
Universitat Politècnica de Catalunya, UPC,

Doctoral Thesis

Data Center’s Telemetry Reduction and
Prediction through Modeling Techniques

Author:
Shuja-ur-Rehman Baig

Supervisors:
David Carrera and Josep

Lluís Berral

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy

in the

Department of Computer Architecture

September 3, 2019

http://www.university.com
http://www.johnsmith.com
http://www.jamessmith.com
http://www.jamessmith.com
http://researchgroup.university.com

iii

Abstract
Nowadays, Cloud Computing is widely used to host and deliver services over the

Internet. The architecture of clouds is complex due to its heterogeneous nature of
hardware and is hosted in large scale data centers. To effectively and efficiently man-
age such complex infrastructure, constant monitoring is needed. This monitoring
generates large amounts of telemetry data streams (e.g. hardware utilization metrics)
which are used for multiple purposes including problem detection, resource manage-
ment, workload characterization, resource utilization prediction, capacity planning,
and job scheduling. These telemetry streams require costly bandwidth utilization
and storage space particularly at medium-long term for large data centers. More-
over, accurate future estimation of these telemetry streams is a challenging task due
to multi-tenant co-hosted applications and dynamic workloads. The inaccurate es-
timation leads to either under or over-provisioning of data center resources. In this
Ph.D. thesis, we propose to improve the prediction accuracy and reduce the bandwidth
utilization and storage space requirement with the help of modeling and prediction
methods from machine learning. Most of the existing methods are based on a sin-
gle model which often does not appropriately estimate different workload scenarios.
Moreover, these prediction methods use a fixed size of observation windows which
cannot produce accurate results because these are not adaptively adjusted to capture
the local trends in the recent data. Therefore, the estimation method trains on fixed
sliding windows use an irrelevant large number of observations which yields inaccurate
estimations. In summary, we C1) efficiently reduce bandwidth and storage for teleme-
try data through real-time modeling using Markov chain model. C2) propose a novel
method to adaptively and automatically identify the most appropriate model to accu-
rately estimate data center resources utilization. C3) propose a deep learning-based
adaptive window size selection method which dynamically limits the sliding window
size to capture the local trend in the latest resource utilization for building estimation
model.

v

Acknowledgements
First of all, I would like to express my sincere gratitude to my advisors David

Carrera Perez and Josep Lluis Berral for the continuous support of my Ph.D. study
and research. Their guidance helped me in all the time of research and writing of this
thesis. I could not have imagined having better advisors and mentors for my Ph.D.
study.

Besides my advisors, my sincere thanks also go to Dr. Waheed for his support
and Dr. Abdul Karim Erradi for offering me the summer internship opportunities in
his group and leading me working on diverse exciting projects. I thank my fellow lab
mates in Data centric Group: Jorda Polo, Nicola Cadenelli, Cesare Cugnasco, Marcelo
Amaral, David Buchaca, Alberto Gutierrez, Aaron Call. And last but not the least, I
would like to thank my family: my parents, brothers and sisters, wife, and children.

vii

Contents

Abstract iii

Acknowledgements v

1 Introduction 1
1.1 Introduction . 1
1.2 Contributions . 3
1.3 Thesis Organization . 5

2 Background 7
2.1 Telemetry Monitoring . 7
2.2 Data center’s Telemetry Monitoring . 7
2.3 Markov Chains . 8
2.4 Machine Learning . 9

3 Telemetry Reduction by Markov Chain Models 13
3.1 Data Reduction Framework . 14
3.2 Experimental Setup . 18
3.3 Experimental Results . 20
3.4 Benefits of the Proposed Solution in Different Data Centers 31
3.5 Related Work . 32
3.6 Final Considerations . 33

4 Telemetry Prediction by Adaptive Prediction Models 35
4.1 Proposed System Overview . 36
4.2 Machine Learning Methods . 38
4.3 Feature Extraction and Selection . 39
4.4 Experimental Evaluation . 40
4.5 Experimental Results . 44
4.6 Related Work . 48
4.7 Final Considerations . 53

5 Adaptive Window Size Selector for Prediction Models 55
5.1 Proposed System Overview . 57
5.2 Adaptive Window Size Predictor Using Deep Learning 58
5.3 Estimation Methods for Resource Utilization Prediction 59
5.4 Experimental Setup and Design . 60
5.5 Experiment Results . 63
5.6 Related Work . 68
5.7 Final Considerations . 70

viii

6 Conclusions 71
6.1 Main Contributions . 71
6.2 Topics for Further Research . 72
6.3 List of Publications . 73

A Performance Characterization of SparkWorkloads on Shared NUMA
Systems 75
A.1 Background . 76
A.2 Methodology . 77
A.3 Experiment 1: Workload Characterization 78
A.4 Experiment 2: Binding to NUMA Nodes 81
A.5 Experiment 3: Workload Co-scheduling 83
A.6 Related Work . 85
A.7 Conclusions . 87

Bibliography 89

ix

List of Figures

1.1 Summary of Contributions. The first contribution (C1) is the design
and development of telemetry reduction method for data centers by
using Markov Models. The second contribution (C2) is the design and
development of adaptive prediction model selector method for data cen-
ters telemetry prediction by using machine learning prediction models.
The third contribution (C3) is the design and development of an adap-
tive window size selector method for prediction models by using deep
learning. 4

2.1 2 states Markov Chain Model showing states and transition probabili-
ties. For transition probabilities, l represents low state and h represents
the high state. 8

3.1 Schema of the proposed data reduction framework for data centers.
Each rack in the data center hosts a Telemetry Reductor (T-R) com-
ponent which continuously collects the telemetry data from each com-
puting node, then performs data reduction before transmitting it to
storage and real-time analytic systems. 14

3.2 Telemetry Reductor process the incoming telemetry streams from com-
puting nodes using Kafka and data reduction method. The output of
the Telemetry Reductor can be used to store or provide input to other
real-time analytics systems. 15

3.3 2 states Markov Chain Model showing states and transition probabili-
ties. For transition probabilities, l represents low state and h represents
high state. 16

3.4 Telemetry data reduction using 2 state Markov Chain Model and batch
size 16. 18

3.5 Normalized average DTW distance for telemetry measures using PR
models trained on different batch sizes and polynomial degrees for Ex-
periment 1. (NR = Not Reduced, NA = Not Accepted) 23

3.6 Reconstruction of PageRank workload telemetry data using polynomial
degree 2 with batch size 8 (PR2-BS8) and polynomial degree 10 with
batch size 64 (PR10-BS64). 24

3.7 Normalized average DTW distance for MM trained on different batch
sizes and states for telemetry measures. (NR = Not Reduced, NA =
Not Accepted) . 26

3.8 Reconstruction of PageRank workload telemetry data using 2 state
Markov model with batch size 8 (2MM-BS8) and 4 state Markov Model
with batch size 64 (4MM-BS64). 27

3.9 Comparison of average data reduction percentage using Polynomial Re-
gression (PR) and Markov Models (MM) methods for telemetry data
reduction. 28

x

3.10 Comparison of normalized DTW distance for data reconstruction using
Polynomial Regression (PR) and Markov Models (MM) methods. . . . 29

3.11 Comparison of MM Reduced data with MM Reduced and Compressed
data. The MM Reduced is the data obtained by applying MM method
and MM Reduced and Compressed is the data obtained after applying
ZIP compression on the reduced data obtained from MM reduction
method. 29

3.12 Comparison of ZIP compression on raw data and ZIP compression on
data reduced using MM method. 30

3.13 Comparison of storage usage percentage for raw uncompressed, com-
pressed and reduced compressed (left side). Comparison of bandwidth
utilization percentage for raw uncompressed and reduced data (right
side). 32

4.1 CPU estimation using different methods and scenarios for Alibaba data
set. Different predictors yield better estimation, each for different sce-
narios. 36

4.2 Purposed system overview to learn adaptive model selector and using
it to estimate the data center resource utilization. 37

4.3 Example of time series features that are extracted from TSFRESH [23]
library. These features consist of statistical and time series features
such as minimum, maximum, variance, standard deviation, number
of peaks, autocorrelation at different lag intervals, entropy, kurtosis,
skewness, fourier transformation, mexican hat wavelet transformation,
and etc. 39

4.4 Box plot of CPU utilization for randomly selected 100 machines from
Alibaba data set. 40

4.5 Box plot for Bitbrain data set of 20 randomly selected VMs for one-day
data. 41

4.6 Box plot for CPU utilization of selected four machines with different
characteristics from the Alibaba data set. M1=high load, M2=low load,
M3=high variation, and M4=low variation. 41

4.7 ROC curves using RDF with AMS for different classes. 46
4.8 Comparison of normalized RMSE for baseline methods with the pro-

posed method using Alibaba data set. 47
4.9 Box plot of absolute error computed for each estimation using baseline

and proposed methods for Alibaba data set. 48
4.10 Actual vs proposed method CPU prediction for Alibaba data set for

four selected machines. M1 = Heavy workload, M2 = Low workload,
M3 = High variation, M4= Low variation. The window size used to
train the prediction model is 60 minutes. 49

4.11 Model selection of Adaptive Model Selector (AMS) for Alibaba data set
for four selected machines. M1 = Heavy workload, M2 = Low workload,
M3 = High variation, M4= Low variation. 50

4.12 Absolute error frequency of CPU utilization estimation for machine M1
(High Load). 51

4.13 Absolute error frequency of CPU utilization estimation for machine M3
(High Variation). 51

4.14 RMSE and MAE using different window sizes with the proposed system
for resource utilization estimation. 52

xi

4.15 Comparison of normalized RMSE for baseline methods with the pro-
posed method using Bitbrains data set. 52

4.16 Box plot of absolute error computed for CPU utilization estimation
using baseline and proposed methods for Bitbrain data set. 53

5.1 CPU estimation using different size of sliding windows for various ma-
chine learning predictors. 56

5.2 Evaluation of fixed sliding windows of different sizes and adaptive op-
timal sliding windows for estimating data center CPU resources. 56

5.3 Purposed system overview to learn adaptive window size predictor and
using it to estimate the data center resource utilization 57

5.4 Schema for a 4-Hidden Layer Deep Neural Network on our Time-Series 59
5.5 Effect of number of epochs on the MSE for training and validation. . . 60
5.6 CPU utilization for randomly selected 100 machines from Alibaba data

set for twelve-hour data . 60
5.7 CPU utilization for randomly selected 100 machines from Bitbrains

data set for one-month data . 61
5.8 CPU utilization for randomly selected 100 machines from Matenra data

set for one-month data . 61
5.9 Change Point Detection (CPD) method to identify observation window

for building resource estimation model. 62
5.10 Experiment 1 results showing Normalized MSE for comparison of dif-

ferent estimation methods and window sizes for all three data sets. . . 63
5.11 Adaptive window sizes obtained using the CPD method in Experiment

2 for first 100 test intervals of all three data sets. 64
5.12 Box plot of adaptive observation window sizes using the CPD method

for test data sets. 65
5.13 Adaptive observation window sizes obtained using the Proposed method

in Experiment 3 for first 100 test intervals of all three data sets. 66
5.14 Box plot of adaptive observation window sizes using the Proposed

method for test data sets. 67
5.15 Comparison of MSE for FixW and CPD and Proposed method using

different estimation methods. 68

A.1 Power8 NUMA architecture . 76
A.2 Experiment 1: CPU Usage (percentage) and Memory Bandwidth (GB/s)

for optimal configuration . 81
A.3 Experiment 3: Completion time speedup (60 minutes interval; binding

vs non-binding(OS default allocation)) 84
A.4 Experiment 3: Number of executions (60 minutes interval) 84
A.5 Experiment 3: Context switches per second (60 minutes interval) . . . 86
A.6 Experiment 3: Amount of remote memory access in GB (60 minutes

interval) . 86

xiii

List of Tables

3.1 Average p-values of two-sample K-S test using PR with different de-
grees and batch sizes for user CPU, memory free, context switches,
and memory bandwidth hardware metrics in Experiment 1. The Not
Accepted values are denoted by the red line. 21

3.2 Data reduction percentage using PR with different polynomial degrees
and batch sizes for Experiment 1. The red line values are Not Accepted
and taken from table 3.1. The grey shaded negative values represent
data growth. 22

3.3 Average p-values of two-sample K-S test using Markov Models (MM)
with different states and batch sizes for user CPU, memory free, context
switches, and memory bandwidth hardware metrics in Experiment 2.
The Not Accepted (NA) values are denoted by red line. 25

3.4 Data reduction percentage using Markov Models (MM) with different
states and batch sizes. The red line values are Not Accepted and taken
from table 3.3. The grey shaded negative values represent data growth. 25

3.5 Percentage bandwidth reduction within data center using MM method. 31
3.6 Comparison of Raw and Reduced Storage (GB) for 30 days and Band-

width (Kbps) using 2-State MM with batch size 16. 31

4.1 AMS evaluation results using different classifiers for Alibaba data set. 44
4.2 Time and space efficiency of AMS using different classifiers for Alibaba

data set. 44
4.3 RMSE and MAE for resource estimation using the purposed system for

Alibaba data set. 45
4.4 RMSE and MAE for resource estimation using the purposed system for

Bitbrains data set. 47
4.5 MSE and MAE for resource estimation using the purposed system for

Google Cluster data set . 48

5.1 Data sets with CPU resource utilization statistics and utilization cate-
gories. 60

5.2 Experiment 1 (FixW) results showing MSE for different estimation
methods and fixed window sizes. 63

5.3 Experiment 2 (CPD) results showing MSE for different estimation meth-
ods. 64

5.4 Experiment 3 (Proposed) results showing MSE for different estimation
methods using the Proposed method to identify the observation window
sizes. 66

5.5 Normalized MSE representing resource estimation error on test data
for Experiment 1 (FixW), Experiment 2 (CPD), and Experiment 3
(Proposed). 67

A.1 Spark configuration parameters . 77

xiv

A.2 Experiment 1: Evaluated software configurations (wem is worker and
executor memory; tma is total memory allocated; and tsw is total Spark
workers) . 78

A.3 Experiment 1: Best configuration when optimizing for completion time 79
A.4 SVM completion time (seconds) groups 80
A.5 SQL completion time (seconds) groups 80
A.6 PageRank completion time (seconds) groups 80
A.7 Experiment 2: Speedup (B=Node with binding, NB= Node without

binding) . 82
A.8 Configurations for different co-scheduling workload combinations; (n-

n=NUMA node combination; w1=workload-1; w2=workload-2; w/n=worker
per node; c/w-=core per worker; w+e=worker and executor memory;
PR=PageRank) . 83

xv

List of Abbreviations

PR Polynomial Regression
MM Markov chain Model
K-S Kolmogorov Smirnov
DTW Dynamic Time Warping
LR Linear Regression
SVR Support Vector Regression
RR Ridge Regression
LASSO Least Absolute Shrinkage and Selection Oerator Regression
EN Elastic Net
NNLS Non Negative Least Square
K-NN K Nearest Neighbors
MLP Multi Layer Perceptron
RDF Randon Decision Forest
T-R Telemetry Reductor
NR Not Reduced
NA Not Accepted
AMS Adaptive Model Selector
GBM Gradient Boosting Machine
RMSE Root Mean Square Error
MAE Mean Absolute Error
GBT Gradient Boosting Tree
TPR True Positive Rate
FPR False Positive Rate
TNR True Negative Rate
FNR False Negative Rate
ROC Receiver Operator Characteristics

xvii

This thesis is dedicated to my parents, loving wife and children for
their endless support, love and encouragement.

1

Chapter 1

Introduction

1.1 Introduction

Technological advances enable users to access computing resources over the Inter-
net quickly and cost-effectively for developing new solutions with intensive data and
computing requirements. Most of the increasing demands are driven by novel ap-
plications on social networks, Big Data analytics, Smart Cities, and the Internet of
Things (IoT), also e-commerce and Business-to-Business processes. Cloud Comput-
ing is one of the central technologies enabling end-users to obtain such resources by
following pay-as-you-go models. To ensure acceptable levels of Quality of Service and
user experience, cloud providers distribute data center resources across the geography
to enhance proximity to the user and clients, also by virtualizing resources allowing
service customization. The most common model used is precisely Infrastructure-as-a-
Service (IaaS). IaaS provides users with excellent control of leased resources, allowing
them to optimize their usage accordingly to their needs. Also, thanks to virtualiza-
tion and holistic data center management, cloud providers can manage resources to
maximize the data center utilization while minimizing infrastructure usage [105].

These large-scale data centers consist of thousands of servers, organized in racks
and interconnected to offer services to a broad set of users. Such data centers gen-
erate large and continuous streams of telemetry data that are logged and analyzed
for multiple purposes including resource management, workload characterization, re-
source utilization prediction, capacity planning and real-time analytics [104, 10, 63,
133]. Typical telemetry streams contain time-series data about hardware utilization
metrics including CPU, memory, I/O, bandwidth, context switches, interrupts, cache
misses, and cycles per instruction. These telemetry metrics are used in various ap-
plications. For example, CPU, memory, network bandwidth, instructions per cycle
(IPC), cache miss rates, branch predictor statistics, and power consumption utilization
data is used to forecast energy consumption and reduction [56, 34]. CPU, memory,
disk, and network consumption are used for data center management and resource
prediction [127, 117, 35, 100].

The first challenge is that this generation of continuous telemetry streams from
all computing and storage nodes poses a significant challenge within the data center
in terms of bandwidth consumption and storage requirements. As an example, con-
sidering telemetry collection on a data center consisting of 10, 000 computing nodes
and collecting 12 different measured metrics every second while dedicating 4 bytes
per metric, would require nearly 40GB storage per day, this is more than 1TB of
storage per month, plus the meta-data overheads for time-series traceability. Tradi-
tionally, data compression solutions to reduce the data increase the time to collect

2 Chapter 1. Introduction

telemetry data from the computing nodes. Increased interval time does not allow cap-
turing fine-grained resource consumption and may not precisely reflect the resources
usage. Also, using compression techniques on floating-point values cannot reduce the
size significantly and preserve the full precision [28, 14, 53]. Unfortunately, teleme-
try streams in many data centers show low or no smoothness and high variation in
data. In such cases, even state-of-the-art floating-point compression algorithms are
still not sufficient to compress the data [102]. Moreover, on large-scale data centers
with millions of hosted applications, the usefulness of telemetry and profiling comes
from knowing the behavior patterns more than the exact metrics. The precision is
reduced when data is aggregated in bigger time periods. Hence, telemetry time-series
data reduction methods need to preserve statistical properties capturing hardware uti-
lization behaviors specifically burstiness,the rapid growth of utilization, and abnormal
hardware utilization patterns.

The second challenge when managing data centers is that in most situations multi-
tenancy environments, co-hosted applications, and/or dynamic workloads, estimating
resources a-priori becomes hard or inaccurate. Accurate data center’s resource utiliza-
tion forecasting is important for various reasons including resource management [97,
43, 99, 68, 46], energy saving , cost prediction and consolidation of virtual machines
(VMs) [33, 2, 83], and capacity planning [17, 112]. An accurate estimation of resource
demands can greatly help to optimize the operational cost of the applications for the
end uses and also helpful for the data centers to reduce the cost to offer the facility
for a large number of users. For example, the data center users who can dynami-
cally manage the resources to minimize the operating cost while maintaining the good
quality of service [52], whereas the providers can increase the profit by maximizing
the use of available resources [123]. There have been several efforts to build estima-
tion methods for cloud resource utilization. For example, some recent works [58, 97]
use ensemble-based methods to predict the resource utilization of data centers. The
ensemble-based approach uses multiple time-series prediction and machine learning
method together to produce an output, and some of the existing estimation methods
are based on a single model which often does not appropriately estimate different
workload scenarios. Moreover, these prediction methods use a fixed size of observa-
tion windows which cannot produce accurate results because these are not adaptively
adjusted to capture the local trends in the recent data. Therefore, the estimation
method trains on fixed sliding windows use an irrelevant large number of observations
which yields inaccurate estimations.

To address these challenges, we formulate the thesis statement of this Ph.D. pro-
posal as follow.

It is possible to improve the storage, bandwidth utilization, and pre-
diction accuracy of data center telemetry by applying modeling techniques.

We selected modeling as a principal methodology because models can represent
data without actually containing it. These models help us in reducing the bandwidth
utilization and storage space requirements significantly, which is the first part of the
thesis statement. Additionally, modeling techniques allow to reconstruct and forecast
such data, so we apply these techniques to improve the prediction accuracy of data
center telemetry saving, up to a certain point, on monitoring efforts. For this purpose,
we explore different types of machine learning techniques, also adaptive methods for
selection of those models, and adaptive identification of time window sizes for these
prediction models, being this the second part of the thesis. So in summary, to achieve

1.2. Contributions 3

thesis goal, we divide the problem into three incremental research steps as follow: i)
Design and evaluate the telemetry reduction system to manage the bandwidth and
storage space requirement better. ii :) Design and evaluate the resource prediction
system based on adaptively selecting the prediction model iii :) Design and evalu-
ate the resource prediction system based on adaptively selecting the window size for
prediction models.

1.2 Contributions

The focus of this thesis is to improve telemetry prediction accuracy and reduce the
storage space and bandwidth utilization requirements in the data centers environment.
To achieve it, we divide the goal into following three contributions and Figure 1.1 also
summarize the main contribution of the thesis.

C1: Design and development of telemetry data reduction and reconstruction
method using Markov Chain Models

C2: Design and development of adaptive prediction model selector method which
dynamically selects the best prediction model for estimating and forecasting cloud
resource utilization.

C3: Design and development of an adaptive window size selector method for pre-
diction models which dynamically identify the best sliding window size to train the
prediction model for estimating and forecasting cloud resource utilization

Next, we further detail the three contributions of this thesis.

1.2.1 C1: Telemetry Reduction and Reconstruction using Markov
Chain Models:

The first contribution of this thesis addresses the issue of telemetry data, which is
generated by large-scale data centers. These data centers typically consist of thou-
sands of servers organized in interconnected racks and generate a large amount of
telemetry data continuously. Typically these telemetry streams consist of time se-
ries data which include CPU, memory, I.O, and other hardware utilization metrics.
These metrics are used for multiple purposes, including capacity planning, resource
management, workload characterization, resource utilization prediction, real-time an-
alytics, and many more. This generation of continuous telemetry streams requires
costly bandwidth utilization and storage space for these kinds of data centers. The
first contribution addresses this problem by proposing and evaluating a system to
efficiently reduce bandwidth and storage for telemetry data through real-time model-
ing using Markov chain-based methods. Our proposed solution was evaluated using
real telemetry data sets and compared with Polynomial regression methods for re-
ducing and reconstructing data. Experimental results show that data can be lossy
compressed up to 75% for bandwidth utilization and 95.33% for storage space, with
reconstruction accuracy close to 92%.

The work performed in this area has resulted in the following publication:

4 Chapter 1. Introduction

Markov Chain
Models

Prediction Models

Adaptive Window
for Prediction

Models

Telemetry reduction
method

Adaptive telemetry
prediction model

selection

Adaptive window
size for telemetry

prediction

Contributions

C1

C2

C3

Scope

Figure 1.1: Summary of Contributions. The first contribu-
tion (C1) is the design and development of telemetry reduc-
tion method for data centers by using Markov Models. The
second contribution (C2) is the design and development of
adaptive prediction model selector method for data centers
telemetry prediction by using machine learning prediction
models. The third contribution (C3) is the design and de-
velopment of an adaptive window size selector method for

prediction models by using deep learning.

• Shuja-ur-Rehman Baig, Waheed Iqbal, Josep Lluis Berral, Abdelkarim Erradi,
David Carrera, "Real-time Data Center’s Telemetry Reduction and Reconstruc-
tion Using Markov Chain Models," IEEE Systems Journal

In this contribution, we focused on modeling techniques to reduce the telemetry
data for data centers using Markov Chain Models, towards the next contribution,
where we apply learning for modeling and prediction of data center’s telemetry stream,
focusing on improving the prediction accuracy in an adaptive way.

1.2.2 C2: Adaptive Prediction Model Selector:

The second contribution of this thesis addresses the issue of telemetry prediction.
Due to heterogeneous architecture, multi-tenant co-hosted applications, and dynamic
workloads, the accurate estimation of data center resource utilization is a challeng-
ing task. Accurate estimation of future resources utilization helps in better capacity
planning, job scheduling, workload placement, proactive auto-scaling, and load bal-
ancing. The inaccurate estimation leads to either under or over-provisioning of data
center resources. In this contribution, we address this problem by proposing a novel
method to adaptively and automatically identify the most appropriate model to es-
timate data center resources utilization accurately. The proposed approach trains a
classifier based on statistical features of historical resource utilization observations to
decide the appropriate prediction model to use for given resource utilization observa-
tions for a specific time interval. We evaluated our approach with multiple baseline
methods and real data sets. The experimental evaluation shows that the proposed ap-
proach outperforms the state-of-the-art approaches and delivers 6% to 27% improved

1.3. Thesis Organization 5

resource utilization estimation accuracy compared to baseline methods.

The work performed in this area has resulted in the following publication:

• Shuja-ur-Rehman Baig, Waheed Iqbal, Josep Lluis Berral, Abdelkarim Erradi,
David Carrera, "Adaptive Prediction Models for Data Center Resources Utiliza-
tion Estimation," IEEE Transactions on Network and Service Management

In this contribution we apply machine learning on telemetry monitored data focus-
ing on adaptive ways to improve prediction accuracy, towards the next contribution
where we focus on adaptive time window sizes for these machine learning models
on-trend changing scenarios.

1.2.3 C3: Adaptive Window Size Selector for Prediction Models:

The third contribution of this thesis addresses the issue of observation window size,
which is used to train the prediction model. The accurate size of observation win-
dows helps in improving the prediction accuracy. Accurate prediction of data center
resource utilization is required for capacity planning, job scheduling, energy saving,
workload placement, and load balancing to utilize the resources efficiently. Existing
prediction methods use fixed size observation windows, which cannot produce accu-
rate results because of not being adaptively adjusted to capture local trends in the
most recent data. Therefore, those methods train on large fixed sliding windows using
an irrelevant large number of observations yielding to inaccurate estimations or fall for
inaccuracy due to degradation of estimations with short windows on quick changing
trends. In the third contribution, we propose a deep learning-based adaptive window
size selection method, dynamically limiting the sliding window size to capture the
trend for the latest resource utilization, then build an estimation model for each trend
period. We evaluate the proposed method against multiple baseline and state-of-the-
art methods, using real data-center workload data sets. The experimental evaluation
shows that the proposed solution outperforms those state-of-the-art approaches and
yields 9 to 40% improved prediction accuracy compared to the baseline methods.

The work performed in this area has resulted in the following submission:

• [Major revision submitted and under review] Shuja-ur-Rehman Baig, Waheed
Iqbal, Josep Lluis Berral, David Carrera, "Adaptive Sliding Windows for Im-
proved Estimation of Data Center Resource Utilization," Future Generation
Computer Systems

1.3 Thesis Organization

The rest of the thesis is organized as follows: Chapter 2 introduces basic concepts
which are used in completing the Ph.D. thesis goals. Chapter 3 introduces the teleme-
try reduction system based on Markov Chain Models. Chapter 4 presents the adaptive
prediction model selection method to forecast the resource requirements for data cen-
ters accurately. Chapter 5 presents the adaptive training window size selection method
to estimate the future need of resources in data centers and in last, Chapter 6 presents
the conclusion and future work of this thesis.

7

Chapter 2

Background

This chapter introduces the relevant concepts which are later used in the following
work. However, before discussing these concepts, we also include a brief discussion
about the preliminary work of this thesis.

2.1 Telemetry Monitoring

The preliminary work consists of exploration and monitoring of telemetry streams for
a single machine to characterize the workloads. For this purpose, we monitored the
different type of telemetry data, including CPU, memory, context switches, I.O, mem-
ory bandwidth, interrupts, and others. This monitoring also helped us in evaluating
the underlying hardware topology along with workload characterization. The details
of this preliminary work are discussed in Appendix A.

2.2 Data center’s Telemetry Monitoring

In the next phase, we move forward to data centers telemetry monitoring. Typical
telemetry streams contain time series data about hardware utilization metrics includ-
ing CPU, memory, I/O, bandwidth, context switches, interrupts, cache misses and
cycles per instruction. These telemetry metrics are used in various applications. For
example, CPU, memory, network bandwidth, instructions per cycle (IPC), cache miss
rates, branch predictor statistics, and power consumption utilization data is used to
forecast energy consumption and reduction [56, 34]. CPU, memory, disk, and network
consumption are used for data center management and resource prediction [127, 117,
35, 100]. This monitoring generates a large amount of data due to which bandwidth
utilization increases, and it also requires more storage space. The first contribution of
the thesis is to evaluate the modeling techniques to reduce the bandwidth utilization
and storage space requirements and for this purpose, we evaluated polynomial regres-
sion and markov chain models which are described in the following sections.

