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CH-1211 Genève 4, Switzerland
4Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa, Italy
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We investigate the weak lensing corrections to the CMB polarization anisotropies. We concentrate on the
effect of rotation and show that the rotation of polarization is a true physical effect which has to be taken
into account at second order in perturbation theory. We clarify inconsistencies on the treatment of this
rotation in the recent literature. We also show that at first order in perturbation theory there is no rotation of
polarization also for vector and tensor modes.
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I. INTRODUCTION

Cosmology has made enormous progress in the last
20 years from an order of magnitude into a precision
science. At a closer look, much of this is due to the cosmic
microwave background (CMB). There is a wealth of high
precision data on the anisotropies and the polarization of
the CMB, to a large extent dominated at present by the
Planck data [1,2]. Moreover, there are also other important
experiments which are more precise on smaller scales
[3–6]. CMB data are so precious because we understand
them very well, see e.g., [7], which comes from the fact that
we can use, to a large extent, linear perturbation theory to
interpret them. Since the initial perturbation spectrum from
inflation is simple, we can estimate the cosmological
parameters, on which the linear transfer functions sensi-
tively depend, with high precision.
The main nonlinearity which is relevant in our under-

standing of the CMB is lensing: due to the presence of
massive foreground structures, CMB photons are deflected
and arrive at the observer from a direction which does not
agree with the direction of emission, see [8] for a review of
CMB lensing. Note that if the CMB would be perfectly
isotropic, δT ≡ 0, lensing would have no effect on the
CMB. In this sense, CMB lensing goes beyond linear
perturbation theory; we need both temperature fluctuations
and fluctuations in the foreground geometry. On small
scales, lensing is quite important and it changes the inferred
fluctuation and polarization spectra by 10% and more at
harmonics l≳ 1000, corresponding to angular scales
θ < π=1000 ≃ 100. This lensing of CMB anisotropies

and polarization has been observed in several experiments;
see, e.g., [9–12].
The importance of the effect has prompted several of us to

investigate whether higher order contributions to it might be
relevant for future, high precision S4 type [13] experiments
or future satellites [14–16]. In the standard treatment, the
contributions from the first order deflection angle are
“summed up” assuming Gaussianity. Including this non-
linearity, which is standard in present CMB codes like CAMB

[17] or CLASS [18,19], is relevant for a precise analysis of
recent experiments like Planck. However, in this treatment,
the deflection angle is always calculated in the so-called Born
approximation, i.e., by integrating the lensing potential along
the unperturbed photon geodesic. At second order this is no
longer correct and a treatment beyond the Born approxima-
tion is in principle requested. Recent works [20–30] have
considered this and other effects including, in several steps,
most higher order contributions to CMB lensing.
In most of their calculations, presented in Refs. [20–24,

26], the results of the two groups involved in the analytic
and numerical evaluation of the higher order effects are in
reasonable agreement, but there is one exception which is the
subject of the present work: in principle, parallel transport
can lead to a rotation of the Sachs basis, i.e., the orthonormal
basis on the “screen” normal to the photon direction and to
the four velocity of the observer, by an angle which we can
call α. In this case, the polarization tensor rotates by −α and
changes the complex polarization P ¼ Qþ iU by P ↦
expð−2iαÞP which affects the polarization spectrum and
especially induces B polarization from an original E-polari-
zation spectrum. B polarization is already induced by the
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effect of remapping by lensing at first order and this has been
measured by several experiments [4,11,31]. This rotation
could reduce the delensing efficiency of gradient based
methods [32] and therefore the sensitivity of next generation
CMB experiments to the tensor-to-scalar ratio.
In particular, using the so-called geodesic light-cone

(GLC) gauge [33–35], in Ref. [23] it has been estimated
that the contribution of B modes from rotation is at the
percent level for l > 2500. This effect induced by the
rotation field could, therefore, affect in a non-negligible
way the reconstruction of the tensor-to-scalar ratio r for
future experiments [13,14]. If this is correct, this rotation is
of uttermost importance for the analysis of these experi-
ments. However, in Ref. [26] the authors show that, in
longitudinal gauge, the Sachs basis does not rotate. In fact,
we shall show that in this gauge, a spatial vector normal to
the photon direction does not rotate at any order when
parallel transported along the photon geodesic in a quasi-
Newtonian gravitational potential. The authors of Ref. [26]
therefore argue that higher order lensing effects on the
CMB polarization are very small and can be safely
neglected in the analysis of planned experiments. At first
sight, this suggests that the rotation angle of the polariza-
tion tensor parallel transported from the last surface
scattering to the observer may be gauge dependent.
This is the present state of affairs. The CMB power

spectra, however, are observables and cannot depend on the
coordinate system which is used to compute them.
Therefore, either the conclusion of Ref. [26] or the one
of Ref. [23] (or both) must be wrong. The important
question is: rotation with respect to what is relevant for
the CMB spectra? As already discussed in [23] (see
beginning of Sec. VI), this cannot be the rotation with
respect to some arbitrarily chosen coordinate system, but it
must be a physically defined rotation.
In the next section, we show that the relevant rotation is

the one of the Sachs basis with respect to the direction of a
vector connecting neighboring geodesics. Since this geo-
desic deviation vector is Lie transported along the photon
geodesic, this means that the relevant rotation angle α is the
change in the angle between a Lie transported and a parallel
transported vector in the screen. In more detail, as we shall
clearly show in the next section, in an arbitrary coordinate
system the physical angle α is given by the sum β þ ω,
where β is the rotation of the Sachs basis with respect to an
arbitrary fixed basis while ω gives the rotation of the
geodesic deviation vector in the fixed basis (hence the
change of the angle between the parallel transported
polarization direction and the direction of the geodesic
deviation vector is −β − ω ¼ −α). We also show that, for
scalar perturbation, this is exactly the angle β calculated in
[23] to second order.1 In longitudinal gauge, the parallel

transported Sachs basis does not rotate but the geodesic
deviation vector of neighboring photon geodesics rotates at
second order by the angle ω given by the amplification
matrix, (∂n=∂n0) (where n is the incoming photon direc-
tion and n0 is the source direction) of the lens map at second
order. Denoting this angle in longitudinal gauge by ωLG,
this is consistent with the finding αGLC ¼ ωLG of [23].
The remainder of this work is structured as follows: in

Sec. II we derive the relation between the angles ω, β and
the CMB polarization power spectra. In Sec. III, we show
that in first order perturbation theory β þ ω vanishes not
only for scalar but also for vector and tensor perturbations.
In Sec. IV, we calculate this rotation angle to second order
for scalar perturbation in longitudinal gauge where we find
again the result derived in Ref. [23]. In Sec. V, we briefly
discuss our findings and conclude. In the Appendix A,
we give some technical details, while in Appendix B we
show the equivalence between the derivation presented
in this manuscript and the previous one in Ref. [23]. In
Appendix C, we present analytic approximations for the
slope of the spectra at high and low l.
All the calculations are performed in the flat sky approxi-

mation, see [7,8], which is sufficient if we are interested in
spherical harmonics with l > 50. Furthermore, numerical
results are obtained within the Limber approximation
[36,37], which works very well for CMB lensing (CMB
lensing is appreciable only for l ≥ 100, where the Limber
approximation is very close to the exact solution). We also
do not consider effects from lensing beyond the Born
approximation which are not related to lensing rotation.
This is mainly because on these effects the referen-
ces [20,22,26] and [21,23,24] agree reasonably well. But
also since for high l rotation is the dominant effect on
the B-polarization spectrum. We also do not discuss here the
dominant lensing terms which can be obtained within the
Born approximation as these are well known; see, e.g., [7,8]
and there is no controversy concerning these terms.

