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Abstract – New genome sequencing technologies have simplified the generation of genomic data, 

making them more common but in turn a likely target of attack. Security strategies have been devised 

such as restricting the amount of information that can be queried or using new encryption techniques. 

These solutions might not be enough if the entire file has to be shared, as the recipient might leak 

the accessible information. This contribution addresses this issue using watermarking. Each read in 

a genomic file is modified depending on its content and a secret key. This allows generating different 

watermarked instances of the original file. Each watermark acts as a fingerprint: if a leak occurs, the 

unique modifications of the instance points to who originated the unauthorized publication. Using 

the key, the modifications can be undone. This allows sharing a leak-discouraging version with 

which the relevance of a file can be assessed, and can be reversed to the original if needed. 
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1 Introduction 
The genomic information obtained from sequencing the DNA (DeoxyriboNucleic 
Acid) [1], [2] of an individual contains sensitive information. As with other 
biometric measures such as the palm print, the genome cannot be modified in order 
to mitigate the leakage of sensitive information. This information not only identifies 
the sequenced individual for life and informs about possible health issues, but also 
gives information about blood relatives and the diseases they might have to face.  

This privacy issue motivates the development of new ways of protecting the 
genomic information: for example, through the anonymization offered by beacons 
[3], cryptography [4] or access rules [5]. 

In the case of the beacons, the interaction with the data changes. Only the 
genomic information for given regions of the genome is stored in the beacons, 
which can then be queried with statistical requests such as the frequency of a 
mutation in a population suffering from a given disease. This is a way to query the 
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data without making it available in its entirety, similar to the biometric 
identification solution described in [6], where features are scattered across multiple 
storages.  

The use of beacons alters how the data is used, as only the statistics for an 
entire population are known. For some studies, however, the entire genome is 
required and, in those cases, the researcher must have access to the entire data, not 
only to statistical information. In this case, and if it appears to be wrongfully 
released, we are interested in a method to identify who is responsible for the 
leakage, and this is what we propose in this paper with the use of watermarking. 

From the world of audio, images and video (in summary, multimedia) we 
are familiar with the idea of watermarking: inserting some alteration which can be 
identified and hardly undone. This is a first step in addressing the introduced 
problem. With one mark identifying each one of the known data-holders, i.e. all 
individuals in possession of one instance of a genomic information file, we know 
that we will be able to find who broke the rules by publishing the genomic sequence. 
This is referred to as fingerprinting [7]. Nevertheless, as genomic information has 
many important applications and each modification could have an effect on the 
conclusions of a study, we prefer a modification method which has as limited effect 
as possible, whilst identifying multiple copies of the shared information, in order to 
detect possible information leaks. 

The structure of this paper is as follows. First of all, we introduce some 
genomic concepts needed to understand the method proposed and which kind of 
information we are processing. Then, we review in which use cases a watermarking 
or fingerprinting method might be useful to protect genomic information. Then, we 
introduce different properties a watermark could have, both in terms of features and 
resistance to modifications. After that, we present our proposal to watermark / 
fingerprint genomic information in a deterministic and reversible manner, allowing 
to generate a new file with a minimum amount of changes, taking as input a 
genomic information file, a key and a set of parameters, and returning a modified 
genomic information file. We qualify the method as reversible based on the fact 
that, if the key is available, it is possible to restore the original state of the genomic 
information. Next, we present some results to the application of such method. 
Finally, we draw some conclusions and future work. 

2 Background 

2.1 Introduction to genomic concepts 

The genomic information is stored in each cell as multiple molecules of DNA, 
which can be interpreted as a sequence of nucleotides. In DNA, there are four types 
of nucleotides, A (adenine), C (cytosine), G (guanine) and T (thymine) [1], [2]. 
During the life of a cell, the DNA molecules are translated into proteins. Some 
portions of the DNA molecule encode the protein sequence: three nucleotides at a 
time are read and translated into an amino acid, the building block of proteins. 
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Within a species, the genomic information is almost the same, however 
some mutations can occur: some nucleotides might change, be inserted or be 
removed from the DNA, leading to changes in the resulting proteins. 

Research in this field is interested in finding mutations explaining certain 
diseases or advantages. In order to do so, the genomes of individuals are compared 
with one another. This allows the definition of a reference genome. Then, it is 
possible to determine the difference between one individual’s genome and the 
reference defined. 

