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Abstract— The ability to generate natural language expla-
nations conditioned on the visual perception is a crucial step
towards autonomous agents which can explain themselves and
communicate with humans. While the research efforts in image
and video captioning are giving promising results, this is often
done at the expense of the computational requirements of the
approaches, limiting their applicability to real contexts. In
this paper, we propose a fully-attentive captioning algorithm
which can provide state-of-the-art performances on language
generation while restricting its computational demands. Our
model is inspired by the Transformer model and employs only
two Transformer layers in the encoding and decoding stages.
Further, it incorporates a novel memory-aware encoding of
image regions. Experiments demonstrate that our approach
achieves competitive results in terms of caption quality while
featuring reduced computational demands. Further, to evaluate
its applicability on autonomous agents, we conduct experiments
on simulated scenes taken from the perspective of domestic
robots.

I. INTRODUCTION

Recent advancements at the intersection of Computer
Vision, Natural Language Processing and Robotics have tried
to bring together the understanding of the visual world and
that of natural language from the perspective of robots and
embodied agents [1], [2], [3], [4], [5]. Such research effort
has the final goal of developing autonomous agents which
can naturally perceive, understand, and perform actions in the
surrounding world, while still having a comprehension of the
human language which is fundamental to interact with the
final user. The ability to describe images and videos is one of
the core challenges in this domain and a crucial achievement
towards machine intelligence [6], [7], [8], [9]. It requires not
only to recognize salient objects in an image, understand
their interactions, but also to verbalize them using natural
language, which makes itself very challenging.

Noticeably, the generation of natural language conditioned
on the visual input is also a critical step in the direction
of cognitive system explainability and trustworthy Artificial
Intelligence, as it endows an autonomous system with the
ability to describe the reason of its choices, actions and to
demonstrate its perception capabilities to the user. To this
aim, the research efforts in language generation and image
captioning are giving promising results.

Inspired by the developments in natural language pro-
cessing and by the advancements in attention modeling,
image captioning algorithms have relied on the combination
of an image encoder and a natural language decoder. The
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interaction between vision and language has been modeled
either using Recurrent Neural Networks or exploring more
recent alternatives – like one-dimensional convolutions or
fully-attentive models such as the Transformer [10], [11].
Most of the last advancements in the field, however, are
due to approaches which rely on complex forms of attention
and of interactions between the visual and the textual do-
main [12], [13], [11]. This is often done at the expense of the
computational demands of the algorithm, thus limiting the
applicability of these results to embedded agents and robots.
Further, for these approaches to be adapted in robotics, they
need to be re-thought in terms of efficiency, memory and,
power consumption as well as in terms of their adaptability
in real contexts.

Following recent research lines on the investigation of
fully-attentive models for image captioning [11], in this paper
we propose a shallow and computationally efficient model for
image captioning. Our model is inspired by the Transformer
approach and incorporates a novel memory-aware image
encoder which can model the relationships between image
regions by also memorizing knowledge learned from data in
a computationally friendly manner. Further, we demonstrate
state-of-the-art performances using solely two attentive lay-
ers in both the encoder and the decoder. This is in contrast
with both machine translation models based on attention,
and recent attempts to develop captioning systems based on
the Transformer, which tend to use six or more encoding
and decoding layers. Our approach is competitive in terms
of caption quality and has the additional benefit of having
reduced computational demands when compared with recent
approaches.

Summarizing, our contributions are as follows: (i) we in-
troduce SMArT, a Shallow and Memory-Aware Transformer
for the task of image captioning; (ii) our model incorporates
self-attention and a memory-aware image encoding layer,
in which self-attention is endowed with memory vectors;
(iii) we demonstrate competitive results on the reference
benchmark for image captioning (COCO) using only two
encoder and two decoder layers. Finally, we demonstrate the
applicability of our approach to simulated scenes taken from
the perspective of domestic robots.

II. RELATED WORK

A large variety of methods has been proposed for the
image captioning task. While early approaches were based on
caption templates filled by using the output of pre-trained ob-
ject detectors [14], [15], almost all recent captioning models
integrate recurrent neural networks as language models [6],
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[16], [17], [7] with a visual feature extractor for conditioning
the language model on the visual input.

