
1

A comparative Study of Calibration Methods for
Low-Cost Ozone Sensors in IoT Platforms

Pau Ferrer-Cid, Jose M. Barcelo-Ordinas, Jorge Garcia-Vidal, Anna Ripoll, Mar Viana

Abstract—This paper shows the result of the calibration
process of an IoT platform for the measurement of tropospheric
ozone (O3). This platform, formed by sixty nodes, deployed in
Italy, Spain and Austria, consisted of one hundred and forty
metal-oxide O3 sensors, twenty-five electro-chemical O3 sensors,
twenty-five electro-chemical NO2 sensors and sixty temperature
and relative humidity sensors. As ozone is a seasonal pollutant,
which appears in summer in Europe, the biggest challenge is to
calibrate the sensors in a short period of time. In the paper, we
compare four calibration methods in the presence of a large data
set for model training and we also study the impact of a limited
training data set on the long-range predictions. We show that
the difficulty in calibrating these sensor technologies in a real
deployment is mainly due to the bias produced by the different
environmental conditions found in the prediction with respect to
those found in the data training phase.

Index Terms—IoT platform, Sensor Calibration, Low-cost
sensors, Uncontrolled environments, Quality of Information (QoI)

I. INTRODUCTION

FOUR point two million deaths are produced every year
as a result of exposure to ambient (outdoor) air pollution

according to WHO1 (World Health Organization). Moreover,
around 91% of the world's population live in places where
air quality levels exceed WHO limits. National and regional
governmental organizations measure pollutants using highly
accurate instruments. However, these equipments are costly
to deploy and maintain, being its number low with respect to
large density areas. Low-cost air pollution sensors mounted on
nodes forming an Internet of things (IoT) platform can help
to estimate and understand the pollution in areas with low
number of accurate instruments.

One of the most discussed topics [1], [2] with low-cost sen-
sor networks is the accuracy of the data they provide. In recent
years, there has been greater interest in learning how low-cost
sensors behave in terms of quality of information (QoI) metrics
such as the root mean square error (RMSE), mean bias error
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(MBE), or the short-term or large-term capacity prediction of
the sensors. Many of the low-cost sensors in IoT platforms are
not calibrated by the manufacturers or if they are calibrated
by them, the calibration has been done in laboratory chambers
and not in the environmental conditions of the place where the
nodes are deployed [3], [4]. In this case, the sensors of the
IoT platform is calibrated during network deployment in an
uncontrolled environment without laboratory instruments [5],
[6].

For this reason, much research has focused on the inter-
action of environmental conditions such as temperature and
relative humidity [3], [4], [7], [8], [9] or on the interactions of
other pollutants [10], [11] with respect to one pollutant sensor.
In addition, there is recently a greater interest in comparing
and studying [11], [12], [13], [14], [15] how signal processing
techniques behave for calibrating different air pollution low-
cost sensors in IoT platforms. Many of these investigations
focus on comparing what is the error obtained using several
linear and non-linear machine learning algorithms. The authors
choose some commercial sensors, take data during a large
period of time and compare how the sensor behave in terms
of QoI metrics. Most of the time the goal is to evaluate which
commercial sensor performs best or whether a commercial
sensor performs well.

H2020 CAPTOR2 project (2016-2018) works on the as-
sumption that the combination of citizen science, collaborative
networks and environmental grassroots social activism helps to
raise awareness and find solutions to air pollution problems.
During the project, three testbeds forming an IoT platform,
aimed at increasing public awareness of tropospheric ozone
(O3), have been deployed in Austria, Italy and Spain [16].
Sixty wireless nodes have been deployed with 140 metal-
oxide O3 sensors, 25 electro-chemical O3 sensors, 25 electro-
chemical NO2 sensors and 60 temperature and relative humid-
ity sensors.

One of the main challenges in a real IoT sensor deployment
with air pollution sensors is that the amount of time for
calibrating the sensors is of few weeks. This means that one
of the most difficult challenges to solve is how to predict
the pollutant concentrations in the long-term given that the
calibration has been carried out in a fixed and not very long
period of time. As a consequence, the IoT nodes have to be
calibrated in an uncontrolled environment and knowing that
the environmental conditions will change in time.