The first step to obtain the genomic information from one individual is to 
sequence a biological sample. Nowadays, this can be done with Next Generation 
Sequencing (NGS) machines, like Illumina devices [8]. These machines sequence 
the genome by obtaining small subsequences of contiguous nucleotides forming the 
DNA molecules. We call chromosome to each DNA molecule and we refer to these 
subsequences as reads. Chromosomes are grouped by pairs: one chromosome is 
inherited from the mother and the other one from the father. The output is stored in 
text files in a format called FASTQ [9], representing the collection of generated 
reads as the sequence of obtained nucleotides and the confidence with which the 
nucleotide is identified (i.e. a measure of the quality of the read for each nucleotide). 
The order of appearance of the reads is random within the FASTQ file, respect to 
the species genome. This means that to be able to process the genomic information 
stored in the FASTQ file, several steps have to be taken, as described next.  

The next step in the genome sequencing pipeline is to align the FASTQ file 
information to a reference genome. A reference genome is assembled by scientists 
as a representative example of a species' set of genes. The result of the alignment 
process is stored in a SAM file (Sequence Alignment Map) [10]. The information 
generated for each read during the alignment is the position where the read is stored 
(i.e. on which chromosome and where on the chromosome), and the differences 
between the reference genome and the read.  

The main differences that can be found during alignment are mutations, 
insertions and deletions. A mutation means that a nucleotide on the read is different 
from the nucleotide on the reference for that location. An insertion means that some 
nucleotides have been added. Finally, a deletion means that some nucleotides are 
missing. There are other possible differences, which are further explained in [10]. 
The way of representing these differences inside a SAM file is to use CIGAR 
(Concise Idiosyncratic Gapped Alignment Report) strings. 

A CIGAR string contains information about the reference sequence, the read 
sequences, and the type of operations (for example, match (M), insertion (I) and/or 
deletion (D)). A match means that the position of the nucleotide in the read is equal 
to the position on the reference genome, but does not allow to discriminate between 
the case where the two nucleotides are the same or not (this can be done either by 
comparison with the reference genome, using an auxiliary tag bounded to the read 
in the SAM, or by using a newer set of symbols in the CIGAR allowing to 
discriminate the two cases). 

In summary, the SAM file stores the genomic information contained in the 
FASTQ file, indicating where it is regarding the reference genome. In case there is 
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not a perfect alignment, the differences between original genome and reference 
genome are stored, being summarized in a CIGAR string, an example of which is 
shown in Table 1. In the example, a fake read is aligned to a fake reference. The 
meaning of the values of the CIGAR operations row in Table 1 are as follows: 
- the first two nucleotides of the sequence match the ones from the reference (i.e. 

we have two M operations), 
- a nucleotide is inserted (i.e. we have an I operation), 
- a nucleotide matches the reference (M operation),  
- a nucleotide from the reference is not present in the read (D operation), 
- a nucleotide matches the reference (M operation), 
- a nucleotide in the read replaces the nucleotide in the reference (M operation). 

Finally, all operations are collapsed into one representation indicating the 
type of operation and the number of nucleotides to which the operation applies, as 
shown in the “Read CIGAR” row in Table 1. 

 

Table 1: CIGAR example 

Reference  
(example 
chromosome) 

A C T  G A C T G A C T G 

Read  C T A G  C A      
CIGAR 
operations 

 M M I M D M M      

Read CIGAR 
(as stored in 
SAM) 

2M1I1M1D2M 

 
Additionally, when a read’s beginning or end does not match to the 

reference sequence, part of its nucleotides can be clipped. This is indicated with the 
type S operation (for soft-clipping) in the CIGAR string which means that the 
nucleotides are left in the read even though they are not mapped. This could be due 
to different reasons: sequencing errors at the beginning or end of the read, lack of 
information in the reference genome for the location, or more complex reasons (for 
example one part of a chromosome has been copied to another chromosome). 

It is worth noting that the text-based information stored in a SAM file can 
be compressed into a BAM file (Binary Alignment Map) [10] in order to reduce the 
size of the information stored. SAM or BAM files also contain metadata regarding 
the process followed to generate them, like the tools used to perform the alignment. 

Nevertheless, sequencing machines can make mistakes when identifying 
nucleotides, and as such, the fact that one nucleotide appears altered in one read 
does not mean that the studied individual has a mutation at that location. Instead, 
enough reads are sequenced such that there are multiple reads mapping to a same 
position, in order to have enough evidence. Then, all reads are analyzed in order to 
determine if mutations are really present. This information is stored in a VCF file 
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(Variant Call Format) [11], listing each mutation with its position, its type, and if it 
affects to one or two copies of the chromosome. 

2.2 Watermarking in genomics 

2.2.1 Watermarking 

Watermarking techniques can be used for a broad set of tasks. In [12], the authors 
list different use cases which could be covered with the use of watermarking in the 
context of healthcare, specifically when the watermark is applied to an image. 
These use cases include: 
- A simplification in the access control: if the image’s metadata (e.g. information 

about the patient) is merged with the image by the means of the watermark, 
protecting the image and controlling the access to it already ensures the 
protection and the access to the metadata. 

