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Task-irrelevant odours affect both 
response inhibition and response 
readiness in fast-paced Go/No-Go 
task: the case of valence
Javier Albayay1*, Umberto Castiello1 & Valentina Parma2,3

Whether emotional stimuli influence both response readiness and inhibition is highly controversial. 
Visual emotional stimuli appear to interfere with both under certain conditions (e.g., task relevance). 
Whether the effect is generalisable to salient yet task-irrelevant stimuli, such as odours, remains 
elusive. We tested the effect of orthonasally-presented pleasant (orange) and unpleasant odours 
(trimethyloxazole and hexenol) and clean air as a control on response inhibition. In emotional Go/
No-Go paradigms, we manipulated the intertrial interval and ratios of Go/No-Go trials to account for 
motor (Experiment 1, N = 31) and cognitive (Experiment 2, N = 29) response inhibition processes. In 
Experiment 1, participants had greater difficulty in withholding and produced more accurate and faster 
Go responses under the pleasant vs. the control condition. Faster Go responses were also evident in 
the unpleasant vs. the control condition. In Experiment 2, neither pleasant nor unpleasant odours 
modulated action withholding, but both elicited more accurate and faster Go responses as compared 
to the control condition. Pleasant odours significantly impair action withholding (as compared to the 
control condition), indicating that more inhibitory resources are required to elicit successful inhibition 
in the presence of positive emotional information. This modulation was revealed for the motor aspect 
of response inhibition (fast-paced design with lower Go/No-Go trial ratio) rather than for attentional 
interference processes. Response readiness is critically impacted by the emotional nature of the odour 
(but not by its valence). Our findings highlight that the valence of task-irrelevant odour stimuli is a factor 
significantly influencing response inhibition.

Motor response inhibition, defined as the ability to suppress inappropriate actions, allows individuals to flexi-
bly navigate the world, generating adaptive responses under neutral and emotional conditions1. The use of Go/
No-Go paradigms represents a well-established way to measure response inhibition in the laboratory. The Go/
No-Go paradigm2 involves a continuously presented series of stimuli composed of frequent “Go” cues, to which 
subjects ought to respond with an action as rapidly as possible, and infrequent “No-Go” cues, to which sub-
jects ought not to respond. The disparity in frequency between Go/No-Go cues creates a prepotent tendency 
to respond to the upcoming stimulus. When a No-Go cue appears, such prepotent response tendency must be 
withheld. The ability to inhibit an impending motor response is classically quantified as the rate of errors elicited 
in No-Go trials (failed-to-No-Go3). Other indices have been used to characterise aspects of motor performance in 
the Go/No-Go task. For instance, failing to produce an action when a Go cue is presented (failed-to-Go) is used to 
quantify attentional failures4,5 and the reaction times (RTs) for Go actions have been assumed to reflect different 
aspects of behavioural execution, such as (motor) response readiness6 and approach tendencies4.

Go/No-Go task features affecting motor readiness and motor inhibition.  The accurate performance 
to the Go/No-Go task requires the integration of motor and cognitive skills. This becomes evident when the cog-
nitive resources necessary to accurately perform the task are taxed, as revealed by the experimental manipulation 
of intertrial intervals (ITI) and Go/No-Go ratios. Indeed, fast-paced Go/No-Go paradigms (ITI < 4 s7) challenge 

1Department of General Psychology, University of Padova, Via Venezia 8, 35131, Padova, Italy. 2Department of 
Psychology, Temple University, 1701 N 13th St, 19122, Philadelphia, PA, United States of America. 3Neuroscience 
Area, International School for Advanced Studies, Via Bonomea 265, 34151, Trieste, Italy. *email: javier.albayay@
gmail.com

OPEN

https://doi.org/10.1038/s41598-019-55977-z
mailto:javier.albayay@gmail.com
mailto:javier.albayay@gmail.com


2Scientific Reports |         (2019) 9:19329  | https://doi.org/10.1038/s41598-019-55977-z

www.nature.com/scientificreportswww.nature.com/scientificreports/

action withholding more than slow-paced designs8 while maintaining attentional demands stable on the Go cues9. 
Also, the Go/No-Go ratios affect the number of failed-to-No-Go responses, with lower proportions of No-Go cues 
producing higher number of failed-to-No-Go responses7,8. Altogether, fast-paced designs with infrequent No-Go 
trials elicit more prepotent motor tendencies on No-Go trials7 better accounting for motor response inhibition 
rather than other aspects of cognitive control (e.g., attentional interference and decision-making processes9).

Effects of emotional stimuli on response readiness and response inhibition.  Incorporating emo-
tional contextual stimuli into Go/No-Go paradigms provides insights on how one’s emotional experience modu-
lates action inhibition5,10–12 and accounts for the variety of inhibitory control mechanisms13. Emotional Go/No-Go 
paradigms preserve the basic neuropsychological constructs of the traditional (non-emotional) task, representing 
a valid measure of response inhibition5. Following the circumplex model of emotion14, the great part of emotional 
experiences can be categorised on the dimensions of arousal and valence. Emotion-induced arousal alters the allo-
cation of attentional resources15 and heightens sensitivity to sensory cues necessary for accurate task performance16. 
In the context of motor response inhibition, the more arousing the stimuli presented (e.g., images), the greater the 
interference with action performance, as reflected by the increasing stopping latencies in function of the arousal 
of the images at a stop signal task (i.e., a paradigm used to measure the inhibition of already initiated responses17).