In this paper, we describe the process of calibrating metal-
oxide and electro-chemical low-cost O3 sensors in a real IoT

2https://www.captor-project.eu/en/
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network deployed during the H2020 CAPTOR project [16].
For that purpose we assume that (i) O3 is seasonal, and
therefore, has large peaks during summer in Europe, (ii) the
calibration process is performed just before the summer and
the objective is to learn how accurate are the predictions
of O3 concentration during the summer. For that reason,
a set of linear (multiple linear regression) and non-linear
(K-nearest neighbors, support-vector regression and random
forest) algorithms are compared, both in the short and long-
term predictions.

The outline of the paper is as follows: section II enumerates
the related work. Section III explains the testbeds and data sets
employed for the analysis. Section IV illustrates the calibration
algorithms used for comparing sensor behavior. Section V
describes the results showing how the sensors behave in the
short and long-term and the impact of the environmental
conditions. Finally, section VI concludes the paper.

II. RELATED WORK

There has recently been a large number of studies devoted
to calibration in many fields related to low-cost sensor in IoT
platforms including weather, air quality monitoring, target dis-
covery, synchronization or localization [6]. Signal processing
techniques have been applied to calibrate low-cost sensors in
IoT. In general, temperature and relative humidity low-cost
sensors follow linear patterns, and linear regression has been
the main technique used for calibrating these sensors. Several
authors [10], [17], [18] have shown that in order to calibrate
air pollution sensors such as CO, NO2, CH4, O3, CeO2 or
C3H8 it is needed an array of sensors. The idea of sensor array
calibration consists in measuring all the cross-sensitivities to
compensate for all interfering pollutants and environmental
conditions [5], [6]. For example, to calibrate a NO2 sensor,
NO2, O3, temperature, and relative humidity are measured.

There are several calibration approaches to calibrate a
sensor node [6]. The most typical is the approach in which
uncalibrated sensor nodes are collocated (placed) a few meters
away from the reference node [11], [12]. Other possible
calibration approaches assume a distributed network of nodes.
An example is to calibrate nodes using a multi-hop calibrated
network, in which a node is calibrated using an already
calibrated node [17].

All these works use data processing algorithms for calibrat-
ing the low-cost sensors. Whenever the sensor response has a
linear behavior with respect to the reference data, multiple
linear regression (MLR) [11], [12], [14], [19] is used for
calibrating the sensors. Nevertheless, when the response is
non-linear, models such as K-nearest neighbors (KNN) [19],
[20], Gaussian processes [20] and more recently support-
vector regression (SVR) [14], [15], [21], random forest (RF)
[13], [14], [20] and artificial neural networks (ANN) [11], [15],
[20] have been used to calibrate low-cost sensors. Most of
these works are focused on studying and analyzing the quality
of different commercial low-cost sensors and the performance
of electro-chemical sensors. In general, the authors deploy a
sensor collocated with reference instruments, take data for
a large amount of time, e.g., several months, and compare
one or several calibration models or compare sensors from

different manufacturers with large data sets. This methodology
is correct for assessing how good is a calibration model or how
good is a sensor technology if a large amount of samples are
available for calibrating the sensor. But, few of them deploy
sensors with the target of a real IoT network deployment in
which the objective is to calibrate the sensor in few weeks,
thus with a short amount of samples, and assess how these
sensors will behave in the long-term and how it will drift.

The drift in electro-chemical low-cost sensors has also been
paid attention. This drift is a degradation mainly due to poison-
ing and aging of the sensor material. For example, Martinelli
et al. [22] propose a modified version of an artificial immune
system (AIS) algorithm that having some form of memory,
is less affected by drift. Other authors [7], [12], [13], [17]
propose recalibration as a way of fighting drifts in low-cost
sensor networks. For example, Mijling et al. [7] and Barcelo-
Ordinas et al. [12] propose a pre-post calibration approach, in
which the sensors are calibrated in the pre-campaign followed
by a second calibration period after the measurement campaign
is finished with the aim of assessing and compensating the
individual sensor drift in the IoT sensor nodes. Saukh et al.
[17] mount nodes in a network of buses and re-calibrate the
air pollution sensors each time that the buses opportunistically
cross a reference monitoring station. This type of calibration
is called opportunistic or periodic calibration depending on
whether the recalibration is opportunistically or periodically
scheduled. Wei et al. [8] also study the drift and the impact
of environmental parameters such as temperature and relative
humidity. In general, short and long-term predictions are quite
sensitive to temperature and relative humidity [8], and these
parameters have to be included in the calibration model.

