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Abstract

In the recent literature stance, purely nonlocal theory of elasticity is recognized

to lead to ill-posed problems. Yet, we show that a meaningful energy bounded

solution of the purely nonlocal theory may still be defined as the limit solu-

tion of the two-phase nonlocal theory. For this, we consider the problem of

free vibrations of a flexural beam under the two-phase theory of nonlocal elas-

ticity with an exponential kernel, in the presence of rotational inertia. After

recasting the integro-differential governing equation and the boundary condi-

tions into purely differential form, a singularly perturbed problem is met that is

associated with a pair of end boundary layers. A multi-parametric asymptotic

solution in terms of size-effect and local fraction is presented for the eigenfre-

quencies as well as for the eigenforms for a variety of boundary conditions. It

is found that simply supported end conditions convey the weakest boundary

layer and that, surprisingly, rotational inertia affects the eigenfrequencies only

in the classical sense. Conversely, clamped and free conditions bring a strong

boundary layer and eigenfrequencies are heavily affected by rotational inertia,

even for the lowest mode, in a manner opposite to that brought by nonlocality.

Remarkably, all asymptotic solutions admit a well defined and energy bounded

limit as the local fraction vanishes and the purely nonlocal model is retrieved.
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Therefore, we may define this limiting case as the proper solution of the purely

nonlocal model. Finally, numerical results support the accuracy of the proposed

asymptotic approach.
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Two-phase nonlocal elasticity, Nonlocal theory of elasticity, Asymptotic

method, Free vibrations

1. Introduction1

The classical linear theory of elasticity suffers from the well known defect2

of not encompassing an internal length scale, which feature gives rise to self-3

similar predictions. Yet, any real material possesses an internal microstructure4

and some characteristic length thereof. Consequently, classical elasticity may5

be assumed as a suitable model inasmuch as the physical phenomena of interest6

occur at a scale much greater than the internal characteristic length of the ma-7

terial. Failure to meet this condition is effectively demonstrated by, for instance,8

the singular stress field at the tip of a crack and by the non-dispersive nature9

of wave propagation. Extensions of classical elasticity have been proposed, in10

the form of generalized continuum mechanics (GCM), in an attempt to reme-11

diate these shortfalls. An excellent historical overview of GCM, together with12

extensive bibliographic details, may be found in [17]. Among GCM theories,13

we mention the theory of micro-polar elasticity [2, 3, 25], the couple-stress and14

strain-gradient elasticity theories [35, 23] and the nonlocal theory of elasticity15

[7]. In particular, following [7], ”linear theory of nonlocal elasticity, which has16

been proposed independently by various authors [...], incorporates important17

features of lattice dynamics and yet it contains classical elasticity in the long18

wave length limit”. Nonlocal elasticity is based on the idea that the stress19

state at a point is a convolution over the whole body of an attenuation function20

(sometimes named kernel or nonlocal modulus) with the strain field [34]. Al-21

though several attenuation functions may be considered, they need to comply22

with some important properties which warrant that (a) classical elasticity is re-23

2



verted to in the limit of zero length scale and that (b) normalization is satisfied24

[6]. As an example, Helmholtz and bi-Helmoltz kernels have been widely used25

in 1-D problems, their name stemming from the differential operators they are26

Green’s function of [8, 15]. Since nonlocal elasticity naturally leads to integro-27

differential equations whose solution is most often impractical, an equivalent28

differential nonlocal model (EDNM) was developed in [6]. In such form, non-29

local elasticity has been extensively applied to study elastodynamics of beams30

and shells as described in the recent review [4] and with special emphasis on31

the application to nanostructures [29]. Generally, EDNM leads to interesting32

mechanical effects, such as increased deflections and decreased buckling loads33

and natural frequencies (softening effect), when compared to classical elasticity.34

However, a number of pathological results have also emerged, which are often35

referred to as paradoxes [16, 10, 15]. For instance, for a cantilever beam under36

point loading, nonlocality brings no effect [24, 32, 1]. It should be remarked37

that many studies based on the EDNM employ boundary conditions in terms38

of macroscopic stresses, i.e. in classical form, and therefore they disregard the39

important effect of the boundary through nonlocality. Although this approach40

may be still adopted for long structures or in the case of localized deformations41

occurring away from the boundaries [20, 21], it is generally inaccurate.42

Very recently, Romano et al. [30] claimed that Eringen’s purely nonlocal43

model (PNLM) leads to ill-posed problems for the differential form of the model44

is consistent inasmuch as an extra pair of boundary conditions, termed consti-45

tutive, is satisfied. In [5], a two-phase nonlocal model (TPNL) was introduced46

which combines, according to the theory of mixtures, purely nonlocal elasticity47

with classical elasticity, by means of the volume fractions ξ1 and ξ2 = 1 − ξ1.48

This model is immune from the inconsistencies of the PNLM and it has been49

adopted to solve the problem of static bending [33] and buckling [36] of Euler-50

Bernoulli (E-B) beams. Static axial deformation of a beam is considered in51

[26, 37], while semi-analytical solutions for the combined action of axial and52

flexural static loadings is given in [18]. Axial and flexural free vibrations of53

beams have also been considered in [19] and in [9]. In these works, either the54
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TPNM is solved numerically or it is reduced, by adopting the solution presented55

in [28], to an equivalent higher-order purely differential model with a pair of ex-56

tra boundary conditions. Despite this reduction, the differential model is still57

difficult to analyse, especially in the neighbourhood of the PNLM, that is for ξ158

small. In this respect, we believe that the asymptotic approach may be put to59

great advantage in predicting the mechanical behaviour of nanoscale structures60

for a vanishingly small ξ1 [36, 19].61

In this paper, we consider free vibrations of a flexural beam taking into ac-62

count rotational inertia (Rayleigh beam), within the TPNM and having assumed63

the Helmholtz attenuation function. The integro-differential model is reduced64

to purely differential form with an extra pair of boundary conditions. Spotlight65

is set on developing asymptotic solutions valid for small microstructure and/or66

little local fraction. These solutions feature a pair of boundary layers located67

at the beam ends, whose strength depends on the constraining conditions. Nu-68

merical results support the accuracy of the expansions. Most remarkably, the69

asymptotic approach allows to investigate the behaviour of the solution in the70

neighbourhood of the PNLM, where the expansions are non-uniform. Nonethe-71

less, they admit a perfectly meaningful, energy bounded limit, which may be72

taken as the solution of the PNLM. We point out that the existence of such73

limit has been observed numerically in [10] for free-free end conditions.74

2. Problem formulation75

2.1. Governing equations76

For a flexural beam, vertical equilibrium gives77

ρS
∂2v

∂t2
=
∂Q̂

∂x
+ q(x) (1)

while rotational equilibrium lends78

J
∂2ϕ

∂t2
= −∂M̂

∂x
+ Q̂. (2)