After exploring data reduction modeling techniques for data centers, we move
forward to machine learning (ML) models. We used these ML models as a tool to
predict future workload behaviors and traces. For this purpose, we use real traces of
clusters from Alibaba, Materna and Bitbrains data centers and improve the prediction
accuracy of CPU utilization. These data centers resource utilization exhibit variations
and burstiness in their resource consumption due to dynamic nature of workloads.
The second contribution is to propose a method which dynamically selects the most
appropriate machine learning model according to recent resource consumption and for

8 Chapter 2. Background

this purpose, we evaluated different machine learning models such as linear regression,
support vector regression, gaussian process regression, random decision forests and
others. These are explained in the following sections. The next contribution of the
thesis is to propose a method which selects the most appropriate window size for a
machine learning model which is used to train it and for this purpose, we evaluated
multi-layer perceptron (MLP) which is discussed in the last section of this chapter.

2.3 Markov Chains

Markov Chains are stochastic models describing a sequence of events in which the
probability of each event depends only on the previous state of the event. Figure. 2.1
shows the irreducible ergodic two-state Markov Chain.

Figure 2.1: 2 states Markov Chain Model showing states
and transition probabilities. For transition probabilities, l

represents low state and h represents the high state.

Let X1, X2, X3, · · · are independent and identically distributed random variables
representing telemetry data. We model these random variables as a discrete time
Markov Chain Model defining the probability of moving from the current state to the
next state as:

Pr(Xt+1 = sj |Xt = si, ..., X2 = s2, X1 = s1) =

Pr(Xt+1 = sj |Xt = si), (2.1)

where function Pr(Xt+1 = sj |Xt = si) is independent of t and denotes the probability
of moving from state si at time t to state sj at time t+ 1, symbol “ | ” represents the
conditional probability, and s ∈ state space (S).

Let P vij , v > 1 where P vij = P (Xu+v = j|Xu = i) denotes the probability that
after v time units the chain will transit to state j given that the current state is i at
time u. The probability of reaching j from i in n-steps is the sum of all probabilities
going from i to j through an intermediate point k. We use Chapman-Kolmogorov
equation [115] to compute it as follows:

P u+vij =
∑
k∈S

P uikP
v
kj ; m and v ≥ 1, i and j ∈ S. (2.2)

Let Pv = (P vij) be a matrix then Chapman-Kolomogorov equation can be expressed
as Pu+v = PuPv. This allows calculating the transition probability matrix P which
reflects the relative frequencies of transitions from one state to another state. The

2.4. Machine Learning 9

matrix P for n total number of states is represented as follows:

P =

p11 p12 · · · p1n
p21 p22 · · · p2n
...

...
. . .

...
pn1 pn2 · · · pnn

 . (2.3)

2.4 Machine Learning

In this thesis, we use Machine Learning (ML) techniques for three main purposes:
first, model data and represent it; second, predict future workload behaviors and
traces; and third, from a set of ML methods and a context, choose one that predicts
the workload better. To predict workload, we explore a diversity of Machine Learning
techniques commonly used in the literature, ones more complex than others with
different properties each. We explain each method in the following sections.

2.4.1 Linear Regression

Linear Regression (LR) is one of the simplest but effective approaches in machine
learning modeling and prediction, specifically when a linear relation exists among
variables. LR assumes there is a linear relation between output variable Y and input
variables X = {x1 . . . xn}, and attempts to find a vector W T = {w1 . . . wn} and a
scalar b where Ỹ = X ·W + b while minimizing the error ε = |Y − Ỹ |. Minimization is
usually performed using the Least Squares Error approach, although other approaches
using the deviation or specific cost function exist. LR variants include Polynomial and
Multinomial Regression, where variable relations are assumed more complex, thus
learning algorithms also become more complex.

2.4.2 Polynomial Regression

Polynomial regression is a form of regression in which the relationship between the
dependent and the independent variable is modeled such that the dependent variable
is an nth degree function of the independent variable. It is mostly used to fit the
non-linear behavior between dependent and independent variable.

Mathematically, it is defined as

y = β + β1x+ β2x
2 + β3x

3 + · · ·+ βnx
n + ε (2.4)

Where y is the dependent variable and the betas are the coefficient for different nth
powers of the independent variable x starting from 0 to n. The calculation is often
done in a matrix form, as shown below.

y1
y2
y3
...
yn

 =

1 x1 x21 . . . xm1
1 x2 x22 . . . xm2
1 x3 x23 . . . xm3
...

...
1 xn x2n . . . xmn

β0
β1
β2
...
βm

 +

ε0
ε1
ε2
...
εm

 (2.5)

2.4.3 Support Vector Regression

Support Vector Machine (SVM) methods are common for classification although they
can be used for regression as Support Vector Regression machines (SVR) [32]. The

10 Chapter 2. Background

advantage of SVMs is that non-linear functions can be learned as linear ones thanks
to a transformation of data known as the kernel trick.

SVMs allow learning non-linear functions by mapping them into a higher dimen-
sional feature space, using a defined kernel function. Input X are mapped into an
h-dimensional feature space using a predefined non-linear kernel function to produce
a linear model. Similar to LR, we can express SVMs as Ỹ = k(X) ·W + b, where k
is the function making the space for X linear. SMVs error minimization consists of
building two margin functions (support vectors) X ·W + b± ε, where final error ξ is
computed for those elements outside the margins. As a disadvantage, the margin ε
can become an hyper-parameter.

2.4.4 Gradient Boosting

Gradient Boosting is the combination of the Gradient Descent optimization and Boost-
ing techniques [77, 42]. As any other boosting technique, the learned model is the
composition of weaker models focusing on subsets of data, forming a stronger model
when combined. Usually, decision and regression trees are used on Gradient Boosting
techniques, but any other modeling technique can be used for boosting.

On Gradient Boosting, a model is fitted as Ỹ = f(X) minimizing ε = |Y − Ỹ |.
Then function f can be fine-grain tuned using another function h fitted to ε, learning
and correcting the errors on the first function, and so on recursively. This recursion
can continue until we rest satisfied with the resulting aggregation of models.

2.4.5 Gaussian Process Regression

Gaussian Process Regression (also known as Kriging) [55] is a non-parametric regres-
sion method, where the modeled function is trained after a Gaussian process using
the covariances of previous examples. This process is used mainly for interpolation
which requires some example observation points. Kriging method predicts by com-
puting the weighted average of the values for neighbors from the known examples.
Kriging models can model non-linear as well as linear behavior. Typical regression
methods are extended by statistical models based on stochastic processes. However,
Kriging also estimates the associated statistical variations using the distribution and
correlation of observed data.

2.4.6 Ridge Regression (RR)

Ridge regression (RR) also known as Tikhonov regularization is improved version of
LR by introducing regularization to constraining the coefficients to low range. This
helps to reduce the chances of model over-fitting. The cost function for Ridge regres-
sion for hypothesis θ is calculated using:

R(θ) =
1

m

m∑
i=1

(θT ·X(i) − Y (i))2 + α
1

2

k∑
i=1

θi
2, (2.6)

where α is a hyperparameter use to control the regularization the model.

2.4.7 Least Absolute Shrinkage and Selection Operator (LASSO)

Least Absolute Shrinkage and Selection Operator (LASSO) is another improvement
in LR by introducing regularization term and ensure to eliminates the least important

2.4. Machine Learning 11

features to increase the model accuracy. The cost function for LASSO for hypothesis
θ is calculated using:

L(θ) =
1

m

m∑
i=1

(θT ·X(i) − Y (i))2 + α

k∑
i=1

θi, (2.7)

LASSO improves the prediction accuracy by selecting a subset of items rather
than using all of them as compared to LR, NNLS, and Ridge regression which uses
all of the features and data.

2.4.8 Elastic Net (EN)

EN improves LR using regulrization by combining Ridge and LASSO’s regularizations.
It also reduces the number of features by removing less important features to help in
improving the accuracy of the model. The EN cost function is computed using:

E(θ) =
1

m

m∑
i=1

(θT ·X(i) − Y (i))2 +
1− r

2
α

k∑
i=1

θi
2 + rα

k∑
i=1

θi, (2.8)

where r is a mix ratio and can be controlled to include regularization of Ridge and
LASSO. For example, r = 1 will result the EN to behave similar to LASSO and r = 0
will force the EN to behave similarly to Ridge regression.

2.4.9 Non-Negative Least Square (NNLS)

NNLS is a type of constrained least problems to restrict the coefficients of the model to
positive numbers. This type of regression methods is feasible for resource estimation
as the output is always positive. The objective function of NNLS is:

argmin
θj≥0 ∀j

m∑
i=1

(θT ·X(i) − Y (i))2. (2.9)

The objective function (2.9) ensures that the linear coefficients in θ are non-negative.
Since the resource usage of data centers is always non-negative, therefore all values
in Y are also non-negative. As a result, we get non-negative prediction. We used
the algorithm proposed by Lawson and Hansonb [66] to solve the NNLS objective
function.

2.4.10 K-Nearest Neighbors

The k-Nearest Neighbors (k-NN) algorithm allows to memorize a set of characteristic
examples, and classify new data instances by finding the k nearest neighbors, and re-
turning the class of the majority (or the probabilities per class on those k examples).
The nearest neighbors are those examples with minimum distance, often euclidean,
Hamming or Manhattan distances. Here we select k-NN as one of the tentative clas-
sifiers, as it is one of the easier models to train (it memorizes the training set), in
exchange of the not-so-easy search process when predicting a new data instance.

2.4.11 Naïve Bayes

The Naïve Bayes algorithm is a classifier based on computing the likelihood of a feature
given each class, then use the Bayes theorem to compute the conditional probability

12 Chapter 2. Background

of a class given that feature. The method extracts from data the probabilities of
each feature value P (Feature = X), each class P (Class = C), and each likelihood of
features per class P (Feature = X|Class = C). This method assumes independence
among features, in contrast to Bayesian Networks. The probabilities per class are the
product of their probabilities per feature, and the algorithm returns the class with a
higher probability (or the rank of classes per probability). We selected Naïve Bayes
as one of the classifiers for its low complexity, as training implies keeping the count
of element occurrences, then probabilities can be computed on demand at prediction
time.

2.4.12 Random Decision Forest

Random Decision Forests (usually referred as Random Forests) are an ensemble method
for classification and regression, based on the aggregation of specialized decision
trees [51]. The ensemble builds a set of decision trees, trained from different data
subsets, then predicted data is classified as the most voted class from all decision
trees (the trend). The main reason to use random forests is to prevent over-fitting
single decision tree models and get a more accurate and stable prediction. Random
Forests are known to produce decent results for classification and regression problems,
without the need for much tuning of hyper-parameters.

2.4.13 Multilayer Perceptron

Multilayer Perceptron (MLP) is a kind of Artificial Neural Network (ANN) used for
both classification and regression problems for non-linear systems. The most com-
monly used ANN for classification problem is “one-hidden layer” Feed-Forward ANN,
where the ANN is composed of a single layer of perceptrons (neuron units) and an
output layer.

Data passes through the hidden layer to the output producing value for each class,
then the class with a higher value is chosen. Neurons aggregate input data, usually
through a linear function Xo = Xi ·W +bias, then passes outputs Xo to the next layer
(here the output layer). Output neurons also pass their produced aggregation through
sigmoid functions to approximate their outputs to 0 or 1 Y = sigm(Xo). Fitting those
functions is done by passing data repeatedly and comparing the network output with
the real output, then updating neurons weights W and bias using Gradient Descent
techniques.

Neural networks can be complicated to fine-tune, as their architecture must be
treated as a hyper-parameter, deciding how many neuron units are in the hidden
layer, how many times data must be passed for training, etc.

13

Chapter 3

Telemetry Reduction by Markov
Chain Models

This chapter presents the telemetry data reduction framework as the first contribu-
tion of this Ph.D. thesis. In this chapter, we address the collection and compression
of large-scale data centers telemetry data. Our proposed solution consists of reducing
the telemetry measurements of the data center in real time through online modeling
using Markov Chains [57]. Then, such models are transmitted to the corresponding
logging repositories and stored to enable data reconstruction for posterior use with
minimum data loss to preserve the hardware utilization behaviors. The method works
on rack level to collect all measurements from the nodes deployed on the rack and
then applies Markov Chain Model to efficiently reduce the data in real-time. The
reduced data is logged to allow telemetry data analytics. We also propose an efficient
method to combine reduced data with compression to minimize the overall storage
requirement for storing telemetry data for a long duration. Thus it minimizes both
the storage space and the bandwidth utilization for collecting data center telemetry
measurements.

The proposed method has been evaluated using real telemetry data sets and com-
pared with state of the art methods such as the Polynomial Regression method [16]
and the dictionary based compression (ZIP). Several comparison metrics were used,
such as computing the amount of data saved in each scenario and the data reconstruc-
tion accuracy in the case of lossy compression. We evaluate the effectiveness of the
methods on telemetry time-series data by calculating and comparing the storage re-
quirements for each method. The reconstruction accuracy is evaluated by comparing
data before compression and after reconstruction. First, we compare the statistical
similarity between the reconstructed data and the original data using a two-sample
Kolmogorov-Smirnov (KS) hypothesis tests [61]. KS test is used to identify whether
two given one-dimensional sequences belong to the same probability distribution or
not. It does not quantify the similarity of the reconstructed data but indicates whether
the reconstruction has a statistical resemblance. Then we complement the evaluation
by quantifying this similarity using the Dynamic Time Wrapping (DTW) metric [103,
81]. The DTW is a well-known method used to measure the similarity between two
given sequences which may vary in speed [50, 81, 8, 98, 86].

The main contributions of this chapter are summarized as follows:

• Design a system for real-time telemetry data reduction and reconstruction for
data centers.

• Develop and evaluate telemetry data reduction and reconstruction approach
using Markov Chain models.

14 Chapter 3. Telemetry Reduction by Markov Chain Models

N1

N2

Nk

T-R

Rack
1

......

......

......

N1

N2

Nk

T-R

Rack
2

......

......

......

N1

N2

Nk

T-R

Rack
X

......

......

......

Distributed Storage

.........

.........

.........

.........

.........

Real Time Analytics

Figure 3.1: Schema of the proposed data reduction frame-
work for data centers. Each rack in the data center hosts
a Telemetry Reductor (T-R) component which continuously
collects the telemetry data from each computing node, then
performs data reduction before transmitting it to storage and

real-time analytic systems.

• Compare the proposed data reduction and reconstruction with state-of-the-art
Polynomial Regression based methods and ZIP compression.

• Experimental evaluation to study the storage and bandwidth minimization using
the proposed solution for telemetry data for different data center sizes.

3.1 Data Reduction Framework

Our proposed system to reduce telemetry data provides two-fold benefits: first, it
reduces the storage space significantly, and second, it minimizes the bandwidth uti-
lization required by telemetry data collection within the data center.

Figure 3.1 shows the architecture of the proposed real-time telemetry data reduc-
tion system for data centers. Each rack in the data center hosts a Telemetry Reductor
component which continuously collects the telemetry data from each computing node
and performs data reduction method before transmitting it to storage and real-time
analytic systems. This reduces the data at the rack level and does not transmit the
entire data but only the reduced data within the data center. A telemetry stream
data can consist of utilization of CPU, memory, disk, network, memory bandwidth
and other useful metrics.

Figure 3.2 shows the Telemetry Reductor process. We used Apache Kafka [47, 62]
as a message broker to receive telemetry stream data from the computing nodes. Every
computing node publishes telemetry data with the timestamp to Kafka topic which is
consumed by the Telemetry Reductor. Each consumer obtains data from Kafka topics.
The consumer reads the incoming streams and splits the data into a predefined batch
size and uses a data reduction method to minimize the data. Then the reduced data
is compressed and stored in a data center storage facility. The reduced data is also
fed to analytics engines. The telemetry data can be used for real-time monitoring,
workload characterization, and anomaly detection purposes. The reduced data sent
to other components need to be reconstructed before usage. The above architecture is
based on out-of-band monitoring where data is coming from devices such as sensors or

3.1. Data Reduction Framework 15

Polynomial
Regression

Markov
Chain
Model

128,125,
10,0.50 128,125,

10,0.50 128,125,
10,0.50 128,125,

10,0.50

TimeStamp,
Node_ID, [CPU,

Memory, I/O,,]

TimeStamp,
Node_ID, [CPU,

Memory, I/O,,]

......

......

......

......

......

TimeStamp,
Node_ID, [CPU,

Memory, I/O,,] 0.4,
50.3 0.4,
50.3 0.4,
50.3

Kafka

Data
Reduction

Method

Data
Compression

Telemetry Reductor

Real time
Analytics

Figure 3.2: Telemetry Reductor process the incoming
telemetry streams from computing nodes using Kafka and
data reduction method. The output of the Telemetry Reduc-
tor can be used to store or provide input to other real-time

analytics systems.

logging applications. In case of the regular host where in-band monitoring is possible
then Telemetry Reductor component could be executed on the host machine without
Kafka to reduce the extra overhead of a dedicated machine.

The proposed framework targets two main goals: i) it minimize the storage demand
for storing telemetry measurement by reducing and compressing the telemetry data.
ii) It minimizes the bandwidth utilization by transmitting solely reduced data over
the data center network. To achieve such goals, we propose two different methods
namely Polynomial Regression and Markov Chain models to be used for telemetry
data reduction and reconstruction in real-time. We explain both of these methods in
the chapter 2.

3.1.1 Reduction through Polynomial Regression (PR) methods

We use Polynomial Regression (PR) methods to fit the curve of a given telemetry
data-stream into a polynomial curve. Then we only need to store the coefficients of
the equation fitting the curve. This method is inspired by similar work [16] that uses
linear regression method for data reduction. The PR method is used as a baseline
to compare our proposed Markov Chain model-based approach. To understand the
effect of using PRs for data reduction, if we plan to fit a data-stream function into
a 4-degree polynomial curve then we will only store 4 coefficients plus the intercept.
Assuming that the data-stream contains 128 data points, we will be reducing the data
from 128 values to only 6 values.

If we train a PR model for each telemetry measurement, given a n-degree polyno-
mial regression, and k observations of a specific telemetry dimension a, the coefficients
are computed using pseudo-inverse solution to minimize the sum of least squares:

16 Chapter 3. Telemetry Reduction by Markov Chain Models

αo
α1
...
αn

 =
[
R>R

]−1
R>

rt
rt−1
...

rt−k

 (3.1)

where the matrix R is defined as

R =

1 at a2t . . . ant
1 at−1 a2t−1 . . . ant−1
...

...
1 at−k a2t−k . . . ant−k

 . (3.2)

Using the values of α0, α1, · · · , αn coefficients and polynomial degree n, we can load
the polynomial curve and reconstruct the k data points easily. Therefore, we propose
to only store coefficients and polynomial degree information instead of the actual
data. Here we monitor and collect the data for a given batch interval and then fit a
PR model with a specific degree. After fitting the model, we extract the coefficients
from the fitted equation and store these instead of the actual data. Whenever we have
to reconstruct a batch of data, we load the coefficient values for that batch and build
its corresponding PR model, and then we use it to reconstruct the data points for the
batch.

3.1.2 Reduction through Markov Chain Models (MM)

Secondly, we propose to use Markov Chain Models (MM) [57] for telemetry data
reduction and reconstruction. Markov Chains are stochastic models describing a se-
quence of events in which the probability of each event depends only on the previous
state of the event. Specifically, we use time-homogeneous discrete time Markov Chains
(DTMC) [74] because telemetry data is monitored at discrete time intervals and the
state transition probabilities are independent of time. Moreover, the DTMC used with
the telemetry data is irreducible ergodic as the proposed system can transit from every
state to every other state with positive probability. Figure. 3.3 shows the irreducible
ergodic 2 state Markov Chain.

Figure 3.3: 2 states Markov Chain Model showing states
and transition probabilities. For transition probabilities, l

represents low state and h represents high state.

The idea of using MMs is to explore that if we can deal with burstiness behaviors
among others for data reduction and reconstruction. The burstiness behavior repre-
sents sudden spikes and peaks in the telemetry data. In general, it is challenging to
reconstruct burstiness behavior, and we address it by using Markov Chain Models.

3.1. Data Reduction Framework 17

Let X1, X2, X3, · · · are independent and identically distributed random variables
representing telemetry data. We model these random variables as a discrete time
Markov Chain Model defining the probability of moving from the current state to the
next state as:

Pr(Xt+1 = sj |Xt = si, ..., X2 = s2, X1 = s1) =

Pr(Xt+1 = sj |Xt = si), (3.3)

where function Pr(Xt+1 = sj |Xt = si) is independent of t and denotes the probability
of moving from state si at time t to state sj at time t+ 1, symbol “ | ” represents the
conditional probability, and s ∈ state space (S).

Let P vij , v > 1 where P vij = P (Xu+v = j|Xu = i) denotes the probability that
after v time units the chain will transit to state j given that the current state is i at
time u. The probability of reaching j from i in n-steps is the sum of all probabilities
going from i to j through an intermediate point k. We use Chapman-Kolmogorov
equation [115] to compute it as follows:

P u+vij =
∑
k∈S

P uikP
v
kj ; m and v ≥ 1, i and j ∈ S. (3.4)

Let Pv = (P vij) be a matrix then Chapman-Kolomogorov equation can be expressed
as Pu+v = PuPv. This allows calculating the transition probability matrix P which
reflects the relative frequencies of transitions from one state to another state. The
matrix P for n total number of states is represented as follows:

P =

p11 p12 · · · p1n
p21 p22 · · · p2n
...

...
. . .

...
pn1 pn2 · · · pnn

 . (3.5)

In our solution, the chain can transit from every state to every other state and
considered as irreducible ergodic Markov chain. For an irreducible ergodic Markov
chain, the transition matrix elements must be non-negative, pij ≥ 0 and the sum of
each row must be equal to 1, therefore,

∑n
j=1 pij = 1.

To reduce a given telemetry data, first we convert it into state interval matrix
I = [...](n+1)×1 and then compute state transition frequency matrix F = [...]n×n,
where n is the total number of states. The state interval matrix contains the threshold
values to partition the given data into n states. The state transition frequency matrix
contains the transition frequencies which are computed by simply counting the number
of transitions from one state to another.

Figure 3.4 shows the process to compute the frequency matrix for reducing teleme-
try data using a 2 states MM with batch size 16. First, we calculate the state interval
matrix I which stores the partition boundaries. For 2 states MM, the state interval
matrix will be of size 3× 1 to store the boundaries of the states. Second, we convert
each data point into corresponding states using the state interval matrix. Finally, we
compute the state transition frequencies matrix F . We only store F and I for each
given batch of data to reduce the telemetry data. During data reduction, we do not
compute and save the transition probability matrix P because it is required during the
reconstruction and can be easily calculated using F . Moreover, P consists of floating
point data which also introduces storage overhead.

18 Chapter 3. Telemetry Reduction by Markov Chain Models

Telemetry data of batch size 16

2 31 61

1. Calculate ranges for states
(low and high)

Prepare State
Interval Matrix

4 7 3 2 3 5 14 18 18 23 29 43 48 50 60 28

2. Convert the telemetry
data into states

L L L L L L L L L L L H H H H L

3. Count the state
transitions

Prepare State Transition
Frequency Matrix 10 1

1 3

Low
Low

High

High

Figure 3.4: Telemetry data reduction using 2 state Markov
Chain Model and batch size 16.

To reconstruct the data for a given batch interval, we first convert the state tran-
sition frequency matrix F into state transition probability matrix P using the equa-
tion 3.6.

pij =

{
fij∑x

r=1 fir
, if

∑x
r=1 fir 6= 0

0, otherwise.
(3.6)

During the reconstruction of a batch data, we assume that the current/initial state
is known and we need to predict all data points of the given batch size. To explain the
reconstruction strategy, let us consider a 2 states MM as shown in Figure 3.3. The
transition probabilities P can be easily computed from the corresponding transition
frequency matrix F which was stored during the data reduction phase. Let us assume
that the current state is high, the transition probability from high to low (phl) is 0.3
and the transition probability of high to high (phh) is 0.7. We generate a random
number between 0 and 1. If the generated number is greater than 0.3 then we predict
high otherwise low as the next state. Once we identify the next state, then we look up
the lower and boundary values of the predicted state from the state interval matrix I.
Finally, we generated another random number within the range of the state boundary
and considered it as the reconstructed data point. We repeat this process to identify
all data points for the given batch interval.

3.2 Experimental Setup

3.2.1 Description of the Data-set

We used IBM POWER8 telemetry logs data set [4] to evaluate our proposed method
for telemetry reduction and reconstruction. These logs contain telemetry data gener-
ated by executing three representative Spark workloads from the Spark-Bench [109]
developed by the IBM and widely tested using POWER8 systems. The data set logs
are collected from executions of the workloads “Support Vector Machines (SVM)”,
“PageRank” and “Spark SQL”. These workloads are well known in the literature and

3.2. Experimental Setup 19

combine different characteristics to cover a large range of different resource usage be-
haviors. The data set contains metrics related to CPU, memory, context switches,
memory bandwidth, L2 and L3 cache misses, interrupts, and cycles per instruction
(CPI) as a time series data.

3.2.2 Experiment Details

As explained previously, we propose and evaluate two different techniques, namely
Polynomial Regression and Markov Chain Models, to reduce and regenerate telemetry
data through modeling. To evaluate the proposed methods, we performed two major
experiments, briefly explained in the following subsections.

Experiment 1: Data Reduction and Reconstruction using Polynomial Re-
gression

In this experiment, we study the effect of different polynomial degrees and batch sizes
on PR models. The polynomial degree defines the shape of the curve. Where a higher
degree can be used to fit a complex curve and a lower degree can be used a simple
curve. The batch size defines the number of data points used to fit the curve. We
consider polynomial degrees 2, 4, 6, 8, and 10 with batch sizes varying from 2, 4, 8,
16, 32, 64, and 128 to fit polynomial curves for data reduction and reconstruction.
Many other settings can also be studied, however, the selected settings are sufficient to
establish the motivation for using PR for telemetry data reduction and reconstruction
because with higher degrees, we get less reduction and with larger batch sizes, we
lose the accuracy of the reconstructed data. Once we train a PR model using a
specific polynomial degree and a batch size then we only store the coefficients of
polynomial equation learned to fit on the given data points. This helps to reduce the
data size significantly as we do not store all data point but only few coefficient values.
Later, these coefficients can be used to regenerate the data points easily. However, an
efficient polynomial degree and batch size values should be used to achieve a good data
reconstruction accuracy: the higher the degree, the more over-fitting will be achieved,
but more data (coefficients) will be transmitted.

Experiment 2: Data Reduction and Reconstruction using Markov Models

In this experiment, we study the effect of different MM models with varying the
number of states and batch sizes. We consider 2, 3, and 4 state Markov Models
on batch sizes varying from 2, 4, 8, 16, 32, 64, and 128 to study the effects on data
reduction and reconstruction. Larger batch sizes reduce accuracy as the reconstruction
does not retain the information which is present in the original data set. On the other
hand, a higher MM model states yield less reduction. Figure 3.3 shows a 2 state
Markov model in which we divided the input data into two regions namely low and
high and learn a state transition matrix for telemetry observations using a specific
batch size. The state transition matrix contains the probabilities of moving from one
state to other using the given input data points of the telemetry metrics. We also
create a state interval matrix which defines the low and high region ranges. These
two matrices are learned and stored instead of the complete data which reduces the
data size significantly. Similarly, for 3 and 4 state Markov Models, we increase the
number of states to 3 and 4 respectively and learn state transition metrics and state
interval matrix accordingly.

20 Chapter 3. Telemetry Reduction by Markov Chain Models

3.2.3 Evaluation Criteria

We evaluate both of the proposed methods in terms of data reduction effectiveness
and reconstruction accuracy. For evaluating the effectiveness of data reduction, we
calculate the data reduction percentage after applying the proposed methods. For re-
construction accuracy, first, we perform two-sample Kolmogorov-Smirnov (K-S) test
to decide whether to accept or reject the produced reconstruction of data after com-
pressing, storing and reconstructing it. This first evaluation is used to initially discard
configurations (PR degrees and MM discrete states) that produce low quality recon-
structions. Second, we compute Dynamic Time Warping (DTW) distance between
reconstructed data and actual data to quantify the reconstruction error. We explain
all these evaluation measures in the following subsections.

Data Reduction Percentage

We compute the data reduction percentage by measuring the data stored after apply-
ing the reduction method against the original data. A positive value shows a reduction
in data size while a negative value indicates growth in data size. Therefore, a higher
data reduction percentage is better and desirable.

