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Abstract. We provide stacky generalizations of classical gauge-theoretic results inspired
by Donaldson, the Uhlenbeck-Yau theorem and variants due to Bando and his collaborators.
Moreover, we show an application of this machinery in the study of ALE spaces.
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1. Introduction

It is a general principle (or a metatheorem), which was explained to us by C. Simpson, that
the basic results of Differential Geometry (Real or Complex) obtained through the analysis
of Geometric Partial Differential Equations extend to Deligne-Mumford stacks1. The main
obstacle to carry out this extension is to set up the stacky definitions correctly. The orbifold
versions are (in principle) well-known but nontrivial generic isotropy is not a very serious
technical obstacle. Doing the proof of such a result for stacks amounts to checking that
the extension to stacks of the constructions used in the proof is possible and sufficiently
well documented in the literature. In this article, we enforce this principle and state stacky
generalizations of classical gauge-theoretic results inspired by Donaldson, the Uhlenbeck-Yau
theorem [32] and variants due to Bando and his collaborators.

Our policy with respect to writing-up these results will be to give no details on their
deep gauge-theoretic or analytical aspects and concentrate on purely stack-theoretic issues.
Perhaps, one may regret that no comprehensive reference on global analytic methods on
stacks in the style of [24] is available. If more applications of this method in the realm of

Date: April 15, 2014.
1Complex differential geometry on Artin stacks is much more delicate but may have more applications -

however we will not pursue this direction here.
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ordinary complex/differential geometry are developed, it may become inevitable to lay down
these foundations.

Our motivation was to generalize the following correspondence due to Donaldson to in-
stantons on ALE spaces. In [15] Donaldson proved that there is a one-to-one correspondence
between U(r)-instantons of charge n on R4 (modulo gauge equivalence) and framed vector
bundles of rank r and second Chern class n on the complex projective plane P2 = C2 ∪ l∞.
A framed vector bundle is a pair (E, φE), where E is a vector bundle on P2 of rank r and
c2(E) = n and φE : E|l∞

∼−→ O⊕rl∞ a trivialization along the line l∞. Donaldson’s correspon-
dence was generalized to instantons on the blowup C̃2 of C2 at n points (for n = 1 by King
[21] and for n ≥ 2 by Buchdahl [8]). In all these examples, in order to state a correspondence
between instantons and framed vector bundles one needs first to endow the noncompact man-
ifold of a Kähler structure, compactify it by adding a projective line, and consider framed
vector bundles on the corresponding smooth projective surface.

A natural question to ask is if this algebro-geometric approach can be applied to other
noncompact 4-dimensional Riemannian manifolds. In particular, we are interested in ALE
spaces of type Ak−1, where k ≥ 2 is an integer. A first result in the ALE case is due to Bando:
in [1], as a consequence of a generalization of Donaldson’s characterization of instantons on R4

to general Kähler manifolds, he proved that if one can compactify an ALE space X◦ of type
Ak−1 by adding a smooth divisor D which has positive normal line bundle so that one obtains
a compact Kähler manifold X := X◦ ∪D, the following correspondence holds: holomorphic
vector bundles on X unitary flat along D are in a one-to-one correspondence with holomorphic
vector bundles on X◦ endowed with a Hermite-Einstein metric with trivial holonomy at
infinity. If such compactification X exists, the smooth curve D would be connected (since X◦
has only one end), would have genus zero (because the fundamental group of this end is finite)
hence the holonomy at infinity would be the trivial representation of the fundamental group
of the end. But this fundamental group is non trivial. The way we propose to circumvent
this obstacle is to consider orbifold compactifications of X◦.

Let us fix X◦ = Xk, where Xk is the minimal resolution of the Ak−1 toric singularity of
C2/Zk. In [6] a compactification Xk of Xk is constructed, which turns out to be a projective
toric orbifold. In particular Xk \Xk is a smooth effective Cartier divisor D∞ with ample and
positive normal line bundle.

In this paper we generalize Bando’s result by proving the following:

Theorem. There is a one-to-one correspondence between holomorphic vector bundles on Xk,
which are isomorphic along D∞ to a fixed vector bundle F∞ endowed with a flat unitary
connection ∇, and vector bundles on Xk endowed with an Hermite-Einstein metric such that
the curvature is square integrable and the holonomy at infinity is given by the holonomy of ∇.

Let us describe the organisation of this article. In Sections 2 and 3, we set up the defini-
tions of the basic ingredients of the differential geometry of Deligne-Mumford stacks with an
emphasis on the Kähler case. In Sections 4 and 5, we extend to Deligne-Mumford stacks the
Uhlenbeck-Yau and Bando theorems. In Section 6, we recall the construction of the orbifold
compactification of Xk and conclude with the proof of the above theorem (Theorem 6.9).

1.1. Acknowledgements. We thank C. Simpson for useful suggestions and for his interest
in our work and U. Bruzzo for reading and commenting on a draft of this paper. We are also
grateful to M. Pedrini, R. J. Szabo and R. Thomas for helpful discussions and correspondence.
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The last draft of the paper was written while the second author was visiting IHÉS and
Université Joseph Fourier. He thanks both institutions for hospitality and support.

2. Topological, differentiable and smooth analytic stacks

In this section we briefly describe topological, differentiable and smooth analytic stacks.
Our main references are [2, 29, 5]. We assume that the reader is familiar with the notions of
category fibered in groupoids and of stack (cf. [24, Sect. 2 and 3]).

2.1. Topological stacks. Let Top be the category of topological spaces. We fix a final
object ∗, the point, in the category Top of topological spaces. We endow Top with the usual
Grothendieck topology (covers are simply topological open covers); so we can talk about (the
2-category of) stacks over Top: it is closed under fibre products and by Yoneda’s lemma the
category of topological spaces embeds as a full subcategory of the 2-category of stacks.

We say a morphism f : Y →X of stacks over Top is representable, if for any map U →X
from a topological space U to X , the fiber product V := U×X Y is equivalent to a topological
space.

Several properties P of maps of topological spaces are stable under base change (cf. [29,
Sect. 4.1]). For example: to be open maps, epimorphisms, surjective maps, embeddings, closed
embeddings, open embeddings, local homeomorphisms, covering maps, maps with finite fibers,
maps with discrete fibers. We say a representable morphism f : Y → X of stacks over Top
satisfies a property P if for any map U → X from a topological space U to X , the base
extension V → U of f satisfies P.

Definition 2.1. A pre-Deligne-Mumford topological stack is a stack X for which there exists
an epimorphism u : U →X from a topological space U , such that u is representable by local
homeomorphisms. We call the pair (U, u) an atlas of X . A pre-Deligne-Mumford topological
stack X is called a Deligne-Mumford topological stack if U is Hausdorff for some atlas (U, u)
and the diagonal X → X ×X is representable by proper maps with closed discrete fibers.

