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A B S T R A C T

A piezoelectric peptide-hpDNA based gas sensor array has been used for the detection of terpenes coming from
Cannabis sativa samples. The array consisted in 11 sensors, 6 having pentapeptides and 5 having hairpin DNA as
binding elements. The volatile composition of 28 Cannabis sativa samples, assessed by GCeMS analysis, allowed
their classification into 2 groups having as monoterpenes and sesquiterpenes in different amounts. The response
of the gas sensor array to the same samples demonstrated that both type of sensors are sensitive to the terpenes
and contribute to classification. A satisfactory classification (79 % of correctly identified samples) was found
using a PLS-DA approach. Using the same dataset and a simple ANN approach the headspace analytical profile of
the two different groups was predicted with an average prediction error ≤1 %.

1. Introduction

Olfactory indicators in plants include volatile organic compounds
(VOCs) that are mainly represented by the terpenoid fraction. Terpenes
are an important class of plant constituents deriving from different
combinations of C5 isoprene subunits. They are known to possess var-
ious medicinal and pharmacological properties [1]. The volatile and
semi-volatile fractions of terpenoids can be divided into two different
classes based on the number of carbon atoms in their structure, speci-
fically monoterpenes (C10) and sesquiterpenes (C15). Larger terpenes
exist as waxes and resins, as well as oxygenated terpenoids. Terpenoids
are quite potent and affect animal and even human behavior when
inhaled from ambient air [2].

Cannabis sativa L. (family Cannabaceae) has been widely used in the
past for different purposes, such as the production of tissues or in the
medical/pharmacological field since it is considered a valuable med-
icinal plant with a variety of therapeutic benefits [3–8]. A recent can-
nabis use survey revealed that 60 % of cannabis users rely on smelling
the flower to select their cannabis [9]. Among the chemical constituents
of C. sativa terpenes play a major role. The most prevalent mono-
terpenes found were: a) α-pinene and β-pinene which are characterized
by pine fragrance and antiseptic effect; they are acetylcholinesterase

inhibitor aiding memory and may counteract THC intoxication side
effects; b) myrcene with a musky fragrance and anti-oxidant and anti-
carcinogenic properties; c) limonene having a citrus fragrance and an-
tifungal and anti-carcinogenic activity; d) linalool potentially effective
for anxiety and convulsions with a floral fragrance [2,10,11]. The ses-
quiterpene β-caryophyllene, the most predominant sesquiterpene found
in cannabis, has been reported to interact with cannabinoid receptors
type 2, and be responsible for the anti-inflammatory effects of some
cannabis preparations. Interestingly, caryophyllene oxide has been re-
ported as the main component for cannabis identification by drug-
sniffing dogs [12,13]. Casano and colleagues in 2010 [14] found that in
Cannabis the relationship between monoterpenes and sesquiterpenes in
leaves and inflorescences is different. The monoterpenes have higher
volatility and dominate in the inflorescences to repel insects, the more
bitter sesquiterpenes dominate in the leaves acting as anti-herbivores
for grazing animals. Moreover, different content in terpenes pattern can
be associated to different cultivars of Cannabis such as Futura 75, Antal,
Carmagnola, and Kompolti [15–18].

Gas chromatography coupled with flame ionization (GC/FID) or
mass spectrometric detector (GC/MS) are most frequently used ap-
proaches for the analysis of volatile terpenes are [14,19,20]. However,
other techniques such as headspace-GC/FID, headspace-GC/MS, two-
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dimensional (GC × GC/qMS), solid phase headspace micro-extraction
(HS-SPME) GC–MS and GC × GC/MS have been also used for analysis
of the volatile fraction of cannabis and hashish samples [21,22]. Very
few gas sensors have been reported in the literature for the detection of
terpenes. Attempts to measure pure compounds were made using C-
MOS [23] based sensors while QCMs coupled with molecularly im-
printed polymers [24] were used to differentiate fresh and dried herbs.

In this work the terpenes fraction of different hemp samples pur-
chased from 3 Italian regions were detected. A QCMs based electronic
nose (e-nose) equipped with two different types of sensors was used for
the purpose. A set of penta-peptides and hairpin DNA (hpDNA) with
different loops were used to modify QCMs and used as binding ele-
ments. The peptides and hpDNA were selected via molecular modelling
in previous works [25,26]; and were tested giving satisfactory results in
the assay different food commodities from olive oil [27], chocolate
[28], candies [29], fruit juices [30], carrots [31,32], and pasta [33].

The use of the mixed peptide-hpDNA array resulted in the dis-
crimination of different cultivars of Cannabis sativa. The results, ob-
tained on 28 cannabis samples showed that both peptides and hp-DNA
possess, to different extent, the ability to interact with different ter-
penes, allowing the discrimination of the cultivars because of the dif-
ferent aromatic profiles.

2. Materials and methods

2.1. Standards reagents and samples preparation

The 28 hemp samples used in this study were bought in different
shops from Italian regions (Emilia Romagna, Lazio, Lombardia) as
whole flowers in small zip-lock bags and were stored at room tem-
perature until use. Samples were ground using a Kenwood mixer
chopper (De Longhi Appliances s.r.l., Treviso, Italy) and sifted with a 1
μm sieve. After grinding, they were stored in hermetically sealed plastic
bags (see Fig. S1.).

