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Abstract: Perfluorooctanoic acid (PFOA) poses particular concern as an emerging pollutant in
both surface and ground waters. Fish, as a natural inhabitant of these waters and being highly
representative of vertebrates, represents an ideal animal model to assess the toxic effects of PFOA.
Hereby, liver microscopic texture was comparatively evaluated in individuals of common carp
subchronically exposed to PFOA using grayscale differential box counting, a fractal analysis method.
Furthermore, liver cytoplasmic glycogen areas and ultrastructure were also evaluated and compared
to the image analysis findings. Redundancy Analysis was performed to assess, in summary, how much
the variation of fractal dimension and lacunarity was explained by the concentration of PFOA in liver,
the mass of liver and the number of proliferating cell nuclear antigen (PCNA)-immunoreactive nuclei.
Treatment group ordination was better determined by fractal dimension than lacunarity. Interestingly,
a significant complexity increase was associated with the modification of liver microscopic texture due
to PFOA exposure. This complexity increase was related to “cloudy swelling”, possibly representing
a primarily adaptive strategy against PFOA challenge, rather than a slight, reversible form of
degeneration as traditionally proposed. The occurrence of endoplasmic reticulum stress, unfolded
protein reaction and hormetic response was proposed and discussed.

Keywords: grayscale differential box counting; fractal analysis; complexity; cloudy swelling;
endoplasmic reticulum stress; hormesis

1. Introduction

Perfluorinated alkylated substances (PFASs) are widely used industrial organic chemicals favored
for their high stability and resistance to degradation. However, it is these very same features
that have made PFASs a rising global concern, as these compounds continue to accumulate in the
environment [1–5].

Among PFASs, perfluorooctanoic acid (PFOA) poses particular concern as an emerging pollutant
because of its water and oil repellence, heat resistance and chemical stability—properties favorable to
its use in a wide range of technical, industrial uses, ranging from fluoropolymers, fabrics, cosmetics,
detergents, fire-fighting foams, to food packaging [2,4,5]. Wide distribution, environmental persistence,
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bioconcentration/bioaccumulation in organisms, biomagnification across food webs, possible toxicity,
carcinogenicity and endocrine disruption in animals are the main concerns for PFOA [1,4,6,7]. Indeed,
PFOA can be found in surface and ground waters, in animals and human beings, even in remote,
unurbanized areas [8–10]. The biotransformation of PFASs is insignificant or absent [11,12], indicating
other mechanisms must underlie the removal from the organism of such substances. In particular,
surface-active properties can influence the enterohepatic recirculation of PFOA and other PFASs,
accounting for their slow depuration rate [11,13]. Toxicological and ecotoxicological studies of PFASs
mainly rely on the liver as a sensitive target of pollutants because of this organ’s crucial role in
animal metabolism and ultimately in the entire health of the organism [1,14–16]. Fish are the most
representative vertebrates and are thus widely used as models in biomedical, toxicological and
ecotoxicological research and in biomonitoring programs [17–22]. Fish models are particularly relevant
to the study of PFASs which are continuously introduced into waters [23–27]. Both gene expression
and enzyme activity are altered in fish liver as a consequence of PFOA exposure, according to species
and exposure regimen [7,28–32].

In a previous study [15], individual samples were analyzed with a combination of texture analysis
and multivariate exploratory data analysis, resulting in a reliable method to investigate the liver
microscopic modification related to PFOA exposure. This combined analysis yielded higher confidence
in the results as well as a more economical approach compared to PFOA analytical determination.
In particular, the selected texture features identified with confidence liver microscopic modification
according to treatment, correlating well with the analytical, hepatic PFOA concentrations, so that the
overall approach may represent an innovative, robust, sufficiently sensible and sensitive biomarker of
exposure and effect [15]. Furthermore, as an alternative means to assess image texture, the grayscale
differential box counting method was adopted for fractal analysis. Results from this approach were
compared to previous outcomes and an increase in the complexity associated with a decrease in the
disorder of the image grayscale pattern was observed, though the biological significance remained
unanswered [33].