In this work, we compare linear (MLR) and non-linear
(KNN, RF and SVR) models in O3 sensors with metal-oxide
and electro-chemical technologies. We compared the models
for calibration in the presence of a large training data set,
following the literature, but added (i) the analysis of the size
of the training data set, and (ii) what happens when the training
data set is small and a long-term prediction is made.

III. DATA SET AND TESTBED

During H2020 CAPTOR project, three network testbeds in
Spain, Italy and Austria were deployed during two summers
in 2017 and 2018 [16]. Since the main objective of the
project was to raise awareness on O3, and this pollutant is
seasonal in Europe, from mid May to mid September, the
nodes were calibrated during part of May and June, deployed
in volunteer houses in large areas from July to mid September
and recovered for post-calibration from mid September to
October. However, several nodes were permanently deployed
in a reference station during the entire measurement campaign.
The objective was to carry out calibration studies in the
reference stations where the nodes of the volunteers had been
deployed. Two kind of sensor technologies were deployed:
SGX Sensortech MICS 2614 metal-oxide O3 sensors in nodes
called Captors and Alphasense O3B4 electro-chemical O3

sensor in nodes called Raptors.
For calibrating metal-oxide O3 sensors, it is needed to

measure O3, temperature and relative humidity. Captor nodes
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TABLE I: Sensor Deployment information.

Node Name Sensor Labels Sensor Type Calibration Place Period # of Samples
Captor C17013 s1,s2,s3,s4 MICS 2614 Manlleu (Spain) 08/05/2017-04/10/2017 6745
Captor C17016 s1,s2,s3,s4 MICS 2614 Vic (Spain) 26/05/2017-05/10/2017 6149
Captor C17017 s1,s2,s3,s4 MICS 2614 Tona (Spain) 08/05/2017-05/10/2017 6944
Raptor R69-17 s1 OX-B431 MonteCucco (Italy) 06/07/2017-11/10/2017 1797
Raptor R308-17 s1 OX-B431 Weiz Bahnhof (Austria) 07/06/2017-27/09/2017 1439
Raptor R69-18 s1 OX-B431 MonteCucco (Italy) 20/06/2018-26/09/2018 2295
Raptor R202-18 s1 OX-B431 Colli Euganei (Italy) 18/06/2018-30/09/2018 2254
Raptor R212-18 s1 OX-B431 Osio Sotto (Italy) 26/06/2018-25/09/2018 2148

have been built by Universitat Politecnica de Catalunya (UPC)
in Spain. Each Captor node uses Arduino technology with a
sensor shield board that attaches four SGX Sensortech MICS
2614 metal-oxide O3 sensors, a temperature (T) sensor and a
relative humidity (RH) sensor and it is powered by an external
power supply. Metal-oxide Sensortech sensors measure O3

using a voltage divider circuit that has a load resistor and
a variable resistor. Whenever the O3 concentration changes,
the variable resistor changes. The resistor value representing
the O3 sample is obtained by measuring the voltage VL in the
load resistor after quantizing the signal with an A/D converter
and converting this voltage to the raw measurement:

sO3 = RL(1−
Vcc
VL

). (1)

Where sO3
is the raw O3 measurement in kiloohm, RL is

the load resistor, Vcc is the input voltage and VL is the
voltage measured by the A/D converter. Reference monitor-
ing stations show pollutants every half-hour or hour as the
concentrations of these pollutants change slowly over time.
Thus, a Captor node sends one measurement to a database
repository every half hour. In order to have a representative
value, each measurement is the average of 100 consecutive
samples in which the 10 highest and the 10 lowest are
removed to avoid outliers. Each measurement is a tuple with
RawDataCaptor={Timestamp, s1O3

, s2O3
, s3O3

, s4O3
, s5T ,

s6RH} where siO3
(i=1,2,3,4) is a O3 sensor raw measure,

s5T is a temperature sensor measure and s6RH is a relative
humidity sensor measure. This tuple is sent via 3G or Wifi to
an IoT platform repository using a REST Web service.

