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Abstract

For any number h such that ~ :“ h{2π is irrational and any skew-symmetric, non-
degenerate bilinear form σ : Z2g ˆ Z2g Ñ Z, let be Ah

g,σ be the twisted group ˚-algebra

CrZ2gs and consider the ergodic group of ˚-automorphisms of Ah
g,σ induced by the action of

the symplectic group Sp pZ2g, σq. We show that the only Sp pZ2g , σq-invariant state on Ah
g,σ

is the trace state τ .
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Introduction

Let A be a unital C˚-algebra, G a compact group and Φ a strongly continuous representation of
G as an ergodic group of ˚-automorphisms of A, i.e. ΦΘpaq “ a for all Θ P G implies a “ λId ,
for some scalar λ, where Id is the identity of A. It was shown in [22] that if G is Abelian and
A a von Neumann algebra then the unique G-invariant state on A is a trace state. For several
years, it has been an open problem if the same result holds with weaker assumptions, see e.g.
[18]. An important step forward was made in [10], where it was shown that if G is a compact
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Dirac operator” and he was partially supported within the DFG research training group GRK 1692 “Curvature,
Cycles, and Cohomology”. N.P. thanks the ITP of the University of Leipzig for the kind hospitality during the
preparation of this work and DAAD for supporting this stay with the program “Research Stays for Academics
2017”.
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ergodic group of automorphisms acting on a unital C˚-algebra A, the unique G-invariant state is
a trace.
In most of the models inspired by mathematical physics, the ergodic group of ˚-automorphisms
is neither compact nor Abelian (see e.g. [3, 5] where G is considered to be only locally compact)
and, therefore, it would be desirable to classify all the G-invariant states. Indeed, from a math-
ematical perspective, they provide a ‘noncommutative generalization’ of the invariant measures
in ergodic theory. Moreover, the representations of the C˚-algebra are implemented by a unitary
representation of G acting on a Hilbert space. Instead, from a physical perspective, they represent
equilibrium states in statistical mechanics [1, 8, 9, 11].

In the present paper we consider any dynamical system of the form pAh
g,σ, Sp pZ2g, σq,Φq,

where g P N, h is any number such that ~ “ h
2π

is irrational, σ is any skew-symmetric, non-
degenerate bilinear form on Z

2g, Ah
g,σ are twisted group ˚-algebras for Z

2g, Sp pZ2g, σq is the
subgroup of AutpZ2gq which preserve σ while Φ are representations as ergodic groups of the
˚-automorphisms of Ah

g . We prove that the trace state τ defined in (2.2) is the unique Sp p2g,Zq-
invariant state. The key idea is to construct, for any positive state ω different from a trace
state, a convex linear combination of restrictions of ω to suitable finite dimensional subspaces of
Ah

g,σ that results not positive. The choice of the subspaces of Ah
g,σ is made so that for any two

subspaces V1,V2 Ă Ah
g,σ there exists a ˚-automorphism Φ such that ΦpV1q “ V2.

Let us remark that for g “ 1 the twisted group ˚-algebra Ah
1 , σ can be completed to the universal

C˚-algebra known as noncommutative torus. In this setting, it has been shown that, for almost
all deformation parameters, the trace state is the unique invariant state with respect to any fixed
hyperbolic element of SLp2Zq, see e.g. [15, 21] or [16, Section 11.5]. In this paper, we prove that
the trace state is the unique Sp p2g,Zq-invariant state for all irrational deformation parameters.
Our proof uses purely algebraic methods and thus it can be used to study invariant states on
more sophisticated twisted group ˚-algebras with symplectic forms valued in abelian groups (see
e.g. [2]).

The paper is structured as follows. In the first section, we recall the definition of twisted
group ˚-algebra and we study the orbits of the action of Sp pZ2g, σq on Z

2g. Section 2 is the core
of the paper, where the main theorem is stated and proved. This is achieved using reduction
steps. In the first step, we show that, given any finite dimensional subspace of Ah

g,σ, it is possible
to associate to any state ω a positive Hermitian matrix H (see Notation 2.4). Then, a convex
linear combination of restrictions of ω on different subspaces of Ah

g,σ is constructed in order to
prescribe the value of ω on a given Sp pZ2g, σq orbit (see Proposition 2.9). As already explained,
the construction of these subspaces of Sp pZ2g, σq cannot be generic, but it should preserve the
Sp pZ2g, σq-invariance of the convex combination of the restrictions of ω previously considered.
Finally, it will be shown that the convex linear combination discussed above is positive if and only
if ω is the trace state, proving our main result. This result will be achieved by showing that the
matrices H obtained restricting the state ω to suitable subspaces of Ah

g,σ can be approximated
by simpler ones (see Proposition 2.7).