Traditional histopathology has been successfully used in toxicological and ecotoxicological studies
in fish [22,34–36]. However, because it relies on trained human operators, it may be affected by
errors. Furthermore, it is not a quantitative discipline and this fact partially impair the adoption of full
statistical analysis on its descriptive and primarily qualitative results [37–39]. Consequently, researchers
are looking for possible objective, replicable methods to reduce and ideally avoid the occurrence of
human-dependent errors [40–44] and the application of image analysis tools to histopathology aims to
achieve these goals [15,18,42,45–47].

The present survey used image analysis to assess carp liver pathogenesis after exposure to PFOA.
Images of liver tissue were evaluated with respect to the relationship between liver pathology and
immunohistochemical data (Proliferating Cell Nuclear Antigen (PCNA)), chemical data (PFOA liver
concentration), liver cytoplasmic glycogen areas, and ultrastructure. The results suggest a possible
involvement of endoplasmic reticulum stress and, consequently, of unfolded protein response as a
biphasic/hormetic reaction which is initially compensatory, adaptive, and finally truly degenerative as
previously supposed [48].

To date, no previous published research focused on the ultrastructural liver pathology as a
consequence of PFOA exposure in fish.

2. Materials and Methods

The experimental design, the immunohistochemical and ultrastructural methods are only briefly
summarized here, because they have already been reported in detail elsewhere [14].

2.1. Fish Selection and Subchronic Exposure

Thirty exemplars of common carp (Cyprinus carpio Linnaeus, 1758) were randomly allocated in
3 groups (10 fish in a control tank; 10 fish in a low dosage exposure tank [200 ng L−1 PFOA]; 10 fish in
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a high dosage exposure tank [2 mg L−1 PFOA]) and treated according to Organization for Economic
Co-operation and Development guidelines [49]. A flow-through system was adopted to maintain the
previously reported PFOA experimental concentrations for the duration of the test (56 days). The tested
concentrations were chosen based on previous reports of PFOA occurrence in surface waters [50,51]
and on previous toxicological reports [29,52]. At the end of the trial fish were sacrificed (pithed) after
anesthesia with buffered solution of tricaine methanesulfonate and the following parameters were
obtained from each exemplars: total length, body mass and liver mass. PFOA concentration in liver
was also evaluated for each fish as previously reported [14].

2.2. Tissue Processing for Light, Transmission Electron Microscopy and Histological Observation

Samples were obtained from the liver of each fish, paying attention to include both the periphery
and the core of the organ and to rule out gross pathology. After fixation in 10% neutral buffered
formalin, the samples were dehydrated, clarified, paraffin embedded, sectioned at 5 µm and stained
with hematoxylin and eosin (H&E).

Indirect immunohistochemistry was adopted on tissue sections to test proliferative cell nuclear
antigen (PCNA) immunoreactivity according to Dezfuli and colleagues (2012) [53].

A bright field microscope equipped with a digital color camera was adopted to observe the
previous and the following tissue sections. Tissue sections were observed at 200× total magnification
and images from homogeneous parenchimatous tissue area were recorded in uncompressed TIFF file
format for texture analysis. The number of PCNA-immunoreactive nuclei was obtained by screening
2 randomly selected field per fish at 400× total magnification and counting 1000 hepatocyte nuclei.

Samples of liver were also fixed in buffered 2% glutaraldehyde and routinely processed for
transmission electron microscopy to obtained ultrathin sections (90 nm). They were stained with
toluidine blue and were examined at light microscopy at 1000× total magnification.

Glycogen percentage cytoplasmic area was assessed, according to treatment groups as follows.
The TIFF color images were binarized using the “Threshold Color” plugin of ImageJ (v1.52r; Rasband
W., National Institute of Health, Bethesda, MD, USA). “Triangle” was adopted as thresholding method
and background was set to dark. The resulting segmented glycogen cytoplasmic areas were reported
as percentage with respect to total area in pixel.

