
 1

0F

Abstract—Autonomous network operation realized by means

of control loops, where prediction from machine learning (ML)

models is used as input to proactively reconfigure individual

optical devices or the whole optical network, has been recently

proposed to minimize human intervention. A general issue in this

approach is the limited accuracy of ML models due to the lack of

real data for training the models. Although the training dataset

can be complemented with data from lab experiments and

simulation, it is probable that once in operation, events not

considered during the training phase appear thus leading into

model inaccuracies. A feasible solution is to implement self-

learning approaches, where model inaccuracies are used to re-

train the models in the field and to spread such data for training

models being used for devices of the same type in other nodes in

the network. In this paper, we develop the concept of collective

self-learning aiming at improving models error convergence time,

as well as at minimizing the amount of data being shared and

stored. To this end, we propose a knowledge management (KM)

process and an architecture to support it. Besides knowledge

usage, the KM process entails knowledge discovery, knowledge

sharing, and knowledge assimilation. Specifically, knowledge

sharing and assimilation are based on distributing and

combining ML models, so specific methods are proposed for

combining models. Two use cases are used to evaluate the

proposed KM architecture and methods. Exhaustive simulation

results show that model-based KM provides the best error

convergence time with reduced data being shared.

Index Terms—Knowledge Management; Network

Automation; Autonomic Transmission; Self-learning.

I. INTRODUCTION

HE optical network is being extended toward the edges of

operators’ networks [1], fostered not only by the increased

amount of traffic coming from current and future access

segment, but also by the stringent requirements that they need

to support, like low latency and high reliability. The added

complexity, in addition to highly dynamic traffic, requires the

network operation to be automated. In this regard, autonomous

control loops based on Machine Learning (ML) techniques [2]

have been proposed aiming at reducing human intervention as

a way to minimize network operational costs. In general, an

autonomous control loop uses knowledge discovered during a

ML training phase to predict (near) future network conditions,

so as to proactively prepare resources to deal with them

(decision-making).

Several works in the literature have focused on

implementing autonomous control loops entailing knowledge

Manuscript received July 6th, 2019.

Marc Ruiz, Fatemehsadat Tabatabaeimehr, and Luis Velasco
(lvelasco@ac.upc.edu) are with the Optical Communications Group (GCO), at

Universitat Politècnica de Catalunya (UPC), Barcelona, Spain.

usage and decision making. The authors in [3] present a

predictive Autonomic Transmission Agent (ATA) based

Artificial Neural Networks (ANN) that predicts the right

Forward Error Correction (FEC) algorithm configuration for

short-term operation as a function of real-time monitoring of

state of polarization (SOP) traces and the corresponding pre-

FEC BER. Note that the control loop is performed at the

device level, and so the knowledge usage and the decision-

making process. The authors in [4] explore several ML

approaches based on Decision Trees (DT) and Support Vector

Machines (SVM) for fault management [5], specifically for

soft-failure detection, identification and localization taking

advantage of Optical Spectrum Analyzers (OSA) to monitor

the optical spectrum. Note this is a distributed system where

knowledge usage is placed at the device level and decision-

making is placed close to the centralized Software-defined

Networking (SDN) controller. The authors in [6] demonstrate

the concept of autonomic networking in disaggregated

scenarios through use cases for provisioning and self-tuning

based on the monitoring of optical spectrum. Note that here

the control loop entails collecting monitoring data from one

device and tuning the configuration of another one, so

knowledge usage and decision-making need to be placed in

some centralized element. Finally, the authors in [7] model

origin-destination (OD) traffic at the packet layer and use the

traffic prediction to proactively reconfigure the virtual

network topology (VNT) to adapt it to current and predicted

traffic volume and direction. Note this is a purely centralized

autonomous networking control loop case where knowledge

usage and decision-making are placed in close to the

centralized SDN controller.

In view that knowledge usage and decision making are

needed not only at the controller level, but also at the local

node/subsystem level, the control plane should be designed to

support such variety of use cases and scenarios of autonomous

networking. For instance, the authors in [8] present the

benefits of adding a Monitoring and Data Analytics (MDA)

system and present operators use cases looking at automating

optical network operation. Several MDA architectures are

overviewed, from the centralized to alternative hierarchical

ones that allow to implement control loops at different levels.

In addition, the works in [9] and [10] provide more details

regarding MDA architectures and its integration with other

elements in the control and data planes.

Enough real data to produce accurate ML models is rarely

available owing to a plethora of reasons, like the existing legal

and regulatory context that limits the availability of real

network performance measurement, as well as the difficulty to

Knowledge Management in Optical Networks:

Architecture, Methods and Use Cases [Invited]

Marc Ruiz, Fatemehsadat Tabatabaeimehr, and Luis Velasco

T

 2

obtain training datasets belonging to specific pre-commercial

and commercial technologies and use them in current and

forecasted scenarios. In view of that, the authors in [11]

proposed a learning life-cycle to facilitate ML deployment in

real operator networks. In particular, they added a ML training

phase to be carried out after detecting model inaccuracies

(e.g., in the form of prediction errors), being this the basis of

self-learning to progressively improve the ML models

deployed in the network. Such improvement can be made

faster in the case of the model is being used by several agents,

which can share model’s inaccuracies among them; they

called this as collective self-learning. It was demonstrated that

collective self-learning outperforms individual strategies.

However, because the size of the training dataset might be

large to reach high-accuracy and robustness, (data-based)

collective self-learning increases data to be stored and to be

exchanged among agents.

Instead of data, ML models can also be shared among

agents. An example of such model sharing can be found in

[12], where the authors proposed to model OD traffic in the

core as an aggregation model of the conveyed metro flows

models. In this case, metro flow models are trained by the

metro SDN controllers and shared with the core SDN

controller, which composes the model for the core OD.

In this paper, we go further and target at completing the

knowledge management (KM) process for truly autonomous

optical network operation. The KM process entails creating

and sharing knowledge and it has been applied to achieve

organizational objectives, like continuous improvement of an

organization. Those learning organizations are able to adapt

quickly and effectively to be superior to the competitors in

their field or market [13]. Here, we apply KM in the context of

optical transmission and networking and define it as the

process to autonomously (i.e., without human intervention) i)

discover; ii) share; iii) assimilate; and iv) use knowledge to

improve the performance of a network. Note that networks,

like organizations, consist of a set of networking devices,

which would probably not achieve a global improvement in

case of knowledge being individually managed.