Acknowledgements. We would like to thank Ulrich Bunke, Nicoló Drago, Francesco Fidaleo,
Giuseppe De Nittis, Alexander Schenkel and Stefan Waldmann for helpful discussions related to
the topic of this paper. We are also grateful to Claudio Dappiaggi, Emilia Muñoz and to the
referees for their useful comments on the manuscript.

1 Algebraic noncommutative tori

Let h be a number such that ~ “ h
2π

is irrational and consider a skew-symmetric, non-degenerate
bilinear form σ : Z2g ˆZ

2g Ñ Z. Let now CpZ2g,Cq be the set of complex valued functions over
Z
2g. ConsiderWm the linear operator labelled by an element m P Z

2g which acts on v P CpZ2g,Cq
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in the following way
pWmvqpnq :“ eıhσpm,nqvpn ` mq.

The complex vector space VpZ2g, σq generated by the elements of tWm,m P Z
2gu can be endowed

with an involution defined by
W ˚

m “ W´m , m P Z
2g (1.1)

and with a product which acts on the generators as

WnWm “ eıhσpn,mqWn`m , n,m P Z
2g . (1.2)

Remark 1.1. Notice that being σ bilinear, skew-symmetric and non-degenerate, Ω :“ exppıhσq
defines a group 2-cocycle. Indeed, for any 0,m, n, g P G we have Ωp0,mq “ Ωpm, 0q “ 0 and

Ωpm,nq ˆ Ωpm ` n, gq “ Ωpm,nq ˆ
`

Ωpm, gq ˆ Ωpn, gq
˘

“

“
`

Ωpm,nq ˆ Ωpm, gq
˘

ˆ Ωpn, gq “ Ωpm,n ` gq ˆ Ωpn, gq .

The converse is also true: as shown in [12, Theorem 7.1], for any 2-cocycle Ω there exists a
skew-symmetric bilinear form σ : Z2g ˆ Z

2g Ñ R

Z
which is cohomologous to Ω. Whereas in this

paper we will only consider Z-valued bilinear form, we refer to [2] for a more general dissertation.

We finally notice that any element a P VpZ2g, σq can be written as a finite linear combination

a “
ÿ

m

αmWm , m P Z
2g .

We are now ready to summarize this short discussion in the following definition.

Definition 1.2. We call algebraic noncommutative torus Ah
g,σ the ˚-algebra obtained equipping

VpZ2g, σq with the involution (1.1) and with the product (1.2).

Remark 1.3. When completed by a canonical C˚-norm, the twisted group algebras Ah
g,σ are

also called Weyl C˚-algebras or exponential Weyl algebras in the literature, see e.g. [14, 19, 20].
These algebras should not be confused with quotients of the universal enveloping algebras of the
Heisenberg Lie algebra, obtained by identifying the central elements of the Heisenberg Lie algebra
with multiples of the identity element, which are also called Weyl algebras, see e.g. [6, 7].

Let us underline that the action of Sp pZ2g, σq can be extended by linearity to an algebra auto-
morphism of Ah

g,σ as

pΦΘW qm “ WΘm, for m P Z
2g and Θ P Sp pZ2g, σq. (1.3)

Lemma 1.4. Let σ be a skew-symmetric, non-degenerate form on Z
2g and let m P Z

2g. Then
there exists δ1, . . . , δn P Z such that

pZ2g, σq » pZ2, δ1σ2q ‘ ¨ ¨ ¨ ‘ pZ2, δnσ2q ,

being σ2 the canonical symplectic form on Z
2 given by

σ2 “

ˆ

0 ´1
1 0

˙

.

Proof. This lemma follows easily from [17, Theorem IV.1].