For calibrating electro-chemical O3 sensors, it is needed
to measure NO2, O3, temperature (T) and relative humidity
(RH). Raptor nodes have been built by Universite Clermont
Auvergne (UCA) in France. Each Raptor node uses Raspberry
Pi technology with one Alphasense OX-B431 electro-chemical
O3 sensor, one Alphasense NO2-B43F electro-chemical NO2

sensor, a temperature sensor and a relative humidity sensor.
The Raptor platform is composed by two boxes: an outdoor
box is powered by a 9V 4000mAh battery for a lifetime
of 3 months, and connected using a IEEE802.15.4 (ZigBee)
wireless access medium to a indoor box that acts as local
server, powered by an external power supply and connected
to Internet using Wifi or 3G. The measure raw data is obtained
by averaging data taken every minute during half hour.

Alphasense OX-B431 and NO2-B43F electro-chemical sen-
sors use the Alphasense support circuits Individual Sensor
Board (ISB) that outputs two signals for each sensor. The
signals are called the working electrode (WE) and the auxiliary
electrode (AE) used to compensate for zero current and both

give values in the range of milivolts. The NO2 sensor measures
only NO2 and the difference between the two sensors, after
passing through an A/D converter, gives the O3 concentration,
so the raw O3 measurement in milivolts is:

sO3 = (WEO3 −AEO3)− (WENO2 −AENO2),

sNO2 =WENO2 −AENO2 .
(2)

Each measurement is a tuple with RawDataRaptor=
{Timestamp, s1O3

, s2NO2
, s3T , s4RH}, where s1O3

is
a O3 sensor raw measure, s2NO2

is a NO2 sensor raw
measure, s3T is a temperature sensor measure and s4RH is a
relative humidity sensor measure. This tuple is sent via 3G
or Wifi to an IoT platform repository using a REST Web
service.

Table I shows the nodes used in this study. We only show
nodes that were during a large amount of time collocated in
reference stations. The table shows the place, interval of time,
number of sensors and technology of the O3 sensors employed.

IV. CALIBRATION ALGORITHMS

Usually the MICS 2614 metal-oxide O3 sensor response is
linear with respect to O3 concentration, temperature and rela-
tive humidity. Alphasense electro-chemical O3 sensor is linear
with respect to O3 and NO2 concentrations, temperature and
relative humidity. Thus, the most used method for calibrating
metal-oxide and electro-chemical O3 sensor is a multivariate
linear regression (MLR).

However, when a sensor is calibrated, sometimes nonlinear-
ities appear due to the nature of low-cost sensing techniques or
sometimes due to impurity and aging of the sensor material.
To overcome these problems, nonlinear calibration methods
such as K-nearest neighbors (KNN), random forest (RF) and
support vector regression (SVR) can be introduced to fit the
nonlinear responses of the sensor. These methods differ in the
quality of information obtained and in the complexity in the
execution of the method when calibrating the sensor.

For the nonlinear methods some hyperparameters are
needed. Hyperparameters are configuration variables whose
value are set before the training phase is executed. Hyperpa-
rameters are found using a grid search and they have a large
impact in the training and testing time execution. In order to
find the best set of hyperparameters per each algorithm a 10-
fold cross-validation strategy is used.

A. Multivariate linear regression (MLR)
Let us consider an array of M sensors. A MLR model in

multi-array calibration sensor assumes M predictors, one for
each sensor of the array (O3, T and RH), taking the form of:

ŷ(xi) ∼ f(β, xi) = β0 + βTxi + εi, i = 1, .., N. (3)
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Where xi∈RM is a vector with the sensor data, β0 is the
offset, β∈RM are the gains and εi is random noise following
a Gaussian distribution with zero mean and variance σ2.

B. K-nearest neighbors (KNN)

The K-nearest neighbors method falls in the category of
memory-based methods where the training data is the model
itself where the data space forms a cube of dimension M.
Then, in order to obtain a new prediction for a point x we
find the k closest points in the cloud and average their values:

ŷ(x) =
1

k

∑
xi∈N(x)

y(xi) (4)

Where N(x) is the set of point belonging to the neighborhood
of x. Defining a neighborhood of closest points implies a
distance metric to find them. In our case the distance metric
is the Minkowski distance. Two hyperparameters are present
in this model: the number of neighbors k in the KNN model
and the Minkowski distance power p.

C. Random forest (RF)

Nowadays, random forests are becoming widely used in
the environmental sciences field [13], [14], [20]. Random
forest is an ensemble learner, it mainly constructs a forest of
uncorrelated decision trees (week learners). The main benefit
of using this ensemble methods is reducing the variance of
the response obtaining a better model than just using one
simple decision tree. The random forest algorithm proceeds
as follows: it grows T trees using T bootstrap samples of
the training data, at each node of the decision trees F ≤ M
features are randomly sampled and taken into account for
the split, the depth D of the decision trees can be limited
to avoid over-fitting. Finally, the output of the learner is the
trees’ outputs average.