3.2.4 Two-sample Kolmogorov-Smirnov (K-S) Test

We use two-sample Kolmogorov-Smirnov (K-S) test [61] to compare the statistical
similarity of the actual data with the reconstructed data. The K-S test is used to
determine whether two given one-dimensional sequences belong to the same proba-
bility distribution or not. The output of the K-S test is a p-value. A p-value lower
than or equal to 0.025 indicates that the given two sequences are not drawn from the
same probability distribution. However, a p-value higher than 0.025 indicates that the
given two sequences are statistically similar [87, 41]. Therefore, in our evaluation, we
divided the p-value into two regions namely Accepted (A) when the p-value is greater
than 0.025 and Not Accepted (NA) when the p-value is less than or equal to 0.025.

3.2.5 Dynamic Time Warping (DTW)

The K-S test can be used to see whether the generated sequence is statistically com-
parable to the original one, but it does not quantify the sequential similarity of the
reconstructed data. Therefore, to quantify the error against the actual data, we used
the Dynamic Time Wrapping (DTW) distance metric [103, 81]. This is a well-known
method used to measure the similarity between two given sequences which may vary
in speed [50, 81, 8, 98, 86]. A small value of the DTW test is considered good as it
shows that the given two sequences are close to each other. However, a large value
of the DTW test is considered bad as it indicates that the two given sequences are
not close to each other. Therefore, a lower value of DTW is desirable to consider the
reconstructed data similar to the actual data.

3.3 Experimental Results

In order to study and validate the presented methods, we compare both techniques
(PRs and MMs), using the described data sets, by evaluating the aforementioned
metrics (K-S, DTW and reduction improvement). Also, we compared our approach
against directly applying classical data compression mechanisms.

3.3. Experimental Results 21

Table 3.1: Average p-values of two-sample K-S test using
PR with different degrees and batch sizes for user CPU, mem-
ory free, context switches, and memory bandwidth hardware
metrics in Experiment 1. The Not Accepted values are de-

noted by the red line.

user cpu context switches
BS PR2 PR4 PR6 Pr8 PR10 BS PR2 PR4 PR6 Pr8 PR10
2 0.945 0.945 0.945 0.945 0.945 2 1 1 1 1 1
4 0.917 0.943 0.943 0.943 0.943 4 0.934 1 1 1 1
8 0.645 0.769 0.821 0.758 0.758 8 0.679 0.864 0.953 0.999 0.999
16 0.397 0.550 0.640 0.686 0.718 16 0.309 0.507 0.646 0.750 0.836
32 0.125 0.212 0.268 0.298 0.324 32 0.075 0.147 0.204 0.241 0.269
64 0.043 0.080 0.102 0.134 0.168 64 0.011 0.027 0.045 0.067 0.096
128 0.005 0.013 0.024 0.033 0.042 128 0.004 0.007 0.016 0.010 0.010
memory free memory bandwidth
BS PR2 PR4 PR6 Pr8 PR10 BS PR2 PR4 PR6 Pr8 PR10
2 1 1 1 1 1 2 1 1 1 1 1
4 1 1 1 1 1 4 0.989 1 1 1 1
8 0.991 0.998 0.999 1 1 8 0.826 0.914 0.974 0.988 0.988
16 0.924 0.952 0.967 0.974 0.976 16 0.500 0.684 0.831 0.873 0.901
32 0.725 0.814 0.849 0.857 0.870 32 0.210 0.389 0.473 0.515 0.544
64 0.468 0.555 0.637 0.695 0.725 64 0.063 0.132 0.215 0.297 0.371
128 0.217 0.293 0.363 0.404 0.429 128 0.012 0.022 0.047 0.075 0.103

3.3.1 Experiment 1: Data Reduction and Reconstruction Using Poly-
nomial Regression (PR)

In this first experiment, we calculated the data reduction obtained from using PR
models with different data batch sizes and different polynomial degrees. We then
evaluated the results using a two-sample K-S test to discard inappropriate solutions.
Finally, we computed the DTW distance to quantify the quality of the solution. This
evaluation is presented in the following subsections.

Two-sample K-S Test

Table 3.1 shows the results of a two-sample K-S test. First, we reconstructed the
data using the corresponding coefficients, intercept, polynomial degree, and batch
sizes for each PR model stored during the data reduction phase. Then, we apply the
two-sample K-S test to compute the average p-value for each telemetry measure. A
p-value lower than 0.025 is considered bad and does not reflect appropriate similarity
with the actual data. However, a p-value higher than 0.025 is considered acceptable
and reflecting the statistical feasibility of reconstructed data belonging to the same
distribution as the actual data [87, 41]. The Not Accepted (NA) values are denoted
by the red line in the table.

Most of the polynomial regression models reconstructed the data within an ac-
ceptable range. For example, for user CPU metric, only polynomial degree 2, 4, and 6
using batch size 128 reconstructed the data with not acceptable range, while all other
PR models yielded an acceptable range. In the case of context switch metric, all PR
models with batch size 128 reconstructed the data within not acceptable range, the
same was for PR2 with batch size 64 while all remaining PR models reconstructed
data within an acceptable range.

Data Reduction Percentage

Table 3.2 shows the data reduction percentage using PR models learned for different
polynomial degrees and batch sizes for Experiment 1. The negative values in the table

22 Chapter 3. Telemetry Reduction by Markov Chain Models

Table 3.2: Data reduction percentage using PR with differ-
ent polynomial degrees and batch sizes for Experiment 1. The
red line values are Not Accepted and taken from table 3.1.
The grey shaded negative values represent data growth.

Batch Size PR2 PR4 PR6 PR8 PR10
2 -42.86 -60.36 -77.66 -94.96 -129.43
4 -3.58 -43.35 -51.82 -60.51 -77.89
8 39.21 -3.15 -47.72 -69.19 -78.22
16 68.06 46.78 25.54 4.39 -18.92
32 82.95 75.64 69.69 65.95 60.43
64 90.08 84.90 78.62 74.28 67.39
128 93.08 91.80 90.11 87.18 86.26

show growth in data size instead of reduction. The negative values are observed due
to two reasons. First, whenever the batch size (i.e., the number of data points) is
smaller or equal to the polynomial degree used to fit the curve, it results in learning
more coefficients than the actual data points. Hence, the data size grows compared
to the original data. Second, sometimes the PR models coefficients consist of high
precision decimal values which required more spaces compared to the actual data
points. A higher polynomial degree model is very sensitive to the coefficient values
and rounding the coefficient values significantly changes the shape of the curve.

To understand the growth of data using PR models, consider PR6 with batch size
2 which increases the data by 77.66%. This is mainly due to the fact that for every
batch interval we need to store six coefficients and one intercept (seven data points
in total) while the actual data consists of only two data points. Therefore, we should
avoid fitting a curve on a batch size smaller than the polynomial degree used to fit the
data. Another case is to consider PR6 with batch size 8 in which data size increase
by 47.74% mainly due to the high precision of the coefficients.

We observed that PR models with large batch size and small polynomial degrees
help in reducing the telemetry data significantly. For example, batch size 64 with PR4
reduces data to 84.90%. However, such PR models may not regenerate the data with
good accuracy, specifically for bursty and noisy telemetry observations. Therefore, we
need to identify an appropriate combination of batch size and the polynomial degree
to reduce the data size with higher data reconstruction accuracy.

DTW Distance

Figure 3.5 shows the normalized average DTW distance for PR models learned using
different degrees and batch sizes for Experiment 1. The batch sizes without reduction
are denoted by NR and batch sizes which are in not acceptable regions are denoted
by NA. We observed that on large batch sizes the DTW distance increases and it
decreases by increasing the PR degree. We observed that on batch size 8, only degree
2 (PR2) is reducing the data with 98% accuracy. The accuracy of reconstructed data
at batch size 16 varies from 95% to 98% where it reduces to 70 to 80% at batch size
64.

Figure 3.6 shows the reconstruction of first 300 data points of PageRank workload
of our data set using different regression models trained on degree 2 with a lower
batch size (BS 8) and on degree 10 with a higher batch size (BS 64). We observed
that BS 8 with degree 2 yields better reconstruction even for spikes and burstiness
comparing to BS 64 but it only achieved 39.21% data reduction. However, BS 64 with

3.3. Experimental Results 23

N
R

N
R

N
R

N
R

N
R

N
R

N
R

N
R

N
R

N
R

N
R

N
R

N
R

N
R0.

02

N
R0.

020.
03

0.
030.

05 0.
080.
090.
100.
110.

14

0.
200.

22
0.

26
0.

30
N

A

N
A

N
A

N
A

N
A

N
A

0.0

0.1

0.2

0.3

2 4 8 16 32 64 128
Batch Size

N
or

m
al

iz
ed

 A
ve

ra
ge

 D

TW
 D

is
ta

nc
e

PR2 PR4 PR6 PR8 PR10

Figure 3.5: Normalized average DTW distance for teleme-
try measures using PR models trained on different batch sizes
and polynomial degrees for Experiment 1. (NR = Not Re-

duced, NA = Not Accepted)

degree 10 yields 67.39% data reduction, the K-S test is also acceptable but the DTW
distance for BS 64 model is higher than BS 8 model for all telemetry metrics. This
confirms that PR with a higher degree and larger batch size yields less accuracy in
reconstructed data.

3.3.2 Experiment 2: Data Reduction and Reconstruction Using Markov
Model (MM)

In this second experiment, we calculated the data reduction obtained from using
Markov Models with different data batch sizes and a different number of Markov
states. We then evaluated the results using a two-sample K-S test to discard inappro-
priate solutions. Finally, we computed the DTW distance to quantify the quality of
the solution. The following subsections present the evaluation results.

Two-sample K-S Test

Table 3.3 shows the results of the two-sample K-S test. Most of the Markov Models
reconstructed data are within the acceptable range except few such the reconstructed
user CPU metrics using the 2-state MM with a batch size of 128 are not within the
acceptable range. The reconstructed memory free metrics using MM models with
batch size 128 are not within the acceptable range. The results conclude the fact
that all reconstructed telemetry metrics are within the acceptable range when using
Markov Model with 2, 3 and 4 states and up to 64 batch size.

Data Reduction Percentage

Table 3.4 shows the data reduction percentage for different batch sizes with 2, 3 and 4
state MM. The negative values in the table show a data growth instead of reduction.
The negative values are observed whenever the number of data points learned as part
of MM model turns higher than actual data points.

We observed that large batch sizes and small state value yield higher data reduc-
tion. For example, batch size 64 with 2 states yields 92.81% data reduction. For

24 Chapter 3. Telemetry Reduction by Markov Chain Models

PR2−BS8 PR10−BS64 actual

0.0

0.5

1.0
user cpu system cpu

0.0

0.5

1.0
wait cpu idle cpu

0.0

0.5

1.0
mem free mem cache

0.0

0.5

1.0
context switches interrupts

0.0

0.5

1.0
L2 misses L3 misses

0.0

0.5

1.0

0 100 200 300

cycles per instructions

0 100 200 300

memory bandwidth

Time Interval

N
or

m
al

iz
ed

 R
es

ou
rc

e
U

sa
ge

Figure 3.6: Reconstruction of PageRank workload teleme-
try data using polynomial degree 2 with batch size 8 (PR2-
BS8) and polynomial degree 10 with batch size 64 (PR10-

BS64).

2 and 3 states MM, we start observing data reduction after batch size greater than
2. However, for 4 state MM, we observe data reduction for batch sizes greater than
4. Hence, the data reduction depends on the size of the transition probability ma-
trix and the state interval matrix. For example, we need 2 times 2 matrix to store
state transition probabilities and 3 data points to represent the state interval matrix.
Therefore, for 2 state MM, we need at least 7 data points to represent a given batch.
We observed 39% data reduction on batch size 4 when the original data points are 4
and MM data points are 7. The reason of this reduction is that some of the telemetry
metrics have at maximum 9 digits in their actual data e.g context switches, interrupts
whereas state transition probability matrix contains only counts of moving from one
state to another. Thus it requires less storage even if MM data points are higher
than the original batch size. This count is later converted into probabilities whenever
reconstruction is required.

DTW Distance

Figure 3.7 shows the normalized average DTW distance for Markov Models learned
using different degrees and batch sizes for Experiment 2. The batch sizes without
reduction are denoted by NR and batch sizes which are in not acceptable regions are

3.3. Experimental Results 25

Table 3.3: Average p-values of two-sample K-S test using
Markov Models (MM) with different states and batch sizes
for user CPU, memory free, context switches, and memory
bandwidth hardware metrics in Experiment 2. The Not Ac-

cepted (NA) values are denoted by red line.

user cpu context switches
BS 2MM 3MM 4MM BS 2MM 3MM 4MM
2 0.999 0.999 0.999 2 0.996 0.996 0.996
4 0.663 0.674 0.663 4 0.745 0.766 0.775
8 0.403 0.401 0.408 8 0.579 0.622 0.656
16 0.281 0.285 0.294 16 0.408 0.485 0.543
32 0.181 0.203 0.215 32 0.237 0.331 0.396
64 0.076 0.113 0.126 64 0.107 0.189 0.246
128 0.023 0.037 0.060 128 0.013 0.053 0.092
memory free memory bandwidth
BS 2MM 3MM 4MM BS 2MM 3MM 4MM
2 1 1 1 2 1 1 1
4 1 1 1 4 0.800 0.843 0.892
8 0.998 0.998 0.998 8 0.271 0.328 0.354
16 0.937 0.927 0.906 16 0.115 0.139 0.129
32 0.658 0.580 0.545 32 0.082 0.068 0.072
64 0.124 0.088 0.063 64 0.057 0.053 0.051
128 0.002 0.003 0.004 128 0.026 0.028 0.034

Table 3.4: Data reduction percentage using Markov Models
(MM) with different states and batch sizes. The red line
values are Not Accepted and taken from table 3.3. The grey

shaded negative values represent data growth.

Batch Size 2MM 3MM 4MM
2 -30.15 -106.06 -198.15
4 39.00 2.38 -42.06
8 70.05 53.08 31.50
16 83.09 75.13 63.77
32 90.28 84.64 79.38
64 92.81 91.30 87.30
128 93.95 93.16 92.16

26 Chapter 3. Telemetry Reduction by Markov Chain Models

N
R

N
R

N
R 0.
01 0.
020.
03

0.
03 0.

08

0.
08

0.
08

0.
200.
210.
22

0.
46

0.
460.
47

N
A

N
A

N
A

0.0

0.2

0.4

2 4 8 16 32 64 128
Batch Size

N
or

m
al

iz
ed

 A
ve

ra
ge

 D

TW
 D

is
ta

nc
e

2MM 3MM 4MM

Figure 3.7: Normalized average DTW distance for MM
trained on different batch sizes and states for telemetry mea-

sures. (NR = Not Reduced, NA = Not Accepted)

denoted by NA. We observed that on large batch sizes the DTW distance increases.
We also observed that on batch size 4, only 2-state MM model (2MM) is reducing the
data with 99% accuracy. The accuracy of reconstructed data at batch size 8 varies
from 97 to 98% and at batch size 16, it is 92% where it reduces to 53 to 54% at
batch size 64. The MM models do not show any effect on telemetry measurements
which do not contain spikes, bursts, or noise. For example, free memory (MEM
free) telemetry measurement of our data set does not have any effect on DTW using
different MM models trained on different MM states and batch sizes. Therefore, such
type of telemetry measurement can be reconstructed using a small number of MM
states.

Figure 3.8 shows the reconstruction of first 300 data points of PageRank workload
of our data set using different Markov Models trained using 2 states and a batch size
of 8 (2MM-BS8) and 4 states and a batch size of 64 (4MM-BS64). We observed that
BS 8 with 2 state MM reconstructed the data appropriately. However, with 4 states
model with batch size 64 does not show good reconstruction. The data reduction
using 2MM-BS8 model only reduces 70.05% data while 4MM-BS64 reduces 87.30% of
the data. The K-S test is also acceptable for both of these models while the DTW
distance for the BS64 model is higher than the BS8 for all telemetry metrics.

Using a small batch size (BS8) helps to capture the data patterns well including
spikes and burstiness compared to a large batch size (BS64). It shows that spikes
and noise in the original data cannot be well captured using larger batch sizes. For
example, system CPU had few spikes around 270 seconds in the actual data. These
spikes are well captured using batch size 8, however batch size 64 does not capture
these spikes well. The reason for this behavior is mainly due to the fact that MM
depends on the state transition matrix which contains the probabilities of moving
from one state to another. Therefore, if there is burstiness in a specific batch then
the probability of having burstiness remains for the whole batch interval. Thus the
performance of the MM method in data reconstruction is not always robust using
large batch size. We conclude that, if data contains spikes and burstiness then we
should use smaller batch sizes with MM method. However, if we can detect that data
does not contain spikes and burstiness then we can use higher batch sizes with MM
method. This behavior is well observed in memory free and memory cache telemetry
metrics presented in Figure 3.8.

3.3. Experimental Results 27

2MM−BS8 4MM−BS64 actual

0.0

0.5

1.0
user cpu system cpu

0.0

0.5

1.0
wait cpu idle cpu

0.0

0.5

1.0
mem free mem cache

0.0

0.5

1.0
context switches interrupts

0.0

0.5

1.0
L2 misses L3 misses

0.0

0.5

1.0

0 100 200 300

cycles per instructions

0 100 200 300

memory bandwidth

Time Interval

N
or

m
al

iz
ed

 R
es

ou
rc

e
U

sa
ge

Figure 3.8: Reconstruction of PageRank workload teleme-
try data using 2 state Markov model with batch size 8 (2MM-
BS8) and 4 state Markov Model with batch size 64 (4MM-

BS64).

28 Chapter 3. Telemetry Reduction by Markov Chain Models

−200

−100

0

100

2 4 8 16 32 64
Batch Size

Pe
rc

en
ta

ge
 A

ve
ra

ge
 D

at
a

R
ed

uc
tio

n

MM PR

Figure 3.9: Comparison of average data reduction percent-
age using Polynomial Regression (PR) and Markov Models

(MM) methods for telemetry data reduction.

3.3.3 PR and MM Comparison

To compare the PR and MM methods, we compute the average percentage data re-
duction and the average DTW distance for all settings (polynomial degrees and states)
of these methods on different batch sizes. In this section, we show the comparison of
PR and MM methods for data reduction and reconstruction.

Figure 3.9 shows the average data reduction on different batch sizes for all settings
using PR and MM methods. In average, the batch sizes less than 8 do not yield any
data reduction but instead they cause data growth. However, a significant gain of
51.54% is observed using MM method on batch size 8 compared to 31.81% for the PR
method. For batch sizes higher than 8, MM always outperforms PR in data reduction.

Figure 3.10 shows the average normalized DTW distance for PR and MM method
on different batch sizes. In average, the batch sizes less than 16 yields very low DTW
distance, less than 0.2, for both PR and MM methods which reflects a good similarity
of the reconstructed data with the actual data. For large batch sizes e.g., 32 and 64
the PR method outperforms MM in data reconstruction.

Large batch sizes reduce data significantly, however, they perform poorly in data
reconstruction similarity. Therefore, from Figures 3.10 and 3.9, we conclude that
batch size 16 is appropriate to use with both PR and MM methods because we obtain
25.17% and 74% average data reduction for both PR and MM respectively with DTW
distance below 0.2 for both methods. However, we prefer to use MM model mainly
due to higher data reduction on batch size 16 although PR method has slightly better
DTW.

3.3.4 Data Reduction Using ZIP Compression

After comparing the two proposed methods, we evaluate them against the usage of
classic lossless compression methods such as ZIP algorithms. We compared the ZIP
algorithm on raw data with applying the ZIP algorithm on the reduced data to see
the improvement or overheads.

Figure 3.11 shows the comparison of data reduced using MM (MM Reduced) and
with the data obtained after applying ZIP compression on the reduced data (MM

3.3. Experimental Results 29

0.00

0.25

0.50

0.75

1.00

2 4 8 16 32 64
Batch Size

N
or

m
al

iz
ed

 A
ve

ra
ge

 D
TW

 D
is

ta
nc

e
MM PR

Figure 3.10: Comparison of normalized DTW distance for
data reconstruction using Polynomial Regression (PR) and

Markov Models (MM) methods.

−100

−50

0

50

100

2 4 8 16 32 64
Batch Size

Pe
rc

en
ta

ge
 A

ve
ra

ge
 D

at
a

R
ed

uc
tio

n

MM Reduced MM Reduced and Compressed

Figure 3.11: Comparison of MM Reduced data with MM
Reduced and Compressed data. The MM Reduced is the
data obtained by applying MM method and MM Reduced
and Compressed is the data obtained after applying ZIP com-
pression on the reduced data obtained from MM reduction

method.

30 Chapter 3. Telemetry Reduction by Markov Chain Models

Reduced and Compressed) for different batch sizes. We observed the most significant
data reduction due to ZIP compression in lower batch sizes particularly 2, 4, and 8.
This is because, the reduced data contains the count of transition in the transition
matrix which is either 0 or 1 in case of 2 states, 0, 1 or 2 in case of 4 states and 0 to
7 in case of 8 states. However, most of the values in these matrices consist of 0 due
to no transition from one state to other, hence the zip compression further reduces
the data. After batch size 32, we observed that the difference between MM Reduced
and MM Reduced Compressed data is less than 8% on average. The maximum data
reduction with zip compression is observed with 2 state MM model which is 98.24%
on batch size 64. The ZIP compression helps to further reduce the data but for large
batch sizes the effect of ZIP compression is not significant.

0

25

50

75

100

2 4 8 16 32 64
Batch Size

Pe
rc

en
ta

ge
 A

ve
ra

ge
 D

at
a

R
ed

uc
tio

n

2MM 3MM 4MM Raw Compressed

Figure 3.12: Comparison of ZIP compression on raw data
and ZIP compression on data reduced using MM method.

Then, using a standard lossless ZIP compression algorithm as a baseline, Fig-
ure 3.12 shows the comparison of ZIP compression on the raw data with the reduced
and compressed data (MM Reduced Compressed) using MM method on varying batch
sizes. By just applying ZIP compression on the row data, we achieved 1.88% to 75.02%
data reduction for batch size 2 to 64, However our proposed solution yields reduction
from 76.95% to 96.48% with 2 and 4 state MM model from batch size 2 to 64 respec-
tively.

3.3.5 Bandwidth Reduction using MM

Table 3.5 shows the bandwidth utilization reduction percentage using the proposed
solution with 2, 3 and 4 state MM for telemetry data collection within the data center.
We consider 4 bytes float data type to represent the value of actual data and state
interval matrix. We observed that for the highest acceptable batch (batch size 64),
the state transition matrix could have a maximum value of 63 as it contains the count
of transition from one state to other. This type of data can be sent using one byte
over the network which reduces the bandwidth utilization significantly. Moreover,
higher batch sizes provide a notable reduction in bandwidth utilization within the
data center. For example, batch size 32 and 64 yields significant bandwidth reduction
varying from 71.88% to 93.75% for different number of MM states.

3.4. Benefits of the Proposed Solution in Different Data Centers 31

Table 3.5: Percentage bandwidth reduction within data
center using MM method.

Batch Size 2MM 3MM 4MM
2 -100 -212.50 -350
4 0 -56.25 -125
8 50 21.88 -12.50
16 75 60.94 43.75
32 87.50 80.47 71.88
64 93.75 90.23 85.94

Table 3.6: Comparison of Raw and Reduced Storage (GB)
for 30 days and Bandwidth (Kbps) using 2-State MM with

batch size 16.

Data Center
Type Total Racks

Nodes
per
Rack

Total
Telemetry
Sources

30 days Storage (GB) Bandwidth (Kbps)

Raw
Uncompressed Compressed Reduced

Compressed

Raw
Uncompressed

at Rack

Reduced
at Rack

Raw
Uncompressed
at Datcenter

Reduced at
Data Center

small 100 30 300,000 5,793.57 1,158.71 270.56 187.50 46.88 18,750 4,687.50
medium 250 40 1,000,000 19,311.90 3,862.38 901.87 250 62.50 62,500 15,625
large 500 60 3,000,000 57,935.71 11,587.14 2,705.60 375 93.75 187,500 46,875

3.4 Benefits of the Proposed Solution in Different Data
Centers

Typical telemetry metrics consist of hardware performance counters up to a hundred
events [113] related to CPU, memory, network, disk, temperature, etc. In this section,
we study the effect on bandwidth utilization and storage space using the proposed
solution to monitor and collect the telemetry data in the different sizes of data centers.
We considered three different data centers namely small, medium, and large in which
we assume that 100 different telemetry metrics are collected from each computing
node after a discrete time intervals. A typical telemetry metric takes 8 Bytes to store
the information including the timestamp. We selected 2 state MM model with batch
size 16 as our purposed solution because we achieve 95.33% of reduction in storage,
75% of reduction in bandwidth with 92% of accuracy and Figure 3.13 shows the
comparison of percentage storage space required for raw uncompressed, compressed
and reduced compressed data and it also shows the percentage bandwidth utilization
for raw uncompressed and reduced data for the purposed solution.

Table 3.6 shows the storage and bandwidth reduction for all three types of data
centers and highlights the merits of the proposed solution. A small data center with
3000 computing nodes which are deployed on 100 racks. Where each rack hosts 30
computing nodes. To store one day of telemetry data we require 193.11 GB storage,
and in a month that storage requirements increase to 5.65 TB. To store one day of
telemetry data on a medium sized data center, e.g. counting with 10K computing
nodes, deployed on 250 racks (considering 40 nodes per rack), we require 643.73 GB
storage, and in a month the storage requirements increase to 18.85 TB. Similarly, for
a large data center, e.g. with 30K computing nodes deployed on 500 racks, we will
require 1931.19 GB storage space for one day, and in a month the storage requirements
increase to 56.57 TB.

The proposed method of 2-state Markov Model with a batch size of 16 reduced
the storage requirement to 0.26, 0.88, and 2.64 TB for small, medium and large-scale
data centers respectively with a 92% reconstruction accuracy. The actual rack level
bandwidth utilization for small, medium and large data centers are 187.50, 250, and
375 Kbps respectively which are significantly reduced to 46.88, 62.50, and 93.75 Kbps.

32 Chapter 3. Telemetry Reduction by Markov Chain Models

0

25

50

75

100

Storage Bandwidth

U
tli

za
tio

n
(%

)

Compressed Raw Uncompressed Reduced Reduced Compressed

Figure 3.13: Comparison of storage usage percentage for
raw uncompressed, compressed and reduced compressed (left
side). Comparison of bandwidth utilization percentage for

raw uncompressed and reduced data (right side).

Similarly, the actual data center level bandwidth utilization for small, medium and
large sizes are 18750, 62500 and 187500 Kbps respectively. Our purposed system re-
duces this bandwidth utilization to 4687.50, 15625, and 46875 Kbps for small, medium
and large-scale data centers respectively.

3.5 Related Work

There have been several efforts to reduce exponentially growing digital data for effi-
cient management [59, 72, 44, 111, 121, 114, 24, 128]. Different methods were proposed
including dimensionality reduction, forecasting models, and compression methods. For
example, Bhuiyan et al. [9] proposed an IoT framework for event detection and data
reduction at data collection time which helps to minimize data transmission across the
network and also reduces energy consumption. The proposed framework detects fire
events using sensors and rule-based methods. Wu et al. [125] developed a dictionary-
based compression technique to split the incoming numeric data stream into fixed
size blocks and compares them with the already stored blocks using Kolmogorov-
Smirnov (K-S) statistical test to measure the similarity. When they identified any
existing block similar to the incoming new block, they discarded the incoming block
and kept a reference of the old block to be able to regenerate the data, thus helping to
significantly reduce the required storage. Another work by Egri et al. [37] use dimen-
sionality reduction of multidimensional time series data. Their approach introduces
graph-based clustering using the cross-correlation between the time series data. The
authors focus on identifying connections among various performance metrics in order
to reduce the number of performance metrics to track.

A recent work [91] uses a correlation-based method to reduce the data center’s
monitoring data. The authors identify the correlation between different measurement
metrics using Bayesian Network models learned from historical data and proposed
to use linear regression between correlated metrics. Bayesian Network models are
directed acyclic graphs (DAG) showing the relationship between metrics in the form of
dependant and independent metrics. In this method, the authors reduce the sampling
rate of dependent metrics and predict them using linear regression for a given duration
which helps to reduce the data at the data collection stage. Another recent work by Yu

3.6. Final Considerations 33

et al. [130] proposed a method to reduce data sent by edge nodes of IoT devices to the
cloud for reducing data transmission time. The method modeled the incoming data
as multivariant normal distribution and used Kalman filter to predict mean vector
and covariance matrix of the distribution. Both the edge nodes and cloud predict the
same values using identical Kalman filters. If the predicted data at both ends do not
meet the confidence interval then data is uploaded from fog to cloud layer otherwise
predicted values are used which helps to reduce the data movement from fog to cloud
layer.