The representation of the image has been initially obtained
from the output of one or more layer of a CNN [18],
[19], [20], [6]. Then, with the integration of attentive mech-
anisms [21], the visual representation has turned into a
time-varying vector extracted from a grid of CNN fea-
tures using the hidden state of the language model as the
query [22], [23], [6], [24], [8]. Recently, integrating image
regions eventually extracted from a detector as attention
candidates has become the predominant strategy in caption-
ing architectures [25], [8]. On this line, Jiang et al. [13]
proposed a recurrent fusion network to integrate the output
of multiple image encoders. Yao et al. [12] have explored the
incorporation of relationships between image regions, both
from a semantic point of view and using geometric features
such as the position and the spatial extent of the region.
Their work exploits semantic relationships predictor which
are trained separately, and whose outputs are incorporated
inside a Graph Convolutional Neural Network. Regarding
the training strategies, notable advances have been made
by using Reinforcement Learning to train non-differentiable
captioning metrics [26], [16], [20].

While RNNs have been a popular choice for defining
the language model, they also suffer from their sequential
nature and limited representation power. For this reason,
researchers have also investigated the use of alternatives
which have demonstrated to be compelling for machine
translation. In this context, Aneja et al. [27] have defined a
fully-convolutional captioning model using one-dimensional
convolution and attention over image features. More re-
cently, the Transformer model [10] has been proposed as
a powerful and fast language model for translation tasks
and unsupervised pre-training [28]. Herdade et al. [11] have
first investigated the usage of the Transformer model for
image captioning, proposing a deep architecture which is
conditioned on geometric region features. In contrast to this
concurrent work, we propose a shallow architecture based on
the Transformer and the use of a novel memory-aware region
encoder. When compared to this proposal, our approach
demonstrates to be both less computationally demanding and
more accurate in terms of CIDEr.

III. PROPOSED METHOD

Our fully-attentive captioning model consists of an en-
coder module, in charge of encoding image regions, and a
decoder module, which is conditioned on the encoder and
generates the natural language description. In contrast to pre-
vious captioning approaches, which employed RNNs as the
language model, we propose to use a fully-attentive model
for both the encoding and the decoding stage, building on the
Transformer model [10] for machine translation. In addition,
we propose a self-attention region encoder with memory
vectors to encode learned knowledge and relationships on
the visual input. A summary of our approach and of its
components is visually presented in Fig. 1.

A. Transformer layers

Both encoder and decoder consist of a stack of Trans-
former layers which act, respectively, on image regions
and words. In the following, we revise their fundamental
features. Each encoder layer consists of a self-attention and
feed-forward layer, while each decoder layer is a stack of
one self-attentive and one cross-attentive layer, plus a feed-
forward layer. Both attention layers and feed-forward layers
are encapsulated into “add-norm” operations, described in
the following.

a) Multi-head attention: the core component of both
self-attention and cross-attention layers is an attention mech-
anism [21] with multiple heads with different learned
weights. Attention is applied using scaled dot-products as
similarity measure [10] while keys, queries, and values are
computed through linear transformations.

Formally, given two sequences x1,x2, ...,xN and
x̂1, x̂2, ..., x̂M of d-dimensional input vectors, each head
applies two linear transformations to the first sequence to
form key and value vectors:

kt = Wkxt, vt = Wvxt, (1)

where Wk and Wv are the key and value transformation
matrices, with size dh × d, where dh = d/H is the
dimensionality of a single head, and H is the number of
heads. Analogously, a linear transformation is applied to the
second sequence to obtain query vectors:

qt = Wqx̂t, (2)

where Wq has the same size of Wk and Wv . Query
vectors are used to compute a similarity score with key
vectors, and generate a weight distribution over values.
The similarity score between a query qt and a key kc is
computed as a scaled dot-product between the two vectors,
i.e. (qᵀ

t vc)/
√
dh. Each head then produces a vector by

averaging the values {vc}c with the weights defined by an
attentive distribution over the similarity scores:

yt =

N∑
c=1

αtcvc, where (3)

αtc =
exp (qᵀ

t vc/
√
dh)∑

i exp (q
ᵀ
t vi/
√
dh)

. (4)

Results from different heads are then concatenated and
projected to a vector with dimensionality d through a final
linear transformation.