ŷ(x) =
1

T

T∑
i

treei(x) (5)

During the building procedure three hyperparameters can be
found to be selected via cross-validation: the number of trees
T , the number of features F and the maximum tree depth D.

D. Support vector regression (SVR)

Support vector regression has also been proposed for cali-
brating low-cost pollution sensors [14], [15], [21]. SVR [23]
is a kernel method that is the analogous of support vector
machines (SVM), but using continuous values instead of
classifying as SVM. It makes use of the ”kernel trick” where
the data is implicitly mapped to a higher dimension in order
to find a better regression curve but doing all computations in
input space via a kernel function k(x, x′). The points that are
far away from the correct regression plane will be the ones
important for the correct model building. This is achieved via
the ε-insensitive error loss, where only the points with error

greater than ε are considered. The resulting SVR function is
the following:

ŷ(x) =

N∑
i=1

(α̂∗i − α̂i)K(x, xi) + b (6)

The values for the parameters α̂∗i , α̂i are found by solving
a quadratic programming problem. The objective function to
solve is obtained with the dual formulation of the problem,
minimizing a loss function [23]. We have chosen to work
with the radial basis function (RBF) kernel. The RBF kernel is
proven to have an implicit map of infinite dimension. Finally,
the hyperparameters optimized via cross-validation are the
variance of the RBF kernel, the ε in the loss function and
a penalization term C.

E. Assessment metrics

In order to calculate the calibration coefficients, the data set
is split in two parts: a training set of size Ntr for calculating
calibration parameters and a test set of size Nts for assessing
the calibration models. For comparing the different models we
use the mean bias error (MBE), the root mean-squared error
(RMSE), the coefficient of determination (R2) and the target
diagram.

The MBE and the RMSE consider the magnitude of the
error in the prediction of a model. A value of R2 close to 1 in-
dicates that a large proportion of the variability in the response
has been explained by the regression. The target diagram [24],
[25] visualises different aspects of model performance in one
single plot, specifically, the MBE, the standard deviation, the
RMSE, the centred root mean square error (CRMSE) and the
correlation coefficient R. Let us define the σy and σx as the
standard deviation of the reference data and the measured data
respectively. The target diagram [25] is a circle of radius one.
The x-axis represents the CRMSE normalized by σy . The y-
axis represents the mean bias also normalized by σy . It can
be proven that for a value within the circle unit, the RMSE
normalized by σy is the magnitude between the origin and the
value and it is referred as the target indicator. By definition,
the CRMSE always is positive, however, target indicator points
can be split into those that have σy < σx (positive axis) and
those that have σy > σx (negative axis). Moreover, those ones
that are out of the circle unit have a model efficiency score
(MEF) negative. The MEF is defined as:

MEF = 1− (
RMSE
σy

)2 (7)

A MEF value near one [24] means a close match between
reference data and model predictions. A value of zero indicates
that the model predicts individual measurements no better than
the average of the reference data. Values less than zero mean
that the reference data average would be a better predictor than
the model results. Thus, in the target diagram, for negative
MEF a point is outside the circle unit while for positive MEF
a point is inside the unit circle, being a point in the origin of
the target diagram a perfect match between reference data and
model predictions.
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(a) Captor nodes (RMSE&R2). (b) Captor nodes (target diagram). (c) Raptor nodes (RMSE&R2). (d) Raptor nodes (target diagram).

Fig. 1: Test RMSE, R2 and target diagram for Captor nodes C17013, C17016 and C17017 (12 metal-oxide sensors) and Raptor nodes
R69-17, R308-17, R69-18, R202-18 and R212-18 (5 electro-chemical sensors).

V. RESULTS

Our objective is to evaluate the calibration of low cost sen-
sors in a real measurement IoT campaign with three testbeds
in Spain, Italy and Austria. To do this, we first evaluate the
performance of the sensors based on their technology: metal-
oxide or electro-chemical, and the calibration model: MLR,
KNN, RF, and SVR3. Then, we evaluate the capacity of the
different models to evaluate O3 concentrations in the long-
term.

