on these topics and further generalisa-
tions, we refer to [11]].

Finally, we mention that, in the case of second-order operators, counterexamples
to the spectral stability with respect to domain perturbation are well-known, see for
example the classical [27, Chp. VI, 2.6]. Related problems for the Neumann Laplace
operator and for the Schrodinger operator with Neumann boundary conditions have
been considered in [[6|22] and [3] respectively. Regarding higher order elliptic operators
on variable domains, several contributions can be found in [4, 12 13} 14} [17, [16} [18] [32]].
In particular, for a possible approach to these topics via asymptotic analysis, we refer to
the articles 19,126 34] and to the monographs [39][40]. We refer also to the monograph
[33] and the articles [31}43] where polyharmonic operators are considered. For a wider
discussion about perturbation theory for linear operators we mention the monographs
[35, 36, 41].

This paper is organised as follows. Section 2 is devoted to preliminaries and notation,
in particular to the definition of the class of operators and open sets under considera-
tion. Section 3 contains a general discussion concerning the spectral stability of elliptic
operators, and the proof of Theorem|[2and its corollaries, see in particular Theorem[4] In
Section 4 we prove a Polyharmonic Green Formula which is used in the sequel and has
its own interest. Section 5 is devoted to the analysis of strong intermediate boundary
conditions and to the proof of Theorem |7} In the Appendix we prove a technical lemma
used in the proof of Theorem 7iii).



2 Preliminaries and notation

In the sequel, we will use the following basic notation:
« N denotes the set of positive integers. Moreover, Ny := N U {0};
« Given a normed space X, £(X) is the space of bounded linear operators on X;
« If not otherwise specified, m € N will always be greater or equal to 2;

o Q, Q. € > e > 0will always denote bounded domains (i.e., open connected open
sets in RN );

+ The standard Sobolev spaces with summability order 2 and smoothness order m
are denoted by W,™*(Q) and W™2(Q).

« The notation V(Q), V(Q,) will often be used for subspaces of W™2(Q) (resp. W™2(Q,)),
containing W,**(Q) (resp. W,*(Q)).

2.1 Classes of operators

Let M be the number of multiindices a = (a1, ...,an) € Nf)\f with length |a| = a3 + -+ +
ay = m. Forall «,f € Nf)\] such that || = [f| = m, let A3 be bounded measurable
real-valued functions defined on R satisfying Aqp = Ape and the condition

Aap(x)Ealp 2 0, (2.1)
lal=1l=m

for all x e RN, (&) |a|=m € RM. For all open subsets Q of RN we define

Qa(u,v) = Z /QAaﬁDauDﬁvdx+/uvdx, (2.2)

jol=1Bl=m ©
for all u,v € W™%(Q) and we set Qq(u) = Qq(u, u). Note that by Qq is a positive
quadratic form, densely defined in the Hilbert space L*(Q?). Hence, Qq(-,-) defines a
scalar product in W™2(Q).

Let V(Q) be a linear subspace of W™?2(Q) containing Wom’z(Q). By standard Spectral

Theory, if V(Q) is complete with respect to the norm Q;z/ ?_then there exists a uniquely

determined non-negative self-adjoint operator Hy(q) such that .@(H‘%é)) =V(Q) and

Qa(u,v) = (H‘%é)u, H‘l/@)v)Lz(Q), for all u,v € V(Q). (2.3)
By [29, Lemma 4.4.1] it follows that the domain Z(Hyq)) of Hy(q) is the subset of
W™2(Q) containing all the functions u € V(Q) for which there exists f € L%(Q) such
that

Qa(u,v) = (f,v)12q), forallv e V(Q), (2.4)



in which case Hyqyu = f. If u is a smooth function satisfying identity and the
coefficients A, are smooth, by integration by parts it is immediate to verify that is
the weak formulation of problem Lu = f in Q, where L is the operator defined by

Lu = (=1)™ Z D*(AqsDPu) + u,
| =Ipl=m

and the unknown u is subject to suitable boundary conditions depending on the choice
of V(Q).

If the embedding V(Q) c L*(Q) is compact, then the operator Hy(q) has compact
resolvent. Consequently, its spectrum is discrete, and it consists of a sequence of isolated
eigenvalues 1,[V(Q)] of finite multiplicity diverging to +co. By [29, Theorem 4.5.3] the
eigenvalues 1,[V(Q)] are determined by the following Min-Max principle:

A[V(Q)] = min max

Qa(u)
ECV(Q) ueE

2 b
dimE=n u#0 ||u||L2(Q)

for all n > 1. Furthermore, there exists an orthonormal basis in L*(Q) of eigenfunctions
onlV(Q)] associated with the eigenvalues A,[V(Q)].

We remark that in our assumptions there exist two positive constants ¢, C € R indepen-
dent of u such that

cllullyma) < Qg (@) < Cllullymeqay,

which means that the two norms Q;z/ % and |- llwm.2(q) are equivalent on V(Q). Note that
in general the constant ¢ may depend on Q. However, if the coefficients A,z satisfy the
uniform ellipticity condition

D, AgEEs =0 ) &P, (2.5)

lal=|pl=m |a|=m

forallx € RN, (£,)j4)=m € RM and for some 6 > 0, then ¢ can be chosen independent of Q.

2.2 Classes of open sets

We recall the following definition from [16, Definition 2.4] where for any given set V €
RN and § > 0, Vj is the set {x € RN : d(x,0Q) > 8}, and by a cuboid we mean any
rotation of a rectangular parallelepiped in RY.

Definition 1. Letp > 0,s,s" € N withs’ <'s. Let also {V;}_, be a family of bounded open
cuboids and {r;};_, be a family of rotations in RN. Wesay that A = (p, s, s, {Vivo Aty
is an atlas in RN with parameters p, s, s’, {V}}JS.:l, {rj}j.:l, briefly an atlas in RN, Moreover,

we consider the family of all open sets Q C RN satisfying the following:
)QC szl(Vj)p and (V;)),NQ # 0
HViNnoQ#0forj=1,...,8andV;NodQ =0 fors’ <j<s



iii) forj = 1,...,s we have

ri(V)={xeRN :a; <xi<by,i=1,....,N}, j=1,...,s
rj(VjﬂQ)z{xeRN:aNj<xN<gj(5c)}, j=1,...,s

’

where X = (x1,...,xn-1), W; = {x € RN-1. aj < x; < by,i =1,...,N =1} and
gj € Ck’}’(W})forj =1,...,8, withk € Ny and0 < y < 1. Moreover, forj =1,...,s" we
have ay; + p < gj(X) < bnj — p, for allfke W,

We say that an open set Q is of class CM’Y(?I) if all the functions gj, j = 1,...,s" defined
above are of class Ck’Y(Wj) and ||gj||Ck,y(Wj) < M. We say that an open set Q is of class

CRY(A) ifit is of class C’;/}Y(ﬂ) for some M > 0. Also, we say that an open set Q is of class

CRY if it is of class C];/}Y(.?l) for some atlas A and some M > 0. Finally, we denote by C*
the class C*° for k € N U {0}.

It is important to note that if Q is a C° bounded open set then the Sobolev space
W™2(Q) (and consequently all the spaces W™2(Q) N W, 2(Q), 1<k <m)is compactly
embedded in L?(Q), see e.g., Burenkov [15]. Moreover, by using a common atlas as in
Definition [1] it is possible to define a distance.

Definition 2. (Atlas distance) Let A = (p,s, s, {Vj};zl, {r ]s.zl) be an atlas in RN. For
all Qq,Q, € C™(A) and forallh = 0, ..., m we set

h _ _
dfq)(Ql, Q)= max sup  sup |[DPgy(x) - DPgy(%)|,
J=1e5" 0<| Bl <h (rxw)er; (V)
where g1, g2j respectively, are the functions describing the boundaries of Q1, Q respectively,
asin Deﬁnition Moreover, we set dg = dg)[) and we call d# ‘atlas distance’.

2.3 Formulae for higher order derivatives of composite functions

We recall here few well-known multidimensional formulae for the derivatives of com-
posite functions. We will use the following notation: by $(A) we denote the set of all
subsets of a given finite non-empty set A and by Part(A) we denote the set of all pos-
sible partitions of A. Namely, 7 € Part(A) is a set the elements of which are pairwise
disjoint subsets of A whose union is A. Given n € N, we often write Part(n) in place of
Part({1,...,n}) and P(n) in place of P({1,...,n}). Moreover we use the symbol |A| to
denote the cardinality of A; hence, for example || with 7 € Part(A) is the number of
subsets of A in the partition 7. Let Q be an open set in RN. If I is an open set in R and
f is a C"-function from I to R and @ is a C" function from Q to I, then the Faa di Bruno

formula reads
If(@() _
6x,~1 s (9x,-n

S|
Z f(lnl)(q)(x)) n 0 d(x)

rePart(n) sex 1ljes 0xi;°
Moreover, the Leibnitz formula for the derivatives of the product of two functions u, v
of class C"(Q) can can be written as follows
0"(uv) Mly  on=18hy
m ) [Tjes 0xi; Tjgs 5xij’

(2.6)

(2.7)
SeP(n)

9



where j ¢ S means that j lies in the complementary of S in {1, ..., n}. We recall that in
general, if ® is a C" function from an open subset U of RN to an open subset V of R",
and f is a function in WIZCI(V) then the Faa di Bruno formula reads

" f(D(x)) Izl 515kl gUic)
Oxj, -+ - 0x;, - Z Z Iﬂl (q)( ) l—[ 1

mePart(n) ji, .. jiz| €{L - r} Llg= 1

3 Higher order operators on domains with perturbed
boundaries
Let m € N, m > 2 and let € > 0. Let V(Q), V(Q.) be subspaces of W™2(Q), W™2(Q,)

respectively, containing Wom’z(Q), Wom’z(Qe) respectively. Moreover, let Hy(q), Hy(q,),
Qq, Qq, be asin (2.3). A fundamental part of our analysis will be based on the following:

Definition 3. ([8, Definition 3.1]). Given open sets Qc, € > 0 and Q € RN with correspond-
ing elliptic operators Hy q ), Hy(q) defined on Q., Q respectively, we say that condition (C)
is satisfied if there exists open sets K. C Q N Q. such that

lim |0\ K| = 0, (3.1)
€—

and the following conditions are satisfied:

(C1) Ifve € V(Qe) and sup,..; Qq, (ve) < o0 then lime—||vellr2(0,\k,) = O-

(C2) For each € > 0 there exists an operator T, from V(Q) to V(Q¢) such that for all fixed
¢ eV(Q)

(i) lim¢_, QKe(Teq) - (P) =0;
(ll) hme_)o QQe\Ke(T€90) = 0,‘
(iii) lime—o || Tell 12,y < 0.

