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Abstract

As part of a generalized ”prisoners’ dilemma”, is considered that the evolution of a
population with a full set of behavioral strategies limited only by the depth of memory.
Each subsequent generation of the population successively loses the most disadvantageous
strategies of behavior of the previous generation. It is shown that an increase in memory in
a population is evolutionarily beneficial. The winners of evolutionary selection invariably
refer to agents with maximum memory. The concept of strategy complexity is introduced.
It is shown that strategies that win in natural selection have maximum or near maximum
complexity. Despite the fact that at a separate stage of evolution, according to the
payout matrix, the individual gain, while refusing to cooperate, exceeded the gain obtained
while cooperating. The winning strategies always belonged to the so-called respectable
strategies that are clearly prone to cooperation.

1 Introduction

Understanding the nature of the emergence of cooperative behavior in different systems
has been of interest to researchers for several decades. The evolutionary games theory
[1–3] provides flexible foundations and effective methods for exploring the emergence
of collaboration. Among the many game models that are used to explain cooperative
behavior, a special place is played by games, which can be considered as a generalization
of the prisoners’ dilemmas [4–6]. The choice of a payout matrix in this case is determined
by a simple physical consideration. Cooperation always requires additional resources in
comparison with the rejection of cooperation. The tendency to save resources or efforts is
manifested in the payout matrix in the fact that each individual interaction, the individual
gain, while refusing to cooperate, exceeds the gain while agreeing to cooperate. At each
stage of the evolutionary process or generation, the population refuses to use the least
successful strategies of the previous generation. These games serve as a paradigm that
led to the discovery of the mechanism of cooperative behavior in theory and experimental
observations [7]. Starting with the work of Novak and May [8], evolutionary games have
been widely studied in structured populations, including on regular lattices [9–17] and
complex networks [18–34].
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At present, a number of general, but specific mechanisms have been discovered that
lead to cooperation in a wide variety of systems (see, for example, [35]). Among such
mechanisms, it should be noted: voluntary participation [36], punishment [37], similar-
ity [38], heterogeneous activity [39], social diversity [40, 41], dynamic connections [42],
asymmetric interaction and the graph of permutations [43], migration [44–46], group fa-
voritism [47], interdependent relationships [48]. Using this approach, one can determine
the appearance of many diverse properties in evolving populations. Following evolutionary
populations, following Darwin, we will understand many objects that obey the following
principles. These are 1) the principle of heredity, 2) the principle of variability and 3)
natural selection.

In this paper, we analyze the effect of memory on the evolutionary process. We will
use the strategy memory in a simplified version compared to that proposed in [49]. If
the action of an object depends not only on the observed situation, but also on previous
events, then we assume that the object has memory. In this sense, most biological objects
have memory. The main issue that we will discuss in this work is how beneficial it is for
a population to increase memory in the process of evolution and what consequences this
leads to. The depth of memory of population objects by the number of enemy moves that
the strategy takes into account when making a decision. The paper considers the Cauchy
problem of the evolution of all strategies with a memory depth not exceeding a certain
number. In other words, competition in the original population of all possible strategies
with limited memory above.

The second issue that is addressed in the work is related to the discussion of the
properties of competing strategies leading to a change in the dominant strategies of the
population in the process of evolution. As a characteristic of strategies, their complexity is
introduced and used. The main question is: is the complexity of strategies evolutionarily
beneficial? At an intuitive level, the answers to these questions seem obvious. In modeling
the interaction of strategies, a single-particle approximation was used, in which all agents
of the population professing one of the possible strategies were combined into a single
cluster. The interaction was between clusters or strategies. In other words, it is precisely
the strategies that interact. In addition, each strategy interacts with each, including itself.
Three types of populations are considered. Populations without memory, populations
with a memory depth of 1 and 2. Over-exponential growth in the number of strategies
with increasing memory depth greatly limits the ability to model populations with more
memory.

In each case, in the initial population there are all strategies with memory that do
not exceed the specified. So, for example, at a depth of memory of 2, all strategies with
a memory of 2, 1, and 0 are present. As a result of numerical simulation, it is shown
that an increase in memory in a population is evolutionarily beneficial. The winners
of evolutionary selection invariably refer to agents with maximum memory. Strategies
that win natural selection have maximum or near maximum complexity. Along the way,
it was found that in such populations, the winning strategies belonged to ”respectable”
strategies, prone to cooperation. In a certain sense, we can say that cooperative behavior
in such cases is automatically established. It can be expected that this is the universal
trend. In populations with limited memory above, the competition of all possible strategies
in the initial population leads to the domination of respectable strategies during the
evolution. A further increase in the depth of memory leads to a new problem when the
number of agents in the population is less than the number of possible strategies. A
consequence of this is also discussed in the conclusion of this work.
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2 Strategies with memory

All strategies that use memory will be considered. We will introduce the space of such
strategies. The strategy is this rule on that motion is determined by the well-known
values of motions of the opponent. For their classification, the depth of memory is used.
Under the depth of memory is understood the number of previous motions that are used
by strategy for implementation of motion. We will begin with the simplest strategies that
does not use memory. It means that such strategies carry out motion, being base on only
the looked after the motion of the opponent. In this case the possible looked after motion
it 0 or 1 ( 0 = refuse, 1 = co-operation ). Accordingly, for a description of a separate
strategy, we need to describe the certain rule of the answer for these motions. In an order
to describe all such strategies it is needed to create all rules of reaction on the value of
motions of opponent. We will begin with the method of record of some strategy at the
depth of memory 0. Clear, that strategy can be set by a next table

Possible opponent move 0 1

⇓ ⇓

Response strategy 0 0

It is easy to understand that if arrange about the order of record of possible values of
motions of opponent, for example, in the lexicographic order (as in a table in an overhead
line), then for description of rules of action of strategy it is enough to know lower range
or sequence of zeros and ones. In the example given above, it is a sequence 00. Because
a specific sequence corresponds to every strategy, then she can be used and as the name
of the corresponding strategy. In this case, the name and determines the rule of action of
strategy. Thus, strategies with a zero-depth of memory are determined by 0, 1-sequences
from two elements. Then the name of every strategy with a zero-depth of memory is
determined by a binary number with two signs.

It is clear that the names of all strategies in the absence of memory are numbers from
00 to 11, whence it is evident that there are four such strategies. As an example, we give
a strategy with the name 10, which operates according to the following rules.

Possible opponent move 0 1

⇓ ⇓

Response strategy 1 0

There are 4 such sequences 00, 01, 10, 11, and each corresponds to a certain strategy.
Among these strategies, two are banal. It is an extremely aggressive strategy 00 and
thoughtlessly conciliating 11. It remains only to discuss the choice of the first motion that
comes true, not on the rules indicated higher. This choice takes place from two variants.
The first motion can be 1 or 0. Therefore it comfortably to plug the first motion in the
description of the strategy. For this purpose, we will specify it in brackets before the name
of the strategy. For example, name [1]10 and [0]10 means that the first motion, according
to 1 and 0, and 3 further actions come true in obedience to strategy 10. It comfortably to
examine every strategy with the pointing of the first motion as a separate strategy. Then
in default of memory, the number of all strategies is equal to 8.

We will consider now all strategies with memory about one previous motion. Such
strategies must take into account two motions of the opponent. Previous and looked
after. Then the number of possible variants of motions of opponent increases, and the
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strategy must determine return motion taking into account the previous motion of the
opponent. Again we will dispose of all possible pairs of motions of the opponent in the
lexicographic order:

Possible opponent move 00 01 10 11

⇓ ⇓ ⇓ ⇓

Response strategy . . . .