The role of valence in altering response inhibition is still not fully clarified. A series of possible explanations 
for the mixed results can be advanced. First, the findings from fast-paced Go/No-Go designs (those presenting 
greater cognitive load) reveal a valence effect on response inhibition (e.g.,3,10), whereas findings from slow-paced 
designs do not (e.g.,18,19). Second, the relevance of the affective cues for the task is sporadically influenced by 
valence. Mirabella6 found that fearful (vs. happy) faces increase both RTs (response readiness) and rates of 
failed-to-Go responses (attentional failures) exclusively when the emotional stimulus is task-relevant. However, 
task-irrelevant emotional stimuli have also been shown to modulate Go/No-Go performance, with faster RTs3,10 
and more failed-to-No-Go responses3 following pleasant (vs. unpleasant) cues. All in all, it seems that the influ-
ence of emotional stimuli depends on a series of task requirements, calling for additional research on the influ-
ence of emotional stimuli on response inhibition.

Decoupling response inhibition from interference control by using affective olfactory cues.  
The majority of the literature on emotion-modulated response inhibition uses brief presentations of visual stim-
uli, such as affective words20–22 and emotional facial expressions6,17,23–25, and sporadically auditory stimuli19,26 and 
flavours3. However, in ecological situations (e.g., cravings), behavioural control happens to be based on a variety 
of sensory information and mostly implicitly. Assuming that all sensory information at different levels of aware-
ness similarly affects response inhibition would be misguided.

Olfaction is often labelled as a sensory modality that is naturally more emotional than vision. This idea is 
supported by the anatomical architecture of the olfactory system, which has within its first synapses the intersec-
tion with the limbic system (instead the distance of the limbic system and the visual system is much greater27). 
In line with this notion, Adolph and Pause28 recently demonstrated that odours elicited stronger emotional 
responses than comparable visual stimuli and proposed that perceptually triggered emotional responses are 
modality-dependent. This also seems to be the case for single odour exposures29.

Orthonasal olfactory cues offer an ideal test bed to evaluate how task-irrelevant emotional contexts affect emo-
tional response inhibition22. Odours provide intense emotional information in the span of a sniff30, they are less 
subjected to labelling issues (i.e., verbalising an odour is normally a challenging task31), and they are more percep-
tually complex than most verbal and visual material32. Critically, they modulate motor control in accordance to 
their intrinsic properties (e.g., size33) and affective features (e.g.,34,35) and their valence influences decision mak-
ing36. However, results in the context of motor readiness and motor inhibition are nonexistent or highly flawed37–40. 
To examine the influence of task-irrelevant orthonasal odours on response readiness and response inhibition, we 
presented a pleasant and an unpleasant odour (plus clean air as a control) to healthy controls performing a Go/
No-Go task. In Experiment 1 the task was fast-paced (aimed at accounting for motor response inhibition) whereas 
in Experiment 2 the task was slow-paced (aimed at accounting for attentional interference processes).

The present study.  Under the assumptions of the so-called spillover theory, based on which contexts with 
positive valence require a greater mobilisation of inhibitory resources to withhold responses3, in Experiment 1 
we tested 31 participants and hypothesised that they would present greater difficulties in withholding a prepared 
motor response and a facilitation in response readiness (faster RTs and more accurate Go responses) under the 
exposure to a pleasant odour as compared to the other conditions (Fig. 1, panel a).

In Experiment 2, we investigated whether valence affects the interference control processes related to response 
inhibition by means of a slow-paced Go/No-Go task (i.e., giving more access to contextual information9 as 
compared to Experiment 1) in a sample of 29 participants. Overall, we expected low rates of failed-to-No-Go 
responses across odour conditions (i.e., floor effect; e.g.,19). On the other hand, we anticipate odours to alert the 
participants to the task and produce faster and more accurate Go responses as compared to the less salient control 
condition. Given the reduced cognitive load (longer ITI and higher proportion of No-Go cues), we did not expect 
the pleasant (vs. control and unpleasant) odour condition to facilitate response readiness (Fig. 1, panel b).

Results
Experiment 1 – fast-paced Go/No-Go task.  Odour conditions are isointense and differ in pleasantness.  
The analysis on the subjective rating of pleasantness for the three odours conditions presented (i.e., clean air, 
orange and trimethyloxazole) showed a significant main effect of odour (Fig. 2, panel a), χ2(2) = 604.81, p < 0.001, 
AICRL > 100 (AIC = Akaike information criterion; please refer to the Statistical analyses section for more details), 
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whereas the effect of cycle (i.e., times at which the participants rated the odour conditions), χ2(8) = 1.610, 
p = 0.991, AICRL < 0.001, and the interaction odour × cycle, χ2(16) = 8.454, p = 0.934, AICRL < 0.001, were not 
significant. Multiple comparisons revealed that the trimethyloxazole odour (29.9 ± 24.5) was significantly more 
unpleasant than both orange (73.3 ± 18.1, p < 0.001) and clean air (45.2 ± 13.9, p < 0.001), whereas orange was 
significantly more pleasant than clean air (p < 0.001).