(C3) For each € > 0 there exists an operator Ec from V(Q.) to W™2(Q) such that the set
E.(V(Qe)) is compactly embedded in L*(Q) and such that

(i) Ifve € V(Qe) is a sequence such that sup,..., Qv(q,)(ve) < 00, thenlim._,o Qk, (Ecve—
V) = 0;

(ii)

|Ecvllwm2q)
sup  sup T
>0 veV(Q)\ {0} ()

(iii) If ve € V(Qe) forall e > 0, sup,.,Qq,(ve) < co and there exists v € L*(Q) such
that, up to a subsequence, we have ||Ecve — v||[2q) — 0, thenv € V(Q).

10



It is proved in [8] Theorem 3.5] that Condition (C) guarantees the spectral conver-
gence of the operators Hy g ) to the operator Hy () as € — 0.
The convergence of the operators is understood in the sense of the compact conver-
gence, as defined in [46]. Let us briefly recall the setting. Let & be the extension-by-zero
operator, mapping any given real-valued function u defined on some subset A of RV, to
the function Eu such that Eu = u a.e. in A and Eu = 0 ae. in RN \ A By using &
we can map functions in L?(Q) to the space L%(Q,), for every € > 0, so that & defines
a “connecting system” between L?(Q) and the family of spaces (L?(Q¢))es0. We then say
that:

.« e € L3(Q.) E-converges to v € LA(Q) if ||ve — Evllpzq,) — 0as e — 0;

« afamily of bounded linear operators B, € L(L*(Q)) EE- convergesto B € L(L*(Q))
if Beve &-converges to Bv whenever v, &-converges to v;

« afamily of bounded, compact linear operators B, € L(L*(Q.)) is said to &-compact
converges to B € L(L*(Q)) if B E&-converges to B and for any family of functions
ve € L2(Q,) with |Vellr2(,) < 1 there exists a subsequence, denoted by v, again,
and a function w € L?(Q) such that B.v. &-converges to w.

We refer to [[8 Section 2.2], for further information on this type of convergence. Impor-
tantly, in our assumptions on the operators Hy(q ), Hy(q), the compact convergence of
the resolvent operators is a sufficient condition for the spectral convergence. In partic-
ular, we have the following

Theorem 1. Let Q., € > 0 and Q be open sets in RN, Let Hy(q,), Hy(q) be operators
with compact resolvents, associated with V(Q.), V(Q), respectively, as in (2.3), such that
condition (C) is satisfied. Let A, A; be the k-th eigenvalue of Hy(q), Hy(q,), respectively.

Then H;(lge) &E-compact converges to H‘;(lg) as € — 0. Moreover,

(i) A, = A, ase — 0, foralln e N.

(ii) IfAn = Ant1 = -+ = Apsn—1 is an eigenvalue of multiplicity h and gp, @7 15 - - -5 05,
is an orthonormal set in L*(Q¢) of eigenfunctions associated with the correspond-

ing eigenvalues Ay, A\, ..., At ., then there exists an orthonormal set ¢n, ¢n+1,
oy Qnino1 in L*(Q) of eigenfunctions associated with the eigenvalues (Anﬂ_l)?:l
such that, possibly passing to a suitable subsequence, ¢ ., &E-converges to @n.i_1 as

€ —>O0foralli=1,...,h

(iii) If Ay = Apy1 = -+ = Auyn—1 is an eigenvalue of multiplicity h and ¢n, ¢n+1,

. .» Qnih_1 is an orthonormal set L*(Q) of eigenfunctions associated with (/1"‘”_1)?:1

then for every € > 0 there exists an orthonormal set in L*(Q) of eigenfunctions ¢¢,

Priqs -+ Oy Gssociated with the corresponding eigenvalues Ay, AL 4, .. A,
such that ¢}, , &-converges to ¢n,i1 ase — 0 foralli=1,...,h.

When the claims (i) — (ii) — (iii) of the previous theorem are verified, we say that
Hy(q,) spectrally converges to Hyq) as € — 0.
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3.1 An explicit condition for the spectral stability

We consider now the following geometric setting:

(G1) There exists a cuboid V' of the form W X (a,b), where W C RN~ is an open,
connected and bounded set of class C™, and g, g € C™(W) such that

QNV ={(x,xy) € WX (a,b):a < xy <g(x)}, (3.2)
QeNV ={(x,xy) € WX (a,b) : a < xy < ge(X)}. (3.3)

Assume that Q \ V = Q. \ V forall € > 0.

It is convenient to set Qy = Q. According to Def. |1} if Q. € C™(A) for all ¢ > 0,
then we can assume (G1) without loss of generality. For all ¢ > 0, let us consider the
quadratic forms Qq_ on Q. defined as in (2.2), where the coefficients A, are independent
of € > 0 and satisfy the uniform ellipticity condition (2.5). Then we consider the non-
negative self-adjoint operators Hy(q,) defined by with V(Q) replaced by V(Q,) =
Wm2(Q) N Wok’Z(Qe) for some 1 < k < m. Since Q. is of class C™, V(Q¢) is compactly
embedded in L?(Q,) hence Hy(q,) has compact resolvent.

We now state our first result, concerning an explicit condition sufficient to guarantee
the spectral convergence of the operators Hy (g ). This theorem is a generalisation of [8|

Lemma 6.2].

Theorem 2. Let Q., € > 0 satisfy assumption (G1). Suppose that for some k € N, with
1<k<mV(Q)=Wm(Q)N Wok’Z(Qe)for alle > 0. If for all e > 0 there exists k. > 0
such that

(i) ke > |1ge = gllo, Ve >0, lim_oke=0,
Y 1 DP(ge=9)|lw .
(i) lime-o 580l = 0, vp € Y with [B] < m,

then H‘;(IQE) &E-compact converges to H;(IQ) as € — 0. In particular, Hyq ) spectrally con-

verges to Hyq) ase — 0

Proof. We first observe that the last statement is a direct consequence of Theorem
The case k = 1 is proved in [8, Lemma 6.2]. Thus, we suppose k > 1. It is possible to
assume directly that Q = QNV and Q. = Q.NV asin and respectively. Define
ke = Mk, for a suitable constant M > 2m. Let g = g — ke and

Ke = {(x,xn) € WX]a,b[: a < xn < ge(X)}.

Note that with this definition of K, (3.1) is satisfied. By the standard one dimensional
estimate

1 fllz@p) < Cllf llwraapys (3.4)

and Tonelli Theorem it follows that condition (C1) is satisfied.
We now define a suitable family of diffeomorphisms @, : Q. — Q by setting

(I)E(JZ',XN) = (X',X'N - he(f,XN)),

12



for all (x,xn) € Q., where
0, ifa < xy < ge(x),

m+1
(9e(x) - g(x))(;gggj’gi)) if Ge(%) < xv < 9e(2).

hé(-’?a xN) =

Then consider the map T, from V(Q) to V(Q,) defined by
Tep = @ o D, (3.5)

for all ¢ € V(Q). One can check that T, is well-defined and that condition (C2)(i) is
satisfied. We now want to prove that conditions (C2)(ii), (iii) are satisfied. We need to
estimate the derivatives of ¢ o ®.. Here we can improve the estimate given in [8, Lemma
6.2] by taking advantage of the decay of D" ¢ in a neighbourhood of 9Q, for |y| < k — 1.
We divide the proof in two steps.

Step 1. We aim at proving a decay estimates for the L?>-norms of the derivatives of
¢ near the boundary, namely estimate (3.12). First, note that

Qc(Qe \Ke) = Q\Ke = {(%,xy) €Q: X €W, ge(x) —ke <xny < g(f)},

for any € > 0. Fix x € ®(Q¢ \ K¢) and € N, || < k — 1. Suppose for the moment
@ € C™(Q). By the Taylor’s formula with remainder in integral form, we get that

k-1-|p]| o
D p(x) = Z 1 A (DPy(x, g(x)))(xN

TR - 98 + R(. ).

=0
where

(xN Q(X))k 4]

R = =g

-1l
i [a-oerw k,ﬁ,Dﬂ<o<xg<x>+t<xN gt

Note that -2k, < g(¥) — g(x) — ke < xny — g(X) < 0. By Jensen’s inequality,

2

dt. (3.6)

ok-1Bl
Do 9(®) + 1y — 9(3)
N

IR(B, x)|* < (2ke)?<-1PD /1

0

An integration in the variable xy in and inequality applied to the interval
(a,g(x)) yield

2

9(®) i k- 18141
[ R dny < a0 et 67)
ge(®)-ke 0x W22(a,g())
By integrating both sides of with respect to x € W, we finally get
2(k-
/ oo VRO e < g, (39)
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for sufficiently small €, for all |f| < k — 1. Thus, by we get

[ e s Ckﬁ“"ﬁ““||<o||€vm,zm)

D (Q\Ke)
9(x)
+C / /
ge(X)—ke

for all sufficiently small €, and || < k — 1. We now estimate the last integral in the
right-hand side of in the following way

/ /9(X)
ge(X)—ke

SV et g 42

: ey — g dx dy
0x N

I:O

k-1- Iﬁl a’(Dﬂgo(x g@)|

. Ixn — g(%)|?dx dxy

k—l—lﬂl I
DPo(x, g(x))
< K2+ / il 3.10
; S ey (3.10)
k-1-|B|
_ CR2H al(D'Bq’)
€ 1 ’
=0 8xN L%(T)
where I := {(%,g(x)) : x € W}. Thus, by (3.9), we obtain
[ e
O (Qe\Ke)
k—1-|p| (3.11)
< Z e | 22 ] + CRE gl -
axN (D)

Inequality holds for smooth functions. If ¢ € W™(Q) N Wok’2 (Q), then we can
choose a sequence (n)ns1 C C*(Q) such that ¢, — ¢ in W™?(Q) (this is possible
because 0Q is Lipschitz continuous). We then use for ,, and we pass to the limit
as n — oo by using the continuity of the trace operator and standard estimates on the
intermediate derivatives of Sobolev functions (see e.g., [15, §4.4]). We deduce that

k_
/ T R A (312

for all sufficiently small €. Actually, inequality holds also for || = k (possibly
modifying the constant in the right hand side). Indeed, Dfp € W?%(Q), for any |B| = k
hence by standard boundedness of Sobolev functions on almost all vertical lines (see

(3.4)) we find that

9(x)
[ [ i0Peop dnydx < 2k [ 10%o(x.lldx < 20k lolyma
9 —Re

This concludes Step 1.
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Step 2. We claim that Condition (C2)(ii) holds. Let ¢ € V(Q) and let @ be a fixed
multiindex such that |a| = m. We write

DUp@c(x) = Y. DPp(@c(0)pf, 4(®)x), (3.13)

1<|pl<m

where p* ﬁ(q)e) is a homogeneous polynomial of degree |f| in derivatives of @, of order
not exceeding m — || + 1. Note that the polynomial p% ﬂ(ée) appearing in is the
sum of several terms © in the following form

oh
SN — a—e

Xjy

@:Dk1 ...Dkn

j,.N

oh, OPin+1) o@lis)
ax]'n ﬁxim éxi‘ﬂl ’

Wherl <n<|Bl,1<ji<Nforalli=1,...,n,in1,...,ipgarein{1,...,N—1},and
ki, ..., k, are multiindexes satisfying |k;| + - - - + |k,| = m — |f|. Moreover, © is a sum
of terms of the type D*1h, - - - D*'h, for all 1 < I < n, for suitable multiindexes L1, ..., L;
satisfying

Lyl + -+ |L)| =m—|B| + L (3.14)

Now by [8| Inequality (6.7)] and hypothesis (iii) we have

”DLlhe o 'DLlhelloo

1D (ge — 9l 10" (ge = 9l
SC( 2, JLF] )( 2, JL )

Iy I=ILs| yl=ILi|
m—|y1|-k+1/2 m—|yi|—k+1/2
Kf Kf
< o(1 -~ ... .
< of )( Z TR ) ( Z ILiI—Iyi] )
=il Ke =il Ke

< o)l mEHDRALL _ ), Lok /2 BalLil-IBlkr1f2 11172
< o(1)kPIPk=1/2

where the last inequality holds provided that

l(m—k+1/z)—Z|L,-| —1Bl+k+1/2>0.