To describe the strategy, each pair of moves of the opponent needs to match 0 or 1.
In other words, replace the points in the table with the characters 0 or 1. Again, with

a fixed order of recording the possible moves of the opponent, each strategy is determined
0, 1-sequence of 4 elements. The name of the corresponding strategy can be chosen again,
coinciding with the rule of its action. So the names of strategies with a memory depth of
1 matches a binary number with 4 digits, or with a sequence of 0 and 1 with 4 elements.

The trivial aggressive strategy is called 0000. In total, there are as many such strategies
again as there are numbers from 0000 to 1111. In other words, there are 16. There are
similar methods for determining strategies with a memory depth of k. Such strategies
will be determined by a binary number with 2k+1 digits. Thus, the strategy space with
the memory depth k comprises 0, 1-sequences of 2k+1 elements.

However, the above description of strategies with a memory depth of k ≥ 1 is not
complete. The reason is that after the first move of the enemy, we know only one thing
the observed value and the value of the previous move is missing. Therefore not enough
data for applying the specified policy rules. So we have to specify the rule of how to make
a move when data is incomplete. To do this, it is natural to use one of the strategies with
memory 0. In other words, you should specify a strategy that does not use memory, which
we will use before information about the previous course of the enemy appears. Then the
full number of strategies is natural.

The name of the strategy increases and changes. In the name, we must first indicate
the strategy for determining the first move in the absence of data on the previous move
(i.e., the name strategies with memory 0) and then the name of the strategy with memory
1. Thus, the name (and rules) strategies with the memory of one previous opponent’s
move look like, for example, as [01]0111. The first two digits in brackets are the name
(and rules) of the strategy with memory 0, and the next four are the rules of the player’s
moves with the memory of one the course of the enemy. For convenience, we will attribute
strategies with less memory left and enclose in square brackets. Considering each such rule
as separate strategy, you can easily calculate the number of such strategies. Consequently,
the total number of strategies with the memory of one previous opponent move is equal to
22 × 24. Besides, each strategy can start the game from some first move. In other words,
it can start from 0 or 1. It is convenient to consider strategies that make different first
moves 0 or 1 as different strategies.

Then the number strategies doubled 2 × 22 × 24 = 128. The name of such strategies
will look, for example, like [0][01]0111; this strategy will start the game from move 0. In
particular, the well-known eye for an eye strategy in these terms corresponds to strategy
[1][01]0011. It should be noted that with knowledge of the depth of memory, in this case,
equal to k = 1, you may not even use parentheses. Even if they are absent according to
a known record strategies uniquely established rule of action of strategies

All strategies with a memory of two enemy moves, or in the general case with a memory
of k enemy moves, are listed in exactly the same way. Important to emphasize that the
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number of strategies Nk = 2×22×23 · · · 22
k+1

= 2(2
k+2

−1) grows super exponentially with
increasing length or depth of memory k.

Let us return to the consideration of strategies with a depth of memory 1. We note
that that among these strategies there are strategies with zero memory depth. Indeed,
if the strategy acts the same in different previous opponent’s moves, then she does not
actually use information about the previous move or loses the memory of a previous move.
Accordingly, such strategies coincide with strategies with zero memory depth. The rules
for strategies equivalent to zero-memory strategies are defined in the following table.

Possible opponent move 00 01 10 11

⇓ ⇓ ⇓ ⇓

Response strategy x1 x2 x1 x2

Where x1 and x2 take the values {0, 1}. It is easy to see from the table that such strategies
act independently of the opponent’s previous move. This means that strategies x1x2x1x2
are equivalent to strategies with zero memory x1x2. Thus, among strategies with names of
four-digit binary numbers, there are strategies equivalent to all strategies with no memory.
So strategies 0000 ∼ 00, 0101 ∼ 01, 1010 ∼ 10 and 1111 ∼ 11 Therefore, when writing the
names of strategies with four-digit binary numbers, all strategies with a memory depth less
than or equal to 1 are present among them. It is easy to understand that this convenient
property will be preserved even Description of strategies with greater depth of memory.
So the names of strategies with a depth of memory k contain all strategies equivalent
to strategies with a depth of memory k − 1, ... 0. This property should be considered
when conducting games between strategies. Thus, we have identified and listed all the
strategies with a certain finite depth of memory. Therefore, further, when it comes to
strategies with a memory depth k, we will remember that they include all strategies with
a smaller memory depth. Among these strategies, there are both primitive and complex
strategies. Now we discuss in more detail the concept of complexity of strategies.

3 Complexity of strategies

In the previous section, strategies are described by 0, 1 - sequences of a certain length or
sequences containing a certain number of members. So, for the memory depth 0, taking
into account the first move, there are 8 such sequences, and for the memory depth k, their
Nk = 2(2

k+2
−1). Of course, among these strategies there are strategies equivalent to all

strategies with less depth of memory. The number of such strategies is also determined
by their depth of memory. For subsequent purposes, we discuss such a property of 0, 1
sequences as complexity. This is an exceptionally deep concept that finds important ap-
plications in physics and mathematics. In particular, the concept of randomness is closely
related to the concept of complexity 5 (see, for example, [50]). There are a large num-
ber of different options for introducing complexity, some of which can be found in [51].
The most natural choice of this characteristic can be considered as Kolmogorov complex-
ity [52]. However, we are encountered with the big problem of calculating Kolmogorov
complexity. Therefore, we use a different approach for describing the complexity of finite
0, 1-sequences, which is based on the comparative complexity of functions, in particular
polynomials. It is based on the understanding that polynomials of a higher degree are
more complicated than of a lower degree.
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Figure 1: Graph of strategies with zero memory. Where, for compactness, the vertices are
shown by circles, inside of which the names of strategies are encoded in the decimal system.
So, the sequence 00 is designated as 0, vertex 01 as 1, vertex 10 as 2, and finally 11 as 3. The
squares show places occupied by the strategies in the first generation competition.

For a more consistent formulation of complexity, we use, following [54], the theory of
monads. By a monad we mean a finite set M and a map A of this finite set into itself.
In other words, each point of this finite set is associated with another point. A monad
is assigned a graph whose vertices have a finite set M , and oriented edges connect the
vertices in accordance with their mapping A. Exactly one edge leaves each vertex x in
this graph and it leads to the vertex Ax.

0, 1-sequences x = x1x2 . . . xn can also be considered as a function that maps the
integer value i to the value xi ∈ {0, 1}. As a rule, when recording a sequence, we will
not use a comma as a separator. With the selected binary alphabet, this does not lead to
confusion. The introduction of complexity of functions dates back to Newton’s ideas. To
do this, he suggested to use a function differences. In our case, we define such a map by
the difference operator A : M → M

y = Ax

Where the elements of the sequence y = y1y2 . . . yn are determined by the differences

yi = xi+1 − xi

Where i = 1, 2, . . . , n is the number of the element in the sequence. When calculating
the elements of the sequence y, we will use the sequence cyclic condition x, counting
xn+1 = x1. In other words, we can speak of periodic sequences of period n. Thus, we
come to the monad of strategies. Strategy x maps to strategy y. Consider graphs of
strategies, starting with a shallow depth of memory. The main property of these graphs
is that only an edge comes out of each vertex. For sequences of length n, the graph
contains 2n vertices. We start with zero memory depth k = 0. Such strategies coincide
with sequences of two elements n = 20+1. The strategy graph corresponding to this case
is shown in Fig.1.