A most recent work [80] in data reduction addresses the problem of transmitting
data in smart energy metering infrastructure. The authors proposed a framework
to monitor data of energy consumption using smart meters and then aggregate the
data for a fixed batch intervals. Then use an already learned forecasting method to
compare the new data. If the new data is comparable with the forecasting model then
the new data is not sent to the cloud. However, if the forecasting model and the new
data are different then they send the data to the cloud and also update the forecasting
method. The proposed system is adaptive according to incoming data as it does not
rely on a single forecasting method rather it changes its method to suit the current
data. However, this work does not address the data storage requirement optimization
and only focuses on one dimensional energy consumption data.

Most of the existing works are based on either dimensionality reduction, forecasting
models, or compression methods to reduce data. Our work proposes a novel Markov
chain-based telemetry data reduction and reconstruction system to efficiently reduce
network bandwidth utilization and storage space.The data reduction is performed in
real-time without reducing the dimensions of input telemetry streams and without
using forecasting models that need to update or change whenever input streams are
changed. The proposed Markov Chain Models reduce the input data significantly
without updating the model. Moreover, our purposed system performs more reduction
compared to dictionary based ZIP compression methods. Other monitoring tools
such as Ganglia [78] uses round robin database (RRD) which is a circular buffer
based database. The disadvantage of these types of databases is that they drop the
old data as new arrives. Moreover, an RRD file may contain multiple round robin
archives(RRA) and the resolution of data in each archive is different, thus loosing the
precision and details whereas, in our proposed solution, the resolution remains same
for all the historical data and without dropping the old data. As Markov models
are one of the simplest methods as compared to others (dimensionality reduction or
forecasting methods), the overhead of converting batches into models requires very
low computation as it involves only counting the transitions and does not require
heavy training or updating the models which usually require in forecasting models.
To the best of our knowledge, the current state of the art methods does not perform the
reduction in real-time for data centers telemetry streams using Markov Chain Models.
We investigate the use of Markov Chain Models and compare it with Polynomial
Regression and ZIP compression with different settings to reduce the data significantly
and reconstruct the data with high accuracy for data centers telemetry streams.

3.6 Final Considerations

Typically, data centers are being monitored continuously to provide better services
to end users and this continuous monitoring of data centers generate a huge amount
of telemetry data. The magnitude of telemetry data generated within data centers
increases the storage space and bandwidth utilization requirements which is hard to

34 Chapter 3. Telemetry Reduction by Markov Chain Models

manage with the passage of time. Therefore, we require new algorithms, tools and
systems to manage the dramatically growing data. This chapter introduces a novel
method to reduce the bandwidth utilization and storage space requirement based on
Markov Chain Models. The experimental results show that the proposed method beats
the results of baseline method in which polynomial regression is used to reduce the
telemetry data. The PR method takes more storage space due to the high precision
of coefficients. This chapter also evaluated the effect of different batch sizes, the
number of states in markov model and degree in polynomial regression. The results
show that telemetry data can be significantly reduced with large batch sizes however
this affects the reconstruction accuracy. Therefore an appropriate selection of batch
size is necessary and we analyzed that 2-state MM model with batch size 16 can
reduce the 95.33% storage space and 75% bandwidth utilization with 92% accuracy
using the proposed solution. Moreover, we can obtain similar reduction for other
data sets also as this technique is not dependent on the selected data set because in
our proposed solution, we are only storing count of transitions with state boundaries
instead of actual data. For future work, we are focusing on adaptively identifying the
batch size and the number of states in MM to further reduce space and increase the
reconstruction accuracy. We also plan to use one Markov Model per metric at the
data center level for recurring workloads having similar resource usage requirements.

35

Chapter 4

Telemetry Prediction by Adaptive
Prediction Models

This chapter introduces the method which dynamically selects the best prediction
model for estimating and forecasting cloud resource utilization for a given recent time
window of observed resource utilization based on time series features as the second
contribution of this Ph.D. thesis. Efficient methods for estimating resource utiliza-
tion in data centers can significantly ease self-management and usage optimization for
both users and providers. Users can dynamically adjust the leased resources to min-
imize costs for hosting their applications while maintaining the desired performance
and service quality [52]. Further, accurate estimates of resources utilization enable
the providers to efficiently allocate virtual machines (VM) and other virtual resources
to workloads, migrate VMs to consolidate or balance resource usage [126, 36], plan
in advance resource capacities [112, 17], also take awareness of energy requirements
in advance for expected workloads and users [90, 67]. In this chapter, we focus on
classical machine learning approach. The resource utilization of data centers is a low
dimensional data, and traditional machine learning methods can be effectively used
for estimations. We propose a novel adaptive model selector method, to dynamically
identify the best prediction method for estimating resource utilization of data cen-
ters, from a bag of trained methods with different characteristics and accuracy over
different data center behaviors. The data center telemetry contains burstiness behav-
ior which represents sudden spikes and peaks of resource utilization. In general, it
is challenging to predict the burstiness behavior, and we address this issue with the
help of an adaptive selection of an appropriate prediction method at every estimation
step. After some experiments and model selection, we chose Random Decision Forests
(RDF) as the best mechanism for learning the expected accuracy for each candidate
predictor.

Our proposed method trains on the statistical features of historical resource uti-
lization and predictor correctness for sliding windows of a specific size, to identify
which predictor will produce the best forecast given the current resource utilization.
We evaluate our method by comparing its decision and forecasting capabilities with
baseline methods, using data sets from Alibaba and Bitbrains monitored data centers.
Results show that the proposed method outperforms the baseline methods for both
of the data sets. Notice that in this work we focus on CPU resource consumption as
the primary resource on high-performance computing data centers, but our solution
can be used to predict utilization of all system resources. Moreover, we evaluated the
proposed solution with data centers however our solution is generic enough and it can
be applied to other types of workloads with minimal changes.

To test and validate our selective multi-method approach, we have conducted
experiments using the Alibaba [3] and Bitbrains [11] data center utilization data
sets, comparing them to baseline methods, also against single method approaches.

36 Chapter 4. Telemetry Prediction by Adaptive Prediction Models

20

25

30

35

40

CP
U

(%
)

20

25

30

35

40

20 40 60
Time (minutes)

30

35

40

45

50

CP
U

(%
)

20 40 60
Time (minutes)

0

5

10

15

20

25

Actual GBT SVM LR KR

Figure 4.1: CPU estimation using different methods and
scenarios for Alibaba data set. Different predictors yield bet-

ter estimation, each for different scenarios.

The baseline methods used are well-known machine learning methods used by cur-
rent state-of-the-art approaches, like Linear Regression (LR), Support Vector Ma-
chines (SVM), Gradient Boosting Tree (GBT) and Gaussian Process also known as
Krigin (KR). Figure 5.2 shows the motivation to adaptively select an appropriate
method to estimate resource utilization for different scenarios effectively. The figure
shows CPU utilization estimations using different methods for Alibaba data set of
four different machines. Each estimation method is trained using 55 minutes time
interval data and estimated the utilization for the next 5 minutes. We observed that
different predictors yield better estimation, each for different scenarios, on forecasting
resource consumption. Therefore, building a system able to identify the best predictor
for forecasting resource utilization at each time segment becomes attractive.

The main contributions of this chapter are as follow:

• A novel method to dynamically select the best prediction model for estimating
and forecasting cloud resource utilization for a given recent time window of
observed resource utilization.

• A comparison of different baseline models, currently used in the state-of-the-art,
as candidate models for resource utilization estimation, aside of validation for
the presented approach.

• Analyze the impact of different window sizes on the proposed resource estimation
systems.

4.1 Proposed System Overview

The overall proposed system is illustrated in Figure 4.2. Different steps are numbered
and labeled to explain the working flow of the system. The system work in the
following steps:

4.1. Proposed System Overview 37

..... 26.7 15.5 18.0 12.0

Historical Resource Utilization

Interval F1 F2 F3 ... Fm Method

t 2.45 3,56 0.067 45.65 KR

t-1 3.76 2.22 0.044 5.76 SVM

t-2 1.45 7.45 0.01 ... 4.89 GBT

....

Resource
Utilization
Predictor

9. Predicted resource utilization
for next interval

Current Testing Window

Prediction
Methods

Feature
Extractor

LR

SVM

KR

GBT

.......

.......

.......

.... 60.1 25.5 19.3 20.0 18.7 11.9 45.3

t
t-1

t-2
1. Identify best

prediction method

3.Best prediction
method name

2. Extract features

4. Feature vector

Tr
ai

ni
ng

 D
at

as
et

5. Learn classifier to identify best
prediction method

Adaptive Model
Selector

Number of Trees = 50

Feature
Extractor

6. Extract
features

7. Feature
vector

8. Best prediction
method name

A
da

pt
iv

e
Pr

ed
ic

tio
n

M
et

ho
d

Le
ar

ni
ng

R
es

ou
rc

e
U

til
iz

at
io

n
Pr

ed
ic

tio
n

Figure 4.2: Purposed system overview to learn adaptive
model selector and using it to estimate the data center re-

source utilization.

38 Chapter 4. Telemetry Prediction by Adaptive Prediction Models

• Historical resource utilization logs of the data center are divided into sliding
windows of a fixed size consists of the last k intervals. Then each sliding window
data is used to fit different prediction models including Linear Regression (LR),
Support Vector Machine (SVM), Kriging (KR), and Gradient Boosting Tree
(GBT) to predict the next interval resource utilization. The system selects
the prediction method yields a minimum prediction error for the given sliding
window data.

• For each sliding window, the system identifies a specific set of features as ex-
plained in Section 4.3.

• The selected features and identified prediction methods are logged as training
data. For each historical sliding window, the training data set contains the
corresponding feature vector and the best prediction method.

• Once training data is prepared, the system builds a classifier using Random
Decision Forest (RDF) to predict the best model for a given sliding window
data. We call this classifier “Adaptive Model Selector”. We explain this in
Section 4.2.2.

• Once the Adaptive Model Selector is trained than the system predicts the data
center resource utilization in real time. For the current time interval t, system
select last k observation to extract features and then use the Adaptive Model
Selector to identify the best prediction method to predict the resource utilization
for the t+ 1 time interval.

• The selected prediction method is used to train a regression model using the last
k interval’s observed resource usage data to estimate the resource utilization for
the t+ 1 future time interval.

4.2 Machine Learning Methods

In this work we use Machine Learning (ML) techniques for two main purposes: first,
predict future workload behaviors and traces; second, from a set of ML methods and
a context, choose one that predicts the workload better. The work presented here
focuses on different algorithms for regression used to predict the workload, while a
trained decision maker selects at each time a regression model that is expected to
produce the most accurate prediction.

4.2.1 Workload Prediction Methods

In order to predict future workload features, we explore a diversity of Machine Learn-
ing techniques commonly used in the literature, ones more complex than others with
different properties each . The learned regression models are to predict our target
variable which is next data point in time series from known input features [118] such
as skewness, standard deviation, kurtosis, autocorrelation for different lags, absolute
sum of changes, and others. As the data we are dealing is in the form of a time
series, evaluation of prediction must be based not just on accuracy but also on the
significance of results which is often a difficult problem on regression analysis.

Our presented methodology shows a multi-model approach, where different models
are trained, each one with a different set of strong and weak properties. The models
are applied to a dynamic window to predict future interval workloads. The studied
models for workload prediction are: Linear Regression, Support Vector Machines

4.3. Feature Extraction and Selection 39

Maximum

Minimum

Mean

Median

Number of peaks

Figure 4.3: Example of time series features that are ex-
tracted from TSFRESH [23] library. These features consist
of statistical and time series features such as minimum, max-
imum, variance, standard deviation, number of peaks, auto-
correlation at different lag intervals, entropy, kurtosis, skew-
ness, fourier transformation, mexican hat wavelet transfor-

mation, and etc.

for regression, Gradient Boosting, and Gaussian Process Regression and discussed in
detail in section 2.4.

4.2.2 Adaptive Model Selector (AMS)

On multi-model methodologies, different regression models produce predictions alto-
gether, and a trained expert system decides which prediction is followed, or how they
are aggregated into a final prediction. Such a trained expert can be a machine learning
model, like in Boosting methods. In our proposed solution, before producing workload
predictions, we use a trained decision maker to choose the best predictor to be used.
The decision maker will classify each scenario into the best-expected predictor for it.

Our decision maker input will be features [118] such as skewness, standard devia-
tion, kurtosis, autocorrelation for different lags, the absolute sum of changes, etc., and
it will output the regression method which is expected to be the best. At each time
step, the decision maker predicts the best regression model and then produces the
workload prediction using the predicted regression model. In section 2.4, we present
the different classification models studied in this work.

4.3 Feature Extraction and Selection

Appropriate features can play an important role to improve the prediction accuracy
of machine learning models. In our data set, the resource utilization of data centers
is available as a time series data. We explore multiple ways to extract time series
features from the given data set which includes manual extraction, automatically
extraction by the help of open source libraries such as Cesium [18], TSFRESH [23].
However we selected TSFRESH as it provides us most useful and a comprehensive
set of time series features which is not available in any other library. Time Series
Feature extraction based on scalable hypothesis tests (TSFRESH) [23, 45] is an open-
source Python library available to extract features for a given time series data. In

40 Chapter 4. Telemetry Prediction by Adaptive Prediction Models

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99100
Machines

0

10

20

30

40

50

60

CP
U

Ut
iliz

at
io

n
(%

)

Figure 4.4: Box plot of CPU utilization for randomly se-
lected 100 machines from Alibaba data set.

our proposed system, we used TSFRESH to extract features for data center resource
utilization data available as time series. TSFRESH automatically calculates a large
number of time series characteristics based on scalable hypothesis tests.

Figure 4.3 shows some of the features that TSFRESH extracts for the given time
series data. It provides hundreds of statistical and time series features including min-
imum, maximum, variance, mean, standard deviation, sum of values, autocorrelation
of the specified lags, measure of non linearity in the time series, Mexican hat wavelet,
first and last location of minimum and maximum, number of peaks, quantile, and
sample entropy etc. However all of these features are not necessary, and appropriate
features should be identified to improve the performance of machine learning meth-
ods [49, 20].

The proposed system filters the features obtained from TSFRESH using another
open-source library available for feature selection [40]. We selected this library because
it includes a comprehensive set of functions to filter the features by using different
approaches to identify the most appropriate features for time series classification. The
library provides five different methods to filter features for missing values, single
unique values, collinear features, zero importance features, and low importance
features. However, in our proposed system, we only used three methods to filter the
features obtained through TSFRESH. First, we apply three methods to filter the fea-
ture. First, we apply single unique value method which remove the features with
identical unique values. Second, we apply identify collinear which remove the fea-
tures which are highly correlated with one another. We used 98% correlated threshold
in this method to ensure only remove the features which correlated 98%. Finally, we
apply zero importance features which uses Gradient Boosting Machine (GBM)
learning model to identify the features which have zero importance for the given set
of features. After applying these methods, we obtain one hundred and six features
in total which include standard deviation, kurtosis, skewness, absolute some of the
changes, auto-correlation at different lags, partial auto-correlation at different lags,
the first location of minimum, linear least-squares regression[71], and many others.

4.4 Experimental Evaluation

In this section, we explain the data sets used to evaluate our proposed method, the
details about the experiments used to validate it, the baseline methods used for com-
parison, and the used evaluation metrics.

4.4. Experimental Evaluation 41

1 2 3 4 5 6 7 8 9 1011121314151617181920
Machines

0

20

40

60

80

100
CP

U
Ut

iliz
at

io
n

(%
)

Figure 4.5: Box plot for Bitbrain data set of 20 randomly
selected VMs for one-day data.

M1 M2 M3 M4
Machines

0

20

40

60

80

CP
U

Ut
iliz

at
io

n
(%

)

Figure 4.6: Box plot for CPU utilization of selected four
machines with different characteristics from the Alibaba data
set. M1=high load, M2=low load, M3=high variation, and

M4=low variation.

42 Chapter 4. Telemetry Prediction by Adaptive Prediction Models

4.4.1 Data sets

Alibaba data set

The first data set we use is the Alibaba cluster logs [3], publicly available, containing
performance traces of 1,313 machines for 12 hours duration. The Alibaba monitored
cluster provides interactive services and batch processing workloads. The metrics
represented are CPU, memory and disk utilization for all machines, aggregated on
5-minute averages. For simplification purposes, we are focusing on and experimenting
with CPU time series. The average CPU utilization in the Alibaba data set is 26.46%,
with a standard deviation of 10.66% CPU. Figure 4.4 shows a CPU utilization sample
for 100 randomly selected machines from the data set.

BitBrains data set

The second data set we use is the Bitbrains data set [11], publicly accessible, containing
performance logs of 1,750 VMs for 30 days of data. The Bitbrain monitored cluster
provides interactive services and batch processing workloads. The metrics represented
are CPU, memory, network and disk utilization for all the virtual machines, aggregated
on 5-minute averages. From this data set, we randomly selected 20 VMs with average
CPU utilization greater than 30%, as most of the VMs with low usage do not show
critical metric patterns or utilization tends to be constant on the lowest part of the
spectrum demand. Figure 4.5 shows the box-plot for one-day data of the average CPU
utilization for the selected machines.

Google data set

The Google cluster traces [48] are the publicly available traces published by Google.
To create the CPU and the Memory utilization, the tasks of each job were aggregated
by summing their CPU and Memory consumption every five minutes in a period of
24 hours. The dataset was extracted over the first ten days period by filtering the
utilization of CPU and memory from 5 to 90 percent, resulting in a total of 1,600
VMs [83]. We randomly selected 500 VMs from this data set for the experiments
and the average CPU utilization in the selected data set is 21.89%, with a standard
deviation of 3.63% CPU.

4.4.2 Methodology

For the current experiments, we are using the Alibaba data set to show a comprehen-
sive evaluation of the proposed solution. Whereas, the BitBrains data set is used for
testing to show that the proposed methodology does not over-fit to the primary data
set (Alibaba).

To train and validate the machine learning models in the AMS classifier, we are
using a random split of 80% data for training, and the remaining 20% for validating
the models. The model is trained offline with 80% of data. The test data also includes
the four machines which are discussed in the following paragraph.

As applications running on data-centers can have different profiles, we selected
four machines from the Alibaba data set with very distinct CPU demands, to test
the resource estimation on different demand behaviors. Figure 4.6 shows the box-
plot of CPU utilization of the four selected machines: Machine M1 serves a workload
demanding high CPU resources; machine M2 serves a workload requiring low CPU

4.4. Experimental Evaluation 43

resources; machine M3 serves a workload requiring CPU resources with highly fluc-
tuating demand; and finally machine M4 serves a workload requiring CPU resources
with low fluctuating demand.

Our proposed solution is then compared with the aforementioned baseline meth-
ods, proposed by Liu et al. [73], using Linear Regression (LR) and Support Vector
Machines (SVM) methods to estimate adaptively CPU utilization of VMs. The com-
bination of the two methods, LR for the slow-changing workloads and SVM for the
fast-changing ones, are here labeled as “Liu” method. In addition, we also add the
methods namely LR, SVM, Kriging (KR) and Gradient Boosting Tree (GBT) to con-
sider for comparison with ours.

4.4.3 Experimental Details

Adaptive Model Selector Evaluation

The Adaptive Model Selector (AMS) is in charge to estimate which of the available
ML algorithms will provide better modeling for the current data being monitored. We
performed a set of experiments to evaluate different methods to make such estimation
by comparing different classifiers namely Random Decision Forest (RDF), Gradient
Boosting Tree (GBT), Multi-layer Perceptron (MLP), K-Nearest Neighbors(k-NN),
Gaussian Naive Bayes (NB), and Support Vector Machine (SVM) with linear kernel.
These classifiers are trained and validated using the Alibaba data set. We trained all
classifiers on 80% of the entire Alibaba data set and then tested on the remaining 20%
data to compare and identify the best classifier to used in AMS.

Training and validation data will be structured in time windows, as explained
in Section 4.4.3. The classifiers are evaluated through True/False Positive Rates
(TPR and FPR), accuracy, recall, f-measure, and precision. We also consider the
performance of the AMS by measuring the training time, prediction time, and the
size of the model on disk.

Resource Estimation Evaluation

Finally, when integrating the different techniques of model selection and resource mod-
eling, we perform a set of experiments to evaluate the resource estimation using our
proposed adaptive ensemble. The final goal is to identify, on-line, the best regression
method that will build a prediction model for estimating the resource utilization of
the next future interval, given the current monitored data.

As this problem is a regression one, we evaluate the complete mechanism using
the Root-Mean Square Error (RMSE) as shown on Equation 4.1 to show how our
method deviates from the truth, also the Mean Absolute Error (MAE) as shown on
Equation 4.2 to show the absolute magnitude of the produced error. Here at is the
true CPU utilization and pt is the estimated CPU utilization at time interval t, and
n is the number of performed estimations.

RMSE =

√∑n
t=1 (at − pt)2

n
(4.1)

MAE =
1

n

n∑
t=1

|at − pt| (4.2)

44 Chapter 4. Telemetry Prediction by Adaptive Prediction Models

Table 4.1: AMS evaluation results using different classifiers
for Alibaba data set.

Classifier TPR FPR TNR FNR Precision Recall F-measure Accuracy
KNN 0.62 0.11 0.88 0.37 0.65 0.65 0.65 0.65
NB 0.33 0.22 0.77 0.66 0.38 0.31 0.29 0.31
RDF 0.65 0.10 0.89 0.34 0.68 0.68 0.68 0.68
GBT 0.48 0.16 0.83 0.51 0.55 0.53 0.51 0.53

Table 4.2: Time and space efficiency of AMS using different
classifiers for Alibaba data set.

Classifier Training
Time (sec)

Prediction
Time (sec)

Prediction Time
per Request (ms) Size (KB)

KNN 3.23 593.61 17.017 255283.2
Naive Bayes (Guassian) 0.59 0.13 0.004 7.5
RDF 57.43 0.51 0.015 201523.2
GBT 186.45 0.28 0.008 140.9

Again, training and validation data will be structured in time windows (Sec-
tion 4.4.3), and then for each sliding window, we use the AMS to identify the best
regression method to estimate the resources for the following intervals.

Window Size Sensitivity

A specific observation window size is required to train the AMS. In this experiment, we
evaluate the effect of different window sizes on the proposed solution by quantifying the
estimation error using Alibaba dataset. We tested window sizes of 20, 40, 60, 80 and
90 minutes of data to train and validate the proposed solution for resource estimation.
To segment the data set into training/validation sets, we performed a random split
80%/20%. We organized the training data into windows of the aforementioned sizes,
and evaluate the models and ensemble, using the RMSE and MAE metrics to quantify
the effect of each different window size.

4.5 Experimental Results

4.5.1 AMS Evaluation

The Adaptive Model Selection method is evaluated through the aforementioned qual-
ity metrics for different classifiers, and check not only accuracy but also the perfor-
mance requirements for each, like time for training and predicting, and size of the
resulting model. The hyperparameters used for each classifier are tuned using grid
search.

Table 4.1 shows the evaluation results of the AMS using the selected features of
the raw data set to identify the best prediction method for CPU resource utilization
estimation using Alibaba data set. The AMS is evaluated by true positive rate (TPR),
false positive rate (FPR), true negative rate (TNR), false negative rate (FNR), pre-
cision, recall, f-measure, and accuracy. TPR is the ratio of right predictor correctly
classified as right. FPR is the ratio of right predictor incorrectly classified as the
wrong predictor. TNR is the ratio of wrong predictor identified as wrong predictor
and FNR is defined as the proportion of wrong predictor incorrectly identified as right
predictor. Precision is the ratio of correctly predicted positive observations to the to-
tal predicted positive observations. The high value of precision indicates the low false

4.5. Experimental Results 45

Table 4.3: RMSE and MAE for resource estimation using
the purposed system for Alibaba data set.

Method RMSE MAE
GBT 4.57 3.43
LR 5.12 3.87
SVM 5.63 4.23
Kringing 5.26 3.99
Liu [73] 5.34 3.94
Proposed 3.32 2.29

positive rate. Recall, also known as sensitivity is the ratio of correctly predicted pos-
itive observations to all the observations in the actual class. The high value of recall
indicates the low false negative rate. F-measure considers both precision and recall
and it is the weighted average of precision and recall. The high value of F-measure
represents balances between precision and recall. The low value represents the im-
provement in one measure at the expense of others. Accuracy is the most intuitive
performance measure and it is simply a ratio of correctly predicted observations to
the total observations.

Table 4.1 table shows TPR, FPR, TNR, FNR, precision, recall, f-measure, and
accuracy for using kNN, Naive Bayes, RDF, and GBT as classification methods in
AMS to identify the prediction method which can be used to estimate the CPU
resources with high accuracy. The RDF outperforms all other classifiers. We observed
that KNN, as second best classification method in AMS also provides comparable and
closest results to RDF.

To profile the time and space efficiency of different classifiers for AMS using Al-
ibaba data set, we profile training time, testing time, and the size of the trained model
on the disk. Table 4.2 shows the time and space efficiency of AMS using different clas-
sification methods. We observed Naive Bayes classifier is efficient by consuming the
least time to train and test the AMS. Whereas, the classification performance of Naive
Bayes is significantly lower than RDF specifically for precision, recall, f-measure, and
accuracy.

Although kNN classification performance is comparable to RDF, however, training,
testing, and disk size of AMS using kNN is worst comparing to other classification
methods. The RDF training and test time are reasonably good, and it outperforms
other classification methods for all evaluation metrics. Therefore, we chose RDF
classifier to use in our proposed AMS.

Figure 4.7 shows the Receiver Operator Characteristics (ROC) curve using RDF
with AMS for different classes. ROC curves for all the classes are better than the
random classifier. We observed that the proposed AMS with RDF efficiently classifies
the test data for all the classes. The area under the ROC curves is 0.84, 0.89, 0.90,
and 0.90 for SVM, LR, GBT, and KR labels respectively.

Overall, we observed that using RDF in AMS performs excellently to identify
appropriate prediction method to use adaptively for the given data for resource esti-
mations.

4.5.2 Resource Utilization Estimation

Table 4.3 shows RMSE and MAE for CPU utilization estimations on test data of
Alibaba data set for the proposed and baseline methods. The proposed method out-
performs all baseline methods by yielding minimum RMSE and MAE.

46 Chapter 4. Telemetry Prediction by Adaptive Prediction Models

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC curve of SVM (area = 0.89)
ROC curve of LR (area = 0.90)
ROC curve of GBT (area = 0.90)
ROC curve of KR (area = 0.84)

Figure 4.7: ROC curves using RDF with AMS for different
classes.

To compare the proposed method with baseline methods we normalized the RMSE
with relative to the proposed solution, as shown in Figure 4.8. We observed 27%, 35%,
37%, 38%, and 41% less estimation error comparing to GBT, LR, KR, Liu, and SVM
baseline methods.

Figure 4.9 shows the box plot for absolute error computed for each estimated
CPU utilization using Alibaba data set for the proposed and baseline methods. We
observed the proposed method outperforms the baseline methods to minimize the
absolute error.

Figure 4.11 shows the recommendations proposed by AMS as a function of time
for the selected four machines. The proposed method dynamically select the most
appropriate prediction model based on time series features of the recent window.
Figure 4.10 shows the comparison of actual and estimated CPU resources using the
proposed system for the four selected machines. The proposed method to estimate
the CPU utilization shows significantly closer to the actual resource utilization for all
of the machines serving a significantly different type of workloads.

To quantify and visualize the error for each estimation, we show absolute error
frequency computed for machines M1 and M3 using baseline and proposed methods
in Figure 4.12 and Figure 4.13 respectively. Where M1 serves a workload demanding
high CPU resources consistently, and M3 served a workload requiring CPU resources
with fluctuating demand. We observed that the proposed method always yield mini-
mum error to estimate the CPU resource utilization for a different type of workloads.
We also observed that the proposed method yield minimum absolute error for each
estimation comparing to the baseline methods for both M1 and M3 machines.

4.5.3 Window Size Sensitivity Analysis

Figure 4.14 shows the RMSE and MAE for different windows sizes with the proposed
system to estimate CPU resource estimation. We observe that increasing window size
reduce the estimation error till window size 60, however, after that the error starts
rising. The 20 minutes window size only contains four observations to fit the prediction
models for estimation which yields a maximum error. This experiment identifies that
60 minutes window size is optimal to use with the proposed system to minimize the

4.5. Experimental Results 47

Proposed GBT LR KR Liu SVM0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

No
rm

al
ize

d
RM

SE

+27%

+35% +37% +38%
+41%

Figure 4.8: Comparison of normalized RMSE for baseline
methods with the proposed method using Alibaba data set.