�

One can define a site S(X ) of a Deligne-Mumford topological stack X in the following
way. The objects of the underlying category of S(X ) are the atlases (U, u) of X , the
arrows are the morphisms (ϕ, α) : (U, u) → (V, v) of two atlases where ϕ : U → V is a local
homeomorphism of topological spaces and α : u ∼−→ v ◦ϕ is a 2-isomorphism. The topology on
this category is the one induced by the pre-topology, where the covering families are of the
following form: for an atlas (U, u), we denote by Cov(U, u) the set of families of morphisms
{(ϕi, αi) : (Ui, ui)→ (U, u)}i∈I such that the map⊔

i∈I
ϕi :

⊔
i∈I

Ui → U

is open and surjective.

Remark 2.2. The previous definition of pre-Deligne-Mumford topological stacks comes from
[5, Sect. 3.1]. In [29, Sect. 7], Noohi gives a more general definition of pre-topological stacks. In
[29], our pre-Deligne-Mumford topological stacks are called weak Deligne-Mumford topological
stacks (cf. [29, Def. 14.3]). On the other hand our definition of Deligne-Mumford topological
stacks is more restrictive than the one given in [5]: indeed, in [5, Def. 3.1] the authors do not
require existence of a Hausdorff atlas and require only that the diagonal is representable by
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closed maps with discrete finite fibers. As the authors point out in [5, Sect. 3.1] closedness
is a property invariant under base extension only via local homeomorphism. On the other
hand, we impose properness instead of closeness because we need a property invariant under
any base extension. 4

For a stack X , we denote by π0X the sheaf associated to the presheaf of sets on Top
defined by W 7→ {isomorphim classes in X (W )}. To any Deligne-Mumford topological stack
X one can associate a topological space X, called the coarse moduli space of X : as a set X
is equal to π0X (∗). For any open substack X ′ ⊆X (i.e. any representable open embedding
X ′ → X ), we have a natural inclusion of coarse moduli spaces X ′ ⊆ X. These are defined
to be the open sets of X.

Definition 2.3. Let X be a Deligne-Mumford topological stack. We say that X is connected
if it has no proper open–closed substack. We say that X is compact if its coarse moduli space
X is compact. �

The natural constructions of homotopy theory of topological spaces can be extended to
Deligne-Mumford topological stacks. For instance, one can define a reasonable notion of ho-
motopy between maps, and this allows us to define the n-th homotopy group of a pointed topo-
logical stack (X , x) as pointed homotopy classes of maps [(Sn, ∗), (X , x)] (cf. [29, Sect. 17]).

As explained in [2], there is a well defined singular (co)homology theory with integral
coefficients for Deligne-Mumford topological stacks. The (co)homology theory with integral
coefficients depends on the stacky structure, unlike the (co)homology theory with rational
coefficients. Indeed, one has the following result.

Proposition 2.4. [2, Prop. 36] Let X be a Deligne-Mumford topological stack and X its
coarse moduli space. Then the coarse moduli space morphism π : X → X induces isomor-
phisms

Hk(X ;Q) ' Hk(X;Q) .

2.2. Analytic and differentiable stacks. Let Comp be the category of complex mani-
folds2, endowed with the usual Grothendieck topology (where covers are simply topological
open covers). As in the case of topological stacks, we can construct the 2-category of stacks
over Comp, and by Yoneda’s lemma this category contains the category of complex manifolds
as a full subcategory.

We say a morphism f : Y → X of stacks over Comp is representable by local biholo-
morphisms, if for any map U → X from a complex manifold U to X , the fiber product
V := U ×X Y is equivalent to a complex manifold, and the map V → U is a local biholo-
morphism.

Definition 2.5. A stack X over Comp is called a smooth pre-Deligne-Mumford analytic
stack if there exists an epimorphism u : U → X from a complex manifold U such that u is
representable by local biholomorphisms. We call the pair (U, u) an atlas of X . �

Remark 2.6. Since a holomorphic map of complex manifolds is a local biholomorphism if and
only if it is a local homeomorphism, the previous definition coincides with the one given in
[5, Sect. 3.2]. 4

2We are assuming that manifolds have a countable basis for their topology.
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We say a morphism f : Y → X of smooth pre-Deligne-Mumford analytic stacks is repre-
sentable, if for any map U → X from a complex manifold U to X that is representable by
local biholomorphisms, the fiber product V := U ×X Y is equivalent to a complex manifold.
Let P be a property of morphisms of complex manifolds that is invariant under base change
with respect to local biholomorphisms. For example we can take P=closedness, P=to have
finite fibers, P=to have discrete fibers, P=properness, P=to be unramified, or P=to be a
covering space. Then, we say a representable morphism f : Y → X of smooth pre-Deligne-
Mumford analytic stacks is P, if for any map U →X from a complex manifold U to X that
is representable by local biholomorphisms, the base extension V → U is P.

Definition 2.7. A smooth pre-Deligne-Mumford analytic stack X is called a smooth Deligne-
Mumford analytic stack if, for some atlas (U, u) of X , U is Hausdorff and the diagonal
X → X ×X is representable by proper unramified3 finite maps. An orbifold is a smooth
Deligne-Mumford analytic stack with generically trivial stabilizer. �

Also in this case, one can define a site S(X ) in a way similar than before.

Remark 2.8. Our definition of smooth Deligne-Mumford analytic stacks is more restrictive
that the one given in [5]: in [5, Def. 3.3] the authors assume that the diagonal is repre-
sentable only by closed maps with finite fibers. On the other hand, one can give a definition
of Deligne-Mumford analytic stacks over the category Analytic of all analytic spaces (cf.
[29]). As pointed out in [5, Rem. 3.4], the 2-category of smooth Deligne-Mumford ana-
lytic stacks defined above is equivalent to the sub 2-category of the 2-category of Deligne-
Mumford analytic stacks of [29] consisting of smooth Deligne-Mumford analytic stacks. Since
the Deligne-Mumford analytic stacks we are interested in are smooth, we prefered not to work
over Analytic since this category may be less familiar to the reader. 4

By substituting in the previous definitions the term “local biholomorphism” with “local
diffeomorphism”, a definition of smooth (pre-)Deligne-Mumford differentiable stacks over the
category Diff of differentiable manifolds can be given and was actually introduced in [2].

One can define the coarse moduli space X of a smooth Deligne-Mumford analytic (resp.
differentiable) stack X . It is an analytic space, but it may not in general be a smooth complex
manifold.

Proposition 2.9. [2, 29] Let X be a Deligne-Mumford topological (resp. smooth differen-
tiable, resp. smooth analytic) stack. Then there is a covering {Ui} of X by open substacks
such that each Ui is a quotient stack [Z/G], where Z is a Hausdorff topological space (resp. a
Hausdorff differentiable manifold, resp. Hausdorff complex manifold), and G a finite group
acting continuously (resp. differentiably, resp. analytically) on Z.

