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Upper Body Pose Estimation Using Wearable
Inertial Sensors and Multiplicative Kalman Filter

Tommaso Lisini Baldi1, Francesco Farina2, Andrea Garulli1, Antonio Giannitrapani1, Domenico Prattichizzo1,3

Abstract—Estimating the limbs pose in a wearable way
may benefit multiple areas such as rehabilitation, teleoperation,
human-robot interaction, gaming, and many more. Several solu-
tions are commercially available, but they are usually expensive
or not wearable/portable. We present a wearable pose estimation
system (WePosE), based on inertial measurements units (IMUs),
for motion analysis and body tracking. Differently from camera-
based approaches, the proposed system does not suffer from
occlusion problems and lighting conditions, it is cost effective and
it can be used in indoor and outdoor environments. Moreover,
since only accelerometers and gyroscopes are used to estimate
the orientation, the system can be used also in the presence
of iron and magnetic disturbances. An experimental validation
using a high precision optical tracker has been performed. Results
confirmed the effectiveness of the proposed approach.

I. INTRODUCTION

Wearable sensors have initially been employed as diagnostic
and monitoring tools for gait analysis and joint kinematics.
Nowadays, their main applications are still in the healthcare
field [1], but new potential applications are emerging in:
rehabilitation [2], gaming [3], human robot interaction [4],
human computer interface [5], human monitoring [6], and
many more. In these applications, wearability represents a
key feature because it does not constraint the user’s motion
and consequently improves the way users interact with each
other and with the surrounding environment. In fact, wearable
sensors have the advantage of being portable, lightweight and
well integrable with other devices. Thanks to this, there is a
growing interest in studying and developing novel wearable
solutions to accurately track the human body. Unfortunately,
most of the existing solutions are neither wearable nor portable
since they usually rely on grounded/bulky hardware and/or
structured environments.

Optical tracking systems such as Vicon (Vicon Motion
Systems, UK) and Optitrack (NaturalPoint Inc., USA) exploit
active or passive optical markers to estimate the human body
configuration with high precision and accuracy. The main
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Fig. 1: Example of upper limbs pose reconstruction using the
proposed wearable system.

drawback of these systems is the need of a structured environ-
ment. As another example, exoskeletons allow to accurately
estimate the human pose thanks to their rigid structure and
high quality sensors. Disadvantages usually concern cost and
weight.

The aforementioned solutions provide very accurate motion
estimation, but they usually have a high cost and they are
neither wearable/portable nor usable in unstructured or outdoor
scenarios. In order to favor wearability and reduce costs,
camera-based tracking algorithms have become a widespread
solution, thanks to the improvements in computer vision tech-
niques and computational power. In [7], the authors present a
body tracker using commercial RGB-D cameras. On the other
hand, camera-based solution have some limitations as well:
RGB-D cameras might not work properly in outdoor environ-
ments due to infrared interference and occasional occlusions
may induce a poor estimation of the body posture.

A viable solution to overcome these limitations consists in
using fabric-integrated devices with rigid or flexible goniome-
ters which are worn by the user [8]. Nguyen et al. developed a
sensing system, exploiting optical linear encoders, to measure
limb joints angular data in home-based rehabilitation [9]. This
type of solution uses kinematic reconstruction to determine the
body posture. The weak point is that attachments of the body-
based linkages as well as the positioning of the goniometers
could generate several problems. Body soft tissues allow the
linkages position, relative to the body, to change when motion
occurs. Moreover, a perfect alignment of the sensors with the
joints is difficult, especially for joints with multiple degrees
of freedom (e.g., wrist and shoulder).

A further way to estimate the pose of the human body
consists in using Micro Electro-Mechanical Systems (MEMS),
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such as Magnetic, Angular Rate, and Gravity (MARG) sen-
sors, including triaxial gyroscopes, accelerometers, and mag-
netometers [10], [11]. These sensors can be easily integrated
with wearable devices and can be used to reconstruct the pose
of the human body through specific algorithms [12], [13], [14].
Tracking systems based on this technology are commercially
available and allow to track the whole body, in outdoor and
indoor environments, under different lighting conditions and
free from grounded hardware [15], [16]. However, a problem
arises when integrating angular rates measured by MARG sen-
sors. A tiny bias in the gyroscope output generates a huge drift
in the orientation estimate [17]. For drift-free body orientation
estimation, several methods have been developed combining
the signals from inertial and magnetic sensors [18], [19]. In the
mentioned works, the accelerometer measurements are used
to determine the direction of the local vertical by sensing the
gravity acceleration, whereas magnetic measurements provide
plane heading using the direction of the earth magnetic field.
This approach has drawbacks in indoor environments, where
the magnetic field is often heavily disturbed.