- Moving identification information present in the image to a watermark only 
accessible through a key. 

- Improving the captioning of the image opening new ways to attach information 
to it. 

- Using a watermark to carry information identifying the origin, such as a 
signature. 

The work presented here has something in common with [12], as we are 
using the new channel obtained thanks to watermarking to merge an identification 
of the receiver to the genomic information. 

As in the case of multimedia information, the watermarking may be more 
or less obtrusive (depending on the significance of the introduced changes). There 
are different criteria to compare watermark methods, for example: 
- The easiness to be recognized by a computer. 
- The decrease in value of the data.  
- The resistance of the detection of the watermark to file alterations. 

Following with the multimedia analogy, these points would correspond to: 
- Is the watermark visible at plain sight, or is it hidden, for example using 

steganography? 
- Is the watermark adding known content which can be easily searched for, or is 

it just adding noise? 
- Is the watermark still present if the image is downscaled, rotated or otherwise 

modified? 
On the other hand, the modifications can be more or less intrusive: methods 

can limit their effects on less significant regions, or, on the contrary, modify the 
content without considering its impact. We can find in [13] an example of limited 
effect modifications in images, as the proposed algorithm only modifies the least 
significant bits of certain elements. 

The modification of the least significant bit is also employed in [14]. The 
authors include a new signal to the wireless transmission of an ECG 
(electrocardiogram): the proposal of the new signal is to indicate the identity of the 
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patient within the ECG signal in order. The effect of the least significant bit 
modification is mitigated by upscaling the values of the signal. 

Another strategy is the one employed by the authors of [15]: their 
contribution addresses the need for watermarking images. In order to preserve the 
clinically relevant portions of the image, they discriminate its regions as of interest 
(Region Of Interest, ROI) or not (Non-Region Of Interest, NROI). By applying the 
watermarking techniques to only the NROI regions, the potential drawbacks due to 
the file modification are mitigated. 

In order to know if the watermark will be resistant to file modifications, we 
first identify actions which can be performed when modifying a genomic file, and 
the implications on the security method. They are as follows: 
- Exporting portions of the file, e.g. data for one chromosome: the effects of the 

watermark should be present in the entirety of the file, so that it is unlikely that 
any significant portion has not been modified. 

- Importing other (portions) of file: the watermark should not be invalidated by 
the presence of new non-watermarked data. 

- Modifying without semantic changes (file changed but not its meaning, e.g. the 
read ids are changed): the watermarking method should rely on a minimal set 
of information, unlikely to be modified. 

- Modifying with semantic changes: certain mutations have been added or 
deleted. The watermarking method should limit the input from the file's data, so 
that sparse modifications have as little effect as possible.  

Additionally, the watermarking strategy could be defeated by collusion: if 
multiple instances of the same file (with different watermarks) are obtained, they 
can be compared in order to determine the non-watermarked version. 

As previously referred to, a watermarking technique might alter the original 
host signal. The magnitude of the modification could render the signal unusable. 
One approach to mitigate this issue, further than just constraining the magnitude of 
the modification, is to ensure that the modification as a whole is reversible. This is 
done for example in [16], where two images are merged together, and both are 
recoverable. The host signal is an image to which a logo is associated, without 
notably altering the original image. When received, and if the necessary side 
information is also available, both the image and the logo can be recovered. 

2.2.2 Use of watermarking in genomic information 

The described process to sequence and align the genome is important for many use 
cases. For example, it can be used to perform research on some disease, to identify 
the best treatment or, when the genome is not from a human being, to find better 
crops. Thus, it is important to be able to share the genomic information, but we 
might want to retain some control on the shared data: either because of intellectual 
property or to hold bad actors accountable in case of data leaks. To this end, it is 
interesting to be able to modify in some way the described data (i.e. watermarking 
it), in order to identify leakers in case of an audit. We have to make clear the 
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difference between watermarking a DNA molecule as in a living cell or including 
a mark in the result of sequencing such molecule.  

[17] and [18] describe an algorithm to introduce content in the genome of a 
living organism. The information is introduced by changing some nucleotides 
(specifically the last nucleotide of each group of three nucleotides). Each changed 
nucleotide allows to encode two bits of information (as there are four different 
nucleotides). The nucleotides to be changed are decided upon the consequence of 
changing the nucleotide. In the process of translating the DNA to a protein, each 
group of three nucleotides is translated to an amino acid, and for certain 
combinations of the two first nucleotides, the translation will result in the same 
amino acid no matter the value of the third nucleotide. Only those changes which 
do not change the protein synthesized from the edited portion of the DNA are 
possible. This procedure ensures that the living organism will still produce the same 
proteins. As the modifications are meant to be present in a living cell, and DNA 
replications might occur, the authors propose to integrate error detection and 
correction schemes to the message being encoded in the DNA: the method and the 
length of the correction strategies are determined by the likelihood of a mutation 
affecting the modified region. 