II. CMB SPECTRA

Throughout we shall work within the flat sky approxi-
mation which is fully sufficient for harmonic modes
l > 100. Let us consider two points in the sky, x and
x0. They may have a slightly different temperature and
different polarization. Here we are interested in the polari-
zation. Since Thomson scattering only produces linear
polarization, we expect the Stokes parameter V to vanish
and introduce the complex polarization

PðxÞ ¼ QðxÞ þ iUðxÞ; ð2:1Þ

which of course depends on the orientation of our coordinate
system. P has helicity 2 and transforms under a rotation
of the basis by an angle θ as PðxÞ ↦ expð−2iθÞPðxÞ. In
Fourier space, we can express P, and its complex conjugate
P� ¼ Q − iU, in terms of E and B polarizations as [38]

1According to the definition made here in [23] α has been
identified with β (see Sec. II).
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PðxÞ ¼ QðxÞ þ iUðxÞ

¼ −
Z

d2l
2π

½EðlÞ þ iBðlÞ�e2iφleil·x; ð2:2Þ

P�ðxÞ ¼ QðxÞ − iUðxÞ

¼ −
Z

d2l
2π

½EðlÞ − iBðlÞ�e−2iφleil·x; ð2:3Þ

where φl is the polar angle of the two-dimensional (2D)
vector l. Inversely

EðlÞ þ iBðlÞ ¼ −
Z

d2x
2π

PðxÞe−2iφxe−il·x; ð2:4Þ

EðlÞ − iBðlÞ ¼ −
Z

d2x
2π

P�ðxÞe2iφxe−il·x; ð2:5Þ

where φx is the polar angle of x (see, e.g., [7]). In the above
integrations, one can of course fix the nonintegrated variable
along the abscissa axis so that φ denotes the angle between l
and x in both cases.
In the flat sky approximation, the power spectra of the E

and B polarization are defined by

hEðlÞE�ðl0Þi ¼ δðl − l0ÞCE
l ; ð2:6Þ

hBðlÞB�ðl0Þi ¼ δðl − l0ÞCB
l : ð2:7Þ

The Dirac delta function is a consequence of statistical
isotropy (which corresponds to statistical homogeneity on
the flat sky) and we request statistical parity invariance so
that the correlations between E and B vanish.
We now want to correlate PðxÞ with Pðx0Þ which, by

statistical isotropy depends only on s ¼ x − x0. In order to
define a correlation function which is independent of the
orientation of the basis ðe1; e2Þ, we determine the polari-
zation with respect to a new basis ðe01; e02Þ with e01 ¼ ŝ, the
unit vector in direction s. This new polarization is then
given by

PsðxÞ ¼ e−2iφsPðxÞ; ð2:8Þ

where φs is the polar angle of s with respect to the original
basis ðe1; e2Þ. With respect to the new intrinsic basis
ðe01; e02Þ, we now define

ξþðsÞ ¼ hP�
sðxÞPsðx0Þi ¼ hP�ðxÞPðx0Þi

¼ hQðxÞQðx0Þi þ hUðxÞUðx0Þi; ð2:9Þ

ξ−ðsÞ ¼ hPsðxÞPsðx0Þi ¼ he−4iφsPðxÞPðx0Þi
¼ hQsðxÞQsðx0Þi − hUsðxÞUsðx0Þi: ð2:10Þ

The terms hQsðxÞUsðx0Þi vanish since they change sign
under parity, s → −s, and we assume statistical parity

invariance of the signal. In terms of the E and B power
spectra, we obtain

ξþðsÞ ¼
1

2π

Z
∞

0

dll½CE
l þ CB

l �J0ðlsÞ; ð2:11Þ

ξ−ðsÞ ¼
1

2π

Z
∞

0

dll½CE
l − CB

l �J4ðlsÞ: ð2:12Þ

For this, we simply use Eqs. (2.2), (2.3) and (2.6), (2.7), as
well as the identity

ð−iÞn
2π

Z
2π

0

dφ eniφþiy cosφ ¼ JnðyÞ;

where Jn denotes the Bessel function [39] of order n.
Equations (2.11), (2.12) are readily inverted to

CE
l þ CB

l ¼ 2π

Z
∞

0

ds sξþðsÞJ0ðlsÞ; ð2:13Þ

CE
l − CB

l ¼ 2π

Z
∞

0

ds sξ−ðsÞJ4ðlsÞ: ð2:14Þ

We first concentrate on the rotation of the polarization
only. We shall see that this contribution dominates. Let us
assume that at position x lensing rotates the polarization
basis by parallel transport by some angle βðxÞ, ðe1 þ ie2Þ ↦
expðiβðxÞÞðe1 þ ie2Þ. Furthermore, vectors or tensors
have to be transformed with the Jacobian of the lens
map.2 Here we only consider the rotation, ω, by which
the unlensed tangent vectors have to be transformed. Hence,
the system ðe01 þ ie02Þ describing the basis along the
unlensed direction s at x is rotated by ωðxÞ ðe01 þ ie02Þ ↦
expðiωðxÞÞðe01 þ ie02Þ. Introducing the relative angle
α ¼ β þ ω, we infer from Eq. (2.8) that the polarization
oriented with respect to ðe01; e02Þ is rotated by −α (and
correspondingly for x0). The different angles are represented
in Fig. 1 for the case of scalar perturbations in Poisson gauge
(see Secs. III and IV). Denoting the rotated polarization
by P̃r, we have

P̃r
sðxÞ ¼ e−2iαðxÞe−2iφsPðxÞ; ð2:15Þ

P̃r
sðx0Þ ¼ e−2iαðx0Þe−2iφsPðx0Þ: ð2:16Þ

Correspondingly, the lensed correlation functions ξ�
pick up a factor expð−2iðαðxÞ ∓ αðx0ÞÞÞ from a rotation.
It is this and only this angle α ¼ ωþ β which is truly
observable. The angle by which a tangent vector is rotated
by the lens map, i.e., the rotation of a vector connecting two
neighboring geodesics, which is Lie transported, and the

2By this we mean the standard fact that under a transformation
x ↦ ϕðxÞ, vectors transform with vðxÞ ↦ ϕ�ðxÞvðϕðxÞÞ, where
ϕ� denotes the tangent map.
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Sachs basis which is parallel transported. Note that for
clarity we take into account here only the rotation induced
by lensing, neglecting all other effects from lensing even
though they may be significantly larger.
More precisely

ξ̃rþðsÞ ¼ heþ2iðαðxÞ−αðx0ÞÞiξþðsÞ; ð2:17Þ

ξ̃r−ðsÞ ¼ he−2iðαðxÞþαðx0ÞÞiξ−ðsÞ: ð2:18Þ

Here we assume that we can neglect the correlations of the
unlensed polarization (mainly produced at the last scatter-
ing surface) and the deflection angles (generated by fore-
ground structures). We now use a relation which is strictly
true only for Gaussian variables, but we assume that the
non-Gaussianity of α gives a subdominant contribution
with respect to the leading order effect. Assuming
Gaussianity, we can set

heþ2iðαðxÞ−αðx0ÞÞi ≃ e−2hðαðxÞ−αðx0ÞÞ2i

¼ e−4ðCαð0Þ−CαðsÞÞ; ð2:19Þ

he−2iðαðxÞþαðx0ÞÞi ≃ e−2hðαðxÞþαðx0ÞÞ2i

¼ e−4ðCαð0ÞþCαðsÞÞ; ð2:20Þ

where we have introduced the correlation function of the
angle α,

CαðsÞ ¼ hαðxÞαðx0Þi; s ¼ jx − x0j:

Using Eqs. (2.13) and (2.14), we then find the following
result for rotation induced B spectrum:

C̃Br
l ¼ π

Z
∞

0

ds s½ξ̃rþðsÞJ0ðlsÞ − ξ̃r−ðsÞJ4ðlsÞ� ¼ πe−4Cαð0Þ
Z

∞

0

ds s½ξþðsÞJ0ðlsÞe4CαðsÞ − ξ−ðsÞJ4ðlsÞe−4CαðsÞ�

¼ 1

2
e−4Cαð0Þ

Z
∞

0

ds s
Z

∞

0

dl0l0CE
l0 ½J0ðl0sÞJ0ðlsÞe4CαðsÞ − J4ðl0sÞJ4ðlsÞe−4CαðsÞ�

≈
1

2

Z
∞

0

ds s
Z

∞

0

dl0l0CE
l0 ½J0ðl0sÞJ0ðlsÞe4CαðsÞ − J4ðl0sÞJ4ðlsÞe−4CαðsÞ�; ð2:21Þ

where we have assumed no primordial B modes. The
second line of Eq. (2.21) shows that the correction due to
the variance of α, Cαð0Þ factorizes and contributes to a
constant shift in the spectrum of the B modes. This
confirms what has been found in [23] at the leading order,
where this variance has been estimated to be of order
10−4–10−5 depending on the spectrum used. This justifies
the approximation made in the last line of Eq. (2.21). For a
practical calculation, the exponentials in the integrand of
Eq. (2.21) can be further expanded, giving the leading
result

C̃Br
l ¼ 2

Z
∞

0

dssCαðsÞ
Z

∞

0

dl0l0CE
l0 ½J0ðlsÞJ0ðl0sÞ

þ J4ðlsÞJ4ðl0sÞ�; ð2:22Þ

where we have used
Z

∞

0

dssJnðlsÞJnðl0sÞ ¼ 1

l
δðl − l0Þ: ð2:23Þ

With similar manipulations, we find the rotation of the E
spectrum,

FIG. 1. We show schematically the rotation of the polarization
for scalar perturbations in Poisson gauge. The polarization vector
(orange) is parallel transported from the source to the observer
plane and does not rotate wrt the arbitrary basis fe1; e2g, here
chosen to align with an unlensed elliptical image (β ¼ 0). The
image (green) and the separation vector s (with the basis fe01; e02g)
are Lie transported and they rotate by an angle ω. The physical
effect is due to the gauge invariant angle α ¼ β þ ω which is
generated by the different rotations induced by a parallel transport
with respect to a Lie transport.
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C̃Er
l ¼ ½1 − 4Cαð0Þ�CE

l þ 2

Z
∞

0

dssCαðsÞ

×
Z

∞

0

dl0l0CE
l0 ½J0ðlsÞJ0ðl0sÞ

− J4ðlsÞJ4ðl0sÞ�: ð2:24Þ

From our derivation it becomes clear that the polarization
Ps which enters the calculation of the E and B power
spectra depends on α and is rotated by it when s or/and e1 is
rotated. Whether one or the other or both are rotated
depends on the chosen coordinate system, but the sum of
the two rotation angles, the total rotation, is physical. In
previous calculations of one group [20,22,26], longitudinal
gauge (LG) was used where, as we shall see, β vanishes but
ω is nonzero at second order. In the calculations of the other
group [21,23,24], geodesic light-cone (GLC) gauge [33]
was used, where directly the angle α of the rotation of the
Sachs basis, ðe1; e2Þ, with respect to the incoming photon
direction, is determined. There it has been shown that
αGLC ¼ ωLG at second order for scalar perturbations.
Indeed, according to what we have shown so far, the

rotation between the displacement vector of two null
geodesics ξμ and the polarization vector ϵμ of a photon
is given by

cos α ¼ ξ̂μϵ̂μ ¼ ξ̂Aϵ̂A; ð2:25Þ

where hatted quantities are normalized vectors, eAμ is the
Sachs basis and we have defined ξ̂A ≡ ξ̂μeAμ and ε̂A ≡ ε̂μeAμ .
Because both ϵ̂μ and eAμ are parallel transported, we have
that ϵ̂A remains constant while traveling along the geodesic.
This means that any change in α can only be due to the
rotation of ξ̂A. Because photons on the same light-cone
travel at fixed angular coordinates3 and start at the same
time, their displacement vector will be ξμ ¼ δμaCa, with Ca

constant and a ¼ 1, 2 runs over the angular coordinates
which do not change in GLC gauge (see [34] for a detailed
derivation). Because of this, in GLC, ξA ¼ eAaCa. From
Eq. (2.25) and due to the constancy of ϵ̂, it follows that in
GLC α changes according to the rotation of the Sachs basis.
This angle is what has been found in Appendix C of [23].
Let us underline that α is a gauge invariant quantity such
that its value is independent of the coordinate system. The
equality between its value and the rotation of the basis is a
peculiarity of the GLC gauge where ξμ is somehow trivial.
It is convenient to rewrite Eq. (2.22) by introducing the

angular power spectrum of the rotation angle α as

Cαα
l ¼ 2π

Z
dssCαðsÞJ0ðslÞ: ð2:26Þ

Simply using the inverse relation

CαðsÞ ¼
1

2π

Z
dllCαα

l J0ðslÞ; ð2:27Þ

we find

C̃Br
l ¼ 1

π

Z
dl0dl00l0l00Cαα

l00C
E
l0Fll0l00 ; ð2:28Þ

where we have introduced the geometrical factor (see
Appendix A for further details)

Fll0l00 ¼
Z

dssJ0ðl00sÞ½J0ðlsÞJ0ðl0sÞ þ J4ðlsÞJ4ðl0sÞ�:

ð2:29Þ

Before we go on, we also want to find the effect from the
rotation of the position x. For this, we write the rotated
position4 as

x̃ ¼ xþ ∇ ∧ Ω: ð2:30Þ

HereΩ is the potential of the rotation angle and α ¼ ΔΩ=2.
Note that in two dimensions

ð∇ ∧ ΩÞa ¼ ϵab∇bΩ;

where ϵab is the totally antisymmetric symbol in two
dimensions and Ω is a (pseudo-)scalar. In the literature,
this has been considered mainly in longitudinal gauge
where for scalar perturbations α ¼ ω. But as we have
argued before, this expression is not gauge invariant and
we have to consider the rotation of x with respect to the
Sachs basis which is given by the angle α. As we shall show
in the next section, this implies that the curl component of
the deflection field can not be sourced by any linear
perturbation, including vector and tensor perturbations
contrarily to what claimed in the past literature, starting
from Refs. [42,43]. We denote the so displaced polarization
by P̃dðxÞ. To lowest order in α and henceΩ this changes the
polarization into

P̃dðxÞ ¼ Pðx̃Þ ¼ PðxÞ þ ϵab∇bΩðxÞ∇aPðxÞ: ð2:31Þ

Inserting this in the expressions (2.9) and (2.10) for ξþðsÞ
and ξ−ðsÞ, and Fourier transforming, we find3The constancy of these angular coordinates leads to equal

them with the photon’s incoming direction as seen by the
observer. This explicit identification has been recently discussed
and implemented in [40,41] by exploiting the residual gauge
freedom of the GLC coordinates.