2.2. SPME-GC–MS analysis

A Clarus 580 Gas Chromatography (GC) coupled to a Clarus SQ 8
Mass Spectrometer (MS) (PerkinElmer - Waltham, Massachusetts, USA)
was used. 1 g of sample was inserted in a 20 ml-vial closed with crimp
top caps and rubber septa. The samples were kept 20 min at 50 °C and
then exposed to the fiber (Divinylbenzene/Carboxen/
Polydimethylsiloxane, DVB/CAR/PDMS, 50/30 μm, Supelco,
Bellefonte, PA) for 10 min at a fixed temperature (40 °C). The fiber was
then inserted in the desorption chamber and GC analysis was carried
out using the following temperature gradient: start at 50 °C (1 min),
ramp 7 °C/min to 145 °C (hold 5 min), ramp 4 °C/min to 175 °C and
ramp 7 °C/min to 250 °C (hold 5 min). Helium at flow rate of 1 mL/min
was used as carrier; Split of the injector was set to 1:50 and injector
transfer line temperature were at 250 °C. A fused silica Zebron- ZB-
Semi-Volatile column (30 m × 250 μm × 0.25 μm – Phenomenex,
Torrance, California, USA) was used according to [34]. The compounds
were identified by matching the obtained spectra with the NIST Mass
Spectral Library 2.0 (NIST - Gaithersburg, Maryland, USA) and con-
firmed by retention index (RIndex) as proposed in a previous works [17].

2.3. Gas sensors array procedure

A UTV E-nose developed by Sensors group, University of Rome Tor
Vergata (Italy) equipped with 11 QCM (20 MHz) sensor array was used.
QCMs were from KVG GmbH (Germany). Six QCMs were functionalized
with different pentapeptides (IHRIC, KSDSC, LAWHC, LGFDC, TGKFC
and WHVSC) that were purchased from Espikem (Italy, purity> 85 %).
5 QCMs were functionalized with different sequences of hpDNA (see
Fig. S2.). The tetrameric loop hpDNA (CGGG) were from Thermo
Fischer Scientifics (Italy), pentameric loops (TAAGT and CCCGA) and

hexameric loops (CATCTG and ATAATC) from Integrated DNA
Technologies (USA). The loops were extended with the same double
helix stem of four base pair DNA (GAAG to 5′ end and CTTC to 3′ end).
The peptides and hpDNA were functionalized respectively with zinc
oxide nanoparticles (ZnONPs) and gold nanoparticles (AuNPs); the
structures of the biomolecules and preparation of the sensors were re-
ported in previous works [25,26]. Nitrogen (N2) was used as gas carrier.
The analysis of the samples was carried out using 1 g of dry hemp in
glass lab bottles (100 mL) heated at 40 °C for 10 min. This time was
selected as optimal to sample the VOCs of hemp samples headspace.
The gas carrier enriched with all VOCs was directed to the E-nose
chamber and measured for 5 min. The signal obtained was expressed in
terms of Frequency shift (ΔF in Hz) that represented the maximum of
interaction between sensors and VOCs.

2.4. Statistical analysis

Univariate analysis was performed using XLSTAT software
(Addinsoft, USA). Experimental results were expressed as means±
standard deviations. Statistical significance was assessed using analysis
of variance (ANOVA) with the Tukey HSD (honestly significant differ-
ence) multiple comparison analysis and Persons correlation test. The
criterion for statistical significance of differences was p-value< 0.05
for all comparisons.

Multivariate statistical analysis was performed using three different
approaches, principal component analysis (PCA), hierarchical cluster
analysis (HCA) and partial least square discriminant analysis (PLS-DA)
using MatLab R2011b (MathWorks, Natick, MA, USA) integrated with
two toolboxes for MatLab obtained from Milano Chemometrics and
Quantitative structure activity relationship (QSAR) Research Group
[35,36]. PLS-DA was run on the dataset with a cross validation of the
model using a ‘venetian blinds’ approach with number of cv groups
equal to 3. The dataset of gas sensors array, or GCeMS were auto scaled
(zero mean and unitary variance) before statistical procedures. Artifi-
cial Neural Network (ANN) was run using JustNN software (www.
justnn.com).

3. Results and discussion

3.1. Hemp samples classification using SPME /GC–MS

28 different VOCs were identified in the headspace of the hemp
samples. The relative amount of these compounds expressed as peak
area vs. total area of the chromatogram is reported in Table S1 (sup-
plementary material). High relative amount of the sesquiterpene β-
caryophyllene and the monoterpene β-myrcene were found having re-
spectively an average concentration of 25.7 % and 19.8 %. Only other
three VOCs (D-limonene, α-pinene and humulene) were found above 5
%; the average amount of the other 23 VOCs was below 5 % with 9
VOCs below of 1 %.

The majority of the 28 VOCs detected were monoterpenes (19 in
total); among these 5 had hydroxylic group, one had epoxide group,
one with thiol-ketone group and three aromatics. The 9 sesquiterpenes
included one alcohol, one epoxide and three aromatics. The structural
and physicochemical properties of the 28 VOCs found are reported in
Table S2.

The relative amount of the 28 VOCs found in the 28 hemp samples
were analyzed with the unsupervised multivariate agglomerative hier-
archical clustering (AHC) algorithm; Ward's method using as dissim-
ilarity parameter the Euclidean distance was applied. As shown in Fig.1,
the AHC algorithm classified the 28 hemp samples in two groups con-
taining 12 (group A) and 16 (group B) samples. According to the
ANOVA test (Tukey HSD multiple comparison analysis; P< 0.05) re-
ported in Table 1, 13 VOCs were significant in classifying the 28 hemp
samples in two groups.

High relative amounts of the sesquiterpenes β-caryophyllene,
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humulene, α-selinene, caryophyllene oxide, α-bergamotene and β-se-
linene was crucial to classify group A samples; according to literature
data these aromatic profiles are peculiar of some cultivars (Carmagnola
CS, Antal, Finola, Futura 75, KC Zuzana). Group B had a higher con-
centration of the monoterpenes β-myrcene and D-limonene; the samples
volatile profile can be associated to different cultivars (Fibrant,
Tiborszallasi, Carmagnola, Ferimon, and Kompolti) [34,37,38].