By (3.14), we have to check that I(m — k + 1/2) — (m — || + ) = |B]| + k + 1/2 > 0,
which is verified if and only if I(m — k — 1/2) > m — k — 1/2, and this holds true because
m—k—1/2>0and! > 1. Hence we have proved that

a |pl-k-1/2
1P, 5(Pe)llco < 0(1) ke : (3.15)
- Ui
'Here it is understood that for || = 1 the terms % e %q;_lﬂl are not present; recall that m > 2.
In+1 l‘/ﬂ
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By inequalities (3.12) and (3.15), we deduce that

Qo)< [ lp@afaxec Y [ g
\Ke ook,

sc [ defaree 30l [ 0Pl ds

¢E(Q€\K€) |0:|:m Qe €

1<|Bl<k (3.16)

fC S It @l /Q Do)

la|=m e\Ke

k<|Bl<m

21pl-k-1/2), 2(k=|p1)+1
€

< CllglZy e + oD o0 o

for all € > 0 sufficiently small. Since the right-hand side of vanishes as € — 0 we
conclude that condition (C2)(ii) is satisfied.

It remains to prove condition (C3). To prove that conditions (C3)(i), (C3)(ii) are satisfied
it is sufficient to set Ecu = (Extq u)|q for all u € V(Q,.), where Extq_ is the standard
Sobolev extension operator mapping W™2(Q,) to W™#(RN). Finally, in order to prove
condition (C3)(iii) it is sufficient to prove that the weak limit v of the uniformly bounded
sequence v (appearing in the statement of condition (C3)(iii)) lies in Wok’z(Q). This is
easily achieved by considering the extension-by-zero of the functions v, outside Q.,
passing to the limit and recalling that the limit set Q has Lipschitz boundary. m]

Theorem 2] can be actually applied to open sets Q in the atlas class C™(A) by requir-
ing that the assumptions of Lemmal[2]are satisfied by all the profile functions g; describing
their boundaries. Then we can prove the following

Theorem 3. Let A bean atlasinRN, M > 0,m € N,m > 2. Foralle > 0, letQ, € Ch(A).
Letk € N with1 < k < m and define, foralle > 0, V(Q,) = W™4(Q.) N Wok’Z(QE). If

(k) _
ll_r)% dg (Qe, Q) =0,
then condition (C) is satisfied, hence H‘;(IQ ) &E-compact converges to H‘;(IQ) ase — 0.

Proof. By using a standard partition of unity argument, it suffices to prove that the as-
sumptions of Theorem [2| are satisfied by all the profile functions g, g; describing the
boundaries of Q., Q, respectively, and this follows by choosing k. = (d;"_k)(Qe, Q))%.

O

In order to prove that the assumptions of Lemma 2] are sharp, we now consider a the
following geometric setting:

(G2) Let @ € R, @ > 0. Let b € C*(W) a positive, non-constant periodic function, with
periodicity cell given by Y =] —1/2,1/2[N~1. Let us set

ge(%) = e“b(f), g(x) =0,
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for all x € W. For simplicity, we set gy = g and for all € > 0 we consider the open sets

Q.= {®xn) eRN : e W, -1 < xy < gc(%)}

Then we have the following

Theorem 4. Let Q., € > 0 be as in (G2) and let k € N satisfy 1 < k < m — 1. Let

V(Qe) = WM2(Qe) N Wok’z(Qe) foralle > 0. Ifa > m—k + %, then H‘;(lg ) &E-compact

converges to H‘;(lg) ase — 0.
Proof. We aim at applying Theorem [2{ with x, = €*°||b||.,, for some § € (0,1) to be
specified. By the classical Gagliardo-Nirenberg interpolation inequality

IDP fllee < CC D" Flloo) /M1 £ 115,

|a|=m

for all f € W™*(Q) (see e.g., [42, p.125]), in order to verify condition (iii) in Theorem 2|
it is sufficient to verify it for || = 0 and |B| = m (see also [8, Proposition 6.17]). When
|f| = 0 we have

(24

limM =clim—— =clime
€—0 Km—k+l/2 e—0 af(m—-k+1/2) €—0
€

a(1-0(m-k-1/2))

where c is a constant depending only on ||b||.,. The right-hand side clearly tends to 0 as

soon as 0 < m
b
When |f| = m, we must check that lim,_, i—ff/z = 0. Note that
KE
Df e —c e c(1=0(=k+1/2))=m
K—k+1/2 T eal(—k+1/2) ’
€ o]

and the right hand side tends to zero if and only if
1
a(1+9(k—5))—m>0. (3.17)

By letting 0 — m in (3.17) we obtain that inequality (3.17) is satisfied when o >
m — k + 1/2, true by assumption. By Lemma|[2|we deduce the validity of Theoremfd O

. _ c ___
Remark 1. Whenk =m -1, Theorem states that if o > % HV(IQE) — HV(IQ) ase — 0,

independently on m > 2. Actually, it is possible to prove that « = 3/2 in this case is the

critical exponent, in the sense that when a < 3/2 the operator H;(lg ) does not converge to

H‘;(lg). We refer to Theorem B for a complete discussion about the spectral convergence of
Hy(q,) depending on a.
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4 A polyharmonic Green formula

In this section we provide a formula which turns out to be useful in recognising the
possible natural boundary conditions for polyharmonic operators of any order. Let us
begin by stating an easy integration-by-parts formula.

Proposition 1. Let Q be a bounded domain of class C®' inRN. Letm € N and let f €
C™1(Q), p € C™(Q). Then

/Dmf:Dmrpdx:—/Dm_l(Af):D”H(pdx
Q Q

(4.1)
+/ D"f:(n®D" 'p)ds,
0Q

where the symbol : stands for the Frobenius product, n is the unit outer normal to 0Q2, and ®
m—1

is the tensor product, defined by (n®D™ 1), j, ... j,. , = nia)céTffor alli, ji,-++ ,jm-1 €

J1 Jm-1

{1’... ,N}

Proof. The proof is a simple integration by parts. Indeed, dropping the summation sym-
bols we get

omf oMo
D"f :D"pdx = d
‘/g; f ¢ ‘/Qéle---axjm 6Xj1"'6xj'm x

_ _/ am+1f am—l(p dx . amf am—l(P
Q észl . '8ij 8Xj2 . 'anm o0 83(]'1 . '(9ij anz N 'C())ij

njl ds

=—/Dm—1(Af):Dm—1<pdx+/ (D™f): (n® D™ 'p)dS.
Q oQ
O

By applying m times the integration by parts argument used in the proof of for-
mula (4.1), we deduce the validity of the following

Corollary 1. Let m € N. Let f € C*™(Q), ¢ € C™(Q).
/Dmf :D"pdx = (—1)’"/ A" fodx
Q Q

m—1
+ ;(—1)" /(9 Q(Dm—k(Ak ) :(n®@ D™ 1p)ds. (4.2)

Theorem 5 (Polyharmonic Green Formula - Flat case). Let H be the half-space H =
{(x,xn) € RN : xy < 0}. Letm € N. Let f € C*™(H), ¢ € C™(H) with compact support in
H. Then,

m—1
mpe . nm — (_1\m m at_(P _
/HD f:D"pdx = (-1) /HA fqodx+tzz(;/RN_lBt(f)athvdx, (4.3)
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where B, : C*™(0H) — C'*1(0H) is defined by

S EYIADVI -1-1
Bi(f) = ) (D" 1(t)AN—1 @) (44

t+1
yn Oxy

and An_1 is the Laplace operator in the first N — 1 variables.

Proof. Let r = m — k — 1. First note that we can write

[ o)) e -
S0P b

Then, by using in the last integral in the right-hand side of we get the following

as boundary term

m-1 r t+1( Ak t
E k § r r—t d (A f) . r-t d ¢ =
k:()(_l) t=0 (t) /RN—l Df ( (9xf\']” ) ' Df (8xt ) dx. (4'6)

N

By dropping the summation symbols, the integrand in (4.6) becomes

r—t t+1 Ak r—t t
/ 9 o)) 9 09 i, @7)
RN-1 Oxiy -+ 0xi,, | Oxt [ Oxg - Oxi, | Ox)

where the indexes ij run on the first N — 1 coordinates. By integrating by parts r — ¢

times in iy, . .., i,—; in (4.7) we deduce that (4.6) equals

’f(_l)m—t—l Zrl r / 62(r—t) 8”1(Akf) (9t(p &
t) Jan-1 02, - 0%, OxNT | Oxy

k=0 t=0

where we have no other boundary terms because ¢ has compact support. We rewrite
the last expression as

m—1 r t+1 Ak t
m—t—1 r r—t a (A f) 6 Q .
E - E A . .
kzo( 1) . (t) ‘/RN—I N—l( 8x]t\}|-1 axltvdx (4 8)

t=

We now apply the change of summation index r = m — k — 1 in the first sum of (4.8). We
deduce that equals

m—1 r —r—
at+l(Am r 1f) at(p
—pymt N (T / AY! dx. 4.9
2 R e o @
By exchanging the two sums in we get (4.3). m
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Remark 2. Ifm = 2, then (4.3) reads
0*f o
/sz:DZ(pdx:/Azfgodx+/ —J;—q’dx
H H RN-1 0x3; OXN

0 0
_/ AN—I _f + A _f (pdx,
RN-1 axN 8xN
which is consistent with the formula provided in |8, Lemma 8.56]. Indeed, if the domain is
a hyperplane, the boundary integral faH(divaH(sz - n)aq) ¢ dS appearing in [8, Lemma

8.56] coincides with ./RN—l AN_l(%) @ dx.