As discussed above, the last pillar for KM, i.e., knowledge

usage, has been extensively covered in the literature. Hence, in

this work we concentrate on the other three pillars and present

a generic architecture for KM, methods for knowledge

assimilation, and use cases in optical networks. The challenge

is to develop techniques for knowledge exchange that reduce

the amount of exchanged data while keeping complexity low.

Specifically, the contribution of this work is three-fold:

1 Section II overviews the KM process in optical networks

and proposes a general architecture to support KM. The

architecture extends previous works focused on supporting

control loops and on supporting individual and collective

self-learning, as it includes full support for KM.

2 Aiming at remarkably reducing the amount of data to be

shared (and stored), we present an alternative strategy

based on sharing and combining ML models that enables

model-based collective self-learning. Note that ML models

consist of a set of parameters of moderate size compared to

the size of training datasets, while capturing their

knowledge. Nonetheless, that benefit might be at the cost

of adding complexity in the subsequent ML model

combination process. Section III presents model

combination strategies to assimilate knowledge.

3 Section IV particularizes the architecture and the methods

for KM for two borderline use cases, namely: i) the purely

distributed use case for autonomic transmission problem

[3], and ii) the purely centralized use case for pro-active

VNT reconfiguration based on traffic prediction [7].

The discussion is supported by the numerical results for the

defined use cases presented in Section V.

II. KNOWLEDGE MANAGEMENT IN OPTICAL NETWORKS

A. KM Process Overview

Fig. 1 presents the architecture proposed to enable KM,

where two software agents in charge of networking devices

are represented. Agents collect monitoring/telemetry data from

the underlying device(s) e.g., an optical transponder (step 1 in

Fig. 1a) that are consumed by a ML-based application, to

produce some output (e.g., prediction) based on some ML

models regarding some device/entity, e.g., the QoT of an

optical connection. The results can be used by a decision

maker module (2) to tune configuration parameters in the

device(s) (3). Note that we just described the typical control

loop (1-2-3), which focuses exclusively on knowledge usage.

Now let us assume that the output produced by the ML-

based application based on the measured data is stored (4) and

that such output could be compared to real data measured

from the device(s) after some time. If this would be possible,

we could conceive an algorithm that would monitor the

accuracy of the current ML models and detect events for

which the models return inaccurate output (5). For illustrative

purposes, Fig. 2a shows an example where a model for

regression has been trained with data points. Note that those

data points do not need to be uniformly distributed in the

regions and can form data clusters in some regions of the

features space, whereas no data points can be found in other

regions. A prediction for data in an unknown region would

produce a response value that might be far from the actual

response measured from the network. Thus, detecting such

inaccuracies would open the opportunity to increase our

training dataset with new labeled data (i.e., <X, y>, where X is

the input data and y the predicted response) and apply ML

training to produce more accurate ML models that can be

immediately used by the ML-based application (6). This loop

(4-5-6) entails knowledge discovery and it is the base for self-

learning [11].

As an alternative to the single ML model covering the

complete features space, one could analyze the structure of the

training dataset and realize of the presence of data clusters. In

 3

Data
repo

Configuration

Agent discovering new knowledge (a)

Monitoring
/telemetry

ML-based
Application

Knowledge
Sharing

Model
repo

Device(s)

Data

Decision
Maker

Knowledge
Usage

• Find what the
new knowledge is
(meta-data).

• Assimilate the
new knowledge.
Model pool with
disjoint/shared
regions.

• Join models/data
within a region.

• Join models/ data
of nearby
regions.

Data / Models
and Meta-data

Device(s)

Configuration
Monitoring
/telemetry

Self-learning
Management

Knowledge
Discovery

Agent receiving new knowledge (b)

Self-learning Management

Knowledge Usage

Models and
Meta-data

1

2

3

4

5

6

7

Knowledge
extension

Knowledge
consolidation

Knowledge
Assimilation

Models and
Meta-data

8

Fig. 1. KM Process. New knowledge is discovered (a) and assimilated for operation (b).

Features Space
(Ω)

Known
regions

Unknown region

Ω

Data
Clusters

b)a) R1 R2 R3

d)c)

U
nk

no
w

n
re

gi
o

n

U
n

kn
o

w
n

 r
eg

io
n

Region
with data

Fig. 2. Known and unknown regions in the features space.

such case, specific and more accurate ML models could be

produced within each of the selected regions as it is suggested

in the example in Fig. 2b (regions R1..3). In this case, some

information (meta-data) is needed to specify the region of

applicability of the model, as well as other important data, like

the number of samples used to produce the model, etc. In

addition, note that the lack of a model in the region of a

collected measurement reveals a new unknown region; those

collected data need to be stored until the corresponding label

is obtained and can be used to extend the knowledge to that

region.

Imagine now that the knowledge discovery process is

performed individually per every different device/entity, as the

measured data could be specific for such device/entity and so

the corresponding ML models. In such case, knowledge

discovered from one device/entity cannot be shared among

different devices/entities. However, let us assume that either

the measured data can be used unchanged by other

devices/entities or there exists a function that normalizes the

measured data (i.e., removes local dependences) so that the

resulting normalized data can be used to train ML models for

other devices/entities. Then, new knowledge in the form of

labeled data can be shared with other agents as soon as it is

discovered (7), thus enabling collective learning [11]. Note

that the normalized data received from other agents can be

used to complement the local training dataset; this increases

the learning speed since the probability of rare events to be

observed increases as there are more observers.

However, sharing knowledge in the form of labeled data

might entail the exchange of large volumes until the accuracy

of the ML models does not reach high values. Note that one

single labeled data point consists of a tuple of values and that

a complete training dataset can contain a large amount of data

points. Another alternative to reduce the amount of data being

exchanged is to produce specific models for the knowledge

just discovered. These models can be very accurate in a

particular region of the features space where the new

knowledge has been discovered.

The components related to KM in the agent receiving the

new knowledge are sketched in Fig. 1b. Note that the

separation between the agent receiving the new knowledge

and the one discovering it is done for illustrative purposes, as

there is no limitation about being actually the same agent.