3.1.1. HpDNA and peptides gas sensors array response vs hemp samples
Previous works have demonstrated that these set of sensors based on

peptides functionalized with ZnONPs or hpDNA functionalized with
AuNPs can be used for the analysis of VOCs (other than terpenes)
present in food matrices [30–33]. In order to carry out analysis on
different hemp samples it was necessary to find the optimal conditions
for the gas sensor array analysis. Three different temperatures (25 °C;
40 °C and 50 °C) and four different amounts (0.10 g; 0.50 g; 1 g and 3 g)
of samples were tested. From the data reported in Fig.S3 it is possible to

observe that the optimal temperature was 40 °C. Increasing the tem-
perature to 50 °C there was a significant drift of the signal, and in
particular, the AuNP-hpDNA sensor with CATCTG as loop gave a very
low response. The response at 25 °C was much lower indicating that the
headspace was not yet saturated. The amount selected for the analysis
was 1 g of sample, no significant increase of the frequency shift was
observed using 3 g.

Fig. 2. reports a typical measurement of 3 hemp samples from both
groups. Both hpDNA and peptides sensors gave similar kinetic behavior.
The sensor having higher response was hpDNA with ATAATC loop
followed by the peptide KSDSC, while the smallest signal was given by
hpDNA with CGGG loop. A similar trend was observed also using pure
terpenes (data not shown). The inter-day RSDs were in all case lower
than 15 %. It is important to notice that the sensors were used for
hundreds of measurements for 3 consecutive months and no significant
drift of the signal was observed proving the robustness of the gas sensor

Fig. 1. AHC dendrogram of the 28 VOCs detected by SPME/GC–MS in the 28
hemp samples. The data were auto scaled (zero mean and unitary variance)
before AHC in order to remove differences in the concentration range.

Table 1
Statistical significance of single VOCs detected in the 28 hemp samples to classify the hemp samples by using analysis of variance (ANOVA) with the Tukey HSD
(honestly significant difference) multiple comparison analysis. The criterion for statistical significance of differences was P< 0.05 for all comparisons. The parameter
F was used to sort in descending order the VOCs.

compound R² F Pr > F Group A Mean Group B Mean Significant

β-caryophyllene 0.859 158.316 0.000 1.051 a −0.788 b Yes
humulene 0.564 33.671 0.000 0.852 a −0.639 b Yes
β-myrcene 0.536 30.085 0.000 −0.830 b 0.623 a Yes
D-limonene 0.451 21.369 0.000 −0.762 b 0.571 a Yes
α-selinene 0.440 20.445 0.000 0.752 a −0.564 b Yes
caryophyllene oxide 0.414 18.397 0.000 0.730 a −0.547 b Yes
α-bergamotene 0.321 12.292 0.002 0.642 a −0.482 b Yes
eucalyptol 0.309 11.652 0.002 0.631 a −0.473 b Yes
β-selinene 0.306 11.460 0.002 0.627 a −0.470 b Yes
p-Mentha-8-thiol-3-one 0.193 6.202 0.019 0.498 a −0.373 b Yes
L-borneol 0.189 6.057 0.021 0.493 a −0.370 b Yes
p-cymene-8-ol 0.184 5.867 0.023 0.487 a −0.365 b Yes
α-terpineol 0.184 5.858 0.023 0.486 a −0.365 b Yes
β-pinene 0.084 2.370 0.136 −0.328 a 0.246 a No
α-pinene 0.069 1.923 0.177 −0.298 a 0.223 a No
β-phellandrene 0.068 1.895 0.180 −0.296 a 0.222 a No
γ-terpinene 0.048 1.320 0.261 −0.249 a 0.187 a No
α-phellandrene 0.047 1.287 0.267 0.246 a −0.185 a No
β-bisabolol 0.042 1.140 0.296 0.232 a −0.174 a No
3-carene 0.029 0.768 0.389 −0.192 a 0.144 a No
linalool 0.024 0.640 0.431 −0.176 a 0.132 a No
β-Farnesene 0.019 0.512 0.481 0.158 a −0.118 a No
o-cymene 0.005 0.143 0.708 0.084 a −0.063 a No
camphene 0.005 0.124 0.727 −0.078 a 0.059 a No
p-Cymene 0.001 0.017 0.897 −0.029 a 0.022 a No
β-guaiene 0.000 0.008 0.931 −0.020 a 0.015 a No
fenchol 0.000 0.008 0.931 0.019 a −0.015 a No
terpinolene 0.000 0.001 0.980 0.006 a −0.004 a No