Theorem 6. Let Q be a bounded domain of RN of class C*!, m € N, m > 2. Let f €
w2m2(Q) N W (Q) and 9 € W™H(Q) N W ¥(Q). Then

amf am—l(p
I oy wes ds. (4.10)

/Dmf :DMpdx = (—1)'"/ A" fodx +
Q Q
Proof. By it is easy to see that
/ D™f :D™pdx = (-1)" / A" fodx + / D™f :(n® D™ ¢)dS, (4.11)
0 Q 09

forall g € W™(Q) N Wom_l’z(Q)s since D' = 0 on dQ for all I < m — 2. We note that
D"f: (n®D™ lp) = (n'D™f) : D" 1. Moreover we claim that D™ ¢ = " ym-1

— gnm-1 i=1

on 0Q and we prove it by induction. If m = 2 the claim is a direct consequence of the
gradient decomposition V]sqo = Vyo + %n. Now we assume that m > 2 and that the
claim holds for m — 1. Then, by using the fact that D™ 2¢|yq = 0, for all ¢ € W™2(Q) N

Wom_l’z(Q), we get

m— -2 m— -1

m—1 _ m—2 _ 6 2(p < _ (() l(p <
D" plag = D" *p)loa = (D| 7 R nfn| @ n = 25 ().
n i=1 n i=1

forall p € W™2(Q) N Wom_l’z(Q). This proves the claim. Then we can rewrite as

am—l(p m—1
D"f : D™pdx = (—l)m/Am dx+/ ——(n'D™f) : ( n) ds, (4.12)
‘/Q f ¢ o fq) 50 onm-1 f @
. T m m—1 m m oamf
and since (n" D™f) : (®i=1 n) =D"f: (®i=l n) = - we deduce (4.10). o

5 Polyharmonic operators with strong intermediate
boundary conditions

Let Q, € > 0 be as in (G2). Consider the polyharmonic operators (—A)™ + I sub-

ject to strong intermediate boundary conditions, corresponding to the energy space
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V(Qe) == W™2(Q.) N V\/Om_l’z(Qe). More precisely, let Hg, s be the non-negative self-
adjoint operator such that

(Ho, su.0)p2(,) = (HY 2gu. Hy % 0)12(a,) = Qo, (1, 0), (5.1)

for all functions u, v € Wm’z(Qe)ﬂWOm_l’z(Qe), where Qq,_(u,v) = fQ D™y : D™+uvdx,
is the quadratic form canonically associated with Hg_s. Asitis explaiened in Section 2 the
equation Hq_su = f with datum f € L*(Q.), corresponds exactly to the weak Poisson
problem (1.8).

Let Hq p be the polyharmonic operator satisfying strong intermediate boundary con-
ditions on dQ \ W and Dirichlet boundary conditions on W, whose associated boundary
value problem reads

(“N)"u+u=f, inQ,

%:0, on W, forall0 <] <m-1, 62
%:0’ ondQ, \ W, forallo <l <m-2, '
T =0, on dQ. \ W.

Note that we are identifying W with W X {0}. Then the following theorem holds.

Theorem 7. Letm € N, m > 2, Q. as in (G2), Hq_ as in (5.1), for all e > 0. Then the
following statements hold true.

C
(i) [Spectral stability] Ifa > 3/2, then Hsz,s — Hg's ase — 0.
C
(ii) [Instability] Ifa < 3/2, then Héi ¢ — Hg',y ase — 0, where Hq p is defined in (5.2).

C R
(iii) [Strange term] If @ = 3/2, then H;' , = H_' ase — 0, where Hg, is the operator

(—=A)™ +1 with strong intermediate boundary conditions on dQ\ W and the following
boundary conditions on W: D'u = 0, foralll < m - 2, O u+ Ko 'u = 0, where
the factor K is given by

m—1 AV m—lV
K:/ |DmV|2dy:—/ a—(_1)+(m—l)AN_1(a _1)
Yx(~00,0) y\ Oxg Oxy

b(g)dy,

and the function V is Y -periodic in the variable {j and satisfies the following micro-

scopic problem
(_A)mV =0, inY X (—OO, 0)’
6517‘1/(9’0)20, onY,forall0 <l <m-3,
m-2ys , _ ~
Zy;\n]j;(y’ O) = b(y), onY,
(2;;_]%/(17’ 0) =0, onY.
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Proof. Statement (i) is a straightforward application of Theorem 4| with k = m — 1. To
prove (ii) we check that Condition (C) in Deﬁnitionis satisfied with V(Q) = Wo'fv’lf Q)N
W' (Q), and V(Qc) = W™A(Q)NW,"(Q). Here W, (Q) is the closure in W™*(Q)
of the space of functions vanishing in a neighborhood of W. Let K, = Q for all € > 0.
Then we see immediately that condition and condition (C1) are satisfied. We define
now T as the extension by zero operator from Womvg (Q) to W™2(W x(~1, +c0)) and E, as
the restriction operator to Q. With these definitions it is not difficult to prove that con-
ditions (C2) and (C3)(i),(ii) are satisfied. It remains to prove that condition (C3)(iii) holds.
Let v, € W™2(Q.) N Wom_l’z(Qe) be such that |[ve|lymzq,) < C for all € > 0. Possibly
passing to a subsequence there exists a function v € W™ 12(Q) such that v¢|q — v in
W™2(Q) and ve|g — v in W™ 12(Q). By considering the sequence of functions T (v¢|Q)

it is not difficult to prove that v € Wom_l’z(Q). It remains to check that 2>

(3x$_1
W x {0}. This is proven exactly as in [8, Theorem 7.3] by applying Lemma 4.3 from [20]]
to the vector field V! defined by

= 0 on

) am—lv am—lv
vi=1o,--- ’0’_715’0’... ’O’Tze ,
oxy Oxy “0x;
foralli=1,...,N — 1, where the only non-zero entries are the i-th and the N-th ones.

We remark that it is possible to apply Lemma 4.3 from [20] because by Theorem [4] the
critical threshold for all the polyharmonics operator with strong intermediate boundary
conditions is @ = 3/2, which coincides with the critical value in [20]. We then deduce

M 10(x,0) Ab(7)
that e

9" 00 — (g, on W. This concludes the proof of condition (C3)(iii).

m—1
oxy;

We provide a proof of (iii) in Sections 5.1 and 5.2. O

= 0, a.e. W X Y. Since b is a non-constant smooth function we must

have

Remark 3. We take the chance to point out a misprint in |5, Theorem 1, (ii)] where the
condition 0; u + KHJ’C”A;lu = 0 in our Theorem@ (iii) above, appears for m = 3 with —K
instead of +K as it should be.

5.1 Critical case - Macroscopic problem.

In this section we prove Theore (7| (iii). Let us define a diffeomorphism ®, from Q. to Q

by
O (x,xN) = (X, xn — he(x,xn)), forall x = (x,xy) € Q,

where h, is defined by

0 if —1 < xy < —¢,

he(x, xN) = ’ o\
ge(f)(gfg_c;e) . if—€ < xn < ge(R).

By standard calculus one can prove the following

Lemma 1. The map O, is a diffeomorphism of class C™ and there exists a constant ¢ > 0
independent of € such that |he| < ce* and |Dlh€| < ce* L foralll = 1,...,m,e >0
sufficiently small.
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As in [8, Section 8.1], we introduce the pullback operator T, from L2(Q) to L*(Q)
given by T.u = u o ®, for all u € L%(Q).

In order to proceed we find convenient to recall some notation and results in ho-
mogenization theory regarding the unfolding operator. We refer to [1} 23} 24}, 28] for the
proof of the main properties of the operator, and we mention that recent developments
can be found in the article [9].

For any k € ZN™! and € > 0 we define

c’g =ck + €Y,
_ N-1 . ~k
IXV’E ={keZ" :C. c W}, (5.3)
we= [ ck
kEIW,e

Then we give the following

Definition 4. Letu be a real-valued function defined in Q. For any € > 0 sufficiently small
the unfolding i of u is the real-valued function defined on W X Y X (—1/¢,0) by

. x _
u(x,g,yn) = u(e[;] + €1, eyN),

for almost all (x,7,yn)) € W. X Y x (~1/e,0), where [f] denotes the integer part of the

vector Xe~' with respect to Y, i.e., [Xe '] = k if and only if x € CF.

The following lemma will be often used in the sequel. For a proof we refer to [25
Proposition 2.5(i)].

Lemma 2. Let a € [—1,0[ be fixed. Then

/ u(x)dx = 6/ u(x, y)dxdy (5.4)
W.x(a,0) W.xYx(a/€,0)

forallu € LY(Q) and € > 0 sufficiently small. Moreover

2
/ dx = e /
W.x(a,0) W.xYx(a/€,0)

foralll < m,u € W™4(Q) and € > 0 sufficiently small.

2

ol
— (%,y)dx| dv,
. c?yil( y) y

d'u(x)
ox;, - - - 0x;,

Let W™ (Y x (—0,0)) be the subspace of I/VIZL’Z(RN* X (—00,0)) containing Y-

Pery,loc

periodic functions in the first (N — 1) variables §. We then define WIZ’C’Z(Y X (—00,0)) to
be the space of functions in W™* = (Y X (—c0,0)) restricted to Y x (—co,0). Finally we

Pery,loc
set
WI’ZZ?Y(Y X (_Oo’ 0)) = {u € WPrZi/,loc(Y X (_Oo’ 0))

DY ull 2oy < 00, ¥yl = m}. (5.5)
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Forany d < 0, let SD’ (Y X (d, 0)) be the space of homogeneous polynomials of degree
at most [ restricted to the domain (Y X(d, 0)). Let € > 0 be fixed. We define the projectors
P; from L2(W., W™2(Y x (—1/e,0))) to L2(WL, P;wm (=1/€,0)) by setting

Py =Y, [ i oy

In|=i

foralli = 0,.. — 1. We now set Q-1 = Pu-1, Om-2 = Ppu—2(I — Qp-1), etc., up
to Qp = Py (I[ - ) Note that Q,,—j, j = 1,...,m is a projection on the space of
homogeneous polynomlals of degree m — j, with the property that Q,,—x(p) = 0 for all
polynomials p of degree m — k with k # j. We finally set

P=0Q+0Q1+ - +0Omn1, (5.6)

which is a projector on the space of polynomials in y of degree at most m — 1. Note that
D’g@(gﬂ)(i, 7,0) = /Y D’gr,b(fc, iJ,0)dy for all |f| = 0,...,m—1. In particular, it follows that
/Y(Dgl//(}_(, 7,0) — Dﬁ?’(mﬁ)(f, 7,0))dy = 0 for almost all ¥ in W,, forall || =0,...,m—1.

Lemma 3. Letm € N, m > 2 be fixed. The following statements hold:

(i) Letve € W™*(Q) with ||Dellymzq) < M, for all e > 0. Let V. be defined by

Ve(x,y) =Ue(%, y) — P(ve)(X, y),

for (%,y) € W, X Y x ( 1/€,0), where P is defined by (5.6) . Then there exists a
functiond € L*(W, WPer (Y X (—00,0))) such that, possibly passing to a subsequence,
for everyd < 0

(a) 5” ‘1//2 N DZ{) in L*(W X Y x (d,0)) ase — 0, foranyy € Nf)\], ly| < m—1.