In the encoding stage, the sequence of image regions is
used to infer queries, keys and values, thus creating a self-
attention pattern in which pairwise region relationships are
modelled. In the decoder, we instead apply both a cross-
attention and a masked self-attention pattern. In the former,
the sequence of words is used to infer queries and image
regions are used as keys and values. In the latter, the left-
hand side of the textual sequence is used to generate keys
and values for each element of the sequence, thus enforcing
causality in the generation.
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Fig. 1. Overview of our image captioning approach. Building on a Transformer-like encoder-decoder architecture, our approach includes a memory-aware
region encoder which augments self-attention with memory vectors. Further, our approach is shallow, as it requires only two encoding and decoding layers.

b) Position-wise feed-forward layers: the second com-
ponent of a Transformer layer is a fully-connected forward
layer which is applied time-wise over the input sequence.
This consists of two affine transformations with a single non-
linearity,

FF(xt) = Uσ(Vxt + b) + c, (5)

where σ(x) = max(x, 0) is the RELU activation function,
and V and U are learnable weight matrices, respectively
with sizes d × df and df × d; b and c are bias terms. The
size of the hidden layer df is usually chosen to be larger
than d, e.g. four times d in most implementations [10].

c) Skip connection and layer normalization: Each sub-
layer (attention or position-wise feed-forward) is encapsu-
lated within a residual connection [29] and layer normaliza-
tion [30]. This “add-norm” operation is defined as

AddNorm(xt) = LayerNorm(xt + f(xt)), (6)

where f indicates either an attention layer or a position-wise
feed-forward layer.

B. Memory-augmented region encoder
Recent captioning literature has demonstrated that regions

identified by an object detector are the ideal attention can-
didates for encoding the visual input [8]. A stack of self-
attentive layers can naturally model the relationships be-
tween regions; however, it can not naturally encode a-priori
knowledge learned from data. To overcome this limitation
and enhance the visual encoding capabilities of the model,
we endow our encoder with memory slots. In practice, we
extend each self-attention layer of the encoder so that the
key and value sets of each head contain an additional set of
learned parameters.

Formally, the set of keys K of each head is extended as
follows:

K =

k1,k2, ...,kN︸ ︷︷ ︸
ordinary keys

,km1 ,k
m
2 , ...,k

m
M︸ ︷︷ ︸

memory key vectors

 , (7)

where the ordinary keys {ki}i are computed through linear
transformations from the sequence (Eq. 1), and memory key
vectors {kmi }i are learnable weights that act as memory slots.
As it can be seen, memory slots are independent on the input
sequence of detections, and therefore store knowledge which
does not depend on the input or the context.

Similarly, the values V of an head are extended with
learnable memory slots as well,

V =

v1,v2, ...,vN︸ ︷︷ ︸
ordinary values

,vm1 ,v
m
2 , ...,v

m
M︸ ︷︷ ︸

memory value vectors

 , (8)

where {vmi }i are learnable weights with the same dimen-
sionality of a value. By defining memory keys and memory
values as separate weights, we break the linear dependency
between keys and values, thus letting the network learn
unrelated sets of keys and values. This is in contrast with
concurrent approaches in machine translation which have
investigated the use of persistent memories [31]. Given M
as the number of key and value memory slots for each head,
our model overall learns a set of 2M ·H memory slots.

C. Fully-attentive decoder

The language model of our approach is composed of a
stack of two decoder layers, each performing self-attention
and cross-attention operations. As mentioned, each cross-
attention layer uses the decoder output sequence to infer keys
and values, while self-attention layers rely exclusively on the
input sequence of the decoder. However, keys and values are
masked so that each query can only attend to keys obtained
from previous words, i.e. the set of keys and values for query
qt are, respectively, {ki}i≤t and {vi}i≤t.

At training time, the input of the encoder is the ground-
truth sentence {BOS, w1, w2, ..., wn}, and the model is
trained with a cross-entropy loss to predict the shifted
ground-truth sequence, i.e. {w1, w2, ..., wn,EOS}, where



TABLE I
CAPTIONING PERFORMANCE (WITHOUT MEMORY) AS WE VARY THE

NUMBER OF ENCODER AND DECODER LAYERS.

N. Layers B-1 B-4 M R C S

1 80.1 38.1 28.7 58.0 127.9 22.7
2 80.2 38.0 28.9 58.3 128.9 22.4
3 79.4 36.4 27.7 56.8 123.7 20.9
4 79.2 36.3 28.0 57.1 121.7 21.6
5 79.2 36.2 27.5 56.7 120.5 20.6

6 (as [10], [11]) 79.1 36.1 27.9 56.8 121.9 21.0

BOS and EOS are special tokens to indicate the start and
the end of the caption.