Here, v = v(x, t) is the vertical displacement, Q̂ and M̂ are the dimensional79

shearing force and the bending moment, respectively, ρ is the mass density,80
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J = ρI is the mass second moment of inertia per unit length of the beam, that81

is proportional to the second moment of area I, S is the cross-sectional area82

and q(x) the vertical applied load. As well-known, it is I = Sr2A, where rA is83

the radius of gyration. Assuming that the beam is homogeneous and that its84

cross-section is constant along the length, Eqs.(1,2) give85

∂2M̂

∂x2
− ρS ∂

2v

∂t2
+ J

∂4v

∂x2∂t2
+ q = 0, (3)

that governs transverse vibrations of flexural beams accounting for rotational86

inertia. In the mixed nonlocal theory (MNLT) of elasticity, we have [5, 7]87

M̂ = −EI

ξ1 ∂2v
∂x2

+ ξ2

L∫
0

K(|x− x̂|, κ)
∂2w

∂x̂2
dx̂

 , (4)

where EI is the beam flexural rigidity, L the beam length and K(|x − x̂|, κ)88

is the kernel or attenuation function. The kernel is positive, symmetric, and it89

rapidly decays away from x; the nonlocal parameter κ = e0a depends on the90

scale coefficient e0 as well as on the internal length scale a. ξ1 and ξ2 take up91

the role of volume fractions and they represent, respectively, the local and the92

nonlocal phase ratios, such that ξ1 + ξ2 = 1 and ξ1ξ2 ≥ 0. When ξ1 = 0, Eq.(4)93

degenerates into the purely nonlocal model (PNLM), while, in contrast, the case94

ξ1 = 1 corresponds to classical local elasticity.95

In what follows, we consider the Helmholtz kernel96

K(|x− x̂|, κ) =
1

2κ
exp

(
−|x− x̂|

κ

)
, (5)

which is frequently used for 1D problems [30]. We note that for the Helmholtz97

kernel the following transformations are valid98

d

ds

1∫
0

e−
|s−ŝ|
ε y(ŝ)dŝ =

1

ε

e
s
ε

1∫
s

e−
ŝ
ε y(ŝ)dŝ− e−

s
ε

s∫
0

e
ŝ
ε y(ŝ)dŝ

 , (6)

and99

d2

ds2

1∫
0

e−
|s−ŝ|
ε y(ŝ)dŝ =

1

ε2

1∫
0

e−
|s−ŝ|
ε y(ŝ)dŝ− 2

ε
y(s). (7)
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In particular, Eq.(7) corresponds to [30, Eq.(6)] and it may be rewritten as∫ 1

0

[
ε2

d2K(|s− ŝ|, ε)
ds2

−K(|s− ŝ|, ε) + δ(|s− ŝ|)
]
y(ŝ)dŝ = 0,

whereupon K(|s− ŝ|, ε) is the Green’s function of the singularly perturbed oper-

ator Hε = 1−ε2 d2

ds2 . It is trivial matter to prove impulsivity, i.e. limε→0K(|s−

ŝ|, ε) = δ(s− ŝ), where δ(s) is Dirac’s delta function. Furthermore, we observe

that Eq.(6), evaluated at the beam ends s = 0, 1 and for ξ = 0, lends the

constitutive boundary conditions [30, Eq.(5)]

dM

ds
(0) = ε−1M(0), and

dM

ds
(1) = −ε−1M(1),

where M = LM̂/EI is the dimensionless bending moment. Thus, the constitu-100

tive boundary conditions are really the expression, on the domain boundary, of101

a general feature of the solution that is related to the integral operator (4).102

Introducing the dimensionless axial co-ordinate s = x/L, under the assump-103

tion of time-harmonic motion (i is the imaginary unit)104

v(s, t) = w(s) exp(iωt),

and upon multiplying throughout by L4/EI, Eq.(3) may be turned in dimen-105

sionless form106

ξ1
d4w

ds4
+
(
λ4θ − ε−2ξ2

) d2w

ds2
+
ξ2
2ε3

∫ 1

0

exp

(
−|ŝ− s|

ε

)
d2w(ŝ)

dŝ2
dŝ−λ4w = 0. (8)

Here, use have been made of Eqs.(4,5) and we have let the dimensionless ratios107

θ =
J

ρSL2
=
(rA
L

)2
, λ4 =

ρSL4ω2

EI
, (9)

together with the microstructure parameter

ε =
κ

L
� 1.

Clearly, θ plays the role of an aspect ratio squared and ε is a scale effect. As-108

suming w ∈ C6[0, 1], twice differentiating Eq.(8), taking into account Eqs.(6,7)109

and then subtracting, we get the governing equation in purely differential form110

ε2ξ
d6w

ds6
− (1− ε2θλ4)

d4w

ds4
− λ4(ε2 + θ)

d2w

ds2
+ λ4w = 0, (10)

where, hereinafter, we adopt the shorthand ξ = ξ1. Eq.(10) is a singularly111

perturbed ODE [14], with respect to the small parameter ε
√
ξ.112
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2.2. Boundary conditions113

Eq.(10) is supplemented by suitable boundary conditions (BCs) at the ends.

