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Abstract. The paper deals with the exact controllability of a semilinear sys-

tem in a separable Hilbert space. A bounded linear part is considered and a

linear control introduced. The state space is compactly embedded in a Banach
space and the nonlinear term is continuous in its state variable in the norm

of the Banach space. An infinite sequence of finite dimensional controllability

problems is introduced and the solution is obtained by a limiting procedure.
To the best of our knowledge, the method is new in controllability theory. An

application to an integro-differential system in euclidean spaces completes the

discussion.

1. Introduction

This paper deals with the exact controllability in infinite dimensional spaces, by
means of linear controls. We consider the semilinear equation

(1.1) y′(t) = Ay(t) + f(t , y(t)) +Bu(t), t ∈ [0, T ], y(t) ∈ H,
with 0 < T < +∞, in the separable Hilbert space H and assume that the control
term u belongs to L2([0, T ], U) where U is a Hilbert space. The operators A : H →
H and B : U → H are linear and bounded. We refer to Section 3 for the exact
properties of f : [0 , T ] × H → H. System (1.1) is said to be controllable if every
initial condition y0 ∈ H can be steered at time T to any y1 ∈ H, i.e. if y(0) = y0

and y(T ) = y1, by some admissible control u (see Definition 3.3).
Let {eAt}t∈R be the group of continuous operators generated by A. The linear,
bounded operator G : L2([0 , T ] , U)→ H defined by

G(u) =

∫ T

0

eA(T−s)Bu(s) ds

is important in the study of the controllability of (1.1). In particular, when (1.1)
is linear, that is f(t , y) = f(t), the controllability of (1.1) is equivalent to the
surjectivity of G (see e.g. [8, Sect. 4.1]). We refer to [17] for a wide discussion
about controllability in the linear case.
In general it is hard to prove that the nonlinear system (1.1) is controllable. The
study is usually carried out by means of a fixed point technique and the following
equation is introduced

(1.2) y′(t) = Ay(t) + f(t , q(t)) +Bu(t), t ∈ [0, T ],

where q : [0 , T ] → H is any continuous function. Since (1.2) is clearly linear
with respect to y, the operator G is important in this discussion. In particular,
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when equation (1.2) is controllable, for every y0, y1 ∈ H there exists a control
u ∈ L2([0, T ], U) such that

(1.3) G(u) = y1 − eAT y0 −
∫ T

0

eA(T−s)f(s, q(s)) ds.

The usual space of equivalence classes L2([0, T ], U)/ kerG is then naturally involved.
Let Ḡ be the operator induced by G in L2([0, T ], U)/ kerG; when G is onto, then Ḡ
has an inverse which is again linear and bounded; the property is true in the more
general setting of H and U arbitrary Banach spaces (see e.g. [11] and [15, Sect.
II.5]). However, the knowledge of Ḡ and its inverse is not sufficient, in general,
for the correct implementation of a topological method. It is also necessary to
select a control function, in each equivalence class of L2([0, T ], U)/ kerG, and some
properties of this selection map are needed. If the control space U is a Hilbert space,
a unique control function with minimal norm, say ū, exists in each equivalence class,
and the selection map [u] 7−→ ū is linear and bounded (see e.g. Proposition 2.2).
A linearization method can then be correctly implemented and this explains why
we set out the present discussion in Hilbert spaces. Moreover, the controllability
of (1.1) can be obtained by the minimal norm control with respect to the family
of controls that satisfy the necessary condition (1.3). The existence of a unique
minimal norm element in each equivalence class of L2([0, T ], U)/ kerG is true also
when U is a uniformly convex Banach space but the selection map need not be
linear in general; this topic is discussed in Remark 2.3. An alternative approach
could be to make use of a multivalued analysis in order to account of all the controls
in each equivalence class as suggested in [11].

Controllability can be investigated for a more general system obtained when A in
(1.1) is replaced by a densely defined operator which generates a strongly continuous
semigroup; nevertheless, such a system is never controllable when the associated
semigroup is compact (see [16]). Controllability results can also be obtained for
multivalued systems, occurring when f is a multivalued map, by some additional
techniques proper of the multivalued analysis. Many contributions can be found
about the controllability of semilinear systems in infinite spaces; we refer, in partic-
ular, to [1], [6], [11], [13] and [19]. The topological method is clearly showed in the
first paper published by Magnusson-Pritchard-Quinn [11]; some preliminary results
are also obtained there by the contraction principle or the Schauder fixed point
theorem with a Lipschitzian nonlinear part. The controllability in the multivalued
case is discussed in [6] and [13]. The Lipschitzianity condition is replaced in [13]
by a weaker regularity involving the Hausdorff measure of noncompactness and the
fixed point result for condensing maps (see [10, Chap. 2 and Corollary 3.3.1]) is
used; the use of the weak topology in the state space is exploited in [6]. The dis-
cussion in [19] is based on the fixed point-type application of the Schmidt existence
theorem and it makes use of the Kuratowski measure of noncompactness; one-sided
Lipschitz conditions and some convexity are further assumed; the nonlinearity is au-
tonomous. Several additional papers can be found where the investigation is based
on contradictory assumptions that G is onto and A generates a compact semigroup.
The discussion in other papers is set in some Banach space, but the properties of
the selection map of one control in each equivalence class are not clarified, in some
cases the selection is neither introduced.

As it is known, every separable Hilbert space has an orthonormal basis (en)n∈N.
Starting from this property we define infinitely many simpler controllability prob-
lems settled in the finite dimensional spaces Hn := span{e1, ..., en} (see (Pn) in
Section 3). Then we assume that the Hilbert space H is compactly embedded in a
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Banach space (E , ‖ · ‖E) and obtain the controllability of (1.1) by a limiting proce-
dure. This approximation solvability method was recently pointed out in [4] for the
study of boundary value problems and extended in [5] to second order equations.
To the best of our knowledge, the technique is new in controllability theory. We
assume that the nonlinear term f(t, ·) is continuous with respect to ‖·‖E , for almost
every t, and we do not need to introduce any measure of noncompactness, the only
amount of compactness required being the mentioned compact embedding. Our
main results are Theorem 3.4 and Theorem 3.5. The former requires a strict sub-
linear restriction on f , while the latter deals with a case where f is sublinear and
it is small with respect to the linear part. This discussion is in Section 3. In Sec-
tion 4 we apply our abstract results for the controllability of an integro-differential
equation in Rn. Notations and preliminary results appear in Section 2.
There is an increasing interest in the study of solutions of infinite dimensional
systems that satisfy some nonlocal condition; the nonlinear term in these models
may also include some delay. These topics are widely investigated in the recent
book by Burlică-Necula-Roşu-Vrabie [7]. The present controllability discussion can
be extended, with suitable changes, to these models.