Regarding the perceived intensity, a significant main effect of odour was found (Fig. 2, panel b), χ2(2) = 933.21, 
p < 0.001, AICRL > 100, while neither the effect of cycle, χ2(8) = 12.186, p = 0.143, AICRL = 0.148, nor the interac-
tion odour × cycle, χ2(16) = 8.191, p = 0.943, AICRL < 0.001, reached significance. Multiple comparisons showed 
that orange (62.5 ± 24.2) and trimethyloxazole (66.0 ± 26.0) did not differ significantly (p = 0.067), whereas clean 
air (9.4 ± 14.6) was significantly less intense than both odours (p-values < 0.001). Ratings’ average response time 
was 1620 ± 1460 ms. The fact that the effect of cycle was not significant, revealed that both perceived pleasantness 
and intensity of the odours were consistent throughout the experiment.

More accurate withholding when exposed to clean air as compared to a pleasant (but not unpleasant) odour.  A sig-
nificant main effect of valence on failed-to-No-Go responses emerged (Fig. 3, panel a), χ2(2) = 11.065, p = 0.004, 
AICRL = 34.202. Multiple comparisons showed that participants were significantly less proficient in withholding 
inappropriate responses when a pleasant odour was delivered (21%, p = 0.005) as compared to the control con-
dition (16%, p = 0.003); no other comparison reached significance: pleasant vs. unpleasant (19.3%, p = 1.000), 
although control vs. unpleasant (p = 0.065) showed a trend.

Figure 1.  Graphical description of the emotional olfactory Go/No-Go task in (a) Experiment 1 and (b) 
Experiment 2 [the red + (sniff cue) is represented in grey colour]. In control trials only, clean air is presented 
continuously. The methional (in Experiment 1) and civet (in Experiment 2) odours were excluded from the 
main analyses (please refer to the Materials and Methods section for details about the odour stimuli).

Figure 2.  Results of Experiment 1. (a) Perceived pleasantness of the odour stimuli. (b) Perceived intensity of 
the odour stimuli.

https://doi.org/10.1038/s41598-019-55977-z


4Scientific Reports |         (2019) 9:19329  | https://doi.org/10.1038/s41598-019-55977-z

www.nature.com/scientificreportswww.nature.com/scientificreports/

More accurate Go responses when exposed to a pleasant (but not unpleasant) odour as compared to clean air.  The 
analysis of failed-to-Go responses showed a main effect of valence (Fig. 3, panel b), χ2(2) = 7.812, p = 0.020, 
AICRL = 6.726. Multiple comparisons revealed that participants were more accurate when primed with a pleasant 
odour (5.3%) as compared to the control conditions (6.6%, p = 0.021); other comparisons were not significant: 
control vs. unpleasant (5.7%, p = 0.142), pleasant vs. unpleasant (p = 1.000).

Faster Go responses when exposed to a pleasant odour as compared to an unpleasant odour and clean air.  A 
significant main effect of valence on RTs of correct Go responses was retrieved (Fig. 3, panel c), χ2(2) = 191.33, 
p < 0.001, AICRL > 100. Multiple comparisons showed slower responses in the control condition (345 ± 60 ms) as 
compared to the pleasant (330 ± 58 ms, p < 0.001) and unpleasant ones (335 ± 59, p < 0.001). Participants were 
faster in the pleasant condition as compared to the unpleasant one (p < 0.001).

Experiment 2 – slow-paced Go/No-Go task.  Odour conditions are isointense and differ in pleasant-
ness.  As expected, the analyses revealed a significant main effect of odour on pleasantness (Fig. 4, panel a), 
χ2(2) = 251.77, p < 0.001, AICRL > 100, while neither the effect of cycle, χ2(4) = 1.142, p = 0.888, AICRL = 0.032, 
nor the interaction odour × cycle, χ2(8) = 2.869, p = 0.942, AICRL = 0.001, were significant. Multiple comparisons 
showed that the hexenol odour (31.3 ± 28.3) was rated as more unpleasant as compared to orange (76.0 ± 23.4, 
p < 0.001) and clean air (40.8 ± 18.9, p < 0.001), whereas orange was perceived as more pleasant than clean air 
(p < 0.001).

As for intensity, a significant main effect of odour was retrieved (Fig. 4, panel b), χ2(2) = 448.14, p < 0.001, 
AICRL > 100, whereas the effect of cycle, χ2(4) = 4.445, p = 0.349, AICRL = 0.169, and the interaction 
odour × cycle, χ2(8) = 6.844, p = 0.553, AICRL = 0.010, did not reach statistical significance. Orange (65.3 ± 24.4) 

Figure 3.  Results of Experiment 1. (a) Rates of failed-to-No-Go responses. (b) Rates of failed-to-Go responses. 
(c) Reaction times of correct Go responses. Error bars represent standard error of the mean.

Figure 4.  Results of Experiment 2. (a) Perceived pleasantness of the odour stimuli. (b) Perceived intensity of 
the odour stimuli.
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and hexenol (70.2 ± 24.9) were rated as isointense (p = 0.084), while clean air (12.3 ± 15.3) was perceived as less 
intense as compared to both odour conditions (p-values < 0.001). The average response time of the ratings was 
1988 ± 837 ms.

Equally accurate withholding regardless of the olfactory context.  The main effect of valence on the rate of 
failed-to-No-Go responses was not significant (Fig. 5, panel a), χ2(2) = 0.167, p = 0.920, AICRL = 0.147, sug-
gesting that the olfactory manipulation did not have an impact on the interference control processes related to 
response inhibition (control = 4.4%; pleasant = 4.2%; unpleasant = 4.6%).