For transmission electron microscopy, ultrathin sections were stained with uranyl acetate and lead
citrate, then observed and photographed with Zeiss EM 910 (Zeiss, Oberkochen, Germany) electron
microscope operating at 120 kV.

2.3. Fractal Analysis

Fractal dimension and lacunarity were computed on grayscale-converted images using the FracLac
Image J plugin [54] with the grayscale differential box counting method, at the default setting, to
preserve grayscale texture information as previously reported [33,48].

2.4. Statistical Analysis

All numerical data (fractal dimension, lacunarity and glycogen percentage cytoplasmic area in
pixel) were assessed for normality and homogeneity of variance. Thereafter, Generalized Linear Model
(GLM) was used to test for significant differences among treatment groups, adopting SPSS® 14.0.2
(SPSS Inc., Chicago, IL, USA) as statistical software.

Redundancy Analysis (RDA) was performed using Canoco 5.12 [55] to assess, in summary,
how much the variation of fractal dimension and lacunarity was explained by the concentration
of PFOA in liver, by the mass of liver and by the number of proliferating cell nuclear antigen
(PCNA)-immunoreactive nuclei. Specifically, fractal dimension and lacunarity were introduced as
main matrix data, while the following biometric/experimental variables were introduced as secondary
matrix data: liver mass, the number of PCNA-immunoreactive nuclei, and PFOA liver concentration.
Total length was used as covariate.
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3. Results

The microscopic appearance of representative sections of liver tissue, according to each treatment
group, is shown in Figure 1. In the liver of PFOA-treated fish (Figure 1b,c), hepatocytes appeared
enlarged and clearer while hepatic sinusoid was less visible compared to untreated, control fish
(Figure 1a), as a result of the compression elicited by the enlarged, degenerated hepatocytes.
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Figure 1. Liver histological sections according to treatment: (a) Control (Ctr), (b) Low dosage
perfluorooctanoic acid (PFOA), and (c) High dosage PFOA. Hematoxylin and eosin. Bar = 50 µm.
Corresponding pseudo-3D landscape images are shown in (a1–c1), where grayscale values (z axis) are
inverted—namely, 0 (black) is at the top of the scale, while 255 (white) is at the bottom of the scale—and
are reported in color code (therefore, violet values correspond to higher grayscale values than do red
values).

The grayscale differential box counting results are summarized in Table 1.

Table 1. Fractal dimension and lacunarity according to exposure group.

N Mean Std.
Dev.

Contrast 1
Ctr vs. Low PFOA

Contrast 2
Ctr vs. High

PFOA

Contrast 3
Low PFOA vs.
High PFOA

Fractal dimension Ctr 10 2.172 0.016 1 p > 0.05 1 p < 0.01 0 p < 0.01
Low

PFOA 10 2.172 0.010 −1 0 1

High
PFOA 10 2.199 0.014 0 −1 −1

Lacunarity Ctr 10 0.011 0.002 1 p > 0.05 1 p < 0.01 0 p < 0.01
Low

PFOA 10 0.011 0.002 −1 0 1

High
PFOA 10 0.014 0.002 0 −1 −1
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Both fractal dimension and lacunarity differed significantly among treatment groups, with the
exception of data from low dosage-treated fish, which did not differ from those of untreated fish.

The results of biometric (liver mass), immunohistochemical (number of PCNA-immunoreactive
nuclei) and analytical data (liver PFOA concentration) are summarized in Table 2.

Table 2. Liver PFOA concentration, liver mass and number of proliferating cell nuclear antigen
(PCNA)-immunoreactive nuclei according to exposure group [15].

N Mean Std.
Dev.