A characteristic feature of this graph is the presence of a cycle of unit length. The
length of the cycle is equal to the number of vertices in the cycle. The notation for this
graph is O1 ∗ T4 in accordance with [54]. Where O1 means a cycle of unit length, and T4

- a binary tree with 4 vertices. It can be proved that the strategy graph will have only
one O1 cycle.
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Figure 2: Strategies graph with memory depths of 1 and 0. Strategies equivalent to strategies
0 of memory depth correspond to vertices marked in blue. The coding of strategies and,
accordingly, vertices is carried out as before by writing down the names of strategies in the
decimal system of calculus. Vertices have names from 0000 to 1111.

Return to the observation of Newton, which consisted in the fact that if the function
is constant, then the first differences will be zeros. If the first differences are constant,
then the function will be a polynomial of the first degree. And if the second difference
is constant, then no more than the second... This observation allows us to formulate
complexity as the remoteness of the graph vertices from the root of the tree or cycle [54].
The farther the vertex is from the root of the tree, the more complicated the strategy.
We will use this definition of complexity in this paper.

Accordingly, among the strategies with zero memory, the simplest strategy is the
most aggressive strategy 00 (see Fig.1). This strategy corresponds to a constant function
of argument i, which takes a zero value. A more complex strategy 11 is a mindlessly
compromising strategy. This strategy coincides with the constant function of the argument
i, which takes the value 1. ”Differentiation” A of this function translates it into a function
that takes 0 value. Strategies 01 and 10 define linear functions. Indeed, strategy 01
corresponds to the linear function x(t) = (t + 1) mod 2, and strategy 10 of the linear
function x(t) = t mod 2. It is easy to verify, for example, that the values of the function
x(t) = t+1 mod 2 for integers t gives a periodic sequence with period 2 and x1 = x(1) = 0,
x2 = x(2) = 1. It is similarly easy to verify that sequence 10 corresponds to the values
x(t) = t mod 2 at integer points x1 = x(1) = 1, x2 = x(2) = 0. This coincides with the
intuitive conclusion that constant functions are simpler than linear ones. Linear functions
are a special case of polynomials of degree less than p. As was proved by Newton, if a
function satisfies Apx = 0, then x is a polynomial of degree less than p. We will use this
property below to determine polynomials that correspond to more complex strategies.

Now turn to the monad of strategies with a depth of memory 1. It is a graph shown
in Fig.2. It is easy to see that the structure of the graph corresponds to O1 ∗ T16. Let’s
discuss the location on this graph of strategies equivalent to strategies with zero memory
depth. These strategies are shown in Fig.2 with vertices shaded in blue. Next to them
in blue are the names of equivalent strategies with zero memory. Thus, these strategies
are the simplest in this monad. This coincides exactly with the fact that the complexity
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Figure 3: Strategy graph with a memory depth of 2. Of course, it is not possible to indicate
the names of strategies in such a figure. They are listed in a separate table in the next section.

of strategies as functions i increases with distance from the root of the graph. The
remaining strategies are further removed from the root and, accordingly, more complex.
We can verify that the next level of the graph corresponds to polynomials of degree 2 and
the upper to polynomials of degree 3. Indeed, acting on the vertex of the 5th level x(5))
by the operator A by definition, we pass to the vertex of the 4th level Ax(5) = x(4). This
is an obvious consequence of the tree structure.

Similarly, the vertex x(4) under the action of A descends to a level below Ax(4) = x(3).
Repeating the action again, we go to the level below Ax(3) = x(2) and, finally, get Ax(2) =
x(1) = 0. Combining these equalities, we get A4x(5) = 0. We can say that 0 is an attractor
of motions induced by the mapping A. Then, according to Newton’s proof, the vertex of
the fifth level x(5) coincides with a polynomial of degree less than 4.

Now we discuss the monad graph corresponding to strategies with memory depth k.
In this case, the length of the 0, 1-sequence of the defining strategy is n = 2k+1. The
total number of such strategies is Nk = 22

k+1

. It can be proved that for n = 2k+1 the
structure of the strategy graph coincides with O1 ∗ T

22k+1 . Naturally, at the root there
are still strategies equivalent to strategies with zero memory depth, higher with memory
depth 1, and so on up to the level corresponding to the last level of the strategy graph
with depth k−1, i.e. O1 ∗T22k

. Thus, the number of strategies, 22
k+1

−22
k

= 22
k

(22
k

−1).
As they move away from the root, strategies are becoming more complex and correspond
to polynomials of an ever higher degree. As an example, in Fig.3 we give the graph
corresponding strategies of length n = 23 = 8 (k = 2), which coincides with O1 ∗ T256.
Thus, the complexity of strategies can be determined by the value of the level of the graph
to which the vertex corresponding to this strategy belongs.

It is important to note that the number of possible strategies with increasing memory
increases top exponentially. This leads to deep computational difficulties associated with
a lack of resources in the study of the interaction of such strategies. In addition, it is
interesting to note that the number of strategies implemented in finite systems is limited
more by the number of participants, and not by the number of possible strategies. In other
words, in finite systems, a new strategy can always appear and be used in the process
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of evolution. Life is full of new ideas. This conclusion plays an important role in the
numerical simulation of the interaction of a finite number of population objects.

4 Interaction strategies

Life in a population and its evolution to a certain extent is determined by the nature
of the interaction of strategies of population objects. The simplest case is the pairing of
strategies. There are many options for implementing such an interaction. The simplest
option is that each strategy interacts with each, including itself. This interaction option
can be implemented with a relatively small number of objects. The reason for this is the
finiteness of the lifetime of the population object.

Indeed, some characteristic time ∆t is spent on the interaction of a pair of strategies
and, accordingly, time n2∆t will be spent on the interaction of n strategies with each
other. With increasing n, the time n2∆t may exceed the lifetime of the object. Another
way of pairwise interaction is when an adversary is chosen randomly among the whole
set of strategies, assuming they are equally probable. Another general method that does
not use randomness can be implemented using a network of interactions. Interactive
strategies will be connected in the graph of this network. It can be generalized, taking
into account the interaction of distant vertices with some weight, including probabilistic.
You can also there is a spatial structuring of populations [7], [9], [13], [19], [38], [55],
in this case, geometric structures of cooperation can arise in space [8], [56]. Another
important circumstance that affects the nature of the interaction of strategies has already
been noted. This is the finiteness of the many objects that make up the population.
In this case, the number of strategies can significantly exceed the number of objects of
population. Then the interaction can only occur between part of the strategies. In this
work, we will assume that the object in the process of life does not change the strategy
and interacts with each strategy of the population, including itself. In other words, we
can say that the one-particle approximation of the interaction of strategies is considered
– without taking into account the number of carriers of the strategy.

In order to establish the result of the interaction of strategies, we define a payout
matrix. Recall that the dilemma of the two-player prisoner is that each player can choose
between cooperation (1) or failure (0). Depending on the opponent’s strategy, the selected
player receives a11 if both cooperate; a22 - if both refuse; a12 - if the chosen one cooperates
and the opponent refuses; and a21 - if the chosen one refuses, the enemy cooperates, where
a21 > a11 > a22 > a12 and 2a11 > a21+a12. In this work, we use the values of the Axelrod
payout matrix M1 [57],

Cooperation Refusal

Cooperation 3,3 0,5

Refusal 5,0 1,1

Thus, the result of the interaction of strategies will be determined by this matrix. Using
the interaction between all strategies with a finite depth of memory, we first establish
whether strategies with more memory receive an evolutionary advantage. In addition, it
is interesting to study how the complexity of strategies affects the evolutionary advantages
of strategies. In other words, is there a reason for the complexity of the systems.