On account on Lemma 1.4, we can focus on the algebraic noncommutative torusAh :“ Ah
g“2,σ2

without loss of generality.
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Notation 1.5. We remark that even if the isomorphism class of the algebra Ah
g,σ depends on

the choice of the number h, all our results are independent of this choice, provided ~ is kept
irrational. Therefore, we omit to refer to it in the notation.

In the next proposition we establish a one-to-one correspondence between the orbits of the
symplectic group Sp p2,Zq and the set of elements

E :“ tp0, jq | j P Nu .

Proposition 1.6. Let n1, n2 P Z
2 be of the form ni “ p0,miq, with mi P Z. If mi ě 0 and

m1 ‰ m2, then n1 and n2 are elements of different orbits. Furthermore, for any element n P Z
2,

there exists a Θ P Sp p2,Zq such that Θn “ p0,mq for some m P N.

Proof. Since m1 ‰ m2, we can set m1 ‰ 0. Assume that there exists Θ P Sp p2,Zq such that
Θn1 “ n2. Since a generic Θ takes the form

Θ “

ˆ

a b

c d

˙

, a, b, c, d P Z,

Θn1 “ n2 implies b “ 0. Furthermore, since Sp p2,Zq “ Sl p2,Zq, then detΘ “ 1. As a
consequence, a “ d and a “ ˘1. Hence, since both m1 and m2 are positive, Θn1 “ n2 implies
that Θ is the identity. This contradicts the fact that m1 ‰ m2.

Consider now the action of Θ P Sp p2,Zq on a generic element n “ pn1, n2q P Z
2, namely

Θv “ pan1 ` bn2, cn1 ` dn2q. We are going to demonstrate that it is possible to select a, b, c, d

such that an1 ` bn2 “ 0 and ad ´ bc “ 1. In the case in which n1 or n2 is 0, it is enough to
set b “ 0, a “ d “ ˘1 or a “ 0, b “ ´c “ ˘1 respectively. If n1 “ n2 ‰ 0, we just choose
a “ 1, b “ ´1, d “ 1, c “ 0. It remains to deal with the case in which n1 ‰ n2 and both are
non-zero. To this end, we denote g “ g.c.d.pn1, n2q, the greatest common divisor of n1 and n2.
Thus ni “ eig for a couple of integers ei P Z which are thus coprime. We can choose, a “ e2,
b “ ´e1, in order for the first equation an1 ` bn2 “ 0 to be satisfied. It remains to show that
there exists a choice of c, d P Z such that

ac ´ bd “ 1 ùñ e2c ` de1 “ 1.

Suppose that e2 ă e1 and consider Ze1 :“ Z{pe1Zq. Since e1 and e2 are coprime, then e2 P pZe1qˆ

which is the multiplicative group (modulo e1) formed by the subset of elements of Z{pe1Zq coprime
to e2. Hence, e2 has an inverse in Ze1 and, therefore, it is possible to find c and d such that
e2c ` de1 “ 1. Since the case e1 ă e2 can be obtained interchanging the role of n1 and n2, this
concludes our proof.

Corollary 1.7. Every Sp p2,Zq-orbit of Z2 contains an element of the form pj, jq with j P N.

Proof. Consider the element p0, jq that by Proposition 1.6 can be found in any Sp p2,Zq-orbit of
Z
2. Then the element

ˆ

1 1
0 1

˙

¨

ˆ

0
j

˙

“

ˆ

j

j

˙

belongs to the same orbit.

We conclude this section with the following remark.

Remark 1.8. Since the set of points which are fixed under the action of Sp p2,Zq on Z
2 is

tp0, 0q P Z
2u, the action of ΦΘ, with Θ P Sp p2,Zq, is ergodic on A, i.e. the vectors λWp0,0q, with

λ P C, are the only invariant elements in A. Notice that Wp0,0q is indeed the identity of the
algebraic noncommutative torus.
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2 Invariant states

Let now ω be a state, namely a linear, continuous functional from A into C that is positive (i.e.
ωpa˚aq ě 0 for any a P A) and normalized (i.e. ωpWp0,0qq “ 1 q.

Definition 2.1. We call a state ω on A Sp p2,Zq-invariant if for any ˚-automorphism ΦΘ, with
Θ P Sp p2,Zq, it holds

ω ˝ ΦΘ “ ω .