For clamped ends (C-C conditions), we have two pairs of kinematical conditions

w(0) = w′(0) = 0, (11a)

w(1) = w′(1) = 0. (11b)

For simply supported (S-S) ends

w(0) = 0, M(0) = ξw′′(0) +M0 = 0, (12a)

w(1) = 0, M(1) = ξw′′(1) +M1 = 0, (12b)

having let114

M0 =
1− ξ

2ε

1∫
0

e−
ŝ
εw′′(ŝ)dŝ, M1 =

1− ξ
2ε

e−
1
ε

1∫
0

e
ŝ
εw′′(ŝ)dŝ. (13)

For free-free (F-F) ends, one has

M(0) = 0, Q(0) = ξw′′′(0) + θλ4w′(0) + ε−1M0 = 0, (14a)

M(1) = 0, Q(1) = ξw′′′(1) + θλ4w′(1)− ε−1M1 = 0. (14b)

The nonlocal end bending moments (13) may be rewritten in differential

form with the help of the original integro-differential equation (8):

M0 = −ε2ξwiv(0) +
[
1− ξ − ε2θλ4

]
w′′(0) + ε2λ4w(0), (15a)

M1 = −ε2ξwiv(1) +
[
1− ξ − ε2θλ4

]
w′′(1) + ε2λ4w(1). (15b)

Consequently, the BCs may be recast in differential form as

M(0) = w′′(0) + ε2N0 = 0, (16a)

M(1) = w′′(1) + ε2N1 = 0, (16b)

Q(0) = ξw′′′(0) + θλ4w′(1) + ε−1M0 = 0, (16c)

Q(1) = ξw′′′(1) + θλ4w′(1)− ε−1M1 = 0, (16d)
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where, making use of the connections (6,7), we have

N0 = ε−2(ξ2w
′′(0)−M0) = −ξwiv(0)− θλ4w′′(0) + λ4w(0), (17a)

N1 = ε−2(ξ2w
′′(1)−M1) = −ξwiv(1)− θλ4w′′(1) + λ4w(1). (17b)

Besides, to rule out spurious solutions which may have appeared owing to dou-

ble differentiation, we introduce a pair of additional BCs. Indeed, evaluating

at the beam ends the differential with respect to s of the original governing

equation (8), one arrives at

ε3ξwv(0)− ε2ξwiv(0)− (1− ξ − ε2θλ4)[εw′′′(0)− w′′(0)]

−ε3λ4w′(0) + ε2λ4w(0) = 0, (18a)

ε3ξwv(1) + ε2ξwiv(1)− (1− ξ − ε2θλ4)[εw′′′(1) + w′′(1)]

−ε3λ4w′(1)− ε2λ4w(1) = 0. (18b)

Dropping rotational inertia, the additional boundary conditions (18) coincide115

with the constitutive boundary conditions recently obtained by Fernández-Sáez116

and Zaera [9, Eqs.(59) and (60)], provided that we replace our ε and λ4 with117

their h and λw, respectively. However, it should be remarked that in [9] the118

original integro-differential problem is reduced to the equivalent differential form119

extending to dynamics the original argument developed in [34] for statics. Such120

argument takes advantage of a result presented in [27], which really applies to121

inhomogeneous integral equations with a given right-hand side. In the case of122

dynamics, however, this right-hand side is a problem unknown, for it is really123

an acceleration term, and therefore the applicability of the reduction formula is124

questionable.125

3. Exact solution of the boundary-value problems126

The general solution of the ODE (10) is

w(s) =

6∑
j=0

cj exp (bjs) ,
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where the constants bj are the roots of the characteristic polynomial in ζ127

ε2ξζ6 − (1− ε2θλ4)ζ4 − (ε2 + θ)λ4ζ2 + λ4 = 0. (19)

As detailed in [31, 22], this bi-cubic may be turned in canonical form by the128

substitution Z = ζ2 − Z0, it being Z0 = (1 − ε2θλ4)/(3ε2ξ), whence Eq.(19)129

becomes130

Z3 − pZ − q = 0,

where

p = (ξε2)−1

[(
λ4θε2 − 1

)2
3ξε2

+ λ4
(
θ + ε2

)]
> 0,

q = −(ξε2)−1

[
λ4 +

λ4
(
θ + ε2

) (
λ4θε2 − 1

)
3ξε2

+
2
(
λ4θε2 − 1

)3
27ξ2ε4

]
.

This polynomial possesses three real roots provided that

∆ =
q2

4
− p3

27
< 0

and indeed, for ε
√
ξ � 1, we get, to leading order,131

∆ = −λ4 4 + θ2λ4

108(ξε2)4
.

Besides, we have, at leading order,132

q =
2

27(ξε2)3

and q > 0, whereupon out of the three real roots, two, say Z3 < Z2 < 0, are

negative and one, say Z1, is positive. Upon reverting to the original variable

ζ, we see that ζ23 < 0 < ζ22 < ζ21 . Indeed, we get the expansions (the sign is

immaterial)

ζ1 =
1

ε
√
ξ
, ζ2 = α, ζ3 = ıβ,

with

α = λ0

√
−1

2
θλ20 +

√
1 +

θ2λ40
4

, (20a)

β = λ0

√
1

2
θλ20 +

√
1 +

θ2λ40
4

, (20b)

9



whence ζ1,2 are convey an exponential solution, while ζ3 is related to an oscil-133

latory solution. It is worth noticing that ζ1 blows up as (ε
√
ξ) → 0, that is134

for a vanishingly small scale effect or in the purely nonlocal situation. Indeed,135

this very root accounts for the edge effect in this problem and it describes a136

boundary layer.137

We observe that, in general, the frequency equation for the ODE (10), sub-138

ject to suitable boundary conditions, appears in transcendental form139

F (λ; ξ, ε) = 0,

wherein λ is the sought-for eigenvalue. The numerical solution of this equation140

is not straightforward matter, especially for very small values of the local frac-141

tion ξ, see e.g. [9] and [34] where plots are given for ξ > 0.1 and ξ > 0.05,142

respectively. Indeed, when looking for the numerical roots of (19), we observe,143

after [31], that the transformation to canonical form lends a considerable numer-144

ical advantage over Cardano’s formulas in that it provides purely real solutions.145

Conversely, Cardano’s formulas are likely to introduce a very small spurious146

imaginary component, which is most likely the cause of the numerical difficulty147

encountered in the literature when dealing with small ξ. To estimate the eigen-148

value λ for any ξ and, in particular, in the limiting case of the PNLM (that149

occurs as ξ → 0), we consider an asymptotic expansion in the small parameter150

ε.151

4. Asymptotic solution of the boundary-value problems152

Following a standard asymptotic argument [14, 19] and similarly to the ex-153

traction of the edge effect in shells [11, 12], we seek a solution of the eigenvalue154

problem through superposition of a solution, w(m), valid in the interior of the155

beam (the so-called outer solution), with a pair of boundary layers, w
(e)
1 and156

w
(e)
2 , fading off away from the left and from the right beam end, respectively,157

w(s, ε) = w(m)(s) + εγ1w
(e)
1 (s, ε) + εγ2w

(e)
2 (s, ε), (21)
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where158

∂w(m)

∂s
∼ w(m),

∂w
(e)
i

∂s
∼ ε−ςw(e)

i as ε→ 0.