2. Notations and preliminary results

Let H be an infinite dimensional separable real Hilbert space with a scalar product
(·, ·). Denote by ‖·‖ its norm and by {en}n∈N an orthonormal basis, whose existence
is granted by the separability of H. Let Hn = span{e1, . . . , en} denote the n-
dimensional Hilbert space generated by the first n vectors of the basis, and Pn :
H → Hn the natural projection, Pn(x) =

∑n
k=1(x , en)en.

Proposition 2.1. Let H be a separable Hilbert space and Pn be the natural pro-
jections. Then

(i) ‖Pn(x)‖ ≤ ‖x‖ ∀n ∈ N, ∀x ∈ H;
(ii) if xj ⇀ x then Pnxj → Pnx for every n ∈ N;
(iii) if xn ⇀ x then Pn(xn) ⇀ x.

Proof. (i) and (ii) are well known results, (iii) is proved, for example, in [5, Lemma 6].
�

The following proposition shows that every surjective, bounded, linear operator
defined in a Hilbert space admits a right inverse of minimal norm.

Proposition 2.2. Let H be a Hilbert space, W a Banach space and G : H →W be
a surjective, bounded, linear operator. Then there exists a bounded linear operator
G̃−1 : W → H such that, for every w ∈W , G ◦ G̃−1(w) = w and

(2.1)
∥∥∥G̃−1(w)

∥∥∥ = min {‖u‖ : G(u) = w} .

Proof. Since G is bounded, K = kerG is a closed subspace of H and the quotient
space H/K is a Banach space with the norm

(2.2) |||[u]||| = inf
v∈[u]

‖v‖, [u] = {v ∈ H : G(v) = G(u)} = u+K

(see [15, Theorem 5.1]). The bounded linear operator Ḡ : H/K → W defined by
Ḡ([u]) = G(u) is one to one and onto, then there exists Ḡ−1 : W → H/K linear
and bounded.
The weak lower semicontinuity of the norm and the weak compactness of the closed
balls in H imply that the infimum in (2.2) is reached. Moreover, the strict convexity
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of the norm in a Hilbert space implies the uniqueness of the minimum, that is for
every u ∈ H there exist one and only one ū ∈ [u] such that

(2.3) |||[u]||| = min
v∈[u]

‖v‖ = ‖ū‖.

Denote by K⊥ the orthogonal complement of K, then H = K⊕K⊥, that is for every
u ∈ H there exist only one ku ∈ K and only one hu ∈ K⊥ such that u = hu + ku
and K ∩K⊥ = {0}. Moreover ‖u‖2 = ‖hu‖2 + ‖ku‖2 ≥ ‖hu‖2. For every u ∈ H

G(u) = G(hu) +G(ku) = G(hu),

then hu ∈ [u]. Moreover, for every v ∈ [u]

v − u = k ∈ K ⇒ hv − hu = k − kv + ku ∈ K ∩K⊥ ⇒ hv = hu.

Therefore |||[u]||| = ‖hu‖.
The function π : H/K → K⊥, π[u] = hu, is an isometry and G̃−1 : W → K⊥

defined by G̃−1 = π ◦ Ḡ−1 has the following properties: for every w ∈W
(a) for every u ∈ G−1(w)

G(G̃−1(w)) = G(π(Ḡ−1(w))) = G(π([u])) = G(hu) = w;

(b) since π is an isometry, by (2.3)

‖G̃−1(w)‖ =
∥∥π(Ḡ−1(w))

∥∥ =
∣∣∣∣∣∣Ḡ−1(w)

∣∣∣∣∣∣ = min
v∈Ḡ−1(w)

‖v‖,

but v ∈ Ḡ−1(w) if and only if G(v) = w, then

‖G̃−1(w)‖ = min {‖v‖ : G(v) = w} .

�

Remark 2.3. Notice that, if H is simply a uniformly convex Banach space, for
every G : H → W linear, bounded and onto it is possible to define a function
G̃−1 : W → H such that (2.1) holds, but in general this function is not linear. In
fact, in general, the map π : H/K → H such that, for every u ∈ H, π([u]) ∈ [u]
and

‖π([u])‖ = min
v∈[u]

‖v‖,

is homogeneous but not additive. For example1 consider H = R3 with the norm

‖(x , y , z)‖4 = 4
√
x4 + y4 + z4, W = R2 with the euclidian norm and the linear map

G : H → W defined by G(x , y , z) = (x − y , y − z). G is onto and K = kerG =
{(t , t , t) : t ∈ R}. Then [(x , y , z)] = {(x+ t , y + t , z + t) : t ∈ R},

|||[(x , y , z)]||| = ‖(x+ t̄ , y + t̄ , z + t̄)‖4 = min
t∈R
‖(x+ t , y + t , z + t)‖4

and π[(x , y , z)] = (x+ t̄ , y + t̄ , z + t̄). Simple computations lead to

π[(1, 0, 0)] =

(
3
√

2

1 + 3
√

2
,
−1

1 + 3
√

2
,
−1

1 + 3
√

2

)

π[(0, 1, 0)] =

(
−1

1 + 3
√

2
,

3
√

2

1 + 3
√

2
,
−1

1 + 3
√

2

)

π[(1, 1, 0)] =

(
1

1 + 3
√

2
,

1

1 + 3
√

2
,
− 3
√

2

1 + 3
√

2

)
then π[(1, 0, 0)] + π[(0, 1, 0)] 6= π[(1, 1, 0)].

1J. Rosenberg, Lectures notes for the course of Functional Analysis, University of Maryland
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In the sequel, for vector valued functions we will consider strong measurability (or
simply measurability) and Bochner integrability. Since H is separable, for func-
tions with values in H measurability is indifferently strong and weak measurability
and the integrals are indifferently Bochner or Pettis integrals (see e.g. [18, Theo-
rem 1.1.3]).

Remark 2.4. If a function ϕ : [0 , T ]→ H is measurable, respectively integrable, in
H and H is continuously embedded in a Banach space E, trivially ϕ is measurable,
respectively integrable, in E too and the integral in E is equal to the integral in H.