Contrast 1
Ctrl vs. Low

PFOA

Contrast 2
Ctrl vs. High

PFOA

Contrast 3
Low PFOA vs.
High PFOA

Liver PFOA
concentration (ng·g−1) Ctr 10 0.2 * 0.0 1 - 1 p < 0.01 0 p < 0.01

Low
PFOA 10 0.2 * 0.0 −1 0 1

High
PFOA 10 28.4 5.5 0 −1 −1

Liver mass (g) Ctr 10 2.7 0.7 1 p < 0.05 1 p > 0.05 0 p < 0.05
Low
PFOA 10 3.6 1.0 −1 0 1

High
PFOA 10 2.6 0.8 0 −1 −1

PCNA-immunoreactive
nuclei Ctr 10 17.2 10.4 1 p = 0.059 1 p = 0.057 0 p > 0.05

Low
PFOA 10 47.2 43.3 −1 0 1

High
PFOA 10 45.9 40.9 0 −1 −1

* Values under the limit of detection (LOD) were set to LOD·2−1.

The RDA ordination tri-plot of fractal analysis data (fractal dimension and lacunarity), biometric
(liver mass and total length as covariate), immunohistochemical (number of PCNA-immunoreactive
nuclei) and analytical data (liver PFOA concentration) is shown in Figure 2.
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Figure 2. Redundancy Analysis (RDA) ordination tri-plot of grayscale differential box counting features
and biometric (liver mass, number of PCNA-immunoreactive nuclei) and analytical (liver PFOA
concentrations) data. Fractal dimension and lacunarity are reported as blue vectors, whereas liver mass,
number of PCNA-immunoreactive nuclei and liver PFOA concentration as red vectors. The partial
superimposing of the Ctr and Low dosage PFOA convex hulls is visible (�, Ctr; N Low PFOA; � High
PFOA).

The cumulative percentage variance of response data and of fitted response data for axis 1 and 2
was, respectively, 66.0 and 66.8 and 98.9 and 100.0. The test of significance of all canonical axes (axes 1
and 2) showed a p value < 0.01. The percentage contribution of the selected second matrix variables
was: PFOA liver concentration, 61.6 (p < 0.01); liver mass, 28.3 (p < 0.01); PCNA-immunorective nuclei,
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7.5 (p = 0.06). Only cases from the high dosage group did not show any convex hull superimposing,
being regrouped only in the 4th Cartesian quadrant (with the exception of one case). The contrasting
cases from untreated and low dosage-treated fish were regrouped in all the first three Cartesian
quadrants, with a partial superimposing of the relative convex hulls (Figure 2). This ordination
result is confirmed by Anova, reporting no significant differences between fractal dimension and
lacunarity values from untreated fish compared to low dosage-treated fish (Table 1). Because the score
scaling of the previous reported ordination tri-plot is of compromise type (with standardized grayscale
differential box counting data scores), the t-value bi-plot (Figure 3) and the second matrix variables
(biometric [liver mass and total length as covariate], immunohistochemical [PCNA-immunoreactive
nuclei] and analytical data [liver PFOA concentration]) plot (Figure 4) are also shown.
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With regard to the t-value bi-plot (Figure 3), it estimates the t-values of the regression coefficients,
from the multiple regression with a particular grayscale differential box counting feature, as the
response variable, and the second matrix variables (biometric [liver mass and total length as covariate],
immunohistochemical [PCNA-immunoreactive nuclei] and analytical data [liver PFOA concentration])
as predictors. The arrowheads, of the latter variables can be projected on the ideal line overlapping the
arrow of a specific grayscale differential box counting feature, so that, if such projection lies on this ideal
line further from the arrowhead of that grayscale differential box counting feature, the corresponding
t-value of regression coefficient is deduced to have a value larger than 2. This held true for both the
regression coefficient of liver PFOA concentration and of liver mass with respect to fractal dimension
and lacunarity and for the regression coefficient of the number of PCNA-immunoreactive nuclei only
with respect to lacunarity, though the t-value of the regression with fractal dimension approaches that
value (Figure 3).