As explained in [2, Cor. 25], there is a well-defined de Rham cohomology theory for any
smooth Deligne-Mumford differentiable stack X .

Definition 2.10. Let X be a smooth Deligne-Mumford differentiable stack. We say that
X is oriented if for any atlas (U, u) of X the associated groupoid

U ×X U U .
s

t

3The attribute “unramified” means “injective differential” from the differential geometric point of view.
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is oriented, i.e., the manifolds U and U×X U and the maps s and t are oriented in a compatible
way. In addition, we say that X is of finite type if U and U ×X U have finite good covers
compatible with s and t. �

Let X be a finite type smooth Deligne-Mumford differentiable stack. Then there is a
well-defined theory of cohomology with compact supports for X . In addition, there exists an
integration map ∫

X
: Hdim(X )

c (X )→ R , (1)

such that the induced pairing Hk
dR(X ) ⊗Hdim(X )−k

c (X ) → R is perfect. If X is compact,
Hk
dR(X ) ' Hk

c (X ) for any k and there is a well defined map (1) which induces a perfect
pairing.

2.3. Comparing algebraic, analytic, differentiable and topological stacks. In [26] a
nice interpretation of differentiable stacks as Lie groupoids is thoroughly discussed, which
helped us to understand how the different types of stacks are related.

Let X be a smooth separated Deligne-Mumford algebraic stack of finite type over C (cf.
[24, Sect. 4]). Then by [20], there exists a coarse moduli space π : X → X. In general X is a
separated algebraic space of finite type over C.

Let AlgDM be the 2-category of smooth separated Deligne-Mumford algebraic stacks of
finite type over C. As explained in [5, Sect. 3.3] (see also [26]), it is equivalent to the weak
2-category of groupoids up to Morita equivalence

X1 X0
s

t

in the category of separated schemes of finite type over C, where X0 is smooth, s, t are étale
morphisms and

(s, t) : X1 → X0 ×X0

is a proper unramified quasi-compact morphism (cf. [24]). Denote by AnDM (resp. DiffDM,
resp. TopDM) the 2-category of smooth Deligne-Mumford analytic stacks (resp. differen-
tible stacks, resp. topological stacks). The argument in [5, Sect. 3.3] proves that the 2-
category of Deligne-Mumford topological stacks (resp. smooth Deligne-Mumford analytic
stacks, resp. smooth Deligne-Mumford differentiable stacks) is equivalent to the weak 2-
category of groupoids up to Morita equivalence

X1 X0
s

t

in the category of topological spaces (resp. complex manifolds, resp. differentiable manifolds),
where the maps s, t are local homeomorphisms (resp. local biholomorphisms, resp. local
diffeomorphisms) and

(s, t) : X1 → X0 ×X0

is a proper map with closed discrete fibers (resp. proper unramified finite map in the analytic
and differential settings). Then one can define natural functors

AlgDM -an
−−→ AnDM -diff

−−→ DiffDM -top
−−→ TopDM .
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Moreover, these functors respect the coarse moduli space construction. We shall also denote
by -top
−−→, resp. -diff

−−→ any composition of these functors ending with -top
−−→, resp. -diff

−−→.

Remark 2.11. In the following, if X is a smooth Deligne-Mumford algebraic (analytic, differ-
entiable) stack, its fundamental group is by definition the fundamental group of its underlying
Deligne-Mumford topological stack. 4

3. Differential geometry on smooth Deligne-Mumford analytic and
differentiable stacks

In this section we shall sketch the generalization of some basic results of differential geom-
etry.

3.1. Vector bundles on smooth Deligne-Mumford differentiable stacks. Let X be
a smooth Deligne-Mumford differentiable stack.

Definition 3.1. A C∞ complex vector bundle of rank r on X is the following set of data:
• for any atlas (U, u) a C∞ complex vector bundle EU,u of a rank r on U ,
• for any morphism (ϕ, α) : (U, u) → (V, v) of two atlases, where ϕ : U → V is a local

diffeomorphism of differentiable manifolds and α : u ∼−→ v ◦ ϕ is a 2-isomorphism, an
isomorphism of C∞ complex vector bundles of rank r

ϑϕ,α : ϕ∗(EU,u) ∼−→ EV,v

such that for any composition (U, u) (ϕ,α)−−−→ (V, v) (ψ,β)−−−→ (W,w), we have

ϕ∗ϑψ,β ◦ ϑϕ,α = ϑψ◦ϕ,ϕ∗β◦α .

�

Remark 3.2. In [4] the authors give another definition of complex vector bundles on X . Our
definition is equivalent to their definition because of [4, Prop. 3.2]. 4

There are several operations on C∞ complex vector bundles on X . We can indeed form the
trivial vector bundle VX := V ×X given any C-vector space V , resp. the complex conjugate
Ē or the dual E∨ of a vector bundle E, resp. the direct sum E⊕F , the tensor product E⊗F
or the bundle of morphisms Hom(E,F ) of two vector bundles E and F , resp. the pull back
f∗E of a complex vector bundle E on X by a morphism f : Y →X . Furthermore, one can
define a morphism ψ of C∞ complex vector bundles on X from E to F as the data for any
atlas (U, u) of a morphism ψU,u : EU,u → FU,u commuting with ϑϕ,α. This enables to define
C∞(X , E), the space of smooth sections of E, as the set of morphisms from CX to E.

A connection ∇ on E is the data of a connection ∇U,u on EU,u for any atlas (U, u) which
is compatible to the ϑϕ,α. In a similar vein, one can define riemannian metrics, hermitian
metrics, Levi-Civita connection, principal bundles and connections, curvature tensors, . . . .
The definitions are left to the reader, see however [16] for orbifolds, and [4]. The theory of
Chern-Weil forms of connections and the fact that, on smooth differentiable Deligne-Mumford
stacks, they compute the rational Chern classes defined as in [2] is established in [25].
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3.2. Holonomy. Let M be a differentiable manifold. Denote by ConnM the groupoid whose
objects are C∞ complex vector bundles over M with a connection and whose arrows are gauge
equivalences (vector bundle isomorphisms preserving the connection). Fix a C∞ complex
vector bundle of rank r with a connection (E,∇) on a smooth connected Deligne-Mumford
differentiable stack X . Then, see [25], we can define the holonomy functor

Hom(M,X ) → ConnM ,

f 7→ (f∗E, f∗∇) .
When M = I is an open interval of the real numbers, x0, x1 ∈ I and δ : I → X is a
differentiable path we can define the holonomy h(δ, x0, x1) along δ to be the natural linear
transformation δ∗Ex0 → δ∗Ex1 . If ∇ is flat then h(δ, x0, x1) depends only on the differentiable
homotopy class of f : (I, {x0, x1})→ (X , {f(x0), f(x1)}).