Fig. 2. Frequency shift recorded with hpDNA and peptides using 3 different
hemp samples (P_2, G_1 and H_2).
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array. The whole lot of samples were then analyzed to test the dis-
crimination ability of the sensor arrays. The ΔF (Hz) response of hpDNA
and peptide modified sensors array for the 28 hemp samples are re-
ported in Table S3. This dataset was used to analyze the correlation
among gas sensors array and GCeMS response by computing the
Pearson coefficients. The correlation matrix between the 28 VOCs and
the 11 sensors is reported in Table S4. The correlation coefficients,
calculated using the response to the 28 hemp samples of both sensors
array and GCeMS, evaluate the degree of linear correlation among
variables. The hpDNA had higher correlation than peptides toward the
VOCs significant to classify the hemp samples. The hpDNA loops
CCCGA and TAAGT were significantly anticorrelated with β-car-
yophyllene, L-borneol and α-terpineol. A positive correlation was ob-
served for hpDNA loop ATAATC and p-Mentha-8-thiol-3-one and for the
loop CATCTG with both L-borneol and α-terpineol. These two alcohols
correlated also with the peptide KSDSC that was the only peptide
showing a significant correlation with the VOCs significant to classify
the hemp samples. All sensors correlated with β-pinene, α-pinene and
camphene. It should be highlighted that peptides binds the VOCs par-
ticularly via electrostatic interactions (hydrogen bond, van der Waals
forces) and the 28 terpenes found in the hemp headspace differs each
other in structural conformation but not in electrostatic molecular
surface. On the other hand, hpDNA showed more variability in terms of
correlation towards the VOCs tested, unlike the results obtained in
previous work [39] where this correlation was greater in peptides than
in hpDNAs. These results indicate that hpDNA and peptides have dif-
ferent interaction with volatiles confirming that a mixed set of hpDNA
and peptides can provide a synergistic response in the detection of
VOCs in real samples. The sensors dataset was, then, processed by PCA
to find every possible combination between the aromatic compounds
present in the samples analyzed and the 11 sensors used. PCA algorithm
was carried out after rows normalization of ΔF signals and then auto-
scaling (zero mean and unitary variance) in order to remove differences
in concentration range. Fig.3 reports the score (A) and loading (B) plots.
The loadings represents the contribution of each sensor to the principal
components. As shown in Fig.3B, the PC 1 axis highlighted the differ-
ences between hpDNA and peptides. Peptides had very similar pattern
recognition performance contributing only in separating hemp samples
on PC 1. All hpDNA loops played an important role in separation of the
hemp samples. The sequence CGGG didn't give a significant contribu-
tion to separate the groups, while TAAGT and CCCGA along the PC2
contributes to the discrimination for the A group. Finally, the ATAATC
along the PC3 seems to strongly contribute to the separation of group A
as well as the CATCTG along PC1 to group B The score plot in Fig. 3A
exhibited, as expected using an explorative analysis as PCA only a
partial discrimination of the 2 groups.

A supervised multivariate discriminant analysis was then applied.

Data are reported in Table S3. A numerical evaluation of the classifi-
cation properties was obtained using the specificity, sensitivity and
precision of the two groups along with the real-predicted samples re-
ported using the confusion matrix format. The statistical summary re-
sults of the PLS-DA algorithm is reported in Table 2. The results showed
partial discrimination between the two groups with a sensitivity that
contributed to significant classification error. The percentage of cor-
rectness using all sensors or only hpDNA and peptides was satisfactory
but not enough to correctly classify the whole set of samples. Con-
sidering all the sensors together the correct classification was achieved
in 79 % of the samples; this was higher than using only peptides (74 %)
or hpDNA (78 %).

A more complex statistical approach to implement class recognition
was then attempted. To this aim, an artificial neural network (ANN)
was developed (Fig. 4). The ANN was carried out using as inputs the
frequency shift of the 11 sensors and as outputs, the two hemp groups.
The network structure was composed of one hidden layer, where the
information is automatically processed in a blind manner, connecting
nodes as in Fig. 4A. The network had a growth rate of 10 cycles or 5 s, 1
hidden layer, and a learning rate of 0.7. The target error was fixed
at< 0.01, one hundred cycles before the validating cycle and 100 cy-
cles per validating cycle were used, and the learning process was
stopped when all the validating examples were within the 10 % as
validating error. The system has been trained, through the back-
propagation error algorithm [40]. The dataset obtained from 28 hemp
samples was used as training examples, and the output value was
generated after only 506 learning cycles, with a progressive end of the

Fig. 3. Scores plot (A) and loadings plot (B)
obtained from the PCA on the 28 hemp sam-
ples and the 5 hpDNA and the 6 pentapeptides
sensors after rows normalization of ΔF signals.
Plots of the first three components (explained
variance: PC1 = 56.0 %; PC2 = 25.4 %; PC3
= 9.7 %; total = 91.1 %). Data have been auto
scaled (zero mean and unitary variance) before
PCA. In score plot (A) the two groups of hemp
found using the relative concentration in VOCs
detected by SPME/GCeMS analysis was high-
lighted with different colors (blue for group 1
and red for group 2).

Table 2
PLS-DA confusion matrices using all the 5 hp DNA and 6 peptides sensors. True
groups are read along the columns and estimated groups along the % correct.
The total accuracy was also reported.

6 pentapeptides

real/pred group 1 group 2 Total % correct
group 1 8 4 12 67%
group 2 3 13 16 81 %
Total 28 74 %

5 hpDNA
real/pred group 1 group 2 Total % correct
group 1 9 3 12 75 %
group 2 3 13 16 81 %
Total 28 78 %

5 hpDNA and the 6 pentapeptides
real/pred group 1 group 2 Total % correct
group 1 10 2 12 83%
group 2 4 12 16 75 %
Total 28 79 %
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learning process, 0.0000, 0.2047, and 0.0098 (Fig. 4B). As a quality
control, validating cycles were performed, in which five randomly se-
lected datasets of the ANN were used as examples to test, at the end of
the validating procedure, the error value. The network successfully
completed the validating step, as indicated by the decline of the vali-
dating error which drops down below 10 % (Orange line in Fig. 4B).
The relative importance of each input could be estimated by con-
sidering the weights automatically attributed to each of them by the
system. Noteworthy, the ANN designed in this study successfully pro-
vided a tool capable of predicting the headspace analytical profile of the
two different groups of hemp with a very high predictivity (average
prediction error ≤1 %).