A. Linear versus non-Linear calibration methods

In this section, we compare the performance of a linear
method (MLR) against non-linear methods (KNN, RF and
SVR) in a large data set. We also compare how these
methods behave in two technologies such as metal-oxide
SGX Sensortech MICS 2614 O3 sensors and electro-chemical
Alphasense OX-B431 O3 sensors. The data set is first shuffled
and secondly split in 75% for the training set and 25% for the
testing set. Figures 1.(a) and 1.(c) show the test RMSE and
R2 obtained for Captor nodes C17013, C17016 and C17017
(12 metal-oxide sensors) and Raptor nodes R69-17, R308-17,
R69-18, R202-18 and R212-18 (5 electro-chemical sensors).
The RMSE are sorted in decreasing order. Figures 1.(c) and
1.(d) show the target diagram for Captor and Raptor nodes. It
can be observed several aspects:

i) identical sensors behave with large variability given the
same calibration method. For example, for MICS 2614,
the RMSE range for MLR is between 12 and 20 µgr/m3

with a R2 that ranges between 0.91 and 0.76. The same
behavior can be observed with the non-linear methods and
with the electro-chemical sensors,

ii) low RMSE values are obtained with high R2 values,
indicating that a large proportion of the variability in the
response has been explained by the model. Even in those
cases in which RMSE increase, the R2 values are higher
than 0.7,

iii) non-linear models behave better than linear models in
both technologies. The behavior between non-linear mod-
els is similar, with the SVR being better than RF and

3The raw data and the calibrated data can be found at
doi:10.5281/zenodo.3233516. The code to obtain the calibrated data
can be found at http://sans.ac.upc.edu/?q=node/231.

(a) Captor C17016, sensor s4 (b) Raptor R69-18

Fig. 2: RMSE vs training size in Captor C17016 and Raptor R69-18.

finally KNN. However, there are no major differences
between the three non-linear models,

iv) the target diagram shows that captors and raptors do not
have biases when there is a large number of samples in the
training set. In this case, each point of the target diagram
represents a sensor. Different colors indicate different
calibration models. It can be observed, that the RMSE
is mostly due to the variance, being greater the variance
and therefore the RMSE, when using an MLR than when
using a non-linear model (SVR, RF or KNN),

v) the target diagram also shows that there are practically
no biases when the data set is very large as there are
samples that represent a wide variety of information, i.e.,
environmental conditions.

B. Training Set Size

In a real IoT deployment, like the one done in the H2020
CAPTOR project [16], the time to calibrate the sensors is
limited to a few weeks. Once the sensors are calibrated, they
should be able to predict the O3 values for as long as possible.
We are interested in learning what is the impact of the training
set size in the RMSE. Figure 2 illustrates the RMSE as a
function of the training set size. We consider one-week sample
size training sets. The size of the training set is increased at
one-week intervals. The size of the test data set remains fixed
for all training sizes. As the size of the Captor nodes dataset
is larger, we increase the size of the training set up to ten

http://dx.doi.org/10.5281/zenodo.3233516
http://sans.ac.upc.edu/?q=node/231
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(a) Captor C17016, sensor s4. (b) Raptor R212-18.

Fig. 3: Normalized bias and normalized CRMSE in Captor C17016
and Raptor R212-18.

weeks, with seven weeks at the end for the size of the test set.
For Raptor nodes, on the other hand, as their dataset size is
smaller, the size of the training set is increased to seven weeks,
and the size of the test set is also fixed to seven weeks. It can
be seen that a size between three and four weeks is enough
to calibrate both Captor and Raptor nodes. This behavior has
been observed in all metal-oxide and electro-chemical sensors.
In some cases such as the MLR calibration, two weeks is
enough for the RMSE to converge. However, in the non-linear
cases the time interval for converging has ranged from five to
seven weeks. In general, non-linear models need more samples
for the RMSE to converge.

C. Long Term Prediction

In this section, we study how the different models behave
when the training set is limited because the nodes have to be
deployed in a real network and these nodes have to give data
as accurately as possible over a long period of time. We, thus,
set the training set to four weeks and observe the quality of the
calibration day by day, that is, the test set has a size of one day
but slides over a period of two months. Moreover, we consider
the case in which the node is brought for recalibration. In this
case, we consider two more instances: (i) the node is relocated
to the reference station for one week, and the data is added to
the training set (we call this case augmented), (ii) the node is
relocated to the reference station for four weeks (we call this
case re-calibration).