In order to construct a state ω on A it is enough to prescribe its values on the generators
Wm, m P Z

2,

ωpWmq “

#

1 if m “ p0, 0q

ppmq P C else
(2.1)

for a sequence of values ppmq and then extend it by linearity to any element a P A. We shall see
below in Remark 2.6 that the positivity of ω implies

sup
mPZ2

|ppmq| ď 1.

The theorem below, which is the main result of this paper, shows that the only Sp p2,Zq-invariant
state is the trace state.

Theorem 2.2. Let A be an algebraic noncommutative torus. Then the only Sp p2,Zq-invariant
state is the state defined for every m P Z

2 as

τpWmq “

#

1 if m “ p0, 0q

0 else .
(2.2)

The rest of this section is devoted to prove Theorem 2.2. Given a state ω written as (2.1),
our first observation is the following.

Proposition 2.3. Let A be an algebraic noncommutative torus and consider a Sp p2,Zq-invariant
state ω. Then, for any m P Z

2, it holds

ωpWmq P R .

Proof. Since ω is a linear positive functional, then, for every m P Z
2, it holds

ω
`

pWm ` Wp0,0qq
˚pWm ` Wp0,0qq

˘

“ 2 ` ω pW ˚
mq ` ω pWmq P r0,8q .

This implies in particular that ωpWmq “ ωpW ˚
mq.

Now, let Id be the 2 by 2 identity matrix and notice that ´Id P Sp p2,Zq. It follows that for
every m P Z

2 we have

ωpWmq “ ωpW ˚
mq “ ωpW´mq “ ωpW´Idmq “ ωpWmq

where in the fourth equality we used the invariance of the state under the action of the symplectic
group.

Now let m,n P N be such that m is divisible by n ě 1, and consider the subset Gm,n of
Sp p2,Zq containing the elements of the form

Θj :“

ˆ

1 m
n
j

0 1

˙

¨

ˆ

1 0
n ´ 1 1

˙

“

ˆ

1 ` m
n

pn ´ 1qj m
n
j

n ´ 1 1

˙

, j P Z . (2.3)
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Let ξ :“ pξ1, ξ2q be an element of Z2 with ξ1 “ ξ2 ą 0 (thanks to Corollary 1.7 this choice is
not restrictive) and consider the set

Oξ;m,n “ tz P Z
2 | z “ Θjξ , with Θj P Gm,nu .

Notice that for all n,m as above the elements of Oξ;m,n belongs to the same Sp p2,Zq-orbit of ξ
and take the form

Θjξ :“

ˆ

1 ` m
n

pn ´ 1qj m
n
j

n ´ 1 1

˙ˆ

ξ2
ξ2

˙

“

ˆ

mjξ2 ` ξ2
nξ2

˙

.

Let Vξ;m,n Ă A be the vector space formed by the linear combinations of the identity in A and
of the Weyl generators indexed by the elements of Oξ;m,n. In other words, a generic element of
Vξ;m,n can be written as a finite sum of the form

a “ α0Wp0,0q `
ÿ

jě1

αjWΘjξ

where αi P C, Θj P Gm,n. Since we are interested in Sp p2,Zq-invariant states ω, we have

ωpaq “ α0 `
ÿ

jě1

αj p ,

where we denoted p “ ωpWΘjξq, which does not depend on j,m, n in view of the state invariance.
Notice that, for every finite dimensional subspace of Vξ;m,n, the map a ÞÑ ωpa˚aq is a quadratic
form; therefore, it can be written as

ωpa˚
aq “ αtHα (2.4)

for an Hermitian matrix and α a vector with components αj P C. On the pd`1q-dimensional sub-
space spanned by the elements tWp0,0q,WΘjξu1ďjďd the entries of the matrix H can be described
as

pHq0,0 “ pHqj,j “ 1, d ě j ě 1 (2.5)

pHq0,j “ pHqj,0 “ p, d ě j ě 1 (2.6)

pHqj,i “ qpi´jqmeıpi´jqφm,n , d ě i ą j ě 1 (2.7)

where (2.5) holds because of the state normalization condition,

qpi´jqm :“ ωpWΘiξ´Θjξq, hσpΘiξ,Θjξq “ pi ´ jqφm,n (2.8)

and
φm,n :“ hmnξ22 . (2.9)

Notice that p, qpi´jqm and φpi´jqm,n are real numbers; in particular qpi´jqm is a real number thanks
to Proposition 2.3.