It is easy to define differentiable paths [0, 1] → X as continuous paths [0, 1] → X top

extending differentiably to a slightly larger interval. Now if γ : [0, 1]→ X top is a continuous
path we can approximate it in the C0-topology by differentiable paths. Since any homotopy
of maps may be approximated by a differentiable homotopy in C1-topology and homotopy
classes are open in in C1-topology, we conclude as in the classical case that the holonomy
of the flat connection ∇ on E gives rise to a representation of the Poincaré groupoid of X
hence to a group representation ρ : π1(X , x) → GL(r,C). If the flat connection in question
preserves a hermitian metric h, then ρ takes values in the unitary group of (Ex, hx).

Conversely, let X̃ be a universal cover4 of X and consider an atlas (U, u) of X . Then
the fibred product (Ũ := U ×X X̃ , ũ) is an atlas of X̃ and Ũ → U is topological Galois
covering space of U such that its deck transformations group is π1(X , y), where y is point in
X . Let ρ : π1(X , y) → GL(r,C) be a linear representation. Then π1(X , y) acts on Ũ × Cr
by ρ on the second factor and induces after passing to quotient a C∞ complex vector bundle
of rank r with a flat connection (EρU ,∇ρU ). This construction being functorial for morphisms
of atlases, one obtains a C∞ complex vector bundle on X of rank r with a flat connection
(Eρ,∇ρ) having ρ as its holonomy. This construction is an equivalence of categories.

3.3. Metric geometry of Riemannian Deligne-Mumford stacks.

Definition 3.3. A Riemannian Deligne-Mumford stack is a pair (X , g), where X is a smooth
Deligne-Mumford differentiable stack and g a Riemannian metric on it. �

Every smooth Deligne-Mumford differentiable stack admits a Riemannian metric since we
are assuming second countability. One can define geodesics on X or more generally harmonic
mappings from manifolds to (X , g) in the usual way thanks to Proposition 2.9. The infimal
length of a path between two points of X top is the Riemannian distance d between these two
points and, since with our definitions the stacks are separated, this gives a distance function
on X top inducing its topological structure (which is Hausdorff). The extension of the basic
theory of geodesics is carefully carried out in [19].

For instance, the distance function permits to define the space of Lipschitz functions on
X which can be characterized by Rademacher’s Theorem as almost everywhere differentiable
functions with g-bounded differential. The space of continuous functions on X coincides
with the space of continuous functions on X top. However the space of Lipschitz (or of C∞)
functions on X does not depend only on the structure of the underlying topological stack

4The theory of covering stacks is developed in [29, Sect. 18].
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X top, but it is a truly stacky invariant. For instance, if G ⊂ GL(n,C) is a finite complex
reflection group (e.g. G = {±1} ∈ C∗) the distance function attached to a G-invariant
hermitian form is just Hölder continuous with respect to a Riemannian metric in the usual
sense on Cn/G ' Cn. In the example, d[Cw/{±1}](0, z) = |z|1/2 where z = w2 is the natural
coordinate on Cw = [Cw/{±1}]top.

3.4. Sheaves and vector bundles on smooth Deligne-Mumford analytic stacks. In
this section we shall give definitions of (quasi)coherent analytic sheaves and vector bundles on
a smooth Deligne-Mumford analytic stack which resembles the definition of (quasi)coherent
sheaves given in [33] in the algebro-geometric setting.

Let X be a smooth Deligne-Mumford analytic stack.

Definition 3.4. A quasicoherent sheaf F on X is the following set of data:
• for any atlas (U, u) a quasicoherent analytic sheaf FU,u on U ,
• for any morphism (ϕ, α) : (U, u) → (V, v) of two atlases, where ϕ : U → V is a local

biholomorphism of complex manifolds and α : u ∼−→ v ◦ ϕ is a 2-isomorphism, an
isomorphism

θϕ,α : ϕ∗FU,u
∼−→ FV,v

such that for any composition (U, u) (ϕ,α)−−−→ (V, v) (ψ,β)−−−→ (W,w), we have
ϕ∗θψ,β ◦ θϕ,α = θψ◦ϕ,ϕ∗β◦α .

A coherent sheaf is a quasicoherent sheaf F such that all FU,u are coherent. A locally free
sheaf is a coherent sheaf F such that all FU,u are locally free. A morphism f : F → F ′ is a
collection of morphisms fU,u : FU,u → F ′U,u such that for any morphism (ϕ, α) : (U, u)→ (V, v)
of two atlases we have ϕ∗(fV,v) ◦ θϕ,α = θ′ϕ,α ◦ fU,u. �

Example 3.5. The structure sheaf OX of X is defined by (OX )U,u = OU for any atlas
(U, u), with the obvious isomorphisms. The sheaf of differential Ω1

X of X is defined by
(Ω1

X )U,u = Ω1
U . Since for any morphism (ϕ, α) : (U, u)→ (V, v) of two atlases, the morphism

ϕ is a local biholomorphism, there is a natural isomorphism Ω1
U ' ϕ∗(Ω1

V ).

A holomorphic vector bundle of rank r on X is a C∞-complex vector bundle E over X such
that all EU,u are holomorphic vector bundles and all ϑϕ,α are isomorphisms of holomorphic
vector bundles. As before in the differential setting, also in this setting one can perform the
usual operations on vector bundles.

Let E be a rank r holomorphic vector bundle on X . For any atlas (U, u) we denote
by EU,u the sheaf of holomorphic sections of the vector bundle EU,u. For any morphism
(ϕ, α) : (U, u)→ (V, v) of two atlases, the isomorphism ϑϕ,α induces an isomorphism

θϕ,α : ϕ∗EU,u
∼−→ EV,v .

In this way, we define a coherent sheaf E on X , the sheaf of sections of the vector bundle E.

Remark 3.6. The functor −an sends coherent sheaves to coherent analytic sheaves. The
functor −diff sends holomorphic vector bundles to C∞ complex vector bundles. 4

Let X be a smooth Deligne-Mumford analytic stack. Then it is easy to see that there is a
one-to-one correspondence between holomorphic vector bundles of rank r on X and locally
free sheaves of rank r on it. Assume moreover that X is of the form [Z/G], where Z is
a complex manifold and G a complex Lie group acting on it. By the same argument as in
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[24, Example 12.4.6], the category of coherent sheaves on X is equivalent to the category
of G-equivariant coherent sheaves on Z. Similarly, the category of locally free sheaves on
X is equivalent to the category of G-equivariant locally free sheaves on Z (this follows from
the descent result for locally free sheaves with respect to fppf morphisms, [3, Prop. A.11]).
Since the category of G-equivariant locally free sheaves on Z is equivalent to the category of
G-equivariant holomorphic vector bundles on Z (see, e.g., [10, Sect. 5.1]), the category of
holomorphic vector bundles of rank r on X is equivalent to the category of G-equivariant
holomorphic vector bundles of rank r on Z.