When a model and meta-data are used to share new

knowledge, the receiving agent needs to assimilate such

knowledge, starting by understanding what the new

knowledge is. Assuming that the feature space is modeled in a

per-region way, the received knowledge can be located (totally

or partially) in one or more of the known regions or in the

unknown region; in the former, the model is added to the

found region(s) and a merge of regions could be performed,

whereas in the latter, a new region is created. We name

knowledge extension to the process of identifying the new

knowledge and updating the regions. Note that a region can be

modelled using one or more models, so region updating would

entail generating a new model joining the previous model with

the received one, or just adding the new model to the pool of

models. Another process that we call knowledge consolidation

is in charge of joining models within a region and joining

nearby regions. Fig. 2c-d illustrate the features space of a

given problem, where the training dataset contains labeled

data grouped into three different regions. However, data points

are not usually uniformly distributed along a region, as regions

 4

problem n

Data
repo

Algori
thm

Decision
Maker

Algori
thm

Output
(e.g., prediction)

Config

Agent

Monitoring/telemetry

Application
Manager

Knowledge
Sharing

Models
and Meta-Data

Model
repo

Device(s)

Data
(pre-processed

and labeled
data)

Configuration and Feedback

problem 1

Data and
models

Self-learning Manager

Knowledge Extension / Consolidation

Knowledge Usage

Knowledge Manager

Training
Data

ML
Training

Accuracy
Eval

Model
Ensemble

Model
Merge

Training Data
Re-synthesis

Notifications

Data / Models
and Meta-data

Knowledge
Discovery

Fig. 3. Detailed architecture for KM

are dynamically re-defined as a result of a region merging

process, triggered whenever new knowledge arrives.

Finally, changes in the regions and models and meta-data

generate new operational models that are ready for knowledge

usage (step 8 in Fig. 1b).

B. Proposed Architecture

Fig. 3 presents an extended architecture for KM, where

more details of the agent are depicted; specifically, knowledge

discovery and knowledge assimilation in the form of extension

and consolidation (collectively named self-learning),

knowledge sharing, and knowledge usage components are

detailed. In addition, the Knowledge Manager component

coordinates KM operations.

The data collected from the underlying physical device(s) is

processed by an application manager that uses knowledge for

the autonomous control of the device(s). For the sake of

generalization, we consider that the configuration of the

devices is based on a set of algorithms for different problems,

which generate outputs to a decision maker module in charge

of finding the best configuration for the forecasted conditions.

Any problem might require a specific procedure combining

several techniques (ML, statistics or mathematics) to generate

its outputs. The role of the application manager in the device

control loop is to feed the different problems with the required

inputs and to adjust the decision maker according to the

observed local performance.

In addition to these operational tasks, the application

manager exports pre-processed and labeled data (including

model predictions and real measurements) to be stored in the

data repository. Such data is analyzed by the knowledge

discovery module, which holds two essential roles: i) to

identify inaccuracies in the current ML models and, ii) to

populate its internal training dataset and perform ML training

to produce new models that are stored in the model repository.

The knowledge discovery loop is the main source of

knowledge acquisition coming from real data from the

operation of the underlying device(s). Such new knowledge

can be afterwards shared with other agents through the

knowledge sharing module thus, implementing collective self-

learning. Consequently, knowledge discovered by other agents

is also received and stored in the model repository.

The activity of knowledge discovery could lead to many

ML models being stored in the repository, which would hinder

knowledge usage. For example, in the case of keeping several

ML models restricted to narrow region in the feature space or

alternatives models for the same region. Owing to that fact,

knowledge assimilation applies methods for knowledge

extension and consolidation focused on reducing the number

of models used for operation while keeping its overall

accuracy. As illustrated in Fig. 3, we consider three different

methods for such task, named model ensemble, model merge,

and training data re-synthesis. The next section is devoted to

providing the details for these assimilation methods.

Finally, following a given scheduling policy, e.g., every

time a new ML model is made available or with some

periodicity, the knowledge manager updates the ML models of

every problem in the knowledge usage module, so the

algorithms can use them for operational purposes.

Last but not least, the knowledge usage module plays a pro-

active role to speed-up knowledge discovery, as the algorithm

can discover that some given measured data locates into an

unknown region of the features space of their problems. In

such case, the application manager notifies the knowledge

manager, which requests the knowledge sharing module to ask

other agents about labeled data around the measured one, so as

to produce a specific ML model for that unknown region.

III. KNOWLEDGE ASSIMILATION

In this section, we describe in detail three elementary

methods for assimilating knowledge in the previously

described context. These options, presented in Fig. 4, are used

for knowledge extension and consolidation.

For the sake of simplicity, let us assume that the agents

focus on one single problem and that they are prepared to

perform all type of modelling procedures including self-

supervised learning. Regarding the typology of problems, let

us consider both classification and regression ML-based

applications; due to their properties, we selected SVM for

classification and ANN for regression.

Without loss of generality, let f be a model that receives a

set X of input data and provide predictions of the target

response y. Input data can be monitoring data or pre-processed

data after transforming monitoring data into features, whereas

the response can be either a numerical value for regression, or

a class for classification. A model is defined by a set f that

contains, among others, the type of algorithm and/or technique

that characterizes the model and the needed parameters, e.g.,

ANN and all the parameters and coefficients of the trained

 5

Knowledge Usage

fi

fj

E
n
s
e
m
b
l
e

f1

fi

fn

…
y

a) Model Ensemble

X

f i f j

Knowledge Usage

y

b) Model Merge

X

c) Training data re-synthesis

X

f

Data
Re-synthesis

ML
Training

Merge Data

Knowledge Usage

Knowledge
Extension/
Consolidation Knowledge

Sharing

Knowledge
Discovery

Knowledge
Extension/
Consolidation

y

f j

Knowledge
Extension/
Consolidation

f

f

f

f i

Knowledge
Sharing

Knowledge
Discovery

Knowledge
Sharing

Knowledge
Discovery

Fig. 4. Knowledge assimilation options: model ensemble (a), model merge (b), and training data re-synthesis (c).

model. In addition, the meta-data is coupled with the predictor

and provides the context required to use properly the model.

An example of meta-data is the characterization of the input

features space region, i.e., the range of each feature in the

training data set. Then, before doing a prediction, those ranges

should be checked to know if the input data is within the

ranges observed during the training phase or, on the contrary,

the model will potentially extrapolate the response.