The parameter ς is named the index of variation of the edge effect integrals,159

while γ1 and γ2 are the indices of intensity of the edge effect integrals near160

the left and right ends, respectively. The positive values of γi depend on the161

boundary conditions and should be specified for each end.162

4.1. Boundary layer163

To derive an equation describing the beam behaviour in the vicinity of the164

ends (boundary layer), we zoom in by assuming s = εςσ and 1 − s = εςσ,165

respectively for the left and for the right end. For either case, one obtains the166

distinguished limit ς = 1 and Eq. (10) is rewritten as167

ξ
d6w

(e)
i

dσ6
−
(
1− ε2θλ4

) d4w
(e)
i

dσ4
− ε2λ4

(
θ + ε2

) d2w
(e)
i

dσ2
+ ε4λ4w

(e)
i = 0, (22)

whose solution is sought in the form of an asymptotic series168

w
(e)
i = w

(e)
i0 + εw

(e)
i1 + ε2w

(e)
i2 + . . . . (23)

Substitution of (23) into (22) lends a sequence of differential equations in the169

unknowns w
(e)
ij (σ), i = 1, 2; j = 0, 1, 2, . . .. Here, we simply give the first two170

terms of the expansion in the original variable s171

w
(e)
1 (s, ε) = a10e

− s
ε
√
ξ + εe

− s
ε
√
ξ

[
a11 + a10

θλ4
0(1−ξ)
2
√
ξ

s
]

+O
(
ε2e
− s
ε
√
ξ

)
,

w
(e)
2 (s, ε) = a20e

− 1−s
ε
√
ξ + εe

− 1−s
ε
√
ξ

[
a21 + a20

θλ4
0(1−ξ)
2
√
ξ

(1− s)
]

+O
(
ε2e
− 1−s
ε
√
ξ

)
,

(24)

where aij(i = 1, 2; j = 0, 1, 2, . . .) are constants that will be determined in the172

following from the boundary conditions.173

4.2. The outer solution174

The displacement w(m) as well as the eigenvalue λ are sought in the form of175

an asymptotic series176

w(m) = w0 + εw1 + ε2w2 + . . . ,

λ = λ0 + ελ1 + ε2λ2 + . . . .

(25)
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The leading term in the series corresponds to the solution of the classical local177

problem and λ0 is the classical eigenvalue. Substituting (25) into the governing178

Eq.(10) and equating coefficients of like powers of ε leads to the sequence of179

differential equations:180

k∑
j=0

Ljwk−j = 0, k = 0, 1, 2, . . . , (26)

where

L0z =
d4z

ds4
+ θλ40

d2z

ds2
− λ40z, L1z = −4λ30λ1Dz, Dz = z − θd2z

ds2
,

L2z = −ξd6z

ds6
− θλ40

d4z

ds4
+ λ40

d2z

ds2
− 2λ20(3λ21 + 2λ0λ2)Dz,

L3z = −4θλ30λ1
d4z

ds4
+ 4λ30λ1

d2z

ds4
− 4λ0(λ20λ3 + λ31 + 2λ0λ1λ2)Dz, . . .

At leading order, one finds the homogeneous forth order ODE181

L0w0 = 0, (27)

whose general solution182

w0(s) = c01 sin(βs) + c02 cos(βs) + c03e−αs + c04eα(s−1), (28)

depends on the constants, c0i, i ∈ {1, 2, 3, 4}, to be determined through the183

boundary conditions. However, the ODE (27) is subject to six boundary con-184

ditions and the problem is to determine which of these correspond to the outer185

solution and which pertain to the boundary layer [14]. The procedure of split-186

ting the boundary conditions also gives the indices of intensity of the boundary187

layer, γ1, γ2, as well as the constants c0k, aij . For this, one needs to insert the188

expansions (21,24,25) into the boundary conditions and equate coefficients of189

like powers of ε, while imposing the following requirements:190

• in the leading approximation, every end condition should be homogeneous191

and coincide with those of the classical local theory;192

• the kth-order approximation generates two equations coupling the con-193

stants ai(k−1) with the previous order approximation wk−1(s) evaluated194

at the boundaries.195
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4.3. Beam with simply supported ends196

Let both beam ends be simply supported (S-S conditions), as given by the197

boundary conditions (12) rewritten in differential form (16a,16b), together with198

the additional constraints (18). Substituting the expansions (21,24,25) into199

these conditions, we determine the strength of either boundary layer γ1 = γ2 =200

3.201

At leading order, we arrive at the homogeneous classical boundary conditions

w0(0) = w0(1) = w′′0 (0) = w′′0 (1) = 0,

which give c01 = C, c02 = c03 = c04 = 0 and the classical eigenforms202

w0(s) = C sin(βs), β = πn, n = 1, 2, . . . . (29)

In light of the definition (20b), we find the eigenfrequencies203

λ0 = λ
(n)
0 ≡

πn

[1 + θ(πn)2]1/4
, n = 1, 2, . . . , (30)

and, by (9), the corresponding dimensional frequencies ω0 =
√

EI
ρS (λ0/L)2.204

Moving to first-order terms, we again obtain a set of homogeneous boundary205

conditions206

w1(0) = w1(1) = w′′1 (0) = w′′1 (1) = 0, (31)

as well as formulas for the leading amplitude in the boundary layer (24):

a10 = −
√
ξ(1−

√
ξ)w′′′0 (0) = Cβ3

√
ξ(1−

√
ξ), (32a)

a20 =
√
ξ(1−

√
ξ)w′′′0 (1) = C(−1)n+1β3

√
ξ(1−

√
ξ). (32b)