More accurate Go responses when exposed to an odour as compared to clean air regardless of valence.  The main 
effect of valence on the rate of failed-to-Go responses was significant (Fig. 5, panel b), χ2(2) = 23.69, p < 0.001, 
AICRL > 100. Participants were more accurate when presented with pleasant (3.3%) and unpleasant odours (3.4%) 
as compared to the control condition (6.5%, p-values < 0.001), while no differences were found between the for-
mer (p = 1.000).

Faster Go responses when exposed to an odour as compared to clean air regardless of valence.  A significant 
main effect of valence on the RTs of correct Go responses was found (Fig. 5, panel c), χ2(2) = 180.3, p < 0.001, 
AICRL > 100. Multiple comparisons revealed slower responses in the control condition (350 ± 56 ms) as when tri-
als were primed with pleasant (330 ± 51 ms, p < 0.001) and unpleasant odours (331 ± 52 ms, p < 0.001), whereas 
no differences were found between the pleasant and unpleasant conditions (p = 1.000).

Discussion
In two experiments, we examined the effect of task-irrelevant pleasant (orange) and unpleasant (trimethyloxazole 
and hexenol) odours on response inhibition. In Experiment 1, our findings line up with our hypotheses as more 
failed-to-No-Go responses, less failed-to-Go responses and faster correct Go responses emerged when trials were 
preceded by a pleasant odour as compared to a control condition (clean air). For RTs only, both pleasant and 
unpleasant odour contexts facilitated response readiness in comparison to the control condition, yet with the 
former presenting the shortest latencies. In other words, emotionally-charged odours increase response readiness 
with respect to the control condition, irrespective of their valence. In Experiment 2, we found that the rate of 
failed-to-No-Go responses was not affected by the odour stimuli, whereas more accurate and faster Go responses 
were revealed when participants were presented with pleasant and unpleasant odours as compared to the control 
condition, regardless of valence.

Orthonasal pleasant odours impair response inhibition.  Our results on action withholding under 
positive emotional context (induced by orange odour via the olfactory pathway) are in line with previous find-
ings in Go/No-Go paradigms3,10. Contextual odours significantly modulated response inhibition, as participants 
found more challenging to withhold their responses towards visual targets in positively (but not negatively) 
valenced contexts vs. a control condition3,10. We hypothesised, in line with Chiu et al.3, that a pleasant stimulus 
motivates the participant to execute an action, reducing the ability to inhibiting that very same action when 
initiated. In the words of the spillover theory, the motivation to act elicited by the pleasant stimulus exudes (or 
spills over) into the motor system (a key node of the inhibitory network33,41,42), and as a result, inappropriate Go 
responses are produced in response to No-Go demands. In the study of Chiu et al.3, this “spillover” is also revealed 
as a modulation in motor excitability, measured as motor evoked potentials (MEPs) following single pulse TMS 
on the hand sector of the primary motor cortex. Following the presentation of an appetitive (vs. neutral) cue, 
motor excitability is increased whereas it is reduced following an aversive (vs. neutral) cue. Previous evidence 
demonstrate that orthonasal (pleasant) odours potentiate the motor excitability of primary motor cortex43, and 

Figure 5.  Results of Experiment 2. (a) Rates of failed-to-No-Go responses. (b) Rates of failed-to-Go responses. 
(c) Reaction times of correct Go responses. Error bars represent standard error of the mean.
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that they activate primary (piriform) and secondary (orbitofrontal) olfactory cortices as well as a wide range 
of areas included in the action observation system44. In lack of direct evidence on the neural underpinnings 
of odour-modulated response inhibition, we speculate that the orbitofrontal cortex which also is involved in 
value-guided behaviour45 mediates the spillover of motivational information to the motor system though the 
striatum, which integrates information across reward, cognitive, and motor functions46.

Alternatively, Yang et al.47 suggested that affective stimuli interfere with response inhibition due to a percep-
tual prioritisation of emotional content when action withholding is required, as revealed by larger N170 ampli-
tudes [i.e. an event-related potential (ERP) component used as an index of perceptual processing] elicited by 
emotional vs. neutral stimuli and in No-Go vs. Go trials. Albert et al.10 found larger frontocentral No-Go P3 
amplitudes (i.e., an ERP component used as a robust indicator of response inhibition) and a stronger activation 
of the anterior cingulate cortex (i.e., a crucial area in the interaction of inhibition and emotion) in positively (vs. 
negatively) valenced contexts, revealing a greater mobilisation of inhibitory resources as context valence (rather 
than arousal) was more positive. These results are opposed to the behavioural findings obtained with the stop 
signal paradigm by Verbruggen and De Houwer17, who proposed arousal (and not valence) as responsible for 
the modulation of response inhibition under emotional context (i.e., greater interference at higher arousal levels 
regardless of valence). Critically, although both Go/No-Go and stop signal paradigms engage the active suppres-
sion of motor actions and represent measures of reactive response inhibition (i.e., triggered as a consequence of 
unexpected changes in the environment or internal state48,49), they are considered to assess different inhibitory 
processes: action withholding by the Go/No-Go task (i.e., the process of restraining prepared but uninitiated 
responses), and action cancellation by the stop signal task (i.e., the process stopping speeded already initiated 
actions49,50). Thus, we believe that our findings support the idea that action withholding is affected by the valence 
of isointense odour stimuli cuing the action, whereas further research is needed to evaluate the effects of valence 
on action cancellation.