In the following we shall call hermitian bundle a holomorphic vector bundle on X with a
hermitian metric on it. Then if X is a smooth Deligne-Mumford analytic stack of the form
[Z/G], the category of hermitian bundles on X is equivalent to the category of G-equivariant
hermitian vector bundles on Z. Thus if E is a holomorphic vector bundle on a smooth
Deligne-Mumford analytic stack, by Proposition 2.9 and a partition of unity argument on
X top, one can always construct a hermitian metric on E.

The usual constructions of complex differential geometry - see [12, Chap. V] - carry over to
smooth Deligne-Mumford analytic stacks5. A smooth Deligne-Mumford analytic stack carries
a complexified tangent bundle TC

X = T 1,0
X ⊕ T 0,1

X from which we may form the usual vector
bundles Ωk

X of k-forms and Ωp,q
X of (p, q)-forms. A (1, 1) form ω on X is positive if so are

its representatives ωU,u for any atlas (U, u) of X . A hermitian vector bundle (E, h) carries a
canonical Chern connection ∇h with a curvature form iΘ(E, h) ∈ C∞(X ,Herm(E, h)⊗Ω1,1

X ).
The curvature of a hermitian line bundle (L, h) is just a real (1, 1) form on X .

3.5. Kähler Deligne-Mumford analytic stacks. At a slightly deeper level, the De Rham,
Dolbeault [12, Chap. IV, Sect. 6] and Hodge [12, Chap. VI, Thm. 3.16 and 3.17] isomorphism
theorems are valid for smooth Deligne-Mumford analytic stacks. If we follow the proof of these
basic results [12], we see that the only non obvious points are integration of top dimensional
compactly supported forms on an oriented smooth Deligne-Mumford differentiable stack (so
that we can define the L2 norm on the space of sections of a metrized vector bundle on an
oriented6 Riemannian Deligne-Mumford differentiable stack), Stokes’ theorem (so that we can
perform integration by parts) and acyclicity of sheaves of (p, q)-forms (cf. Section 2.2 for the
first two results, the latter descends from the analogous statement in the case of complex
manifold simply by using a groupoid presentation of the stack).

The literature on the Grothendieck-Riemann-Roch theorem is not as complete as one would
like, even for complex manifolds, see however [31] for proper representable morphisms of
smooth Deligne Mumford algebraic stacks over the complex numbers. Fortunately, this is not
used here.

Say a smooth Deligne-Mumford analytic stack is Kähler if it carries a closed positive (1, 1)-
form. This is equivalent to require that the coarse moduli space is Kähler. The Lefschetz
package, the ∂∂̄-lemma hold on compact Kähler Deligne-Mumford analytic stacks and so
does the Kodaira-Akizuki-Nakano theorem. An application is an analytic version of Olsson-
Matsuki’s proof of the Kawamata-Viehweg vanishing theorem in characteristic zero [27]. Yau’s
solution of the Calabi conjecture [34] is also valid on stacks. For orbifolds, an early reference

5One can mimic the arguments in [2]: one can define everything and the level of groupoid presentations of
the stack and then prove that it is invariant under Morita equivalence.

6One needs to use densities for non-orientable stacks.
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is [22], see also [17]. Although we will not use this, we note that the characterization of the
Kähler cone, extends to compact Kähler Deligne-Mumford analytic stacks.

Theorem 3.7. [14] Let X be a n-dimensional compact Kähler Deligne-Mumford analytic
stack and let ω be Kähler form on X . A class {α} ∈ H1,1(X ,R) is represented by a Kähler
form iff for every closed irreducible analytic substack Z ⊂ X one has {α}dim(Z ).[Z ] > 0
and

∫
X
{α}n−p {ω}p > 0 for all 1 ≤ p ≤ n− 1.

We will not need the full strength of this statement and will only sketch the proof of the
consequence we shall use.

Definition 3.8. Let L be a holomorphic line bundle on a smooth Deligne-Mumford analytic
stack X . Let Z ⊆ X be a closed substack of X . We say L is positive on Z if there is
an open analytic substack U such that Z ⊂ U and a hermitian metric h on L such that
iΘ(L|U , h|U ) is positive. �

Proposition 3.9. Let L be a holomorphic line bundle on a smooth Deligne-Mumford analytic
stack X . Assume there exists n ∈ N \ {0} such that L⊗n ' π∗(M) where π : X → X is the
natural map to the coarse moduli space X of X and M is a holomorphic line bundle on X.
Let Z ⊆ X be a compact analytic subspace. Then L is positive on Z := Z ×X X if and only
if M is ample on Z (which is then a projective algebraic variety).

Proof. The corresponding statement for analytic spaces was proved in Păun’s thesis, see [14,
Prop. 3.3] for the required level of generality. By Proposition 2.9, it rests on gluing and
regularization techniques for quasi-plurisubharmonic functions [13] that are local in nature
and compatible with the action of a finite group. �

Remark 3.10. The previous proposition holds also for Deligne-Mumford analytic stacks that
need not be smooth. 4

Remark 3.11. A positive line bundle in the above sense needs not be ample in the sense of
[30] because this latter condition requires that the stack has cyclic isotropy groups and the
isotropy representations of the line bundle are faithful. See [23] for related issues. 4

4. Hermite-Einstein metrics on compact Kähler Deligne-Mumford analytic
stacks

4.1. Uhlenbeck-Yau theorem. Let X be a n-dimensional connected compact Kähler Deligne-
Mumford analytic stack and let ω be Kähler form on X .

Let E be a coherent sheaf on X . We call rank of E the zero degree part of the Chern
character of its K-theory class [E ].

Definition 4.1. A holomorphic vector bundle E on X is ω-stable if every coherent subsheaf
F ⊂ E satisfies µ(F) < µ(E), where µ(F) is the ω-slope of F defined as

µ(F) :=

∫
X

c1(F).{ω}dim(X )−1

rk(F) .

�

The proof of the celebrated Uhlenbeck-Yau theorem carries over to Kähler Deligne-Mumford
analytic stacks.
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Theorem 4.2. [32] Let X be a n-dimensional connected compact Kähler Deligne-Mumford
analytic stack and let ω be Kähler form on X . Let E be a ω-stable holomorphic vector bundle
on X . Then it carries a smooth Hermite-Einstein metric h namely a hermitian metric
satisfying the equation:

ΛiΘ(E , h) = 2πµ(E)IdE .

4.2. Comparison with Nironi’s stability condition. Let (P,OP(1)) be a n-dimensional
polarized projective cyclic orbifold in the sense of [30]. One may take P := P(a0, . . . , an)
the n-dimensional weighted projective stack for some coprime positive integers a0, . . . , an with
n ≥ 1. Then for some m, G := ⊕mi=1OP(i) is a generating sheaf [23, Sect. 5.2].