4For the purpose of this derivation we neglect the gradient part
in the deflection angle. Due to the different parity, the gradient
and the curl components of the deflection field are uncorrelated.
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ξ̃dþðlÞ ¼
Z

d2l0

ð2πÞ2 ðl ∧ l0Þ2CΩ
jl−l0jC

E
l0 ; ð2:32Þ

ξ̃d−ðlÞ ¼ −
Z

d2l0

ð2πÞ2 ðl ∧ l0Þ2CΩ
jl−l0jC

E
l0e

4iφl;l0 : ð2:33Þ

Here we use the notation x ∧ y ¼ ϵabxayb for the vector
product in two dimensions. Note that in two dimensions
a vector product is a (pseudo-)scalar (the length of the
corresponding radial vector in 3D). Parity invariance
ξðsÞ ¼ ξð−sÞ for all correlation functions implies that
power spectra are real. The imaginary part above therefore
cannot contribute and we may replace the exponential by its
real part,

Reðe4iφl;l0 Þ ¼ cosð4φl;l0 Þ ¼ 1 − 2sin2ð2φl;l0 Þ:

With this, we find

C̃Bd
l ¼ 1

2
ðξ̃dþðlÞ − ξ̃d−ðlÞÞ

¼
Z

d2l0

ð2πÞ2 ðl ∧ l0Þ2CΩ
jl−l0jC

E
l0sin2ð2φl;l0 Þ: ð2:34Þ

This term agrees exactly with the corresponding term in
[32] [see Eq. (9)] or [26] [see Eq. (B9)].
Interestingly also the cross term between the rotation of

polarization and the curl deflection does not vanish. Taking
the first nonvanishing order in both rotation of polarization
and the curl deflection of position, we find

P̃rdðxÞ ¼ PðxÞ þ 2iαðxÞPðxÞ þ ϵab∇bΩðxÞ∇aPðxÞ:
ð2:35Þ

This leads to the following cross terms in ξ̃þðlÞ and ξ̃−ðlÞ:

ξ̃rdþ ðlÞ ¼ 0; ð2:36Þ

ξ̃rd− ðlÞ ¼ 4i
Z

d2l0

ð2πÞ2 ðl ∧ l0Þe4iφl;l0CαΩ
jl−l0jC

E
l0

¼ −4
Z

d2l0

ð2πÞ2 ðl ∧ l0Þ sinð4φl;l0 ÞCαΩ
jl−l0jC

E
l0 :

ð2:37Þ

In (2.37), we have again only considered the nonvanishing
real part. The B spectrum hence acquires the cross term,

C̃Brd
l ¼−2

Z
d2l0

ð2πÞ2 ðl∧l0ÞCαΩ
jl−l0jC

E
l0 sinð4φl;l0 Þ: ð2:38Þ

Also this expression would agree with the one in [26]
[Eq. (B9)] if their rotation angle β would agree with our α
which is not the case. Their β is much smaller than our α

and actually is due to an effect which we neglect in our
treatment.
If we do not perform the integration over angles in (2.22)

and replace the correlation function CαðsÞ with the corre-
sponding power spectrum, or if we simply compute the
α‐α contribution to the B-polarization spectrum starting
from (2.35), we can write the effect from rotation to lowest
order in a similar way. Following the same steps as for C̃Bd,
we find

C̃Br
l ¼ 4

Z
d2l0

ð2πÞ2 C
α
jl−l0jC

E
l0cos

2ð2φl;l0 Þ: ð2:39Þ

This result agrees also with (B2) (up to a variable transform
l0 ↦ l − l0). Adding all the terms together and using
2ΔΩ ¼ −α, hence CΩ

l ¼ 4l−4Cα
l and CαΩ

l ¼ 2l−2Cα
l, we

can write the total B spectrum induced by rotation, to
lowest order in the rotation angle α, as

ΔC̃B
l ¼ 4

Z
d2l0

ð2πÞ2 C
α
jl−l0jC

E
l0

�
cos2ð2φl;l0 Þ

−
ll0

jl − l0j2 sinð4φl;l0 Þ sinðφl;l0 Þ

þ ðll0Þ2
jl − l0j4 sin

2ð2φl;l0 Þsin2ðφl;l0 Þ
�
: ð2:40Þ

In Sec. V, when we present numerical results for the
contribution to the B spectrum from rotation for second
order scalar perturbations, we shall see that the term from
the rotation of the polarization dominates the total result on
all scales.

III. LIE TRANSPORT AND PARALLEL
TRANSPORT AT FIRST ORDER

In this section, we calculate to first order the relevant
angle α ¼ ωþ β. To determine ωwe study the propagation
of neighboring photons in an infinitesimal light beam
(sometimes called a null congruence) which is given by
the so-called Jacobi matrix D; see, e.g., [44–46]. Denoting
the geodesic deviation vector by X, we find from the
geodesic deviation equation

Ẍα ¼ −Rα
βμνk

βXμkν: ð3:1Þ
Note that the geodesic deviation equation together with the
geodesic equation for k implies that X is Lie transported.5

5This is easily seen in coordinate free notation where Ẍ ¼
∇k∇kX and −Rα

βμνk
βXμkν¼ð−RðX;kÞkÞα¼ð∇k∇X−∇X∇kÞk¼

∇k∇Xk, where we have used ∇kk ¼ 0. Hence, (3.1) implies
∇kð∇kX −∇XkÞ ¼ ∇kð½k; X�Þ ¼ ∇kLkX ¼ 0, where Lk denotes
the Lie derivative in direction k. But in the source plane, λ ¼ λin,
we can choose X to denote a coordinate direction, X ¼ ∂s and
k ¼ ∂λ so that at λin we have ½k; X� ¼ ½∂λ; ∂s� ¼ 0, so that
constancy of LkX implies LkX ¼ 0 along the photon geodesic.
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Decomposing X into a part parallel to k, a part parallel to
the observer/emitter four-velocity u and a part in the
“screen” normal to k and u with basis ðe1; e2Þ, we denote
by D the map which maps directions at the observer given
by the screen basis ðe1; e2Þ to a distance vector Y on the
screen of the emitter. Since (3.1) is linear, D is a linear map
which expresses the vector Y in terms of the Sachs basis at
the emitter, i.e., the basis ðe1; e2Þ which is parallel trans-
ported backward from the final to the initial screen,

Ya ¼ Da
beb þ yakþ zau;

where ða; bÞ take the values 1 and 2 and Ya starts out as 0.
The 2 × 2 matrix D can be written as

D ¼ RðωÞRðχÞ
�
Dþ 0

0 D−

�
Rð−χÞ

where RðγÞ ¼
�
cos γ − sin γ

sin γ cos γ

�
; ð3:2Þ

denotes a rotation by an angle γ. The matrix

Σ ¼ RðχÞ
�
Dþ 0

0 D−

�
Rð−χÞ

is symmetric and describes the area distance given byffiffiffiffiffiffiffiffiffiffi
detΣ

