
October 2017

Spectral acceleration
of parallel iterative eigensolvers

for large scale scientific computing

Luca BERGAMASCHI a,1, and Ángeles MARTÍNEZ b

a Department of Civil Environmental and Architectural Engineering
University of Padua

b Department of Mathematics ”Tullio Levi-Civita”, University of Padua

Abstract. The computation of a number of the smallest eigenvalues of large and
sparse matrices is crucial in various scientific applications, as the Finite Element
solution of PDEs, electronic structure calculations or Laplacian of graphs, to men-
tion a few. We propose in this contribution a parallel algorithm which is based
on the spectral low-rank modification of a factorized sparse inverse preconditioner
(RFSAI) to accelerate Newton-based iterative eigensolvers. Numerical results onto
matrices arising from various realistic problems with size up to 5 million unknowns
and 2.2×108 nonzero elements account for the efficiency and the scalability of the
proposed RFSAI–updated preconditioner.

Keywords. Eigenpairs, Newton’s method, preconditioners, approximate inverses

1. Acceleration of eigensolvers by spectral preconditioners

Consider a symmetric positive definite (SPD) matrix A, which is also assumed to be large
and sparse. We will denote as 0 < λ1 ≤ λ2 ≤ . . . ≤ λm ≤ . . . ≤ λn the eigenvalues of A
and v1,v2, . . . ,vm, . . . ,vn the corresponding (normalized) eigenvectors.

To compute the j−th leftmost eigenpair we choose the DACG-Newton method [2].
The DACG solver[3], is used to assess a rough initial approximation of the eigenvec-
tor which is refined by the subsequent projected Newton method. In this paper we pro-
pose a parallel implementation of a new preconditioning strategy as proposed in [1] for
accelerating the Newton stage, namely the Newton method in the unit sphere:

solve by PCG J(j)
k sk =−rk; Set t = uk + s; uk+1 = t‖t‖−1

where J(j)
k = (I−QQ>)(A−θkI)(I−QQ>), rk = Auk−θkuk, θk = u>k Auk

Q =
[
v1 v2 . . .v j−1 uk

]
The idea is to use the initial DACG approximation not only as an initial eigenvector guess
for the Newton phase, but also to construct a spectral preconditioner for the efficient

1Corresponding Author: Luca Bergamaschi, Department of Civil Environmental and Architectural
Engineering, University of Padua, E-mail: luca.bergamaschi@unipd.it.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università di Trieste

https://core.ac.uk/display/286494228?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

October 2017

solution of the correction equation to be solved at each step of this projected Newton
method. We assume that the DACG method has provided the m leftmost eigenpairs of A
(to a low relative accuracy specified by parameter τ) satisfying

Aṽ j = λ j ṽ j + res j, ‖res j‖ ≤ τλ j, j = 1, . . . ,m, (1)

Then, for a generic eigenvalue λ j (j < m) we define the following tuned preconditioner,
which will be kept constant throughout the Newton iterations, to accurately compute the
j-th eigenpair:

P̂j = P̂0−W
(

W>AVj

)−1
W>, with W = P̂0AVj−Vj (2)

where Vj =
[
ṽ j+1 . . . ṽm

]
and P̂0 is an initial approximate inverse of A. A direct computa-

tion shows that P̂j is a tuned preconditioner ([4]) i.e. satisfies: P̂jAVj =Vj, irrespective of
the error introduced by the computation of Vj. This means that the preconditioned matrix
P̂jA has the eigenvalue 1 with at least multiplicity m− j. When P̂j is used to accelerate the
Newton iteration, it must be projected in the space orthogonal to the previously computed
eigenvectors yielding: Pj =

(
I−QQ>

)
P̂j
(
I−QQ>

)
. Theorem 1.1, whose proof can be

found in [1], accounts for the clustering of eigenvalues of the preconditioned Jacobian
provided by the spectral acceleration:

Theorem 1.1 Let P̂j a tuned preconditioner satisfying P̂jAVj = Vj, then ṽs,s = j +
1, . . . ,m, is an approximate eigenvector of PjJ

(j)
k corresponding to the approximate eigen-

value 1− θ

λs
≈ 1−

λ j

λs
.

2. Algorithmic issues

In order to yield an efficient implementation of our spectral preconditioner, the following
issues should be taken into account:

1. Limited memory implementation. If the number of eigenpairs being sought is
large, it is convenient to limit the number of eigenvectors used for the update. To
this end we fix the maximum column dimension of matrix Vj, parameter lmax.