For 1 ≤ p ≤ ∞, Lp([0 , T ] , H), Lp(0 , T ) when H = R, denotes the Banach space of
equivalence classes of functions y : [0 , T ] → H such that y is measurable in [0 , T ]
and ‖y‖p < +∞, where ‖ · ‖p is the usual norm defined by

‖y‖p =

(∫ T

0

‖y(t)‖p dt

) 1
p

when 1 ≤ p <∞ and
‖y‖∞ = ess sup

t∈[0 ,T ]

‖y(t)‖

when p =∞. Since H is a Hilbert space, also L2([0 , T ] , H) is a Hilbert space with
the inner product

(y1 , y2)2 =

∫ T

0

(y1(t) , y2(t)) dt.

C([0 , T ] , H), the space of continuous functions y : [0 , T ] → H, is a Banach space
with the norm

‖y‖∞ = max{‖y(t)‖ : t ∈ [0 , T ]}.
In the last section we will consider the Sobolev spaces W 1,p(Ω), where Ω is an open
subset of Rn, with the norms

‖u‖1,p =

(∫
Ω

|u(x)|p dx+

n∑
i=1

∫
Ω

|uxi
(x)|p dx

) 1
p

when 1 ≤ p <∞ and

‖u‖1,∞ = ess sup
x∈Ω

|u(x)|+
n∑

i=1

ess sup
x∈Ω

|uxi
(x)|

when p =∞. If p = 2, W 1,2(Ω) is a Hilbert space endowed with the inner product

〈u, v〉1,2 =

∫
Ω

u(x)v(x) dx+

n∑
i=1

∫
Ω

uxi
(x)vxi

(x) dx.

AC([0 , T ] , H) denotes the space of absolutely continuous functions y : [0 , T ]→ H.
Recall that a function y : [0 , T ] → H is absolutely continuous if and only if there
exists g ∈ L1([0 , T ] , H) such that

y(t) = y(0) +

∫ t

0

g(s) ds, t ∈ [0 , T ].

Moreover y is a.e. differentiable on [0 , T ] and y′(t) = g(t) for a.e. t ∈ [0 , T ] (see [2,
Chap. I, Theorem 2.1]).

Given a bounded and linear operator A : H → H, the semigroup generated by A
is defined by

eAt =

∞∑
k=0

Aktk

k!
, t ≥ 0.
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Similarly, −A is a bounded and linear operator generating the semigroup {e−At}t≥0.
It is then well known (see [14, p. 22]) that A generates the group defined as

eAt =

{
eAt if t ≥ 0
e−A(−t) if t < 0.

We have that
d

dt
eAt = AeAt, for every t ∈ R,

then
{
eAt
}
t∈R is the C0 group generated by A.

It is well known (see e.g. [14, p. 2]) that

‖eAt‖ ≤ e‖A‖|t| for all t ∈ R

and, given g ∈ L1([0, T ], H), y0 ∈ H, the initial value problem{
y′(t) = Ay(t) + g(t)

y(0) = y0

has a unique absolutely continuous solution satisfying the constant variation for-
mula

y(t) = eAty0 +

∫ t

0

eA(t−s)g(s)ds, t ∈ [0 , T ].

3. The abstract problem

In this section we consider the control problem

(P)

{
y′(t) = Ay(t) + f(t , y(t)) +Bu(t)

y(0) = y0

where A : H → H is a bounded linear operator, f : [0 , T ] × H → H, H is a
separable Hilbert space, and B : U → H is a bounded linear operator defined in a
Hilbert space U . Moreover, suppose that H is compactly embedded in a Banach
space (E , ‖ · ‖E), therefore there exists a costant λ > 0 such that ‖ · ‖E ≤ λ‖ · ‖.
In the sequel we will consider the following assumptions on f and B:

(f1) for every y ∈ H the function f(· , y) : [0 , T ]→ H is measurable with respect
to the Lebesgue measure on [0 , T ] and the Borel measure on H;

(f2) for almost every t ∈ [0 , T ] the function f(t , ·) : H → H is continuous with
respect to the norm in the Banach space E;

(f3) for every bounded set D ⊂ H there exists νD ∈ L1(0 , T ) such that

‖f(t , y)‖ ≤ νD(t) for each y ∈ D and for a.e. t ∈ [0 , T ];

(B) the linear operator G : L2([0 , T ] , U)→ H defined by

G(u) =

∫ T

0

eA(T−s)Bu(s) ds

is onto.

Now we need to show the measurability of f(· , q(·)) : [0 , T ]→ H when q ∈ C([0, T ] , H).
This property is trivially satisfied if we replace assumption (f2) with

for almost every t ∈ [0, T ] the function f(t , ·) : H → H is continuous with
respect to the norm in H.

The following proposition contains the proof of such mesaurability under condition
(f2).

Proposition 3.1. Let conditions (f1), (f2), (f3) hold and let q ∈ C([0, T ], H).
Then the function f(·, q(·)) : [0, T ]→ H is measurable.
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Proof. For every n ∈ N consider the piecewise constant functions

qn(t) =

{
q(T

n (i− 1)) if T
n (i− 1) ≤ t < T

n i, i = 1, ..., n

q(T ) if t = T

and

fn(t) = f(t, qn(t)), t ∈ [0, T ], n ∈ N.
From condition (f1) we get that fn is measurable in H, hence in E (Remark 2.4).

Since q is continuous, qn(t)
‖·‖→ q(t), therefore the compact embedding and (f2)

imply that fn(t)
‖·‖E→ f(t, q(t)) for every t ∈ [0, T ], i.e. f(·, q(·)) is measurable as

function from [0, T ] to E.
Moreover, for every n ∈ N and t ∈ [0, T ], ‖qn(t)‖ ≤ ‖q‖∞. From condition (f3) we
get that {fn}n is weakly relatively compact in L1([0, T ), H), hence there exists a
subsequence, still denoted as the sequence, weakly converging to g ∈ L1([0, T ], H).
Mazur’s lemma then implies that there exists a sequence of convex combinations
{f̃n}n converging to g in L1([0, T ), H). We can then conclude that, eventually

passing to a subsequence, f̃n(t)
‖·‖→ g(t) and f̃n(t)

‖·‖E→ g(t) for a.e. t ∈ [0, T ] and
the uniqueness of the limit implies that f(·, q(·)) = g ∈ L1([0, T ), H), hence it is
measurable.

�

By Proposition 2.2 the linear operator G admits a right inverse of minimal norm.