Therefore, the authors of [17], [18] focus on ensuring that the modifications 
do not affect the living cell. 

On the contrary, we are focusing on watermarking the representation of the 
result of sequencing DNA molecules. There are other authors with similar 
objectives, as those of [19]. They modify sequential data before sending it to every 
recipient, in such a way that the ability to reconstruct the original data is minimal, 
the modifications are overall unique for each recipient, and it is hard for the 
recipients to collude and revert the modifications. Furthermore, the number of 
modified nucleotides is a constraint given as an input. 

 [19] uses the concept of sequential data as a sequence of data points where 
each point can take one value from a fixed pool of values. The data points 
(nucleotides which could be modified) they use, are the locations of well-known 
mutations, and the pool of values is whether the mutation is present in none, one or 
the two chromosomes of the individual. As such, [19] does not address one specific 
genomic file format, but rather the genomic data as an array of properties. This 
array of properties resembles more the data represented in a VCF file (limited to 
mutations affecting only one nucleotide (Single Nucleotide Polymorphism, SNP), 
but it could also be used for sequenced data files (such as a SAM file), if all reads 
covering one position modified by the watermark are modified. 

Based on the knowledge of what has been shared before, and with which 
modifications, the authors use an optimization problem represented as an Integer 
Linear Program (ILP) to decide what modifications should be operated on the data 
before sending it to the next recipient. The optimization minimizes the probability 
of the recipients to collude and deduce the watermarked positions, under the 
constraints guaranteeing certain levels of utility. 
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Each modification is deliberate (the ILP minimization can select each data 
point independently). This allows them to perform such actions as to repeat certain 
modifications across multiple watermarked instances to fight off collusions. 

The authors consider the utility as a fraction of data modified: if the number 
of modified data points compared to the number of total points is low, the authors 
consider the utility to be high. 

A limitation of this algorithm is that the watermark cannot be undone. 

2.3 Use case for watermarking in genomics  

Our use case is intended to apply watermarking as a fingerprinting to genomic 
information. Nevertheless, several situations can be covered, as described next. 

Either the genomic data owner or the genomic data custodian can receive a 
request for a copy of the data. The request might be extended with metadata 
regarding the intentions of the researcher (e.g. conduct a study on cancer or use it 
as input for a genealogy search), allowing to check with the owner's policy if the 
request should be replied with a positive answer. 

In addition to this protection, the genomic data owner or custodian might 
prefer to slightly alter the file during the transfer by including a fingerprint. If the 
alteration is unique for each request, the data owner is then able to audit the result 
of leakages. If the leaked data matches the transferred one (exactly the same reads 
are present, or the number of identical mutations is above a certain threshold), it is 
worth comparing the present variations to the one inserted willingly. In the case 
where they match the ones sent to one of the requesters, the owner is at least aware 
of who breached the link of trust. 

Another application could be to limit the temptation of separating the 
genomic data from associated metadata and privacy rules. In the upcoming MPEG 
standard for genomic data, ISO/IEC 23092, MPEG-G [20], [21], [22], it will be 
possible to convey such type of fields alongside the genomic information. By 
modifying the privacy rules, an attacker could repurpose a file without permission. 
In this case, the watermarking could be generated using the privacy rules as input 
instead of the genomic data. In the case where some auditing agent detects data 
supplied with a privacy rules field which is not the input used for the watermark, a 
flag could be raised indicating a modification of the content. 

Finally, if for a given case the data request is just for a brief showing in order 
to decide if this could be a valuable input, but protection methods such as 
cryptography are for any reason non suitable, watermarking could be an approach 
to ensure that the data has a low value outside the very scope of the request. The 
ideas used in [23] could be of interest in such a use case: the same concepts of 
optimizing the trade-off between privacy and utility and how to measure both ideas 
are relevant to this scenario. 
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3 Fingerprinting of reads with mutations 

3.1 Introduction 

The aim of the presented method is to be as less intrusive as possible. We focus on 
watermarking reads with some mutations, considering them more likely candidates 
for an exportation of data. The reads with mutations are independent subsequences 
of DNA read by the sequencing machine where the alignment has detected 
differences between the read and the reference genome, as introduced in Subsection 
2.1. Each read is treated separately, so importing other information will not make 
the watermark disappear. 