2. Adding columns to matrix W . In assessing an eigenpair whose index is close to
m, the size of matrix Vj is necessarily small and only m− j eigenvalues of the
preconditioned matrix will be characterized by Theorem 1.1. In particular when
j = m, Vj is the empty matrix. To make the proposed approach effective also for
such eigenpairs a second variant consists in computing an additional number (win)
of approximated eigenpairs by the DACG procedure.

Taking into account these variants, in the computation of the j-th eigenpair we will use
Vj =

[
ṽ j+1 . . . ṽ jend

]
with jend = min{m+win, lmax + j} to get the final expression for

our spectral preconditioner which from now on we will denote as P(j)
0 :

October 2017

P̂(j)
0 = PRFSAI−W

(
W>AVj

)−1
W>, with W = PRFSAIAVj−Vj (3)

P(j)
0 = (I−QQ>)P̂(0)

j (I−QQ>) (4)

being PRFSAI the initial RFSAI preconditioner which will be described later. The DACG-
Newton algorithm with spectral preconditioner is then sketched in Algorithm 1.

Algorithm 1 DACG-Newton with spectral preconditioner.
1. INPUT: A, m, ε , ITMAX, τ , τPCG, ITMAXPCG, lmax, win.
2. Compute an RFSAI preconditioner for A: PRFSAI .
3. V := [].
4. FOR j := 1 TO m+win

(a) Choose x0 such that V>x0 = 0.
(b) Compute ṽ j by DACG with initial vector x0, preconditioner PRFSAI and tolerance τ .
(c) Set V := [V ṽ j]

END FOR

5. Q̃ := [].
6. FOR j := 1 TO m

(a) k := 0, u0 = ṽ j, θ0 := u>0 Au0.
(b) Q := [Q̃ u0].
(c) Set jend = min{m+win, lmax + j}, V j =

[
ṽ j+1 . . . ṽ jend

]
(d) Compute P̂(j)

0 using (4) and set P(j)
0 = (I−QQ>)P̂(0)

j (I−QQ>);
(e) WHILE ‖Auk−θkuk‖> εθk AND k < IMAX DO

1. Solve Jksk =−rk for sk ⊥ Q by PCG with preconditioner P(0)
j .

2. uk+1 :=
uk + sk

‖uk + sk‖
, θk+1 = u>k+1Auk+1.

3. k := k+1
4. Q := [Q̃ uk].

(f) END WHILE

(g) Assume v j = uk and λ j = θk. Set Q̃ := [Q̃ v j]

END FOR

2.1. Repeated application of the spectral preconditioning technique

In principle every eigenvalue solver may take advantage of the spectral preconditioning
technique to update a given preconditioner. In our case the idea is to run twice the DACG
method: in the first run a very rough approximation of the leftmost m+win eigenpairs:
ṽ(0)1 , ṽ(0)2 , . . . , ṽ(0)m+win is provided. To this end we define a tolerance µ(> τ) and iterate

until the test on the residual ‖Aṽ(0)j − q(ṽ(0)j)ṽ(0)j ‖ ≤ µq(ṽ(0)j) is satisfied. Then a sec-

ond run of DACG to the final DACG tolerance is carried on, using ṽ(0)1 , ṽ(0)2 , . . . , ṽ(0)m as
the starting points and also using them for updating the RFSAI preconditioner. Clearly
this DACG step will be accelerated by the non-projected spectral preconditioner P̂(0)

j .
The output of this second run will be the sequence of vectors ṽ1, ṽ2, . . . , ṽm which will
be in their turn the starting points of the subsequent Newton scheme, while the set
{ṽ1, ṽ2, . . . , ṽm, ṽ

(0)
m+1, . . . , ṽ

(0)
m+win} will be used for the preconditioner updating.

October 2017

These steps are summarized in Algorithm 2 where we only underline the variations
with respect to Algorithm 1.

Algorithm 2 Two-stage DACG-Newton with spectral preconditioner.
1. INPUT: (in addition to that of Algorithm 1) tolerance for the first DACG stage µ(≥ τ);

(STEPS 3. and 4. in Algorithm 1 are substituted with the following ones)

3.a V (0) := [], V := [].
3.b FOR j := 1 TO m+win

(a) Choose x0 such that V (0)>x0 = 0.
(b) Compute ṽ(0)j by DACG with initial vector x0, preconditioner PRFSAI and tolerance µ .