A. Model ensemble

This method considers no just one single ML model, but a

set (ensemble) of models for a problem that e.g., correspond to

different feasible scenarios that can be observed. Thus, under a

specific scenario, some models will produce accurate

predictions, whereas some other will produce inaccurate ones.

Under the model ensemble method, when a new model is

trained, e.g., for a new scenario, it is added into the set of

models used by the problem (Fig. 4a). The new model will be

used according to the output algorithm to generate one single

output from the predictions made by a (sub)set of individual

models in the ensemble. Under this option, the algorithm is the

responsible of discerning how to combine and/or select

individual predictions.

The combination of individual predictions can be done

according to strategies as simple as using a weighted average

of the individual responses according to some meta-data

parameters that serve as weights. However, the availability of

monitoring data enabling the dynamic evaluation of the

individual predictions allow the implementation of adaptive

voting procedures that can approach predictions to actual

measurements [14]. Model ensemble is an option for

knowledge extension that requires low computational effort

and that can be applied to any ML technique and even

combine different types of ML models. A mathematical

description for both classification and regression applications

is provided next.

Let E=<f1, f2,…,fn> be the ensemble containing all available

models for a given problem. Given an input data sample

X=<x1, x2,…, xm>, we define the subset of models E*(X) ⊆ E

containing all the models within the region of the features

space that contains X that are eligible for predicting the

response of the sample. This eligibility can be computed in

terms of the probability that the sample belongs to the

statistical distribution of that training data used to fit the

model. Then, assuming that πi contains the characterization of

the probability distribution of the input data variables of model

fi, such model can be included in E* if and only if P(X | πi)>ε,

where ε∊[0,1] needs to be selected beforehand. A typical

conservative configuration skipping those models whose

training data statistical characteristics largely differ from

sample X could be ε=0.05 [15].

Once the ensemble subset selection has been carried out,

the individual predictions y’ are obtained for each model in

E*(X), which are afterwards combined to produce a single

combined prediction y*. This combination is the result of

applying a function that considers a weight wi∊ℝ+ for the

prediction of every individual model fi ∊ E*(X). In the case of

classification where the response is one of the classes c∊C, y*

is the class of the most common response considering the

weights of the models. Specifically, y* can be computed as:

()
*

*

()

() arg max

i

i i
c C f E X

y X w y c
 

  
=  == 

  
 . (1)

In the case of regression, weighted average of the

individual responses can be used, where W is the sum of the

individual weights:

*

*

()

1
() · ·

i

i i

f E X

y X w y
W 

=  . (2)

Let us now focus on how the accuracy of the models can be

evaluated. Let us assume that both individual and combined

predictions are stored in the data repository (see Fig. 3) until

the measured y is available. Then, by comparing the measured

y with the individual predictions, the accuracy of each model

in E*(X) can be evaluated. In particular, we define the subsets

E*
acc(X) and E*

ina(X) as the accurate and inaccurate model

subsets, respectively. Subset E*
acc(X) contains the models that

produced good predictions, i.e., either those models that

predicted the right class in a classification use case or those

models that predicted a response within a confidence interval,

e.g., 95%, in a regression use case. Note that E*
ina(X) = E*(X) \

E*
acc(X).

 6

x1

x2

x1

x2

x2

x1

x2

x1

a) b)

fi
fj

f*

c) d)

Fig. 5. Merging linear SVMs

fi

fj f*

x1

x2

x1

x2

y

x

y

x

a)

b)

fi

fj f*

Fig. 6. Re-synthesis for classification (a) and regression (b)

By classifying the models into accurate and inaccurate, we

can dynamically update the individual weights wi used for

combination purposes; minimum (wmin) and maximum (wmax)

values are used to keep weights within a given range. Thus,

the weight of inaccurate models can be reduced according to

parameter ρ∈[0,1], as:

() *

minmax · , , ()i i i inaw w w f E X=   , (3)

whereas accurate models can be promoted by increasing its

weight according to parameter τ ≥ 1, as:

() *

maxmin · , , ()i i i accw w w f E X=   . (4)

Note that magnitudes and the cross-relation of ρ and τ allow

configuring different strategies, ranging from a long-term

persistence of past accurate models to a short-term memory

configuration leading to fast changes towards current good

models.

B. Model merge

This method consists in merging individual ML models

obtaining one single model for using the knowledge, which

simplifies its operation (Fig. 4b). Note that the combination of

model parameters in this method is key to assimilate the

individual knowledge. Parameters of the joint model can be

modified by the merging procedure as soon as new models are

available. This methodology can provide potential benefits for

those cases where model parameters can be partially updated

without affecting the robustness and accuracy of the non-

updated part.

For simplicity, in this section we focus on merging a pair of

individual models based on linear SVMs in the context of a

binary classification problem, where two classes are linearly

separable; merging n models can be defined as a concatenation

of n-1 merge operations of model pairs.

Assuming that trained models fi and fj are linear SVMs, the

coefficients of the decision hyperplanes of each model that

perfectly divides the feature space region into two separated

response classes can be easily obtained from the set of support

vectors Vi and Vj [16]. Then, let Βi =[β0
i, β1

i,…, βm
i] and Βj

=[β0
j, β1

j,…, βm
j] be the vector of linear coefficients (i.e., the

coefficient of every feature plus the intercept) of fi and fj,

respectively. Furthermore, in addition to meta-data πi and πj

containing the statistical distributions of input features, the

training data set size of every model (denoted as si and sj) is

available.

The combined model, defined by the coefficients vector Β*,

can be computed using eq. (5), where the coefficients of the

combined model are the weighted average of the coefficients

of the individual models. Here, weights are computed by

means of function g(s) that depends on the number of training

data samples of each model. Without loss of generality, we

can assume that g(s) is a simple transfer function such as the

identity or the logarithm.

*
· () · ()

, 0..
() ()

k k

i i j j

i j

g s g s
B k m

g s g s

  +
=  = 

+  

. (5)

Equation (5) produces a combined model regardless of the

characteristics of the individual models. However, it is worth

noting that models with dissimilar characteristics can produce

inaccurate combined models. A simple but efficient procedure

to avoid worsening the overall accuracy is to guarantee that

the combined model stays within the margin hyperplanes of

both individual models. Fig. 5 illustrates the proposed

procedure for a simple example with just two input features.