On the other hand, the proposed method results are hard to detect if the reads 
are modified. This, however, is limited by the cost of the modification: introducing 
or removing mutations could alter possible conclusions drawn from the file, thus 
rendering this approach as a non-suitable solution to defeat the fingerprinting. An 
important feature from our approach is the fact that the user holding the 
watermarking key can reverse the modifications. 

The proposed method consists of four steps for each read sequence: 
- generate a description for it, 
- verify that it is a suitable candidate for the fingerprint method, 
- based on a secure transformation over the description, decide if we can perform 

the modifications, 
- in case of positive result, perform the modifications.  

The four steps are described in detail in the following four subsections. 

3.2 Description 

The assumption on top of which this method is built is that the valuable information 
within a genomic file are the positions of the modified nucleotides (i.e. the positions 
of an insertion, deletion or skipped nucleotide base). Therefore, we assume that no 
such operation will be added or removed, and that we can use them to construct the 
description.  

To do so, we propose to use a 256 bits long description. For every 
modification (insertion I, deletion D, skipped N and mutation X) and in the order 
of the read, we append to our description the position of the modification, for 
example as an 8 bits unsigned integer (which is enough to store the position in the 
case of a file with a maximum read length of 150 base pairs), followed by another 
byte encoding the modification operation (first four bits) and the number of 
nucleotides to which the operation applies (last four bits). The remaining bits are 
left with a 0 value. An example is shown in Table 2, where we separate with 
hyphens each field used for the description. 
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Table 2: Example of description construction 

Read CIGAR 5M 2I 3M 4D 1M 
Aggregated 
position 

0 5 7 10 14 

Information 
stored in 
description 

 5-I-2  10-D-4  

3.3 Suitability of read 

As we have seen, the method works on the information contained in the CIGAR 
sequence of each read (i.e. the list of operations in respect to the reference such as 
insertion or deletion).  

Under the conditions introduced in the previous subsection, we can neither 
overflow the 256 bits of description (limiting to 16 operations) nor the four bits 
operation length (limiting to 16 the maximum length of each operation). We 
consider suitable those reads for which we can construct the description. Non 
suitable reads are disregarded: by changing the size of the description and its fields 
the number of reads taken into account varies.  

3.4 Secure transformation 

In order for this algorithm to be secure, we need to obtain a secret from the 
previously constructed description. This secret will define how to apply the 
fingerprint. Furthermore, in order to be able to undo the modification, the result of 
this secret must always be the same given the description. We refer with secure 
transformation to such an operation which, given a description, generates 
deterministically a secret. 

Both during the watermark auditing or the watermark removal we want to 
obtain the same result from the secure transformation. To this end, we do not 
consider the numbering of the read to be a suitable input since, for example, if at 
some point the user generates a new file containing only a subset of the reads 
(perhaps all the reads aligned to one reference sequence only), this input is lost. As 
we would require an initialization vector per read (in order to maintain the 
independence of reads), such transmission would not be reasonable. Therefore, the 
only input to the transformation will be the previously constructed description.  

One candidate for the transformation is the AES cipher in electronic 
codebook mode. In this mode, the cipher is stateless and takes only the plaintext 
block and the key as input: the consequence is that the same input always returns 
the same output. There are flaws in this secure transformation which has 
repercussions on the fingerprinting method. This is discussed in Section 4.  

3.5 Perform the modifications 

The result of the fingerprinting will be a modification of the soft clipping at the 
beginning of the read (see Subsection 2.1 for details). As soft clipping is not 
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considered in the description's formulation, the process will not affect the 
description. The method can be readily extended to support also modifications at 
the end of the read. 

As explained later, we interpret the result of the secure transformation as the 
conditions to be met and the output of the fingerprinting operation. We want the 
obtained secret to convey the necessary information to perform and reverse the 
fingerprinting process. The modification process at the beginning or the end of the 
read is the same, the only difference is that the effect is mirrored. The basic idea is 
that the secure transformation result will encode the state before and after 
fingerprinting, the state being the length of the soft clip operation and its content.  

We define a number of bits encoding the length of the soft clip operation. In 
this case, it is preferable not to use a straightforward encoding as this would lead to 
sampling uniformly in the pool of possible lengths. On the contrary, if we plot the 
histogram of soft clip lengths (Figure 1), we observe that short lengths are far more 
likely. As such, it is preferable to construct the decoding of the length of the soft 
clip operation using the observed Cumulative Distribution Function.  