This paper presents a further step towards the capability
of reconstructing the human body posture using wearable
sensors. Our contribution consists in presenting a method
based on Inertial Measurement Units (IMUs), which are low-
cost electronic devices integrating MEMS sensors on a single
board. Measurements coming from different sensors are inte-
grated via the Multiplicative Extended Kalman Filter (MEKF),
demonstrated by Markley [20], to accurately estimate the body
posture. The use of Kalman Filter for orientation estimation is
not a novelty and it has already been employed within several
different settings. For instance in [21], an angular estimation
system that works with inertial measurement units is presented.
Additional examples can be found in [22], [23], and [24].
An MEKF-based algorithm which performs the correction
step only when the measurements used for the correction are
sufficiently reliable, has been proposed in [25]. Unlike the
aforementioned approaches, in this work we propose a spe-
cialized version of this algorithm in which only measurements
coming from the gyroscope and the accelerometer (and not
from the magnetometer) are used. One of the main novelties is
to use attitude estimation for upper limbs pose reconstruction,
by exploiting kinematic models of human body. To the best
of our knowledge, the presented approach represents the first
implementation of a MEKF for upper body tracking using only
inertial measurements.

The rest of the paper is organized as follows. Section II
describes the proposed orientation estimation algorithm for
a single rigid body. Section III reports the results of the
experimental validation carried out to assess the accuracy of
the estimation algorithm. Section IV shows an application
of the filter to upper body tracking. In Section V some
conclusions are drawn.

II. SINGLE BODY ATTITUDE ESTIMATION

In this section, a MEKF-based algorithm for estimating
the orientation of a single rigid body is presented. This is
instrumental to the multi-body tracking method proposed in

Section IV. A possible approach in designing quaternion-based
tracking algorithms is to update the quaternion by adding to
the current estimate a term depending on the angular rate
weighted by the sampling time. By doing so, the obtained
quaternion may have non-unitary norm, so that a normaliza-
tion is needed to represent a pure rotation, thus introducing
additional errors in the estimation process. Conversely, the
MEKF [20] exploits multiplications, so that unitary norm
is preserved by construction. In this work we follow the
aforementioned approach. As a standard Kalman Filter, the
MEKF consists of two main steps: a prediction step and a
correction step. These steps are performed on a state vector
containing the orientation error a ∈ <3 between the estimated
attitude and the true one, and the gyroscope bias bω ∈ <3. In
the prediction step, the quaternion is updated along with the
state vector and the covariance matrix. During the correction
step, the state vector and the covariance matrix are updated
by using the available measurements, while the quaternion
estimate is corrected according to the new state vector.

The key point during the correction step is the selection of
the measurements to use. In the considered setting, an IMU is
attached to a moving rigid body. The measurements coming
from the magnetometer are not exploitable due to soft and
hard iron disturbances, which are difficult to filter out (even by
mapping the environment). In manipulation tasks, for instance,
it is impossible to predict, estimate, and remove distortion of
the magnetic field induced by objects. Moreover, during the
body motion the measured acceleration can differ significantly
from gravity acceleration, thus making the readings unusable
for orientation estimation.

Here we assume the acceleration g to be normalized with
respect to the gravity acceleration. Thus, we say that if
||g|| = 1 the accelerometer is measuring the gravity exactly.
Hence, when ||g|| ≈ 1 the measurements provided by the
accelerometer can be used for orientation estimation. Such a
condition is typically satisfied when the IMU is not moving.
Regarding the gyroscope readings, they are usually very ac-
curate, despite of the body motion.

In the MEKF, angular rates are used for updating the attitude
quaternion, during the prediction step. Moreover, gyroscope
measurements can be employed for correcting the bias. In fact,
when the IMU is almost steady, the gyroscope can be used to
accurately measure its own bias bω .

From the above discussion it is clear that measurements
informative enough to be used in the correction step are, in
general, not available when the body is moving. The proposed
algorithm is a MEKF in which the correction step is performed
only when informative measurements are available, i.e., during
time intervals in which the IMU is steady. We call these time
intervals static phases and we refer to the proposed algorithm
as sMEKF. In the following, we briefly outline the model
and MEKF equation; the interested reader is referred to [20]
for details. We denote by q the quaternion1 representing the
attitude of a rigid body and by ω the angular rate of the body.