Consideration of the inhomogeneous ODE (26) arising in this approximation,207

alongside the associated homogeneous boundary conditions (31), yields the com-208

patibility condition λ1 = 0, whence209

w1 = C1 sin(βs),

where C1 is an arbitrary constant. Without loss of generality, one can assume210

w1 ≡ 0, for this amounts to taking C = C0 + εC1 + . . . .211
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In the second-order approximation, when taking into account the outcomes212

of the previous step, we have again a homogeneous set of boundary conditions213

w2(0) = w2(1) = w′′2 (0) = w′′2 (1) = 0, (33)

and a11 = a21 = 0. The associated differential equation for w2 reads214

L0w2 = −L2w0 ≡ ξ
d6w0

ds6
+ θλ40

d4w0

ds4
− λ30 (λ0 + 4θλ2)

d2w0

ds2
+ 4λ30λ2w0. (34)

We thus arrive at the inhomogeneous BVP on ”spectrum”. Upon observing

that the homogeneous boundary-value problem arising at leading order is self-

conjugated and therefore possesses the solution z(s) = w0(s), we deduce the

compatibility condition for the BVP (33,34)

1∫
0

w0(s)L2w0(s)ds = 0,

which readily gives the correction for the eigenvalue:

λ2 = −β
2[λ40(1 + θβ2)− ξβ4]

4λ30(1 + θβ2)
.

On taking into account this result, Eq. (34) turns homogeneous and, without215

loss of generality, we can assume w2 ≡ 0.216

Considering the third-order approximation, one obtains the inhomogeneous217

boundary conditions218

w3(0) = −a10 = −Cβ3
√
ξ(1−

√
ξ),

w3(1) = −a20 = C(−1)nβ3
√
ξ(1−

√
ξ),

w′′3 (0) = θλ40a10 = Cθλ40β
3
√
ξ(1−

√
ξ),

w′′3 (1) = θλ40a20 = (−1)n+1Cθλ40β
3
√
ξ(1−

√
ξ)

(35)

for the inhomogeneous ODE219

L0w3 = −L3w0 ≡ 4λ30λ3Dw0. (36)

14



The compatibility condition for the boundary-value problem (35,36) works

out

− w′′3 (1)w′0(1) + w′′3 (0)w′0(0)− w3(1)w′′′0 (1) + w3(0)w′′′0 (0)

+ θλ40[w3(0)w′0(0)− w3(1)w′0(1)] + 4λ30λ3

∫ 1

0

(w0 − θw′′0 )w0ds = 0,

whence we get the next correction term for the eigenvalue220

λ3 =
β6
√
ξ(1−

√
ξ)

λ30(1 + θβ2)
. (37)

The eigenform correction w3, satisfying the boundary conditions (35), is given

by the sum of a particular solution w3p of Eq.(36), with the homogenenous

solution w3o. The former reads

w3p(s) = C3p s cos(βs),

where

C3p = 2Cλ30λ3
1 + θβ2

β(α2 + β2)
= 2C

β5

α2 + β2

√
ξ(1−

√
ξ).

Consequently, making use of (37), we get

w3(s) = Cβ3
√
ξ(1−

√
ξ) {c32 cos(βs) + c33 exp(−αs)

+ c34 exp[α(s− 1)]− 2c32s cos(βs)} ,

with the constants

c32 = −β2/(α2 + β2),

c33 = 1
2α

2eα(1− cothα) [eα + (−1)n] /(α2 + β2),

c34 = − 1
2α

2eα(1− cothα) [(−1)neα + 1] /(α2 + β2).

Breaking at this step the asymptotic procedure for seeking the eigenvalues

λk and the associated eigenfunctions wk, we obtain the asymptotic expansion

λ = λ0

[
1− 1

4ε
2β2(1− ξ) + ε3β2

√
ξ (1−

√
ξ) +O(ε4)

]
,
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Figure 1: 1st (left) and 2nd (right) eigenfrequencies ω for a S-S beam (solid, black), with

ε = 0.01, 0.05 and 0.075, superposed onto the 1-term (dashed, red) and the 2-term (dotted,

blue) asymptotic approximation, normalized with respect to the classical local frequency ω0,

Eq.(39)

where β and λ0 are determined by (29) and (30), respectively. Up to an unde-221

termined factor, the associated eigenmode reads222

w(s) = sin(πns) + ε3(πn)3
√
ξ(1−

√
ξ)
{
c32 cos(πns) + c33 exp(−αs)

+c34 exp[α(s− 1)]− 2c32s cos(πns)

+ exp
(
− s
ε
√
ξ

)
+ (−1)n+1 exp

(
s−1
ε
√
ξ

)}
+O

(
ε4
)
.

(38)

It is of interest to compare the dimensional natural frequency, ω, determined223

with the TPNM, with its classical counterpart, ω0, evaluated within the frame-224

work of local elasticity, i.e. for ξ = 1. When taking into account Eq.(9), we225

arrive at the relation226

ω

ω0
= (λ/λ0)

2
= 1− 1

2
ε2(πn)2(1− ξ) + 2ε3(πn)2

√
ξ(1−

√
ξ) +O

(
ε4
)
. (39)

Remarkably, this expression is independent of θ and this unexpected feature227

is indeed confirmed by the numerical solution of the TPNM, see Fig.5. Fig.1228

plots the approximation (39) in the range 0 < ξ < 1 againts the numerical229

solution of the TPNM (given for ξ > 0.01) for the scale parameter ε = 0.01, 0.05230

and 0.075. It appears that the 1-term asymptotic approximation is remarkably231

effective for small values of ε. The numerical solution of the TPNM given in232

Fig.1 compares favourably with the corresponding solution depicted in Fig.4 of233

[10] that, however, pertains to the range ξ1 > 0.1, presumably owing to the234

16



numerical difficulties that may arise in the neighbourhood of the PNLM.235

As a special case of Eq.(39), one obtains the eigenfrequency ratio correspond-236

ing to the PNLM (i.e. for ξ = 0)237

ω

ω0
= 1− 1

2
ε2(πn)2 +O

(
ε4
)
. (40)

4.4. Beam with clamped ends238

Consideration of a beam with clamped ends requires enforcing (11) and (18)

on Eqs.(21,24,25). We thus get the strength of the boundary layer γ1 = γ2 = 2.