Below we simulate the process of evolution of strategies with memory. For simplicity,
the principle of variability will be taken into account in a simple version, assuming that all
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strategies with a memory depth less than or equal to k are implemented in the population.
Since in this case all strategies are taken into account, then other strategies will not appear
in the process of evolution. The principle of heredity will consist in transferring winning
strategies to descendants. The principle of natural selection is realized by eliminating
or destroying losing strategies. Naturally, such a simplified version of evolution can be
complicated in many ways. Some of which will be discussed later.

Natural selection is implemented as follows. Let all the strategies interact with each
other in a circular system in accordance with an iterated game with a prisoners dilemma.
The number of interactions of two strategies in one generation is chosen equal for all equal
to n. Actually, the choice of a large number of interactions between the two strategies is
designed to exclude the influence of the first move [60]. As a result of such a competition,
strategies gain points in accordance with the above payout matrix. After that, the losing
strategy, and possibly several strategies with the minimum number of points, drop out
of the next generation. Further, the points of evolutionary advantages are reset and the
next round of interactions between the remaining strategies is carried out, corresponding
to the formation of new generation strategies.

5 Collective Variables

Considering the evolution of strategies, one can control the behavior of each strategy
only with a shallow depth of memory. The number of strategies with increasing depth
of memory grows superexponentially and individual tracking of strategies becomes not
feasible. For example, for memory depth 2, the number of strategies that participate in
evolution is 30824. Therefore, you need to enter collective or coarse variables that allow
you to monitor certain groups of strategies, united by certain qualities or properties. For
us, such properties as the depth of strategy memory and the complexity of strategies will
be important. Therefore, we will use the number of strategies ai with the i-th memory
depth and the number of strategies ni with the i-th complexity as coarse variables. So for
example, a1 is the number of strategies with a memory depth of 1, and n3 is the number
of strategies of complexity 3. Such coarse variables allow you to control the change in
memory and complexity of strategies of large populations of strategies during evolution.

6 World without memory

We begin by discussing the evolution of the simplest world with a memory depth of 0 or
a world without memory. Let each strategy interact with another strategy n = 100 times
in the framework of the iterated prisoners dilemma. The set of points is determined by
the payout matrix above, and is added up. Each strategy in one game responds to the
first move of the selected opponent, and in another starts, making the first move in the
game with the same opponent. In the games that she starts, there are two possibilities
to make the first move is to choose 0 or 1. A strategy that makes a certain first move is
considered as a separate strategy. After the games are held between all such strategies,
including oneself, the strategies are distributed among the occupied places in according
to the points earned.

The first place is occupied by the strategy with the highest total points. The strategy
or strategies with the minimum number of points are excluded and are not passed on to
the next generation. The remaining strategies are passed on to the next generation and
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Figure 4: Left - change n0 - the number of strategies of zero complexity. In the middle is the
evolution of n1- the number of strategies of unit complexity, on the right - n2 - of complexity
2. Note that the points are connected by lines for illustration only and the lines do not play
any meaning. Time is discrete.

enter the competition again with initial zero points of evolutionary advantages. These
strategies can be considered as descendants of the previous generation.

In this simple world, the number of strategies is quite small (4 strategies, and taking
into account the first moves are N0 = 8 strategies). Therefore, it is possible to follow all
the strategies. However, in it we will use the collective variables discussed above. In this
world, all strategies have 0 memory depths and therefore the variables a0(t) simply track
the number of strategies a0(t) = N0(t). It is clear that when one losing strategy is removed
at each stage of evolution, their number decreases linearly with time N0 = (1 − t) + 8.
Here t = 1, 2, . . . , 8 is the discrete evolution time. All the time of evolution takes 8 stages
(or generations), after which one strategy survives and a stationary state sets in.

We now turn to a discussion of changes in the complexity of social strategies. This
is the main characteristic by which strategies in this world can be classified. The most
detailed information on the behavior of complexity is carried by the number of strategies
of corresponding complexity at each stage of evolution. In a world with zero memory,
there are strategies of complexity 0, 1, and 2. Graphs of changes over time of the number
of strategies of a certain complexity are shown in Fig.4, where n0(t) is the number of
strategies of complexity 0 at the t-th stage of evolution, n1(t) and n2(t) are the number
of strategies of complexity 1 and 2, respectively, at the tth stage of evolution. From these
dependencies it is clear that strategies of complexity 1 disappear first at the 3rd stage of
evolution. Strategies of zero complexity disappear only at the 7th stage of evolution. Ac-
tually, evolution ends here and the winning complex strategy with complexity 2 remains.
In our case, this is strategy [1]01. Accordingly, in the world without memory, the ”eye
for eye”(or the ”tooth for tooth”) strategy wins [1]01. The complexity of the winning
strategy is maximum in this class of strategies.

The dependencies shown in Fig.4 make it easy to obtain the average value of the
complexity of the entire ”population” at each stage of evolution. The average value of
complexity is defined as

C̄(t) =
0 · n0(t) + 1 · n1(t) + 2 · n2(t)

n0(t) + n1(t) + n2(t)
≡

1 · n1(t) + 2 · n2(t)

n0(t) + n1(t) + n2(t)

The dependence of the average complexity of the strategies of ”population” on the time
of evolution is shown in Fig.5.
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Figure 5: On the left is the change in the average value of the complexity of the whole ”popula-
tion” in the process of evolution. The dashed line is the initial average value of the complexity
of ”population”. In the center change in the average aggressiveness of the ”population” over
time. The dashed line coincides with the aggressiveness of a population in which all strategies
are present. In this case, the aggressiveness is 0.5. On the right is the change in the average
number of evolutionary advantage points earned by the strategy in one move at each stage of
evolution.

The average complexity of such a population demonstrates quite nontrivial behavior.
At the beginning of evolution, the complexity of strategies increases slightly, but then
decreases. After reaching a certain minimum value, the average complexity begins to
increase to a maximum value. The population reaches a minimum of complexity at stage
5.

We now discuss which strategies win at different stages of the evolution of population
or which strategies dominate population. We will monitor the complexity of the winning
strategies at different stages of evolution.

Figure 6 shows the corresponding dependence. It can be seen that in the early stages
of evolution (up to and including 3 stages) only primitive strategies with zero complexity
won. After this stage, the most complex strategies win.

Observing the characteristic behavior of the complexity of the strategies of ”popula-
tion”, one can divide the evolution time into two periods. The primitive period in which
complexity decreases to a minimum and the period of a developed population of strate-
gies in which the complexity of strategies increases. Then, the initial stage of evolution
of the ”population” of strategies can be described as a primitive world (up to stage 5
inclusive). The stage of primitive population in a world without memory lasts 62.5% of
the time it takes to go to hospital. At these stages in the ”population” primitive strate-
gies of zero complexity dominate (see Fig.6). The final stages correspond to a developed
”population”, where complex (even the most complex) strategies dominate.

However, it should be noted that primitive strategies are present in population even
after the onset of the stage of a developed ”population”. The last primitive strategy
disappears only at the 6th stage of evolution (this is strategy (1)00) (see Fig.4).