4. Conclusions

This study demonstrate, for the first time, that an electronic nose
consisting of pentapeptides and hpDNA can be used for the detection of
aroma patterns rich in terpenes. These molecules are present in plants,
are of utmost importance in different fields and have been rarely de-
tected using gas sensors. The gas sensor array reported in here can re-
present a valid tool for the traceability, rapid quality and process
control for plants or plant derived extracts or products containing high
amount of terpenes.

Appendix A. Supplementary data

Supplementary material related to this article can be found, in the
online version, at doi:https://doi.org/10.1016/j.snb.2020.127697.
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Supplementary data 
 

Table S1. Relative concentrations of the 28 volatile organic compounds (VOCs) detected by means of SPME/GC-MS analysis in the 28 hemp samples. Data were expressed 

as percentage of the total GC area. The VOCs were sorted in descending order of the average concentration. The IDs of the VOCs were reported in Table S2.  

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 

A_1 44.0 11.3 1.8 3.8 6.6 3.8 1.7 1.2 2.8 2.0 1.9 1.8 1.8 1.5 1.8 1.6 1.3 3.8 1.0 0.4 0.7 2.0 0.2 0.4 0.2 0.2 0.1 0.2 

B_1 45.1 9.9 1.8 2.2 11.4 7.3 1.2 1.0 2.4 2.2 1.6 1.9 1.8 1.1 1.9 1.3 1.1 1.4 1.0 0.5 0.4 0.0 0.1 0.6 0.1 0.1 0.1 0.3 

C_1 41.0 4.8 4.1 5.9 12.4 2.8 1.2 1.2 4.1 1.8 4.2 3.0 1.7 1.4 1.6 1.4 1.0 1.0 1.2 0.6 0.7 0.9 0.2 0.5 0.3 0.2 0.2 0.6 

D_1 40.2 5.7 3.1 5.9 13.5 2.8 1.2 1.2 4.1 1.8 4.2 3.0 1.7 1.4 1.6 1.4 1.0 1.0 1.2 0.6 0.7 0.9 0.2 0.5 0.3 0.2 0.2 0.5 

E_1 31.7 14.7 7.0 9.0 6.8 1.6 5.3 1.1 1.8 2.2 2.4 1.7 3.7 1.2 1.1 1.5 1.5 1.2 1.3 0.6 0.3 0.1 0.2 0.4 0.4 0.0 0.3 1.0 

F_1 34.0 21.4 1.5 12.2 3.8 1.7 5.1 1.4 1.1 1.4 1.9 1.2 1.6 1.3 1.4 1.4 1.2 1.6 1.8 1.0 0.2 0.2 0.5 0.2 0.2 0.1 0.2 0.8 

G_1 42.7 1.2 5.1 7.0 9.9 2.0 2.7 1.3 1.5 2.8 5.1 1.6 2.6 1.3 3.7 1.5 1.1 1.7 1.2 0.5 0.6 0.2 0.7 0.2 0.3 1.1 0.2 0.1 

H_1 37.5 1.2 1.1 15.2 12.0 3.2 6.6 1.3 1.6 1.1 2.4 1.2 4.4 1.3 2.2 1.3 1.1 1.0 1.0 0.4 0.5 0.2 0.7 0.2 0.6 0.2 0.1 0.5 

I_1 51.0 9.1 0.4 2.3 11.3 4.2 0.7 0.2 2.1 2.2 2.0 1.8 2.1 0.1 0.9 0.6 1.4 0.2 0.2 1.9 1.6 0.2 1.0 1.6 0.4 0.1 0.2 0.2 

J_1 46.7 7.6 2.9 1.4 11.2 4.2 1.2 1.2 2.2 1.8 3.0 1.6 1.1 0.1 1.2 1.3 1.2 0.2 1.2 1.3 1.3 1.8 1.5 0.1 0.5 1.2 1.1 0.2 

K_1 39.5 9.7 1.3 1.5 7.4 6.4 1.3 1.2 2.8 3.2 1.5 4.2 1.5 1.5 2.5 2.0 1.6 1.2 1.7 0.9 0.6 0.2 3.3 2.2 0.0 0.0 0.3 0.3 

L_1 46.1 1.2 3.6 1.6 1.0 7.6 1.4 1.8 2.4 3.3 1.6 3.2 1.9 11.2 2.6 1.1 1.5 1.7 1.2 2.1 0.4 0.2 0.1 0.3 0.3 0.1 0.6 0.0 

A_2 12.0 1.0 1.2 3.2 1.1 2.9 19.1 41.9 2.7 1.5 1.6 1.6 1.0 2.2 1.0 1.4 1.2 1.0 1.1 0.1 0.3 0.2 0.1 0.0 0.2 0.3 0.2 0.0 

B_2 11.2 21.2 3.9 31.2 2.8 1.8 4.2 1.4 1.9 3.4 1.2 1.9 1.6 1.4 1.4 1.3 1.4 2.6 1.1 0.5 0.3 0.2 0.2 0.2 0.6 0.2 0.5 0.2 