In the leading approximation, one has the classical boundary conditions

w0(0) = w0(1) = w′0(0) = w′0(1) = 0,

that give the constants239

c01 = 2α(coshα− cosβ)

c02 = 2α sinβ − 2β sinhα,

c03 = β (eα − cosβ)− α sinβ,

c04 = −eαα sinβ + β (eα cosβ − 1) ,

(41)

as well as the frequency equation240

1
2θλ

2
0 sinβ sinhα+ cosβ coshα− 1 = 0. (42)

In particular, if θ = 0, one arrives at the classical frequency equation, coshλ0 cosλ0 =

1, valid for a Bernoulli-Euler beam that disregards the rotational inertia of the

cross-section, the corresponding eigenmode being

w0(s) = C

[
U(λ0s)−

U(λ0)

V (λ0)
V (λ0s)

]
,

where S(x), T (x), U(x), V (x) are the well-known Krylov-Duncan functions [13,

§14.4.3]

S(x) = 1
2 (coshx+ cosx), T (x) = 1

2 (sinhx+ sinx),

U(x) = 1
2 (coshx− cosx), V (x) = 1

2 (sinhx− sinx).

17



Besides, we get

a10 =
√
ξ
(

1−
√
ξ
)
w′′0 (0), (43a)

a20 =
√
ξ
(

1−
√
ξ
)
w′′0 (1). (43b)

In the first-order approximation, one has the inhomogeneous ODE (26)241

L0w1 = 4λ30λ1Dw0, (44)

and the procedure of splitting the boundary conditions gives242

w1(0) = w1(1) = 0,

w′1(0) =
(
1−
√
ξ
)
w′′0 (0), w′1(1) = −

(
1−
√
ξ
)
w′′0 (1).

(45)

The compatibility conditions for the BVP (44,45) reads

w′1(1)w′′0 (1)− w′1(0)w′′0 (0)− w1(1)w′′′0 (1) + w1(0)w′′′0 (0)

− 4λ30λ1

1∫
0

Dw0(s)w0(s)ds = 0,

whence, accounting for Eqs.(45), one obtains the correction243

λ1 = −λ0
(
1−
√
ξ
) {

[w′′0 (0)]2 + [w′′0 (1)]2
}

4
1∫
0

[w′′0 (s)]2ds

, (46)

where part-integration has been used at the denominator. Now, we can write244

the problem solution245

w1(s) = c11 sin(βs) + c12 cos(βs) + c13e
−αs + c14e

α(s−1) + w1p(s), (47)

where246

w1p(s) = 2
λ3
0λ1

α2+β2 s
{

1+θβ2

β [−c01 cos(βs) + c02 sin(βs)]

+ 1−θα2

α

[
c03e−αs − c04eα(s−1)

]} (48)

is the particular solution of Eq.(44) with the coefficients c0j being given by

Eqs.(41). In the special case of no rotational inertia, θ = 0, Eq.(46) may be

reduced to the very simple expression

λ1 = −2λ0(1−
√
ξ),
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Figure 2: 1st (left) and 2nd (right) eigenfrequencies ω for a C-C beam (solid, black) in the

absence of rotatory inertia, θ = 0, and with ε = 0.01, 0.05 and 0.075, superposed onto the

1-term (dotted, blue) asymptotic approximation, normalized with respect to the classical local

frequency ω0, Eq.(50)

and Eq.(48) gives

w1p(s) =
λ1
λ0
sw′0(s) = −2C(1−

√
ξ)λ0s

[
T (λ0s)−

U(λ0)

V (λ0)
U(λ0s)

]
.

Similarly, Eq.(47) becomes

w1(s) = C(1−
√
ξ)λ0

[
T (λ0s)−

T (λ0)

V (λ0)
V (λ0s)

]
+ w1p(s).

Breaking the asymptotic procedure at this step, we can write down the247

approximate formula for the nonlocal-to-local frequency ratio248

ω

ω0
= 1− 1

2ε
(

1−
√
ξ
) [w′′0 (0)]2 + [w′′0 (1)]2

1∫
0

[w′′0 (s)]2ds

+O
(
ε2
)
, (49)

that, in the absence of rotary inertia, reduces to249

ω

ω0
= 1− 4ε(1−

√
ξ) +O

(
ε2
)
. (50)

Fig.2 plots the approximated ratio (50) onto the numerical solution of the TPNM250

and shows that the 1-term correction provides excellent agreement for the fun-251

damental mode. It is also clear from Eq.(50) that, as in the S-S situation, a252

perfectly reasonable limit is retrieved for the PNLM, i.e. for ξ → 0.253

The asymptotic expansion for the eigenmode reads254

w = w0 + εw1 +O
(
ε2
)
, (51)
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where w0 and w1 belong to the outer solution and they are given by (28), with255

coefficients (41), and by (47), respectively. We observe that the boundary layer256

terms are O
(
ε2
)

and therefore they do not appear explicitly in (51). To incor-257

porate them consistently, one needs to consider the successive approximation258

term, ε2w2, for the outer solution.259

4.5. Beam with clamped and simply supported ends260

To fix ideas, let the left beam end be clamped and the right simply supported.261

The correspondent boundary conditions are given by (11a), (12b) and the pair262

of additional conditions (18). In this case, we arrive at γ1 = 2 and γ2 = 3 for263

the left and for the right boundary layer, respectively.264

At leading order, one has the classical boundary conditions

w0(0) = w′0(0) = w0(1) = w′′0 (1) = 0,

whence we get the constants in the general solution (28)

c01 = −2λ20
(
α2β−2 coshα+ cosβ

)
, (52a)

c02 = 2
(
λ20 sinβ + α2 sinhα

)
, (52b)

c03 = −λ20 sinβ − β2 cosβ − eαα2, (52c)

c04 = eα
(
β2 cosβ − λ20 sinβ

)
+ α2, (52d)

together with Eq.(43a). The eigenvalues λ0 = λ
(n)
0 are found from the transcen-

dental equation

α coshα sinβ − β cosβ sinhα = 0,

that, when θ = 0, boils down to265

T (λ0)U(λ0) = S(λ0)V (λ0).