Let us now consider another important characteristic of strategies. It can conditionally
be called aggressive strategy. By aggressiveness we mean the share of strategy failures from
cooperation. We will roughly determine it by the fraction 0 in the name of the strategy.
More precisely, we will determine it by the average fraction of non-cooperation. Modeling
the evolution of strategies gives a change in the average aggressiveness of population,

12



Figure 6: The complexity of the winning strategy at the appropriate stage of evolution.

shown in Fig.5.
From this dependence it can be established that the primitive stage of the development

of population is also characterized by an increase in average aggressiveness. At the end
of the period of primitive population, its aggressiveness is maximum. Then, after the
transition to a developed population, a monotonous decrease in the average aggressiveness
of the population is observed, and when the stationary state is reached, the average
aggressiveness is zero.

It is interesting to note that the most aggressive strategy also dies out at the 5th stage
of evolution, the most ”decent” at the first stage. Thus, it is possible to determine the
primitive era of population by the growth of aggressiveness and the primitive stage ends
after reaching the maximum aggressiveness of the strategies of population. In a world
without memory, this gives an equivalent definition of the primitive era of population.

The third possibility of a reasonable definition of the primitive stage is associated with
the period of the presence of the most aggressive strategy in population. Her disappear-
ance marks a transition to a developed population.

Finally, we move on to discussing the set of evolutionary advantage points by strategies
at different stages of evolution. This characteristic makes it possible to compare the set
of points by strategies at different stages of evolution. As such a characteristic, you can
use the number of points scored on one course of the strategy on average at a certain
stage of evolution. The time dependence of this value is shown in Fig.5. It is easy to
see that with increasing aggressiveness, the average number of points that a strategy
gains decreases. The higher the aggressiveness, the lower the number of points scored.
At the stage of a developed population, the obtained number of points begins to grow
monotonously, reaching a maximum at the stationary stage. Comparing the aggressiveness
and the average number of points that the strategy scores in Figure 5, it is easy to notice
a correlation between the behavior of these characteristics during evolution.

In a world with zero memory, there is a correlation in the behavior of average aggres-
siveness and average earnings per move. It can be assumed that the relationship between
these characteristics is determined by the relation

Ā(t) =
√

λ · (P̄max − P̄ (t))− a (1)

Figure7 compares the average aggressiveness obtained by numerical simulation with the
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Figure 7: Comparison of the average aggressiveness obtained by numerical modeling (squares),
with the ratio (1) (crosses). The difference is noticeable only at the maximum, the rest is
superimposed dots.

empirical pattern given above. The scale factor was chosen for reasons of the equality
of these characteristics at the first stage of evolution, λ = 5.3/8 and a = 0.2. Despite a
slight deviation in the maximum region, the graphs show good agreement in the behavior
of these characteristics over time.

Such a relationship (1) establishes that a decrease in the number of points per move
leads to an increase in the aggressiveness of population. Naturally, we can rewrite relation
(1), resolving it with respect to P̄ (t). Then it can be argued that an increase in aggres-
siveness leads to a decrease in the average number of points per strategy course according

to P̄ (t) = P̄max − (Ā(t)+a)2

λ
. Thus, the number of points per strategy move quadratically

depends on aggressiveness. We now turn to strategies with minimal memory and analyze
the change in the behavior of strategies in the process of evolution.

7 The world with a depth of memory 1

Let’s move on to the world of strategies with a depth of memory 1. In this world, the
number of all strategies increases and becomes equal to 128 (see section 2). It is clear
that tracking each strategy, although still possible, is becoming less meaningful. Such de-
tailed information is more confusing than helping to understand the patterns of behavior
of strategies. Therefore, with increasing memory depth and, accordingly, the number of
strategies, a collective way of describing strategies becomes extremely important. In a
world with a memory depth of 1, strategies differ in complexity (0, 1, 2, 3, 4) and also
in memory depth (0, 1). These characteristics make it possible to classify all strategies
into groups according to these properties. Thus, in this world, in addition to the char-
acteristics of the number of strategies of a certain complexity (n0, n1, n2, n3 and n4),
other characteristics can be introduced – the number of strategies of a certain memory
depth (a0, a1). These are very important collective variables that allow you to describe
the properties of a large number of different strategies. In the process of evolution, these
numbers change and give an abbreviated description of the behavior of strategies. The
evolution time in this world is 100. There are 4 strategies left.
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Figure 8: On the left is the dependence of the number of strategies with zero memory depth,
on the right with a depth of 1 on time.

We start by discussing memory changes during evolution. The most complete infor-
mation about this process can be extracted by observing the behavior of a0(t) and a1(t).
Of course, some patterns are associated with an exponential difference in the number
of strategies of different memory depths. So, the initial number of strategies of the 0th
memory depth is 8, and the depth of 1 is 96. Therefore, the discreteness of the change
in the number of zero memory strategies is so noticeable in Fig.8. The behavior of a1(t),
although it looks like a linear function, has important differences from it. In addition,
such a significant difference in numbers makes it uninformative to compare their behavior
on the same graph. Other characteristics need to be used to compare their behavior.
Fig.8 shows that strategies with zero memory depth are present in this world throughout
the entire evolutionary period.

The functions a0(t) and a1(t) allow us to calculate the average depth of population’s
memory, which is defined as

M̄ =
0 · a0 + 1 · a1

a0 + a1
≡

a1
a0 + a1

The result of averaging is shown in Fig.9. Based on Fig.9, it can be noted that in the
process of evolution, the average depth of population’s memory changes insignificantly.
The reason for this is due to the small number of strategies with zero memory and the
presence of strategies with a greater depth of memory, even when entering a stationary
state. Figure9 shows the memory depths of the winning strategies at the corresponding
stages of evolution. It is easy to see that in the initial period, the dominant strategies have
a maximum memory depth. In this case, periods may arise when the dominant strategy
has a shallow depth of memory. However, this does not have a significant impact on the
average memory of population. This is a consequence of the relatively small number of
strategies with small memory, even at these stages.

We turn to the analysis of the behavior of the complexity of population. The most
detailed information on the complexity of population is provided by the functions n0(t),
n1(t), n2(t), n3(t) and n4(t). These characteristics are shown in Fig.10. Let us pay
attention to the initial stage, in which the most primitive strategies n0(t) are present.
This period takes 55 stages of evolution and ends after the most aggressive strategy 0000
disappears. Unlike strategies with 0-th memory in this world, primitive strategies do not
dominate this period. However, they are present in population in full force. Therefore,
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Figure 9: On the left is the change in the average memory of population. On the right is the
memory depth of the winning strategies at the respective stages.

the primitive period of development of a population with memory is not characterized
by the dominance of the most primitive strategies, but is determined by their presence.
The primitive period takes 55% of the time to reach the stationary state. Note that the
relative duration of the primitive period decreased with an increase, or more precisely,
with the advent of memory.

The very first strategies to disappear from population are those with complexity 1
(see Fig.10 - dependence n1(t)), which include the most respectable strategy 1111, which
disappears already at stage 5. One can only be surprised that it did not disappear at the
first stage of evolution. It is interesting to note that the average rate of disappearance of
strategies is the highest for the most complex strategies. The higher the complexity, the
greater the average rate of disappearance of the corresponding strategies. Despite this,
complex strategies survive.