Proposition 3.2. If G is the linear operator defined in (B), then there exists a

bounded linear operator G̃−1 : H → L2([0 , T ] , U), G ◦ G̃−1(w) = w for all w ∈ H,
with the property that

(3.1)
∥∥∥G̃−1(w)

∥∥∥
2

= min {‖u‖2 : G(u) = w} , ∀w ∈ H.

Recall that, by Remark 2.3, this result in general does not hold if U (and then
L2([0 , T ] , U)) is not a Hilbert space, even if U is a uniformly convex Banach space.

Definition 3.3. We say that problem (P) is controllable on [0 , T ] if for all y0, y1

in H there exist u ∈ L2([0 , T ] , U) and a solution y ∈ AC([0 , T ] , H) to (P) such
that y(T ) = y1.

We will give two controllability results by assuming more restrictive growth as-
sumptions instead of (f3). In both proofs the idea is to approximate the original
problem by a family of problems in finite dimensional spaces: for every n we obtain
the finite dimensional control problem

(Pn)

{
y′(t) = PnAy(t) + Pnf(t , y(t)) + PnBu(t)

y(0) = Pny0

where Pn : H → Hn is the natural projection.

Theorem 3.4. Let conditions (f1), (f2) and (B) hold. In addition suppose that
for every N ∈ N there exists ϕN ∈ L1([0 , T ] , [0 ,+∞)) such that

(f1
3 )


lim inf
N→∞

1

N

∫ T

0

ϕN (s) ds = 0,

sup
‖x‖≤N

‖f(t , x)‖ ≤ ϕN (t) for a.e. t ∈ [0 , T ].

Then problem (P) is controllable.
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Theorem 3.5. Let conditions (f1), (f2), and (B) hold. In addition suppose that
there exists α ∈ L1([0 , T ] , [0 ,+∞)) such that

(f2
3 )

 ‖f(t , x)‖ ≤ α(t)(1 + ‖x‖) for a.e. t ∈ [0 , T ], for every x ∈ H,

e‖A‖T ‖α‖1
(

1 + e‖A‖T
√
T‖B‖‖G̃−1‖

)
< 1.

Then problem (P) is controllable.

Remark 3.6. Both (f1
3 ) and (f2

3 ) imply (f3).

Proof of Theorem 3.4. We have to prove that for all y0, y1 ∈ H there exists u ∈
L2([0 , T ] , U) and a solution y(·) ∈ AC([0 , T ] , H) to (P) such that y(T ) = y1.

Step 1. For every n ∈ N we will prove that there exists a solution yn : [0 , T ]→ Hn

to (Pn) such that yn(T ) = Pny1.
For N > 0 consider the subset of C([0 , T ] , Hn) defined by

Qn
N = {q ∈ C([0 , T ] , Hn) : ‖q(t)‖ ≤ N, ∀t ∈ [0 , T ]}

and the integral operator Tn : Qn
N → C([0 , T ] , Hn) defined by

Tn(q)(t) = Pne
Aty0 +

∫ t

0

Pne
A(t−s)f(s , q(s)) ds

+

∫ t

0

Pne
A(t−s)B

(
G̃−1(pq)(s)

)
ds t ∈ [0 , T ],

where G̃−1 is the right-inverse of G defined in Proposition 3.2 and

pq = y1 − eAT y0 −
∫ T

0

eA(T−s)f(s , q(s)) ds ∈ H.

In order to apply Schauder’s fixed point theorem, we have to prove that for every
n ∈ N

Claim 1: for every N > 0, Tn(Qn
N ) is relatively compact;

Claim 2: for every N > 0, Tn : Qn
N → C([0 , T ] , Hn) is continuous;

Claim 3: there exists N̄ > 0, which does not depend on n, such that
Tn(Qn

N̄
) ⊆ Qn

N̄
.

Proof of Claim 1. Since Hn is finite dimensional, by Ascoli-Arzelà theorem we
have to prove that continuous functions in {Tn(q) : q ∈ Qn

N} are bounded and
equicontinuous. For every q ∈ Qn

N and t ∈ [0 , T ], consider x(t) = Tn(q)(t). Note
that

‖pq‖ ≤ ‖y1‖+ ‖eAT y0‖+

∥∥∥∥∥
∫ T

0

eA(T−s)f(s , q(s)) ds

∥∥∥∥∥
≤ ‖y1‖+ e‖A‖T

[
‖y0‖+

∫ T

0

ϕN (t) dt

]
and set C1 = ‖y1‖+ e‖A‖T [‖y0‖+ ‖ϕN‖1]. Analogously, by (i) of Proposition 2.1,∥∥∥∥Pne

Aty0 +

∫ t

0

Pne
A(t−s)f(s , q(s)) ds

∥∥∥∥ ≤ C1,
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and, by Cauchy-Schwarz inequality in L2(0 , T ),∥∥∥∥∫ t

0

Pne
AsB

(
G̃−1(pq)(s)

)
ds

∥∥∥∥ ≤ ∫ T

0

e‖A‖s
∥∥∥∥B (G̃−1(pq)(s)

)∥∥∥∥ds
≤ e‖A‖T ‖B‖

∫ T

0

∥∥∥G̃−1(pq)(s)
∥∥∥
U
ds ≤ e‖A‖T ‖B‖

√
T
∥∥∥G̃−1(pq)

∥∥∥
2

≤ e‖A‖T ‖B‖
√
T
∥∥∥G̃−1

∥∥∥ ‖pq‖ ≤ C1e
‖A‖T ‖B‖

√
T
∥∥∥G̃−1

∥∥∥ .
Finally, by the very definition of Tn,

(3.2) ‖x(t)‖ ≤ C1 + C1e
‖A‖T ‖B‖

√
T
∥∥∥G̃−1

∥∥∥ ,
therefore Tn(Qn

N ) is bounded.
By the same arguments, and recalling

y(t) = eAty0 +

∫ t

0

eA(t−s)f(s , q(s)) ds+

∫ t

0

eA(t−s)B
(
G̃−1(pq)(s)

)
ds

is the absolutely continuous solution of y′(t) = Ay(t)+f(t, q(t))+BG̃−1(pq)(t) and
Pn is linear and bounded, for every 0 ≤ t1 < t2 ≤ T

‖x(t1)− x(t2)‖ = ‖Pny(t1)− Pny(t2)‖ ≤ ‖y(t1)− y(t2)‖ ≤
∫ t2

t1

‖y′(s)‖ds

≤ ‖A‖
[
C1 + C1e

‖A‖T ‖B‖
√
T
∥∥∥G̃−1

∥∥∥](t2 − t1)

+

∫ t2

t1

ϕN (s) ds+ C1‖B‖
√
t2 − t1

∥∥∥G̃−1
∥∥∥ ,

then the functions in Tn(Qn
N ) are equicontinuous.