(b) % DY in L*(W X Y X (—0,0)) ase — 0, foranyy € f)v, lyl =m

where it is understood that the functions V,, DzVe are extended by zero to the whole
of W X Y X (=00, 0) outside their natural domain of definition W, XY x (—1/€,0).

(ii) Ify € W(Q), then lim_o (Tey)jq = Y/(%,0) in LW X Y X (—1,0)).

Proof. The proof follows as in the proof [8, Lemma 8.9] by noting that # is a projector
on the space of polynomials of degree at most m — 1, so that a Poincaré-Wirtinger-type
inequality still holds. m]

Let f. € L*(Qc) and f € L?(Q) be such that f, — f in L*RN) as € — 0, with the
understanding that the functions are extended by zero outside their natural domains.
Let v, € V(Q:) = W™2(Q) N Wom_l’Z(Qe) be such that for all € > 0 small enough

HQG’S'UE = fe (5.7)

Then ||ve|lymeq,) < M for all € > 0 sufficiently small, hence, possibly passing to a

subsequence there exists v € W™2(Q) N Wom_l’z(Q) such that v, — v in W™?(Q) and
ve — v in LA(RN).
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Let ¢ € V(Q) = W™2(Q) N Wom_l’z(Q) be fixed. Since T.¢ € V(Q.), by we have
/ D™ve : DT dx + / VeTepdx = / feTeq dx, (5.8)
QE Qe QE

and passing to the limit as € — 0 we get fQ VeTepdx — fQ v dx and /Q feTepdx —

/ f :
Q
Now consider the first integral in the I'ight hand-side of 1) Set Ke = WX (—1, —6).

By splitting the integral in three terms corresponding to Q. \ Q, Q \ K, and K, and by
arguing as in [|8 Section 8.3] one can show that /K D™ve : DMpdx — fQ D™v : D™ dx

and [, o D"™ve : D"T.pdx — 0, as € — 0. Let us define Qc by

Qe = W; X (—6, 0)

We split again the remaining integral in two summands as follows:

/ D™v. : D™T @ dx
Qe\Ke

= / D™ve : DT dx +/ D™ve : D™"T.pdx. (5.9)
Qe\(KeUQe)

As in [8, Section 8.3], fQ \(K.U0 )Dmve : D™T.pdx — 0, as € — 0. It remains to analyse

the limit as € — 0 of the last summand in the right-hand side of (5.9). To do so, we also
need the following lemma in the proof of which we use notation and rules of calculus
recalled in Section 2l

Lemma 4. Let]l € N, I < m, and let iy,...,i; € {1,...,N}. The functionsfz (x,y),
(%,y) defined fory € Yx(~1,0), are independent of . Moreover, || hc ||Loo = 0(e%?),

axl Bx,
_ 3/2-1 : 1-3 22
8x11 8xz, (%, y) . = 0(¥* Y ase — 0, and ifl > 2 we have €/ ﬁle (x,y) —
I m+1
%f‘ﬁ” as € — 0, uniformly iny € Y X (-1,0).
i iy

Proof First, note that the part of the statement involving the asymptotic behaviour of

he as € — 0 follows dlrectly from Lemma |1 I and Definition l Assume now that [ >
By applying formula (2.7) we have that

-_ _— m+1
o'h, er b)) ST [ xy e |
W(a?,y) = Z 5 ay 3 N (5.10)
Standard Calculus computations based on Formulas (2.6) and (2.7) give
— m+1 m+1-1+|S
P-IsT xN_+e — ¢(ls]) e 18 (yN_+ 1? +1-1+|S| l_l5i
Mjes %, \96(%) + € (e Th(g)+ o 1 1%
alr|-lxl-Lels]_pylrl 1 F 17D)! (m + 1)!
DD T =l S T A
AeP(SC) mePart(A)
A#0
+1 m+1-1+|S|+|A| a|B|b =
’ ((go]fv—lb(?n 1ymHitial [ oun]] [ g;) - 61
y ke(SC\A) Bex ' 11€BTI0
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where C(|S]) = (m+(r1"+ll+)|'5|), By (5.10) and (5.11) we deduce that

o'h
I-a € -
€ Fr (%,y)
_ 3'51b() ~ (yn + 1)mH1-1Is]
- el : Z - |S|H ay (|S|)€ l+|5|(golc\l—lb(-) + 1)m+1 ﬂ&'jN
seP(l) jes OYi; y jes
+ el Z a—|S| ol Ib(y) Z |A|_|ﬂ|_l+|5|(_1)|n|(m+|71'|)! (5.12)
seP(l) Mjes 0\ fte) ncbatin) m!
A#0
+ 1)m+1-1+IS|+]A] o'Blp
'C(ISUA|)(yNa_1) — l_l lkNl_l a—|B| ((31/)
R ke(SC\A) Ber [Ties 9ys,

It is possible to prove by direct computation that all the summands appearing in the
second line in the right-hand side of (5.12) are vanishing as € — 0. By letting ¢ — 0 in

(5.12) we see that

e O'he 01b(y) -
lim o) = Y - C(SD i + )™ T ]
€—0 Xi, -+ 0x;, sep(l) njES yij &S
o' +1
= ———— (@~ + D),
G B )
concluding the proof. ]

Finally, we are ready to prove the following

Proposition 2. Let v, € V(Q,) be such that ||06||sz(Q y < M foralle > 0. Let Y =YX

(=1,0) and g(y) = b(§)(1+yn)™*! forally € Y. Moreover, letd € LA(W, wper (Yx(—0,0)))
be as in Lemmal3 Then

/ D"ve : D™(T. @) dx —

am—l—l@(y—c y) 6m_1(p

l+1 I+1 - _
- : D d 0)d

E (l+1)/ /Y(l—l)' ( P ) y 9@) yaxm—l(x’ )dx,

N

forallp € W™(Q) N Wom_l’z(Q), ase — 0.

Proof. We set

Pi(t)={mr =(S1,...,S;) € Part({1,...,m}) : A! Sy with |Sx| > 1},
Py(t) = {m € Part({1,...,m}) : |x| = t, r & P1(t)}.

We note that in the definition of P;(t) we may assume without loss of generality that

the only element Sy with cardinality strictly bigger than 1 is S;. In the sequel, we always
assume that a given partition 7 of cardinality ¢ is represented by 7 = {Si,...,S;}. In the
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following calculations, we use the index notation and we drop the summation symbols
Zj'vl,...,j‘,ﬂ:l and Zf\im,im:l. With the help of (2.8) we compute

Ve m O,
/D’"ve:Dm(Te@)dx:/ v 0M(po %) 4

. 0. Oxi, -+ Ox;,, Ox;, - - 6xlm
6mve a|ﬂ| 5|5k|q>(jk)
mePart({1,...,m}) Qe h H k=1 leSy i
JT:{Sl,...,Sm'}
d e dx, (5.13)
‘/ axll axl ax]l a ]m( (X)) ll aXim >
0™, ' L 9ISklgUe)
+ | (@00 [ | —o—d
; ﬂ;l(t) axil o 6xim Hltczl axjk g Hlesk 6xil

+ Z Ft(UE’ q), (D6)9
=2

where F;(ve, ¢, @) is defined by

at t a|Sk|(D(]k)
Ft(vé" (p’® ) Z / q) r[ dx

EPy(t) Oy - ax”" [izy 0y Thies 9%

We consider separately the three summands in the right hand side of (5.13). Let us
remark for future use that

dol [, if k # N, oo 0, ifk # N,
= _—— i
dxi  |owi— G ifk=N,  Oxy0x,  |-gnigm. k=N
t iq i

for all 2 < I < m. Consider now the first term in the right hand side of (5.13). We unfold
it by taking into account (5.4) in order to obtain

amve amqo 8(1)(]1) aq)(é]m) B
d dud
-+ 0x;, Ox;j, - -+ 0x;, (Pe(y )) Xi, ox;,, yax

—2m+1

am(p aq)(h) aa\)gm)
. dudx
/ /5911' - 0y, Oxj, - - ax]m( (y)) dy; v

11 lm
SCe‘m“em‘l/z/ /_e
W, JY

A
—mi1jz_ 00

Ay, - - 9y,

) N
— T (d,
T @)

m

_ o™o oM .
m+1/2 e b,
ayh T ayim ale e axjm( (y))

dydx

m

o™ R
— T (&,
T )

m

< Cel?|le

L2(W.xY) L2(W.XY)

m

"o

< Ce'? _—
0xj, - - - Ox;,,

<C
L2(W.xY)

L3(c(Qe))

27



506
which vanishes as € — 0. In the first inequality we have used the fact that ‘6;;_ < Ce,
for sufficiently small € > 0. Let now 1 < t < m — 1 be fixed and consider
6tq0 alSqu)(]k)
> | e <<1><x>>HH :
weP(t) i Hk 19 1€Sk x”
am at am—t+1q>(il) 3@02) aq)(ft)
-y / %0 (p(x) = 00 004 sy
mePy(t) 63(,'1 o 8xim l—Ikzl axjk Hlesl axil 8xi52 axist
where to shorten the notation we have identified Sy, . . ., S; with the only element they
contain. Note that if j; # N then the integral in (5.14) is zero. Thus, without loss of

neralit t i, = N. Note that we have 22 = sx: + 2 and |2t| < ce1/?
generality we set j; = N. Note that we have ox, — ONie T o, a o, | S € ’“ as

€ — 0. In order to simplify the expressions we will not write down the higher order
terms in €. Hence, by setting j; = N in (5.14) we deduce that the lower order terms in

(5.14) are given by

atqo am—t+1q)(N)
o, i i 0ic ind
”;l(t) Oc ax,l . E)x,m 8XN(9X]S e 8xj5t( ) HleSl ﬁxil S2J2 StIN x
a am—t+1¢)(N)
= > / (@) - < dx (5.15)
<SP0 (3xN(9xl5 . (9xis HleSl (9Jc,lt9xl5 . -6xl-st HleSl Ox;,
at m B m—t+1(I)(N)
:(m)/ @ @) mv 0 < dx.
t—1)Jo. ﬁxNaxiSZ - Oxig, Hleslaxilaxisz S Oxig, [Ties,0xi,
where in the last equality in (5.15) we have used the fact that each of the summands
at(p (9m’()e am—t+1q)(N)
(De) <
‘/Qe 6xN6x,~52 <o Oxig, € [Tes, (9xil(9xi52 - Oxig, [Tes, 0x;,

equals

t—1
0" ve

:Dm—t+1q)(N)d .
O, - Oy <&

q)e Dm—t+1
/ BxN()x,S <o Ox ls( )

and in particular they do not depend on the choice of 7 (note that the cardinality of
Py(t) equals (,™,)). By unfolding the right-hand side of and using the fact that

t—1
m—1t+ 1> 2 we have that

R m om t+1¢)(€N)
dydx
(r—l) ) axNéx,S oy, ) Mo b, 0, Tlies, 0

m\ e 0™ dte gm-t+1p,
=— — dydx.
(t + 1) em /6 /17 ies, 6!/:‘13%'52 - Oy, @xNaxisz S B, ( e(y))l—[les1 yax