While at training time the model jointly predicts all
output tokens, the generation process at prediction time is
sequential. At each iteration, the model is given as input the
partially decoded sequence; it then samples the next input
token from its output probability distribution, until a EOS
marker is generated.

Following previous works [26], [20], [8], after a pre-
training step using cross-entropy, we further optimize the
sequence generation using Reinforcement Learning. Specifi-
cally, we employ a variant of the self-critical sequence train-
ing approach [20] which applies the REINFORCE algorithm
on sequences sampled using Beam Search [8]. Further, we
baseline the reward using the mean of the rewards rather than
greedy decoding as done in [20], [8].

Specifically, given the output of the decoder we sample
the top-k words from the decoder probability distribution
at each timestep, and always maintain the top-k sequences
with highest probability. We then compute the reward of each
sentence wi and backpropagate with respect to it. The final
gradient expression for one sample is thus:

∇θL(θ) = −
1

k

k∑
i=1

(
(r(wi)− b)∇θ log p(wi)

)
(9)

where b =
(∑

i r(w
i)
)
/k is the baseline, computed as the

mean of the rewards obtained by the sampled sequences.
To reward the overall quality of the generated caption, we

use image captioning metrics as a reward. Following previous
works [8], we employ the CIDEr metric (specifically, the
CIDEr-D score) which has been shown to correlate better
with human judgment [32].

IV. EXPERIMENTAL EVALUATION

A. Datasets

For comparison with the state of the art, we employ the
Microsoft COCO dataset, which contains 123 287 images
labeled with 5 captions each. We employ the data splits
defined in [33], where 5 000 images are used for validation,
5 000 images for testing and the rest for training. Further, to
assess the performance of our approach on images taken from
a robot-centric point of view, we employ the ACVR Robotic
Vision Challenge dataset [34] which contains simulated data
from a domestic robot scenario. The dataset contains scenes

TABLE II
THE PERFORMANCE OF OUR MODEL AS WE VARY THE NUMBER OF

MEMORY SLOTS FOR EACH HEAD.

N. Memories B-1 B-4 M R C S

No memory 80.2 38.0 28.9 58.3 128.9 22.4
20 80.7 38.5 28.9 58.2 129.4 22.4
40 80.4 38.1 28.8 58.2 129.7 22.2

100 80.7 38.5 29.0 58.4 128.6 22.6

with cluttered surfaces, and day and night lighting conditions.
Authors have simulated domestic service robots of multiple
sizes, resulting in sequences with three different camera
heights above the ground plane. We employ the validation
set of this dataset, for which ground-truth object information
is available. This consists of over 21 000 images in four
simulated indoor video sequences, containing a subset of
COCO classes.

B. Evaluation protocols
Regarding evaluation, we employ popular captioning met-

rics whenever ground-truth captions are available, to eval-
uate both fluency and semantic correctness: BLEU [35],
ROUGE [36], METEOR [37], and CIDEr [32]. BLEU is
a form of precision of word n-grams between predicted and
ground-truth sentences. As done in previous works, we evalu-
ate our predictions with BLEU using n-grams of lenght 1 and
4. ROUGE computes an F-measure with a recall bias using a
longest common subsequence technique. METEOR, instead,
scores captions by aligning them to one or more ground-
truths. Alignments are based on exact, stem, synonym, and
paraphrase matches between words and phrases. CIDEr,
finally, computes the average cosine similarity between n-
grams found in the generated caption and those found in
reference sentences, weighting them using TF-IDF. While
it has been shown experimentally that BLEU and ROUGE
have lower correlation with human judgments than the other
metrics [32], the common practice in the image captioning
literature is to report all the mentioned metrics. To ensure
a fair evaluation, we use the Microsoft COCO evaluation
toolkit to compute all scores.

When only object-level information is available as ground-
truth, such as in the ACVR dataset, we evaluate the capability
of our captioning approach to name objects on the scene.
To assess how the predicted caption covers all the objects,
we also define a soft coverage measure between the ground-
truth set of object classes and the set of names in the caption.
Given a predicted caption y, we firstly extract all nouns from
the sentence. We compute the optimal assignment between
them and the set of ground-truth classes c∗, using distances
between word vectors and the Hungarian algorithm [38].
We then define an intersection score between the two sets
as the sum of assignment profits. Our coverage measure
is computed as the ratio of the intersection score and the
number of ground-truth object classes:

Cov(y, c∗) =
I(y,y∗)

#c∗
, (10)



TABLE III
COMPARISON WITH THE STATE OF THE ART FOR IMAGE CAPTIONING ON

THE TEST SET OF THE COCO DATASET.