Considering Figure 4, each arrow is direct toward the sharpest increase in second matrix variable
values. The correlation between second matrix variables can be estimated from the angle formed
by each couple of arrows. In particular, correlations of an individual second matrix variable with
the other variables can be estimated by projecting their arrowheads on the ideal line overlaying that
variable’s arrow. Moreover, the coordinates of each arrow tip from the second matrix variables are
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correlations of the corresponding variable with the ordination axes. Therefore, liver PFOA concentration
correlated with PCNA-immunoreactive nuclei and did not correlate with liver mass. On the contrary,
PCNA-immunoreactive nuclei correlated with liver mass (Figure 4).
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Light microscopy evaluation of liver ultrathin sections established the cytoplasm modifications in
hepatocytes according to treatment group (Figure 5). In particular, hepatocytes from the control group
showed a prominent cytoplasmic clearer area (Figure 5a) corresponding to the cytoplasmic glycogen
areas seen with the Periodic Acid–Schiff (PAS) reaction in previous research [15]. A portion of darker
cytoplasm could be seen as a thin rim around the nuclei (Figure 5a). In contrast, in PFOA-treated fish, the
cytoplasmic clearer areas were percentually reduced with respect to total tissue areas and to the darker
cytoplasm portions that increased according to PFOA dosage (compare Figure 5a with Figure 5b,c).
Moreover, the darker portion of the cytoplasm showed vacuolizations according to treatment. The
adoption of image analysis techniques permitted an unbiased analysis of this cytoplasmic area, which
was disproportionate with respect to treatment, as shown in Figure 5a1–c1,a2–c2.
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Figure 5. Liver structure according to treatment group: (a) Ctr, (b) Low dosage PFOA, and (c) High
dosage PFOA. Hepatocytes from the control group showed a prominent cytoplasmic clearer area,
corresponding to glycogen area. A portion of darker protoplasm could be appreciated as a thin rim
around the nuclei. In PFOA-treated fish, the cytoplasmic glycogen areas were percentually reduced
with respect to the darker cytoplasm portions that increased according to PFOA dosage. Moreover,
with PFOA treatment, the darker portion of the protoplasm showed vacuolizations. Ultrathin sections.
Toluidine blue. Bar = 10 µm. The color thresholding procedure was depicted in (a1–c1), showing the
red superimposed glycogen areas. Finally corresponding segmented areas are shown in (a2–c2).

In particular, all groups differed significantly among each other (ctr vs. low dosage PFOA, Anova
p < 0.01; ctr vs. high dosage PFOA, Anova p < 0.01; low dosage PFOA vs. high dosage PFOA, Anova p
< 0.05) (Figure 6).
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Figure 6. Mean and 95% confidence intervals of glycogen area percentage (with respect to total area in
pixel) according to treatment. Means with different letters differ significantly. In particular, uppercase
letters highlight p < 0.01 (Anova) and are significant differences; lowercase letters highlight p < 0.05
(Anova) and are significant differences.

Examination of hepatocyte ultrastructure in unexposed fish showed a clear compartmentation
of the cytoplasm with a wide area replete with densely packed glycogen particles and a smaller
perinuclear cytoplasmic area containing principally rough endoplasmic reticulum, mitochondria
and lipid droplets (Figure 7a). PFOA treatment affected hepatocyte ultrastructure according to the
dosage. In contrast to control hepatocytes the perinuclear cytoplasm of PFOA-exposed hepatocytes
appeared enlarged compared to the glycogen area, rough endoplasmic reticulum was also enlarged
and showed dilated cisternae, replete with flocculent content (Figure 7b–d). Moreover, mitochondria
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showed structural changes ranging from ballooned to disintegrated cristae and matrix vacuolization.
Autophagosomes were also appreciable, according to the recommendations of Eskelinen (2008) [56],
together with myelin figure formation (Figure 7b,c).Int. J. Environ. Res. Public Health 2019, 16, x FOR PEER REVIEW 9 of 16 
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Figure 7. Liver ultrastructure according to treatment group: (a) Ctr, (b,c) Low dosage PFOA, and
(d) High dosage PFOA. Ctr fish (a) showed a clear compartmentation of the cytoplasm with a wide
area replete with densely packed glycogen particles (gly) and a smaller perinuclear cytoplasmic area
containing principally rough endoplasmic reticulum (rer), mitochondria (white thin arrows) and
lipid droplets (l). PFOA treatment affected hepatocyte ultrastructure according to the dosage. In
particular, the perinuclear cytoplasmic area appeared enlarged compared to the glycogen area (gly); the
rough endoplasmic reticulum (rer) was enlarged and showed dilated cisternae, replete with flocculent
content (black thin arrows in d). Moreover, mitochondria showed alteration ranging from ballooned
(arrowheads in b) to disintegrated cristae and matrix vacuolization (arrowheads in c). Autophagosomes
were also appreciable (black and white asterisks in b and c, respectively), together with myelin figure
formation (thick arrow and double arrowheads in c). N = nucleus; bc = bile canaliculus. Bar = 1000 nm.