C_2 13.0 23.0 3.6 24.5 3.2 1.7 8.8 1.2 1.7 4.7 1.2 1.2 1.2 1.1 1.3 1.5 1.4 1.4 1.2 0.2 0.1 0.0 0.3 0.7 0.8 0.2 0.5 0.2 

D_2 14.2 21.2 7.1 22.3 2.9 1.4 8.5 1.5 1.6 4.4 1.3 1.2 1.4 1.2 1.4 1.2 1.5 1.3 1.9 0.2 0.1 0.1 0.5 0.2 0.8 0.1 0.2 0.0 

E_2 11.1 32.0 14.4 2.8 2.1 9.4 1.7 1.3 4.3 5.1 1.0 1.9 1.5 1.3 1.2 2.0 1.6 1.4 1.7 0.1 0.9 0.4 0.3 0.0 0.2 0.1 0.2 0.1 

F_2 27.9 13.8 14.5 1.3 6.2 10.0 1.2 1.2 5.7 1.0 2.6 2.2 2.1 1.2 1.0 1.7 1.8 1.0 1.0 0.1 0.9 1.0 0.1 0.1 0.1 0.1 0.2 0.1 

G_2 23.0 20.0 11.1 6.2 6.5 13.5 1.2 1.1 1.8 1.4 1.7 1.7 1.0 1.1 1.4 1.4 1.2 1.1 1.0 0.4 0.4 0.9 0.2 0.3 0.1 0.0 0.1 0.1 

H_2 19.6 25.0 12.6 1.2 1.0 18.2 1.5 1.2 3.9 1.7 1.5 1.5 1.7 1.7 1.0 1.5 1.3 1.1 1.0 0.1 0.7 0.5 0.1 0.1 0.1 0.0 0.2 0.1 

I_2 20.0 32.5 12.2 5.8 4.3 2.0 2.1 1.1 1.3 1.2 1.7 1.5 1.2 1.4 1.6 1.3 1.1 1.0 1.4 0.6 0.2 0.7 0.1 0.0 0.1 3.4 0.2 0.0 

J_2 11.1 26.4 32.3 3.2 2.1 3.7 2.0 1.1 2.9 1.5 1.6 1.8 1.2 1.4 1.1 1.4 1.2 1.2 1.3 0.2 0.4 0.2 0.1 0.1 0.3 0.0 0.1 0.0 

K_2 5.1 42.0 11.6 10.9 1.0 3.5 5.9 1.4 2.4 1.3 1.3 1.6 1.2 1.8 1.2 1.5 1.6 1.0 1.4 0.2 0.4 0.4 0.2 0.4 0.4 0.1 0.2 0.0 



 

L_2 6.4 39.0 16.0 11.7 1.2 2.0 5.6 1.2 1.9 1.3 1.7 1.3 1.0 1.7 1.1 1.3 1.2 1.0 1.5 0.3 0.2 0.1 0.1 0.2 0.6 0.4 0.1 0.0 

M_2 11.0 43.6 19.4 2.3 1.9 3.6 1.9 1.2 1.3 1.1 1.6 1.4 1.0 1.5 1.2 1.3 1.2 1.1 1.0 0.2 0.2 0.2 0.1 0.2 0.3 0.0 0.2 0.0 

N_2 9.3 38.1 14.2 9.3 1.7 5.9 3.8 1.2 1.1 1.7 1.4 1.6 1.3 1.3 1.1 1.3 1.2 1.2 1.5 0.2 0.2 0.6 0.2 0.2 0.2 0.1 0.1 0.1 

O_2 11.7 37.3 16.4 9.2 3.0 1.8 3.2 1.2 1.9 1.8 1.5 1.3 1.2 1.3 1.3 1.2 1.2 1.2 1.5 0.2 0.1 0.1 0.1 0.1 0.2 0.0 0.1 0.0 

P_2 11.5 41.5 14.4 8.3 2.6 1.7 3.4 1.0 1.7 1.3 1.4 1.2 1.1 1.3 1.2 1.2 1.2 1.1 1.6 0.2 0.1 0.2 0.0 0.1 0.2 0.1 0.2 0.0 

Max 51.0 43.6 32.3 31.2 13.5 18.2 19.1 41.9 5.7 5.1 5.1 4.2 4.4 11.2 3.7 2.0 1.8 3.8 1.9 2.1 1.6 2.0 3.3 2.2 0.8 3.4 1.1 1.0 

Min 5.1 1.0 0.4 1.2 1.0 1.4 0.7 0.2 1.1 1.0 1.0 1.2 1.0 0.1 0.9 0.6 1.0 0.2 0.2 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.0 

Median 21.5 20.6 6.0 5.9 3.5 3.3 2.1 1.2 2.0 1.8 1.6 1.6 1.5 1.3 1.3 1.4 1.2 1.2 1.2 0.4 0.4 0.2 0.2 0.2 0.3 0.1 0.2 0.1 

Average 25.6 19.8 8.5 7.9 5.4 4.7 3.7 2.7 2.4 2.2 2.0 1.8 1.7 1.7 1.5 1.4 1.3 1.3 1.3 0.5 0.5 0.4 0.4 0.4 0.3 0.3 0.2 0.2 

SD 15.2 14.1 7.5 7.6 4.2 4.0 3.8 7.7 1.1 1.1 1.0 0.7 0.8 1.9 0.6 0.3 0.2 0.7 0.3 0.5 0.3 0.5 0.7 0.5 0.2 0.7 0.2 0.2 

RSD % 59 71 88 96 77 86 102 289 47 52 50 39 47 115 40 18 15 52 27 100 73 113 164 134 67 215 86 129 

*SD= standard deviation; **RSD= coefficient of variation. 

 



 

Table S2. Structural and physicochemical properties of the 28 VOCs found in the headspace of the 28 hemp 

samples used in this work. The average concentration was used to sort in descending order the VOCs. The 11 

VOCs used as standard for testing the gas sensors array response were reported in-italic format. Terpene type: 

M= Monoterpene; S= Sesquiterpene. PSA=polar surface area. MW=molecular weight. HA= hetero atoms 

RB=rotatable bond. 