The last equation amounts to the well known classical equation tanhλ0 = tanλ0,266

while the correspondent eigenmodes are given by267

w0(s) = C

[
U(λ0s)−

S(λ0)

T (λ0)
V (λ0s)

]
. (53)
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The first-order approximation yields268

w1(0) = 0, w′1(0) =
(

1−
√
ξ
)
w′′0 (0), w1(1) = w′′1 (1) = 0, (54)

and a10 and a20 are defined by Eqs.(43a,32b)269

a10 = Cλ20
√
ξ
(
1−
√
ξ
)
,

a20 = Cλ30
√
ξ(1−

√
ξ)
[
V (λ0)− S2(λ0)

T (λ0)

]
.

(55)

The inhomogeneous equation (44), subject to the boundary conditions (54),270

possesses a solution provided that compatibility is satisfied, whereby we get the271

first eigenfrequency correction272

λ1 = −λ0
(
1−
√
ξ
)

[w′′0 (0)]2

4
1∫
0

[w′′0 (s)]2ds

. (56)

The solution of the BVP (44,54) has the form (47) as for the C-C case, yet with273

different coefficients. Indeed, in the special case θ = 0, Eq.(56) simplifies to274

λ1 = −λ0(1−
√
ξ),

and the particular solution becomes

w1p(s) =
λ1
λ0
sw′0(s) = Cλ1s

[
T (λ0s)−

S(λ0)

T (λ0)
U(λ0s)

]
,

whence

w1(s) = Cλ0(1−
√
ξ)

[
T (λ0s)−

S(λ0)U(λ0)

T (λ0)V (λ0)
V (λ0s)

]
+ w1p(s)

= Cλ0(1−
√
ξ)

[
(1− s)T (λ0s) +

S(λ0)

T (λ0)

(
sU(λ0s)−

U(λ0)

V (λ0)
V (λ0s)

)]
.

(57)

Finally, we arrive at the following asymptotic expansion for the frequency275

ratio276

ω

ω0
= 1− 1

2ε
(

1−
√
ξ
) [w′′0 (0)]2

1∫
0

[w′′0 (s)]2ds

+O
(
ε2
)

(58)

that, in the case θ = 0, reduces to277

ω

ω0
= 1− 2ε

(
1−

√
ξ
)

+O
(
ε2
)
. (59)
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Figure 3: 1st (left) and 2nd (right) eigenfrequencies ω for a C-S beam (solid, black) in the

absence of rotatory inertia, θ = 0, and with ε = 0.01, 0.05 and 0.075, superposed onto the

1-term (dotted, blue) asymptotic approximation, normalized with respect to the classical local

frequency ω0, Eq.(59)

Eq.(59) is plotted in Fig.3 alongside the numerical solution of the TPNM. Al-278

though the accuracy of the expansion is restricted to small values of ε, we still279

appreciate a limit as the TPNM tends to the PNLM.280

4.6. Cantilever Beam281

For a cantilever beam we have, at leading order,

w0(0) = w′0(0) = w′′0 (1) = w′′′0 (1) + θλ40w
′
0(1) = 0,

and the constants in the general solution (28) are given by Eqs.(52), i.e. they

are the same as in the C-S case. The secular equation now reads(
1 + 1

2θ
2λ40
)

coshα cosβ − 1
2θλ

2
0 sinhα sinβ + 1 = 0,

that, in the special case of vanishing rotational inertia, reduces to282

S2(λ0)− T (λ0)V (λ0) = 0.

This formula coincides with the classical result coshλ0 cosλ0 + 1 = 0 and the283

corresponding eigenforms are still given by Eq.(53).284

In the first-order approximation, one arrives at the following boundary con-285

ditions286

w1(0) = 0, w′1(0) =
(

1−
√
ξ
)
w′′0 (0),

w′′1 (1) = 0, w′′′1 (1) + λ40θw
′
1(1) = −4λ30λ1θw

′
0(1).

(60)

22



0.0 0.2 0.4 0.6 0.8 1.0

0.85

0.90

0.95

1.00

ξ

ω
/ω

0

0.0 0.2 0.4 0.6 0.8 1.0

0.85

0.90

0.95

1.00

ξ

ω
/ω

0

Figure 4: 1st (left) and 2nd (right) eigenfrequencies ω for a cantilever beam (solid, black) in

the absence of rotatory inertia, θ = 0, and with ε = 0.01, 0.05 and 0.075, superposed onto

the 1-term (dotted, blue) asymptotic approximation, normalized with respect to the classical

local model frequency ω0, according to Eq.(59)

together with the right boundary layer amplitude

a20 =
√
ξ
(

1−
√
ξ
)

[w′′1 (1) + w′′′0 (1)] ,

the left being given by Eq.(43a). The compatibility condition for the inho-287

mogeneous BVP (44, 60) is still given by Eq.(56) and, as a consequence, the288

ratio ω/ω0 and the corresponding eigenmode correction are once again retrieved.289

Fig.4 compares the normalized eigenfrequency ω/ω0 as numerically evaluated290

for the TPNM with the 1-term expansion (59) and shows good accuracy. Be-291

sides, the numerical solution curve matches the corresponding result given in292

Fig.5 of [10].293

5. Purely nonlocal model294

From the previous analysis, it clearly appears that the situation ξ → 0

lends a perfectly admissible eigenfrequency which, therefore, can be assumed

as the proper solution to the PNLM. We now consider what happens to the

eigenmodes and for this we need to investigate the behavior of the boundary

layer term Bξ(s) =
√
ξ exp[−s/(ε

√
ξ)], 0 ≤ s ≤ 1, as ξ → 0. Clearly, this is a

transcendentally small term for s > 0 and Bξ(s)→ 0 uniformly. Non uniformity

arises when we consider s = 0 for then a boundary layer appears that may be

studied taking the rescaled variable s∗ = s/(ε
√
ξ), see [14]. This boundary layer
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is vanishingly small as ξ → 0 but not so are its derivatives with respect to s

B′ξ(s)→

 0, s > 0,

−ε−1, s = 0,
and B′′ξ (s)→

 0, s 6= 0,

+∞, s = 0,
.