Proof of Claim 2. Let {qj}j be a sequence in Qn
N uniformly convergent to q ∈ Qn

N .
We have to prove that Tn(qj) → Tn(q) as j → ∞ uniformly on [0 , T ]. From
Claim 1 we know {Tn(qj)}j is equicontinuous. To conclude it is sufficient to prove
that Tn(qj)(t)→ Tn(q)(t) as j →∞ for every t ∈ [0 , T ].
Fix t ∈ [0, T ] and s ∈ [0 , t] such that, by (f1

3 ),

‖f(s , qj(s))‖ ≤ ϕN (s).

Then, for every subsequence {f(s, qjk(s))}k there exists w(s) ∈ H and a subse-
quence {f(s, qjkh

(s))}h such that

f(s, qjkh
(s)) ⇀ w(s) in H

which implies that

f(s, qjkh
(s))

‖·‖E−−−→ w(s).

Since qj → q in C([0, T ], H), (f2) implies that

f(s, qj(s))
‖·‖E−−−→ f(s, q(s))

i.e. w(s) = f(s, q(s)). Thus each subsequence of {f(s, qj(s))}j admits a subsequence
weakly converging to f(s, q(s)). We get that

f(s, qj(s)) ⇀ f(s, q(s)) in H

for a.e. s ∈ [0, t]. On the other hand, the boundedness of eA(t−s) then yields

(3.3) eA(t−s)f(s, qj(s)) ⇀ eA(t−s)f(s, q(s)) in H,

therefore, by Proposition 2.1 (ii)

Pne
A(t−s)f(s, qj(s))→ Pne

A(t−s)f(s, q(s))
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for a.e. s ∈ [0, t]. Since

‖Pne
A(t−s)f(s, qj(s))‖ ≤ e‖A‖TϕN (s),

we can conclude that

Pne
A(t−·)f(·, qj(·))→ Pne

A(t−·)f(·, q(·))

in L1([0, t], Hn) by the dominated convergence theorem. In particular

(3.4)

∫ t

0

Pne
A(t−s)f(s, qj(s))ds→

∫ t

0

Pne
A(t−s)f(s, q(s))ds.

Now we want to prove that pqj ⇀ pq in H. Setting

gj(s) = eA(T−s)f(s, qj(s)) and g(s) = eA(T−s)f(s, q(s)), s ∈ [0 , T ],

we have to prove that
∫ T

0
gj(s) ds ⇀

∫ T

0
g(s) ds. By (3.3), for every w ∈ H and for

a.e. s ∈ [0 , T ]

(w , gj(s))→ (w , g(s)) as j →∞,
moreover

|(w , gj(s))| ≤ ‖w‖e‖A‖TϕN (s),

then, by dominated convergence theorem, for every w ∈ H(
w ,

∫ T

0

gj(s) ds

)
=

∫ T

0

(w , gj(s)) ds→
∫ T

0

(w , g(s)) ds =

(
w ,

∫ T

0

g(s) ds

)
as j →∞, proving that pqj ⇀ pq.
Let us show that, for every t ∈ [0 , T ],

(3.5)

∫ t

0

eA(t−s)B
(
G̃−1(pqj )(s)

)
ds ⇀

∫ t

0

eA(t−s)B
(
G̃−1(pq)(s)

)
ds

in H. Consider φ ∈ H and define the linear functional φ̃ : H → R as

φ̃(w) =

(
φ,

∫ t

0

eA(t−s)B
(
G̃−1(w)(s)

)
ds

)
, w ∈ H.

By continuity of B and G̃−1 and by Cauchy-Schwarz inequality in L2(0 , T ), for
every w ∈ H we have∣∣∣φ̃(w)

∣∣∣ ≤ ‖φ‖∥∥∥∥∫ t

0

eA(t−s)B
(
G̃−1(w)(s)

)
ds

∥∥∥∥ ≤ ‖φ‖e‖A‖T ‖B‖√T ∥∥∥G̃−1
∥∥∥ ‖w‖.

Therefore φ̃ is bounded and φ̃(pqj ) → φ̃(pq), then (3.5) follows. As before we can
show that

(3.6)

∫ t

0

Pne
A(t−s)B

(
G̃−1(pqj )(s)

)
ds→

∫ t

0

Pne
A(t−s)B

(
G̃−1(pq)(s)

)
ds.

Then (3.4) and (3.6) imply that Tn(qj)(t) → Tn(q)(t) for every t ∈ [0 , T ] and the
claim is proved.

Proof of Claim 3. By (3.2), for every n ∈ N

(3.7) sup
q∈Qn

N

‖Tn(q)‖∞ ≤ C2

(
‖y1‖+ e‖A‖T [‖y0‖+ ‖ϕN‖1]

)
,

with C2 = 1 + e‖A‖T ‖B‖
√
T
∥∥∥G̃−1

∥∥∥. Recall that, by (f1
3 ),

lim inf
N→∞

‖ϕN‖1
N

= lim inf
N→∞

1

N

∫ T

0

ϕN (s) ds = 0,



EXACT CONTROLLABILITY WITH CONTROLS OF MINIMAL NORM 11

then

lim inf
N→∞

(
‖y1‖+ e‖A‖T ‖y0‖

N
+ e‖A‖T

‖ϕN‖1
N

)
= 0.

Therefore, there exists N̄ > 0 (indipendent of n) such that

1

N̄
sup
q∈QN̄

‖Tn(q)‖∞ ≤ C2

(
‖y1‖+ e‖A‖T ‖y0‖

N̄
+ e‖A‖T

‖ϕN̄‖1
N̄

)
< 1

and the claim is proved.

Finally, applying Schauder’s fixed point theorem we prove that for every n ∈ N
there exists a fixed point yn of Tn. The function yn : [0 , T ]→ Hn with the control

u = G̃−1 (pyn
) is a solution to (Pn) such that yn(T ) = Pny1.