Valence does not affect the ability to anticipate response inhibition.  It should be noted that the 
rate of failed-to-No-Go responses was significantly affected by the number of preceding Go trials before a No-Go 
trial (see Supplementary Results 7) in Experiment 1. In line with previous studies24,51, participants made more 
mistakes as the number of preceding Go trials increased, indicating that the trend to respond became stronger 
after each Go response, thus interfering with response inhibition. However, the valence effect was independ-
ent from the number of preceding Go trials before as the interaction between these factors was not statistically 
significant.

In Experiment 1, we have shown that emotional contexts tended to produce more inaccurate withholding 
(higher rates of failed-to-No-Go responses) than the control condition (i.e., clean air). However, this is not the 
case in Experiment 2. This latter result could be explained assuming that the prioritisation of emotional process-
ing (which interferes with response inhibition) might take place exclusively when the level of threat or emotional 
content is highly significant47. Thus, it could be argued that the odours employed in Experiment 2, given the 
context, were not perceived as salient enough.

Orthonasal pleasant odours facilitate response readiness more than unpleasant ones.  We 
found that participants were more accurate and faster in Go trials under the pleasant and unpleasant odour 
context as compared to the control, especially in the former. This is in line with the findings of Yang et al.47 who 
indicated that greater attentional resources are allocated on emotional stimuli, as shown by faster RTs (and larger 
P3 amplitudes) with respect to neutral stimuli. The fact that we found faster Go responses under the pleasant 
odour context is in line with the notion that pleasant stimuli trigger action3,5. The same pattern was reported by 
Albert et al.10, suggesting that positive affect enhances thought and action repertoires (e.g., Go performance) by 
compromising inhibitory mechanisms. This is particularly relevant when we refer to odour stimuli as they are 
more likely to capture attention when they are particularly pleasant and strong30. In our results, this is not only 
evident in a response bias in the latencies, but also in the rate of failed-to-Go responses which was reduced in the 
pleasant condition as compared to the control one, indicating that more attentional failures in the latter.

Our findings of faster Go responses and less accurate action withholding are in line with previous evidence 
including task-irrelevant chemosensory stimuli (i.e., flavours in3) and in contrast with previous research show-
ing that visual emotional stimuli affect both response readiness and response inhibition only when they are 
task-relevant6. This supports the idea of a modality-specific effect of emotional cues on response readiness and 
inhibition, with odours triggering stronger emotional responses than visual stimuli28.

The findings from Experiment 1 extend the scant literature on the impact of odour stimuli on response inhi-
bition, and they overcome some of their most relevant limitations (i) by employing a computer-controlled olfac-
tometer to potentiate the speed and accuracy of experimental designs52 and (ii) by including isointense pleasant 
and unpleasant odours, as well as a control condition, source of previous mixed results37–40.

Odour valence does not affect interference control.  In Experiment 2, which was aimed at investi-
gating the effect of valence on interference control with a slow-paced Go/No-Go task, we found that the rate of 
failed-to-No-Go responses was not affected by the valence of the odour, whereas both pleasant and unpleasant 
odours were associated with more accurate and faster Go responses than in the control condition.

We anticipated a failure of the odour valence in modulating the rate of failed-to-No-Go responses due to 
task-specific parameters that lead to a floor effect, as reflected in equivalent low rate of failed responses across 
conditions (<5%), in line with previous behavioural results from slow-paced designs18,19. This represents a 
4–5-fold reduction in the number of responses as compared to Experiment 1 (in contrast with the ~2-fold reduc-
tion for Failed-to-Go trials). In this regard, both temporal constraints and ratio of No-Go trials play a significant 
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role in the effective capture of inhibition-related activity in the Go/No-Go task7,8. For instance, Wessel7 revealed 
that Go/No-Go paradigms including equiprobable proportions of Go/No-Go trials and slow-paced designs, 
engage less frontocentral activity associated to response inhibition, thus, involving fewer inhibitory demand. 
In this regard, although Experiment 2 included more No-Go trials (~3:1) than Experiment 1 (5:1), the task was 
slow-paced (average ITI = 5.5 s), which lead to a lower pressure to respond. Along the same lines, Zamorano et 
al.9 observed that N2 amplitude (i.e., inhibition-related ERP component) in No-Go trials was higher in fast-paced 
vs. slow-paced designs, reflecting greater inhibitory requirements by the former. These authors highlighted that 
while fast-paced designs involve more automatic processing characteristic of reactive response inhibition (lead-
ing to faster and more inaccurate responses), slow-paced Go/No-Go tasks involve different aspects of cognitive 
control, such as attentional interference and decision making processes, that imply less motor inhibitory demands 
(leading to slower and more accurate responses). Albert et al.10 found that No-Go P3, but not N2, was modulated 
by emotional context, in line with the idea that the No-Go P3 represents an ERP component associated to the 
inhibitory process itself, whereas the N2 relates to different components of response inhibition (e.g., pre-motor 
inhibition, response activation and conflict monitoring). These authors indicated that emotional modulations 
interact particularly with the inhibitory process itself rather than other aspects of response inhibition, as the ones 
involved in slow-paced designs.

It should be noted that due to technical problems, we did not analyse the effect of preceding Go trials on the 
rate of failed-to-No-Go responses in Experiment 2. However, due a floor effect we would expect that a possible 
significant effect of this manipulation (i.e., 1, 3, 5 or 7 preceding Go trials before a No-Go trial) would be inde-
pendent of the olfactory manipulation, which did not modulate the error rate in No-Go trials.