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
DþD−

p
and the shear which is parametrized by

Dþ −D− and χ. The latter rotates the coordinate axis into
the principle axes of the shear tensor. The angle ω describes
a rotation of the image.
In an unperturbed Friedmann Universe, we have D ¼

DA1 where DA denotes the background angular diameter
distance. At the perturbative level, we can therefore para-
metrize it as

D ¼ DA½1þA� with A ¼
� −κ − γ1 −γ2 − ω

−γ2 þ ω −κ þ γ1

�
:

ð3:3Þ

At first order κ describes the convergence of light rays,
γ ≡ γ1 þ iγ2 describes their shear, and ω their rotation. The
matrix A is also called the amplification matrix. The
determinant detD−1 is proportional to the luminosity of
the image, so that to first order in the perturbations 1þ 2κ
is the magnification [44].
In GLC gauge, the Jacobi map is expressed in the Sachs

basis [34] so that there is no intrinsic distinction between
β and ω, and one calculates directly the physical angle α
which describes the rotation of an image with respect to the
Sachs basis.
Even though algebraically somewhat more involved, GLC

gauge is geometrically more intuitive. Nevertheless, in the
following, we shall perform all the calculations in longi-
tudinal gauge which is more commonly known.

A. Scalar perturbations

As the rotation angle α is an observable (hence gauge
invariant), we can perform our calculations in any gauge. In
longitudinal gauge,

ds2 ¼ −a2ðηÞð1þ 2ΨÞdη2 þ a2ðηÞð1 − 2ΦÞδijdxidxj;
ð3:4Þ

where Φ and Ψ are the so-called Bardeen potentials, η
denotes conformal time and, for simplicity, we have set
spatial curvature to zero. The Jacobi map for scalar
perturbations at first order can be expressed in terms of
the lensing potential ψ given by

ψðx; zÞ ¼ 1

2

Z
rðzÞ

0

dr
rðzÞ − r
rðzÞr ðΦþ ΨÞ; ð3:5Þ

where the Bardeen potentials are to be evaluated along the
(unperturbed) photon geodesic and rðzÞ is the comoving
distance to redshift z. The Jacobi map at first order in these
coordinates is very well known, but for completeness we
here repeat the result found in the literature; see, e.g., [7],

κ ¼ Δψ ; ð3:6Þ

γ ¼ ½ð∇1∇1 −∇2∇2Þ þ 2i∇1∇2�ψ ; ð3:7Þ

ω ¼ 0: ð3:8Þ
To determine the rotation β of the Sachs basis, we

have to integrate the geodesic transport equation. A short
calculation gives that for a vector normal to the photon
direction, we have

deia
dλ

¼ eia
dΦ
dλ

þ kið∇Φ · eaÞ: ð3:9Þ

The first term just ensures that e remains normalized,
and the second term ensures the constancy of the scalar
product of k and e. But the basis vector ea does not acquire
any component in direction eb. Hence, there is no rotation
of the Sachs basis in longitudinal coordinates, β ¼ 0. This
result remains true for a quasi-Newtonian gravitational
potential, Ψ ¼ Φ nonperturbatively when replacing 1þ
2Ψ ↦ expð2ΦÞ and 1 − 2Φ ↦ expð−2ΦÞ. In longitudinal
gauge, the Sachs basis is not rotated with respect to the
coordinate basis.
More precisely (see also [47] for a detailed discussion of

this point), neglecting the time dependence of Φ and
ignoring the scale factor which does not affect the con-
formally invariant photon geodesics, we set

ds2 ¼ −e2ΦðxÞdη2 þ e−2ΦðxÞδijdxidxj: ð3:10Þ

The (exact) nonvanishing Christoffel symbols of this
metric are
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Γ0
0i ¼ ∂iΦ; Γi

00 ¼ ∂iΦ;

Γi
jm ¼ δjm∂iΦ − δij∂mΦ − δim∂jΦ: ð3:11Þ

Denoting the photon four vector by k ¼ νð−1;nÞ and
e ¼ ðe0; eÞ with e · n ¼ 0, parallel transport, ∇ke ¼ 0
implies

dei

dλ
¼ eið∇Φ · nÞ þ nið∇Φ · eÞ; ð3:12Þ

de0

dλ
¼ ð∇Φ · eÞ: ð3:13Þ

The first term ensures that the length of e remains constant
and the second term together with the second equation
ensure that the scalar product kμeμ remains constant, and
we have already made use of δijniej ¼ 0. But clearly, e
does not rotate in the plane normal to u ∝ ∂η and n.
Actually, the polarization is not parallel transported but we
have to project (3.12) into the plane normal to u and k
which simply removes the component in direction n and
the component e0. Therefore, the true evolution equation
for the polarization in longitudinal gauge is

dei

dλ
¼ eið∇Φ · nÞ ¼ ei

dΦ
dλ

: ð3:14Þ

To summarize, α ¼ ωþ β is equal to zero for scalar
perturbation to first order. This agrees with the result
obtained in [23] where the GLC gauge is used and the

result αð1ÞGLC ¼ 0 is obtained directly.

B. Vector and tensor perturbations

We now consider linear vector and tensor perturbations.
As photon geodesics are conformally invariant, we can
ignore the scale factor of the expanding Universe in this
calculation and consider a perturbed Minkowski metric.
Vector and tensor perturbations in the metric then are
given by

ds2 ¼ −dη2 − 2Bidxidηþ ðδij þ 2hijÞdxidxj; ð3:15Þ

where hij ¼ ∂ðiFjÞ þHij, with Bi and Fi pure transverse
vector perturbations and Hij are the symmetric, traceless
and transverse tensor perturbations and the parentheses in
∂ðiFjÞ denote symmetrization. The condition for the geo-
desic transport of the polarization ϵ can be written in full
generality as (assuming ϵ0 ¼ 0)

dϵi

dλ
¼ −kμΓμj

iϵj ≡ −Ki
jϵ

j: ð3:16Þ

At linear order for the metric (3.15), we obtain

dϵi

dλ
¼ −

�
dhij
dλ

þ kmð∂jhim − ∂ihjmÞ

þ k0

2
ð∂iBj − ∂jBiÞ

�
ϵ̄j

¼ −δil
�
dhlj
dλ

þ kmð∇jhml −∇lhjmÞ

þ k0

2
ð∇lBj −∇jBlÞ

�
ϵ̄j ≡ −Ki

jϵ̄
j; ð3:17Þ

where ϵ̄j is the background direction of the polarization and
K now denotes the linearized expression. Notice that in the
last equal sign above we changed the ordinary derivatives
with the covariant ones. This does not affect the result due
to the antisymmetric structure of the involved terms.
Without perturbations, the polarization will not rotate.
The rotation we are interested in can be evaluated (always
at linear order, i.e., for small angles) as

β ¼ ϵijmϵ̄
iϵjkm; ð3:18Þ

where the affine parameter λ is normalized such that
kμ ¼ ð−1; niÞ is the background direction of propagation.
Then the evolution equation for β is

dβ
dλ

¼ ϵijmϵ̄
i dϵ

j

dλ
km ¼ −ϵijmϵ̄iK

j
l ϵ̄

lkm: ð3:19Þ

The first term of Eq. (3.17), ðdhij=dλÞēj, just integrates to
hfinij ē

j − hinijē
j. While this may induce a rotation, it is very

small, much smaller than term involving spatial derivatives
and we neglected that in our treatment.6 Here we only
consider the terms with the highest number of transversal
derivatives since only these can contribute appreciably.
With this additional approximation, K becomes antisym-
metric and we have