(c) Set V (0) := [V (0) ṽ(0)j]

END FOR

4.a FOR j := 1 TO m

(a) Compute ṽ j by DACG with initial guess ṽ(0)j , preconditioner P̂(j)
0 (4) and tolerance τ .

(b) Set V := [V ṽ j]

END FOR

4.b V := [V ṽ(0)m+1 . . . ṽ
(0)
m+win].

2.2. BFGS low-rank update of given preconditioners

In [2] the sequence of correction equations J(j)
k sk = −rk is preconditioned by means of

a sequence of low-rank updates of a given approximate inverse of A. A limited variant is
also defined which fix the maximum number, kmax, of rank two corrections allowed. The
BFGS approach and the spectral techniques described in the previous sections can be
combined giving raise to a spectral-BFGS preconditioner for the Inexact Newton method,
which is defined as follows for a given eigenpair j:

P̂(j)
0 = PRFSAI−W

(
W>AVj

)−1
W>, with W = PRFSAIAVj−Vj (5)

P̂(j)
k+1 = −

sks>k
s>k rk

+

(
I−

skr>k
s>k rk

)
P̂(j)

k

(
I−

rks>k
s>k rk

)
k = 0, . . . , (6)

P(j)
k+1 = (I−Q(j)

k+1Q(j)
k+1

>
)P̂(j)

k+1(I−Q(j)
k+1Q(j)

k+1

>
).

3. Parallel implementation

3.1. Choice and construction of the initial preconditioner

The classical FSAI preconditioner is based on an a-priori determination of the sparsity
pattern which is usually selected as that of Ãd where Ã is obtained from A by dropping
the elements below a prescribed threshold (prefiltration) and d = 1,2, · · · is a small pos-
itive integer. Once the triangular factor of the preconditioner is obtained, it is furtherly
sparsified by a second dropping procedure called postfiltration.

October 2017

The drawback of the FSAI approach is due to (a) the inverse of a sparse matrix may
be dense with the entries of A−1 in most cases slowly decaying away from the main
diagonal, (b) a fixed sparsity pattern, based on small powers of A, can hardly capture all
the most important nonzeros in A−1.

Following the developments in [5], we propose an implicit enlargement of the spar-
sity pattern using a banded target matrix B: the lower factor of the FSAI preconditioner
is obtained by minimizing ‖B−GL‖F over the set of matrices G having a fixed sparsity
pattern. Denoting with Gout the result of this minimization, we compute explicitly the
preconditioned matrix S = GoutAGT

out and then evaluate a second FSAI factor Gin for S.
Thus the final preconditioner can be written as PRFSAI = GT

outG
T
inGinGout . This RFSAI –

recursive FSAI – procedure can be iterated a number of times to yield a preconditioner
written as a product of several triangular factors.

We denote as FSAIout the procedure which computes the Gout factor by minimizing
‖B−GL‖ where B is an arbitrary banded matrix. FSAIout depends on the nband param-
eter in addition to the usual FSAI parameters δout , prefiltration threshold, dout , power of
Ã defining the sparsity pattern and εout postfiltration parameter.

The second preconditioner factor, Gin, is the result of the FSAI procedure applied to
the whole product matrix GoutAGT

out , with parameters δin,din and εin. The steps to obtain
the final RFSAI preconditioner are summarized in Algorithm 3.

Algorithm 3 RFSAI computation
INPUT: nband, δout ,εout ,dout ,δin,εin,din

Compute the first lower triangular factor: Gout = FSAIout(A,nband,δout ,dout ,εout)

Compute the product: A(1) = GoutAGT
out

Compute the second lower triangular factor: Gin = FSAI(A(1),δin,din,εin)

We have developed a parallel code which implements the construction, and application
inside parallel PCG, of the RFSAI algorithm along with the spectral-BFGS updates. The
resulting program is written in Fortran 90 and exploits the MPI library for exchanging
data among the processors. We use a block row distribution of all matrices which are all
stored in static data structures in CSR format.

Parallelization of the FSAI preconditioner, which is the basis of the parallel RFSAI
construction, has been performed and tested e.g. in [6] where prefiltration and postfiltra-
tion have been implemented together with a priori sparsity pattern based on nonzeros of
Ad with d ≤ 4. The code makes also use of an optimized parallel matrix-vector product
which has been developed in [9] showing its effectiveness up to 1024 processors.