0VOC ID Structure DB Functional 
group 

Terpene 
Type LogP PSA MW HA RB 

β-caryophyllene 1 Bicyclic 2 S 4.61 0 204.4 0 0 

β-myrcene 2 Linear 3 M 3.46 0 136.2 0 4 

D-limonene 3 Cyclic 2 M 2.78 0 136.2 0 1 

α-pinene 4 Bicyclic 1 M 3.02 0 136.2 0 0 

humulene 5 Cyclic 3 S 4.39 0 204.4 0 0 

linalool 6 Linear 2 Alcohol M 2.19 20 154.2 1 4 

β-pinene  7 Bicyclic 1 M 3.36 0 136.2 0 0 

3-carene 8 Bicyclic 1 M 2.85 0 136.2 0 0 

fenchol 9 Bicyclic 0 Alcohol M 2.5 20 154.2 1 0 

terpinolene 10 Cyclic 2 M 2.34 0 136.2 0 0 

α-bergamotene 11 Bicyclic 2 S 4.4 0 204.4 0 3 

α-terpineol 12 Cyclic 1 Alcohol M 1.61 20 154.2 1 1 

eucalyptol 13 Bicyclic 0 Epoxide M 2.82 9 154.2 1 0 

β-farnesene 14 Linear 4 S 4.48 0 206.4 0 7 

β-selinene 15  Aromatic S 5.26 0 204.4 0 1 

p-Cymene 16  Aromatic M 3.89 0 134.2 0 1 

γ-terpinene 17 Cyclic 2 M 2.98 0 136.2 0 1 

o-cymene 18  Aromatic M 3.89 0 134.2 0 1 

β-phellandrene 19 Cyclic 2 M 3.66 0 136.2 0 1 

α-selinene 20  Aromatic S 4.92 0 204.4 0 1 

L-borneol 21 Bicyclic 0 Alcohol M 2.5 20 154.2 1 0 

β-bisabolol 22 Cyclic 2 Alcohol S 2.72 20 222.4 1 4 

p-mentha-8-thiol-3-one 23 Cyclic 0 Thiol-ketone M 2.48 17 186.3 2 1 

p-cymene-8-ol 24  Aromatic Alcohol M 2.35 20 150.2 1 1 

camphene 25 Bicyclic 1 M 3.46 0 136.2 0 0 

β-guaiene 26  Aromatic S 3.87 0 204.4 0 0 

α-phellandrene 27 Cyclic 2 M 3.32 0 136.2 0 1 

caryophyllene oxide 28 Tricyclic 1 Epoxide S 3.62 12 220.4 1 0 

 



 

Table S3. Frequency shift (ΔF in Hz) response of the 5 hpDNA and the 6 peptides modified sensors array for the 28 hemp samples. The coefficient of variation calculated 
using three measurements taken in three different days was in all cases below 15%. 

Hemp 
Sample  CGGG  CCCGA  TAAGT  ATAATC  CATCTG  IHRIC  KSDSC  LAWHC  LGFDC  TGKFC  WHVSC 

A_1 13 49 45 172 87 56 109 68 32 65 26 
B_1 8 28 31 161 93 45 90 53 27 50 21 
C_1 8 22 24 150 49 43 87 49 24 54 20 
D_1 10 13 22 149 79 39 81 45 24 40 19 
E_1 15 20 28 119 92 46 89 50 26 50 22 
F_1 48 115 157 348 30 82 147 95 42 107 33 
G_1 12 9 15 83 31 20 39 24 13 23 11 
H_1 25 78 104 249 68 64 115 80 36 78 28 
I_1 8 26 23 144 91 44 91 50 25 49 21 
J_1 8 25 31 162 87 45 90 52 26 51 21 
K_1 8 7 18 146 72 32 65 37 19 33 15 
L_1 7 27 31 152 78 47 94 55 27 50 23 
A_2 7 49 48 170 51 57 106 66 33 71 24 
B_2 17 17 26 116 97 36 71 42 21 38 17 
C_2 54 122 164 381 87 82 148 100 44 106 35 
D_2 66 122 171 396 74 83 146 103 44 109 34 
E_2 7 17 21 152 73 40 80 47 24 46 20 
F_2 10 41 36 165 106 51 100 58 28 62 23 
G_2 7 28 40 158 86 47 97 58 27 57 24 
H_2 11 7 19 134 51 26 55 31 17 28 14 
I_2 7 43 43 163 90 51 97 60 29 61 24 
J_2 18 59 71 205 60 61 112 74 35 72 28 
K_2 5 45 46 171 56 52 98 63 33 65 25 
L_2 13 64 125 191 114 61 109 70 33 70 26 
M_2 14 69 70 182 81 59 112 69 34 78 26 
N_2 17 49 65 170 24 55 103 65 31 67 25 
O_2 11 44 40 165 62 52 97 62 30 59 24 
P_2 7 43 42 161 92 50 95 58 28 58 23 

 

 



 

Table S3. Correlation matrix (Pearson coefficients) between the 28 VOCs and the 5 hpDNA and 6 peptides 

modified sensors. The correlation coefficients were calculated using the dataset of the 28 hemp samples. The 28 

VOCs were sorted considering the statistical significance reported in Table 2, reporting in italic format the 

significant ones. The Person coefficients computed between the 11 modified sensors were reported at the end of 

the correlation matrix. Values in bold are different from 0 with a significance level alpha=0.05. 