 
Fig. 1. Histogram of softclip lengths  

With this mechanism, we can now first read from the result of the secure 
transformation a guess for the current soft clip operation size guess size, and then the 
length of the one in which we should transform transformation size. This distribution 
function is likely to return for the two random variables the value zero, thus 
reducing the likelihood of executing a transformation. Additionally, we also decode 
base pair strings: guess string and transformation string. For the interpretation of the 
string we use only the four base pairs found in nature ('A','C','T','G'). As such, each 
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byte of the secure transformation encodes up to four base pairs. In Figure 2 we show 
how the bytes are interpreted. 

  

 
Fig. 2. Interpretation of the secure transformation output.  

The operation is performed if guess size and guess string match the observed 
operation. This ensures that if we perform the reverse operation we will have the 
original soft clip content encoded in the output of the secure transformation. One 
exception to this is when the guess is not equal to the observed operation, but the 
proposed result of the transformation is. In other words, transformation size 
and transformation string match the observed soft clip. In this case, if we do not apply 
any modification, during the reverse operation we would be wrongfully induced to 
believe that the watermark operation was performed. In order to avoid this, we swap 
the values of guess and transformation. In doing so, we signal to the un-
fingerprinting routine this special case and we are able to correctly reverse the 
modifications (see Algorithm 1 for an illustration of this). 

The operation is only applied when both guess size and transformation size are 
smaller than the position of the first non-softclip and non-equal operation. This is 
to ensure that all the information required to undo the operation is available in the 
reference. 
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Alg. 1. Pseudocode for reading watermarking function parameters.  

3.5.1 Fingerprinting operation 

In a nutshell, the fingerprinting operation will replace the initial 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 content with 
the 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑔𝑔𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 input. This gives us new criteria for the suitability of the read 
to undergo a fingerprinting operation: there cannot be a base pair involved in the 
description in the first 𝑡𝑡𝑡𝑡𝑚𝑚 �𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑔𝑔𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ� base pairs of 
the read. This ensures that we will only replace soft clip operations (for which the 
content is encoded in 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑔𝑔𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) or match operations (in which case the 
content is straightforwardly present in the reference genome).  

See Figure 3 for a visual representation of the case where 
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑔𝑔𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ < 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ. In the inverse case, we would copy the 
reference genome in the undoing operation. Figure 4 shows how a read, its soft-
clipping and its corresponding CIGAR string is modified after applying the 
transformation operation. 

3.5.2 Undoing fingerprints 

The process to undo the modifications is the same as for modifying. If the read starts 
with 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑔𝑔𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, we modify back to 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔. In the case where it starts with 
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, we change the beginning with 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑔𝑔𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. 
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Fig. 3. Soft clip contraction operation 

 
 

 
Fig. 4. Example of application of transformation operation to a read and its associated CIGAR String 

4 Results and Discussion 

4.1 Basic tests 

The fingerprinting method needs a clear mapping between each of the file's 
recipients and watermarking keys. In case of auditing leaked data, we would test 
for each key if the leaked data matches the modified result. In case of granting 
access to the unmodified version, only the fingerprinting key is required by the 
recipient to reverse the modification process. If one of the keys is leaked, the 
corresponding file could be reversed, but the other files do not lose their 
watermarking. In fact, using an incorrect key to remove the watermark from a file 
would add a new watermark to it. 

In order to test the algorithm, we use a file containing the sequencing of a 
human genome, generated with an Illumina device [8]. The file has a low coverage 
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(2.3). Coverage refers to the average number of identifications for a single 
nucleotide, as described in [24]. The file is part of the database of test material [25] 
used in the standardization of MPEG-G. 

The file contains 5.5 ⋅ 107 reads, from which 3.8 ⋅ 107 are perfect matches 
and are therefore discarded. From the remaining reads, the description could be 
built for 6.2 ⋅ 105. 

We discard those cases where the change in soft clip length would be too 
big (arbitrarily defined at 10), this discards 2.8 ⋅ 105 reads. The algorithm can only 
be applied if both 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ and 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑔𝑔𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ are less than the position of 
the first operation which is not a soft clip or a match. This is the case in 3.4 ⋅ 105 
reads, from which for 3.1 ⋅ 105 either 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 or 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑔𝑔𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 match the beginning. 
However, as it is highly likely to read a null length from the secure transformation, 
in 2.0 ⋅ 105 instances, the ciphertext does not represent a real transformation. In the 
end, 1.2 ⋅ 105 reads are transformed. 

This number has to be compared to the 6.2 ⋅ 105 reads which could have 
been possibly modified. Someone trying to circumvent the mark, would need to 
work on these 6.2 ⋅ 105 in order to reverse the modifications purposely introduced 
in 18.6% of them. 