It is easy to see that the final expression appearing in the right-hand 51de of (5.16) can
be written as

( ) / / e~m+1/2 0™ 0e
t+1 Hlesl aylzaylsz : 'ayist

e R
. o,
[ oy 0

(5.16)

em—t+1—3/zm dydx (517)
I_IIESl axll
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Now - -
-m+1/2 0 Ve "o

H b
[lies, 0Y:,0yis, - - - Oyis,  Tlies, 0Yi,0yis, - - - Oy,

€

weakly in L2 (W, X Y X (~1,0)) as € — 0, by Lemma and

motetosg R ") +yn)™ )
HZESl axil HleSl ayil ,

€

in L®(W, X Y x (~=1,0)) as € — 0, by Lemma Moreover, by Lemma@in the Appendix
it follows that

1 0 . yz’G Ty
m@(q’e(?})) - (m—t— 1)l axl- - (%,0),
and ot
1 @ u
) 0
Em—t—l axNaxiS .. axist ( G(y)) — U,
strongly in L2(W X Y >< (=1,0)) as € — 0, if at least one of the indexes is,, . . ., is, is not

equal to N. Hence (5.17) tends to

m—l

( ) /| / T e 2212 s (g a2, 0
t+1 Yx(l())(m—t—l)' ayit] YTIN yaml '

By setting m —t = [ we recover the limiting expression in the statement. Then, in order
to conclude the proof it is sufficient to prove that the integrals in F;(v, ¢, ®,) vanish as
€ — 0. We will show this by comparing each integral appearing in the definition of
Fi(ve, @, @) with the corresponding integral of the form (5.14), which is convergent as
€ — 0, hence it is uniformly bounded in €. Note that by Lemma [4]

am—t+1(i)(il) a(i)(fz) a(i)(it)
€ € €

Hlesl ayiz 07:/1'52 ayis,

for all w € P;(t), whereas if we consider 7’ = (S],...,5;) € Po(t) with |[S]| = m -t <

m —t + 1 there must exists S, k > 1 with S/ | = 2. Let us assume that k = 2. Then we
have

— 0(63/2+t—1) — O(Gl/2+t),

am—t(i)gl) az(i)gz) 8&2]'3) o 8&2]})
[Ties; 0yi, Tlies; 0y Iy, Iy,

and since €!** = o(e'/?*!) as € — 0 and the integral (5.14) is bounded, we deduce that
the integral in F;(ve, ¢, ®¢) involving

— 0(63/2+t63/2—2) — O(€l+t),

M, atq) am—tq")(il) azq‘)(iz) 6&)(13) a(i)(ft)
€ € € €
Oxi, -+ - Oxiy, [, 0xj, [ies; 0y, [ies; 9y, Ay, Ay, ’

for all 7’ € P,(t) defined above, vanishes as € — 0. By arguing in a similar way for all
the terms in F;(ve, ¢, ¢) we deduce the validity of the statement. |

We summarise the previous discussion in the following
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Theorem 8. Let f. € L%(Q.), f € L*(Q) be such that f. — f in L*(Q). Let g(y) = b(ij)(1+
yn)™? forally € Y x (—=1,0). Moreover, let us assume that v, € W™(Q.) N WO'"_LZ(QE)
is the solution to Ho,_sve = fe for all € > 0. Then there existv € W™2(Q) N Wm_1 2(Q)
and a function ¥ in the space L*(W, wper (Y X (=00,0))) such that, possibly passing to a

subsequence, ve — v inW™2(Q), ve — v inL2(RN), and statements(a) and (b) in Lemmal
hold. Moreover, the following integral equality holds

m-1 m—1
- =1 (l+1)/ Lx( 1,0)

"™y
. i+l _ _
: Dy+ g(y)] dy ax}f\[n_l (x,0)dx

6" 15(x, )

l+1
(l — 1)1 ayx—l—l

+/Dmv:Dm(p+u(pdx=/f(pdx. (5.18)
Q Q

forall g € W™2(Q) n W 1(Q).

Notation. We will use the following notation:

m—1 I-1 m—I-1 /=
- m I (9T fEY)
qY(f’ g) T ; (l + 1) </Y><(—l,0) [(l _ 1)|Dy ( aym -1

forall f € LAW, wpi? (Y X (=00,0))), g € Cp, (Y X (=1,0)). We refer to

: Df,“g(y)] d

. 8m—1
- /W qv(9,9) axm—f (x,0)dx (5.19)

N

as the strange term appearing in the homogenization.

5.2 Critical case - Microscopic problem.

The aim of this section is to characterize the strange term as the energy of a suitable
polyharmonic function and in particular to conclude that it is different from zero. We
will use periodically oscillating test functions matching the intrinsic e-scaling of the
problem.

Let then i € C®(W x Y] — 00, 0]) be such that supp iy ¢ Cx Y x[d, 0] for some compact
set C ¢ W and for some d € (-0, 0). Moreover, assume that (%, 7, 0) = D"/(%, §,0) = 0
forall (x,7) e Wx Y, forall1 <1< m—2. Letalso ¢y be Y-periodic in the variable .

We set
X XN

e = ey (2, 2, ),

€
forall e > 0, x € WX] — 00,0]. Then T/ € V(Q,) for all sufficiently small €, hence we
can use it as a test function in the weak formulation of the problem in Q., getting

/ D"v, : D’”Te%dx +/ VT dx = / feTee dx.
Qe Qe Qe

It is not difficult to prove that
/ VeTehe dx — 0, / feTeyedx — 0 (5.20)
Q. Qe
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as € — 0. By arguing as in [8] §8.4], it is also possible to prove that
/ D™v : D"T ). dx — 0, (5.21)
QN\Q
as € — 0. Moreover, a suitable modification of [[8, Lemma 8.47] yields

/ D™ve : D"T . dx — D’y"zﬁ(ic, y) : D;"lp(f, y) dxdy. (5.22)
Q WXYX(—00,0)

Theorem 9. Letd € L2 (W, w))

Pory 2 (Y % (0,0))) be the function from Theoreml?r Then

/ Dy'o(x,y) : Dy'y(x,y) dxdy = 0, (5.23)
WXYX(—0,0)

forallyy € L*(W, wy, (Y X (00, 0))) such that (%, 7, 0) Ll//()?, 7,0) = 0 for all (x,7) €
W XY, foralll < l < m — 2. Moreover, foranyj=1,...,N — 1, we have

9m15 gm—
W( ,7,0) = —a—(y)(9 - 1(x 0), onW XY, (5.24)

and .
m(i, 7,0) =0, onWXxY, (5.25)

foralliy, ... ip—1=1,...,N—1.

Proof. The first part of the statement follows from (5.20), (5.21) and (5.22) by arguing
as in [8, Theorem 8.53]. In order to prove formulas (5.24) and (5.25) we note that, since
D™ 29(%, ge(%)) = 0 for all x € W, we have

0™y,

m(x ge(X))—O forallil,...,im_gz1,...,N,5C€W.

Differentiating with respect to x;, j € {1,..., N — 1} yields

0™ 1o, 0™ o, 6ge(x)
_’ X + 0’
T ) g e (g

for all x € W. Hence, by setting

. am—lv am—lv

Vf:(o,...,o,— d ,0,...,0, < )

¢ 0xNOx; -+ - Ox;, Ox;0x;, - -+ 0x;,,_,

foralliy,...,imz2=1,...,N,j=1, ..., N — 1, where the only non-zero entries are the

j-th and the N-th, we obtain that V! - n. = 0, on I, where n, is the outer normal to
I, = {(,ge(x)) : * € W}. By using Lemma 3]

6m—lve _ ﬂ - —
ﬁx,‘lu-ﬁximfzﬁxj ./Y 0xi1~~-8xim726xj (x’ Y, O)dy e—0 8m_173
Ve 9Yi, - - - 0Yi,,,0Y;
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in L2(W x Yx]d,0[) for any d < 0. This combined with [20, Lemma 4.3] (see also [8}
Lemma 8.56]) yields

am—l A am—lv
( y, ) = - ( )
Y, - - - 0Yi,,_,0Y;

ay] OxNOXx;, - - Ox;,
forall (x,7) € WXY,i1,...,0im2 =1,...,N,j=1,...,N — 1. We deduce that since
veWm™(Q)N Wm_l’z(Q) then D™ 2 v(x,0) = 0 for all x € W. This implies that all the

am—l
Xiq

This concludes the proof O

(JE’ O)’

derivatives TN o v (x 0), where one of the indexes i is different from N, are zero.

Now we have the following

Lemma 5. There exists V € wy, (Y X (—090,0)) satisfying the equation

/ D™V : D™y dy = 0, (5.26)
YX(—0,0)
forally e wper (Y X (=00, 0)) such that D'}(5,0) = 0 on Y, for all
0<l<m-2, and the boundary conditions
(9’V( ,00=0, foralll=0,...,m—3, onY,
g&iwﬁy:mw, onY.

The function V is unique up to the sum of a monomial in yn of degree m — 1 of the type
ayy~! with a € R. Moreover V € Wﬁe"r’ 2(Y x (d,0)) for any d < 0 and it satisfies the
equation

(-A)"V =0, inY x(d,0),

subject to the boundary conditions

aIV( ,0)=0, onY,forall0 <[ <m-3,
m 2 _

; —(7,0) = b(§), onY,

6yN

gy—g(g, 0) =0, onY.