Method B-1 B-4 M R C S

FC-2K [20] - 31.9 25.5 54.3 106.3 -
Att2all [20] - 34.2 26.7 55.7 114.0 -
Up-Down [8] 79.8 36.3 27.7 56.9 120.1 21.4
RFNet [13] 79.1 36.5 27.7 57.3 121.9 21.2
SGAE [43] 80.8 38.4 28.4 58.6 127.8 22.1
GCN-LSTM [12] 80.9 38.3 28.6 58.5 128.7 22.1
ORT [11] 80.5 38.6 28.7 58.4 128.3 22.6

SMArT w/o memory 80.2 38.0 28.9 58.3 128.9 22.4
SMArT (m = 40) 80.4 38.1 28.8 58.2 129.7 22.2

where I(·, ·) is the intersection score, and the # operator
represents the cardinality of the two sets of nouns.

Since images may contain small objects which not neces-
sarily should be mentioned in a caption describing the overall
scene, we also define a variant of the Coverage measure by
thresholding over the minimum object area. In this case, we
consider c∗ as the set of objects whose bounding boxes cover
an area higher than the threshold.

C. Implementation and training details

As mentioned, we use two layers in both the encoder and
the decoder. The dimensionality of all layers, d, is set to 512
and we use H = 8 heads. The dimensionality of the inner
feed-forward layer, df , is 2048. We use dropout with keep
probability 0.9 after each attention layer and after position-
wise feed-forward layers. Input words are represented with
one-hot vectors and then linearly projected to the input
dimensionality of the model, d. We also employ sinusoidal
positional encodings [10] to represent word positions inside
the sequence, and sum the two embeddings before the first
encoding layer.

To represent image regions, we use Faster R-CNN [39]
with ResNet-101 [29]. In particular, we employ the model
finetuned on the Visual Genome dataset [40] provided by [8].
To compute the intersection score and for extracting nouns
from captions, we use the spaCy NLP toolkit1. We use
GloVe [41] as word vectors.

The model is trained using Adam [42] as optimizer with
β1 = 0.9 and β2 = 0.98. The learning rate is varied
during training using the strategy of [10], i.e. according to
the formula: d−0.5 · min(s−0.5, s · w−0.5), where s is the
current optimization step and w is a warmup parameter, set
to 10 000 in all our experiments. After the pre-training with
cross-entropy loss, we finetune the model again using Adam
and with a fixed learning rate of 5e−6.

D. Captioning results

1) Shallow vs. deep models: Firstly, we investigate the
performance of fully-attentive captioning models as we vary
the number of encoding and decoding layers. In particular,
we start from our model without memory, and keep the

1https://spacy.io/

TABLE IV
OBJECT COVERAGE ANALYSIS ON THE ACVR ROBOTIC VISION

CHALLENGE DATASET, WHEN VARYING THE MINUMUM OBJECT AREA

THRESHOLD.

Coverage

Method > 1% > 3% > 5% > 10%

SMArT w/o memory 0.747 0.806 0.836 0.846
SMArT (m = 20) 0.751 0.808 0.841 0.846
SMArT (m = 40) 0.762 0.821 0.848 0.850
SMArT (m = 100) 0.757 0.814 0.843 0.846

number of encoding and decoding layers equal. Table I shows
the results obtained after a full training with RL finetuning.
Noticeably, the performance obtained with six layers (as in
the original Transformer model [10], and as in the captioning
model of [11]) is lower than the one obtained when using 1,
2 or 3 layers. While the best results are obtained with two
layers (128.9 CIDEr), we notice that using just one layer is a
compelling alternative, which still obtains a CIDEr of 127.9.

2) Persistent memory vectors: We then evaluate the role
of using persistent memory vectors in the encoder. Table II
reports the performance obtained by our model with two
layers and a number of memory slots per head varying from
0 to 100. As it can be seen, using 40 memory slots for each
head further increases the CIDEr metric from 128.9 to 129.7.