1We represent a quaternion as a 4 component vector q = [qw qx qy qz ]>

where qw is the scalar part.
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The evolution of the attitude of the body can be expressed as

q̇ =
1

2
q ⊗ q(ω),

where ⊗ denotes the quaternion multiplication operator
and given a vector v = [vx vy vz]

>, we indicate by
q(v) = [0 vx vy vz]

> its quaternion form. Let qt and ωt be
the quaternion and the angular rate at time t, and δt be the
sampling time. Under the assumption of small angles, the
resulting attitude quaternion at time t+ δt is

qt+δt = qt ⊗ q(ωtδt).

The true attitude at time t can be expressed as

qt = q̂t ⊗ δq(at),

where q̂t is the current estimate of the quaternion and
δq(at) represents the rotation from q̂t to the true attitude qt,
parametrized by the small angle vector at.

We define the gyroscope and the accelerometer output,
respectively, as ωout and gout which we assume to be modeled
as

ωout = ω + bω + wω, ḃω = wb

gout = g + wg
(1)

where ω and g are the true angular rate and acceleration,
respectively, and wω , wg and wb are disturbances modeled
as white noises with zero mean and covariance matrices Σω ,
Σg and Σb, respectively.

The aim of the MEKF is to estimate the 6-component state
vector

xt =

[
at
bω,t

]
at each time t. The estimated angular rate is defined as

ω̂ , ωout − b̂ω

being b̂ω the estimated bias.
By following the derivation in [20], the state dynamics can

be written as

xt+δt=f(xt,t)=

[
at+δt

(
−[ω̂t]×at+b̂ω,t−bω,t−wω,t

)
bω,t + wbω,tδt

]
,

(2)
being [•]× a skew-symmetric matrix used to represent cross
products as matrix multiplications.

Defining yt+δt = [goutt+δt , ωoutt+δt ]
>, the measurement

model (1) gives

yt+δt = h(xt+δt) =

[
A(qt+δt)

>gI + wgt+δt
ωt+δt + bωt+δt + wωt+δt

]
(3)

where gI = [0 0 1]> is the gravity acceleration in the inertial
frame and A(q) denotes the rotation matrix corresponding to
the quaternion q.

The sMEKF algorithm is reported in Algorithm 1, where the
matrices Ft, Gt, and Ht+δt are the Jacobian of the functions
f and h in (2) and (3) (see [20] for additional details).

Algorithm 1 sMEKF algorithm.

Initialization: x̂0|0, q̂0|0, P0|0, R =

[
Σg 03×3

03×3 Σω

]
Evolution:

for all t do

ω̂t+δt|t = ωout,t − b̂ωt|t
q̂t+δt|t = q̂t|t ⊗ q(ω̂t+δt|tδt)

x̂t+δt|t =

[
0

b̂ωt|t

]
Ft = I6×6 + δt

[
−[ω̂t|t]× −I3×3

03×3 03×3

]
Gt = δt

[
−I3×3 03×3

03×3 I3×3

]
Pt+δt|t = FtPt|tF

>
t +GtQG

>
t

if Eq. (4)-(7) hold then

Ht+δt =

[
[A(q̂t+δt|t)

>gI ]× 03×3

03×3 I3×3

]
Kt+δt = Pt+δt|tH

>
t+δt[Ht+δtPt+δt|tH

>
t+δt +R]−1

x̂t+δt|t+δt = x̂t+δt|t +Kt+δt(yt+δt − h(x̂t+δt|t))

Pt+δt|t+δt = Pt+δt|t[I6×6 −H>t+δtK>t+δt]
q̂t+δt|t+δt = q̂t+δt|t ⊗ δq(ât+δt|t+δt).

else
x̂t+δt|t+δt = x̂t+δt|t

Pt+δt|t+δt = Pt+δt|t

q̂t+δt|t+δt = q̂t+δt|t
end if

end for

In order to establish whether a correction step can be
performed, we define a moving time window that is used to
detect if the IMU is steady. The window size is denoted by

W = Nδt, N ∈ N

where N represents the number of samples in the time
window. Given a certain time instant t̄, we want to check if
the IMU has been still for t ∈ [t̄ −W, t̄]. In order to do so,
we verify that the following conditions are satisfied:

S(ωout,t̄;W ) ≤ αΣ̂ω (4)

S(gout,t̄;W ) ≤ βΣ̂g (5)∣∣E(‖gout,t̄‖;W )− 1
∣∣ ≤ γ1 (6)

S(‖gout,t̄‖;W ) ≤ γ2 (7)

where, given a sequence {xt} with xt ∈ <n for all t, we have
denoted by

E(xt̄;W ) =
1

N

t̄∑
t=t̄−W

xt
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Fig. 2: Overview of the proposed tracking system.

the sample mean over a time window of length W , and by

S(xt̄;W ) =
1

N−1

t̄∑
t=t̄−W

(xt − E(xt̄;W ))(xt − E(xt̄;W ))>

the sample variance over the same time window. The matrices
Σ̂ω and Σ̂g are the estimated covariance matrices of wω and
wg , computed in an initial calibration phase in which the IMU
is kept steady for a sufficient laying time and the parameters
α, β, γ1, γ2 are fixed constants.

Conditions (4) and (5) guarantee that the variances of the
measurements are sufficiently close to the ones measured in
the calibration phase (in which the IMU is steady). Condi-
tion (6) and (7) are used to check if the magnitude of the
acceleration measured in the last W steps has been sufficiently
close to 1. Clearly, depending on the value of the constants
α, β, γ1, γ2 and γ3, conditions (4)-(7) are more or less re-
strictive. The higher the chosen values, the more correction
steps are performed. However, too high values increase the
risk of detecting false static phases. In our experiments, we
set α = β = 2 and γ1 = γ2 = 0.01.

If at a given time, conditions (4)-(7) hold, a correction step
of the sMEKF (as detailed in Algorithm 1) is performed.
Otherwise, no correction occurs and the filter proceeds to the
next prediction step. A flow chart representing the proposed
algorithm is reported in Figure 2.

III. EXPERIMENTAL VALIDATION

In this section we report the experimental validation of the
sMEKF algorithm for estimating the orientation of a single
body. Performance of the proposed method are compared to
two widely used algorithms for this purpose [26]:

(i) the Nonlinear Complementary Filter (NCF), proposed by
Mahoney [27];

(ii) the Gradient Descent algorithm coupled with a Comple-
mentary filter (GDC), proposed by Madgwick [28].

Two different experiments, evaluating the accuracy of the
proposed method, have been carried out. The first intends to
show the lack of drift, whereas the second demonstrates the
accuracy in tracking both slow and rapid body movements. It is
important to highlight that the performance of the considered
approaches largely depends on the integration capability of
the sensors, thus the higher is the sampling rate, the more
accurate is the estimation. Two different sampling rates for
each experiment have been considered: i) high sampling rate
(1 kHz), and ii) low sampling rate (100 Hz). A single IMU
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Fig. 3: Dynamic validation. The MARG sensor was positioned
onto a flat platform together with seven passive optical mark-
ers. We kept the platform steady for 5s, then we freely moved
and rotated it for 50s, and finally, we kept it steady for further
5s. A representative trial is depicted; only the orientation
estimated by the optical tracker is reported.

(Xsens MTI-3) has been placed on a flat platform together
with seven passive reflective markers for the validation.

Tracking errors are computed with respect to a high accu-
racy optical tracking system, considered as the ground truth.
A Vicon system, consisting of ten Bonita cameras and Tracker
3.7.0 software, has been used for this purpose. A preliminary
calibration phase has been performed to align the reference
frame of the IMU with the one of the Vicon. Then, the platform
has been freely moved around, without any constraint. Raw
data have been collected and post-processed using the three
algorithms. A single PC was in charge of collecting data
streamed by the Vicon system and the inertial sensors. Ground
truth data were gathered through the network using a high
performance Ethernet card (HP Intel Ethernet I210-T1 GbE
NIC), whereas the sensors transmitted raw data via a dedicated
USB 3.0 port. Inertial raw data were then processed by
the three algorithms and compared with the real orientation.
This configuration minimized transmission delays, and packet
misalignment.