4.2 Resistance to collusion attacks 

4.2.1 Vulnerability 

Let us assume a collusion attack, where all parties suppose that the most frequent 
version of a read has not been modified. Such situation is more likely if a 
watermarked read is modified differently for multiple recipients. In order to test 
such risk, we reduce the previous test data to only those reads mapped to the first 
chromosome. We then simulate sharing the file with multiple parties: we do this by 
executing the fingerprint method with different keys. For each read there are 
different outcomes possible: the read could not be fingerprinted with any of the 
keys, it could be fingerprinted with some of the keys, or with all of the keys. As the 
probability of a read being modified is fairly low, the most likely outcome is that if 
across multiple watermarked instances of the same file there are different variants 
of the same read, then the most common variant is the original, non-watermarked 
one.  

In this test, we reduced the number of reads to 4.1 ⋅ 106, and we used seven 
different keys for watermarking. On average, for each key there where around 1.8 ⋅
104 reads watermarked, for a total of 6.62 ⋅ 104 reads being watermarked at least 
once across all instances. For a total of 6.59 ⋅ 104 reads, the most frequent variant 
was the original, non-watermarked one.  

Figure 5 shows how the risk of collusion increases as the number of 
watermarked files increases: as the number of watermarked files increases, the ratio 
of cases where the non-watermarked variant is the most frequent variant increases, 
thus simplifying a collusion attack which only selects the most frequent variant. 
The here presented version of the algorithm is vulnerable to such attacks. However, 
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some of the concepts from [19] could be applied to the algorithm. Although we 
cannot select each read to be watermarked independently, due to the way the reads 
are selected, the algorithm could be executed multiple times, once for each of the 
provided key. As soon as a read is watermarked with one of the keys, the iterations 
stop. 

 

 
Fig. 5. Evolution of the ratio of cases where the original non-watermarked variant is not the most frequent 
across all watermarked file. 

As for each read the likelihood of it being modified is low, we can think as 
if each key was modifying a distinct subset of reads, without any overlapping with 
any other set. In these conditions, what we want is a configuration such that for 
each recipient we have selected a unique set of keys, that none of the sets is empty 
(as it would imply that the recipient would receive a non-modified version), and 
that each key is present in a majority of sets (thus we ensure that the modified 
version is the most frequent version, even when all recipients collude). This 
selection of configuration also needs to minimize the number of keys used in each 
set, as each key implies modifications to the file thus decreasing its utility, possibly 
harming conclusions. If the number of recipients is known before-hand the task is 
trivial, and the collusion strategy of selecting the most frequent version will always 
fail. 

4.2.2 An improvement using an ILP 

In the case where the number of recipients is unknown, some concessions have to 
be made. Let us assume that the set of keys for a new user is decided upon receiving 
the new request. We only know which keys were used for the previous recipients. 
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Similar to [19], we construct an Integer Linear Program (ILP), which aims 
at minimizing the associated cost with the decision. We construct the objective 
function as a lexicographic search: first we minimize the risk of leakage, then we 
minimize the sum of the sizes of sets, and finally the size of the biggest set. As 
previously explained, each time a key is used at least once, but is not present in a 
majority of set, the reads associated to that key will be recoverable. The ILP decides 
the set for the new recipient, which has to be different to all previous sets employed. 

Table 3 shows the result for this iterative process: in order to obtain a 
column, all previous columns were provided as input. We can observe how the 
solver attempts to maintain the number of keys used as low as possible, but as soon 
as all combinations are used, a new key appears in the pool of used keys. This key 
is then source of leaking as it appears in a minority of sets, but in subsequent calls 
the key is always selected, therefore it eventually reaches a point where it is not a 
source anymore. However, this happens when all combinations are used, therefore 
the problem rises again at the next iteration. The process can be observed for 
recipient 2, 4, 8, and 16. 

Table 3: ILP iterative decisions 

 Recipient 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
Key 1 Y  Y  Y Y   Y Y   Y  Y  
Key 7  Y Y  Y  Y  Y  Y Y     
Key 3    Y Y Y Y  Y  Y  Y Y   
Key 2        Y Y Y Y Y Y Y Y  
Key 5                Y 
Key 4                 
Key 6                 

 
We generate the fingerprints for each of the recipients decided by the ILP, 

the results for which are summarized in Figure 6. We can see that as the number of 
recipients increases, the average number of modified reads for each recipient 
increases. Furthermore, and as previously explained, the introduction of a new key 
to the pool creates situation of leaking, which are corrected as soon as the file has 
been shared with enough recipients. 
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Fig. 6. Number of reads modified and leakage ratio versus number of recipients. 

There is a trade-off between the use of multiple keys to avoid collusion 
attack and the computation needed to generate such files with multiple keys: each 
key increases the time required to generate such file as depicted in Figure 7. 