Variables CG
GG 

CCC
GA 

TAA
GT 

ATAA
TC

CATC
TG

IHR
IC

KSD
SC

LAW
HC

LGF
DC 

TGK
FC 

WHV
SC

β-caryophyllene -0.04 -0.42 -0.42 0.22 0.30 0.06 0.31 -0.01 0.12 -0.24 0.21
humulene -0.03 -0.37 -0.36 0.16 0.29 0.05 0.24 -0.01 0.11 -0.18 0.18
β-myrcene -0.11 0.37 0.33 -0.26 -0.18 -0.03 -0.21 0.01 -0.11 0.20 -0.12
D-limonene -0.16 0.23 0.17 -0.24 -0.13 0.12 -0.04 0.19 0.08 0.25 0.12
α-selinene -0.13 -0.28 -0.28 0.02 0.28 0.09 0.28 0.01 0.06 -0.20 0.15
caryophyllene 
oxide 

0.25 -0.17 -0.05 0.03 0.05 0.04 0.08 -0.13 -0.05 -0.08 -0.01 

α-bergamotene 0.12 -0.34 -0.29 0.17 0.10 0.14 0.22 0.04 0.29 0.00 0.29
eucalyptol 0.26 -0.16 -0.10 0.00 0.13 -0.03 0.01 -0.05 0.03 -0.19 0.07
β-selinene 0.25 -0.28 -0.16 0.32 0.06 -0.12 -0.06 -0.06 0.11 -0.29 0.12
p-Mentha-8-
thiol-3-one 

0.06 -0.33 -0.18 0.46 0.17 -0.25 -0.06 -0.27 -0.14 -0.38 -0.10 

L-borneol -0.29 -0.51 -0.55 0.21 0.43 0.12 0.42 0.05 0.24 -0.15 0.33
p-cymene-8-ol -0.08 -0.34 -0.26 0.28 0.27 -0.11 0.12 -0.18 -0.04 -0.31 0.00
α-terpineol -0.30 -0.60 -0.55 0.29 0.39 0.21 0.45 0.11 0.27 -0.20 0.36
β-pinene 0.22 0.46 0.46 -0.10 -0.46 -0.05 -0.33 -0.02 -0.14 0.27 -0.38
α-pinene 0.64 0.36 0.52 -0.08 -0.21 -0.46 -0.61 -0.41 -0.53 -0.24 -0.55 
β-phellandrene 0.25 0.22 0.37 0.20 -0.38 -0.16 -0.38 -0.14 -0.26 -0.01 -0.27
γ-terpinene 0.03 -0.09 -0.12 0.02 0.23 -0.14 -0.07 -0.18 -0.12 -0.14 -0.07
α-phellandrene 0.02 -0.23 -0.18 0.07 0.27 -0.08 0.07 -0.14 -0.08 -0.24 -0.01
β-bisabolol -0.30 -0.17 -0.31 -0.03 0.16 0.23 0.35 0.26 0.19 0.15 0.28
3-carene -0.17 0.13 0.01 -0.09 -0.20 0.29 0.15 0.28 0.26 0.40 0.03
linalool -0.25 -0.45 -0.35 0.37 0.25 -0.08 0.25 -0.03 0.11 -0.19 0.26
β-Farnesene -0.16 -0.07 -0.08 -0.04 0.03 0.17 0.18 0.20 0.15 -0.01 0.18
o-cymene 0.26 0.03 0.00 -0.11 0.04 -0.03 -0.08 0.02 -0.03 -0.10 -0.02
camphene 0.51 0.38 0.53 -0.11 -0.21 -0.43 -0.57 -0.37 -0.48 -0.21 -0.53
p-Cymene 0.05 -0.30 -0.19 0.38 0.08 -0.10 -0.04 -0.11 0.04 -0.14 0.07
β-guaiene -0.11 -0.02 -0.08 -0.09 0.13 0.05 -0.01 0.02 0.09 0.04 0.07
fenchol -0.32 -0.45 -0.49 0.25 0.34 0.14 0.36 0.05 0.22 -0.07 0.28
terpinolene 0.44 -0.18 -0.03 0.37 0.06 -0.36 -0.26 -0.35 -0.29 -0.41 -0.22
CGGG 1.00 0.24 0.48 0.35 -0.41 -0.64 -0.70 -0.61 -0.58 -0.37 -0.58 
CCCGA 0.24 1.00 0.83 -0.33 -0.73 -0.20 -0.58 -0.05 -0.49 0.42 -0.62
TAAGT 0.48 0.83 1.00 -0.11 -0.70 -0.51 -0.82 -0.40 -0.71 0.04 -0.79 
ATAATC 0.35 -0.33 -0.11 1.00 -0.19 -0.50 -0.24 -0.42 -0.20 -0.45 -0.17
CATCTG -0.41 -0.73 -0.70 -0.19 1.00 0.14 0.46 -0.04 0.29 -0.44 0.42 
IHRIC -0.64 -0.20 -0.51 -0.50 0.14 1.00 0.86 0.93 0.85 0.69 0.82
KSDSC -0.70 -0.58 -0.82 -0.24 0.46 0.86 1.00 0.76 0.86 0.39 0.91 
LAWHC -0.61 -0.05 -0.40 -0.42 -0.04 0.93 0.76 1.00 0.81 0.72 0.77
LGFDC -0.58 -0.49 -0.71 -0.20 0.29 0.85 0.86 0.81 1.00 0.43 0.94 
TGKFC -0.37 0.42 0.04 -0.45 -0.44 0.69 0.39 0.72 0.43 1.00 0.32
WHVSC -0.58 -0.62 -0.79 -0.17 0.42 0.82 0.91 0.77 0.94 0.32 1.00 
  



 

 

Figure S1. Photo of some samples studied in this work (sample: A_1, B_2, F_1, M_2, K_1, P_2, L_1, and 
O_2), bought in different Italian hemp-shops 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure S2. Photo of the electronic nose sensors-chamber equipped with the eleven QCMs. Scheme of the QCMs 
modification with AuNPs-hpDNA and ZnONPs-peptide. 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure S3. Optimization of temperature and quantity of samples (grams). Y axis= Frequency shift (��F in Hz); 

X axis= the 5 hpDNA and the 6 peptides immobilized on the QCM sensors. 
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