A. Drift validation

Firstly, experiments concerning drift compensation have
been performed. Ten trials have been performed using the
highest sampling rate (1 kHz). The platform carrying the IMU
and the markers has been kept steady for 25 seconds, then it
has been quickly moved, shacked, and rotated for 10 seconds.
Finally, it has been kept steady for further 25 seconds in
order to quantify the error drift. It is worth pointing out that
the motion of the platform has been over-stressed in this
experiment. Thus, the error in estimating the orientation is
affected also by the Vicon relatively slow sampling rate for
all the algorithms. In Figure 4 the results of a representative
trial are reported. It can be seen that all the algorithms show
negligible error drift as long as roll and pitch are concerned.
However, the NCF algorithm presents a remarkable yaw drift.
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Fig. 4: Drift validation. Roll, Pitch, Yaw angle errors for a representative trial.
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Fig. 5: Dynamic validation. Roll, Pitch, Yaw angle errors for a representative trial.

On the contrary, the GDC algorithm show a limited drift, while
the one of sMEKF is negligible.

B. Dynamic validation

The second experimental campaign aimed at verifying the
capability of the proposed approach to correctly estimate
orientation in a dynamic situation. In these experiments the
platform has been randomly moved and rotated in space,
simulating common body links motions. Twelve trials lasting
60 seconds each were performed. We kept the platform steady
for 5s, then we freely moved and rotated it for 50s and, finally,
we kept it steady for further 5s. A representative motion of the
platform is depicted in Figure 3. A comparative error analysis
between the three algorithms is reported in Figure 6a, and
Figure 6b for 100 Hz and 1 kHz sampling rate, respectively.
The mean and the standard deviation of the estimation error
for 100 Hz and 1 kHz are reported in Table I and Table III,
respectively. In Figure 5 the orientation estimation errors in
Euler angles for a single experiment at 1 kHz are reported. As
it can be seen, the sMEKF performs better than the NCF and
the GDC algorithms at both acquisition rates. In particular,
at 1 kHz, the mean and standard deviation of the attitude
estimation error are significantly lower with respect to the NCF
and the GDC algorithms (up to 61% and 42%, respectively).
The lower sampling rate gives less percentage difference in
orientation estimation error: 47% with respect to NFC and
32% compared to GDC.

IV. UPPER LIMBS TRACKING APPLICATION

The attitude estimation scheme previously described has
been employed within a wearable system for body tracking.
Kinematic models and human joint angles estimation have
been combined to continuously reconstruct the body posture.
In the previous section we described how to estimate the
attitude of a single rigid body. Assuming two consecutive links
connected by a spherical joint, we can estimate the angle
between the two links through the IMUs attitudes. In what
follows, we investigate the performance of sMEKF for upper
body tracking. To determine the body and limbs configuration,
we use a well known biomechanical modeling technique based
on a sequence of links connected by joints. This type of model
allows the representation of any part of the human body (or
robotic arm). To obtain a systematic method for describing
position and orientation of each pair of consecutive links,
we generate a homogeneous transformation matrix between
the two links, by using the Denavit and Hartenberg method,
following the approach described in [29]. The homogeneous
matrix is obtained by combining the link length and the
quaternion computed by the sMEKF algorithm. If each couple
of consecutive links is related via a matrix, then, using the
kinematic chain rule, it is possible to connect any link to
another one (e.g., the arm and forearm).

A common problem in wearable tracking systems employ-
ing sensors attached to human limbs is that the initial pose
between the sensor and the body segment is unknown [30].
Moreover, the computation of limb trajectories by numerical
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Fig. 6: Comparison among the three estimation algorithms. For each algorithm, the error mean and standard deviation in
orientation estimation are reported, expressed as roll, pitch and yaw angles.

Algorithm Roll (deg.) Pitch (deg.) Yaw (deg.)
NCF 2.23 ± 2.25 2.70 ± 2.90 2.42 ± 2.62
GDC 1.38 ± 1.37 2.28 ± 2.43 2.11 ± 2.24

MEKF 1.10 ± 1.30 1.46 ± 1.71 1.35 ± 1.62

TABLE I: Mean and standard deviation of the attitude esti-
mation error for the three considered algorithms sampled at
100 Hz.

integration of acceleration signals is not a reliable approach,
because of both the unknown initial position and the noise
affecting the measurements. This implies that standard track-
ing methods have large errors in correctly estimating the body
posture. A main advantage of the sMEKF-based approach is
that it does not require neither a joint-sensor calibration nor
a joint approximation. Since each sensor estimates the actual
orientation with respect to the initial pose, only the length of
the links is required. Such lengths can be estimated in several
ways in the calibration phase. Similarly to what is proposed
in [15], we asked subjects to hold their hands together and
freely move them (see Figure 8). The distance between the left
and the right palm is zero, so that one can take advantage of
this closed kinematic chain to tune the model. Starting from an
initial value (taken from anthropometric measurements [31]),
an optimization algorithm is used to refine the estimation of
the links length. The a priori lengths of the bones are used
as a starting point to initialize the optimization procedures,
which minimizes the distance between the two hands.