Table 4.4: RMSE and MAE for resource estimation using
the purposed system for Bitbrains data set.

Method RMSE MAE
GBT 9.74 2.85
LR 15.01 6.03
SVM 19.94 7.19
Kringing 15.80 6.05
Liu [73] 19.80 7.09
Proposed 9.13 2.57

estimation error. Therefore, in all of our experiments, we used 60 minutes window
size with the proposed and baseline methods.

4.5.4 Evaluation Using BitBrains Data set

Table 4.4 shows RMSE and MAE for estimating CPU utilization on test data using
Bitbrains data set for the proposed and baseline methods. Instead of repeating all the
experiments to identify the best classifier, we validate the proposed solution using the
same configuration which we found best for Alibaba data set. We observe that the
proposed method outperforms all baseline methods by yielding minimum RMSE and
MAE.

To show the comparison of the proposed method with baseline methods, we nor-
malized the RMSE with relative to the proposed solution. Figure 4.15 shows the
comparison of baseline methods with the proposed solution by calculating normal-
ized RMSE for the Bitbrains data set. We observed 6%, 39%, 42%, 54%, and 54%
less estimation error comparing to GBT, LR, KR, SVM, and Liu baseline methods
respectively.

Figure 4.16 shows the box plot for absolute error computed for each estimated
CPU utilization using Bitbrains data set for baseline and proposed methods. We
observed that the proposed method produces less absolute error compared to the
baseline methods.

48 Chapter 4. Telemetry Prediction by Adaptive Prediction Models

LR SVM GBT KR Liu Proposed
0

2

4

6

8

10

12

Ab
so

lu
te

 E
rro

r

Figure 4.9: Box plot of absolute error computed for each
estimation using baseline and proposed methods for Alibaba

data set.

Table 4.5: MSE and MAE for resource estimation using the
purposed system for Google Cluster data set

Method RMSE MAE
GBT 2.31 1.24
LR 2.40 1.32
SVM 2.35 1.28
Krining 2.28 1.24
Liu 2.26 1.24
proposed 2.22 1.14

4.5.5 Evaluation Using Google Data set

After performing additional experiments using the Google dataset, the same used by
Liu [30], we realized that while such dataset presents a behavior with less variance
than Bitbrains (more than 80% of the machines report standard deviations below 4
in a range of 0 to 100), and all methods behave with similar good accuracy, also both
methods Liu’s and ours are better than the individual machine learning algorithms.
But then, for the Bitbrains and Alibaba datasets with higher variance and more
extreme behavior, and while Liu’s method does not adapt that well, our method still
does and improve the individual algorithms. Table 4.5 shows RMSE and MAE for
estimating CPU utilization on test data using Google data set for the proposed and
baseline methods. The proposed method outperforms all baseline methods by yielding
minimum RMSE and MAE.

4.6 Related Work

Data center resource utilization and workload prediction is an active research area.
Recently, there have been several attempts to use machine learning methods for pre-
dictions of data center resources. For example, recent work by Kim et al. [58] proposed
an ensemble approach which uses multiple predictors together to produce an output.
The proposed ensemble technique uses Linear Regression, SVM, ARMA, and ARIMA
together to predict future workload for the data centers by dynamically determining

4.6. Related Work 49

30

40

50

60 M1 (High Load)

6

8

10
M2 (Low Load)

0

25

50

75

100 M3 (High Variation)

0 50 100 150 200 250 300 350 400 450 500 550 600 650

10

12

14
M4 (Low Variation)

CP
U

Ut
iliz

at
io

n
(%

)

Minutes

Actual LR SVM KR GBT Liu Proposed

Figure 4.10: Actual vs proposed method CPU prediction
for Alibaba data set for four selected machines. M1 = Heavy
workload, M2 = Low workload, M3 = High variation, M4=
Low variation. The window size used to train the prediction

model is 60 minutes.

the weight of each predictor using the regression method. Another recent work by
Rahmanian et al. [97] also proposed an ensemble-based approach to predict CPU uti-
lization of application usage of VMs. The proposed approach uses automata theory
to adjust the weight for each predictor in the ensemble method to predict the CPU
usage. Subirats et al. [110] proposed an ensemble-based prediction strategy which
forecasts the infrastructure energy requirement by predicting the future CPU utiliza-
tion of VMs. Their ensemble-based approach uses the moving average, exponential
smoothing, linear regression, and double exponential smoothing methods. Chen et
al. [21] propose an ensemble model based on the fuzzy neural network to predict the
resource demand. They use the second moving average (SMA), exponential moving
method (EMA), autoregression model (ARM), and trend seasonality model (TSM) as
base predictors. Cetinski et al. [19] combine statistical and machine learning methods
to predict application specific workload volume. Tseng et al. [117] used a multi-
objective genetic algorithm to forecast resource utilization and energy consumption
in data centers. Jiang et al. [54] proposed ensemble prediction mechanism to predict
the cloud workloads for capacity planning in data centers. They used five prediction
algorithms named as moving average, autoregression, artificial neural network, sup-
port vector machine, and gene expression programming to predict the future workload
estimations.

There have been several efforts to use typical time series solutions to predict data
center resource utilization. For example, Rodrigo et al. [15] used autoregressive inte-
grated moving average (ARIMA) method to predict the arrival rate for the applica-
tions hosted on the cloud. Liao et al. [70] use typical time series prediction methods
namely autoregressive moving-average, moving average, and auto-regressive together
as an ensemble approach to predict CPU usage of VMs. The proposed method com-
bines the output of time series prediction techniques as input to another linear pre-
diction model to predict CPU utilization of VMs. Vazquez et al. [119] used various
time series prediction models to forecast the number of requests which helps in the

50 Chapter 4. Telemetry Prediction by Adaptive Prediction Models

LR
SVM

KR
GBT

M
1

LR
SVM

KR
GBT

M
2

LR
SVM

KR
GBT

M
3

0 100 200 300 400 500 600
Minutes

LR
SVM

KR
GBT

M
4

Figure 4.11: Model selection of Adaptive Model Selector
(AMS) for Alibaba data set for four selected machines. M1 =
Heavy workload, M2 = Low workload, M3 = High variation,

M4= Low variation.

dynamic scaling of cloud resources proactively. For this purpose, they evaluated the
autoregressive model (AR), moving average model (MA), simple exponential smooth-
ing, double exponential smoothing, automated ARIMA method, and neural network
autoregression method. Dmytro et al. [29] use ARIMA to forecast load on the cluster
which helps in scheduling the data center resources by migrating the VMs. Fang et
al. [39] used ARIMA to predict the future CPU utilization and a number of requests
for the applications hosted in the cloud.

There have been several efforts to employ deep learning methods for predicting
data center resource utilization. For example, Zhang et al. [135] use autoencoders to
predict the CPU utilization of VMs. The authors used tensor rank decomposition
technique to reduce the training time by compressing the input parameters. Feng Qiu
[96] used a deep belief network using multiple-layered restricted Boltzmann machines
(RBMs) and a regression layer to predict the CPU usage of VMs. The RBMs are used
to extract the high-level features, and the regression layer is used to predict CPU uti-
lization. Zhang et al. [136] also use RBMs to predict CPU and RAM utilization in
data centers. They use backpropagation as global supervised learning to minimize the
loss function. Mason [76] predict the CPU consumption of the host by using evolu-
tionary Neural Networks (NN). To train the network weights of neural networks, they
used Particle Swarm Optimization (PSO), Differential Evolution (DE), and Covari-
ance Matrix Adaptation Evolutionary Strategy (CMA-ES). Song et al. [108] use long
short-term memory (LSTM) model to predict the host load. To train the recurrent
networks, the authors used truncated back-propagation through time technique. Dug-
gan et al. [35] predict host CPU utilization by using Recurrent Neural networks. They
also use the back-propagation through time (BPTT) technique to train the network.

The work in this area most relevant to ours [73] adaptively picks either Regression
(LR) or Support Vector Machine (SVM) predictors to estimate CPU utilization of
VMs. The proposed method dynamically select LR for slow changing workloads and

4.6. Related Work 51

0

20

40

GBT KR

0

20

40

LR Liu

0 5 10 15
0

20

40

Proposed

0 5 10 15

SVM

Er
ro

r F
re

qu
en

cy

Absolute Error

Figure 4.12: Absolute error frequency of CPU utilization
estimation for machine M1 (High Load).

0

20

40

GBT KR

0

20

40

LR Liu

0 10 20 30 40 50 60
0

20

40

Proposed

0 10 20 30 40 50 60

SVM

Er
ro

r F
re

qu
en

cy

Absolute Error

Figure 4.13: Absolute error frequency of CPU utilization
estimation for machine M3 (High Variation).

52 Chapter 4. Telemetry Prediction by Adaptive Prediction Models

20 30 40 50 60 70 80 90
Window Size (Minutes)

2.25

2.50

2.75

3.00

3.25

3.50

3.75

4.00

Er
ro

r

MAE RMSE

Figure 4.14: RMSE and MAE using different window sizes
with the proposed system for resource utilization estimation.

Proposed GBT LR KR SVM Liu0.0

0.5

1.0

1.5

2.0

No
rm

al
ize

d
RM

SE

 +6%

+39%
+42%

+54% +54%

Figure 4.15: Comparison of normalized RMSE for baseline
methods with the proposed method using Bitbrains data set.

SVM for rapidly changing workloads.
Moreover, most of the existing works use ensemble-based approaches in which

multiple estimation methods are collectively used to produce the final output. In this
approach, all the models need to train every time as the final output is dependent on
all the models whereas in our proposed solution the final output is produced using
only a single machine learning predictor and does not require training of n models all
the time. Our approach uses four different estimators and dynamically identifies the
estimator using a machine learning approach and time series features. To the best of
our knowledge, no existing work which uses time series features to adaptively identify
and use the best prediction method to minimize the estimated error of cloud resource
utilization.

4.7. Final Considerations 53

LR SVM GBT KR Liu Proposed
0

2

4

6

8

10

Ab
so

lu
te

 E
rro

r

Figure 4.16: Box plot of absolute error computed for CPU
utilization estimation using baseline and proposed methods

for Bitbrain data set.

4.7 Final Considerations

Accurate prediction of data centers resource utilization is challenging due to extremely
diverse nature of workloads running on top of heterogeneous infrastructure in data
centers Therefore building new methods for estimating resource utilization in data
centers is an active research problem. To tackle this problem, this chapter intro-
duces a novel method of future resource estimation by selecting the most appropriate
machine learning method adaptively based on statistical series features of recent ob-
servation windows. The proposed method uses random forest classifier to select the
most appropriate prediction model to be used for predicting the resources on the next
time interval. The statistical features are extracted from the historical observations
to train the RDF along with the best method for each time window. We observe that
the proposed method outperforms the existing state of the art method and improve
the prediction accuracy from 6% to 27% when evaluated on real traces collected from
Alibaba and Bitbrains data-center monitoring data sets. The chapter also includes
the effect of window sizes when modeling and predicting the resources. To effectively
estimate the future resource utilization, we observed that, 60 minutes of historical
resource utilization observation could be used to build the prediction model. The
novelty of this method lies in identifying the appropriate machine learning methods
for each specific scenario over time and future work will focus on investigating adaptive
window size for modeling and predicting data center resource utilization.

55

Chapter 5

Adaptive Window Size Selector for
Prediction Models

This chapter presents the method to dynamically identify the best sliding window size
to train the regression model for estimating and forecasting cloud resource utilization
as the third contribution of this PhD thesis. In this chapter, we addressed this chal-
lenging problem and proposed a method using deep learning approach to adaptively
select the best observation window efficiently to minimize the estimation error. The
proposed adaptive sliding window identification method limits the observation win-
dow which can be used by any estimation method to train the model for predicting
next interval observations. We have evaluated the proposed adaptive sliding window
identification with the commonly used machine learning namely Linear Regression,
Ridge Regression, Least Absolute Shrinkage and Selection Operator (LASSO), Elas-
tic Net, and Non-negative Least Square, and Support Vector Regression for multiple
publicly available data sets. The proposed adaptive sliding windows outperform the
fixed sliding windows using all estimation methods by significant margins for all data
sets.

To show the motivation for using an appropriate observation window size for
resource estimation, we conducted a preliminary experiment using Alibaba cluster
traces [3], randomly selecting a virtual machine (VM) and using its CPU utilization
to study the effect of different observation window sizes using different estimation
methods. Figure 5.1 shows the CPU utilization estimation for 31st-time interval
(from a 30-time observation series) using Linear Regression (LR), Polynomial Regres-
sion (PR), Support Vector Regression (SVR), and Elastic Net (EN) for observation
window sizes 5, 10, 15, and 20. We observed that window size 10 and 15 yield best
estimations using LR, window size 20 gives the minimum estimation error using SVR,
RR gives best estimation result for window size 10, and EN yields minimum esti-
mation size for window size 15. These results show that the appropriate observation
window size can play an important role to minimize the estimation accuracy for differ-
ent estimation method. We advocate that any estimation algorithm can improve the
estimations using appropriate observation window size. The problem to automatically
identify the appropriate window size at every estimation step to train the model is
challenging.

To further elaborate on the advantage of using adaptive sliding windows for re-
source estimation, we study the effect of estimation performance using different fixed
sliding window sizes and adaptive observation windows. We used LR as an estimation
method and used the entire CPU utilization data of the selected VM as a time series
to evaluate different fixed observation windows sizes. We identified the optimal obser-
vation window size using exhaustive search among window sizes 2 to 30 and selected
the optimal window size which yields maximum accuracy as optimal window size at

56 Chapter 5. Adaptive Window Size Selector for Prediction Models

40

45

50

55

60

65
LR SVR

0 5 10 15 20 25 30
40

45

50

55

60

65
RR

0 5 10 15 20 25 30

EN

CP
U

(%
)

Interval

Actual 5 10 15 20

Figure 5.1: CPU estimation using different size of sliding
windows for various machine learning predictors.

Apative and
 Optimal

2 5 10 20 30

Window Size

0

10

20

30

M
SE

(a) Comparison of MSE

Apative and
 Optimal

2 5 10 20 30

Window Size

0

5

10

Ab
so

lu
te

 E
rro

r

(b) Box plot for absolute
errors

0 100 200 300 400 500
Minutes

5

10

15

20

25

30

Ad
ap

tiv
e

an
d

 O
pt

im
al

 W
in

do
w

Si
ze

(c) Optimal window sizes

Figure 5.2: Evaluation of fixed sliding windows of differ-
ent sizes and adaptive optimal sliding windows for estimating

data center CPU resources.

every estimation step. Figure 5.2a shows the mean squared error (MSE) for static
sliding windows of sizes 2, 5, 10, 20, 30, and optimal window size using adaptively
in each estimation step. Figure 5.2b shows the box plot for absolute errors obtained
for each estimation step for different fixed sliding window sizes and optimal window
sizes identified adaptively. Figure 5.2c shows adaptive the sliding window sizes iden-
tified adaptively at each estimation step. We observed that the adaptive observation
windows yield significantly minimum estimation error comparing to static fixed size
sliding windows. However, it is challenging to determine the appropriate observation
window size efficiently at each estimation step for maximizing prediction accuracy.

The main contributions of this chapter are as follows:

• Propose a novel method to dynamically identify the best sliding window size to
train the prediction model for estimating data center resource utilization.

• Evaluation and comparison of the proposed method with different baseline meth-
ods, currently used in the state-of-the-art, as candidate methods for window size
estimation, aside of validation for the presented approach.

• Extensive experimental evaluation using three publicly available data sets of
different real data centers.

5.1. Proposed System Overview 57

..... 26.7 15.5 18.0 12.0

Historical Resource Utilization Observation
Window

Optimal
Size

W i 8

W i-1 5

W i-2 9

...

5. Predicted resource
utilization for interval t+1

Current Observation Window (Wt)

Tr
ai

ni
ng

 D
at

a
Se

t

2. Train window size prediction
model

Adaptive Window
Size Predictor

4. Predicted
window size

Tr
ai

ni
ng

 D
at

a
Se

t P
re

pr
at

io
n

R
es

ou
rc

e
U

til
iz

at
io

n
Pr

ed
ic

tio
n

Optimal Window
Size Identification

 k

Wi

Wt

.... 60.1 25.5 19.3 ... 18.7 11.9 45.3

Wi

W i-1
W i-2

k

Resource Utilization
Predictor

3. Predict window
size for Wt

1. Log optimal
window size
for each Wi

()ΦWi

()ΦWt

Figure 5.3: Purposed system overview to learn adaptive
window size predictor and using it to estimate the data center

resource utilization

5.1 Proposed System Overview

The proposed system architecture is illustrated in Figure 5.3. Different steps are
numbered and labeled to explain the flow of the system. The proposed system works
in the following steps.

i. Historical resource utilization logs of the data center are divided into sliding win-
dows of a k fixed size intervals. Each sliding window at time interval t is called
an observation window. Our objective is to identify an appropriate size for the
observation window to train a resource prediction model with minimal prediction
error.

ii. For each sliding window Wi, the system identifies the optimal window size to
predict the next interval’s resource consumption with minimal prediction error.
In this phase, the next interval’s consumption data for each sliding window is
known. The system performs a linear search to identify the window size with
minimal prediction error. The system checks the observation window into k − 1
sub windows, start from length 2 to k. Each sub-window is used to estimate the
resource consumption, and the size of the sub-window with minimum prediction
error is identified as optimal window size ΦWi for the corresponding sliding window
Wi, where 2 ≥ ΦWi ≤ k.

iii. Each sliding window Wi and the identified corresponding optimal window size
ΦWi is recorded as a training data set to predict the window size for resource
utilization estimation.

58 Chapter 5. Adaptive Window Size Selector for Prediction Models

iv. Once training data is prepared, the system train a deep neural network to predict
the best window size for a given sliding window data. We named this component
as “Adaptive Window Size Predictor ”.

v. Once Adaptive Window Size Predictor is trained then the system uses it to identify
the best window size for each time interval t from the current observation window.

vi. The predicted window size is used to select the number of observations from the
k data points of the current observation window for training a regression model
to predict the resource utilization for the next time interval t+ 1.

In summary, the proposed system consists of “Adaptive Window Size Predictor”
which predicts the number of most recent observations (window size) require to build
estimation model for better estimation accuracy. This predictor is trained offline
using historical resource utilization of all servers of a data center without machine
identifications. The predicted window size from ’Adaptive Window Size Predictor’ will
be used as input to another machine learning algorithm to build resource estimation
model for predicting next interval resource usage.

5.2 Adaptive Window Size Predictor Using Deep Learn-
ing

We use deep learning method to adaptively select the window size for machine learn-
ing models. Deep Learning is a set of machine learning methods based on neural
networks, where those networks have more than one layer of transformations between
the input data and the output data to be matched. MultiLayer Perceptrons (MLP),
the proposed neural networks, consists on the transformation of an input data-set
XN,I (a matrix of N observations and I features) to an output data-set ŶN,J (a
matrix of J transformed features per observation). A Perceptron (the usual neu-
rons on MLPs) is an artifact that processes the input as ŶN,I = G(F (XN,I)), where
F (XNI

) = XN,I ·WI +B, and WI is a matrix of weights to be adjusted, B is a vector
of biases, and G(X) is a function that in regression can be the Identity or in classifica-
tion can be a sigmoid function. A "single hidden layer" MLP consists on an array of
Perceptrons (the hidden layer) processing that input as X ′N,H = G(F (XN,I)), where
F (XN,I) = XN,I ·WI,H + BH , being H is the number of perceptrons on the hidden
layer. The purpose of a layer is to find a non-linear relation between its inputs and out-
puts, then the results can be aggregated in the output layer as ŶN,J = G(F (X ′N,H)).
A deep MLP concatenates different hidden layers, and the output of a layer is the
input of the next one. In that case, each layer i processes X̂i

N,Hi = G(F (Xi−1
N,Hi−1)),

where H i is the number of neurons in that layer. Training a MLP consists in finding
the function MLP that transforms MLP (X) = Ŷ ∼ Y , where Y is the real output
data-set to be matched. Weight matrices W and bias vectors B are adjusted using
Gradient Descent, by iteratively passing data through the network forth and back.
The goal of adding multiple layers to a network is to learn latent patterns that a sim-
ple non-linear function can not represent, through combinations of multiple non-linear
relations.

While other approaches attempt shallow architectures, here we propose the use
of deep neural networks, mainly because of the stochastic and non-linear nature of
the workload data. As seen in other works referring to resource utilization and Cloud
and virtualization management, like [135, 76, 124], the use of deep neural networks
on the prediction of resource usage and management has proven to be reasonably

5.3. Estimation Methods for Resource Utilization Prediction 59

Predicted
window

Size

Hidden Layers

Input
Data

Sliding
Window

… Output Layer

…

…

…

Linear Neurons + ReLU

t

t-1

t-
k-1

Figure 5.4: Schema for a 4-Hidden Layer Deep Neural Net-
work on our Time-Series

cost-efficient and accurate, and this brings us to attempt these techniques for our
adaptive window prediction scenario. After testing different architectures and hyper-
parameters, including the number of layers and number of neurons per layer, using
a grid-search method, we selected the model resulting in the most accurate without
ending with an overkill model. Such a model has an input of N elements as the size
of the sliding window, and an output of 1 value, resulting on the prediction. The
deep network has 4 hidden layers, with 〈23, 15, 10, 5〉 hidden units each layer, with
rectified linear unit (ReLU) activation function and normally random initialization.
It is optimized using the Adam method for stochastic gradient descent [60], using the
Mean Squared Error (MSE) as quality metric. Figure 5.4 shows the basic schema of
our neural network. Figure 5.5 shows the effect of the number of epochs on the mean
squared error for training and validation data sets. The validation data set consist of
20% of the training data set. The network has been trained for 500 epochs, with a
batch size of 250 units, out of 11, 8563 total elements on the training data-set.

The input data-set, being data a time series, is generated by sliding a window of
size k, generating an observation for each window movement. The window is slide
1 time-step at a time. Each observation is introduced in the network as a vector
of K values, considering that the window sample is always ordered. For validation
purposes, the final data-set is randomly split 80/20 for training vs. testing subsets.

5.3 Estimation Methods for Resource Utilization Predic-
tion

Our proposed technique to identify observation windows to build estimation method
works with all machine learning and statistical estimations methods. We explore
machine learning methods easy to train requiring less computing power for building
resource estimation model using the predicted observation windows. We explain the
estimation methods in section 2.4.

60 Chapter 5. Adaptive Window Size Selector for Prediction Models

Figure 5.5: Effect of number of epochs on the MSE for
training and validation.

Table 5.1: Data sets with CPU resource utilization statistics
and utilization categories.

Data Set Total Machines Average Load (%) Average Variation in Load Utilization Category
Materna 520 4.44 9.29 Low
Alibaba 1,313 26.46 10.66 Moderate
Bitbrains 131 44.21 44.84 High

5.4 Experimental Setup and Design

5.4.1 Data Sets

To evaluate the proposed solution, we used three publicly available data sets repre-
senting diversified CPU resource utilization characteristics. Table 5.1 shows the total
number of machines, average CPU load in percentage, average CPU load variations
in the data sets. Each data set is categorized either low, moderate, or high CPU
serving workloads. Materna data set is labeled as low CPU workload as the CPU load
and variation is considerably low comparing to other data sets. Alibaba data set is
considered as a traces of the data center serving moderate CPU workload. Whereas,
Bitbrains data set is recognized as a data center serving high CPU workload. The
data sets are briefly discussed in the following subsections.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99100
Machines

0

10

20

30

40

50

60

CP
U

Ut
iliz

at
io

n
(%

)

Figure 5.6: CPU utilization for randomly selected 100 ma-
chines from Alibaba data set for twelve-hour data

5.4. Experimental Setup and Design 61

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99100
Machines

0

20

40

60

80

100
CP

U
Ut

iliz
at

io
n

(%
)

Figure 5.7: CPU utilization for randomly selected 100 ma-
chines from Bitbrains data set for one-month data

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99100101
Machines

0

20

40

60

80

100

CP
U

Ut
iliz

at
io

n
(%

)

Figure 5.8: CPU utilization for randomly selected 100 ma-
chines from Matenra data set for one-month data

Materna

Materna is a service provider offering cloud services to the aviation industry. Their
data center performance traces for 30 days are publicly available [79]. The data
set contains resource utilization metrics for CPU, memory, network, and disk for
520 different VMs running on the data center. Each of these resource utilization
metrics is sampled for 5 minutes average utilization. Figure 5.8 shows CPU utilization
for 100 randomly selected machines from the data set. Most of the machines CPU
utilization remains below 5%; therefore, we considered this data set representing low
CPU workload serving data center.

Alibaba

Alibaba cluster logs [3] are publicly available data set containing performance traces
of 1,313 machines for 12 hours. The Alibaba cluster serves interactive and batch pro-
cessing workloads. The available metrics in the data set are CPU, memory, and disk
utilization for all machines representing average utilization for 5 minute time inter-
vals. Figure. 5.6 shows a CPU utilization sample for 100 randomly selected machines
from the data set which shows that most of the machines CPU utilization remains
from 20% to 50%. Therefore, we considered this data set representing moderate CPU
workload serving data center.

Bitbrains

Bitbrains is a service provider offer cloud services for enterprises. Their data center
performance traces representing 1,750 VMs for 30 days is publicly available [11]. This
data set also contains the average CPU, memory, network, and disk utilization for all
the VMs sampled for 5-minute interval. From this data set, we selected VMs with
average CPU utilization greater than 30% (131 VMs) to build a data set representing
data center serving high CPU workload. Figure 5.7 shows a CPU utilization sample
for 100 randomly selected machines from the data set which shows that most of the
machines CPU utilization remains from 0% to 100%.

62 Chapter 5. Adaptive Window Size Selector for Prediction Models

Interval

Pe
rc

en
ta

ge
 C

PU
 U

til
iz

at
io

n

0 5 10 15 20 25 30
40

50
60

70
80

90

Figure 5.9: Change Point Detection (CPD) method to
identify observation window for building resource estimation

model.

5.4.2 Evaluation Criteria

To evaluation the proposed method, we used Mean Square Error (MSE) to quantify
the error in resource estimation prediction. The MSE is calculated using true and
estimated values using:

MSE =
1

n

n∑
t=1

(at − pt)2, (5.1)

where at is the true CPU resource utilization and pt is the estimated CPU utilization
at t-th time interval and n is the total number of estimations.

5.4.3 Experimental Details

We performed three different experiments to evaluate and compare the proposed sys-
tem. In Experiment 1 (FixW), we evaluate the effect of different fixed size obser-
vation windows on resource estimation accuracy for all three data sets. We use 5, 10,
20, and 30 fixed observation window sizes to train and estimate the resources using
machine learning methods, explained in 5.3 for all three data sets.

InExperiment 2 (CPD), we employ Change Point Detection (CPD) method [101]
to adaptively identify the appropriate window size for training resource estimation
models. This method allows selecting adaptive observations windows to build esti-
mation models by using only data points after the recent change point. For example,
Figure 5.9 shows the use of CPD method to identify the adaptive observation window
to use for training the estimation method. Assuming, current time interval is 30 and
CPD provides a change point at 21st time interval for the given data then we will use
observations from 21st interval to 30th interval for training an estimation model for
future resource utilization estimation. The CPD method can identify multiple change
points for the given time series data, however, we limit the observation window to the
recent change point. In this experiment, we limit the maximum observation window
size to 30 intervals which represents last 150 minutes of resource utilization observa-
tions.

In Experiment 3 (Proposed), we use the proposed Adaptive Window Size Pre-
dictor (AWSP), explained in Section 5.2, to adaptively identify the best observation
window to build resource estimation method. For every time interval, we provide

5.5. Experiment Results 63

Table 5.2: Experiment 1 (FixW) results showing MSE for
different estimation methods and fixed window sizes.

Data Set Window Size LR SVR EN LASSO RR NNLS

30 34.28 42.15 34.06 34.02 34.28 45.25
20 33.18 39.04 32.43 32.23 33.16 42.14
10 25.45 29.5 23.92 24.09 25.24 30.91Alibaba

5 28 23.72 22 23.28 25.71 28.49

30 12.81 17.83 12.70 12.68 12.80 14.12
20 11.63 15.69 11.45 11.45 11.62 12.85
10 11.39 12.57 10.75 10.95 11.29 11.98

Materna

5 13.02 11.12 10.41 11.81 11.91 12.70

30 380.75 696.47 378.41 379.67 380.63 442.22
20 301.83 577.35 297.75 300.46 301.47 360.44
10 220.90 359.98 209.52 218.43 218.57 249.85

Bitbrain

5 178.14 249.14 146.67 173.27 162.01 190.12

the last 30 interval observations to the pre-trained AWSP and obtain an observation
window size and then build the estimation model for predicting the future resource
utilization estimation. In this experiment, we also limit the maximum observation
window size to 30 minutes which represent the last 150 minutes of the resource uti-
lization observations.