Proof. Similar to the proof of [8 Lemma 8.60]. We just note that in order to deduce the
classical formulation of problem (5.26)) it is sufficient to choose test functions ¢ as in the
statement with bounded support in the yy direction. By using the Polyharmonic Green

Formula (4.3) we then deduce that

amv gm1
/ D™V . Dmi,b dy = (_1)m/ AmV¢ dy + Ty m_lf
Y x(=00,0) Y x(~c0,0) y Oyy oyR
By the arbitrariness of ¢/ it is then easy to conclude the proof. O

Theorem 10. LetV be as in Lemma@ and g(y) = b(§)(1 + yn)™*!, forally € Y X (-1, 0).
Then

QAWQ=/ D"V dy. (5.27)
Yx(—00,0)
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Furthermore

oMYAV om-ly
/ |UWF@:—/'—<%¥ (-4MN4 ml)mw@. (5.28)
¥ x(=c0,0) y | oxy Ox

m—2
Proof. Let ¢ be the real-valued function defined on Yx| — oo, 0] by gb(y) = %g(y) if
-1 <yy <0and ¢(y) = 0if yy < —1. Then ¢ € W™2(Y X (=00, 0)) (y, 0) = 0 for all

0<l<m-3,and

5 6 1
am—2¢
6yl"\}_2

Now note that the function y = V — ¢ is a suitable test-function in equation (5.26); by
plugging it in (5.26) we deduce that fo(—oo 0 |ID™V|?dy = /Yx(_l 0 D™V : D™¢ dy. By the
Leibnitz rule we have that

/ D™V : D¢ dy
Yx(-1,0)

m S
:/ 9"V Z 1 o |ym 2 - |5|)g dy. (530)
Yx(-1,0) 8x]1 e 0xjm SeP(m) (m—2)! H]ES axlj H,gzs axzj

(5,0) = b(g), forallye Y. (5.29)

Using the obvious fact that

om- kyN _ 0’ lfk = 0’ 1’
oxjy - axlm—k yjli]_ZSilN s Sim—kN’ for k > 2.

we can rewrite the right-hand side of as follows

m am—kv(y) . y]]i]—Z ) )
2 k-2 ek

= m Yn k 0 V(y)) ok p
kZ:; (k) -/Y‘X(—l,o) (k - 2)!D ( aylr\r}—k : D*g(y) dy,

which coincides with the left-hand side of (5.27) up to the change of summation index
deﬁned by k = [+ 1. Finally, (5.28) follows by applymg the polyharmonic Green formula
on fY X(-1,0) D™V : D™¢$dy. Indeed, we note that the boundary integrals on dY X

( 1,0) are zero, due to the periodicity of V and b. Moreover the boundary integral on
0Y x {—1} is zero since ¢ vanishes there together with all its derivatives. Then, the only
non-trivial boundary integral is supported on Y x {0}. More precisely, we have

"V :D"¢dy = ()" m t¢(y 0) .
/Yx(—1,o)D V:DTgdy =(-1) -/Yx(—l o)A V¢dy+Z/Bt(V)( ,0)

dg, (5.31)
and by recalling that A"V = 0in Y X (-1, 0) S =0onY x {0}, gy? =0onY x {0},
N
for all 0 < I < m -3 and by (5.29), we deduce that

/ DWUN%@=/&HWMﬂW@@
Yx(-1,0)

Y
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and by formula (&3) Bp,_2(V)(7,0) = = X" (L )Alom+2( 22 (Am=1=1y7)) from which

I=m-2 \m-2) —"N-1 6y%’1

we deduce (5.28). m]

Theorem 11. Letm € N, m > 2. LetV be as in Lemma@ Letv, O be the functions defined
in Theorem@ Let also g(y) = b(7)(1 + yn)™*! forally € Y x (=1,0). Then

o™ v

—(%,0) + a(x)y™ ",
axN 1

o(x,y) = -V(y)

for some a(¥) € L“(W). Moreover, the strange term (5.19) is given by

~ am_l m am—lv ~ am—l ) )
) '/ qY(U’ g) mff (X-’ O)df - / |D V|2dy / m—1 (.X', 0) m—qf (x’ O)dx
w oxy; Yx(~c0,0) w Oxm oxT
"H(AV m-ly m—1 om-1
- _/ (a n(z—l ) +(m— 1)AN—1(—a — ))b(g)dg 0 m_zi(fc, 0) m_('f(;c, 0)dx.
y\ Oxy oxy; w Ox! o

Proof. The proof follows by Lemmal5(and Theoremsﬂ and by observing that -V (y) Ly (x,0)
L

axp!
satisfies problem (5.23) with the boundary conditions : ]

We are now ready to conclude the proof of (iii) of Theorem [7}

Proof of Theorem[(iii). Define g(y) = b(7)(1 + yn)™* forally = (§,yn) in Y X (-1,0).
The function v in Theorem [§] satisfies

m—1

m-1 o
/ qy(V, g)a _le (x,0) _ql)(p?, 0)dx + / D™v:D™p+updx = / fodx. (5.32)
w axﬁ (')xj’z} Q Q

forall p € W™2(Q)N Wom_l’z(Q). By Theorem We can rewrite the first integral on the
left-hand side of (5.32) as

am—l 6m—1
/ D™V 2dy / 2 (%,0)——2(%,0) d*
YX(—00,0) w axx_ ax;\nf_

and by the Green Formula for all € W™2(Q) N Wom_l’z(Q)

m am—l
/Dmv :DMpdx = (—1)m/ A"ve +/ o™ _QD ds. (5.33)
Q Q Fle) on™ (9nm 1

Hence, in the weak formulation of the limiting problem we find the following boundary
integral

am 6m—1 6m—1
/ 2 0(%,0)+ / ID™V|? dy | (%, 0) | ——0(%, 0) d, (5.34)
w |\ Oxy ¥x(~00,0) OxTl Oxm

for all p € W™2(Q) N Wom_l’z(Q). By (5.32), (5.33), (5.34) and the arbitrariness of ¢ we
deduce the statement of Theorem |7} part (iii). O
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6 Appendix

In this section we prove the following technical result used in the proof of Proposition

2l

Lemma6. Letlme N m>21<1<m-1,i,...,imq-1 € {1,...,N}. Then for all
@ € W™(Q) N W (Q) we have

1 am—l -1 gm-1

o0y~ S w0

€ 3xN (-1 Xy
in (W X Y X (=1,0) as € — 0 and if at least one of the indexes iy, . . .,in_;_; does not
coincide with N we also have

1 Gm_lgo N
) 0
el-1 dxnOx;, - - - 8xl-m7,71( W) —

inL(W x Y x(-1,0) ase — 0.

Proof. Note that for I = 1 the claim follows by Lemma (3| Then assume I > 1. Fix
@ € W™(Q) n W 4(Q) N C*(Q). Then

/WexYx(—l 0)
./—1 kel ./ck./

1 8m—l 1—1 m—l 2

(e<)>—( 3 o7

(x 0)| dxdy

el—l axm )

[ ]+ey,eyN he ([ ]+ey,eyN))

el 1(9xm l
_ (zyilvi)! 3:;_9‘1’ (%.0) zdgdfdyN (6.1)
/1 kel /ck /ck e’ll(;:’"ll z cUN —he(z, eyN))
s ” o P

Now, let zZ € C* be fixed. By expanding ¢ in Taylor’s series with remainder in Lagrange
form we deduce that
om- I m—1

o, _ (Gy —he(z’ey ))l_l
e 7 (2, €yn — he(Z eyn)) = axﬁ‘l(z’g) - (I-1) —

for some & € (0, eyn — he(Z, eyn)). We then deduce that the term appearing in the right-
hand side of (6.1) can be rewritten as
2
1 0™y (eyn — he(Z, eyn))™ Yy 8™ g dz
x,0)| dx dyn.
/ ./ck /Ck =1 gx- T2 ) (I-1) (= Doxg (5. 0)f dx oy dun

1 kGIW
(6.2)
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We then estimate (6.2) from above. Note that

1 0" (eyn —he(Z.eyn))™" yy' 9" ¢ &
) (x,0)| dx d
/ " kel /C /C e laxml ot (- 1)t (1= 1) g eN-14UN
am 1 m—1 ) y
/ // ) 0| A
L kéhy . JCEJcE Oxy; X (1-1)!
2
S (I-1) 1 ™1y e
+Z( s ) 1 g 1(Z E)(eyn) T (—he(z, eyn))®| dx e -dyn
s=1
(6.3)
and the right-hand side of (6.3) is estimated from above by
om- 1 om-1 _
< C/ / / =6 -2"L0)| dx ffldyN
1 ke, ck |Oxy” oxy eN-
gm-1 m—l dz
e 0)| d d 6.4
/lkeI ‘/C'kLkaxml 6m1(x)xN1yN (6.4)

aml 2

axm 1

1 “1- _
,_1(€yN)l 0 lhe(z, eyn)l®

_dz
Y 5) dXrdyy.

DY)

Now we consider separately the three integrals on the right-hand side of (6.4). The first
integral can be estimated in the following way

1 kely,

2
om- 1 m—l(p . . dz
./1 keIZ / ./k XN~ 1 K;_l(z,O) dxeN_ldyN
, (6.5)
dz om
/ / / (z t)dt dx N ~dyn < Ce f: ,
Ukely, JCeJce | Jo DN g2(w-ce.0)
Now consider the second integral in (6.4). We have the following estimate
om- 1 oM 1 2 dz
[ [ |oten - w0 as i
U kel ce Jct axm N
2
™y A"l z—xIN _ dz
1 ~ ot 50| Rt
keIW ck | 0xy™ ax;g |z — x| eN=
(6.6)
eNdx
kEIW ek Jok |2_x|N/2 eN-1
2 2
m—1 m—l(p
< Ce (x,0) < Ce (x,0) ,
xm—l m—1
N BI/Z(W) N W22(Q)
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where we have used the classical Trace Theorem and the standard Besov space B;/ 2(W)

of exponents 2, 1/2. Finally we consider the third integral in (6.4), which is easily esti-
mated by using Lemma 1] as follows:

2
am 1 1 s ) . ) dZ
/1 Kelw /ck ‘/Ck X 1( 5)' —1(6yN)l " lhe(z, eyn)| dxmdyzv
2
&
N~ 12/1 / P 1( §)| (_(6)1 - s|Ce3/2|s) eNildyN (6.7)
kelw,e
1 B 2
6m 1 m—1
= Z/ / o 102 5) e*dzdyy < Cel =y
s=1 ! kel N W2(Q)
By using (6.5), (6.6), (6.7) in (6.2) we deduce that
omlg h I-1
/ / JR L
1k€I Ck Ck el 16 m l (l—l)'
-1 ~1 2 _
Y om B _dz
h (1 ivl)| axm—ql)(x’ 0) dxeN_l dyn < C€||<.0||wm,2(9) — 0, (6.8)
FOAN

as € — 0. This concludes the proof in the case of smooth functions.
Now, if ¢ € W™2(Q) N W"""*(Q), by [15, Theorem 9, p.77] there exists a sequence
(@n)neny C WM2(Q) N Wom_l’z(Q) N C=(Q) such that

On — O, in Wm’z(Qe),

as n — oo hence TrygD"¢, = TrgoD"¢ for all |[§| < m — 1. Then

1 am—l(p Y yl—1 am_l(p )
F a m—1 (®€(y)) - (l i\jl)' axm_l (x’ 0)
*N "ON L2(W.xYx(~1,0))
1 am—l(p . 1 6m—l(p .
< 1 g (Pe(y)) - Fa—m—ln(cbf(y))
N N L2(W.xYX(~1,0)) (6.9)
1 am_l(pn - yg\]l am l(pn .
| Gt )~ oy et &0
N L2(W.XYX(~1,0))
-1 am- -1 ame
Lo 9 1%(3?0) I 1( ,0)
(I-1)! gxmt 7 (=D oxp! _
N L2(W.XYx(~1,0))

By using Lemma |2, a Trace Theorem, Poincaré inequality and a typical diagonal ar-
gument, it is not difficult to see that right hand-side of tends to zero as € — 0,
concluding the proof of the first part of the statement.