Notation 2.4. We remark that, on account of equations (2.5), (2.6) and (2.7), the Hermitian
matrix

H “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 p p p p p . . .

p 1 qmeıφm,n q2me2ıφm,n q3me3ıφm,n q4me4ıφm,n . . .

p qme´ıφm,n 1 qmeıφm,n q2me2ıφm,n q3me3ıφm,n . . .

p q2me´2ıφm,n qme´ıφm,n 1 qmeıφm,n q2me2ıφm,n . . .

p q3me´3ıφm,n q2me´2ıφm,n qme´ıφm,n 1 qmeıφmn . . .

p q4me´4ıφm,n q3me´3ıφm,n q2me´2ıφm,n qme´ıφm,n 1 . . .
...

...
...

...
...

...
. . .

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

is completely determined once the second row is known. Therefore, in order to keep simple our
notation, we denote H simply as

H “ r p ; 1 ; qmeıφm,n ; q2meı2φm,n ; q3meı3φm,n ; . . . s .
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Remark 2.5. Notice that the notation of the matrices H is consistent with respect to any choice
of m,n as done previously. Indeed, in view of its definition (2.8), qpi´jqm is a function of

Θiξ ´ Θjξ “

ˆ

p1 ` imqξ2
nξ2

˙

´

ˆ

p1 ` jmqξ2
nξ2

˙

“

ˆ

pi ´ jqmξ2
0

˙

,

which does not depend on n but depends only on pi ´ jqm, which is the subscript of q. We will
constantly exploit this fact in order to compare the entries of matrices obtained by restricting
ω to different finite dimensional subspaces of Vξ;m,n. Hence, once the notation defined so far is
used, in order to check that two entries in two different matrices qr and qt agree, it will suffice to
check that r “ t.

Building on Remark 2.5, we notice that, in the entries of the matrices defined so far, the
qpi´jqm do not depend on n, whereas the arguments φm,n do. This fact will play a crucial role in
the analysis that will follow.

Remark 2.6. We notice immediately that the positivity of the state ω gives a bound on p in H.
Actually, since the determinant of the upper left 2 ˆ 2 sub matrix of H is positive, we have that

1 ´ p2 ď 0, ùñ |p| ď 1.

We begin by discussing the form of the families of matrices of restrictions of ω that we seeking.
Let d be a fixed natural number, and consider the pd` 1q ˆ pd ` 1q matrix H2

n which is obtained
restricting H on a d ` 1 dimensional subspace of Vξ;m,n. The next proposition shows that it is
always possible to choosem in such a way thatH2

n can be well approximated by the pd`1qˆpd`1q
matrix of the form

H1
n :“ r p ; 1 ; qmeı

2π
d
n ; q2me2ı

2π
d
n ; q3me3ı

2π
d
n ; . . . ; qpd´1qmepd´1qı 2π

d
ns. (2.10)

At this point, it is interesting to notice that in the context of noncommutative geometry the anal-
ysis of approximations of algebras or states can shed light on some interesting hidden structures,
see e.g. [4, 13].

Proposition 2.7. Let ξ P Z
2; then for any d P N which is non zero, for every l P r1, ds and for

every ε ą 0, there exists an N P N which is a multiple of d! and a pd ` 1q-dimensional subspace
Vd;l Ă Vξ; N,l, such that the restriction of H to Vd;l is given by a pd ` 1q ˆ pd ` 1q-matrix of the
form

H2
l “ H1

l ` 1ε ` iε . (2.11)

Here H1
l is given in (2.10) with m “ N and n “ l while 1ε and iε are the Hermitian matrices with

components

p1εqj,0 “ p1εqj,j “ p1εq0,j “ 0 and piεqj,0 “ piεqj,j “ piεq0,j “ 0 for d ě j ě 0

p1εqj,i “ εj,i and piεqj,i “ ı ε1
j,i otherwise

for some εj,i, ε
1
j,i P R with |εj,i|, |ε1

j,i| ă ε.