This result is the analogue of the steep boundary layer described in [37] under295

static axial deformation. We may now ask whether this unboundedness in the296

second derivative leads to an unbounded bending energy. To answer this we297

first observe that ∀η > 0,
∫ η
0
B′′ξ (s)ds → ε−1 uniformly and therefore B′′ξ (s) is298

proportional to Dirac’s delta function. Indeed, when considering the contribu-299

tion Mξ of the boundary layer Bξ to the bending moment M through Eq.(4),300

we find301

Mξ(0)→ (2ε2)−1,

at leading order. If we use this result in, say, the eigenmodes (38) for a S-S beam,302

we easily see that the boundary condition M(0) = 0 is satisfied at leading order,303

for the boundary layer cancels out the contribution of the outer solution. At the304

same time, the constitutive BCs are asymptotically satisfied for a vanishingly305

small ξ due to the asymptotic procedure applied above. We then conclude that,306

in the limit as ξ → 0, the boundary layer warrants the fulfilment of all boundary307

conditions and it brings a finite contribution to the bending energy. From the308

standpoint of displacements, we get309

w(s)→ w(m) + εγ1−1a10R(−s) + εγ2−1a20R(s− 1),

where R(s) is the ramp function. For a S-S beam, we have γ1 = γ2 = 3 and310

a10 = (−1)n+1a20 = Cβ3.

Whence, a finite jump in the rotation and a concentrated couple at the beam311

ends is produced. This is perhaps not so surprising, for solutions in the sense312

of distributions are to be expected when an integral form of the constitutive313

equation is adopted. Consequently, from a mathematical standpoint, an energy314

bounded solution of the PNLM may be consistently defined as the limit of the315

TPNM, although it is meaningful in the sense of distributions and we may want316

to reject it on physical grounds.317
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Figure 5: Eigenfrequency ω for modes 1, 2 and 4 for a S-S beam, normalized over the classical

frequency ω0, for θ = 0, 1/100 and 1/10, as a function of the local model fraction ξ. As

it occurs for the asymptotic expansion (39), the frequency ratio is unaffected by rotational

inertia and curves overlap
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Figure 6: Eigenfrequency ratio ω/ω0 for modes 1 (left panel) and 4 (right) for a C-C beam

for θ = 0 (solid, black), θ = 1/100 (dashed, blue) and 1/10 (dotted, red), as a function of the

local model fraction ξ

6. Influence of rotational inertia318

We now consider the effect of including rotational inertia when considering319

the solution of the TPNM. Fig.5 plots the frequency ratio ω/ω0 for mode num-320

bers n = 1, 4 and 8 for a S-S beam and θ = 0, 1/100 and 1/10. It appears that,321

for the S-S end conditions, rotational inertia is irrelevant for the purpose of de-322

termining the frequency ratio (yet it still affects ω0). Fig.6 plots the frequency323

ratio ω/ω0 for mode numbers n = 1 and 4 for θ = 0, 1/100 and 1/10 in a C-C324

beam. This time, rotational inertia plays an important role in the direction of325

contrasting the softening effect induced by the nonlocal fraction. Indeed, this326

hardening effect is already well manifest in the fundamental mode and, as ex-327
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Figure 7: Eigenfrequency ratio ω/ω0 for modes 1 (left panel) and 4 (right) for a C-S beam

for θ = 0 (solid, black), θ = 1/100 (dashed, blue) and 1/10 (dotted, red), as a function of the

local model fraction ξ
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Figure 8: Eigenfrequency ratio ω/ω0 for modes 1 (left panel) and 4 (right) for a C-F beam

for θ = 0 (solid, black), θ = 1/100 (dashed, blue) and 1/10 (dotted, red), as a function of the

local model fraction ξ
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pected, it becomes stronger for higher modes. Besides, encompassing rotational328

inertia of the cross-section has a significant bearing on higher modes, regardless329

of the actual value of θ. The same qualitative picture appears in Fig.7 and in330

Fig.8, respectively for C-S and C-F beams. It appears that the softening effect331

is stronger moving from S-S to C-C, C-F and then to C-S.332

7. Conclusions333

The purely nonlocal theory of elasticity has recently attracted considerable334

attention for the controversial results it conveys. Indeed, this model is believed335

to lead to ill-posed problems, owing to the appearance of a pair of constitutive336

boundary conditions which are generally at odd with the natural boundary con-337

ditions. In this paper, we approach the problem from a different perspective and338

carry out an asymptotic analysis of the free vibrations of flexural beams endowed339

with rotational inertia, within the two-phase theory of nonlocal elasticity. We340

show that the nonlocal term contributes with a boundary layer whose strength341

greatly varies for different end conditions. In the case of simply supported342

beams, the boundary layer is the weakest and we provide a two-term correction343

for the classical solution. Remarkably, this situation is affected by the presence344

of rotational inertia only in the classical sense. Conversely, clamped-clamped,345

clamped-supported and clamped-free (i.e. cantilever) conditions bring a much346

stronger boundary layer, a for these we provide a single correction term. Nu-347

merical results confirm the accuracy of the asymptotic approach and show that348

rotational inertia is very relevant in contrasting the softening effect connected349

to the nonlocal phase. Most interestingly, for any end condition, the asymptotic350

solution still exists and its energy remains bounded in the limit of the purely351

nonlocal theory, that is for a vanishingly small local phase. This is in contrast352

to what is anticipated in the literature, see, for instance, [30]. We are therefore353

in the position of attaching a meaning to the purely nonlocal theory, as the limit354

of the two-phase theory. In so doing, we encounter a solution that is defined in355

the sense of distributions (for the curvature) and, although maybe questionable356
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from a physical standpoint, it is mathematically sound.357
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