The second part of the second statement can be proved as follows. By assump-
tion, at least one of the indexes i; it is different from N. This implies that the function

Tty . . 12 1-1,2 . 1,2
T is not only in W"*(Q) N W~ *(Q) but also in W w(€). Thus, formula

OxNOx;, ~~~6xim_l_1
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(5.4) and an iterated application of the Poincaré inequality in the xy direction, [ —1 times,
yield

1 am—l(p
€l=1 dxnOx;, - -+ Ox

am—l(p

l
(')xN(')xl-l s 8xim_l_l

(Pe(y)) (Pe(y))

L2(WXYx(~1,0)

tm=1-1 L2(WXYX(~1,0)

which allows to conclude since the right-hand side of the previous inequality tends to
6m—1(p

1 O
Oxy Oxiy -0,

zero as € — 0 in virtue of Lemmaii) and of the vanishing of the trace of
-1

on W.
O

Acknowledgment

The authors are deeply indebted to Prof. J.M. Arrieta for valuable suggestions and discus-
sions. The first author gratefully acknowledges the support of the Swiss National Science
Foundation, SNF, through the Grant No0.169104. The second author acknowledges finan-
cial support from the INDAM - GNAMPA project 2017 “Equazioni alle derivate parziali
non lineari e disuguaglianze funzionali: aspetti geometrici ed analitici" and the INDAM -
GNAMPA project 2019 “Analisi spettrale per operatori ellittici con condizioni di Steklov
o parzialmente incernierate”. The authors are also members of the Gruppo Nazionale
per ’Analisi Matematica, la Probabilita e le loro Applicazioni (GNAMPA) of the Istituto
Nazionale di Alta Matematica (INdAM).

References

[1] G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal., 32,
1482-1518, (1992).

[2] P. M. Anselone and T. W. Palmer, Spectral analysis of collectively compact, strongly
convergent operator sequences, Pacific J. Math. 25, 423-431, (1968).

[3] J.M. Arrieta, Neumann eigenvalue problems on exterior perturbations of the domain,
J. Differential Equations 118(1), 54-103, (1995).

[4] J.M. Arrieta, F. Ferraresso, P.D. Lamberti, Spectral analysis of the biharmonic oper-
ator subject to Neumann boundary conditions on dumbbell domains, Integral Equa-
tions Operator Theory, 89(3), 377-408, (2017).

[5] J.M. Arrieta, F. Ferraresso, P.D. Lamberti, Boundary homogenization for a trihar-
monic intermediate problem, Math. Methods Appl. Sci., 41(3), 979-985, (2018).

[6] J.M. Arrieta, J.K. Hale and Q. Han, Eigenvalue problems for nonsmoothly perturbed
domains, J. Differential Equations 91, 24-52, (1991).

[7] J.M. Arrieta and P.D. Lamberti, Spectral stability results for higher-order operators
under perturbations of the domain, C.R. Math. Acad. Sci. Paris 351(19-20), 725-730,
(2013).

38



(8]

[9]

[10]

[18]

[19]

J.M. Arrieta and P.D. Lamberti, Higher order elliptic operators on variable domains.
Stability results and boundary oscillations for intermediate problems, J. Differential
Equations 263(7), 4222-4266, (2017).

J.M. Arrieta, M. Villanueva-Pesqueira, Unfolding operator method for thin domains
with a locally periodic highly oscillatory boundary. SIAM J. Math. Anal. 48(3),
1634-1671, (2016).

L. Babuska, Stabilitit des Definitionsgebietes mit Riicksicht auf grundlegende Prob-
leme der Theorie der partiellen Differentialgleichungen auch im Zusammenhang mit
der Elastizitdtstheorie. I, I [Stability of the domain under perturbation of the bound-
ary in fundamental problems in the theory of partial differential equations, princi-
pally in connection with the theory of elasticity LII], Czechoslovak Math. J. 11 (86),
76-105, 165-203, (1961).

S. Bogli, Convergence of sequences of linear operators and their spectra, Integral
Equations Operator Theory 88(4), 559-599, (2017).

D. Buoso and P.D. Lamberti, Eigenvalues of polyharmonic operators on variable
domains, ESAIM. Control, Optimisation and Calculus of Variations 19(4), 1225-
1235, (2013).

D. Buoso and P.D. Lamberti, Shape deformation for vibrating hinged plates, Math.
Methods Appl. Sci. 37, 237-244, (2014).

D. Buoso and L. Provenzano, A few shape optimization results for a biharmonic
Steklov problem, ]. Differential Equations 259(5), 1778-1818, (2015).

V. Burenkov, Sobolev spaces on domains, Teubner-Texte zur Mathematik, 137, B.
G. Teubner Verlagsgesellschaft mbH, Stuttgart, 1998.

V. Burenkov and P.D. Lamberti, Spectral stability of higher order uniformly elliptic
operators, Sobolev spaces in mathematics II, Int. Math. Ser. (N.Y.), 9, Springer, New
York, 69-102, (2009).

V. Burenkov, P.D. Lamberti, Spectral stability of general non-negative selfadjoint
operators with applications to Neumann-type operators, J. Differential Equations,
233(2), 345-379, (2007).

V. Burenkov and P.D. Lamberti, Sharp spectral stability estimates via the Lebesgue
measure of domains for higher order elliptic operators, Rev. Mat. Complut. 25(2),
435-457, (2012).

G. Buttazzo, G. Cardone, and S. A. Nazarov Thin elastic plates supported over small
areas. I: Korn’s inequalities and boundary layers J. Convex Anal. 23(2), 347-386,
(2016).

[20] J. Casado-Diaz , M. Luna-Laynez and F.J. Suarez-Grau, Asymptotic behavior of a

viscous fluid with slip boundary conditions on a slightly rough wall, Math. Models
Methods Appl. Sci. 20(1), 121-156, (2010).

39



[21] J. Casado-Diaz , M. Luna-Laynez and F.J. Suarez-Grau, Asymptotic behavior of the
Navier-Stokes system in a thin domain with Navier condition on a slightly rough
boundary, SIAM J. Math. Anal. 45(3), 1641-1674, (2013).

[22] G. Cardone and A. Khrabustovskyi, Neumann spectral problem in a domain with
very corrugated boundary, J. Differential Equations, 259(6), 2333-2367, (2015).

[23] D. Cioranescu, P. Donato, An introduction to homogenization, Oxford University
Press, 1999.

[24] D.Cioranescu, A. Damlamian and G. Griso, Periodic unfolding and homogenization,
C.R. Acad. Sci. Paris, Ser. 1335, 99-104, (2002).

[25] D. Cioranescu, A. Damlamian and G. Griso, The periodic unfolding method in ho-
mogenization, SIAM J. Math. Anal. Vol. 40, 4, 1585-1620, (2008).

[26] M. Costabel, M. Dalla Riva, M. Dauge, and P. Musolino, Converging expansions
for Lipschitz self-similar perforations of a plane sector, Integral Equations Operator
Theory, 88(3), 401-449, (2017).

[27] R. Courant and D. Hilbert, Methods of mathematical physics Voll, Wiley-
Interscience, New York, 1953.

[28] A. Damlamian, An elementary introduction to periodic unfolding, in: Proceedings
of the Narvik Conference 2004, GAKUTO International Series, Math. Sci. Appl.
24. Gakko- tosho, Tokyo, 119-136, (2006).

[29] E.B. Davies, Spectral theory and differential operators, Cambridge Studies in Ad-
vanced Mathematics 42, Cambridge University Press, Cambridge, 1995.

[30] F. Ferraresso, On the spectral stability of polyharmonic operators on singularly
perturbed domains, Phd Thesis, University of Padova, 2018.

[31] A.Ferrero and F. Gazzola, A partially hinged rectangular plate as a model for sus-
pension bridges, Discrete Contin. Dyn. Syst., 35(12), 5879-5908, (2015).

[32] A. Ferrero and P.D. Lamberti, Spectral stability for a class of fourth order Steklov
problems under domain perturbations, Calc. Var. Partial Differential Equations,
58(1), (2019).

[33] F. Gazzola, H.-C. Grunau and G. Sweers, Polyharmonic boundary value problems
- Positivity preserving and nonlinear higher order elliptic equations in bounded
domains, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2010.

[34] D. Goméz, M. Lobo, E. Peréz, On the vibrations of a plate with a concentrated mass
and very small thickness, Math. Methods Appl. Sci., 26(1), 27-65, (2003).

[35] D.Henry, Perturbation of the boundary in boundary-value problems of partial dif-
ferential equations, London Mathematical Society Lecture Note Series, 318, Cam-
bridge University Press, Cambridge, 2005.

40



[36]

[40]

[41]

T. Kato, Perturbation theory for linear operators, Die Grundlehren der mathe-
matischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York,
1966.

MJV. Keldysh, On the solubility and the stability of Dirichlet’s problem (Russian),
Uspekhi Matem. Nauk 8, (1941), 171-231,

V.G. Maz’ya and S A Nazarov, Paradoxes of limit passage in solutions of bound-
ary value problems involving the approximation of smooth domains by polygonal
domains, Math. USSR Izv. 29, (1987), 511-533

V. Maz’ya, V. Nazarov and B. Plamenevskij, Asymptotic theory of elliptic bound-
ary value problems in singularly perturbed domains. Vol. I, Operator Theory: Ad-
vances and Applications, 111, Birkhéduser Verlag, Basel, 2000.

V. Maz'ya, V. Nazarov and B. Plamenevskij, Asymptotic theory of elliptic bound-
ary value problems in singularly perturbed domains. Vol. II, Operator Theory:
Advances and Applications, 112, Birkhéduser Verlag, Basel, 2000.

J. Necas, Les méthodes directes en théorie des équations elliptiques, Masson et Cie
Editeurs, Paris; Academia, Editeurs, Prague 1967.

[42] L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa

13(3), 115-162 (1959).

[43] L. Provenzano, A note on the Neumann eigenvalues of the biharmonic operator,

Math. Methods Appl. Sci., 41(3), 1005-1012, (2018).

[44] O.M. Sapondzhyan, Bending of a freely supported polygonal plate (Russian), Izv.

Akad. Nauk Armyan. SSR Ser. Fiz. Mat. Estestv. Tekhn. Nauk 5, no. 2, 29-46, (1952).

[45] F. Stummel, Discrete convergence of mappings, Topics in numerical analysis (Proc.

Roy. Irish Acad. Conf., University Coll., Dublin, 1972), 285-310, (1973).

[46] G.M. Vainikko, Regular convergence of operators and the approximate solution of

equations (Russian), Mathematical analysis, 16, 5-53, (1979).

41