0.0

0.5

1.0

Al
ib

ab
a

LR SVM

*

EN LASSO RIDGE NNLS

0.0

0.5

1.0

M
at

er
na *

5 10 20 30

0.0

0.5

1.0

Bi
tb

ra
in

s

5 10 20 30 5 10 20 30

*

5 10 20 30 5 10 20 30 5 10 20 30

No
rm

al
ize

d
M

SE

Window Size

Figure 5.10: Experiment 1 results showing Normalized
MSE for comparison of different estimation methods and win-

dow sizes for all three data sets.

5.5 Experiment Results

5.5.1 Experiment 1: Fixed Observation Window (FixW)

Table 5.2 shows MSE for all three test sets using different resource estimation methods
and window sizes 5, 10, 20, and 30. MSE represents resource estimation error and
small values of MSE show better estimation results. We observed that small window
sizes like 5 and 10 yield minimum MSE. For Alibaba data set, LR and RR yield

64 Chapter 5. Adaptive Window Size Selector for Prediction Models

Table 5.3: Experiment 2 (CPD) results showing MSE for
different estimation methods.

Data Set LR SVR EN LASSO RR NNLS

Alibaba 30.40 23.24 25.84 26.92 27.48 28.50

Materna 20.71 11.02 12.35 17.65 13.36 20.44

Bitbrains 272.05 292.55 222.73 262.29 234.68 276.49

0

10

20

30

Al
ib

ab
a

0

10

20

30

M
at

er
na

0 25 50 75 100
0

10

20

30

Bi
tb

ra
in

sAd
ap

tiv
e

W
in

do
w

Si
ze

 u
sin

g
CP

D

Test Intervals

Figure 5.11: Adaptive window sizes obtained using the
CPD method in Experiment 2 for first 100 test intervals of

all three data sets.

minimum MSE using window size 10 whereas SVR, EN, LASSO, and NNLS produce
minimum estimation error using window size 5. For Materna data set, LR, LASSO,
RR, and NNLS give minimum MSE to estimate the CPU resource utilization whereas
SVR and EN using window size 10 give minimum resource estimation error. For
Bitbrain data set, window size 5 yield minimum error for all estimation methods.
Overall EN with window size 5 outperforms all other estimation methods for all three
data sets.

To compare different estimation methods and window sizes for all three data sets,
we compute normalized MSE. Figure 5.10 shows the normalized MSE for the results
obtained in Experiment 1. EN for window size 5 gives minimum estimation error
for all data sets, whereas SVM yields worst results in all of the data sets for using
window sizes 20 and 30. In general, the small window sizes with linear models show
better results and exhibit that the resource utilization of data centers is locally lin-
ear. However, identifying the appropriate fixed window size to minimize the resource
estimation error is a tedious and challenging task.

5.5.2 Experiment 2: Adaptive Windows Size using Change Point
Detection Method

Table 5.3 shows the MSE for all three test data sets and different estimation meth-
ods using observation windows selected through the Change Point Detection (CPD)
method [101]. The CPD selects adaptive observation windows to build estimation

5.5. Experiment Results 65

Alibaba Bitbrains Materna
0

5

10

15

20

25

30

Ad
ap

tiv
e

W
in

do
w

Si
ze

 u
sin

g
CP

D

Figure 5.12: Box plot of adaptive observation window sizes
using the CPD method for test data sets.

models by using data points after the recent change point from the given historical ob-
servations. SVR yields the minimum MSE for Alibaba and Materna data sets whereas
EN produces the minimum MSE for Bitbrains data set using the CPD method.

Figure 5.11 shows the adaptive window sizes obtained through the CPD method
for building estimation models for first 100 test intervals of Alibaba, Materna, and
Bitbrains data sets. At each test interval, a maximum of 30 previous observations are
passed to the CPD and dynamically limit the observation windows to train the estima-
tion models. For Materna data set, the CPD method does not variate the observation
window so frequently whereas for Alibaba and Bitbrains the observation windows are
frequently variates. This shows that for low variation data set like Materna the CPD
methods also gives the observation windows with low variations. To further study the
adaptive observation windows identified by the CPD for all three data sets, we draw
the box plot.

Figure 5.12 shows the box plot of the adaptive window sizes for the entire test sets
of all three data sets. For Alibaba data set, the observation windows variate between
9 and 22 with 15 mean window size. For Bitbrains data set, in average the observation
window size remains 30 and variate between 15 to 30 sizes. Whereas, Materna which
represents low utilization workload with little variations in resource utilization pattern
mostly use 30 observation window size and show few outliers varying from 3 to 29.
This clearly shows the limitation of the CPD method for the cases where resource
utilizations do not show any notable changes in the usage pattern, and the CPD
favors a bigger size observation windows.

The CPD method eliminates the need to search for the appropriate observation
window size for building estimation method. However, the results obtained using the
CPD methods are not outperforming FixW method results.

5.5.3 Experiment 3: Adaptive Windows Using Proposed Method

Table 5.4 shows the MSE for all three test data sets and different estimation meth-
ods using the observation windows obtained through the proposed Adaptive Window
Size Predictor method. For each data sets, all estimation methods yield comparable
resource estimation results. However, EN gives the minimum MSE for Alibaba and

66 Chapter 5. Adaptive Window Size Selector for Prediction Models

Table 5.4: Experiment 3 (Proposed) results showing MSE
for different estimation methods using the Proposed method

to identify the observation window sizes.

Data Set LR SVM EN LASSO RR NNLS

Alibaba 16.86 15.82 14.97 16.13 15.59 17.04
Bitbrains 154.70 169.21 139.69 156.38 148.08 156.08
Materna 10.19 10.11 9.45 9.63 9.93 8.73

10

20

30

Al
ib

ab
a

10

20

30

M
at

er
na

0 25 50 75 100

10

20

30

Bi
tb

ra
in

sAd
ap

tiv
e

W
in

do
w

Si
ze

 u
sin

g
CP

D

Test Intervals

Figure 5.13: Adaptive observation window sizes obtained
using the Proposed method in Experiment 3 for first 100 test

intervals of all three data sets.

Bitbrains data sets whereas NNLS produces the minimum MSE for Materna data set
using the proposed method.

Figure 5.13 shows the adaptive window sizes obtained using the Proposed method
for training estimation models for first 100 test intervals of three representative test
data sets. For all data sets, the proposed method identifies different observation
window sizes even for Materna data set which represents the workload with fewer
variations. The proposed method variates the adaptive observation window sizes and
yields better estimation results comparing to the CPD and FixW methods.

Figure 5.14 shows box plot for the adaptive window sizes identified by the proposed
method for all three test data sets. For Alibaba data set, the observation window
sizes variate between 2 to 30 with 13.26 mean. For Bitbrains data set, the observation
window sizes variate between 2 to 30 with 9.65 mean and Materna data set shows the
observation window sizes between 5 and 30 with 12.77 mean.

The Proposed method outperforms the FixW and CPD observation window selec-
tion methods and also helps to eliminate the daunting task for searching appropriate
fixed window sizes.

5.5.4 Comparison of FixW, CPD, and Proposed Method

In this section, we compare the results obtained in Experiment 1 (FixW), Experi-
ment 2 (CPD), and Experiment 3 (Proposed). Table 5.5 shows the normalized MSE
for all three experiments and data sets. For each data sets, the maximum MSE among

5.5. Experiment Results 67

Alibaba Bitbrains Materna

5

10

15

20

25

30

Ad
ap

tiv
e

W
in

do
w

Si
ze

 u
sin

g
Pr

op
os

ed
 M

et
ho

d

Figure 5.14: Box plot of adaptive observation window sizes
using the Proposed method for test data sets.

Table 5.5: Normalized MSE representing resource estima-
tion error on test data for Experiment 1 (FixW), Experi-

ment 2 (CPD), and Experiment 3 (Proposed).

Data Set Experiment LR SVM EN LASSO RR NNLS Average

Alibaba
FixW 0.84 0.78 0.72 0.77 0.83 0.94 0.81
CPD 1.00 0.76 0.85 0.89 0.90 0.94 0.89
Proposed 0.55 0.52 0.49 0.53 0.51 0.56 0.53

Bitbrains
FixW 0.61 0.85 0.50 0.59 0.55 0.65 0.63
CPD 0.93 1.00 0.76 0.90 0.80 0.95 0.89
Proposed 0.53 0.58 0.48 0.53 0.51 0.53 0.53

Materna
FixW 0.55 0.54 0.50 0.53 0.55 0.58 0.54
CPD 1.00 0.53 0.60 0.85 0.64 0.99 0.77
Proposed 0.49 0.49 0.46 0.47 0.48 0.42 0.47

all three observation window selection methods and resource estimation is selected to
calculate the normalized MSE. The proposed solution yields the minimum MSE using
all estimation methods. The best performing estimation method is EN for Alibaba
and Bitbrains data sets, whereas NNLS outperforms in Materna data set.

To quantify the relative improvement for estimation resource utilization using the
Proposed window size selection method, we consider FixW (Experiment 1) as a base-
line method. Figure 5.15 shows the relative percentage of MSE for the Proposed and
CPD compared to the FixW. For all estimation methods, the Proposed outperforms
the FixW and the CPD to minimize the estimation error. Whereas, the FixW yields
better estimation results compared to the CPD. For Alibaba data set, the proposed
method produces 34%, 33,%, 32%, 31%, 38%, and 40% better estimation results for
LR, SVM, EN, LASSO, RR, and NNLS estimation methods respectively compared to
FixW. For Materna data set, the Proposed method gives 11%, 9%, 9%, 18%, 18%, and
27% better estimation results for LR, SVM, EN, LASSO, RR, and NNLS estimation
methods respectively compared to FixW. For Bitbrains data set, the Proposed method
gives 13%, 32%, 9%, 10%, 9%, and 18% better estimation results for LR, SVM, EN,
LASSO, RR, and NNLS estimation methods respectively compared to FixW.

In average, we observe 29.7%, 15.7%, and 13.1% better estimation results using
the proposed method for Alibaba, Materna, and Bitbrains data sets respectively. The
comparison indicates that the Proposed method outperforms FixW and CPD for

68 Chapter 5. Adaptive Window Size Selector for Prediction Models

0

100

200

Al
ib

ab
a

66 67 68 69 62 60
100 100 100 100 100 100

119
98

117 116 109 100

Proposed FixW CPD

0

100

200
M

at
er

na

89 91 91 88 88 73
100 100 100 100 100 100

182

99
119

161
118

171

LR SVM EN LASSO RR NNLS
0

100

200

Bi
tb

ra
in

s

87
68

91 90 91 82
100 100 100 100 100 100

153
117

152 151 145 145Pe
rc

en
ta

ge
 M

SE
 R

el
at

iv
e

to
 F

ix
W

Figure 5.15: Comparison of MSE for FixW and CPD and
Proposed method using different estimation methods.

identifying appropriate observation window to build estimation method with good
results.

A traditional solution to identify observation windows for building estimation
methods are based on a series of experiments using various fixed size observation
windows manually and then determine the best observation window to use with the
estimations. Whereas, an automatic adaptive observation window size can help to
minimize estimating error better than fixed observation windows and also reduce the
human efforts to test different observation window sizes manually. In our experimental
evaluation, we evaluated six different commonly used estimation methods and showed
that adaptive observation windows could yield better estimation results comparing to
the fixed observation windows for all different estimation methods.

5.6 Related Work

Many researchers have recently addressed data center resource estimation. For ex-
ample, a recent work by Mason et al. [76] estimated the host CPU utilization using
Neural Networks trained on a fixed observation window sizes containing entire day
data. Zhang et al. [135] proposed cloud workload prediction system for industry infor-
matics based on stacked autoencoders. They use a canonical polyadic decomposition
format to reduce the training time by compressing the input parameters. The author
also used a fixed observation window size to train and test the proposed estimation
method. Another work by Nikravesh et al. [84] proposed a predictive auto-scaling
system to scale the cloud resources automatically. The proposed approach uses SVM
and neural network for the different type of workloads and estimation methods are
trained using a fixed observation window size. However, the work studies the effect of
different observation window sizes. Yang et al. [129] used linear regression to predict
the cloud workload using a fixed observation window size of 4. Davis et al. [26] pro-
posed hardware failure prediction system for cloud data centers using Neural Networks
however they also used fixed length sliding window.

5.6. Related Work 69

All of the above-mentioned works use fixed observation windows. However, there
are some contributions which use dynamic observation windows for resource estima-
tions. For example, Dalmazo et al. [25] proposed a method to us dynamic observation
windows to estimate the network traffic in the cloud using statistical techniques. The
proposed approach uses the variance of the data for the current and the last observa-
tion windows and adjusts the next observation window size. Klinkenberg et al. [120]
use the adaptive sliding window to forecast the time series by identifying the changes
in the underlying data generation process. They started with a default initial window
size and kept increasing or decreasing it minimize the forecasting error. However, the
proposed approach requires an extensive search to identify appropriate window size
which is not feasible for real-time processing. A recent work by Tschumitschew et al.
[116] select the optimal window size for the regression problem to predict the next
data point in the time series based on the ratio of drift and noise. They use larger
window size if noise is stronger than drift otherwise shorter window size is used for
the estimation.

The dynamic observation windows are used for a variety of different problems in-
cluding physical activity recognition, industrial process optimization, mining frequent
itemsets, wireless networks, health care, and renewable power generation. Wang et
al [122] use adaptive time series windows with Convolutional Neural Networks to opti-
mize the industrial process operations. Authors proposed to select different time-series
windows according to the steady and unsteady states in the given historical time se-
ries observations. Ouyang et al [89, 88] use optimal window size for wind power ramp
prediction by minimizing the non-ramp data in time windows. Some of the recent
work shows the use of a dynamic sliding window in the health care domain. For ex-
ample, Smrithy et al. [107, 82] use a dynamic sliding window with weighted moving
averages to detect the anomalies in the wireless body area networks which are used
in real time healthcare systems. By identify anomalies, they decrease the false alarm
rate which results in increasing the reliability of the system. They decide the size
of the window by comparing the variance of predecessor and current sliding window.
Pérez-Solano et al [92] use adaptive window size for linear regression to synchronize
time in wireless networks. They search for a window size which yields minimum Mean
Square Prediction Error (MSPE). Similarly, Noor et al. [85] use the adaptive sliding
window for signal segmentation which is used to recognize the transitional physical
activity. The proposed method uses a default window size as a starting point and
then used probability density function to expand the size of the window to capture
the transitional activity with a longer duration. They keep increasing the size of the
window iteratively until the probability density function reached its highest value.

Another work by Deypir et al. [27] use variable size sliding window to mine fre-
quent itemsets. They start with an initial window size which is set by luser and
then the window size is adjusted according to the rate of change in the incoming
data stream. They increase the window size if no significant difference is detected
and reduce the size if substantial changes are observed in the data. However, the
limitation of this approach is that the size of the window becomes huge when there
is no changes occurred in data. A recent work by Chou et al. [22] proposed a time
series prediction system based on metaheuristic optimization of sliding windows. The
purpose of the system is to forecast the stock price. However, the proposed method
is computationally expensive and not feasible for real-time resource estimation.

Most of the existing works for resource estimation either use fixed observation
windows or use simple statistical methods to decide the dynamic observation window
sizes. However, some contributions use extensive search-based methods to identify
the observation window sizes which are computationally intensive and infeasible for

70 Chapter 5. Adaptive Window Size Selector for Prediction Models

real-time resource estimations. Our work reported in this paper uses a novel deep
learning based window size estimation method to efficiently identify the best observa-
tion windows to train the regression models for estimating future resource utilization.

5.7 Final Considerations

The selection of appropriate historical data to train the estimation models plays an
important role in prediction and accuracy can be degraded by selecting the wrong
number of observations. Therefore this chapter focus on the problem of fixed size
sliding windows which are used to train the prediction model. The prediction accuracy
can be improved if there is a possibility to select the sliding window size. To address
this issue, this chapter presents a novel method to automatically identify the number
of historical observations to use for building estimation models in an adaptive way. To
identify the amount of historical data to be used in training estimation model, we use
multi-layer perceptron. The experimental results show that the prediction accuracy
can be improved from 9% to 40% as compared to baseline methods when evaluated
on different type of real resource utilization traces collected from Alibaba, Materna
and Bitbrains data centers. In the future, we intend to investigate the identification
of the appropriate machine learning algorithm automatically for building estimation
models using the proposed adaptive observation windows.

71

Chapter 6

Conclusions

6.1 Main Contributions

The thesis concludes with three contributions in achieving the thesis goal. The first
contribution of this thesis, presented in Chapter 3 consists of data center modeling
using Markov Chain Models (MM) to reduce the storage space and bandwidth uti-
lization of data centers’ telemetry data. Data centers generate a lot of telemetry data
which is used for many purposes including resources management, analytics and op-
timization. However, the size of telemetry data grows dramatically and considerably
increases the storage space and bandwidth utilization within the data center. In this
contribution, we proposed a Markov chain-based method to reduce telemetry data
to minimize bandwidth utilization and storage space required to store it within the
data center. Our solution outperforms the baseline method based on Polynomial Re-
gression (PR) method to reduce and regenerate the telemetry data. We extensively
evaluated the effect of batch sizes, number of states in MM and polynomial degrees
in PR. We observed that a larger batch size effectively reduces data but the recon-
struction accuracy is lower. Therefore, we identified a batch size between 16 to 64 is
appropriate to use for data reduction with better reconstruction accuracy. Our ex-
perimental evaluation shows that Polynomial Regression-based method required more
storage space as compared to Markov Chain Model-based method due to the high pre-
cision of coefficients. We also observed that 95.33% storage space and 75% bandwidth
utilization could be reduced with 92% accuracy using the proposed solution.

The second contribution of this thesis is to explore the modeling techniques for
improving the telemetry prediction accuracy and in this contribution, we develop a
novel method to achieve the required goal. Building new methods for estimating
resource utilization in data centers is an active and challenging problem, as most
of the state-of-art techniques are based on specific machine learning methods, able
to adjust to particular scenarios, but ineffective on extremely diverse environments.
Therefore, we present a novel approach to adaptively and automatically identify the
most appropriate machine learning method to be used for predicting future resource
utilization, given recent observations of such resources. In our proposed methodol-
ogy, we use Random Decision Forest classifiers to determine, from a set of available
machine learning techniques, which one is most appropriate for predicting resources
on a next time interval, having monitored the previous one. The RDF is trained
on the statistical features extracted from historical observations and samples of the
best method identified for each time window. Our selected available methods include
several techniques used in the current state of the art, as regression methods, neu-
ral networks, statistical learning, and bayesian approaches. The proposed method is
evaluated on real traces collected from Alibaba and Bitbrains data-center monitoring
data sets, and our proposed approach can improve prediction accuracy from 6% to

72 Chapter 6. Conclusions

27% over current methodologies. We also focused on the importance of monitoring
time window sizes when modeling and predicting and evaluated different sizes. We
found that 60 minutes of historical resource utilization observation can effectively be
used to build the prediction model to estimate future resource utilization.

The third contribution of this thesis focuses on the development of a novel method
to dynamically identify the sliding window size which is used to train the prediction
models. The existing state-of-art methods available up-to-date use fixed size sliding
windows to train estimation models. This traditional method does not consider the
local changes and patterns in the resource usage of data centers and always using a
fixed sized recent data points to use for training machine learning models which do
not produce accurate future estimations. In this contribution, we devise a method to
automatically limit the observation window size to use for building estimation models
at every estimation step adaptively. Our proposed solution uses a multi-layer per-
ceptron to identify the observation window sizes to be used by estimation methods
for build models with improved estimation results to multiple baseline approaches.
The proposed solution is evaluated on real resource utilization traces collected from
Alibaba, Materna and Bitbrains data centers. Our proposed method can improve
prediction accuracy from 9% to 40% over current methodologies. We conclude that
the proposed system can help to identify the appropriate window size for each specific
scenario over time for building estimation models with higher accuracy compared to
the existing state-of-the-art baseline techniques.

6.2 Topics for Further Research

We believe that these contributions lead to many other open research areas which
could be interesting to explore as future work. Therefore, in this section, we present
some of the interesting future directions for the work done in this thesis.

• As part of this thesis, we presented the telemetry reduction framework based
on Markov Chain Models. In this contribution, we created MM models with
predefined number of states and for fixed size batches, While this approach has
proved to be good for reducing telemetry data, there is still room for improve-
ment and this contribution can be extended by adaptively identifying the batch
size and the number of states in MM to further reduce space and increase the
reconstruction accuracy. Another option to improve this contribution would be
using one Markov Model per metric at the data center level for recurring work-
loads having similar resource usage requirements.

• The adaptive model selector discussed in chapter 4 of the thesis presented the
methodology which can help to identify the appropriate machine learning meth-
ods for each specific scenario over time. In this contribution, we only cover CPU
to demonstrate the effectiveness of the proposed model. However, this contri-
bution could be extended by adding other telemetry streams such as memory,
network. I.O e.t.c. Moreover, the work focus on simple and classical machine
learning techniques however this contribution can also be extended in another
future direction by investigating the deep learning methods to model the data

6.3. List of Publications 73

center’s telemetry streams which is not covered in this thesis.

• The adaptive window size selector framework discussed in chapter 5 presented
the method which adaptively selects the window size for the prediction model. In
this contribution, these prediction models are used for CPU telemetry data only
however, this contribution can be extended by adding other telemetry streams
such as I.O. memory and network. This work can also be extended by integrat-
ing this contribution in the second contribution which means the identification
of the appropriate machine learning algorithm automatically for building esti-
mation models using the proposed adaptive observation windows.

6.3 List of Publications

The contributions of this thesis appear in the following publications.

• Shuja-ur-Rehman Baig, Waheed Iqbal, Josep Lluis Berral, Abdelkarim Erradi,
David Carrera, "Real-time Data Center’s Telemetry Reduction and Reconstruc-
tion Using Markov Chain Models," IEEE Systems Journal

• Shuja-ur-Rehman Baig, Waheed Iqbal, Josep Lluis Berral, Abdelkarim Erradi,
David Carrera, "Adaptive Prediction Models for Data Center Resources Utiliza-
tion Estimation," IEEE Transactions on Network and Service Management

• [Major revision submitted] Shuja-ur-Rehman Baig, Waheed Iqbal, Josep Lluis
Berral, David Carrera, "Adaptive Sliding Windows for Improved Estimation of
Data Center Resource Utilization," Future Generation Computer Systems

The contributions from preliminary work and collaboration appear in the following
publications.

• Shuja-ur-Rehman Baig, Marcelo Amaral, Jordà Polo and David Carrera, "Per-
formance Characterization of Spark Workloads on Shared NUMA Systems,"
2018 IEEE Fourth International Conference on Big Data Computing Service
and Applications (Big-DataService), Bamberg, 2018, pp. 41-48.

• [Submitted] Kiyana Bahadori, Shuja-ur-Rehman Baig, Alberto Gutierrez-Torre,
Waheed Iqbal, Tullio Vardanega, Josep Lluis Berral, David Carrera, "Towards
Modeling Traffic Data on Edge Infrastructures using Distributed Deep Learn-
ing," Future Generation Computer Systems

75

Appendix A

Performance Characterization of
Spark Workloads on Shared
NUMA Systems

In this chapter, we presents the impact of NUMA topology on Spark workloads as
the preliminary work of PhD thesis. Nowadays, due to the growth in the number
of cores in modern processors, parallel systems are built using Non-Uniform Memory
Architecture (NUMA), which has gained wide acceptance in the industry, setting the
new standard for building new generation enterprise servers. These processors can
be connected to large amounts of physical memory, in the range of up to a couple
of terabytes for the time being. This opens an enormous range of opportunities for
runtimes and applications that aim to improve their performance by leveraging low
latencies and high bandwidth provided by RAM. The result is that today there are
several examples of applications that have started pushing the in-memory comput-
ing paradigm to accelerate tasks. To deliver such a large physical memory capacity,
sockets in NUMA systems are connected through high performance connections and
each socket can have multiple processors with its own memory. A process running on
a NUMA system can access the memory of its own node as well remote node where
the latency of memory accesses on remote nodes is significantly high compared to
local memory accesses [13]. Ideally, memory accesses are kept local in order to avoid
this latency and contention on interconnect links. Moreover, the bandwidth of mem-
ory accesses to last-level caches and DRAM memory also depends on the access type
that is local or remote. From the NUMA perspective, people want to learn whether
NUMA topology can meet the challenges of in-memory computing frameworks, and
if not, what kinds of optimizations are required. At the same time, as the adoption of
Big Data technologies becomes the norm in many scenarios, there is a growing need
to optimize them for modern processors. Spark [132] has gained momentum over the
last few years among companies looking for high performance solutions that can scale
out across different cluster sizes. To achieve a good performance for in-memory com-
puting frameworks on a NUMA system, there is a need to understand the topology
of the interconnect between processor sockets and memory banks. Additionally, while
a NUMA architecture can provide very high memory capacity to the applications,
it also implies the additional complexity of letting the Operating System take care
of many critical decisions with respect to where data is physically stored and where
are processes accessing that data placed. This fact may have no impact for many
applications that are not memory intensive, whereas memory-bound applications can
be seriously impacted by these decisions in terms of performance. This chapter ex-
plores how Spark-based in-memory computing workloads are impacted by the effects
of NUMA architecture, how different Spark configurations result in changes in deliv-
ered performance, how the characteristics of the applications can be used to predict

76Appendix A. Performance Characterization of Spark Workloads on Shared NUMA
Systems

workload collocation conflicts, and how to leverage memory-consumption patterns to
smartly co-locate workloads in scale-up nodes.

A.1 Background

A.1.1 Apache Spark

Apache Spark [132] is a popular open-source platform for large-scale in-memory data
processing developed at UC Berkeley. Spark is designed to avoid the file system as
much as possible, retaining most data resident in distributed memory across phases in
the same job. Spark uses Resilient Distributed Datasets (RDDs) [131] which are im-
mutable collections of objects spread across a cluster and hides the details of distribu-
tion and fault-tolerance for a larger collection of items. Spark provides a programming
interface based on the two high-level operations i) transformations ii) actions. Trans-
formations are lazy operations that create new RDDs. Actions launch a computation
on RDDs to return a value to the application or write data to the distributed storage
system. When a user runs an action on an RDD, Spark first builds a directed acyclic
graph (DAG) of stages. Next, it splits the DAG into stages that contain pipelined
transformations with dependencies. Further, it divides each stage into tasks. A task
is a combination of data and computation. Spark executes all the tasks of a stage
before going to next stage. Spark maintains a pool of executor threads which are used
to execute the tasks in parallel.

A.1.2 IBM Power 8

We run all the experiments in the IBM Power System 8247-42L, which is 2-way 12-
core IBM Power8 machine with all cores at 3.02GHz and with each core able to run
up to 8 Simultaneous Multi-Threading (SMT) [106]

Each Power8 processor is composed of two memory regions (i.e NUMA node) with
6 cores and their own memory controller and 256GB of RAM. The Power8 processor
includes four cache levels, consisting of a store-through L1 data cache, a store-in L2
cache, an eDRAM-based L3 cache with a per-core capacity of 64 KB, 512KB, and 8
MB, respectively. The fourth cache level has 128 MB and consists of eight external
memory chips called Centaur (which is a DDR3 memory).

1
2

3 6

5
4

230.4 GB/s

8 * 19.2 = 153.6 GB/s read; 8 * 9.6 =76.8 GB/s write;
 mem. bandwidth per socket=230.4 GB/s

25
6

 G
B

1
2

3 6

5
4

2
56

 G
B

1
2

3 6

5
4

230.4 GB/s

25
6

 G
B

1
2

3 6

5
4

2
56

 G
B

Figure A.1: Power8 NUMA architecture

Because of the main memory is connected to the processor using separate links
for reading and write operations, with two links for memory reads and one link for
memory writes, the system has asymmetric read and write bandwidth. The connection
between the processor with the memory is composed of 8 links, with a link offering 9.6

A.2. Methodology 77

parameter value
spark.serializer org.apache.spark.serializer.KryoSerializer
spark.rdd.compress FALSE
spark.io.compression.codec lzf
storage level MEMORY_AND_DISK
spark.driver.maxResultSize 2 gb
spark.driver.memory 5 gb
spark.kryoserializer.buffer.max 512m

Table A.1: Spark configuration parameters

GB/s write and 19.2 GB/s read bandwidth. Therefore, the system has in total four
NUMA nodes, 192 virtual cores, 1 TB of RAM and a total of 230.4 GB/s of sustainable
memory bandwidth per socket, as illustrated in Figure A.1. For the software stack, the
machine is configured with a Ubuntu 16.10, kernel 4.4.0-47-generic, IBM java version
1.8.0 and Apache Spark 1.6.1.