This is clearly seen in the change in the average complexity of population’s strategies
in the process of evolution (see Fig.11). It can be seen that the average complexity varies
slightly

In addition, you can see that in a world with a memory depth of 1, complex strategies
dominated at all stages of evolution. This is clearly seen from Fig.12, which indicates the
complexity of the winning strategies at each stage of the evolution of population. It is
clearly seen that the most complex strategies capture the primacy from the beginning of
evolution and retain it, or rather, sharing it with strategies that are close in complexity
to the maximum. Let us now examine how the aggressiveness of strategies changes in the
process of evolution. Figure11 shows the change in the average aggressiveness of popu-
lation. It is easy to see that, as in the previous world, the average aggressiveness at the
initial times grows and exceeds the average aggressiveness of a population in which all
strategies are present. Then the aggressiveness decreases and reaches the average aggres-
siveness of a population in which all strategies are present at the 55-56 stage of evolution.
Further, the level of aggressiveness continues to decline, reaching a minimum when enter-
ing a stationary state. Qualitatively, this behavior resembles aggressive behavior in the
absence of memory. The difference lies in the shift of the maximum in the presence of
memory in relatively earlier times of evolution. So, the position of the maximum with
a memory depth of 1 is reached at times making up 37% of the evolution time, and in
the absence of memory - at times 62.5% of the evolutionary time. Thus, if you define a
primitive period to achieve the average aggressiveness of the maximum, then the stage
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Figure 10: The number of strategies of corresponding complexity present in population at
different times of evolution.
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Figure 11: On the left is the change in the average complexity of social strategies over time.
In the center is the change over time of the average aggressiveness of population with a depth
of memory of 1. On the right is the average earnings per move at each stage of evolution. The
dashed line shows the corresponding characteristics of a population in which all strategies are
present with depth memory 1 and below.
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Figure 13: Comparison of average aggressiveness - squares with regularity (1), constructed
according to the dependence of payments per move - crosses

of primitive population ends at 37, 38 stages. The stage of primitive population with a
depth of memory of 1 is significantly shortened and makes up 37% − 38% of the time of
evolution.

Now let’s look at how the set of evolutionary advantage points is changing. Figure11
shows the number of points on average per turn at each stage of evolution. As in the world
with zero memory, there is a correlation in the behavior of average aggressiveness and
average earnings per move. Assuming that the relationship between these characteristics
is determined by the relation

Ā(t) =
√

λ · (P̄max − P̄ (t))− a ,

then we can compare the average aggressiveness obtained by direct modeling (see Fig.11)
with the aggressiveness obtained by average payouts per move. The scale factor λ was
chosen λ = 5.3/8 and a = 0.2 so that the value at the first stage of these dependences
coincided.

Such a comparison is shown in Fig.13. It is easy to notice the proximity of the obtained
dependencies. Of course, the rule is obtained empirically and the mechanism of such a
connection is not entirely clear. However, good agreement between the same functions is
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Figure 14: Change in the number of strategies with a certain depth of memory in the world with
a depth of memory 2. A discrete unit of time is chosen equal to a duration of 300 generations.

observed with zero memory. In other words, these characteristics are not independent,
and one of them depends on the other.

8 The world with a depth of memory 2

We now turn to the analysis of patterns in the world with a depth of memory 2. The
payout matrix and the number of moves of the two strategies remain the same. Naturally,
the number of all possible strategies in this world is increasing and is equal to 30824.
Here again, a separate strategy is understood as a strategy with certain initial moves. As
before, at each stage, the strategy (or strategies) that has gained the minimum number of
evolutionary advantages will be deleted. Further everywhere, as a unit of time scale, we
will use a duration of 300 generations. The time to reach the hospital is 29968 generations
or the selected scale of 100. In terms of collective variables for analyzing the behavior
of strategies with different memory depths, we will divide all strategies into 3 groups
according to memory depth and we will monitor the changes in the numbers of these
groups. So a0(t) is the number of strategies in a population with a memory depth of 0
at the t-th stage, a1(t) is the number of strategies with a memory depth of 1 at the t-th
stage, and a2(t) is the number of strategies with a depth memory 2 at the t-th stage.
When modeling the evolution of such a population, the dependence of the change in the
number of these groups over time was obtained, which are shown in Fig.14.

As expected, the discreteness of change is most pronounced for groups with a small
memory depth of 0, 1 and is almost invisible for a2(t). The reason for this is the relatively
small number of strategies with a small depth of memory.

A characteristic feature that is clearly visible from Fig.14 is the presence of strategies
with a shallow depth of memory for almost the entire time of evolution. In a certain
sense, this is surprising when one considers the relatively small number of strategies with
a small depth of memory. So, with zero memory depth, strategy [1]01010101 reaches the
hospital, as well as strategies [1][01]01110111, [1][11]01110111 with memory depth 1 are
included in the stationary set of strategies formed during evolution.

Using the functions ai(t), we consider how the average memory of population changes
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Figure 15: Change in the number of strategies of a certain complexity in a world with a depth
of memory of 2.

in the process of evolution.

M =
0 · a0(t) + 1 · a1(t) + 2 · a2(t)

a0(t) + a1(t) + a2(t)

The average memory depth of the strategy community is 2 and remains virtually un-
changed over time. Apparently, this property will be preserved for strategy communities
with a greater depth of memory.

The dominance of strategies with a large depth of memory is observed in this world
at all stages of evolution (see Fig.16). Unlike a community without memory and with
memory 1, strategies at maximum memory depth win at all stages. Therefore, there is no
era of dominance of strategies with zero memory depth. The depth of memory from this
point of view is an evolutionarily advantageous property. However, it should be noted that
the number of retired strategies from a community with this memory depth (2) exceeds
the total number of strategies with a smaller memory depth (0, 1).
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Figure 16: Left is the depth of memory of the winning strategy at every stage of evolution.
On the right is the complexity of the winner’s strategy at every stage of evolution. The data
obtained as a result of modeling the evolution of strategies.

We turn to the behavior of the complexity of strategies over time. Of course, as in the
previous cases, we use the collective variables ni(t). The results of numerical simulation are
shown in Fig.15. These dependencies show that primitive strategies of small complexity
disappear from population in the early stages of evolution, not reaching the final stages
of the struggle for existence. So, strategies of complexity 1 - at 900 are the first to
disappear, the most ”decent” strategy disappears even earlier at stage 551. Strategies
of the 0th complexity disappear at stage 16500, the most aggressive strategy disappears
at stage 16204. Strategies of greater complexity do not completely disappear and form
a stationary set of strategies. It is possible to construct the distributions of stationary
strategies according to the depth of memory and complexity (see Fig.19). The hospital
has the highest number of the most complex strategies and with maximum memory depth
(see Fig.19).

In a world with memory, complexity of strategies is an advantageous property in
evolution. It can be said that evolution supports and approves the complexity of strategies.
To demonstrate this, one can cite a change in the average complexity of the strategies
of the whole population in the process of evolution (see Fig.17). It can be seen that the
average complexity of strategies changes little during evolution and its small oscillations
at the final stages of evolution are associated with a decrease in the number of social
strategies. In this case, the disappearance of even one strategy affects the average value.
It can be assumed that the average value of the complexity of strategies is preserved
during the evolution of population and with a greater depth of memory.

In a world with a depth of memory of 2, complex strategies dominate at all stages of
evolution. This is clearly seen from Fig.16, which shows the complexity of the winning
strategy at each stage of evolution. It is easy to see that strategies of low complexity
are absent among the winners at all stages of evolution. In other words, the period of
development of population, when primitive strategies dominate, is absent in this world.
Also, the presence of primitive strategies cannot be used to highlight a primitive period.
One of them is included in the stationary set of strategies. This is a strategy of zero
memory depth and complexity 2.