Proof. Since ~ :“ h
2π

is irrational, it follows that there exists an N P N such that

ˇ

ˇ

ˇ

ˇ

ph N ξ22q mod p2πq ´
2π

d

ˇ

ˇ

ˇ

ˇ

ă
ε

4d2
. (2.12)

By the ergodicity of the multiplication of S1, we can find such an N satisfying N˘ d! ” N, because
N can be chosen to be arbitrarily large. Therefore, we can assume N to be divisible by d!.
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Now consider the subset GN,l of the Sp p2,Zq containing the elements of the form given in (2.3),
which we recall here

Θj “

ˆ

1 ` mpn´1q
n

j m
n
j

n ´ 1 1

˙

P Gm,n, with m :“ N , n :“ l , j P Z .

Consider now the set of the generators

S “ tWp0,0qu Y
 

WpNjξ2`ξ2,lξ2q

(

1ďjďd

and denote their linear span as

Vd;l “

#

α0Wp0,0q `
d
ÿ

j“1

αjWΘjξ |αj P C ,WΘjξ P S

+

.

Then the restriction of ω to Vd;l is described as in (2.4) by a Hermitian matrix of the form

pH2q0,0 “ pH2qj,j “ 1, d ě j ě 1

pH2q0,j “ p, d ě j ě 1

pH2qj,i “ qpi´jqmeıpi´jqφm,n , d ě i ą j ě 1,

where, using (2.8) and (2.9), we get

qpi´jqm “ ωpWΘiξ´Θjξq “ ωpWppi´jqNξ2,0qq

pi ´ jqφm,n “ hσpΘjξ,Θiξq “ pi ´ jqlhNξ22 “ pi ´ jql
2π

d
` pi ´ jql

ε

4d2
.

Notice that, being qm ď 1 by Remark 2.6, we have that for d ě i ą j ě 1

ˇ

ˇpH2qj,i ´ pH1qj,i
ˇ

ˇ “
ˇ

ˇ

ˇ
qpi´jqm

´

eıpi´jqφm,n ´ eıpi´jq 2π
d
l
¯ˇ

ˇ

ˇ
ď
ˇ

ˇ

ˇ
eıpi´jqlε ´ 1

ˇ

ˇ

ˇ
ă 2|i ´ j|l

ε

4d2
ă ε.

It is now straightforward to check that the matrix so defined satisfies the properties claimed in
the proposition.

Since ε can be chosen arbitrarily small, its contribution will not play any role in the following
computations, and, therefore, it is neglected. Hence, it will be important to discuss in detail the
properties of the matrices H1

l only. Therefore, all the equalities that will be discussed from here
on hold also substituting H1

l with H2
l up to ε for any ε ą 0, and then their limit for ε Ñ 0 gives

the desired result. We shall see in the proof of Theorem 2.2 that this is in fact the case and, in
particular, that the error can be easily estimated in terms of ε. The limit ε Ñ 0 poses then no
problem because only finitely many equations are considered at each time.

Lemma 2.8. The set of positive Hermitian matrices form a convex cone, i.e. convex combinations
of positive Hermitian matrices are positive.

Proof. Let I be a finite set and consider a convex combination A of positive definite d ˆ d-
matrices tAiuiPI , namely

A “
ÿ

iPI

λiAi with
ÿ

iPI

λi “ 1 and λi ą 0 @i P I .

Then, for any vector v P C
d, we have

v:Av “
ÿ

iPI

λi v
:Aiv ą 0 .

8



On account of Lemma 2.8, if we can find a convex combination of pd ` 1q ˆ pd ` 1q-matrices
given by restrictions of ω to Vd; l which is non-positive, then we can deduce that at least one of
these matrices is not positive (proving that ω is not positive neither). The next series of lemmas
is necessary to produce such a convex combination and to prove some of its properties. Let us
call to mind that we keep the notation introduced in Proposition 2.7.

Proposition 2.9. Let d P N be such that d ą 0 and consider the matrices H1
l defined in (2.10)

and obtained in Proposition 2.7 with l ď d. Moreover, let us consider

Rd “
d
ÿ

l“1

1

d
H1

l .

Then the components Rj,d of the matrices

Rd “ r p ; 1 ; R1,d ; R2,d ; R3,d ; R4,d ; . . . ; Rd´1,d s

are such that Rj,d “ 0.