In [30] the authors define a Kahler form ω induced by the curvature of a metric on OP(1).
Then for any n-dimensional coherent sheaf E on X we have

1
rk(E)

∫
P

c1(E) · {ω}n−1 = 1
rk(E)

∫
P

c1(E) · c1(OP(1))n−1 .

By using [28, Prop. 3.18] one can prove
1

rk(E)

∫
P

c1(E) · c1(OP(1))n−1 = 1
mn

µG(E) ,

where µG(E) is the G-slope introduced by Nironi. Therefore the ω-stability condition is
equivalent to the µG-stability condition of Nironi.

5. Hermite-Einstein metrics on some noncompact Kähler Deligne-Mumford
analytic stacks

In this section we shall prove a variant of [1] for stacks.

5.1. Deleted neighborhoods of smooth divisors. Let (X , g) be a Riemannian Deligne-
Mumford stack. Given an atlas (U, u) of X one can construct a groupoid action of

U ×X U U
s

t

on the tangent space to U and the resulting quotient stack π : Tot(TX ) → X is a differen-
tiable Deligne-Mumford stack over X which is the total space of the tangent vector bundle
TX to X . One can generalize this construction to any (real) vector bundle E on X .

The zero section of any (real) vector bundle E defines a substack Z(E) → Tot(E) of its
total space. Moreover, Tot(E) \Z(E) is representable (i.e.: it is a manifold) if and only if the
isotropy action at all points of X has no non zero fixed vectors. Given a metric on E one
can construct similarily the unit sphere bundle S(E) as a smooth substack of Tot(E) \Z(E)
which is a locally trivial sphere fibration over X . Moreover, the long exact sequence of
homotopy groups holds true [29]. In particular, Tot(TX ) \X is an honest manifold (i.e.: it
is representable) if and only if the tangent isotropy actions have no non zero fixed vectors.
One also has an equivalence Tot(E)\Z(E)→ S(E)×R>0 the second factor ρ : Tot(E)→ R>0
being the norm function.

Given i : S → X a closed smooth substack, the normal bundle NS |X over S can be
constructed as i∗TX /TS . Then, using the exponential map in normal directions, one con-
structs an open differentiable substack V ⊂ X containing S as a closed substack such that
the pair (V ,S ) is equivalent to (Tot(NS |X ),S ).
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If X is now a smooth Deligne-Mumford analytic stack and D ⊂ X be a smooth integral
codimension one closed substack. Then NDdiff |X diff is the smooth bundle underlying OX (D)
and there is an open differentiable substack V ⊂ X diff containing Ddiff as a retract and
a homotopy equivalence UD := S(NDdiff |X diff ) → V \ Ddiff such that the resulting map
UD → Ddiff is a locally trivial S1-fibration. In particular one has an exact sequence:

1→ CD → π1(UD)→ π1(D)→ 1 , (2)
where CD is a normal cyclic subgroup whose order may take any non negative integer value
or +∞. If OX (D) is ample on D , then UD is a complex manifold.

5.2. Asymptotically flat metrics on deleted neighborhoods. Assume now (X , ω0) is
Kähler Deligne-Mumford stack and D ⊂ X is a smooth divisor. A riemannian metric gc on
X \D has cone-like singularities if there exists a metric ds2 on UD such that the restriction
of gc to V \Ddiff is asymptotic to dr2 + r2ds2 in the sense made precise by [1, Sect. 1, Def. 1]
on manifolds where r is the distance function to any given point (note that r ∼ ρ−1). The
curvature of such metric gc decays to zero when approaching D .

If OX (D)|D is positive, there exists an hermitian metric hD on OX (D) such that its
curvature form is positive definite on a neighbourhood of D . As in [1, Sect. 1], we can
construct a cone-like complete metric ωc on X \D by the following formula:

ωc :=
√
−1∂∂̄ 1

a
exp(a log ‖σD‖−2

hD
) + Cω0 ,

where σD ∈ H0(X , OX (D)) is the tautological section of D , a is an arbitrary positive number
and C is a big enough positive real number.

Definition 5.1. A holomorphic hermitian vector bundle (E , h) on X \ D is asymptotically
flat if |Θ(E|(X◦,ωc), h)|gc = O(r−2−ε) as r →∞ for some ε > 0. �

Restricting the Chern connection of (E , h) to {r = R} for R � 1 we get a hermitian
connection DR on the pull-back of E to UD .

The asymptotic flatness condition gives immediately (cf. [1, Sect. 1, Def. 3]):

Lemma 5.2. The holonomy of DR along any path has a limit when R→∞ which is homotopy
invariant.

This defines a unitary representation of π1(UD) and we say (E , h) has trivial holonomy at
infinity if the representation is trivial when restricted to the group CD defined by (2).

5.3. Bando’s Instanton Theorem. We are now ready to state an analog of [1, Thm. 1]:

Theorem 5.3. Let (X , ω0) be a n-dimensional (n ≥ 2) connected compact Kähler Deligne-
Mumford stack and let D ⊂ X be a smooth divisor such that OX (D) is ample and positive
on D . Let ωc be a Kähler metric with cone-like singularities on X◦ := X \ D . Then
a holomorphic vector bundle E on X is such that E|D can be endowed with a flat unitary
connection ∇ iff there exists an Hermite-Einstein asymptotically flat vector bundle (E ′, h′) on
(X◦, ωc) having trivial holonomy at infinity which induces ∇ and E is an extension of E ′.

Proof. The previous section gives one direction of the first statement. Bando’s proof of the
much harder converse applies mutatis mutandis: extend the flat hermitian metric to a deleted
neighborhood of D by using a retraction, then extend it to X and flow it to an asymptotically
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flat Hermite-Einstein metric. The extension theorem, being local, also follows in the same
way. �

Corollary 5.4 ([1, Cor. 2]). If furthermore X◦ is an ALE manifold then we can replace
the curvature decay condition by

∫
X
|Θ(E ′, h′)|n < +∞; it is equivalent to |Θ(E ′, h′)| =

O(r−(2n−ε)) for any ε > 0.

6. An application: orbifold compactifications of ALE spaces of type Ak−1

In this section we describe an explicit application of Theorem 5.3.

6.1. Homotopy theory of spherical curves. In this section we shall recall some homo-
topical properties of spherical Deligne-Mumford curves from [5].