Fig. 5a-b show two initial models to be combined, where the

decision and margin hyperplanes are depicted with solid and

dashed lines, respectively. Hyperplanes are depicted only in

the range of the features observed for each variable; shadowed

area in feature x1 axis summarizes such range. In addition, the

support vectors are depicted with markers on the

corresponding margins, using a different marker shape for

each class.

By solving equation (5) and assuming g(si)=g(sj), the

combined decision hyperplane is depicted in Fig. 5c, where

the original margins and support vectors are depicted; we

observe in Fig. 5c that the combined decision hyperplane

remains within the margin hyperplanes of the individual

 7

Knowledge Usage

Knowledge
Sharing

SOP, BER

Knowledge
Discovery

Knowledge Extension / Consolidation

Knowledge Manager

b) Centralizeda) DistributedSDN Controller

Node Agent

FEC config

config

OD traffic

VNT
config

Notif
Knowledge

Sharing
Knowledge
Discovery

Knowledge Extension /
Consolidation

Knowledge
Manager

Knowledge
Usage

MDA Controller

SDN Controller

Node

config

Optical
Transponder

Device Agent

Fig. 7. KM applied to the purely distributed (a) and centralized (b) use cases

models along the corresponding feature spaces and as such,

the combined model does not lead to worse decisions. In

consequence, to validate the combined model, one just need to

verify that combined decision hyperplane and original margins

do not intersect in the regions; otherwise, model merge cannot

be performed with enough goodness-of-fit assurance.

Assuming that the merged model is validated, it is

important to update the new margin hyperplanes and support

vectors. To keep the main properties of SVM, margins can be

generated by finding those parallel hyperplanes with respect to

the decision hyperplane, such that intersect with the closest

support vector/s. Fig. 5d shows the combined margins and the

support vectors associated to the combined model.

Finally, recall that meta-data is required also for the

combined model. Particularly, the region in the features space

where such model can be applied is found by computing the

union of the regions of the individual models.

C. Training data re-synthesis

Finally, this method consists in generating the response

from the individual ML models in the given regions to obtain

a synthetic training dataset from which a new ML model is

trained (Fig. 4c). The training data re-synthesis from ML

models enables reducing the amount of data being exchanged

among agents, as well as the data being locally stored.

The synthetic data generation procedure needs to consider

the specifics of both the problem and the techniques for

modelling, to guarantee the persistence of the characteristics

of the observed data. Note that some of the shared models

and/or part of the synthetic data could need to be kept for

future retraining cycles.

This option can be applied to both classification and

regression problems. In the case of classification using SVMs,

we need to guarantee that synthetic samples are not generated

inside the space defined by margin hyperplanes. Indeed, data

re-synthesis should be restricted to generating samples on the

margins, i.e., synthetic support vectors. Fig. 6a illustrates an

example where two linear SVMs cannot be merged due to the

intersection of the combined decision hyperplane with one of

the margins. When the re-synthesis method is applied, a

number of synthetic samples on the margins of every model

are firstly generated (transparent markers) to afterwards train a

new SVM. Note that the SVM training algorithm finds the

best SVM configuration, including the most proper kernel.

This can be easily automatized by simply training with

different kernels and returning the most accurate model. In

Fig. 6a, a polynomial kernel has been chosen for the combined

model in order to keep separable classes, where some of the

synthetic samples generated become the support vectors of the

combined model (solid markers).

In the case of regression, the synthesis of data points is

performed by generating random samples that fit the statistical

properties of the input region of the features space of every

original model, e.g., following a Montecarlo approach [17].

Then, the corresponding models are used to generate the

response to label the sample. Once a significant amount of

data samples has been generated for every model, the

combined model is trained. Note that although in this paper we

use ANN for regression, the above procedure can be applied to

other techniques.

Fig. 6b shows a simplified regression problem where one

single feature is used to predict the response y; two non-

overlapping models are to be combined. Dashed lines illustrate

how inaccurate each model can be when it is used for

prediction using as input a data point that it is outside its

region of the feature space (extrapolation). On the contrary,

the combined model once trained from synthetically generated

data samples (depicted as triangles) preserves the goodness-of-

fit of both individual models.

As a conclusion, every method described in this section for

knowledge assimilation has its pros and cons, which makes

that the method fits better in some use cases than in others.

Table I summarizes the main pros and cons of extension and

consolidation methods.

IV. USE CASES

In view of Table I, this section defines two borderline use

cases for illustrative purposes, where the architecture for KM

 8

Table I. Pros and cons of knowledge assimilation methods

Extension

• Model

Ensemble

Pros: negligible assimilation complexity

Cons: High storage and complex knowledge usage

Consolidation

• Model

Merge

Pros: Low storage and simple knowledge usage

Cons: High assimilation complexity (algorithmic)

and risk to degrade model accuracy

• Data re-

synthesis

Pros: Simple knowledge usage

Cons: High storage and high assimilation

complexity (computational).

and the methods for knowledge sharing and assimilation

presented in the previous sections are applied. The first use

case uses KM in a purely distributed scenario, where

knowledge is shared among the different network nodes,

whereas the second use case uses KM in a purely centralized

scenario, where although knowledge is shared among models,

the whole KM process is entirely carried out in the MDA

controller running besides the SDN controller. The use cases

highlight the flexibility of the proposed architecture for KM,

which can be easily adapted for different applications in

multilayer network scenarios. In fact, the placement of

knowledge components has been forced to fit these two

borderline use cases, but it does not preclude other

configurations to be feasible and even better in terms of

performance. These use cases will be considered in the next

section for the validation of the proposed architecture.

The architecture of the purely distributed use case is

represented in Fig. 7a and is based on the autonomic

transmission application in [3], where an autonomic agent

running in the optical transponders collects and processes SOP

and pre-FEC BER monitoring data at a rate of one sample

every 278 µs, and it is able to anticipate QoT degradation

caused by fiber stressing events. The prediction anticipates

such degradation tens of ms before it actually happens by

applying properly trained ML models; the output is used to

configure the number of iterations to be performed by the

error correction algorithm in the FEC module.