3) Comparison with the state of the art: We report the
performances of our model in comparison with different
captioning models. In particular, we compare with: FC-
2K [20], an LSTM baseline using a global feature vector as
image descriptor; Att2all [20], which uses additive attention
over the grid of image features extracted from a CNN; Up-
Down [8], which employs a two-LSTM layer model with
bottom-up features extracted from Faster R-CNN. Also, we
compare with RFNet [13], which fuses encoded features
from multiple CNN networks; SGAE [43], which introduces
auto-encoding scene graphs into its model. Finally, we also
consider GCN-LSTM [12], which explores the role of visual
relationships between image regions and, importantly, with
ORT [11], which employed a Transformer-based model with
six layers.

Table III reports the performances of all the mentioned ap-
proaches at the end of training with reinforcement learning.
Firstly, we notice that our approach overcomes both LSTM-
based approaches and ORT [11] according to the CIDEr
metric. Noticeably also, the performance of a shallow model
without memory is in line with the state of the art. On all the
other metrics, which are less aligned with human judgment,
our approach achieves competitive performances.

4) Performance on robot-centric images: Table IV reports
the Coverage measure for different variants of our approach
on the validation set of the ACVR Robotic Vision Challenge
dataset. As it can be observed, our approach is capable of
mentioning most of the objects on the scene which cover
at least 10% of the image, and achieves a 0.76 coverage
score when thresholding at 1% of the area, thus taking into

https://spacy.io/


A person standing in a dark room 
with a couch.

A banana sitting on a table next to 
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A room with two chairs and a table.A kitchen with a microwave and 
other objects on a table.
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A bedroom with a bed and a chair. A black stove in a living room with 
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a table.

Fig. 2. Sentences generated on the ACVR Robotic Vision Challenge dataset. We report objects detected on the scene and underline their mentions in the
caption. Objects present in the scene and not mentioned in the caption are shown in gray.

Fig. 3. Prediction times when varying the batch size, for SMArT (w/
and w/o memory), ORT, and Up-Down. SMArT features higher fluency
and correctness with comparable prediction times compared to LSTM-
based approaches; lower execution times and comparable correctness when
compared to Transformer-based approaches.

account also small objects. Reported results also confirm the
findings on the effectiveness of the persistent memory vectors
observed on COCO. To further highlight the adaptability of
our solution to robot-centric images, Figure 2 shows some
predicted captions on sample images of the ACVR dataset.

E. Computational analysis

We complete our experimental evaluation by analyzing the
computational demands of our solution in comparison with
ORT [11] and Up-Down [8]. We compare with ORT [11]
as it is the only Transformer-based competitor, and with
Up-Down [8] as it is the most lightweight among recent
proposals based on LSTM. Adapt-Att [6], RFNet [13] and
GCN-LSTM [12] can indeed be seen as extensions of Up-
Down [8] which add elements to its computational graph,
thus potentially increasing processing times.

Figure 3 shows the mean and standard deviation of pre-
diction times as a function of the batch size. For a fair
evaluation, we run all approaches on the same workstation

and on the same GPU (NVIDIA 1080Ti). To exclude the
effect of different implementations, we re-implement all the
approaches and use the same framework (i.e. PyTorch) and
the same routines whenever possible. As it can be observed,
SMArT is more computationally efficient than ORT [11],
reducing the prediction times by a significant margin. Also,
the use of persistent memories does not significantly impact
prediction performance. When comparing with Up-Down,
instead, we notice that the mean prediction time is lower
for small batch sizes, while for larger batch sizes the perfor-
mances of Up-Down and of our approach are comparable.
Considering the captioning quality given by Up-Down (120.1
CIDEr) and that of our approach (129.7 CIDEr), our method
provides better caption quality with a comparable computa-
tional cost. Most importantly, the reduction in the number
of layers provides better caption quality (129.7 CIDEr vs.
128.3 CIDEr) and reduced prediction times compared to
other Transformer-based approaches.

V. CONCLUSION

In this paper we have presented SMArT, a novel approach
for image captioning, based on a shallow Transformer net-
work endowed with persistent memory vectors. Our solution
is motivated by the need of effective bridges between vision,
language and action that can be deployed on autonomous
agents. As shown in the experimental evaluation, SMArT
achieves state of the art caption quality with reduced com-
putational needs. Additionally, we have demonstrated the
applicability of our approach to robot-centric images from
simulated environments.
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