A.2 Methodology

This section describes how the study on the impact of NUMA topology on in-memory
data analytics workloads has been performed, as well as the rationale behind the
experiments evaluated in the following sections.

A.2.1 Workloads

The experiments presented in this chapter are based on Spark-Bench [69], which is
a benchmark suite developed by IBM and widely tested in Power8 systems. From
the range of available workloads provided by the benchmark, Support Vector Ma-
chines (SVM), PageRank, and Spark SQL RDDRelation have been selected for the
evaluation. These workloads are well-known in the literature, and combine different
characteristics to cover a large range of possible configurations. Dataset size for SVM,
SQL and PageRank is 47, 24, and 17 GB and number of partitions are 376, 192 and
136 respectively for all experiments.

A.2.2 Experimental Setup

Since the goal of this chapter is to evaluate the performance of Spark workloads on
NUMA hardware, all the experiments are conducted in a single machine; the charac-
teristics of the machine’s architecture are described in Section A.1.2. For simplicity,
Spark is configured in the standalone mode [5], To control the number of cores, mem-
ory, and the number of executors of each worker, the parameters SPARK_WORKER_CORES,
SPARK_WORKER_MEMORY, and SPARK_EXECUTOR_MEMORY [5] are used, respectively. All
the other parameters and values used to configure Spark, during the experiments
execution described later in this chapter, are summarized in Table A.1.

Hardware counters have been used to collect most real-time information from
experimental executions, using the perfmon2 [93] library. Memory bandwidth is cal-
culated based on the formula defined in [38]. For CPU usage, memory usage, and
context switches, the vmstat tool has been used. To collect information about NUMA
memory access, the numastat is used. Finally, the numactl command has been used
to bind a workload in a set of CPUs or in memory regions (e.g. in a NUMA node);
the nB nomenclature is used to describe different binding configurations, where n is

78Appendix A. Performance Characterization of Spark Workloads on Shared NUMA
Systems

w
e
m

t
m
a

t
s
w

core per worker

1 2 3 4 6 8 12 16 24 48
250 1000 4 4 8 12 16 24 32 48 64 96 192
125 1000 8 8 16 24 32 48 64 96 128 192
83 996 12 12 24 36 48 72 96 144 192
62 992 16 16 32 48 64 96 128 192
41 984 24 24 48 72 96 144 192
31 992 32 32 64 96 128 192
20 960 48 48 96 144 192
15 960 64 64 128 192
10 960 96 96 192
5 960 192 192

Table A.2: Experiment 1: Evaluated software configura-
tions (wem is worker and executor memory; tma is total

memory allocated; and tsw is total Spark workers)

the number of assigned NUMA nodes, e.g. 1B for workloads bound to 1 NUMA node,
2B for workloads bound to 2 NUMA nodes, etc.

A.3 Experiment 1: Workload Characterization

This experiment consists of a performance characterization of Spark workloads, chang-
ing the configuration parameters of Spark itself and observing the impact of different
configurations in terms of completion time and resource consumption. The goal is to
find which configurations lead to optimal performance, e.g. which number of cores per
Spark worker, and/or the number of workers per application. Since this experiment
aims at defining the software configuration, there is no other kind of hardware tuning
involved; the OS performs its default resource allocation decisions. More specifically,
this experiment analyzes the effect of the software configuration in the resource usage
intensiveness and possible speedups for the workloads described in Section A.2.1.

As described in Section A.1.2, the machine used for the experiments has 4 NUMA
nodes, 192 virtual cores, and 1TB of main memory. Thus, this experiment varies the
number of cores, workers, and memory up to the total amount of resources (cores
and memory) available in this machine. Table A.2 describes all combinations of the
amount of resources allocated to all workloads in this experiment. The amount of
memory ranges from 5 up to 250GB per worker, the number workers vary from 4 up
to 192 workers. Depending on the number of workers, the number of virtual cores
ranges from 1 up to 192. If the total number of workers is 192, each one will have
only one virtual core. Note that, by creating this matrix of experiments, we want
to see at which configuration, the operating system produce optimal results for each
workload type in terms of completion time. We assign memory to Spark worker and
executor by dividing 1000 by a total number of workers in the experiment and take
the integral part only; thus, the amount of memory ranges from 960GB to 1000GB.
Some amount of memory is intentionally left for the OS and other processes (e.g spark
driver, master) to avoid the slowdown effects not related to NUMA.

In Spark, a software configuration defines the number of workers, the number
virtual cores and the amount of memory per worker that is assigned to a specific
workload. These software resources need to match the hardware configuration of the
node used to run the workloads. But not all applications can take advantage of an
increasing amount of resources and therefore it is not always the case that one single

A.3. Experiment 1: Workload Characterization 79

workload total
workers

core
per
worker

total
cores
allocated

worker
executor
memory

total
memory
allocated

Execution
Time (sec)

SVM 24 8 192 41 984 323.71
SQL 4 12 48 250 1000 206.82
PageRank 12 8 96 83 996 748.08:

Table A.3: Experiment 1: Best configuration when opti-
mizing for completion time

software configuration optimizes the performance of a Spark Workload for a given
hardware setup.

Table A.3 summarizes the optimal configurations that found for the three work-
loads considered in this experiment. As it can be seen, every workload achieves maxi-
mum performance using a different software configuration, being SVM the application
that can take advantage of more threads in parallel, followed by PageRank and finally
SQL. It is remarkable that even configurations with a similar number of cores allocated
tend to deliver different performance for similar configurations of number of workers
and number of cores per worker. For instance, SQL works best with fewer workers
and more cores per worker and SVM gets the best performance when more workers
and fewer cores per worker are assigned. This is due to SQL is more impacted because
of thread locks and cache contention than the SVM. Hence, SQL benefits from fewer
threads competing for resources. Additionally, because the JVM includes additional
overheads (e.g. garbage collection), more layers for resource management and memory
indexing, it is not beneficial to have several workers with only one virtual core.

To explain the root cause of the performance delivered by the different configura-
tions, Tables A.4 , A.5 and A.6 also show the executions times in seconds obtained
for SVM , SQL, and PageRank respectively when using all combinations of software
configurations, but in this case, we color each configuration according to the relative
performance delivered compared to the optimal configuration found for that particular
workload. Based on this property we classify configurations in different groups:

• Within 10% of optimal: configurations for which completion time is very close
to the best execution time observed for that particular workload.

• Low CPU Usage: configurations for which CPU usage is clearly below the ob-
served CPU usage for the workload. These configurations use a too low number
of cores or workers that are not enough to fully utilize the available compute
resources and produce optimal results.

• High CPI and Context Switches: executions where cycles per instruction (CPI)
and context switches are greater than the observed values for the optimal con-
figuration. This is due to more executors which execute more threads to process
the tasks. Moreover, executors need to communicate with each other and also
with drivers. Remote memory access also impacts the CPI since it requires more
CPU cycles to be performed than local access. This leads to increase in com-
munication overhead. So in result, we see an increase in context switches and
CPI.

• High L3 misses: configurations where L3 cache misses are greater than in the
optimal configuration. This group is only defined for SVM as it is the only
workload for which this behavior was observed.

80Appendix A. Performance Characterization of Spark Workloads on Shared NUMA
Systems

• Low Memory Bandwidth: configurations where memory bandwidth usage is less
than the observed value for the optimal configuration.

• Require more investigation: configurations where values of metrics are within the
range of optimal region but the completion time is outside of 10%. The experi-
ments in this region require further investigation and it could not be determined
so far the reason for the performance differences with the optimal configuration.

core per workerw 1 2 3 4 6 8 12 16 24 48
4 1437.95 1018.4 816.87 698.34 597.13 515.9 501.78 464.26 472.28 375.2
8 759.16 555.26 478.23 411.91 366.39 357.54 347.49 359.18 360.48
12 531.9 422.6 420.24 382.46 386.72 332.44 353.68 339.51
16 458.58 412.85 385.79 352.69 347.22 333.63 336.26
24 413.1 394.72 371.6 358.46 354.17 323.71
32 405.16 389.16 369.81 361.36 341.53 Within 10% of optimal
48 442.8 427.85 398.61 370.78 Low CPU usage
64 546.11 522.3 569.83 High CPI and Context Switches
96 1118.77 922.01 High L3 misses
192 1980.92 Require more investigation

Table A.4: SVM completion time (seconds) groups

core per workerw 1 2 3 4 6 8 12 16 24 48
4 1148.69 616.46 427.64 338.64 288.48 231.35 206.82 229.65 235.82 238.99
8 590.22 335.51 264.95 255.86 220.93 209.33 259.7 236.06 220.27
12 426.48 270.56 244.68 229.2 217.48 223.57 296.5 228.74
16 375.65 288.92 242.9 247.26 241.71 245.1 240.67
24 347.14 284.32 264.94 254.9 282.7 246.8
32 347.65 293.96 268.68 287.77 262.32
48 328.69 299.43 285.76 282.98 Within 10% of optimal
64 324.99 307.44 307.54 Low CPU usage
96 349.75 355.28 High CPI and Context Switches
192 591.11 Require more investigation

Table A.5: SQL completion time (seconds) groups

core per,workerw 1 2 3 4 6 8 12 16 24 48
4 4771.33 2028.77 1532.34 1188.68 1016.5 1000.84 2358.19 2207.09 1733.52 3186.17
8 2517.32 1145.33 997.91 902.02 920.09 861.18 816.06 1148.35 1319.35
12 1580.25 980.71 911.1 785.84 788.52 748.08 1028.29 1010.76
16 1379.76 921.87 871.61 862.69 766.9 925.91 877.9
24 1175.22 909.71 866.08 843.5 780.68 812.44
32 1085.66 875.52 907 1095.11 880.61 Within 10% of optimal
48 996.54 858.22 760.27 767.63 Low CPU usage
64 1183.04 1143.43 912.03 High CPI and Context Switches
96 1447.05 1142.42 Low Memory Bandwidth
192 2918.32 Require more investigation

Table A.6: PageRank completion time (seconds) groups

The second objective of this experiment was to characterize the CPU, Memory
Footprint and Memory Bandwidth demands of each one of the workloads of study.
For this purpose, we monitored the execution of the workloads when the optimal
software configuration was in use and plotted the average resource consumption in
Figure A.2. As it can be seen, results show that memory usage is 457.7 GB, 364.3
GB and 329.4 GB for SVM, SQL and PageRank respectively and shows the average
usage of user CPU time and memory bandwidth for these workloads when the optimal
software configuration is in use. As it can be observed, SVM is constrained by the
high CPU usage, reaching around 80% for the user CPU time only, that when added

A.4. Experiment 2: Binding to NUMA Nodes 81

Figure A.2: Experiment 1: CPU Usage (percentage) and
Memory Bandwidth (GB/s) for optimal configuration

to the system and wait CPU times tops to about 100% CPU usage, which is the actual
performance bottleneck.

SQL is a more interesting case because CPU and Memory Bandwidth usage are
really low for the fastest configuration, and no other resource is apparently acting as a
bottleneck. In practice, what is avoiding the total CPU usage to go higher is the fact
that the number of threads that are spawn in this configuration (only 48) is well below
the number of hardware threads offered by the system. Therefore, only a third of the
hardware threads are in use and that is why the average CPU utilization is shown
to be low: several hardware threads are idle. Intuition would say that increasing the
number of threads would increase the performance, but in practice what is observed in
the logs of other experiments is that as soon as the number of threads goes higher the
memory bandwidth dramatically increases, quickly becoming the bottleneck at many
stages during the execution. The bottom line is that the OS is not able to correctly
manage the threads for this workload, creating memory access patterns that saturate
the memory links of the P8 processor.

Finally, PageRank is in the same situation: the optimal configuration involves
96 software threads only, while the system offers 192 hardware threads. In practice,
what it means is that the reported CPU utilization is low. Intuition again would
point in the direction of increasing the number of software threads, but when that
direction is taken, logs show that the additional software threads start competing for
memory bandwidth because they exhibit worse memory access patterns, and saturate
the memory links.

In summary, this experiment has shown two cases in which not all hardware threads
could be exploited because in that case the memory access patterns across NUMA
nodes were hitting a memory bandwidth bottleneck. This is an interesting result
because opens a door to smart workload collocation strategies that will be explored
in the following experiments.

A.4 Experiment 2: Binding to NUMA Nodes

Allocating more NUMA nodes to a workload has the potential to increase resources
(such as memory bandwidth, CPU, and memory) and possibly lower cache contention
(due to the availability of additional cores and cache), but it can also involve a trade-
off: using remote memory accesses and dealing with bus contention, which can lead
to slowdowns in some scenarios. Binding, in this context, means Spark processes
(master and workers) will only have access to the resources (cores and memory) of a
particular set of NUMA nodes. While the previous experiment selected the optimal

82Appendix A. Performance Characterization of Spark Workloads on Shared NUMA
Systems

n(x) to n(y) SVM SQL PageRanK
1B → 2B 1.44x 1.73x 1.79x
1B → 4B 2.07x 2.63x 2.64x
2B → 4B 1.44x 1.52x 1.47x
3B → 4B 1.1x 1.11x 1.13x
4NB → 4B 1.15x 1.07x 1.25x

Table A.7: Experiment 2: Speedup (B=Node with binding,
NB= Node without binding)

software configuration without binding, allowing the operating system to make all
decisions, this experiment selects the optimal software configuration when binding all
4 nodes (4B). Results are also compared to the previous experiment so as to evaluate
the impact of binding.

In the previous experiment, the OS was responsible for allocating all the resources,
in this experiment we enforce decisions to manually bind the workloads across the
NUMA nodes. The main motivation of performing the manual binding is to mitigate
the limitations defined in the previous experiments. Manually binding the workloads
can exploit better load balancing, minimize thread migrations and remote memory
access. In order to verify those assumptions, we evaluate the completion time of
all workloads for different binding configurations and compare with non-binding ap-
proaches (the default allocation from OS). As explained in Section A.4, the workloads
are bound in one NUMA node up to 4 (1B, 2B, 3B, 4B). The results of the optimal
software configuration considering the different number of NUMA nodes is shown in
Table A.7. It also shows the comparison of the manual binding with four NUMA
nodes versus the default OS resource allocation, labeled as NB.

The optimal configurations are 24 cores per worker and 1 worker per node for SQL,
SVM, and PageRank when we bound workloads to one NUMA node (1B). In case of
2B, the optimal configurations are 8 cores per worker and 3 workers per node for SQL,
6 cores per worker and 6 workers per node for SVM and 4 cores per worker and 6
workers per node for PageRank. Similarly, in case of 3B, the optimal configurations are
8 cores per worker and 2 workers per node for SQL, 6 cores per worker and 4 workers
per node for SVM and 3 cores per worker and 6 workers per node for PageRank. The
optimal configurations in case of 4B are 12 cores per worker and 1 worker per node
for SQL, 8 cores per worker and 3 workers per node for SVM and 6 cores per worker
and 3 workers per node for PageRank.

The results of this experiment, as summarized in Table A.7, show a significant
speedup when comparing manual binding versus the OS allocating the resources, but
not for all workloads. In the case of SVM, SQL and PageRank, the speedups are x1.15,
x1.07 and x1.25, respectively. This is related to what was discussed in the previous
experiment, the main bottleneck is related to resource contention, most especially the
memory bandwidth. Because of manual binding minimizes remote memory access and
local memory access has higher memory bandwidth and lower latency, some workload
benefit from that. However, this improvement impacts different each workload what
depends on the workload memory access pattern.

The results of this experiment also show that how applications scale with more
NUMA nodes. Considering following formula (current node(s) + new node(s) /
current node(s)), the theoretical speedup of allocating one new NUMA node to ap-
plication with one current node would lead to a speedup of 2x. The results actually
show different speedups for all workloads. PageRank is the workload that scales bet-
ter, with 1.79x from one (1B) to two (2B) NUMA nodes. In the case of SVM, speedup

A.5. Experiment 3: Workload Co-scheduling 83

w1 w2 w1 w2 w1 w2
n-n w1 w2 w/n w/n c/w c/w w+e w+e
2-2 SQL SVM 3 6 8 6 83 41
2-2 SQL PR 3 6 8 4 83 41
2-2 SVM PR 6 6 6 4 41 41
1-3 SQL SVM 1 4 24 6 250 62
1-3 SQL PR 1 6 24 3 250 41
1-3 SVM PR 1 6 24 3 250 41
3-1 SQL SVM 2 1 8 24 125 250
3-1 SQL PR 2 1 8 24 125 250
3-1 SVM PR 4 1 6 24 62 250

Table A.8: Configurations for different co-scheduling
workload combinations; (n-n=NUMA node combination;
w1=workload-1; w2=workload-2; w/n=worker per node;
c/w-=core per worker; w+e=worker and executor memory;

PR=PageRank)

for 1B-2B is only 1.44x. SQL is in between them with a 1.73x speedup for 1B-2B. In
the case of increasing from 3 to 4 NUMA nodes (3B to 4B), the theoretical speedup
would be 1.33x and results show the speedup in range of 1.1x to 1.13x.

A.5 Experiment 3: Workload Co-scheduling

This final experiment explores the benefits of workload co-location and process bind-
ing (cores and memory) as a mechanism to improve system throughput and in-
crease resource utilization. Workload co-location is well-known to possibly slow down
interference-sensitive applications, however, the impact of NUMA co-scheduled Spark
workloads are still not completely understood. This experiment, therefore, evaluates
the performance impact on workloads when sharing the same machine, that is when
workloads are co-located. In order to do so, a defined set of workload combinations
among the four NUMA nodes is provided. This experiment aims at evaluating the
trade-offs between sharing NUMA nodes without binding (with the OS using simple
resource allocation policies), versus binding the workloads to isolate their interference
from each other.

The baseline for this experiment is based on the optimal configurations from Ex-
periment 2. Table A.8 describes all the workload co-location scenarios along with
their software configurations. For all configurations evaluated in this experiment,
only two workloads run at the same time. First, the workloads are equally spread
to the four NUMA nodes. That is, each workload is allocated to two NUMA nodes,
labeled as 2B-2B. Secondly, uneven configurations are evaluated, such as 1B-3B and
3B-1B, meaning one of the workloads is bound to 1 NUMA node and the other one
to 3 NUMA nodes. Note that all configurations are executed with binding on NUMA
nodes according to the description in Table A.8, but also without binding where the
OS allocates all shared resources.

For evaluation purposes, more than one workload is executed at a time in the sys-
tem under test. As each workload exhibits different job duration characteristics, we
evaluate the effects of co-location on a continuous workload environment. In particu-
lar, for any pair of workloads that is evaluated, we run both of them in a continuous
loop of 90 minutes, from which the first 15 minutes are taken as a warm-up period and

84Appendix A. Performance Characterization of Spark Workloads on Shared NUMA
Systems

Figure A.3: Experiment 3: Completion time speedup (60
minutes interval; binding vs non-binding(OS default alloca-

tion))

Figure A.4: Experiment 3: Number of executions (60 min-
utes interval)

A.6. Related Work 85

the final 15 minutes as a cool-down process. The central 60 minutes of the experiment
are used to measure the performance of the system. During that period we collect
system telemetry as well as account for how many loops every workload managed to
perform.

The first configuration evaluated makes an even distribution of the NUMA nodes
across the two workloads under test. We label this test 2B-2B (2 NUMA nodes
with process binding). Each partition runs a different workload. Each workload is
configured with the optimal 2B configuration found in the previous experiment. We
repeat the process with the 1B-3B configurations (1B for 1 NUMA node with binding,
and 3B for 3 NUMA nodes with binding), in which one workload gets assigned one
NUMA node while the other gets allocated the other three nodes.

As it was mentioned before, to provide a baseline for these experiments we also
run the same workload co-location experiments, maintaining in every case the software
configuration, but in this case without performing any process binding operation and
therefore allowing the Operating System to freely schedule processes, threads and
memory pages across NUMA nodes. In all cases we executed all combinations of
SQL-SVM, SQL-PageRank, SVM-PageRank.

Figure A.3 shows the speedup in execution time when binding over non-binding
configurations. As it can be observed, in all cases the process binding configurations
outperformed the non-binding setups, providing a significant improvement that in
some cases reached a 1.39X factor. Figure A.4 shows the number of executions during
the 60 minute interval for all workloads, and as it can be observed, binding always
outperforms non-binding. To explain the reason for this improvement, we looked at
different system metrics.

In this section, we include the results for the number of CPU Context Switches and
the amount of remote memory accessed per workload , as summarized in Figures A.5
and A.6 respectively.

We found that there is an increase of 36-43% in context switches when experiments
are executed without binding. When processes are not bound to specific NUMA nodes,
the OS is in charge of all placement decisions, which includes reactive migrations to
balance the load. In a case of remote memory access, there is an increase of 80-91.93%
when the same experiments are executed without binding. So in conclusion, we show
that memory binding reduces the amount of remote memory access and this leads to
less interconnect traffic (because of less memory transfer and cache-coherence) and
contention on inter-links for Spark workloads. Moreover, CPU binding reduces the
number of context switches, which also helps improve completion time for experiments.

A.6 Related Work

Although there have been several research efforts to investigate and mitigate the
impact of NUMA on workload performance, this topic is still gaining traction in the
literature in recent years [65], [12], [75], [64], [1], [94] [30], [31], [95]. These works
characterize some key sources of workload performance degradation related to NUMA
(such as additional latencies and possibly lower memory bandwidth because of remote
memory access and contentions on the memory controller, bus connections or cache
contention), and propose OS task placement strategies for mitigating remote memory
access. But the characterization of Spark workloads on IBM Power8 systems and
placement strategies for co-scheduled application is still roughly understood.

For example, [12] has characterized the NUMA performance impact related to
remote memory access introduced by the OS when performing task re-scheduling or

86Appendix A. Performance Characterization of Spark Workloads on Shared NUMA
Systems

Figure A.5: Experiment 3: Context switches per second
(60 minutes interval)

Figure A.6: Experiment 3: Amount of remote memory ac-
cess in GB (60 minutes interval)

load balancing. While this work proposed an effective approach to mitigating remote
memory access and cache contention, it is not application-driven and does not have a
holistic view of all applications to define efficient workloads co-scheduling on NUMA
systems. In our work, we demonstrate the potential benefits from manual binding
strategies when co-scheduling multiple workloads on NUMA systems.

Another example is the work of [134], where the authors characterized the perfor-
mance impact of NUMA on graph-analytics applications. They present an approach
to minimize remote memory access by using graph-aware data allocation and access
strategies. While this work presents an application-driven investigation, it lacks the
analyze of memory-intensive Spark workloads and workload collocation.

The most related works to our work are the [6] and [7]. In the former, the authors
quantify the impact of data locality on NUMA nodes for Spark workloads on Intel
Ivy Bridge server. In the later, the authors evaluate the impact of NUMA locality on
the performance of in-memory data analytics with Spark on Intel Ivy Bridge server.
In both papers, they run benchmarks with two configurations a) Local DRAM b) Re-
mote DRAM. In Local DRAM, they bound Spark process to processor 0 and memory
node 0 and in Remote DRAM, they bound the Spark process to processor 0 and mem-
ory node 1. Then, they compare the results to evaluate the performance impact of
NUMA. While those works present a detailed performance characterization of Spark
workloads on NUMA systems on an Intel Ivy Bridge server, the NUMA performance
characterization of IBM Power8 systems is still not understood. Moreover, their work

A.7. Conclusions 87

does not present the NUMA impact of optimally binding the workloads versus leaving
the OS allocating the resources. Also, they do not evaluate the performance benefits
of performing manual binding for co-scheduled Spark workloads as we present in this
paper.

A.7 Conclusions

In-memory computing is becoming one of the most popular approaches for real-time
big data processing as data sets grow and more memory capacity is made available to
popular runtimes such as Spark. To deliver large physical memory capacity, modern
processors feature Non-Uniform Memory Architectures (NUMA). In NUMA systems,
multiple sockets are connected through high-performance connections. Each socket
can have multiple processors with its own memory. A process running in a NUMA
system can access the memory of its own node as well the remote node, where the
latency of memory accesses is higher. It is thus important to understand how the
hardware topology of a particular NUMA architecture affects the performance of
in-memory computing applications. This paper analyzed the behavior of different
memory-intensive Spark workloads on the IBM Power 8 NUMA processor.

Large sets of experiments were executed to evaluate several Spark workloads, and
the results demonstrated that workload colocation is a smart strategy to improve
resource utilization for memory-intensive workloads placed in modern NUMA pro-
cessors. This conclusion is supported by the fact that the experiments showed that
different kinds of Spark workloads require different software configurations to produce
optimal results and that optimal configurations are commonly unable to use all avail-
able hardware resources. Highly concurrent configurations produce undesired memory
access patterns across NUMA nodes that push to the limit the existing memory band-
width, making co-scheduling a good choice. Additionally, the experiments provided
insight on the existing trade-off between sharing NUMA nodes and isolating work-
loads; optimal configurations when binding to a different number of NUMA nodes
change significantly depending on the workload and the number of nodes used. There
is one constant though: when executing a workload in a single NUMA node, using
a single Spark worker produces the optimal results for all workloads. The obtained
results show that binding spark processes to particular NUMA nodes can speed up
the completion time of co-located workloads up to 1.39x at maximum due to less
interconnect traffic, less remote memory access, and less context switches and CPI.

89

Bibliography

[1] Jeongseob Ahn et al. “Dynamic Virtual Machine Scheduling in Clouds for Ar-
chitectural Shared Resources.” In: HotCloud. 2012.

[2] Mohammad Aldossary et al. “Energy-aware cost prediction and pricing of vir-
tual machines in cloud computing environments”. In: Future Generation Com-
puter Systems (2018).

[3] Alibaba Cluster log. url: https://github.com/alibaba/clusterdata.

[4] Marcelo Amaral, Jordà Polo, David Carrera, et al. “Performance characteriza-
tion of spark workloads on shared NUMA Systems”. In: 2018 IEEE Fourth
International Conference on Big Data Computing Service and Applications
(BigDataService). IEEE. 2018, pp. 41–48.

[5] Apache Spark Standalone mode. url: https://spark.apache.org/docs/1.
6.1/spark-standalone.html.

[6] Ahsan Javed Awan et al. “Architectural impact on performance of in-memory
data analytics: Apache spark case study”. In: arXiv preprint arXiv:1604.08484
(2016).

[7] Ahsan Javed Awan et al. “Node architecture implications for in-memory data
analytics on scale-in clusters”. In: Proceedings of the 3rd IEEE/ACM Inter-
national Conference on Big Data Computing, Applications and Technologies.
ACM. 2016, pp. 237–246.

[8] Donald J Berndt and James Clifford. “Using dynamic time warping to find
patterns in time series.” In: KDD workshop. Vol. 10. 16. Seattle, WA. 1994,
pp. 359–370.

[9] M. Z. A. Bhuiyan et al. “Content-Centric Event-Insensitive Big Data Reduction
in Internet of Things”. In: GLOBECOM 2017 - 2017 IEEE Global Communi-
cations Conference. Dec. 2017, pp. 1–6.

[10] Robert Birke, Lydia Y Chen, and Evgenia Smirni. “Usage patterns in multi-
tenant data centers: A temporal perspective”. In: Proceedings of the 9th inter-
national conference on Autonomic computing. ACM. 2012, pp. 161–166.

[11] Bitbrains Cluster log. url: http://gwa.ewi.tudelft.nl/datasets/gwa-t-
12-bitbrains.

[12] Sergey Blagodurov, Sergey Zhuravlev, and Alexandra Fedorova. “Contention-
aware scheduling on multicore systems”. In: ACM Transactions on Computer
Systems (TOCS) 28.4 (2010), p. 8.

[13] Sergey Blagodurov et al. “A Case for NUMA-aware Contention Management
on Multicore Systems”. In: Proceedings of the 2011 USENIX Conference on
USENIX Annual Technical Conference. USENIXATC’11. Portland, OR: USENIX
Association, 2011, pp. 1–1. url: http://dl.acm.org/citation.cfm?id=
2002181.2002182.

https://github.com/alibaba/clusterdata
https://spark.apache.org/docs/1.6.1/spark-standalone.html
https://spark.apache.org/docs/1.6.1/spark-standalone.html
http://gwa.ewi.tudelft.nl/datasets/gwa-t-12-bitbrains
http://gwa.ewi.tudelft.nl/datasets/gwa-t-12-bitbrains
http://dl.acm.org/citation.cfm?id=2002181.2002182
http://dl.acm.org/citation.cfm?id=2002181.2002182

90 BIBLIOGRAPHY

[14] Martin Burtscher and Paruj Ratanaworabhan. “FPC: A high-speed compressor
for double-precision floating-point data”. In: IEEE Transactions on Computers
58.1 (2009), pp. 18–31.