Under reduced time pressure, task-irrelevant odours speed up motor responses irrespective of 
valence.  As expected, more accurate and faster Go responses where revealed when Go trials were primed by 
an odour as compared to the control condition. We anticipated no differences regarding valence due to the low 
cognitive load and motivation pressure of the task (i.e., not accounting for action biases by pleasant contexts). As 
an important index of behavioural execution5,53, faster latencies indicate that participant’s responses were biased 
by both pleasant and unpleasant odours, in line with previous research showing that faster responses where elic-
ited by emotional (vs. neutral) stimuli47,54. As for the rate of failed-to-Go responses, participants were more prone 
to commit errors in the control condition. Thus, lapses of attention were less frequent under emotional contexts. 
In this respect, results regarding Go responses support the idea that emotional (vs. non-emotional) stimuli cap-
ture more attention47.

Conclusions
In summary, we revealed that pleasant (but not unpleasant) task-irrelevant odours modulate response inhibition, 
more specifically, impairing the withholding of prepotent motor responses in the Go/No-Go task. The inclusion 
of orthonasal olfactory cues into Go/No-Go paradigms represents a more suitable emotional manipulation than 
visual cues as they are strong and fast triggers of emotion, with the potential of acting in lack of awareness. In line 
with the spillover theory, pleasant stimuli biased behaviours towards action. When No-Go cues were presented, 
this trend was revealed in more inaccurate action withholding. When Go cues were presented, more accurate 
and faster responses (as compared to the unpleasant and control conditions) were elicited. These results support 
the idea that more inhibitory resources are required under positively valenced contexts. It should be noted that 
the unpleasant odour context also facilitated response readiness as shown by faster Go responses as compared 
to the control condition, in line with the idea that more attentional resources are allocated on emotional stimuli. 
Importantly, the effect of emotional contexts was revealed only when the Go/No-Go task was fast paced, as it was 
more capable of evoking a trend to elicit overt responses by involving more inhibitory demands as compared to 
slow-paced designs. To further disentangle this aspect, future research should identify paradigms able to dis-
tinguish between performance in motor and attentional inhibition tasks that are free of floor effects. Moreover, 
future research should address whether this effect is also revealed when the emotional context induced via olfac-
tory stimuli is task-relevant. Despite all odours included in this study were presented at supra-threshold levels, it 
is possible that the unpleasant odour was not relevant or salient enough to provoke an effect on response inhibi-
tion in the slow-paced design. Future research could address this issue by including odours of different intensities 
or inducing aversive responses towards specific odours via conditioning. Additionally, the generalisability of the 
present results can be tested by including different pleasant odours, even though the evidence hereby presented 
on unpleasant odours suggests that these results should not be odour specific. Despite our observation of the 
orange odour-induced modulation in response readiness, which is not present with any of the unpleasant odours 
tested, the generalisability of the odour pleasantness-dependent effect will be explored in future studies with sev-
eral different categories of pleasant odours such as food, non-food, floral, sandalwood or balsamic odours. On the 
other hand, a limitation for the generalisation of our findings is the possibility that the impairment of response 
inhibition relies in specific properties of the pleasant odour selected for this study (i.e., orange). Moreover, futures 
studies might include psychophysiological measures (e.g., skin conductance response) to better account for the 
arousal aspect of processing of odour cues.

Materials and Methods
Participants.  Experiment 1.  Thirty-one healthy participants were recruited by convenience sampling (16 
women, mean age = 26.1 ± 4.1 years old, age range 19–34 years old). Power analysis (G*Power55) for a medium 
effect size at power = 0.90 and α = 0.05 suggested a sample size of twenty-nine; we slightly oversampled to prevent 
possible technical failures. An initial screening was carried out through an online survey to account for the follow-
ing exclusion criteria: past head trauma with loss of consciousness, ex-smoker for more than six months, drinking 
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habits (more than five times a week), anxiety (below cut off score of 43 at the State-Trait Inventory for Cognitive 
and Somatic Anxiety56), and depression (below cut off score of 17 at the Beck Depression Inventory-II57). All 
participants were right-handed (assessed by the Edinburgh Handedness Inventory58 adopting a cut off above 
60), had normal olfactory function (cut off ≥10 at the Identification subtest of the Sniffin’ Sticks test; Burghart®, 
Wedel, Germany59), and self-reported normal or corrected to normal vision. Each participant received 8 Euro 
after completing the experiment.

Experiment 2.  Twenty-nine healthy participants were recruited by convenience sampling (24 women, mean 
age = 23.5 ± 3.2 years old, age range 19–33 years old). Inclusion criteria were the same as in Experiment 1. None 
of the participants that took part in Experiment 1 were included in this sample. Participants received 12 Euro as 
compensation for completing the experiment.

All participants from Experiment 1 and Experiment 2 were informed about the experimental procedures and 
gave their written consent. Participants were debriefed about the purpose of the study at the end of the exper-
iments. Participants were instructed to avoid ingestion of anything but water from 1 h prior to testing, and to 
avoid wearing any scented products on the day of testing. All procedures in both Experiment 1 and Experiment 
2 (including the fact that participants remained naïve about the purpose of the study until they completed the 
experiment) were approved by the local Institutional Review Board (International School for Advanced Studies, 
SISSA) and were in compliance with the Declaration of Helsinki60.