Algorithm Mean (mm) STD (mm)
NCF 17.71 10.75
GDC 17.96 10.82

MEKF 12.05 6.20

TABLE II: Mean and standard deviation of the hand pose
reconstruction error.

Algorithm Roll (deg.) Pitch (deg.) Yaw (deg.)
NCF 1.89 ± 1.41 1.93 ± 2.09 2.05 ± 2.03
GDC 0.96 ± 0.81 1.48 ± 1.43 1.57 ± 1.50

MEKF 0.71 ± 0.79 0.73 ± 0.75 0.86 ± 0.82

TABLE III: Mean and standard deviation of the attitude
estimation error for the three considered algorithms sampled
at 1 kHz.

In order to validate the proposed algorithm, we applied it
to a real world scenario. The aim of the experiment is to track
the motion of the hand of the subject by using the attitude of
the IMUs and the links length. Differently from the calibration
phase, this experiment is performed in open loop kinematic:
neither closed loop nor additional constraints were exploited
to reinforce the algorithms. Ten subjects took part in the
experimental evaluation. Each subject was asked to place his
hand on a table, keep it steady for a couple of seconds and then
to draw six circles in the air and place the hand on the table at
the end of each circle (representative hand motion is reported
in Figure 7b). Each participant wore five IMUs attached,
respectively, to the chest, the arms and the forearms (as
depicted in Figure 8). Once the skeleton dimensions had been
estimated with the aforementioned procedure, the performance
of each algorithm was evaluated by comparing the resulting
trajectory with that obtained from a Vicon system used as
ground truth. Inertial raw data were collected and then post-
processed using the three different algorithms. Each algorithm
was used both to estimate the links length in the preparatory
phase, and then in the following trials for reconstructing the
body posture. The system kinematic model is translated to
body segment kinematics using a biomechanical model which
assumes that the subject body includes body segments linked
by joints and that the sensors are attached to the subject.

Joint origins are determined by the anatomical frame and are
defined in the center of the functional axes with the directions
of the X, Y and Z being related to functional movements.
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Fig. 7: Hand pose reconstruction comparison among the three estimation algorithms. Panel (a) reports the hand tracking error
in estimating the position with respect to the ground truth given by a Vicon system. In (b) a representative trial is depicted.

We consider each joint as a spherical joint, enabling 3D
motion for each segment. This strategy overcomes the problem
of modeling troublesome joints like the distal radioulnar
articulation. The independent orientation estimation of each
body segment is a central benefit and it allows us to avoid
the articulation to joint mapping. Such a mapping, in fact,
is usually a great source of error and uncertainty due to the
impossibility of a perfect modeling with a limited number of
parameter. The position error with respect to the ground truth
of a representative trial is reported in Figure 7a. It is worth
pointing out that a part of the error can be attributed to link
length estimates that are not perfect. In fact, if the link lengths
are 5% different from the real ones, an error in the attitude of at
1 degree (as it is the one of the sMEKF in Figure 7a) produces
a maximum error in the trajectory of about 4 cm for a subject
with an arm and a forearm of 30 cm each. The results of the
experimental evaluation confirm the expected performance. In
Table II we report mean and standard deviation of the hand
pose error with respect to the ground truth, computed among
all the performed trials.

Fig. 8: Links length calibration: lengths are refined by solving
the closed kinematic chain. Inertial sensors are indicated with
green rectangles.

V. CONCLUSION AND FUTURE WORK

An innovative wearable and reliable tracking system en-
abling 3D motion capture in daily activities has been pre-
sented. The system utilizes inertial sensors to track the de-
sired body portion in any environment, indoors or outdoors,
allowing voluntary movements to be recorded and viewed on a
standard PC in real-time. The average error in tracking is lower
than 1 deg sampling at 1 kHz, and less than 1.50 degree at
100 Hz. Moreover, thanks to the system modularity, any body
part can be tracked and reconstructed. The capability of the
system goes further. It can be used to track any kinematic chain
with known parameters. The absence of magnetic referenced
measures allows the system to gather data also from metal
objects or structure containing motors, like robotic arms and
platforms. A c++ implementation of the algorithm is freely
available with an open source license [32].
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