Step 2. We shall prove that the sequence {yn}n found in the previous step, verifying

yn(t) = Pne
Aty0+

∫ t

0

Pne
A(t−s)f(s , yn(s)) ds

+

∫ t

0

Pne
A(t−s)B

(
G̃−1(pyn

)(s)
)
ds,

(3.8)

admits a subsequence converging to a function y : [0 , T ]→ H such that

(3.9) y(t) = eAty0 +

∫ t

0

eA(t−s)f(s , y(s)) ds+

∫ t

0

eA(t−s)B
(
G̃−1(py)(s)

)
ds

and y(T ) = y1. Then y is a solution to (P) and u = G̃−1(py) is the associated
control.
For every N > 0, let QN be the subset of C([0 , T ] , H) defined by

QN = {q ∈ C([0 , T ] , H) : ‖q(t)‖ ≤ N, ∀t ∈ [0 , T ]} .
By Claim 3, for every n ∈ N, yn ∈ QN̄ then, setting gn(t) = f(t , yn(t)),

‖gn(s)‖ ≤ ϕN̄ (s) for a.e. s ∈ [0 , T ].

Hence {gn : n ∈ N} is relatively weakly compact in L1([0 , T ] , H) (see [9] Theo-
rem 1, p. 101) and there exists a subsequence {gnk

}k and g ∈ L1([0 , T ] , H) such
that gnk

⇀ g in L1([0 , T ] , H). Fix t ∈ [0, T ]. A fortiori, gnk
⇀ g in L1([0 , t] , H)

and, as in the proof of (3.5) , it follows that∫ t

0

eA(t−s)gnk
(s) ds ⇀

∫ t

0

eA(t−s)g(s) ds in H.

By Proposition 2.1 (iii)

(3.10) Pnk
eAty0

‖·‖→ eAty0

and

(3.11) Pnk

∫ t

0

eA(t−s)gnk
(s) ds ⇀

∫ t

0

eA(t−s)g(s) ds in H, for every t ∈ [0 , T ],

then

pynk
= y1 − eAT y0 −

∫ T

0

eA(T−s)f(s , ynk
(s)) ds ⇀

⇀ p = y1 − eAT y0 −
∫ T

0

eA(T−s)g(s) ds.

in H. Reasoning as in the proof of (3.5) we get that for every t ∈ [0 , T ]∫ t

0

eA(t−s)B
(
G̃−1(pynk

)(s)
)
ds ⇀

∫ t

0

eA(t−s)B
(
G̃−1(p)(s)

)
ds in H
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and, by Proposition 2.1(iii),

(3.12)

∫ t

0

Pnk
eA(t−s)B

(
G̃−1(pynk

)(s)
)
ds ⇀

∫ t

0

eA(t−s)B
(
G̃−1(p)(s)

)
ds

in H. Finally, by (3.10), (3.11) and (3.12) for every t ∈ [0 , T ] we have

ynk
(t) ⇀ y(t) = eAty0 +

∫ t

0

eA(t−s)g(s) ds+

∫ t

0

eA(t−s)B
(
G̃−1(p)(s)

)
ds

in H and, by compact embedding, ynk
(t)

‖·‖E−−−→ y(t). Therefore, by (f2), for almost
every s ∈ [0, T ],

f(s , y(s)) = lim
k→∞

f(s, ynk
(s))

and, by (f1
3 ),

gnk
= f(·, ynk

(·)) −→ f(· , y(·)) in L1([0 , T ] , E).

Since the dual space of L1([0 , T ] , E) is continuously embedded in the dual space
of L1([0 , T ] , H), a fortiori

gnk
= f(·, ynk

(·)) ⇀ f(· , y(·)) in L1([0 , T ] , H).

Then, by the unicity of the weak limit of {gnk
}k, g(t) = f(t , y(t)) for almost every

t ∈ [0 , T ] and

p = y1 − eAT y0 −
∫ T

0

eA(T−s)f(s , y(s)) ds.

Therefore (3.9) is verified, moreover

y(T ) = eAT y0 +

∫ T

0

eA(T−s)f(s , y(s)) ds+

∫ T

0

eA(T−s)B
(
G̃−1(py)(s)

)
ds

= eAT y0 +

∫ T

0

eA(T−s)f(s , y(s)) ds+GG̃−1(py)

= eAT y0 +

∫ T

0

eA(T−s)f(s , y(s)) ds+ py = y1.

�

Proof of Theorem 3.5. In the proof of previous theorem the strictly sublinearity
condition

lim inf
N→∞

1

N

∫ T

0

ϕN (s) ds = 0

plays a role only in the proof of Claim 3. Then we can repeat all the proof (except
Claim 3) with ϕN (t) = α(t)(1 +N).
It remains to prove that there exists N̄ > 0 such that Tn(Qn

N̄
) ⊆ Qn

N̄
, for every

n ∈ N.
Suppose, by contradiction, that for every N ∈ N there exist n̄ = n̄(N) ∈ N and
qN ∈ Qn̄

N such that Tn̄(qN ) /∈ Qn̄
N . By (3.7) and Tn̄(qN ) /∈ Qn̄

N we have that

N < ‖Tn̄(qN )‖∞ ≤ C2

(
‖y1‖+ e‖A‖T [‖y0‖+ (N + 1)‖α‖1]

)
,

with C2 as in the proof of Theorem 3.4. Now dividing by N the first and the last
term in the previous inequality and passing to the limit for N →∞ we obtain

1 < C2

(
‖y1‖+ e‖A‖T ‖y0‖

N
+ e‖A‖T

(
1

N
+ 1

)
‖α‖1

)
→ C2e

‖A‖T ‖α‖1.

From (f2
3 ) and the definition of C2 it follows

1 ≤ e‖A‖T ‖α‖1
(

1 + e‖A‖T
√
T‖B‖

∥∥∥G̃−1
∥∥∥) < 1,
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a contradiction. �

4. Applications

As an application of the previous results we will prove the controllability for a
control problem of the form

(4.1) zt(t , x) =

∫
Ω

k(x, ξ)z(t, ξ)dξ + g(t , x , z(t , x)) + b(x)u(t , x),

t ∈ [0 , T ], x ∈ Ω, where Ω ⊂ Rn is open, bounded with Lipschitz boundary. It is
not restrictive to suppose that Ω is connected. The nonlinear evolution equation
obtained by (4.1) in the absence of control term, is frequently used for describing
the spatial dispersal of organisms (see e.g. [3] and references therein) where z is the
density of a single species which is considered in an n-dimensional habitat.