3.2. Parallel application of the spectral preconditioner

At every PCG inner iteration the application of the spectral preconditioner is made by
multiplying matrix P̂(j)

0 = PRFSAI−W
(
W>AVj

)−1 W> by the residual vector r. The com-
munication cost in the spectral update is essentially within the product W>r which needs
a collective communication at the end. Small matrix (W>AVj)

−1 is replicated in all pro-
cessors and its application is communication-free as well as multiplication of the result-
ing vector by W .

October 2017

4. Numerical Results

We have tested the resulting parallel code onto a number of large scale SPD matrices
arising from 3D FE discretization of realistic fluid flow and geomechanical models. In
detail:

1. EMILIA-923 : arises from the regional geomechanical model of a deep hydrocar-
bon reservoir. It is obtained discretizing the structural problem with tetrahedral
Finite Elements. Due to the complex geometry of the geological formation, the
computational grid is characterized by highly irregularly shaped elements.

2. CUBE-k : 3D homogeneous elasticity problem. The matrices CUBE-k have been ob-
tained through the FE discretization of an elasticity problem on a cube with linear
tetrahedra. The material property is constant on the domain and the Poisson ra-
tio is assumed equal to 0.3. The sequence of matrices is generated by subsequent
refinement of the original grid (that is each tetrahedron is divided in 8 smallest
ones).

All matrices are publicly available in the University of Florida Sparse Matrix Collection
at http://www.cise.ufl.edu/research/sparse/matrices. The size and number
of nonzero elements for each matrix are provided in Table 1.

Table 1. Size n and number of nonzeros nnz of the test matrices.

name n nnz

EMILIA-923 923 136 41 005 206
Cube105k 105 597 4 088 979
Cube739k 739 167 29 657 925
Cube5317k 5 317 443 222 615 369

4.1. Machine characteristics

All tests have been performed on the new HPC Cluster Marconi at the CINECA Centre,
on both the A1 version (1512 nodes, 2× 18-cores Intel Xeon E5-2697 v4 (Broadwell) at
2.30 GHz) and the more recent A2 update (with 3600 nodes and 1× 68-cores Intel Xeon
7250 CPU (Knigths Landing) at 1.4GHz). The Broadwell nodes have 128 Gb memory
each, while in the A2 system the RAM is subdivided into 16GB of MDRAM and 96GB
of DDR4. The Marconi Network type is: new Intel Omnipath, 100 Gb/s. (MARCONI is
the largest Omnipath cluster of the world).

Denoting with Tp the total CPU elapsed times expressed in seconds on p processors,
we define relative measures of the parallel efficiency and speedup of our code. We define
as S(p̄)

p the pseudo speedup computed with respect to the smallest number of processors
(p̄) used to solve a given problem and E(p̄)

p the corresponding efficiency:

S(p̄)
p =

Tp̄ p̄
Tp

, E(p̄)
p =

S(p̄)
p

p
=

Tp̄ p̄
Tp p

.

October 2017

4.2. Scalability results on matrix EMILIA-923

We now report the results of two runs in the computation of the 10 leftmost eigenpairs of
matrix EMILIA−923 for two different values of parameter win. The parameters selected
and the number of iterations (which do not change with the number of processors) are
summarized in Table 2. Run # 1, with win = 0, provides the smallest number of total
iterations thus the related combination of parameters has been chosen to perform the
parallel scalability analysis reported in Table 3. In this Table we specified the number of
processors p, as well the configuration used to get such number of processors, namely
the number of nodes and CPUs per node used.

Table 2. Parameters and number of Matrix-Vector Products (MVP) of DACG-Newton in eigensolving matrix
EMILIA-923 .

MVP
Run win lmax kmax µ τ DACG 1 DACG 2 Newton overall

1 0 5 20 0.1 0.02 5229 675 4680 10584
2 2 5 20 0.1 0.02 6613 580 4481 11574

Table 3. Timings and scalability for Run #1 with matrix EMILIA-923 on the A2 partition.

p nodes CPUs elapsed time

Tprec TDACG Tlowrank TNewton Ttot S(8)p E(8)
p

8 8 1 87.50 348.50 0.38 296.47 732.85 8.0 1.00
32 8 4 31.05 127.07 0.11 109.54 267.76 21.9 0.68

128 32 4 9.43 53.07 0.04 46.12 108.66 54.0 0.42
256 32 8 5.43 35.92 0.03 31.90 73.28 80.0 0.31
512 32 16 3.70 27.75 0.04 25.74 57.24 102.4 0.20
512 64 8 3.38 28.35 0.03 26.54 58.29 102.6 0.20