Apparatus and stimuli.  Experiment 1.  Three odours, all diluted with propylene glycol, were used as olfac-
tory cues: orange (30% v/v, Givaudan), methional (80% v/v, Sigma-Aldrich), 2,4,5-trimethyloxazole (0.5% v/v, 
Sigma-Aldrich), while clean air (over propylene glycol) was included as control condition. These concentrations 
were selected based on a pilot study that aimed to identify pleasant (orange), neutral (methional, an onion- 
and meat-like odour) and unpleasant (trimethyloxazole, a burnt nutty odour) odours that were isointense (see 
Supplementary Results 1); participants that took part in the pilot study were not considered in the experiment. 
However, in Experiment 1 participants rated methional as equally unpleasant as trimethyloxazole, but less intense 
than the isointense orange and trimethyloxazole (see Supplementary Results 2). Thus, we removed the methional 
trials and we refer to orange as the pleasant solution, trimethyloxazole as the unpleasant solution and to clean air 
as the control stimulus. We report the main analyses for methional in the Supplementary Results 3; importantly, 
all participants but one followed the expected valence pattern when rating the conditions. The analyses with 
and without such participant do not differ, therefore we included them in the analysis. The odour solutions were 
stored in sanitised glass jars (3 mL solution in straight-sided glass 4 oz jars, Uline, Pleasant Prairie, WI, USA), 
delivered using a customised olfactometer (Sniff-0, CyNexo, Udine, Italy, http://www.cynexo.com). A constant 
flowing air stream (0.5 L/min) was maintained across the whole experiment, while odour stimuli were presented 
at a flow of 3 L/min (e.g.29) via cannulas covered with custom-made nose-pieces, birhinally placed in the nasal 
cavities. The presented odour compounds exceeded detection threshold, as verified during debriefing with the 
participants, all of whom were able to smell each odour. Following Littman and Takács53, the Go/No-Go cues 
included in the task consisted of either a white filled circle or square (2.5 × 2.5 cm). Visual targets, fixation crosses 
(1.5 × 1.5 cm), visual analogue scales (VAS) and textual information (i.e., task instructions and feedbacks) were 
presented on a 19″ LCD monitor (Samsung SyncMaster 940 T, 1280 × 1024 resolution) against a black back-
ground at an approximated distance of 50 cm from the participant.

Experiment 2.  Three odours (Givaudan) diluted with propylene glycol were used as olfactory stimuli: orange 
(20% v/v), hexenol (5% v/v), civet (0.2% v/v); clean air was used as control condition. The concentrations were 
selected based on a pilot study (see Supplementary Results 4). None of the participants from the pilot study took 
part in the experiment. We changed the solutions from Experiment 1 (methional and trimethyloxazole, specifi-
cally) in order to identify isointense pleasant (orange), neutral (hexenol, intense grass odour) and unpleasant (civet, 
a musk-like oily odour) odours, and to determine whether the lack of a significant effect with the unpleasant odour 
depended on the particular solution presented. Nevertheless, it should be noted that in Experiment 2 the civet 
odour was perceived as equally unpleasant as hexenol but less intense than the other two isointense odours (see 
Supplementary Results 5). Thus, the odour stimuli were categorised as follows according to their valence: pleasant 
(orange), unpleasant (hexenol), and control (clean air), removing the civet from the analyses (but are reported in 
the Supplementary Results 6). As in Experiment 1, all participants (but 4) followed this pattern. Following their 
ratings, we reversed the pleasantness attribution. Results including or excluding them are equivalent, therefore we 
maintained them within the database. All the remaining aspects were the same as in Experiment 1.

Procedure.  Experiment 1.  The main task consisted of an olfactory Go/No-Go task that included the delivery 
of either an odour or clean air prior to the presentation of a visual target (i.e., a circle or a square). Each trial started 
with a black screen and the delivery of clean air for 500 ms (Fig. 1, panel a), followed by the onset of a white fixation 
cross in the centre of the screen that indicated to the participants to sniff once. During fixation (sniff cue), one of 
the three olfactory stimuli was presented during 1,000 ms. In line with previous literature, this duration is consid-
ered sufficient to allow for the detection of an odour in a single sniff (>750 ms used in61; see also62). When the tar-
get appeared at the centre of the screen, clean air was delivered. Clean air was presented at a flow-rate 6-fold higher 
than the constant flow. Whether the participant answered or not, the target remained on screen for 500 ms53. After 
target offset, the screen remained black and clean air was delivered until the end of the trial to clean any residuals 
of previously delivered odours. The average ITI ranged from 400 to 600 ms (500 ms average). Each trial lasted 
2.5 s on average. The task included eight experimental blocks that were presented in a different order following a 
Latin square design. The blocks were composed of 100 trials each (25 per odour condition), with a 5:1 ratio of Go/
No-Go trials within each block5. Participants were instructed to respond by pressing the spacebar of a keyboard 
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with their right index finger when a circle (Go cue) was presented and withhold their response when a square 
(No-Go cue) appeared. Fifteen participants received the opposite mapping instructions (i.e., square as Go cue and 
circle as No-Go cue) and data from all participants were collapsed. Participants were instructed to respond while 
the target was on screen (500 ms response deadline). Trials were presented following a pseudo-randomised order 
in which No-Go trials were preceded by equiprobable 1, 3, 5 or 7 Go trials9. In order to avoid habituation effects, 
the repetition of a given odour was always preceded by at least two different odours in between. This procedure 
included continuous changes in the olfactory environment which increase the probability of detecting each odour, 
even at short ITI63. The rates of failed trials and mean RTs were presented for 10 s as feedback on screen after each 
block64, allowing the experimenter to monitor participants’ performance throughout the experiment. For the sake 
of brevity, we move the details on the breathing training, familiarisation block and rating procedure (i.e., perceive 
pleasantness and intensity of the odour conditions) to the Supplementary Methods. Participants were reminded to 
breathe as trained and to respond as accurately and as fast as possible throughout the experiment. The tasks were 
programmed and presented using the E-Prime 2.0 software65. The experiment lasted about 60 minutes.