Kj
m ¼ klð∇mh

j
l −∇jhmlÞ þ

k0

2
ð∇jBm −∇mBjÞ: ð3:20Þ

It is more convenient to write the result in polar coordinates,
where ki ¼ δir and ϵ̄i ¼ δia (latin indices a, b, c, d denoting
angular directions) such that we have

dβ
dλ

¼ −ϵabrϵ̄aKb
c ϵ̄

c: ð3:21Þ

Because Kbc is antisymmetric we can write Kbc ¼
ϵbcϵ

d
aKa

d=2. This leads to

ϵ̄iklϵjilKjmϵ̄
m ¼ ϵ̄aϵbaϵbcϵ̄

cϵdeKe
d=2 ¼ ϵdaKa

d=2; ð3:22Þ

6This is in line with the results found in [48,49].
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for these equalities we use that both ϵ̄ and k̄i are normalized
to 1 and ϵ̄ is orthogonal to k̄i ¼ δir. Hence, the rotation
angle of the polarization is simply given by

dβ
dλ

¼ −
�
ϵda∇dhar þ

1

2
ϵda∇dBa

�
; ð3:23Þ

where, in polar coordinates

hrr ¼ ∇rFr þHrr;

hra ¼ ∇ðaFrÞ þHra: ð3:24Þ

On the other hand, the image is Lie transported and the
related rotation can be evaluated as the leading part in the
number of spatial derivatives of the antisymmetric part of
amplification matrix. This is given by

ω ¼ 1

2
ϵcaAa

c ¼
1

2
ϵca∇cθ

a; ð3:25Þ

where [50–52]

θa ¼
Z

λs

0

dλ

�
Ba þ 2hra þ γ̄ab∂b

Z
λ

0

dλ0ðhrr þ BrÞ
�

¼
Z

λs

0

dλ

�
Ba þ 2hra þ γ̄ab∇b

Z
λ

0

dλ0ðhrr þ BrÞ
�
;

ð3:26Þ

with a, b denote the angular coordinates and r is the radial
index and ðγ̄abÞ ¼ r−2diagð1; sin−2 θÞ. The double integral
gives a symmetric contribution to ∇cθa and does therefore
not contribute to the rotation so that ω is given by

ω ¼
Z

λs

0

dλ

�
1

2
ϵca∇cBa þ ϵca∇char

�
; ð3:27Þ

or, equivalently

dω
dλ

¼
�
1

2
ϵca∇cBa þ ϵca∇char

�
; ð3:28Þ

which agrees with the result for −β given in Eq. (3.23). With
the initial condition βð0Þ ¼ ωð0Þ ¼ 0, this implies that α ¼
β þ ω ¼ 0 for linear vector and tensor perturbations.
As for the scalar case, this result can also be obtained

using GLC gauge. As mentioned above, in this gauge we
directly evaluate αð1Þ which can easily been shown to vanish
also for vector and tensor perturbations; see Appendix C of
[23], where this is shown in general, without decomposition
into scalar vector and tensor perturbations.

This result disagrees with the analysis presented in
Ref. [51], while it is in line with Refs. [53,54] and,
regarding tensor perturbations, with Ref. [48]. Indeed, in
Ref. [51], the author expresses the polarization rotation β
with respect to some global coordinate basis. Nevertheless,
this arbitrary coordinate basis is not Lie transported from
the last scattering surface to the observer and, therefore, β
alone does not represent a physical, measurable rotation
angle. In the analysis of Ref. [51], the contribution of ω has
not been taken into account.

IV. LIE TRANSPORT AND PARALLEL
TRANSPORT AT SECOND ORDER

The value for α was already computed in [23] for scalar
perturbation up to second order. Here we show the
computation in longitudinal gauge for convenience of
the reader and also to demonstrate the gauge invariance
of the result.
As we have seen in the previous section, in longitudinal

gauge parallel transport does not lead to any rotation.
However, the geodesic deviation equation which is equiv-
alent to Lie transport does induce a nonvanishing ω in
longitudinal gauge.
The evaluation of ω to second order for scalar perturba-

tions has already been presented in the literature. For
example, considering Eqs. (C.35)–(C.40) of [23], we find
the following expression for ω:

ωð2ÞðxÞ ¼ 2

ð2πÞ2
Z

rs

0

dr
rs − r
rsr

Z
r

0

dr1
r − r1
rr1

×
Z

d2l1d2l2n · ðl2 ∧ l1Þðl1 · l2Þ

×ΦWðz;l1ÞΦWðz1;l2Þe−iðl1þl2Þ·x: ð4:1Þ

Here ΦW ¼ ðΦþΨÞ=2 is the Weyl potential, and z and z1
denote the redshift out to comoving distance r and r1,
respectively. The comoving distance to the last scattering
surface is denoted rs. Fourier transforming Eq. (4.1), we
find

ωð2ÞðlÞ ¼ 2

ð2πÞ
Z

rs

0

dr
rs − r
rsr

Z
r

0

dr1
r − r1
rr1

×
Z

d2l1n · ðl ∧ l1Þðl1 · l − l2
1Þ

×ΦWðzðrÞ;l1ÞΦWðzðr1Þ;l − l1Þ: ð4:2Þ

From this, we can compute the power spectrum of the
rotation angle at second order
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hωð2ÞðlÞωð2Þðl0Þi ¼ 4

ð2πÞ2
Z

rs

0

dr
rs − r
rsr

Z
r

0

dr1
r − r1
rr1

Z
rs

0

dr
rs − r0

rsr0

Z
r0

0

dr01
r0 − r01
r0r01

×
Z

d2l1d2l2n · ðl ∧ l1Þðl1 · l − l2
1Þn · ðð−lÞ ∧ l2Þð−l2 · l − l2

2Þ

× ½CW
l1
ðz; z0ÞCW

jl−l1jðz1; z01ÞδDðl1 þ l2ÞδDðlþ l0Þ
þ CW

l1
ðz; z01ÞCW

jl−l1jðz1; z0ÞδDðl1 − l − l2ÞδDðlþ l0Þ�

¼ δDðlþ l0Þ 4

ð2πÞ2
Z

rs

0

dr
rs − r
rsr

Z
r

0

dr1
r − r1
rr1

Z
rs

0

dr
rs − r0

rsr0

Z
r0

0

dr01
r0 − r01
r0r01

×
Z

d2l1½n · ðl ∧ l1Þðl1 · l − l2
1Þ�2½CW

l1
ðz; z0ÞCW

jl−l1jðz1; z01Þ − CW
l1
ðz; z01ÞCW

jl−l1jðz1; z0Þ�: ð4:3Þ

Inserting hωð2ÞðlÞωð2Þðl0Þi ¼ δDðlþ l0ÞCωω
l and denoting the transfer function of the Weyl potential TΦþΨðk; zÞ, we

obtain [23], with the help of the Limber approximation [36,37], the result

FIG. 2. Top panel: we plot the angular power spectrum of the
rotation angle α ¼ ωðLGÞ. In blue by using the linear power
spectrum and in red with Halofit. Bottom panel: as comparison
we show the angular spectrum of the rotation angle (red) together
with the spectrum of the convergence κ (green). The first is
related to the curl potential as Cαα

l ¼ l4CΩΩ
l =4, while the latter to

the lensing potential ϕ through Cκκ
l ¼ l4Cϕϕ

l =4.