Using the previous notations, the Hilbert space U = H = W 1,2(Ω) is compactly
embedded in the Hilbert space E = L2(Ω). In order to rewrite problem (4.1)
in abstract form, we identify z and u respectively with functions t 7→ z(t, ·) and
t 7→ u(t, ·). We look for solution z ∈ AC([0 , T ] ,W 1,2(Ω)) associated to the control
u ∈ L2([0 , T ] ,W 1,2(Ω)).
Suppose that b ∈ W 1,∞(Ω), |b(x)| ≥ b0 > 0 for every x ∈ Ω, and consider the
following assumptions on functions k : Ω× Ω→ R and g : [0 , T ]× Ω× R→ R:

(k) k ∈ C1(Ω× Ω);
(g1) g(· , x , p) : [0 , T ]→ R is measurable for a.e. x ∈ Ω and for every p ∈ R;
(g2) g(t , · , p) : Ω → R is weakly differentiable for a.e. t ∈ [0 , T ] and for every

p ∈ R;

moreover there exist four non-negative functions β, γ, δ, η ∈ L1(0 , T ) such that

(g3) |g(t , x , 0)| ≤ η(t) for a.e. t ∈ [0 , T ] and x ∈ Ω;
(g4) |g(t , x , p1) − g(t , x , p2)| ≤ δ(t)|p1 − p2| for a.e. t ∈ [0 , T ], x ∈ Ω and for

every p1, p2 ∈ R;
(g5) |gxi(t , x , p)| ≤ β(t)|p|+ γ(t) for a.e. t ∈ [0 , T ], x ∈ Ω and for every p ∈ R,

i = 1 . . . n.

Remark 4.1. Condition (g5) implies that for every ball Br ⊂ Ω

(4.2) |g(t , x1 , p)− g(t , x2 , p)| ≤
√
n [β(t)|p|+ γ(t)] ‖x1 − x2‖,

for a.e. t ∈ [0 , T ], for every x1, x2 ∈ Br and p ∈ R.

In order to apply Theorem 3.5 we have to define A, f and B. The bounded and
linear operator A : W 1,2(Ω)→W 1,2(Ω) is

Ay(x) =

∫
Ω

k(x, ξ)y(ξ) dξ, x ∈ Ω, y ∈W 1,2(Ω),

the function f : [0 , T ]×W 1,2(Ω)→W 1,2(Ω) is

f(t, y)(x) = g(t , x , y(x)), t ∈ [0 , T ], x ∈ Ω, y ∈W 1,2(Ω)

and the linear operator B : W 1,2(Ω)→W 1,2(Ω) is

(By)(x) = b(x)y(x), x ∈ Ω, y ∈W 1,2(Ω).

First of all we have to show that A, f and B are well defined.
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The operator B is obviously linear and maps W 1,2(Ω) in itself since b ∈W 1,∞(Ω).

Moreover B is bounded and ‖B‖ ≤
√

2‖b‖1,∞. In fact, for every u ∈W 1,2(Ω)

‖Bu‖1,2 =

(
‖bu‖22 +

n∑
i=1

‖∂xi
(bu)‖22

) 1
2

≤

(
‖b‖2∞‖u‖22 +

n∑
i=1

‖bxi
u+ buxi

‖22

) 1
2

≤

(
‖b‖2∞‖u‖22 + 2

n∑
i=1

[
‖bxi

u‖22 + ‖buxi
‖22
]) 1

2

≤

(
‖b‖2∞‖u‖22 + 2

n∑
i=1

[
‖bxi
‖2∞‖u‖22 + ‖b‖2∞‖uxi

‖22
]) 1

2

≤

(
2‖b‖2∞‖u‖21,2 + 2

n∑
i=1

‖bxi
‖2∞‖u‖22

) 1
2

≤
√

2‖b‖1,∞‖u‖1,2.

Now we have to show that for every t ∈ [0 , T ] and y ∈ W 1,2(Ω), f(t , y(·)) is in
W 1,2(Ω), hence that for almost every fixed t ∈ [0 , T ]:

(i) f(t , y)(·) = g(t , · , y(·)) ∈ L2(Ω);
(ii) for every i = 1, ..., n there exists ∂xi

g(t , · , y(·)) ∈ L2(Ω).

(i) By (4.2) and (g4), for every ball Br ⊂ Ω, for a.e. t ∈ [0 , T ], x1, x2 ∈ Br and for
every p1, p2 ∈ R

(4.3) |g(t , x1 , p1)− g(t , x2 , p2)| ≤ δ(t)|p1 − p2|+
√
n [β(t)|p1|+ γ(t)] ‖x1 − x2‖,

therefore g(t , · , ·) is continuous (locally Lipschitz) in Ω × R, then g(t , · , y(·)) is
measurable. Moreover (g3) and (g4) imply that

(4.4) |g(t , · , y(·))| ≤ δ(t)|y(·)|+ η(t) ∈ L2(Ω).

(ii) g(t , · , ·) is locally Lipschitz, y is absolutely continuous on segments of almost

all straight lines that are parallel to coordinate axes, then also g(t , · , y(·)) is abso-
lutely continuous on the same segments and the weak derivatives coincide with the
classical ones ([12, Theorem 1 p. 4 and Theorem 2 p. 6]). If {ei : 1 ≤ i ≤ n} is
the standard basis in Rn, then by (g2), (g4) and (g5), for a.e. t ∈ [0 , T ], x ∈ Ω and
every h sufficiently small

|g(t , x+ hei , y(x+ hei))− g(t , x , y(x))|
≤ |g(t , x+ hei , y(x+ hei))− g(t , x+ hei , y(x))|

+ |g(t , x+ hei , y(x))− g(t , x , y(x))|
≤ δ(t)|y(x+ hei)− y(x)|+ |h|[β(t)|y(x)|+ γ(t)]

for every i = 1, . . . n. Therefore

(4.5) |∂xi
[g(t , x , y(x))]| ≤ δ(t)|yxi

(x)|+ β(t)|y(x)|+ γ(t) ∈ L2(Ω),

that is ∂xig(t , · , y(·)) ∈ L2(Ω) for a.e. t ∈ [0 , T ] and every y ∈W 1,2(Ω).

Finally we have to prove that Ay ∈ W 1,2(Ω), for every y ∈ W 1,2(Ω). From (k)
we get that for every i = 1, .., n, there exists ∂xi

Ay(x) =
∫

Ω
kxi

(x, ξ)y(ξ) dξ and,
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denoted by K =
√
‖k‖2∞ +

∑n
i=1 ‖kxi

‖2∞, it follows that

‖Ay‖21,2 =

∫
Ω

[∫
Ω

k(x, ξ)y(ξ) dξ

]2

dx+

n∑
i=1

∫
Ω

[∫
Ω

kxi
(x, ξ)y(ξ) dξ

]2

dx

≤ ‖k‖2∞‖y‖22|Ω|2 +

n∑
i=1

‖kxi
‖2∞‖y‖22|Ω|2

Thus A is bounded and ‖A‖ ≤ K|Ω|.