In this use case, it is clear the need of adopting continuous

learning, justified by the impossibility to accurately train ML

models to predict every possible physical fluctuation for all

possible network scenarios before entering into operation.

Moreover, since similar SOP fluctuations are plausible to

happen in different links at different time, the benefits of

sharing knowledge are expected to be high, as the relationship

between SOP fluctuations and QoT in the event of gusts of

wind in aerial fiber cables can be learnt in some part of the

network and shared among the nodes.

In addition, knowledge usage needs to be embedded into

the device agent due to the extremely high data collection rate

and the need of rapid decision making and device

configuration; it is a case of device-level control loop.

Regarding knowledge discovery, recall that it entails

analyzing predictions and real measurements to find

inaccuracies (wrong classification) that could lead to training

new ML models. The placement of this component cannot be

done neither in the device agents because of their limited

computational resources, not in the centralized SDN controller

because of the large amount of data to be transferred. In this

case, the node agent seems the most proper place to deploy the

knowledge discovery component. Consequently, knowledge

sharing is carried out among the node agents that exchange

models and/or data and implement knowledge assimilation to

complete the KM process.

The architecture of the purely centralized use case is

represented in Fig. 7b and is based on the autonomic VNT

reconfiguration in [7]. OD traffic monitoring samples are

collected from the packet nodes in the network and used to

predict the OD traffic expected for the next time interval, e.g.

1 hour. Traffic prediction is used to feed a VNT re-

optimization problem that finds the best VNT configuration

for the forecasted OD traffic matrix [18].

Here, a variety of reasons, like the continuous traffic

increment, the introduction of new services with strong

requirements, etc., make KM process implementation for

continuous learning to be a good choice. In this use case,

although different architectures could be feasible, the network-

wide control loop entails that knowledge components are

located in the MDA controller. Hence, monitoring traffic data

can be collected at a coarse interval, e.g. 15 minutes, and

analyzed in the MDA controller for dynamic VNT

reconfiguration purposes. Continuous learning is needed to

adapt models to traffic evolution; here an inaccuracy is

defined as a prediction with error above some defined

threshold. Notwithstanding the centralized architecture,

knowledge sharing can be carried out among OD traffic

models; here knowledge assimilation based on data exchange

can be an option, in the case of enough storage is available.

The selection of the subset of OD to whom share knowledge is

also important in the case of ODs can be classified as a

function of the type of traffic they convey.

Finally, note that in both use cases, the SDN controller

should be in charge of setting the proper configuration

parameters and policies for the KM process. In particular,

policies should specify what, when, how, and to whom

knowledge needs to be shared, when knowledge assimilation

should be carried out, etc.

V. RESULTS

In this section, we first introduce the simulation

environment used for performance evaluation and define the

specifics of the two selected use cases. Next, we study and

compare the performance from applying KM and start by

considering KM based on data exchange, where data related to

the detected inaccuracies is distributed, as well as based on

model exchange, where the knowledge assimilation techniques

presented in Section III are applied.

A. Simulation Environment and Use Cases

For performance evaluation of the proposed KM process, a

simulation environment has been developed in R. A network

 9

consisting of a number of nodes, each composed of several

devices, and connected by a set of links is reproduced.

Specifically, we configured a scenario reproducing a small-

size metro network consisting in 10 locations, where each

location consists of both a packet node and an optical node

each equipped with 10 ports.

Initial datasets for each use case were generated based on

the topology characteristics and end-users information from

[19] and initial ML models for each device were trained. Each

device includes a data generator to synthetize monitoring data

for the target use case. Operation was emulated by generating

synthetic monitoring samples that include events that were not

observed during the initial ML training phase, so new

knowledge is discovered.

In the case of the purely distributed autonomic transmission

use case, devices emulate optical receivers and generate

synthetic monitoring samples at a rate of 278 µs (3600

samples/s). Each sample consists of a 42-byte tuple <t, S,

BER>, where t is the timestamp, S is the set of values of the

three Stokes parameters, and BER is the pre-FEC BER

measurement. Realistic fiber stressing events causing

correlated SOP and pre-FEC BER fluctuations were randomly

generated based on the experimental measurements carried out

in [3]. For this use case, we considered SVMs to predict the

proper configuration of the FEC module (i.e., number of FEC

iterations) as a function of pre-computed features gathering

the current value and trend of each of the Stoke parameters.

Note that those features can be easily pre-computed from the

generated synthetic monitoring data [3]. Finally, an inaccuracy

is defined as a misclassification, i.e., the model predicts a

wrong number of FEC iterations.

For the purely centralized autonomic VNT reconfiguration

use case, devices emulate network interfaces in packet nodes.

We used the CURSA-SQ methodology in [20] to generate

realistic packet traffic flow samples with granularity 15

minutes, emulating the monitoring data collected from those

interfaces. Each sample consists of a 64-byte tuple <t, OD, B>,

where t is the timestamp, OD is a string identifying the OD

flow, and B is the bitrate measurement in b/s. OD traffic is

predicted using ANNs whose inputs are the measurements in

the last hour and the number of hidden neurons equals to the

number of inputs, in line with the modelling approach

presented in [7]. Here, an inaccuracy is defined as a prediction

for which the magnitude of the error for a real measurement is

greater than the percentile 95% of the error observed during

the training phase.

The simulation environment follows the KM architecture

proposed in Fig. 3, where the different KM components can be

placed in node agents and/or the MDA controller to compose

the distributed and centralized scenarios presented in Fig. 7, as

well as any other intermediate configuration. Moreover, the

configuration of the policies for knowledge discovery,

assimilation, and sharing can be configured from the SDN

controller. Finally, the MDA controller collects relevant

network performance evaluation data, including the evolution

of the accuracy of the models and the amount of shared data.