4. Discussion

The pathological changes observed in PFOA-treated liver, using both light and electron microscopy,
are attributable to cloudy swelling. From a historical perspective, cloudy swelling (trübe Schwellung
according to Virchow) has been considered as a slight, reversible form of cell degeneration [57,58]. In
particular, it was observed as an increase in cellular protein content despite impairment of oxidative
phosphorylation, thus presenting a paradox. Nevertheless, an increase in protein content was
ascribed to a positive protein balance as a consequence of the impaired protein degradation and to
the synthesis of chaperones protecting proteins from further denaturation [58]. More recently, the
possible involvement of endoplasmic reticulum stress has been suggested, based on the ultrastructural
changes found in rough endoplasmic reticulum and mitochondria [59]. Biomolecular analysis reveals
that protein overexpression in cloudy swelled sheep hepatocytes was compatible with endoplasmic
reticulum stress and, consequently, such a pathological state should be referred to as an early
cellular defense mechanism [60], possibly acting initially as an adaptive strategy, rather than a mere
degenerative change [61]. The cloudy swelling appearance is related to dilated/swollen mitochondria
and, interestingly, in an earlier study, PFOA increased mitochondrial membrane permeability, leading
to impaired aerobic ATP production and liver glycogen depletion to sustain the compensatory anaerobic
ATP production [62]. Furthermore, the occurrence of endoplasmic reticulum stress and of the unfolded
protein response have both been described in murine hepatic cells exposed to PFOA [59]. In a
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mechanistic toxicity study of PFOA in zebrafish, Hagenaars and colleagues proposed mitochondrial
dysfunction as an extreme, irreversible change, leading to apoptosis, also emphasizing the enhanced
cell turnover both at the subcellular and cellular level [62]. Signs of enhanced turnover, both at the
subcellular and cellular level, related to PFOA exposure class were documented during the present
survey, respectively as autophagosomes (PFOA is known to cause ER stress with the activation of
authophagy [63]) and myelin figure formation and also as PCNA-positive nuclei, an indirect index of
cellular mitosis [53,64]. Glycogen depletion, matrix vacuolization of mitochondria, and dilated cisternae
of endoplasmic reticulum were also observed during the present survey and are strongly indicative of
the possible involvement of endoplasmic reticulum stress, where the observed flocculent content inside
endoplasmic reticulum may account for protein traffic impairment due to misfolded/unfolded protein
retention. Endoplasmic reticulum stress may result in apoptosis in case of irreversible changes or in a
conservative cell response mediated by the unfolded protein response that promote the proper protein
folding in order to restore cell protein traffic [65–67]. This twofold, dose-dependent response is known
as hormesis and is widely reported, though often neglected and misunderstood in pharmacology and
toxicology [68,69].