We shall show that hypothesis (f1), (f2), (f2
3 ) and (B) hold.

(f1). We have to prove that, for every y ∈ W 1,2(Ω), the map f(· , y) : [0 , T ] →
W 1,2(Ω) is (weakly) measurable, that is that for every w ∈ W 1,2(Ω) the function
L(f(· , y)) : [0 , T ]→ R defined by

L(f(t , y)) =

∫
Ω

g(t , x , y(x))w(x) dx+

n∑
i=1

∫
Ω

∂xi [g(t , x , y(x))]wxi(x) dx

is measurable.
By (4.3) and (g1), g is a Carathéodory function, then it is globally measurable in
the set [0 , T ]× Ω× R. Moreover, for every measurable y : Ω → R, g(t , x , y(x)) is
measurable too. Since ∂xi

[g(t , x , y(x))] is a.e. limit of measurable functions, it is
measurable. Then the funcion h : [0 , T ]× Ω→ R defined by

h(t , x) = g(t , x , y(x))w(x) +

n∑
i=1

∂xi
[g(t , x , y(x))]wxi

(x)

is globally measurable, hence, by Fubini’s theorem, also L(f(· , y)) is measurable in
[0 , T ].

(f2). For a.e. t ∈ [0 , T ], the function f(t , ·) is continuous with respect to the L2

norm. Indeed, from (g4) it follows that, for every y1, y2 ∈W 1,2(Ω)

‖f(t , y1)− f(t , y2)‖22
=

∫
Ω

|g(t , x , y1(x))− g(t , x , y2(x))|2 dx

≤ δ(t)2

∫
Ω

|y1(x)− y2(x)|2 dx = δ(t)2‖y1 − y2‖22
.

(f2
3 ). In order to verify condition (f2

3 ) we have to prove that, in our hypothesis,

there exists α ∈ L1(0 , T ) such that ‖f(t , y)‖1,2 ≤ α(t)(1+‖y‖1,2) for a.e. t ∈ [0 , T ]
and for every y ∈W 1,2(Ω). By (4.4)

‖f(t , y)‖2 ≤ δ(t)‖y‖2 +
√
|Ω|η(t),

whereas by (4.5)

‖∂xif(t , y)‖2 ≤ β(t)‖y‖2 + γ(t)
√
|Ω|+ δ(t)‖yxi‖2, i = 1, . . . n.

Therefore, for every y ∈W 1,2(Ω),

‖f(t , y)‖21,2 ≤[δ(t)‖y‖2 +
√
|Ω|η(t)]2 +

n∑
i=1

[β(t)‖y‖2 + γ(t)
√
|Ω|+ δ(t)‖yxi

‖2]2

≤[2δ(t)2 + 3nβ(t)2]‖y‖22 + 3δ(t)2
n∑

i=1

‖yxi
‖22 + [2|Ω|η(t)2 + 3nγ(t)2|Ω|]

≤[3δ(t)2 + 3nβ(t)2]‖y‖21,2 + |Ω|[2η(t)2 + 3nγ(t)2] ≤ α(t)2(‖y‖1,2 + 1)2

where α(t) = max
{√

3δ(t)2 + 3nβ(t)2 ,
√
|Ω|[2η(t)2 + 3nγ(t)2]

}
.
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(B). The linear operator G : L2([0 , T ] ,W 1,2(Ω))→W 1,2(Ω) is defined by

Gu =

∫ T

0

eA(T−s)[bu(s)] ds.

Since b ∈ W 1,∞(Ω), |b(x)| ≥ b0 > 0 and {eAt}t∈R is a group, we have that
eA(s−T )w ∈ W 1,2(Ω) for every w ∈ W 1,2(Ω) and s ∈ [0, T ] and the function

s→ u(s) = eA(s−T )w
Tb ∈ L2([0 , T ] ,W 1,2(Ω)). In fact, similarly as for ‖B‖, it follows

that, for every s ∈ [0, T ],

‖u(s)‖1,2 ≤
√

2

T

∥∥∥∥1

b

∥∥∥∥
1,∞

∥∥∥eA(s−T )w
∥∥∥

1,2
≤
√

2

T

∥∥∥∥1

b

∥∥∥∥
1,∞

∥∥∥eA(s−T )
∥∥∥ ‖w‖1,2

≤
√

2

T

∥∥∥∥1

b

∥∥∥∥
1,∞

e‖A‖(T−s)‖w‖1,2

then u is in L2([0 , T ] ,W 1,2(Ω)). Morever, since A generates a group,

G(u) =

∫ T

0

eA(T−s)[bu(s)] ds =
1

T

∫ T

0

eA(T−s)eA(s−T )w ds =
1

T

∫ T

0

w ds = w,

then G is onto.
As to ‖G̃−1‖, for every w ∈W 1,2(Ω) the very same calculations yield

‖G̃−1(w)‖2 ≤ ‖u‖2 =

(∫ T

0

‖u(s)‖21,2 ds

) 1
2

≤
√

2

T

∥∥∥∥1

b

∥∥∥∥
1,∞

(∫ T

0

e2‖A‖(T−s)ds

) 1
2

‖w‖1,2

=

√
2

T

∥∥∥∥1

b

∥∥∥∥
1,∞

e2‖A‖T − 1

2‖A‖
‖w‖1,2.

Finally we can apply Theorem 3.5.

Since r 7→ er−1
r is increasing and

∥∥ 1
b

∥∥
1,∞ ≤

‖b‖1,∞
b2
0

, if

eK|Ω|T ‖α‖1

(
1 + eK|Ω|T

‖b‖21,∞
b20

e2K|Ω|T − 1

K|Ω|
√
T

)
< 1,

with α and K defined above, then (f2
3 ) holds and we can conclude that for every

y0, yT ∈ W 1,2(Ω) there exist ū ∈ L2([0 , T ] ,W 1,2(Ω)) and z̄ ∈ AC([0 , T ] ,W 1,2(Ω))
such that for x ∈ Ω

(4.6)


z̄t(t , x) =

∫
Ω

k(x, ξ)z̄(t, ξ)dξ + g(t , x , z̄(t , x)) + b(x)ū(t , x), t ∈ [0 , T ],

z̄(0 , x) = y0(x),

z̄(T , x) = yT (x).
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