B. Data-based Knowledge Management

Let us first evaluate the performance of KM based on

sharing data. We assume that inaccuracies are shared when

N
o

rm
al

iz
ed

 E
rr

o
r

Normalized Time Normalized Time

a) b)

63%

37%

73%

48%

0 0.2 0.4 0.6 0.8 1

No sharing
Inaccuracies
Extended data

1E-4

1E-3

1E-2

1E-1

1E+0

0 0.2 0.4 0.6 0.8 1

Fig. 8. Data-based KM performance for the distributed (a) and centralized (b) use cases

2

2.5

3

3.5

100 300 500

0

500

1000

1500

Thousands

0

0.4

0.8

1.2

0 10 20 30

0

5

10

15

Th
o

u
sa

n
d

s

Thousands

Total Data
Inaccuracies

T
o

ta
l s

h
a

re
d

 d
a

ta
 (

M
B

)

#
 o

f
in

a
cc

u
ra

ci
e

s
(x

1
0

0
0

)

Shared data per inaccuracy (KB)

a)

b)

Fig. 9. Extended data policy analysis

N
o

rm
al

iz
ed

 E
rr

o
r

Normalized Time Normalized Time

a) b)

0 0.2 0.4 0.6 0.8 1

Extension
Consolidation
Assimilation
Extended data
Inaccuracies

1E-4

1E-3

1E-2

1E-1

1E+0

0 0.2 0.4 0.6 0.8 1

Ext. and Cons.

Fig. 10. Model-based KM performance for the distributed (a) and centralized (b) use cases

M
o

d
e

l-
b

a
se

d
 d

a
ta

 s
a

vi
n

g
ra

ti
o

a)

b)

1E-3

1E+0

1E+3

1E-4 1E-3 1E-2 1E-1 1E+0

1E-3

1E+0

1E+3

1E-4 1E-3 1E-2 1E-1 1E+0

Inaccuracies
Extended

Normalized Error
Fig. 11. Data sharing comparison

10

Table II. Convergence Time Gain w.r.t No Sharing (%)

Multiplier of shared data per inaccuracy

x1 x2 x3 x4

Distributed 36.8 45.5 61.25 63.2

Centralized 47.5 66.25 71.3 72.5

they are detected. Specifically, we consider two different

policies for data sharing: i) inaccuracies, where inaccurate

data points are shared. Specifically, we consider that a small

window of samples (e.g., 30 samples) is needed to be shared

to compute the features for the inaccuracy in the case of the

purely distributed autonomic transmission, whereas just one

sample is needed in the case of the purely centralized VNT

reconfiguration. Note that this policy is adapted from the

collective self-learning approach presented in [11]; and ii)

extended data, where inaccurate data points go hand in hand

with other data points that, although they were not been

identified as inaccuracies, could be potentially useful to

improve ML models. Although other options could be

considered for selecting such additional data points, an

extended window to allow compute the evolution of the

features is shared in the case of autonomic transmission,

whereas individual samples measured immediately before the

inaccuracy are shared in the case of VNT reconfiguration. The

amount of additional data points that provides the best trade-

off between accuracy and data volume depends of the use case

and scenario and it will be analyzed. Finally, ML model re-

training is carried out periodically, e.g., every hour, provided

that inaccurate data points are available.

Fig. 8 shows the performance of the proposed data-based

KM in terms of the evolution of the prediction error against

emulated operation time, for both the purely distributed

autonomic transmission (Fig. 8a) and the purely centralized

VNT reconfiguration (Fig. 8b) use cases. For benchmarking

purposes, we included the performance of no sharing

knowledge. For convenience, prediction error has been

normalized to the error of the initial models, whereas

operation time was normalized to the time when the less

accurate approach reaches a low target error (e.g., 0.1%).

Interestingly, the results show similar behavior for both use

cases, where large benefits from knowledge sharing are

observed. In particular, extended data sharing shows a better

convergence time, reaching the target error 60-70% faster than

without sharing knowledge. Moreover, is that policy the only

one that achieves negligible errors around 0.01%. The

inaccuracies sharing policy shows also excellent performance

and although its convergence time is above than that of the

extended data sharing one, it is over 35% faster than no

sharing knowledge. In fact, both data sharing policies show a

similar error evolution until reaching error around 3-4%,

which makes that the policy selection needs to be based on

other criterion in case the target error criterion can be relaxed.

In fact, particular interest should be payed to the amount of

total data that is shared. This criterion is relevant mainly for

the purely distributed use case, as such data is exchanged

Table III. Total amount of shared data (in MB)

Use case
Model-

based

Min data

reduction

Data-based

(inaccuracies)

Data-based

(extended)

Distributed 2.6 99% 333.4 1333.5

Centralized 1.5 90% 15.2 60.9

among agents that are not in the same location. Table II shows

the gain in terms of convergence time as a function of the data

shared per inaccuracy for the purely distributed and the purely

centralized use case. The multiplier refers to the amount of

additional data that is shared, where x1 is equivalent to the

inaccuracies sharing policy. The amount of additional data that

needs to be exchanged to achieve the gains showed in Fig. 8

represents an increment of 3 times (x4) the amount of data

exchanged with the inaccuracies sharing policy.

Fig. 9a and Fig. 9b show the number of inaccuracies and the

total data volume shared during the entire simulation as a

function of the amount of data exchanged per inaccuracy for

the purely distributed and the purely centralized use case,

respectively. The evolution of the total number of inaccuracies

shows how they are reduced when the amount of extended

data is increased (about 1/3 in the case of the distributed and

60% in the case of the centralized use case). Such reduction is

the base of the achieved convergence gain. Regarding the

amount of total data shared, although acceptable for the purely

centralized use case, it is above 1 GB for the purely distributed

one. Recall that every accuracy entails 30*42 bytes in the case

of autonomic transmission, and 64 bytes in the case of VNT

reconfiguration to be shared with (10*10+9) agents. Even with

the reduction of the number of inaccuracies, the volume of

exchanged data is high under the extended data policy.

In view of these results, and considering that the probability

of discovering inaccuracies decreases with time, a mixed data-

based approach can be followed; the inaccuracy sharing policy

can be first applied to allow an initial fast convergence with a

reasonable amount of data being shared, followed by the

extended data sharing policy after reaching a certain error

level to increase even more models’ accuracy.

C. Model-based Knowledge Management

Let us now explore policies based on sharing models and

knowledge assimilation by means of the methods proposed in

Section III. Recall that, in addition to the models, meta-data is

needed to specify their region of applicability; specifically, we

limit meta-data to specify the range (minimum and maximum)

of each input feature. For the ongoing analysis, we assume

that the model ensemble method is configured with a short-

term memory tuning. Specifically, the following configuration

was chosen: ρ=0.6, τ=1.5, wmin=1, wmax =10. Regarding model

merge and training data re-synthesis, we used them according

to the characteristics of the ML techniques used for the purely

distributed (SVM) and purely centralized (ANN) use cases,

respectively.