Proof. Notice that, on account of the form of H1
l given in (2.10), it holds

Rj,d “ qjN

d
ÿ

l“1

eı
2π
d
lj “ qjN

d
ÿ

l“1

rl “ qjN
r

1 ´ r
p1 ´ rdq ,

where in the third equality we computed the sum of d elements of a geometric series of ratio
r “ eı

2π
d
j. Furthermore, the last equality holds because 1 ď j ă d and thus r ‰ 1. Finally, we

notice that rd “ 1 and accordingly Rj,d vanishes.

Before giving the proof of Theorem 2.2, we need another lemma involving the pd`1q ˆ pd`1q
matrix Pd defined as

Pd :“ rp; 1; 0; 0; . . . ; 0s, (2.13)

which is nothing but Rd given in Proposition 2.9.

Lemma 2.10. Let d P N and consider the pd ` 1q ˆ pd ` 1q matrix Pd defined in (2.13). Then,
it holds

detpPdq “ 1 ´ dp2 .

Proof. We prove it by induction. By direct computations, we have that P1 “ 1 ´ p2. Suppose
that detPd “ 1 ´ dp2, we can compute detPd`1 by the Laplace formula expanding with respect
to the last column. The resulting formula has two terms, the second of which can be computed
directly and the first one is the determinant of Pd, hence

detPd`1 “ detPd ` p´1qd`1p2p´1qd “ 1 ´ pd ` 1qp2 .

We have now all the ingredients to prove the main Theorem.

Proof of Theorem 2.2. One notices immediately that the trace state τ is positive, normalized and
Sp p2,Zq-invariant. Now we assume that ω is a positive Sp p2,Zq-invariant state which is not the
trace state. As explained so far, ω can be uniquely determined by

ωpWmq “

#

1 if m “ p0, 0q

ppmq else ,

whereWm is a generator ofA and hence at least one ppmq is a non-zero real number (cf. Proposition
2.3). Consider one such m P Z

2 for which ppmq ‰ 0. By Corollary 1.7 we know that ωpWmq “
ωpWξq for a ξ “ pj, jq given by a unique j P N. To such a ξ we can always associate the subspaces
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Vξ;m,n ofA and the matricesH1
l,H

2
l obtained by applying Proposition 2.7, for which now p “ ppmq.

Then, applying Proposition 2.9, we obtain a convex combination Pd of the matrices H1
l such that

Pd “ rp; 1; 0; 0; . . . ; 0s

and, because of Lemma 2.10, the determinant of Pd is 1 ´ dpppmqq2. Since d can be chosen to
be an arbitrarily big positive integer for any fixed ppmq ą 0, we can find a d such that detpPdq
is non-positive, and hence Pd is not a positive matrix. Applying Lemma 2.8, we deduce that,
for all matrices H1

l to be positive, it is necessary that ppmq “ 0, contradicting our hypothesis
that ppmq ‰ 0. In order to deduce the same result for the matrices H2

l , it is enough to apply
Proposition 2.7 and notice that, if ε ă 1, we have that

|detpP1
dq| ă |detpPdq| ` εRpdq,

where

P1
d “

d
ÿ

l“1

1

d
H2

l “
d
ÿ

l“1

1

d
pH1

l ` 1ε ` iεq,

is the analog of Pd where H2
l is taken as input in place of H1

l and Rpdq is a positive function of
d which bounds the reminder. A non optimal estimate for Rpdq is

Rpdq ď 2dpd ´ 1qd!,

and it follows from the observation that in both 1ε and iε there are at most dpd ´ 1q non
vanishing entries. Furthermore, in the Laplace expansion of the determinant of P1

d, each of
these non vanishing entries is multiplied by the determinant of a square submatrix of P1

d. These
submatrices are of at most d ˆ d dimension. Moreover, in view of Remark 2.6, the absolute
value of the entries of P1

d are bounded by 1, and thus the determinant of each submatrix is
bounded by d!. Hence, since in Proposition 2.7 the value of ε can be chosen freely, the difference
between |detpP1

dq| and |detpPdq| can be set to be arbitrarily small. This proves that ppmq “ 0 is
a necessary condition also for ω to be positive, as a consequence of Lemma 2.8. Since this is true
for all non-zero m P Z

2, we have proved that ω is the trace state.
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