Figure 3 depicts the variation of the bias and CRMSE over
time for the Captor 17017 node. Figures 4 and 5 show the
target diagram for Captor and Raptor nodes C17016 and R212-
18. Figures 4.(a),(d),(g),(j) and 5.(a),(d),(g),(j) is the gen-
eral case, without re-calibration. Figures 4.(b),(e),(h),(k) and
5.(b),(e),(h),(k) plot the augmented training set. Finally, Fig-
ures 4.(c),(f),(i),(l) and 5.(c),(f),(i),(l) draw the re-calibration
instance. For each instance, we consider the four calibration
models, MLR, KNN, RF and SVR. Each point of the target
diagram now represents a day. Several observations can be
made made of these figures:

i) the fact that some points are in the right plane or in
the left plane is due to the calibration model sometimes
overestimates the variance and others underestimates it,

ii) having a large sample size in the training set implied
that there were almost no biases, Figure 1.(b) and (c),
however, when long-term predictions are made, biases
appear, Figures 4.(a),(d),(g),(j) and 5.(a),(d),(g),(j). This
bias is very variable, and depends on environmental
conditions. Metal-oxide technologies have more bias than
electro-chemical, but in both cases appear,

iii) the four calibration methods present bias. In the case of
MLR, moreover, there is greater variance than in non-
linear methods, which explains a higher RMSE,

iv) red dots have similar environmental conditions to blue
dots (spring and autumn). Since the training set was taken
in spring, these dots have fewer biases than those taken
in summer,

v) increase (augmented instance) the size of the train-
ing dataset, Figures 4.(b),(e),(h),(k) and 5.(b),(e),(h),(k),
slightly decrease the bias, having increased in a few weeks
this dataset, the improvement is not much noticeable,

vi) recalibration, on the other hand, Figures 4.(c),(f),(i),(l)
and 5.(c),(f),(i),(l), does improve bias and variance. In
this situation, non-linear models behave better than linear
models for O3 metal-oxide technology. However, linear
and non-linear models behave similar for O3 electro-
chemical technology.

Summarizing, recalibration improves bias at the cost of ex-
tracting the node from the deployment to put it back in the
reference station.

VI. CONCLUSIONS

In this paper we have studied how to calibrate O3 sensors
with metal-oxide and electro-chemical technologies in a real
deployment in Italy, Spain and Austria. Sixty wireless nodes
were deployed with 140 metal-oxide O3 sensors, 25 electro-
chemical O3 sensors, 25 electro-chemical NO2 sensors and
60 temperature and relative humidity sensors. Four calibration
methods have been compared (MLR, KNN, RF, SVR). In
the case of having a large data set, several months, non-
linear methods, and above all the SVR gives the best results
in terms of RMSE. Also RMSE is mostly due to variance,
with very little bias. This is because there are samples in all
environmental conditions.

In general, all methods take about three to four weeks to
calibrate O3. However, when you have a few weeks of data, a
normal situation in a real deployment, the long-term prediction
presents bias. This is because the environmental conditions
in which the training set was taken are different from those
they present when predicting O3 concentrations. Increasing the
training size or re-calibrating improves the bias, but has the
cost of having to extract the nodes from the deployment to
relocate them to the reference stations. We think that other
solutions, left as a future research, as the fusion of data, can
improve the long-term predictions.
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(a) MLR (three weeks of training size). (b) MLR (training size augmented). (c) MLR (re-calibrated).

(d) KNN (three weeks of training size). (e) KNN (training size augmented). (f) KNN (re-calibrated).

(g) RF (three weeks of training size). (h) RF (training size augmented). (i) RF (re-calibrated).

(j) SVR (three weeks of training size). (k) SVR (training size augmented). (l) SVR (re-calibrated).

Fig. 4: Long term prediction: target diagram for Captor node C17016 (sensor s4).
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(a) MLR (three weeks of training size). (b) MLR (training size augmented). (c) MLR (re-calibrated).

(d) KNN (three weeks of training size). (e) KNN (training size augmented). (f) KNN (re-calibrated).

(g) RF (three weeks of training size). (h) RF (training size augmented). (i) RF (re-calibrated).

(j) SVR (three weeks of training size). (k) SVR (training size augmented). (l) SVR (re-calibrated).

Fig. 5: Long term prediction: target diagram for Raptor R212-18.
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