Figure 17 shows the average aggressiveness of the community at each stage of evolution.
A characteristic dependence of average aggressiveness with time is visible. In all worlds
with different depths of memory, at first aggressiveness increases, and then decreases to
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on average per turn of one strategy. The dashed line shows the corresponding characteristics
of a population in which all strategies with a memory depth of 2 and below are present.
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Figure 18: Average aggressiveness - squares and aggressiveness constructed according to equa-
tion (1) - crosses.

a minimum value. Then it should be considered more natural to single out the primitive
period by increasing aggressiveness in population and achieving maximum value. If we
consider aggressiveness, then there are two local maximums. One at 27 · 300, and the
second at stage 52 · 300. Estimating the primitive period by the first maximum gives
27% of the evolution time. It seems natural to choose a second maximum to highlight a
primitive period. Then the primitive period takes 52% of the time to reach the stationary
state. You may notice that the tendency to decrease in the primitive period with increasing
memory depth persists. Note that it ends before the disappearance of primitive strategies.

We now turn to a discussion of the evolutionary advantage points obtained on average
in one turn by the strategy. The general tendency to decrease points with increasing
aggressiveness persists in this world (see Fig.17). The nature of change has a typical
appearance for all worlds. The differences come down to the relative position of the
minimum of the obtained points of evolutionary advantage. The correlation between
aggressiveness and the number of points per move is also noticeable.
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Figure 19: The distribution of strategies in the hospital on the left by the depth of memory, on
the right by complexity. The vertical axis is the number of strategies.

It remains to verify the feasibility of the universal connection (1) between these char-
acteristics. Fig.18 shows the average aggressiveness and aggressiveness, constructed ac-
cording to the dependence of the number of points per move. The consistency of these
dependencies is clearly visible. As memory grows, data matching improves.

It is interesting to note that the selected values of P̄max = 3, as well as the coefficient
λ = 5.3/8 and a = 0.2 in the world without memory, did not change for other worlds.

We now turn to a discussion of the stationary state arising in the process of evolution.
It is formed by a fairly large number of strategies - 857 strategies

All of them gain the same number of points at the stationary stage and maintain
zero aggressiveness in relation to each other. This is a community of ”friendly” strategies.
The distribution of the number of strategies by memory depth and complexity is shown in
Fig.19. A very small number of strategies have a memory depth less than the maximum.
These are only 5 strategies - one with zero memory depth and 4 with memory depth 1.
The distribution of strategies by complexity is more meaningful. Starting from complexity
5, the data are well approximated by an exponential dependence. In the hospital, the
overwhelming number of strategies has the maximum falsity.

9 Conclusion

First, we note that for the Cauchy problem under consideration, memory and, as a con-
sequence, complexity provide evolutionary advantages. Strategies with little memory and
little complexity die out. The average memory and complexity of a population with a
fixed depth of strategy memory changes little during evolution and is close to maximum
values. Apparently, this is the main reason for the complexity and occurrence of diversity
during evolution. In addition, the surviving strategies in the hospital have zero aggres-
siveness towards each other. In a certain sense, we can say that memory is the universal
mechanism for the emergence of cooperation in the community.

In all the considered worlds, one can distinguish a primitive period during which the
aggressiveness of strategies in population grows. With increasing depth of memory, the
relative duration of this period decreases. So, in the world without memory, the primitive
period takes 62.5% of the time to reach the stationary state, in the world with memory
1 - 37 ÷ 38%, and in the world with memory 2 - 27% ÷ 52%. Primitive strategies exist
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in population even after the end of the primitive period. And with a memory depth of 2,
one strategy with a memory depth of 0 and complexity 3 reaches the hospital.

The lifetime of the most aggressive strategy in population with the increasing depth of
memory is also reduced. So, with a memory depth of 0, it takes 62.5% of the evolutionary
time, in the world with memory 1 - 55%, and in the world with memory 2 - 54%. You
can notice a correlation with the length of the primitive period.

In all worlds, the dependence of average aggressiveness on time has a characteristic
bell-shaped appearance. The differences are in the position of the maximum and its value.
So, with increasing depth of memory, the maximum shifts toward the beginning of evo-
lution, and its value decreases, which makes it difficult to find its position. Therefore,
with increasing depth of memory, its width increases. Aggression in the process of evo-
lution after a primitive period decreases and tends to a minimum value. Inpatients form
strategies with zero aggressiveness towards each other. There is a universal connection
(1) between the aggressiveness of population and the number of evolutionary advantage
points that an average strategy receives per turn. The increase in aggressiveness reduces
the amount of payments per move.

References

[1] J.W.Weibull, Evolutionary Game Theory. MIT Press, Cambridge, MA (1993).

[2] M.A.Nowak, Evolutionary Dynamics. Cambridge, MA (2006).

[3] J.C.Claussen, Discrete stochastic processes, replicator and Fokker-Planck equations
of coevolutionary dynamics in finite and infinite populations, Banach Center Publi-
cations: 80, 17-31 (2008).

[4] A.Traulsen, J.C.Claussen, C.Hauert, Coevolutionary dynamics: From finite to infi-
nite populations, Phys. Rev. Lett. 95, 238701(4), (2005).

[5] M.A.Nowak, R.M.May, The spatial dilemmas of evolution, Int. J. Bifurcation Chaos
Appl. Sci. Eng. 3, 35-78 (1993).

[6] M.A.Nowak, K. Sigmund, A strategy of win-stay, lose-shift that outperforms tit-for-
tat in Prisoner’s Dilemma, Nature 364, 56 (1993).

[7] H.Brandt, C.Hauert, K.Sigmund, Proc. R. Soc. Lond. B, 270, 1099-1104, (2003).

[8] M.A.Nowak, R.M.May, Evolutionary games and spatial chaos, Nature, 359, 826 - 829
(29 October 1992).

[9] G.Szab’o, C.Hauert, Phase transitions and volunteering in spatial public goods
games, Phys. Rev. Lett, 89, 118101(4), (2002).

[10] M.Perc, Chaos promotes cooperation in the spatial prisoner’s dilemma game, Euro-
phys. Lett., 75 (6), pp.841-846, (2006).

[11] M.Perc, A.Szolnoki, G.Szab’o, Restricted connections among distinguished players
support cooperation, Phys. Rev. E 78, 066101(6), (2008).

[12] S.K.Baek, B.J.Kim, Intelligent tit-for-tat in the iterated prisoner’s dilemma game,
Phys.Rev.E, 78, 011125, (2008).

[13] A.Szolnoki, M.Perc, Reward and cooperation in the spatial public goods game, EPL
92 38003 (2010).

24



[14] A.Szolnoki, M.Perc, Impact of critical mass on the evolution of cooperation in spatial
public goods games, Phys.Rev.E 81, 057101, (2010).

[15] A.Szolnoki, M.Perc, Group-size effects on the evolution of cooperation in the spatial
public goods game, Phys. Rev.E 84, 047102(4), (2011).

[16] Y.Liu, X.Chen, L.Wang, B.Li, W.Zhang, H.Wang, EPL 94 60002, (2011).

[17] A.Szolnoki, M.Perc, Conditional strategies and the evolution of cooperation in spatial
public goods games, Phys.Rev.E 85, 026104(7), (2012).

[18] G.Szab’o, G.F’ath, Evolutionary games on graphs. Phys Rep 446: 97-216 (2007).

[19] H.Ohtsuki, C.Hauert, E.Lieberman, M.A.Nowak, A simple rule for the evolution of
cooperation on graphs and social networks, Nature 441 502, (2006).