Experiment 2.  Participants performed the Go/No-Go task described in Experiment 1 including the following 
modifications: each trial started with a black screen for 500 ms (Fig. 1, panel b) as clean air was delivered, followed 
by the onset of a white fixation cross in the centre of the screen for 500 ms which indicated to participants that they 
had to prepare to smell. With the onset of the fixation cross, clean air was switched off and one of the olfactory 
stimuli was delivered. Then, the white cross turned red and remained on screen for 750 ms indicating to the par-
ticipants to sniff once (sniff cue). This change was made to maximise the accuracy of the odour detection (e.g., red 
is a more salient colour66) considering the fewer temporal constraints intrinsic to slow-paced designs. In total, the 
odour stimulus was delivered during 1.25 s (fixation + sniff cue). After this, the target was presented at the centre 
of the screen as clean air was delivered once again. The target remained on screen for 500 ms regardless of partici-
pant’s response. The screen remained black after target offset until the end of the trial. The ITI ranged from 5 to 6 s 
(5.5 s average). A single trial lasted 7.75 s on average. The task included four experimental blocks presented follow-
ing a Latin square design. Each block was composed of 80 trials (20 per odour condition), with a ~3:1 ratio of Go/
No-Go trials53. All the other aspects were the same as in Experiment 1. The experiment lasted about 90 minutes.

Statistical analyses.  Data were analysed using R67 considering the following dependent variables: perceived 
pleasantness and intensity of the olfactory stimuli (i.e., VAS ratings), rates of failed-to-No-Go (i.e., No-Go trials in 
which participants pressed the spacebar) and failed-to-Go responses (i.e., Go trials in which participants did not 
press the spacebar), and RTs of correct Go response (i.e., time elapsed from target presentation to the participant’s 
response on correct Go trials). Linear mixed-effects models (LME) were computed for intensity, pleasantness and 
RTs, whereas generalised mixed-effects models (GLME) with binomial link function were computed for the rates 
of failed-to-Go and failed-to-No-Go responses. Mixed-effects modelling have a series of advantages in front of 
more conventional approaches (e.g., repeated-measures ANOVA). It allows to take into account simultaneously 
all the potential factors that might contribute to the explanation of the data. Moreover, it provides enhanced 
statistical power for designs including repeated-measures (as in the present study) and allows to better deal with 
unbalanced data sets68. For the analyses of RTs, trials exceeding 2.5 standard deviations were excluded64 (1.8% 
of the data of Experiment 1 and Experiment 2). In all LME and GLME models, participants were included as 
random effect. For pleasantness and intensity models, the categorical variables odour (i.e., control vs. orange 
vs. trimethyloxazole) and cycle (i.e., times at which the participants rated the odour conditions) were added as 
a fixed effects, the latter in order to verify that the perception of the odour conditions was stable throughout the 
experiment. For the rates of failed-to-No-Go and failed-to-Go responses and RTs models, the categorical variable 
valence (i.e., pleasant vs. unpleasant vs. control) was added as a fixed effect. For the rates failed-to-Go responses 
only, the categorical variable preceding Go trials (1, 3, 5 and 7) was included. However, due to technical prob-
lems the recording of this manipulation was only possible in Experiment 1. The results regarding the effect of 
preceding Go trials are presented in the Supplementary Information (see Supplementary Results 7). Following 
a model comparison approach69, models including a given factor and models without it were contrasted using 
the Akaike information criterion (AIC), based on which the model with the lowest AIC was considered the best 
fitting model70 (e.g., the LME model including valence as fixed factor was compared against the null LME model 
without the valence factor to determine the effect of this variable on RTs; this procedure was repeated for all 
variables included in the analyses as well as their interactions). The difference between AICs across models was 
calculated to determine the relative likelihood of a given model compared to another [AICRL = exp(ΔAIC/2), 
e.g.71). The corresponding p-values were extracted from likelihood ratio tests. Generalised linear hypothesis test-
ing and Tukey’s HSD were used to perform multiple comparisons of means on the significant effects, including 
Bonferroni correction and with the α level set at 0.05. Optimisers for the control of mixed model fitting (i.e., 
bobyqa) were employed in GLME models that failed to converge when analysing failed-to-No-Go responses. For 
LME models the mean and standard deviation of the corresponding conditions were estimated for reporting the 
results. For GLME model the percents of failed trials per condition were reported. To allow for replicability, all the 
R packages that have been used are reported in the Supplementary Methods.

Data availability
The datasets generated during and/or analysed during the current study are available in the Open Science 
Framework (OSF) repository accessible at https://osf.io/sh4tp/?view_only=9447f311067b47ad95e88188b610f729.
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