FIG. 3. We show the effect induced by rotation on the angular
B-mode power spectrum. In the top panel, we show the good
accuracy of the low-l limit solution derived in Eq. (B3). In the
bottom panel, we show the relative amplitude compared to the
first order lensed B mode. The red line is the present result
according to Eq. (A5), the dashed blue line refers to our previous
result [23] recomputed by integrating Eq. (B2), and the dotted
black line is the limit solution described by Eq. (B3).
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Cωω
l ¼ 1

4ð2πÞ2
Z

rs

0

dr
r2

Z
r

0

dr1
r21

�
r−r1
rr1

�
2
�
rs−r
rsr

�
2

×
Z

d2l1½n ·ðl∧l1Þðl1 ·l−l2
1Þ�2

×

�
TΦþΨ

�
l1þ1=2

r
;z

�
TΦþΨ

�jl−l1jþ1=2
r1

;z1

��
2

×PR

�
l1þ1=2

r

�
PR

�jl−l1jþ1=2
r1

�
¼Cαα

l ;

ð4:4Þ

where PRðkÞ is the primordial curvature power spectrum.
For the last equal sign, we used that β ¼ 0 in longitudinal
gauge.
The numerical results for C̃ðBrÞ

l have been generated by
performing the double integral (2.28) with Fll0l00 given in
(A5) using the same cosmological parameters as Ref. [23]
for comparison purpose. Namely h ¼ 0.67, h2Ωcdm ¼
ωcdm ¼ 0.12,Ωbh2 ¼ ωb ¼ 0.022, and vanishing curvature.
The primordial curvature power spectrum has the amplitude

As ¼ 2.215 × 10−9 at the pivot scale kpivot ¼ 0.05 Mpc−1,
the spectral index ns ¼ 0.96, and no running is assumed.
The transfer function for the Bardeen potentials, TΦþΨ has
been computed with CLASS [19] using the linear power
spectrum and Halofit [55].
From Fig. 2, we see that the lensing spectrum increases

by about a factor of 5 on small scales when using the
nonlinear Halofit spectrum and lCα

l decays very slowly
with l. In Appendix B, we also show the formal equiv-
alence of the expression (2.28) and the result obtained in
[23]. In Fig. 3, we plot the B-mode power spectrum induced
from rotation of polarization (top panel). In the lower panel,
we plot the relative contribution to the first order lensing B
spectrum. As a numerical cross-check, we show also the
results by integrating the double integral given by Eq. (B2)
and the low l approximation given in Eq. (B3).
In Fig. 4, we show the different contributions including

also the curl-type deflection angle term computed in (2.34)
and the mixed term (2.38). Clearly, the two additional terms
are relevant mainly around l ∼ 1000, where they amount to
about 25% of the total result.
In Appendix C, we explain the shape of the three terms in

detail.

V. DISCUSSION AND CONCLUSION

In this paper, we clarify an issue concerning the rotation
of polarization under the parallel transport of CMB photons
in the clustered Universe. We show that the relevant angle is
the one between parallel transported vectors and geodesic
deviation vectors which are Lie transported. Or, in other
words, the rotation of the geodesic deviation vector in the
Sachs basis. This well-defined geometric angle which we
call α vanishes at first order, but not at second order. Its
second order value is therefore gauge invariant as a conse-
quence of the Stewart-Walker lemma [56] and its generali-
zation to higher order [57]. Denoting the angle of rotation
of the Sachs basis (with respect to some arbitrary coordinate
basis) by β and the one of geodesic deviation vectors
(with respect to the same arbitrary basis) by ω, we have
α ¼ β þ ω. For scalar perturbation, we have shown that in
longitudinal gauge, β ¼ 0 at all orders. The gauge invariance

of αð2Þ is confirmed by the finding that ωð2Þ
LG ¼ αð2ÞGLC.

Even if observers measure polarization with respect to a
fixed observer coordinate system (they measure the Stokes
parameters), they then combine the coordinate dependent
Stokes parameters into the coordinate independent E- and
B-polarization spectra and these are affected by rotation in
the way computed here.
This result is important for polarization measurements

with high sensitivity, like CMB S4 [13], which want to
detect primordial gravitational waves with a tensor-to-scalar
ratio as small as r ∼ 10−3. To correctly subtract the lensing
contribution to the B polarization, this requires a precision of
better than 0.1% for the lensing spectrum in the crucial l

FIG. 4. We show all three contributions to ΔCB
l , the polariza-

tion rotation (blue line), which is also shown in Fig. 3, the curl
deflection (red line), and the negative of the mixed term (green
line). Their sum is indicated as dashed black line. The bottom plot
is a magnification of the gray region of the top panel, in order to
compare the different effects at the scales where they are
comparable.
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range which is used for delensing, namely 1000≤l≤3000.
But in this l range the contribution from rotation increases
up to 1% and therefore has to be considered.
The amplitude of the effects induced by the curl

componentΩ (with α ¼ ΔΩ=2) could reduce the efficiency
of delensing gradient based methods [32]. This may set an
accuracy limit in the search for primordial B modes and, in
general, weaken the constraints on cosmological parame-
ters strongly sensitive to the sharpness of BAO peaks in the
CMB power spectrum (that are smeared out by lensing),
like, e.g., neutrino masses.
Furthermore, even if r is much smaller than what an

experiment can ever reach, measuring the rotation of
polarization is a measurement of frame dragging on
cosmological scales which would represent a formidable
test of general relativity on these scales.
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APPENDIX A: DETAILS ON THE
GEOMETRICAL FACTOR Fklq

In order to evaluate analytically the geometrical factor F
defined in Eq. (2.29), we use the following identity [58];
see also [59]:

Z
∞

0

dssJ0ðqsÞJnðksÞJnðlsÞ ¼ Re

�
cos ðnθÞ
πkl sin θ

�
; ðA1Þ

where

cos θ ¼ l2 þ k2 − q2

2kl
: ðA2Þ

The real part “Re” ensures that the integral vanishes if
ðq; k;lÞ do not satisfy the triangle inequality, and θ is the
angle between the sides of lengths k and l in the triangle
formed by ðq; k;lÞ. In particular, we are interested in the
following integrals:Z

∞

0

dssJ0ðqsÞJ0ðksÞJ0ðlsÞ

¼ 2Re
π

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðq2 − ðk − lÞ2Þððkþ lÞ2 − q2Þ
p

�
; ðA3Þ

Z
∞

0

dssJ0ðqsÞJ4ðksÞJ4ðlsÞ ¼
ðk8 − 4k6q2 þ k4ð6q4 − 4l2q2Þ − 4k2q2ðl2 − q2Þ2 þ ðl2 − q2Þ4Þ

πk4l4

× Re

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðq2 − ðk − lÞ2Þððkþ lÞ2 − q2Þ
p

�
: ðA4Þ

At the boundaries of the triangle equality, i.e., q ¼ jk� lj, the integrals diverge and they need to be interpreted as a
distribution within integral (2.28). With this identity, we can rewrite the geometrical factor (2.29) as

Fklq ¼
ðk4 − 2q2ðk2 þ l2Þ þ l4 þ q4Þ2Re

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðq2−ðk−lÞ2ÞððkþlÞ2−q2Þ
p

�

πk4l4
: ðA5Þ

APPENDIX B: EQUIVALENCE WITH THE PREVIOUS CALCULATION

In this Appendix, we show that the expression for the Bmode induced by rotation from our previous paper (see Eq. (6.17)
in Ref. [23]) is equal to Eq. (2.28). We start with Eq. (6.17) of Ref. [23]