[20] F.C.Santos, J.M.Pacheco, Scale-Free Networks Provide a Unifying Framework for the
Emergence of Cooperation, Phys.Rev.Lett. 95 098104, (2005).

[21] S.Assenza, J.G’omez-Garde’nes, V.Latora, Enhancement of cooperation in highly
clustered scale-free networks, Phys.Rev.E 78, 017101, (2008).

[22] X.Chen, F.Fu, L.Wang, Interaction stochasticity supports cooperation in spatial Pris-
oner’s dilemma, Phys.Rev.E 78, 051120, (2008).

[23] Perc M, Evolution of cooperation on scale-free networks subject to error and attack,
New J. Phys. 11 033027 (2009).

[24] F.Fu, L.Wang, M.A.Nowak, C.Hauert, Evolutionary dynamics on graphs: Efficient
method for weak selection, Phys. Rev. E 79 046707, (2009)

[25] W.X.Wang, R.Yang, Y.C.Lai, Cascade of elimination and emergence of pure cooper-
ation in coevolutionary games on networks, Phys. Rev. E 81 035102(R) (2010)

[26] W.X. Wang, J.Ren, G.Chen, B.H.Wang, Memory-based snowdrift game on networks,
Phys.Rev.E 74 056113 (2006).

[27] C.L.Tang, W.X.Wang, X.Wu, B.H.Wang, Effects of average degree on cooperation
in networked evolutionary game, Eur. Phys. J. B 53, 411-415 (2006).

[28] J.Ren, W.X.Wang, F.Qi, Randomness enhances cooperation: A resonance-type phe-
nomenon in evolutionary game, Phys.Rev.E 75 045101(R) (2007).

[29] W.X.Wang, J.Lu, G.Chen, P.M.Hui, Phase transition and hysteresis loop in struc-
tured games with global updating, Phys. Rev. E 77 046109 (2008).

[30] W.B.Du, X.B.Cao, M.B.Hu, W.X.Wang, Asymmetric cost in snowdrift game on
scale-free networks, EPL 87 60004 (2009).

[31] Rong Z, Yang H X and Wang W X, Feedback reciprocity mechanism promotes the
cooperation of highly clustered scale-free networks, Phys. Rev. E 82 047101 (2010)

[32] J.Poncela, J.Gomez-Gardens, Y.Moreno, Cooperation in Scale-free networks with
limited associative capacities. Phys.Rev. E 83, 057101 (2011)

[33] J.G’omez-Garde’nes, M.Romance, R.Criado, D.Vilone, A.S’anche, Evolutionary
games defined at the network mesoscale: The public goods game, Chaos 21 016113
(2011)

[34] H.X.Yang, Z.X.Wu, W.B.Du, Evolutionary games on scale-free networks with tunable
degree distribution, EPL 99 10006, (2012)

25



[35] M.A.Nowak, R.Highfield, Super Cooperators: Altruism, Evolution, and Why We
Need Each Other to Succeed, Free Press, (2012).

[36] G.Szab’o, C.Hauert, Evolutionary prisoner’s dilemma games with voluntary partici-
pation, Phys. Rev. E 66, 062903 (2002)

[37] C.Hauert, A.Traulsen, H.Brandt, M.A.Nowak, K.Sigmund, Via freedom to coercion:
The emergence of costly punishment, 2007 Science 316 (1905)

[38] A.Traulsen, J.C.Claussen, Similarity based cooperation and spatial segregation,
Phys. Rev. E 70 046128, (2004)

[39] A.Szolnoki, G.Szab’o, Cooperation enhanced by inhomogeneous activity of teaching
for evolutionary prisoner’s dilemma games, EPL 77 30004 (2007)

[40] M.Perc, A.Szolnoki, Social diversity and promotion of cooperation in the spatial
prisoner’s dilemma game, Phys. Rev. E 77 011904, (2008)

[41] H.X.Yang, W.X.Wang, Z.X.Wu, Y.C.Lai, B.H.Wang, Diversity-optimized coopera-
tion on complex networks, Phys. Rev. E 79, 056107 (2009)

[42] J.M.Pacheco, A.Traulsen, M.A.Nowak, Coevolution of strategy and structure in com-
plex networks with dynamical linking, Phys. Rev. Lett. 97 258103 (2006)

[43] H.Ohtsuki, M.A.Nowak, J.M.Pacheco, Breaking the symmetry between interaction
and replacement in evolutionary dynamics on graphs, Phys. Rev. Lett. 98 108106
(2007)

[44] S.Meloni, A.Buscarino, L.Fortuna, M.Frasca, J.G’omez-Garde’nes, V.Latora,
Y.Moreno, Effects of mobility in a population of prisoner’s dilemma players, Phys.
Rev. E 79, 067101 (2009)

[45] L.L.Jiang, W.X.Wang, Y.C.Lai, B.H.Wang, Role of adaptive migration in promoting
cooperation in spatial games, Phys. Rev. E 81, 036108 (2010)

[46] F.Fu, M.A.Nowak, Global migration can lead to stronger spatial selection than local
migration, J. Stat. Phys. 151 637 (2013).

[47] F.Fu, C.E.Tarnita, N.A.Christakis, L.Wang, D.G.Rand, M.A.Nowak, Evolution of
in-group favoritism, Sci. Rep. 2 460 (2012)

[48] Z.Wang, A.Szolnoki, M.Perc, Optimal interdependence between networks for the
evolution of cooperation, Sci. Rep. 3 2470, (2013)

[49] K. Lindgren Evolutionary Phenomena in simple Dynamics, Artificial life II, 295-312,
(1992).

[50] A.N.Kolmogorov, Three Approaches to the Quantitative Definition of Information,
Problems Inform. Transmission, 1 (1), p.1-7, (1965).

[51] S. Lloyd Measures of complexity: a nonexhaustive list, IEEE Control Systems Mag-
azine 21 (4), 7-8, (2001).

[52] A.N.Kolmogorov, A. Logical basis for information theory and probability theory
IEEE Transactions on Information Theory journal, Vol.14, no. 5, P.662-664, (1968)

[53] A.M.Turing, On Computable Numbers with an Application to the Entschei-
dungsproblem, Proc. Lond. Math. Soc. (ser.2), 42, p.230-265, (1936/37).

[54] V.I.Arnold, Experimental observation of mathematical facts, M., MTsNMO, (2007),
120 pp.

26



[55] E. Lieberman, C. Hauert, M. A. Nowak, Evolutionary dynamics on graphs, Nature
(London) 433, 312 (2005).

[56] C. Hauert, M. Doebeli, Spatial structure often inhibits the evolution of cooperation
in the snowdrift game, Nature (London) 428, 643 (2004).

[57] R.Axelrod, The evolution of cooperation, Basic Books, New York (1984).

[58] A. S. Monin, A. M. Yaglom, Statistical Fluid Mechanics, Volume I: Mechanics of
Turbulence. V. 1, Dover Publications, 2007, 784pp.

[59] R.V.L.Hartley, Transmission of information, Bell Syst.Techn.J., July, 535, (1928).

[60] V.M.Kuklin, A.V.Priymak, V.V.Yanovsky, The effect of memory on the evolution
of populations, Bulletin of Karazin Kharkiv National University, series ”Mathemat-
ical modeling. Information technology. Automated control systems”, v.29, p.41-66,
(2016).

27




	1 Introduction
	2 Strategies with memory
	3 Complexity of strategies
	4 Interaction strategies
	5 Collective Variables
	6 World without memory
	7 The world with a depth of memory 1
	8 The world with a depth of memory 2
	9 Conclusion