4.3. Scalability results on matrices CUBE-k

Matrices CUBE-k , albeit arising from FE discretization of a PDE on unstructured meshes,
have been recursively generated by halving the side lengths of the elements. This results
in a sequence of nested grid having roughly 8 times more nodes and hence a sequence
of matrices having 8 times more rows and nonzeros. It is possible then to perform a sort
of weak scalability on this problems, by taking into account that also the condition num-
ber of such matrices increases proportionally with their size. Hence, even fixing for all
matrices the same parameters for the initial RFSAI preconditioner, the number of itera-
tions increases with increasing dimension. To obtain a sound measure of the scalability
performance of our code we analyzed:

1. The overall CPU time in computing the initial RFSAI preconditioner;

2. The average CPU time needed for a single Newton iteration.

October 2017

Table 4. Parameters and number of Matrix-Vector Products (MVP) of DACG-Newton in eigensolving matrices
CUBE-k .

DACG-Newton RFSAI MVP
win lmax kmax µ , τ δout ,εout ,dout δin,εin,din 105k 739k 5317k

3 5 20 0.1, 0.02 0.05, 0.05, 4 0.1, 0.1, 2 3342 8574 19263

Table 5. Timings and relative speedups and efficiencies for the matrices CUBE-k .

p Cube105k S(2)p E(2)
p Cube739k S(8)p E(8)

p Cube5317k S(64)
p E(64)

p

2 659.51 2.0 –
4 343.49 3.8 0.96
8 178.05 7.4 0.93 1262.72 8.0 –

16 85.08 15.5 0.97 656.67 15.4 0.96
32 44.78 29.5 0.92 368.65 27.4 0.86
64 198.28 50.9 0.80 1922.12 64.0 –

128 130.14 77.6 0.61 1064.17 115.6 0.90
256 659.81 186.4 0.73
512 382.13 321.9 0.63

1024 284.43 432.5 0.42

We first report in Table 4 the parameters employed and the overall number of iterations
displayed by the DACG-Newton method. Next in Table 5 we report for each run the
overall timings, the relative speedups and efficiencies for the three matrices CUBE−k.

The scalability analysis for the RFSAI computation is displayed in Figure 1, from
which, by comparing the curves with the theoretical scalability, we can appreciate the
almost perfect scalability of this task at least for the largest matrix: Cube5317k .

Figure 1. Timings for computing the RFSAI preconditioner for different CUBE-k matrices and number of pro-
cessors.

1 8 64 512 4096
number of processors

32

64

128

256

512

T
im

e
fo

r
p

re
co

n
d

it
io

n
er

 c
o

m
p

u
ta

ti
o

n

optimal scalability

large CUBE matrix

medium CUBE matrix
small CUBE matrix

A weak scalability analysis for the Newton step is carried on in Figure 2, where the
average CPU time per Newton iteration (in seconds per 100 iteration) is plotted against
the number of processors for the three different matrices CUBE-k . Weak scalability is not
completely satisfactory as we would expect almost straight lines. There is an (obvious)
loss of perfect scalability from matrix Cube739k to matrix Cube5317k due to the fact

October 2017

that the frequent scalar products inside the PCG algorithm have a deeper impact on the
overall cost due to the increasing number of processor involved.

Figure 2. Weak scalability study for the CUBE-k matrices.

2 4 8 16 32 64 128 256 512 1024
number of processors

1

2

4

se
co

n
d

s
p

er
 1

0
0

 N
ew

to
n

 i
te

ra
ti

o
n

s

large CUBE matrix

medium CUBE matrix
small CUBE matrix

We report some further results on two matrices of the CUBE-k class to evidence the
importance of the low-rank acceleration of a given preconditioner and the influence of
low-rank preconditioners on the sequential and parallel efficiency. With the same initial
preconditioner as that employed in the previous section we run the DACG-Newton code
either with the BFGS acceleration only or with no low-rank updates. The results obtained
using 128 processors for the Newton step only are summarized in Table 6 where we
see that the spectral plus BFGS update is mandatory for the largest Cube5317k matrix.
As for the Cube739k matrix, with no acceleration, no convergence is observed while the
spectral acceleration provides a halving of the Newton iterations with respect to using
the BFGS update only.