For any pair of integers m,n ≥ 1, we call weighted projective line of type (m,n) the smooth
Deligne-Mumford analytic stack P(m,n) := [C2 \{0}/C∗], where the action of C∗ on C2 \{0}
is given by t · (x, y) := (tmx, tny) for any t ∈ C∗ and (x, y) ∈ C2 \ {0}. Note that P(1, 1) '
P1. The stack P(m,n) has at most two orbifold points and its coarse moduli space is P1.
Obviously, P(m,n) ' P(n,m). Moreover, a weighted projective line is an orbifold if an
only if m and n are relatively coprime. We call these orbifold weighted projective lines. The
weighted projective line P(m,n) is a µd-gerbe over P(md ,

n
d ), where d = gcd(m,n). As

explained in [5, Sect. 4.3], the fundamental group π1(P(m,n)) is trivial.
For any pair of integers m,n ≥ 1, a football of type (m,n) is an orbifold F (m,n) whose

coarse moduli space is P1 and has two orbifold points of order m and n at 0 and ∞, respec-
tively. When m and n are relatively prime, F (m,n) is naturally isomorphic to P(m,n).

Definition 6.1. Let D be a one-dimensional smooth Deligne-Mumford analytic stack. We
say that D is a spherical Deligne-Mumford curve if its universal cover is P(m,n) for some
positive integer numbers m,n. �

Remark 6.2. Let D be one-dimensional smooth Deligne-Mumford analytic stack. By [5,
Prop. 4.6] there exists a one-dimensional analytic orbifold D̃ and a finite group H such that
D is a H-gerbe over D̃ . By [5, Prop. 7.4] D is spherical if and only if D̃ is spherical. 4

Proposition 6.3. [5, Prop. 5.5]. Let D be a spherical Deligne-Mumford curve which is an
orbifold with two orbifold points. Then D is isomorphic to a football F (m,n) of type (m,n)
for some positive integers m,n. The fundamental group of D is Zd, where d = gcd(m,n) and
its universal cover is P(md ,

n
d ) on which Zd acts by rotations.

Proposition 6.4. Let D be a one-dimensional smooth Deligne-Mumford analytic stack, which
is an H-gerbe over a football F (m,n). Then we have the exact sequence

1→ Zd → H → π1(D)→ π1(F (m,n))→ 1 ,

where d = gcd(m,n). Moreover, the universal cover of D is isomorphic to P(m,n).

Proof. By [5, Prop. 7.6-(i)], the fundamental group of D fits into the exact sequence

1→ ker(H → π1(D))→ H → π1(D)→ π1(F (m,n))→ 1 .
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On the other hand, as explained in [5, Sect. 9], ker(H → π1(D)) ' π2(PGL(m,n)) (for a
definition of PGL(m,n), see [5, Sect. 8]). Finally, by [5, Prop. 8.5 and 8.6], we get

π2(PGL(m,n)) =
{

Zd if m 6= n and d = gcd(m,n) ,
Zm if m = n .

The second statement follows from [5, Prop. 7.6-(ii)]. �

6.1.1. Spherical Deligne-Mumford curves with universal cover P(d, d). Let D be a one-
dimensional smooth Deligne-Mumford analytic stack with universal cover P(d, d). By [5,
Cor. 9.8], D is a global quotient stack of the form [C2 \ {0}/E] where E is a central extension
of a discrete group Γ by C∗ and the action of E on C2 \ {0} is given by a C-representation
ρ : E → GL(2,C) of E, which fits into the commutative triangle

C∗

E GL(2,C)

(td,td)

ρ

(3)
As explained in [5, Sect. 9.2], the fundamental group of D is Γ.

Remark 6.5. The Picard group Pic(D) of D consists of E-equivariant line bundles on C2\{0},
i.e., characters E → C∗ (cf. Section 3.4). Let ρ : Γ→ C∗ be a one-dimensional representation
of Γ ' π1(D). Then the composition of morphisms E → Γ ρ−→ C∗ defines a line bundle Lρ on
D . Moreover, Lρ is endowed by an hermitian metric and a unitary flat connection associated
with ρ (cf. Section 3.2). 4

6.2. Orbifold compactification. In this section we describe a construction in [6] of a com-
pactification of the minimal resolution of the Ak−1 toric singularity of C2/Zk, which turns
out to be a projective toric orbifold.

Normal compactification. Let k ≥ 2 be an integer and denote by µk the group of k-th roots
of unity in C. A choice of a primitive k-th root of unity ω defines an isomorphism of groups
µk ' Zk. We define an action of µk ' Zk on C2 as

ω · (z1, z2) := (ωz1, ω
−1z2) .

The quotient C2/Zk is a normal toric affine surface. To describe its fan we need to introduce
some notation. Let N ' Z2 be the lattice of 1-parameter subgroups of the torus T := C∗×C∗.
Fix a Z-basis {e1, e2} of N and define the vector vi := ie1 + (1 − i)e2 ∈ N for any integer
i ≥ 0. Then the fan of C2/Zk consists of the two-dimensional cone σ := Cone(v0, vk) ⊂ NQ
and its subcones. The origin is the unique singular point of C2/Zk, and is a particular case
of the so-called rational double point or Du Val singularity (see [11, Def. 10.4.10]).

By [11, Example 10.1.9 and Cor. 10.4.9], the minimal resolution of singularities of C2/Zk
is the smooth toric surface ϕk : Xk → C2/Zk defined by the fan Σk ⊂ NQ, where

Σk(0) :=
{
{0}

}
,

Σk(1) :=
{
ρi := Cone(vi)

∣∣ i = 0, 1, 2, . . . , k
}
,

Σk(2) :=
{
σi := Cone(vi−1, vi)

∣∣ i = 1, 2, . . . , k
}
.

Note that the vectors vi are the minimal generators of the rays ρi for i = 0, 1, . . . , k.
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Let us consider the vector b∞ := −v0 − vk = −ke1 + (k− 2)e2 in N. Denote by ρ∞ the ray
Cone(b∞) ⊂ NR and by v∞ its minimal generator. For even k, v∞ = 1

2b∞; for odd k, v∞ = b∞.
Let σ∞,k and σ∞,0 be the two-dimensional cones Cone(vk, v∞) ⊂ NR and Cone(v0, v∞) ⊂ NR
respectively. Let X̄k be the normal projective toric surface defined by the fan Σ̄k ⊂ NR:

Σ̄k(0) :=
{
{0}

}
= Σk(0) ,

Σ̄k(1) := {ρi | i = 0, 1, 2, . . . , k} ∪ {ρ∞} = Σk(1) ∪ {ρ∞} ,

Σ̄k(2) := {σi | i = 1, 2, . . . , k} ∪ {σ∞,k, σ∞,0} = Σk(2) ∪ {σ∞,k, σ∞,0} .

First note that i : Xk ↪→ X̄k as an open dense subset. We denote by D∞ the T -invariant
divisor associated to the ray ρ∞.