 
Fig. 7. Time required to fingerprint a file compared to copying it  
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4.3 Generalization of the description 

Our next step is to slightly modify the behavior of the algorithm in order to improve 
it. In this way, a broader set of cases are accepted as input. We use a file with 
variable read length, some of which have a length greater than 255 (average depth 
of 8.1 reads per base). Thus, the byte used to store the position of the mutation is 
overflowed: we convert this to a two bytes system. The maximal length of the 
description is kept at 32 bytes; therefore, we are able to store less mutations in it. 
The observed likelihood of a read being marked, given that it had at least one 
mutation and the description could be constructed, is 25.5%. 

Finally, we test a file with 1.7 ⋅ 108 reads [26], for an average depth of 7.74. 
In this file, there are 1.5 ⋅ 108 candidates. For 6 ⋅ 107 of them, a description could 
be build, and in 25.3% the constructed description resulted in a modification of the 
read. 

The proposed watermarking method has the positive side to be reversible 
and to limit the alteration of the file. 

The negative aspect is that an attacker can render it useless by modifying 
the reads. For example, by shifting all reads one position to the left, or inserting 
new modifications, the process is broken. Furthermore, by modifying the length of 
every soft clip operation the result of the watermarking is removed. However, this 
same approach decreases greatly the value of the published information, as it 
modifies blindly the data thus introducing more noise to the data. In order to have 
successfully defeated the security method, the attacker would have to publish a 
version of the file as close as possible to the original non-fingerprinted file, without 
the modifications introduced to identify that instance of the data. 

An attacker could also try to reconstruct partially the original file. As the 
secure transformation will always give the same output for the same description, 
the attacker knows that for all reads whose descriptions are the same, some will 
share the same soft clip operation due to the watermarking. If there are enough 
instances, it would be possible to infer the values of 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 and 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑔𝑔𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 
allowing to reverse the process for those reads. 

Similarly, and as mentioned in Section 3, it is possible that different 
recipients of the same data, but with different fingerprints, could collude in order to 
work the fingerprinting back. In this case, the different attackers could compare the 
different variants of the same read. The most common variant is most likely not to 
be marked by any fingerprint. As such, a collusion of three or more actors could 
allow to work back the security measure: considering a marking likelihood of 25% 
there is a probability of 84% that a read will be at most worked once in the three 
copies. 

5 Conclusions 
We have presented a method to modify a file of aligned genomic information, in 
order to introduce recognizable changes, but which are hard to identify as such 
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without the required parameters. These changes can be undone in the case where 
the original parameters of the method are known. 

The proposed method is designed with some assumptions in mind: mainly 
that the reads to be marked by the fingerprint operation are those carrying 
information about mutations, and that a file recipient has no incentive to modify 
blindly and broadly the content of the file showing mutations, as this decreases the 
value of the information. 

The inner workings of the fingerprint operation can be viewed as separate 
entities. First, special features of each data entry are combined, this combination is 
then used as input of a cryptographic function, and lastly the ciphertext is 
interpreted as the modifications to be applied to the data entry. By modifying each 
one of these three steps, the proposed method could be adapted to other needs or 
another set of assumptions. For example, if modifying the soft clip operations is 
considered too harmful to the value of the file, a new interpretation of the ciphertext 
could be devised to modify the quality values instead. 

The closest algorithms to what we propose are watermarking strategies as 
used in the audio-visual world, e.g. in the case of images (still and video) and audio. 
Alongside the familiar strategy of clearly modifying the values of certain regions 
of an image, other approaches have been proposed as surveyed in [27]. As in the 
case of image watermarking, we have to be concerned with the possible 
transformations done over the file. However, despite the similarity in the objectives 
(either mark the ownership of the intellectual property or identifying a specific 
copy), the data types are quite different. For example, in the case of genomic 
information we have multiple reads storing multiple copies of what should be the 
same information, with no clear equivalent in the case of an image file. Similarly, 
a modification not visible to the human eye or perceptible to the ear is acceptable 
in the audio-visual world, however in the case of genomic information it might be 
wrongly interpreted as a mutation. 

Furthermore, another path which could be explored in order to create a 
fingerprinting method for genomic information is exploiting the less significant bits 
for the qualities. Each read's base pair comes with a quality score, a representation 
of the sequencer device's confidence when identifying that base pair. Using the less 
significant bits could however fail if a new format used lossy compression for the 
quality scores [21]. 

Some requirements used in this version of the algorithm could be lifted in 
the case where the reversing properties were not to be used. This could allow a new 
version of the proposed method where more reads are changed. 
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