Table 6. Newton iterations for the two largest matrices with different low-rank acceleration parameters.

win lmax kmax Cube739k Cube5317k

3 5 20 2931 7119
– – 20 5457 †
– – – † †

Table 7. Timings and relative speedups and efficiencies for the matrix Cube739k (Newton phase).

p Cube739k S(8)p E(8)
p Cube739k S(8)p E(8)

p

BFGS only acceleration spectral+BFGS acceleration
8 295.88 8.0 – 167.16 8.0 –

16 163.13 14.5 0.91 92.82 14.4 0.90
32 96.05 24.6 0.77 55.66 24.0 0.75
64 61.74 38.3 0.60 33.25 40.2 0.63

128 41.14 57.5 0.45 26.81 49.9 0.39

October 2017

Regarding scalability we compare the spectral-BFGS preconditioner with the BFGS
preconditioner for the Cube739k matrix once again for the Newton phase only obtaining
the CPU times reported in Table 7. It can be observed that the spectral acceleration
provides a great reduction of the CPU time, irrespective of the number of processors,
while it only slightly worsens the parallel scalability of the Newton phase.

5. Conclusion and future work

We have developed and tested a pure-MPI parallel preconditioned Newton-based itera-
tive algorithm to compute the leftmost eigenpairs of large and sparse SPD matrices. To
accelerate the inner PCG solver we have proposed a preconditioner based on low-rank
corrections of a recursive FSAI initial preconditioner. The results on the Marconi su-
percomputer show the efficiency of the low-rank update and the good parallel scalability
of the overall code. In particular the computation of the initial RFSAI preconditioner
achieves almost optimal scalability. The not completely satisfactory scalability of the
iterative phase is due to the communications needed by the sparse matrix-vector prod-
ucts and by the scalar products to be performed both in the PCG solver and in the low-
rank acceleration phase. We plan to supply to these weaknesses both algorithmically, by
rewriting the BFGS update in a compact form as proposed in [10] so as to reduce the
number of scalar products, and by writing a MPI-Cuda version of the code, following
e.g. the works in [7,8] where a GPU-based implementation of the PCG solver as well as
optimized routines for the matrix-vector and the scalar product are developed.

Acknowledgements. This research have been carried on under the ISCRA C project
Low-rank acceleration of parallel preconditioners and under the Italian GNCS project
Numerical Methods for Large Scale Constrained Optimization Problems & Applications.

References

[1] Bergamaschi L, Martı́nez A. Two-stage spectral preconditioners for iterative eigensolvers. Numer. Lin.
Alg. Appl. 2017; 24:1–14.

[2] Bergamaschi L, Martı́nez A. Efficiently preconditioned inexact Newton methods for large symmetric
eigenvalue problems. Optimization Methods & Software 2015; 30:301–322.

[3] Bergamaschi L, Gambolati G, Pini G. Asymptotic convergence of conjugate gradient methods for the
partial symmetric eigenproblem. Numer. Lin. Alg. Appl. 1997; 4(2):69–84.

[4] Freitag MA, Spence A. Shift-invert Arnoldi’s method with preconditioned iterative solves. SIAM J. Matrix
Anal. Appl. 2009; 31(3):942–969.

[5] Bergamaschi L, Martı́nez A. Banded target matrices and recursive FSAI for parallel preconditioning.
Numerical Algorithms 2012; 61(2):223–241.

[6] Bergamaschi L, Martı́nez A. Parallel inexact constraint preconditioners for saddle point problems. Euro-
Par 2011, Bordeaux (France), Lecture Notes in Computer Sciences, vol. 6853, Part II, E Jeannot RN,
Roman J (eds.), Springer: Heidelberg, 2011; 78–89.

[7] Greathouse JL, Daga M. Efficient sparse matrix-vector multiplication on GPUs using the CSR storage for-
mat. Proceedings of the International Conference for High Performance Computing, Networking, Storage
and Analysis, SC ’14, IEEE Press: Piscataway, NJ, USA, 2014; 769–780.

[8] Helfenstein R, Koko J. Parallel preconditioned conjugate gradient algorithm on GPU. Journal of Compu-
tational and Applied Mathematics 2012; 236(15):3584 – 3590.

[9] Martı́nez A, Bergamaschi L, Caliari M, Vianello M. A massively parallel exponential integrator for ad-
vection-diffusion models. J. Comput. Appl. Math. 2009; 231(1):82–91.

[10] Nocedal J, Wright SJ, Numerical optimization, Springer Series in Operations Research, Springer-Verlag,
New York, 1999.