[15] Rodrigo N Calheiros et al. “Workload prediction using ARIMA model and its
impact on cloud applications’ QoS”. In: IEEE Transactions on Cloud Comput-
ing 3.4 (2015), pp. 449–458.

[16] Carlos Carvalho et al. “Avoiding Data Traffic on Smart Grid Communication
System”. In: (2014).

[17] Marcus Carvalho, Daniel A Menascé, and Francisco Brasileiro. “Capacity plan-
ning for IaaS cloud providers offering multiple service classes”. In: Future Gen-
eration Computer Systems 77 (2017), pp. 97–111.

[18] Cesium. url: http://cesium-ml.org/.

[19] Katja Cetinski and Matjaz B Juric. “AME-WPC: advanced model for efficient
workload prediction in the cloud”. In: Journal of Network and Computer Ap-
plications 55 (2015), pp. 191–201.

[20] Girish Chandrashekar and Ferat Sahin. “A survey on feature selection meth-
ods”. In: Computers & Electrical Engineering 40.1 (2014), pp. 16–28.

[21] Zhijia Chen et al. “Self-adaptive prediction of cloud resource demands using
ensemble model and subtractive-fuzzy clustering based fuzzy neural network”.
In: Computational intelligence and neuroscience 2015 (2015), p. 17.

[22] Jui-Sheng Chou and Thi-Kha Nguyen. “Forward Forecast of Stock Price Us-
ing Sliding-window Metaheuristic-optimized Machine Learning Regression”. In:
IEEE Transactions on Industrial Informatics (2018).

[23] Maximilian Christ et al. “Time Series FeatuRe Extraction on basis of Scalable
Hypothesis tests (tsfresh–A Python package)”. In: Neurocomputing (2018).

[24] Z. C. Dagdia et al. “A distributed rough set theory based algorithm for an
efficient big data pre-processing under the spark framework”. In: 2017 IEEE
International Conference on Big Data (Big Data). Dec. 2017, pp. 911–916.

[25] Bruno L Dalmazo, João P Vilela, and Marilia Curado. “Online traffic prediction
in the cloud: a dynamic window approach”. In: Future Internet of Things and
Cloud (FiCloud), 2014 International Conference on. IEEE. 2014, pp. 9–14.

[26] Nickolas Allen Davis et al. “FailureSim: A System for Predicting Hardware
Failures in Cloud Data Centers Using Neural Networks”. In: Cloud Computing
(CLOUD), 2017 IEEE 10th International Conference on. IEEE. 2017, pp. 544–
551.

[27] Mahmood Deypir, Mohammad Hadi Sadreddini, and Sattar Hashemi. “To-
wards a variable size sliding window model for frequent itemset mining over
data streams”. In: Computers & industrial engineering 63.1 (2012), pp. 161–
172.

[28] Sheng Di and Franck Cappello. “Fast error-bounded lossy HPC data compres-
sion with SZ”. In: Parallel and Distributed Processing Symposium, 2016 IEEE
International. IEEE. 2016, pp. 730–739.

[29] Ksenzovets Dmytro, Telenyk Sergii, and Pysarenko Andiy. “ARIMA forecast
models for scheduling usage of resources in IT-infrastructure”. In: Computer
Sciences and Information Technologies (CSIT), 2017 12th International Sci-
entific and Technical Conference on. Vol. 1. IEEE. 2017, pp. 356–360.

http://cesium-ml.org/

BIBLIOGRAPHY 91

[30] Andi Drebes et al. “NUMA-aware scheduling and memory allocation for data-
flow task-parallel applications”. In: Proceedings of the 21st ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming. ACM. 2016,
p. 44.

[31] Andi Drebes et al. “Scalable task parallelism for NUMA: A uniform abstraction
for coordinated scheduling and memory management”. In: Parallel Architec-
ture and Compilation Techniques (PACT), 2016 International Conference on.
IEEE. 2016, pp. 125–137.

[32] Harris Drucker et al. “Support Vector Regression Machines”. In: NIPS. MIT
Press, 1996, pp. 155–161.

[33] Hancong Duan et al. “Energy-aware scheduling of virtual machines in hetero-
geneous cloud computing systems”. In: Future Generation Computer Systems
74 (2017), pp. 142–150.

[34] Lide Duan, Dongyuan Zhan, and Justin Hohnerlein. “Optimizing cloud data
center energy efficiency via dynamic prediction of cpu idle intervals”. In: Cloud
Computing (CLOUD), 2015 IEEE 8th International Conference on. IEEE.
2015, pp. 985–988.

[35] Martin Duggan et al. “Predicting host CPU utilization in cloud computing
using recurrent neural networks”. In: Internet Technology and Secured Trans-
actions (ICITST), 2017 12th International Conference for. IEEE. 2017, pp. 67–
72.

[36] Thuan Hong Duong-Ba et al. “A Dynamic virtual machine placement and mi-
gration scheme for data centers”. In: IEEE Transactions on Services Computing
(2018).

[37] A. Egri et al. “Cross-correlation based clustering and dimension reduction of
multivariate time series”. In: 2017 IEEE 21st International Conference on In-
telligent Engineering Systems (INES). Oct. 2017, pp. 000241–000246.

[38] Timothée Ewart et al. “Performance Evaluation of the IBM POWER8 Ar-
chitecture to Support Computational Neuroscientific Application Using Mor-
phologically Detailed Neurons”. In: Proceedings of the 6th International Work-
shop on Performance Modeling, Benchmarking, and Simulation of High Per-
formance Computing Systems. PMBS ’15. Austin, Texas: ACM, 2015, 1:1–1:11.
isbn: 978-1-4503-4009-0. doi: 10.1145/2832087.2832088.

[39] Wei Fang et al. “RPPS: a novel resource prediction and provisioning scheme in
cloud data center”. In: Services Computing (SCC), 2012 IEEE Ninth Interna-
tional Conference on. IEEE. 2012, pp. 609–616.

[40] Feature Selector. url: https://github.com/WillKoehrsen/feature-selector.

[41] Ronald Aylmer Fisher. Statistical methods for research workers. Genesis Pub-
lishing Pvt Ltd, 1925.

[42] Jerome H. Friedman. “Greedy Function Approximation: A Gradient Boosting
Machine”. In: Annals of Statistics 29 (2000), pp. 1189–1232.

[43] Keke Gai et al. “Resource management in sustainable cyber-physical systems
using heterogeneous cloud computing”. In: IEEE Transactions on Sustainable
Computing 3.2 (2018), pp. 60–72.

[44] G. Gawde and J. Pawar. “Shape based time series reduction using PCA”. In:
2017 International Conference on Innovations in Information, Embedded and
Communication Systems (ICIIECS). Mar. 2017, pp. 1–4.

http://dx.doi.org/10.1145/2832087.2832088
https://github.com/WillKoehrsen/feature-selector

92 BIBLIOGRAPHY

[45] Li Ge and Li-Juan Ge. “Feature extraction of time series classification based
on multi-method integration”. In: Optik-International Journal for Light and
Electron Optics 127.23 (2016), pp. 11070–11074.

[46] Mostafa Ghobaei-Arani, Sam Jabbehdari, and Mohammad Ali Pourmina. “An
autonomic resource provisioning approach for service-based cloud applications:
A hybrid approach”. In: Future Generation Computer Systems 78 (2018), pp. 191–
210.

[47] Ken Goodhope et al. “Building LinkedIn’s Real-time Activity Data Pipeline.”
In: IEEE Data Eng. Bull. 35.2 (2012), pp. 33–45.

[48] Google Cluster log. url: https://github.com/google/cluster-data.

[49] Baptiste Gregorutti, Bertrand Michel, and Philippe Saint-Pierre. “Correlation
and variable importance in random forests”. In: Statistics and Computing 27.3
(2017), pp. 659–678.

[50] Jie Gu and Xiaomin Jin. “A simple approximation for dynamic time warping
search in large time series database”. In: International Conference on Intelligent
Data Engineering and Automated Learning. Springer. 2006, pp. 841–848.

[51] Tin Kam Ho. “Random Decision Forests”. In: Proceedings of the Third Interna-
tional Conference on Document Analysis and Recognition (Volume 1) - Volume
1. ICDAR ’95. Washington, DC, USA: IEEE Computer Society, 1995, pp. 278–.
isbn: 0-8186-7128-9. url: http://dl.acm.org/citation.cfm?id=844379.
844681.

[52] Waheed Iqbal et al. “Adaptive Resource Provisioning for Read Intensive Multi-
tier Applications in the Cloud”. In: Future Generation Computer Systems 27.6
(June 2011), pp. 871–879.

[53] Jeremy Iverson, Chandrika Kamath, and George Karypis. “Fast and effective
lossy compression algorithms for scientific datasets”. In: European Conference
on Parallel Processing. Springer. 2012, pp. 843–856.

[54] Yexi Jiang et al. “Cloud analytics for capacity planning and instant vm pro-
visioning”. In: IEEE Transactions on Network and Service Management 10.3
(2013), pp. 312–325.

[55] Donald R Jones, Matthias Schonlau, and William J Welch. “Efficient global op-
timization of expensive black-box functions”. In: Journal of Global optimization
13.4 (1998), pp. 455–492.

[56] Murat Salim Karabinaoğlu and Tuba Gözel. “Load forecasting modelling of
data centers and IT systems by using artificial neural networks”. In: Electrical
and Electronics Engineering (ELECO), 2017 10th International Conference on.
IEEE. 2017, pp. 62–66.

[57] Samuel Karlin. A first course in stochastic processes. Academic press, 2014.

[58] In Kee Kim et al. “CloudInsight: Utilizing a Council of Experts to Predict
Future Cloud Application Workloads”. In: IEEE International Conference on
Cloud Computing. 2018.

[59] Minyoung Kim. “Time-series dimensionality reduction via Granger causality”.
In: IEEE Signal Processing Letters 19.10 (2012), pp. 611–614.

[60] Diedirik P. Kingma and Jimmy L. Ba. “Adam: A method for stochastic opti-
mization.” In: arXiv preprint arXiv:1412.6980 (2015).

https://github.com/google/cluster-data
http://dl.acm.org/citation.cfm?id=844379.844681
http://dl.acm.org/citation.cfm?id=844379.844681

BIBLIOGRAPHY 93

[61] Kolmogorov-Smirnov test. url: https://stat.ethz.ch/R-manual/R-devel/
library/stats/html/ks.test.html.

[62] Jay Kreps, Neha Narkhede, Jun Rao, et al. “Kafka: A distributed messaging
system for log processing”. In: Proceedings of the NetDB. 2011, pp. 1–7.

[63] Mahendra Kutare et al. “Monalytics: online monitoring and analytics for man-
aging large scale data centers”. In: Proceedings of the 7th international confer-
ence on Autonomic computing. ACM. 2010, pp. 141–150.

[64] Christoph Lameter. “Numa (non-uniform memory access): An overview”. In:
Queue 11.7 (2013), p. 40.

[65] Richard P LaRowe Jr, Carla Schlatter Ellis, and Laurence S Kaplan. “The ro-
bustness of NUMA memory management”. In: ACM SIGOPS Operating Sys-
tems Review. Vol. 25. 5. ACM. 1991, pp. 137–151.

[66] Charles L Lawson and Richard J Hanson. Solving least squares problems. Siam,
1995.

[67] Eun Kyung Lee, Hariharasudhan Viswanathan, and Dario Pompili. “Proactive
thermal-aware resource management in virtualized HPC cloud datacenters”.
In: IEEE Transactions on Cloud Computing 5.2 (2017), pp. 234–248.

[68] Junnan Li et al. “SERAC3: Smart and economical resource allocation for big
data clusters in community clouds”. In: Future Generation Computer Systems
85 (2018), pp. 210–221.

[69] Min Li et al. “SparkBench: A Comprehensive Benchmarking Suite for in Mem-
ory Data Analytic Platform Spark”. In: Proceedings of the 12th ACM Interna-
tional Conference on Computing Frontiers. CF ’15. Ischia, Italy: ACM, 2015,
53:1–53:8. isbn: 978-1-4503-3358-0. doi: 10.1145/2742854.2747283. url:
http://doi.acm.org/10.1145/2742854.2747283.

[70] Shasha Liao et al. “Adaptive Resource Prediction in the Cloud Using Linear
Stacking Model”. In: Advanced Cloud and Big Data (CBD), 2017 Fifth Inter-
national Conference on. IEEE. 2017, pp. 33–38.

[71] linear trend feature. url: https://tsfresh.readthedocs.io/en/latest/
api/tsfresh.feature_extraction.html#tsfresh.feature_extraction.
feature_calculators.agg_linear_trend.

[72] David Littau and Daniel Boley. “Streaming data reduction using low-memory
factored representations”. In: Information Sciences 176.14 (2006), pp. 2016–
2041.

[73] Chunhong Liu et al. “An adaptive prediction approach based on workload
pattern discrimination in the cloud”. In: Journal of Network and Computer
Applications 80 (2017), pp. 35–44. issn: 1084-8045. doi: https://doi.org/
10.1016/j.jnca.2016.12.017. url: http://www.sciencedirect.com/
science/article/pii/S1084804516303198.

[74] Liya Liu, Osman Hasan, and Sofiene Tahar. “Formal reasoning about finite-
state discrete-time markov chains in HOL”. In: Journal of Computer Science
and Technology 28.2 (2013), pp. 217–231.

[75] Zoltan Majo and Thomas R Gross. “Memory management in NUMA multicore
systems: trapped between cache contention and interconnect overhead”. In:
ACM SIGPLAN Notices. Vol. 46. 11. ACM. 2011, pp. 11–20.

https://stat.ethz.ch/R-manual/R-devel/library/stats/html/ks.test.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/ks.test.html
http://dx.doi.org/10.1145/2742854.2747283
http://doi.acm.org/10.1145/2742854.2747283
https://tsfresh.readthedocs.io/en/latest/api/tsfresh.feature_extraction.html#tsfresh.feature_extraction.feature_calculators.agg_linear_trend
https://tsfresh.readthedocs.io/en/latest/api/tsfresh.feature_extraction.html#tsfresh.feature_extraction.feature_calculators.agg_linear_trend
https://tsfresh.readthedocs.io/en/latest/api/tsfresh.feature_extraction.html#tsfresh.feature_extraction.feature_calculators.agg_linear_trend
http://dx.doi.org/https://doi.org/10.1016/j.jnca.2016.12.017
http://dx.doi.org/https://doi.org/10.1016/j.jnca.2016.12.017
http://www.sciencedirect.com/science/article/pii/S1084804516303198
http://www.sciencedirect.com/science/article/pii/S1084804516303198

94 BIBLIOGRAPHY

[76] Karl Mason et al. “Predicting host CPU utilization in the cloud using evolu-
tionary neural networks”. In: Future Generation Computer Systems 86 (2018),
pp. 162–173.

[77] Llew Mason et al. “Boosting Algorithms as Gradient Descent”. In: In Advances
in Neural Information Processing Systems 12. MIT Press, 2000, pp. 512–518.

[78] Matthew L Massie, Brent N Chun, and David E Culler. “The ganglia dis-
tributed monitoring system: design, implementation, and experience”. In: Par-
allel Computing 30.7 (2004), pp. 817–840.

[79] Materna Trace. url: http://gwa.ewi.tudelft.nl/datasets/gwa-t-13-
materna.

[80] Marwa F Mohamed et al. “Data reduction in a cloud-based AMI framework
with service-replication”. In: Computers & Electrical Engineering (2018).

[81] Meinard Müller. Information retrieval for music and motion. Vol. 2. Springer,
2007.

[82] Smrithy Girijakumari Sreekantan Nair and Ramadoss Balakrishnan. “Mitigat-
ing false alarms using accumulator rule and dynamic sliding window in wireless
body area”. In: CSI Transactions on ICT (2018), pp. 1–6.

[83] Trung Hieu Nguyen, Mario Di Francesco, and Antti Yla-Jaaski. “Virtual ma-
chine consolidation with multiple usage prediction for energy-efficient cloud
data centers”. In: IEEE Transactions on Services Computing (2017).

[84] Ali Yadavar Nikravesh, Samuel A Ajila, and Chung-Horng Lung. “Towards an
autonomic auto-scaling prediction system for cloud resource provisioning”. In:
Proceedings of the 10th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems. IEEE Press. 2015, pp. 35–45.

[85] Mohd Halim Mohd Noor et al. “Adaptive sliding window segmentation for
physical activity recognition using a single tri-axial accelerometer”. In: Perva-
sive and Mobile Computing 38 (2017), pp. 41–59.

[86] Tim Oates, Laura Firoiu, and Paul R Cohen. “Clustering time series with hid-
den markov models and dynamic time warping”. In: Proceedings of the IJCAI-
99 workshop on neural, symbolic and reinforcement learning methods for se-
quence learning. Citeseer. 1999, pp. 17–21.

[87] One and two-tailed tests. url: https : / / en . wikipedia . org / wiki / One -
_and_two-tailed_tests.

[88] Tinghui Ouyang et al. “Model of selecting prediction window in ramps fore-
casting”. In: Renewable Energy 108 (2017), pp. 98–107.

[89] Tinghui Ouyang et al. “Optimisation of time window size for wind power ramps
prediction”. In: IET Renewable Power Generation 11.8 (2016), pp. 1270–1277.

[90] Ashkan Paya and Dan C Marinescu. “Energy-aware load balancing and ap-
plication scaling for the cloud ecosystem”. In: IEEE Transactions on Cloud
Computing 5.1 (2017), pp. 15–27.

[91] Xuesong Peng and Barbara Pernici. “Correlation-model-based reduction of
monitoring data in data centers”. In: Smart Cities and Green ICT Systems
(SMARTGREENS), 2016 5th International Conference on. IEEE. 2016, pp. 1–
11.

[92] Juan J Pérez-Solano and Santiago Felici-Castell. “Adaptive time window lin-
ear regression algorithm for accurate time synchronization in wireless sensor
networks”. In: Ad Hoc Networks 24 (2015), pp. 92–108.

http://gwa.ewi.tudelft.nl/datasets/gwa-t-13-materna
http://gwa.ewi.tudelft.nl/datasets/gwa-t-13-materna
https://en.wikipedia.org/wiki/One-_and_two-tailed_tests
https://en.wikipedia.org/wiki/One-_and_two-tailed_tests

BIBLIOGRAPHY 95

[93] Perfmon2. url: http://perfmon2.sourceforge.net/.

[94] Iraklis Psaroudakis et al. “Adaptive NUMA-aware data placement and task
scheduling for analytical workloads in main-memory column-stores”. In: Pro-
ceedings of the VLDB Endowment 10.2 (2016), pp. 37–48.

[95] Iraklis Psaroudakis et al. “Scaling up concurrent main-memory column-store
scans: Towards adaptive numa-aware data and task placement”. In: Proceedings
of the VLDB Endowment 8.12 (2015), pp. 1442–1453.

[96] Feng Qiu, Bin Zhang, and Jun Guo. “A deep learning approach for VM work-
load prediction in the cloud”. In: 2016 17th IEEE/ACIS International Confer-
ence on Software Engineering, Artificial Intelligence, Networking and Paral-
lel/Distributed Computing (SNPD). IEEE. 2016, pp. 319–324.

[97] Ali Asghar Rahmanian, Mostafa Ghobaei-Arani, and Sajjad Tofighy. “A learn-
ing automata-based ensemble resource usage prediction algorithm for cloud
computing environment”. In: Future Generation Computer Systems 79 (2018),
pp. 54–71.

[98] Thanawin Rakthanmanon et al. “Searching and mining trillions of time series
subsequences under dynamic time warping”. In: Proceedings of the 18th ACM
SIGKDD international conference on Knowledge discovery and data mining.
ACM. 2012, pp. 262–270.

[99] Célia G Ralha et al. “Multiagent system for dynamic resource provisioning in
cloud computing platforms”. In: Future Generation Computer Systems (2018).

[100] Oleksandr Rolik et al. “Dynamie management of data center resources using
reinforcement learning”. In: 2018 14th International Conference on Advanced
Trends in Radioelecrtronics, Telecommunications and Computer Engineering
(TCSET). IEEE. 2018, pp. 237–244.

[101] Gordon J Ross et al. “Parametric and nonparametric sequential change detec-
tion in R: The cpm package”. In: Journal of Statistical Software 66.3 (2015),
pp. 1–20.

[102] Khalid Sayood. Introduction to data compression. Elsevier, 2005.

[103] Pavel Senin. “Dynamic time warping algorithm review”. In: Information and
Computer Science Department University of Hawaii at Manoa Honolulu, USA
855 (2008), pp. 1–23.

[104] Filippo Seracini et al. “A Proactive Customer-Aware Resource Allocation Ap-
proach for Data Centers”. In: Parallel and Distributed Processing with Appli-
cations (ISPA), 2014 IEEE International Symposium on. IEEE. 2014, pp. 26–
33.

[105] Prateek Sharma et al. “Managing risk in a derivative IaaS cloud”. In: IEEE
Transactions on Parallel and Distributed Systems 29.8 (2018), pp. 1750–1765.

[106] Balaram Sinharoy et al. “IBM POWER8 processor core microarchitecture”. In:
IBM Journal of Research and Development 59.1 (2015), pp. 2–1.

[107] GS Smrithy, Ramadoss Balakrishnan, and Nikita Sivakumar. “Anomaly detec-
tion using dynamic sliding window in wireless body area networks”. In: Data
Science and Big Data Analytics. Springer, 2019, pp. 99–108.

[108] Binbin Song et al. “Host load prediction with long short-term memory in cloud
computing”. In: The Journal of Supercomputing (2017), pp. 1–15.

[109] Spark-Bench. url: https://github.com/SparkTC/spark-bench.

http://perfmon2.sourceforge.net/
https://github.com/SparkTC/spark-bench

96 BIBLIOGRAPHY

[110] Josep Subirats and Jordi Guitart. “Assessing and forecasting energy efficiency
on Cloud computing platforms”. In: Future Generation Computer Systems 45
(2015), pp. 70–94.

[111] T. Sun, H. Sun, and W. Chen. “Dimensionality reduction for Interval Time
Series”. In: 2012 World Congress on Information and Communication Tech-
nologies. Oct. 2012, pp. 1115–1120.

[112] Ling Tang and Hao Chen. “Joint pricing and capacity planning in the iaas cloud
market”. In: IEEE Transactions on Cloud Computing 5.1 (2017), pp. 57–70.

[113] Dan Terpstra et al. “Collecting performance data with PAPI-C”. In: Tools for
High Performance Computing 2009. Springer, 2010, pp. 157–173.

[114] Sharda Tripathi and Swades De. “An Efficient Data Characterization and Re-
duction Scheme for Smart Metering Infrastructure,” in: IEEE Transactions on
Industrial Informatics (2018) (2018).

[115] Kishor S Trivedi and Andrea Bobbio. Reliability and Availability Engineering:
Modeling, Analysis, and Applications. Cambridge University Press, 2017.

[116] Katharina Tschumitschew and Frank Klawonn. “Effects of drift and noise on
the optimal sliding window size for data stream regression models”. In: Com-
munications in Statistics-Theory and Methods 46.10 (2017), pp. 5109–5132.

[117] Fan-Hsun Tseng et al. “Dynamic Resource Prediction and Allocation for Cloud
Data Center Using the Multiobjective Genetic Algorithm”. In: IEEE Systems
Journal 12.2 (2018), pp. 1688–1699.

[118] Tsfresh Features. url: https://tsfresh.readthedocs.io/en/latest/text/
list_of_features.html.

[119] Carlos Vazquez, Ram Krishnan, and Eugene John. “Time Series Forecasting
of Cloud Data Center Workloads for Dynamic Resource Provisioning.” In:
JoWUA 6.3 (2015), pp. 87–110.

[120] Neal Wagner and Zbigniew Michalewicz. “An analysis of adaptive windowing
for time series forecasting in dynamic environments: further tests of the Dy-
For GP model”. In: Proceedings of the 10th annual conference on Genetic and
evolutionary computation. ACM. 2008, pp. 1657–1664.

[121] Jianpei Wang et al. “An efficient data reduction method and its application to
cluster analysis”. In: Neurocomputing 238 (2017), pp. 234–244.

[122] Yongjian Wang and Hongguang Li. “A novel intelligent modeling framework
integrating convolutional neural network with an adaptive time-series window
and its application to industrial process operational optimization”. In: Chemo-
metrics and Intelligent Laboratory Systems (2018).

[123] Wei Wei et al. “Imperfect information dynamic stackelberg game based resource
allocation using hidden Markov for cloud computing”. In: IEEE Transactions
on Services Computing 11.1 (2018), pp. 78–89.

[124] Joseph Nathanael Witanto, Hyotaek Lim, and Mohammed Atiquzzaman. “Adap-
tive selection of dynamic VM consolidation algorithm using neural network
for cloud resource management”. In: Future Generation Computer Systems 87
(2018), pp. 35–42.

[125] Kesheng Wu et al. “Statistical data reduction for streaming data”. In: Scientific
Data Summit (NYSDS), 2017 New York. IEEE. 2017, pp. 1–6.

https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html

BIBLIOGRAPHY 97

[126] Ye Xia et al. “Large-scale VM placement with disk anti-colocation constraints
using hierarchical decomposition and mixed integer programming”. In: IEEE
Transactions on Parallel and Distributed Systems 28.5 (2017), pp. 1361–1374.

[127] Ji Xue et al. “Spatial-Temporal Prediction Models for Active Ticket Managing
in Data Centers”. In: IEEE Transactions on Network and Service Management
15.1 (2018), pp. 39–52.

[128] Jun Yan et al. “Effective and efficient dimensionality reduction for large-scale
and streaming data preprocessing”. In: IEEE transactions on Knowledge and
Data Engineering 18.3 (2006), pp. 320–333.

[129] Jingqi Yang et al. “A cost-aware auto-scaling approach using the workload
prediction in service clouds”. In: Information Systems Frontiers 16.1 (2014),
pp. 7–18.

[130] Tianqi Yu, Xianbin Wang, and Abdallah Shami. “A Novel Fog Computing
Enabled Temporal Data Reduction Scheme in IoT Systems”. In: GLOBECOM
2017-2017 IEEE Global Communications Conference. IEEE. 2017, pp. 1–5.

[131] Matei Zaharia et al. “Resilient distributed datasets: A fault-tolerant abstraction
for in-memory cluster computing”. In: Proceedings of the 9th USENIX confer-
ence on Networked Systems Design and Implementation. USENIX Association.
2012, pp. 2–2.

[132] Matei Zaharia et al. “Spark: cluster computing with working sets.” In: ().

[133] Lei Zhan et al. “A Framework for Monitoring and Measuring a Large-scale
Distributed System in Real Time”. In: Proceedings of the 5th ACM Workshop
on HotPlanet. HotPlanet ’13. Hong Kong, China: ACM, 2013, pp. 21–26. isbn:
978-1-4503-2177-8.

[134] Kaiyuan Zhang, Rong Chen, and Haibo Chen. “NUMA-aware graph-structured
analytics”. In: ACM SIGPLAN Notices. Vol. 50. 8. ACM. 2015, pp. 183–193.

[135] Qingchen Zhang et al. “An efficient deep learning model to predict cloud work-
load for industry informatics”. In: IEEE Transactions on Industrial Informatics
(2018).

[136] Weishan Zhang et al. “Resource requests prediction in the cloud computing
environment with a deep belief network”. In: Software: Practice and Experience
47.3 (2017), pp. 473–488.

	Abstract
	Acknowledgements
	Introduction
	Introduction
	Contributions
	Thesis Organization

	Background
	Telemetry Monitoring
	Data center's Telemetry Monitoring
	Markov Chains
	Machine Learning

	 Telemetry Reduction by Markov Chain Models
	Data Reduction Framework
	Experimental Setup
	Experimental Results
	Benefits of the Proposed Solution in Different Data Centers
	Related Work
	Final Considerations

	Telemetry Prediction by Adaptive Prediction Models
	Proposed System Overview
	Machine Learning Methods
	Feature Extraction and Selection
	Experimental Evaluation
	Experimental Results
	Related Work
	Final Considerations

	Adaptive Window Size Selector for Prediction Models
	Proposed System Overview
	Adaptive Window Size Predictor Using Deep Learning
	Estimation Methods for Resource Utilization Prediction
	Experimental Setup and Design
	Experiment Results
	Related Work
	Final Considerations

	Conclusions
	Main Contributions
	Topics for Further Research
	List of Publications

	Performance Characterization of Spark Workloads on Shared NUMA Systems
	Background
	Methodology
	Experiment 1: Workload Characterization
	Experiment 2: Binding to NUMA Nodes
	Experiment 3: Workload Co-scheduling
	Related Work
	Conclusions

	Bibliography