Object complexity can be effectively approached by means of fractal analysis in terms of change
in detail with respect to change in scale. As a result, fractal dimension measures the complexity, the
“roughness”, whereas lacunarity measures the rotational invariance, the heterogeneity (texture) of an
image [70–75]. Mathematically speaking, fractal objects have a definite fractal dimension which does
not vary according to scale (so named self-similarity and scale-invariance) [72]. Though applicable to
mathematical objects, such definition does not apply to natural objects where self-similarity properties
are present on average and only in a limited scale range, referring more properly to “statistical
self-similarity”, “partial self-similarity” or “self-affinity” [70,71,76]. Interestingly, fractal box counting
applies also to real objects not strictly self-similar [77], not being the latter property mandatory for
fractal analysis according to recognized authors [70,76,78]. Fractal analysis has proven useful to
deal with complexity in bio-medical imaging and diagnosis [73–75] and has also been applied to fish
histology [18,79–81]. During the present survey, grayscale differential box counting was utilized to
assess the complexity variation of the microscopic texture in liver of carp due to PFOA exposure.
Grayscale differential box counting is performed by projecting two-dimensional grayscale images into a
pseudo-three dimensional space, where the third dimension is represented by the intensity (namely the
gray value) of each pixel. The differential box counting method relies on the difference in pixel intensity
within a box [54]. Such a method was adopted because it is better suited for texture analysis, referring
fractal dimension and lacunarity, respectively, to complexity and rotational invariance of the grayscale
distributional pattern (namely the texture), compared to fractal analysis applied to segmented images,
where pixels are reduced to the binary logic (1–0; on–off; existence–non-existence) [33,45,48]. In a
previous study on the same experimental material, texture analysis was assessed by means of other
computation methods, and the extracted and selected features were analyzed using Linear Discriminant
Analysis to assess their discriminative power with respect to the exposure classes (untreated, low
dosage, high dosage) [15]. It was also noted that the increase in the PFOA liver concentration was
associated with an increase in fractal dimension and lacunarity (grayscale complexity), preliminarily
measured by means of grayscale differential box counting, and conversely with a decrease in Sum
Entropy (the disorder of a vector form the gray level co-occurrence matrix), though the possible
biological significance was not specifically addressed [33]. Basing upon the theory of information, and
referring to a system, the complexity is the amount of information necessary to describe the system [82].
According to the theory of communication, the more the entropy of a system increases, the more
the related information decreases [82,83], and therefore the relationship of the previously reported
negative correlation (namely fractal dimension and lacunarity increase and Sum Entropy decrease)
appears meaningful.

Recently, the traditional tendency to dichotomize health and disease, physiological and
pathological, has been revisited, leading to the idea that disease should be considered as a loss
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of inherent complexity, rather than a loss of order. Accordingly, fractal analysis has been used to assess
how complexity was reduced as a consequence of pathological changes in biological systems assumed
to behave as “chaotic” systems [84,85]. In the present survey, a significant complexity increase was
associated with the modification of liver microscopic texture due to PFOA exposure. Nevertheless, this
apparently contradictory behavior should be related to reversible changes (cloudy swelling), possibly
representing a primarily adaptive strategy rather than a slight, reversible form of degeneration as
traditionally proposed, to cope with PFOA challenge as suggested by other authors [61]. As noted
earlier, protein overexpression has been reported in sheep liver during cloudy swelling [60] and this
fact is compatible with an informative increase, and accordingly with a decrease in entropy and an
increase in complexity as reported during the present survey. Moreover, the possible occurrence of a
compensatory, adaptive unfolded protein response and hence of a hormesis [86] should be considered,
where a true degenerative, irreversible response leading to apoptosis overcomes the previous, leading
to a substantial and true pathological loss of complexity.

5. Conclusions

The application of grayscale differential box counting showed a clear complexity increase
associated, both structurally and ultrastructurally, to “cloudy swelling” as a consequence of PFOA
exposure. This complexity increase agreed with previous outcomes on the same experimental
material, obtained by means of another texture analysis method, where a decrease in disorder in the
grayscale pattern was similarly associated with PFOA exposure [15]. Though cloudy swelling has
been considered as a slight, reversible form of cell degeneration, it should be regarded as an initial
adaptive strategy to cope with PFOA challenge, possibly related to endoplasmic reticulum stress and
unfolded protein response, thereby linking the morphological (grayscale pattern) with the functional
(protein overexpression) complexity increase.
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