Canonical orbifold. Let k̃ be k for odd k, otherwise k/2. Let πcan
k : X can

k → X̄k be the so-
called canonical toric orbifold over X̄k with torus T . It is the unique (up to isomorphism)
smooth two-dimensional separated toric7 Deligne-Mumford algebraic stack of finite type over
C such that the locus over which πcan

k is not an isomorphism has a nonpositive dimension.
As a global quotient stack, X can

k is isomorphic to
[
ZΣ̄k

/(C∗)k
]
, where ZΣ̄k

is the union
over all cones σ ∈ Σ̄k of the open subsets

Zσ :=
{
x ∈ Ck+2 ∣∣xi 6= 0 if ρi /∈ σ

}
⊂ Ck+2 ,

and the action of (C∗)k is given by

(t1, . . . , tk)·(z1, . . . , zk+2) =


( k−1∏

i=1
tii t

2−k
k z1 ,

k−1∏
i=1

t
−(i+1)
i tkk z2 , t1 z3 , . . . , tk zk+2

)
, k odd( k−1∏

i=1
tii t

1−k̃
k z1 ,

k−1∏
i=1

t
−(i+1)
i tk̃k z2 , t1 z3 , . . . , tk zk+2

)
, k even

for (t1, . . . , tk) ∈ (C∗)k and (z1, . . . , zk+2) ∈ ZΣ̄k
.

The effective Cartier divisor D̃∞ := (πcan
k )−1(D∞)red is a toric orbifold with torus C∗. By

[6, Prop. 3.10] D̃∞ is isomorphic as a quotient stack to [C2 \ {0}/C∗ × µk̃], where the action
is given by (t, ω) · (z1, z2) = (tω z1, t z2) for (t, ω) ∈ C∗×µk̃ and (z1, z2) ∈ C2 \ {0}. Moreover,
D∞ ' P1 is the coarse moduli space of D̃∞ and the line bundle OX can

k
(D̃∞) is ample (cf. [6,

Rem. 3.18]).

Remark 6.6. As explained in [6, Sect. 3.3], D̃∞ is an orbifold of type (k̃, k̃) with two orbifold
points p̃0 and p̃∞, which are (πcan

k )−1(0)red and (πcan
k )−1(∞)red respectively, where 0,∞ ∈ D∞

are the two torus fixed points. By Proposition 6.3, the fundamental group of D̃ is Zk̃.
Moreover, its universal cover is P( k̃

k̃
, k̃
k̃
) = P(1, 1) ' P1. 4

7Following [18], a Deligne-Mumford torus T is a product T ×BG where T is a ordinary torus and G a finite
abelian group. A smooth toric Deligne-Mumford stack is a smooth separated Deligne-Mumford algebraic stack
X of finite type over C, with as a coarse moduli space π : X → X a scheme, together with an open immersion
of a Deligne-Mumford torus ı : T ↪→ X with dense image such that the action of T on itself extends to an
action a : T ×X → X .
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Root stack over the canonical orbifold. Let φk : Xk →X can
k be the stack obtained from X can

k

by performing a k-root construction8 along the divisor D̃∞. As explained in [6, Sect. 3.4],
Xk is a two-dimensional toric orbifold with torus T and with coarse moduli space πk :=
πcan
k ◦ φk : Xk → X̄k. As a global quotient stack, Xk is isomorphic to [ZΣ̄k

/(C∗)k], where the
action of (C∗)k on ZΣ̄k

is

(t1, . . . , tk)·(z1, . . . , zk+2) =


( k−1∏
i=1

tii t
2k−k2

k z1,
k−1∏
i=1

t
−(i+1)
i tk

2
k z2, t1 z3, . . . , tk zk

)
for odd k ,( k−1∏

i=1
tii t

k−k k̃
k z1,

k−1∏
i=1

t
−(i+1)
i tk k̃k z2, t1 z3, . . . , tk zk

)
for even k .

for (t1, . . . , tk) ∈ (C∗)k and (z1, . . . , zk+2) ∈ ZΣ̄k
.

Let D∞ be the effective Cartier divisor π−1
k (D∞)red; it is a smooth toric Deligne-Mumford

stack with Deligne-Mumford torus T ' C∗ ×Bµk. By [6, Prop. 3.30] D∞ is isomorphic as a
global quotient stack to [

C2 \ {0}
C∗ × µk

]
,

where the action is given by

(t, ω) · (z1, z2) =
{ (

tk̃ ω z1 , t
k̃ ω−1 z2

)
for even k ,(

tk ω
k+1

2 z1 , t
k ω

k−1
2 z2

)
for odd k ,

(4)

for (t, ω) ∈ C∗ × µk and (z1, z2) ∈ C2 \ {0}. Moreover, D∞ is a µk-gerbe over D̃∞.
Under this description of D∞, the restriction of the line bundle OXk

(D∞) on D∞ is associ-
ated with the character of C∗×µk given by the projection to the first factor (cf. [6, Lem. 3.35]).
So it is easy to see that OXk

(D∞) is ample on D∞ (see also [7, Sect. 6.1]). Moreover, (cf. [6,
Sect. 3.4])

OXk
(D∞)⊗k̃k|D∞ ' π∗kOX̄k

(k̃D∞)|D∞ ' πk
∗
|D∞OD∞(k/k̃) .

So by Proposition 3.9 the line bundle OXk
(D∞) is positive on D∞.

Remark 6.7. Since D top
∞ is a µk-gerbe over D̃ top

∞ , its universal cover is P(k̃, k̃) by Proposition
6.4. The group C∗ × µk fits into a triangle as (3) where the homomorphism ρ : C∗ × µk →
GL(2,C) is given by the action (4) and the homomorphism C∗ → C∗×µk is simply t 7→ (t, 1).
Thus by the arguments in Section 6.1.1, we obtain that π1(D top

∞ ) ' Zk. 4

Remark 6.8. It is easily seen that UD∞ and UD̃∞
are actually diffeomorphic manifolds. Their

homotopy exact sequences fit into the diagram:

1 CD∞ π1(UD∞) π1(D∞) 1

1 CD̃∞
π1(UD̃∞

) π1(D̃∞) 1
id

where the rightmost vertical arrow is a surjection and the leftmost is an injection. Since
π1(D top

∞ ) ' Zk and π1(D̃ top
∞ ) ' Zk̃, then CD̃∞

/CD∞ = Zk/k̃. 4

By Theorem 5.3 and Corollary 5.4 we obtain the following.
8For the theory of root stacks we refer to [9].
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Theorem 6.9. Given a holomorphic vector bundle E on Xk, its restriction E|D∞ is isomor-
phic to a fixed vector bundle F∞ endowed with a flat unitary connection ∇ iff there exists
a Hermite-Einstein vector bundle (E ′, h′) on (Xk, ωk) such that

∫
Xk

|Θ(E ′, h′)|2 < +∞ and

(E ′, h′) has at infinity the holonomy given by the holonomy of ∇, where ωk is the ALE metric
on Xk, and E is an extension of E ′.

Remark 6.10. The original result of Bando permits only to treat the case where k = 2 and
the holonomy is trivial on CD̃∞

/CD∞ = Z2. 4
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