ΔCBð2;2Þ
l ≡ 1

2
½ΔðCE

l þ CB
lÞð2;2Þ − ΔðCE

l − CB
lÞð2;2Þ�

¼ 16

Z
d2l1

ð2πÞ2
Z

d2l2

ð2πÞ2 ½n · ðl2 ∧ l1Þðl1 · l2Þ�2
Z

rs

0

dr
rs − r
rsr

Z
r

0

dr1
r − r1
rr1

×
Z

rs

0

dr2
rs − r2
rsr2

Z
r2

0

dr3
r2 − r3
r2r3

½CW
l1
ðz; z2ÞCW

l2
ðz1; z3Þ − CW

l1
ðz; z3ÞCW

l2
ðz1; z2Þ�

× fCE
jl−l1−l2jðzsÞcos2½2ðφl − φjl−l1−l2jÞ� þ CB

jl−l1−l2jðzsÞsin2½2ðφl − φjl−l1−l2jÞ�g; ðB1Þ
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then, by making a change of variable l2 ¼ l0 − l1 and using Eq. (4.4), we obtain (in absence of primordial B mode)

ΔCBð2;2Þ
l ¼ 4

Z
d2l0

ð2πÞ2 C
ωω
l0 C

E
jl−l0jcos

2ð2φl − 2φjl−l0jÞ: ðB2Þ

For low l, we can approximate the contribution induced by the rotation to the B mode as follows:

ΔCBð2;2Þ
l ≃

Z
dl0

π
l0Cωω

l0 C
E
l0 þOðl2Þ ¼

Z
d lnl0

π
l02Cωω

l0 C
E
l0 þOðl2Þ ∼ 5 × 10−10 μK2: ðB3Þ

As we see from the upper panel of Fig. 3, this limiting white noise contribution fully captures the power-law dependence
induced by the rotation up to scale l ∼ 1000.
We now show that this result is equivalent to Eq. (2.28). Since Cl is independent of direction, we may rotate l such that

φl ¼ 0. We then find

ΔCBð2;2Þ
l ¼ 4

Z
d2l00

ð2πÞ2 C
ωω
l00 C

E
jl−l00jcos

2ð2φðl−l00ÞÞ ¼ 4

Z
d2l00

ð2πÞ2 dl
0δDðl0 − jl − l00jÞCωω

l00 C
E
l0cos

2ð2φðl−l00ÞÞ: ðB4Þ

We rewrite the Dirac delta distribution as

δDðl0 − jl − l00jÞ ¼ δD
�
l0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ l002 − 2ll00 cosφl00

q �
¼

X2
i¼1

δDðφl00 − φiÞ
				

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ l002 − 2ll00 cosφi

p
ll00 sinφi

				; ðB5Þ

where

φ1;2 ¼ � arccos

�
l2 − l02 þ l002

2ll00

�
; ðB6Þ

if jl2 − l02 þ l002j < 2ll00. If the triangle equality is not satisfied, the integral vanishes. The triangle inequality can be
explicitly enforced by writing

Z
dφl00fðφl00 ÞδDðl0 − jl − l00jÞ ¼ 2l0Re

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l02 − ðl − l00Þ2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðlþ l00Þ2 − l02p
�

×
Z

dφl00fðφl00 Þ½δDðφl00 − φ1Þ þ δDðφl00 − φ2Þ�: ðB7Þ

The angular integral over φl00 can now be performed analytically,

Z
dφl00cos2ð2φðl−l00ÞÞ½δDðφl00 − φ1Þ þ δDðφl00 − φ2Þ� ¼ 2

Z
dφl00

ðl2 − 2ll00 cosðφl00 Þ þ l002 cosð2φl00 ÞÞ2
ðl2 − 2ll00 cosðφl00 Þ þ l002Þ2 δDðφl00 − φ1Þ

¼ ðl4 − 2l002ðl2 þ l02Þ þ l04 þ l004Þ2
2l4l04 : ðB8Þ

Inserting this in (B4), we find

ΔCBð2;2Þ
l ¼ 4

Z
d2l00

ð2πÞ2 C
ωω
l00 C

E
jl−l00jcos

2ð2φjl−l00jÞ

¼ 1

π

Z
dl0dl00l0l00Cωω

l00 C
E
l0
ðl4 − 2l002ðl2 þ l02Þ þ l04 þ l004Þ2

πl4l04 Re

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l02 − ðl − l00Þ2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðlþ l00Þ2 − l02p
�

¼ 1

π

Z
dl0dl00l0l00Cωω

l00 C
E
l0Fll0l00 ; ðB9Þ

where we have used the definition (A5) in the last equality.

ROTATION OF THE CMB POLARIZATION BY FOREGROUND … PHYS. REV. D 100, 043508 (2019)

043508-13



APPENDIX C: THE SHAPE OF THE SPECTRA

To discuss the form of the spectra shown in Fig. 4, we
plot the full convolution Ccon

l ¼ R
d2l1Cα

jl−l1jC
E
l1
in Fig. 5.

This spectrum starts off as white noise and decays roughly
like l−1 for l > 800≡ lmax. This comes from the same
behavior of the Cα

l spectrum for large l. Together with
Eq. (2.40), this explains the growth ∝ l of l2C̃Br

l at high l
and the decay of l2C̃Bd

l like l−1 due to the additional
prefactor which reduces to 1=l2 at high l. For small
l ≪ lmax, l2C̃Br

l ∝ l2 behaves like white noise, while
l2C̃Bd

l has an additional suppression factor of roughly
ðl=lmaxÞ2 due to the l-dependent prefactor. The amplitude
at l ∼ lmax ∼ 103 is of the order of l2 × 10−8=ð2πÞ2 ∼
10−4 μK2 which is in the right bull park.
The mixed spectrum, C̃Brd

l is somewhat more intricate.
The mixed term acquires naively a factor l=l0 for low l, but
the true spectrum scales as l4 at low l. This is due to an
additional cancellation coming from positive and negative
contributions in the angular integral of sinð4φl0lÞ sinφl0l
and requires a more subtle analysis: The pure integralR
dφ sinð4φÞ sinðφÞ ¼ 0, hence the mixed contribution does

not vanish only due to the angular dependence of Cα
jl−l0j.

Approximating Cα
jl−l0j by a polynomial in jl − l0j=l0 for

small l, the first nonvanishing contribution in the angular
integral comes from ðl cosφÞ3, which increases as l3 for

small l. This leads to a behavior of l2C̃Brd
l ∝ l6 for small l.

The peak at l ∼ lmax is again determined by the “peak”
of Cα

jl−l0jC
E
l0 at roughly this scale. For large l ≫ lmax,

the spectrum Cα
jl−l0j goes approximately as jl − l0j−1.

Including also the prefactor l=jl − l0j2, again the first
nonvanishing term in the angular integral comes from
ððl0=lÞ cosφÞ3=l2. We therefore expect l2C̃Brd

l ∝ l−3.
These behaviors are of course quite crude approximations
(e.g., the α spectrum decays slightly faster then l−1 at larger
l which is also visible in Fig. 5), but they reflect rather well
the asymptotic slopes of the curves shown in Fig. 4.
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