Aiming at evaluating the performance of different policies

and the impact of the main blocks involved in knowledge

11

assimilation, i.e., knowledge extension and consolidation, we

compare three basic policies: i) extension, where every new

shared model is added to a device models pool and used

together with the model ensemble method, without any

consolidation action; ii) consolidation, where just a single

model is maintained, i.e., incoming shared models update the

model by either model merge or training data re-synthesis

methods, depending on the use case; iii) extension and

consolidation, where both knowledge extension and

consolidation is continuously performed to keep moderated

the size of the models’ pool (we limited its size to 10 models).

Meta-data is used to join models within a region or, if

necessary, in nearby regions of the features space.

Fig. 10 shows the evolution of model error against time for

the above model-based policies and the defined use cases. For

the sake of comparison, we included the two data-based KM

policies previously analyzed in Fig. 8. The results show that

the policy combining knowledge extension and consolidation

achieves a performance comparable to that of the data-based

KM thus, validating in terms of accuracy a KM process based

on sharing models instead of monitoring and pre-processed

data. The other two policies show worse performance and lead

to either an increasing number of models, which makes

difficult a practical operation, because of the large number of

models, and reduces the potential of incremental learning, or

to a forced consolidation, which combines models with

dissimilar characteristics in different regions, which increases

errors that reduce the gain obtained by the acquired new

knowledge (see Section III.B).

Once the excellent performance of the model-based KM

with the policy combining knowledge extension and

consolidation has been demonstrated, its practical applicability

depends mainly on the amount of data involved in knowledge

sharing, as compared to data-based KM policies. Fig. 11a and

Fig. 11b show the evolution of the ratio between the data

shared by each data-based policy and the combined policy of

the model-based one as a function of model errors for the

distributed and centralized use cases, respectively. Ratio equal

to 1 (highlighted as a dashed line) represents the case where

data-based and model-based policies exchange the same

amount of data, whereas when the ratio is lower than (higher

than) one entails data-based (model-based) policy exchanging

less data. As it can be observed, data-based policies provide

benefits in terms of exchanged data only when very low error

are achieved. In the rest of cases, model-based KM reduces

the amount of shared data several orders of magnitude in both

the distributed and centralized use cases. Table III

complements Fig. 11 and presents the total amount of data

exchanged at the end of simulations by each of the policies for

each of the use cases.

As a conclusion, the combined knowledge extension and

consolidation policy of model-based KM provides virtually

the best performance and it is the most scalable option by far.

Nevertheless, one can combine different policies by selecting

the one that better fits the current scenario. In particular, the

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1

Model-based

Mixed

0

0.5

1

1.5

2

2.5

3

Normalized Time

To
ta

l a
m

o
u

n
t

o
f

sh
ar

ed
 d

at
a

(M
B

)

a)

b)

Fig. 12. Model-based and Mixed knowledge sharing

selection of data-based and model-based policies at different

times of the KM process as a function of model’s accuracy

could provide the best performance. This is highlighted in Fig.

12a and Fig. 12b, where a mixed strategy combining data-

based and model-based policies are compared in terms of the

total amount of shared data for the distributed and centralized

use case, respectively. According to the performance results in

Fig. 10, the mixed policy providing the optimal performance

would consists of the model-based policy for the initial phase

until models reach error around 1%, followed by the data-

based inaccuracies policy, until the error reaches around 0.1%

and complemented by the extended data-sharing policy to

reach a negligible error around 0.01%. As it can be observed,

the mixed policy allows reducing even more data volumes

involved during knowledge sharing.

VI. CONCLUDING REMARKS

The Knowledge Management (KM) process has been

proposed aiming at a truly autonomous optical network

operation. KM is based on four main pillars: i) knowledge

discover; ii) knowledge share; iii) knowledge assimilate; and

iv) knowledge usage. These pillars allow optical networks to

autonomously discover and disseminate knowledge that can be

used to adapt its configuration to variable conditions without

human intervention.

A general architecture to support KM has been proposed

that extend beyond typical control loop implementation and

allows for knowledge sharing among different agents

disregarding they run distributed in the network nodes or

centralized in a controller, like the Monitoring and Data

Analytics (MDA) one. Such knowledge sharing enables

collective self-learning, which has been demonstrated to

reduce models error convergence time.

However, knowledge sharing entails data distribution and

storage and hence, keeping limited the amount of data is a key

issue. In that regard, two alternative strategies consisting on

the distribution of data samples related to model inaccuracies

(data-based) and models representing such inaccuracies

(model-based) are studied. For the latter strategy, three

methods for knowledge assimilation are proposed: i) model

ensemble, ii) model merge, and iii) training data re-synthesis.

12

With these methods, knowledge assimilation can be

implemented by means of two main actions to manage ML

models: extension and consolidation. Such actions are carried

out in the knowledge assimilation component in the

architecture. In particular model ensemble, allows an efficient

and accurate use of ML model pools, model merge allows

combining the coefficients of different models to produce a

combined model and training data re-synthesis allows to

consolidate different models based on regenerating data from

them that are used to train new models.

Two illustrative use cases have been used to illustrate the

potential application of the KM architecture and to evaluate

different policies for knowledge sharing and assimilation: i)

the purely distributed autonomic transmission use case, where

knowledge is used at the optical transponder system level and

knowledge sharing and assimilation is carried out at the node

level; and ii) the purely centralized VNT reconfiguration use

case, where all the components run at the MDA controller

level. Note that even in this case, a different model is kept for

every of the origin-destination traffic flows in the VNT, so

knowledge sharing and assimilation takes also place.

The KM process has been evaluated by simulation on a

metro network scenario for the defined use cases in terms of

model error convergence time and amount of data shared

among agents. Two different data-based policies were studied

and concluded that sharing data inaccuracies and retraining

ML models leads to a fast error convergence time until

reaching a certain low error, where error can be reduced even

more when additional (extended) data was shared along with

the inaccuracies. In addition, a model-based policy based on

applying coordinated extension and consolidation actions

demonstrated similar convergence time than data-based

policies with few orders of magnitude less of data being

shared among agents. Indeed, the combination of the three

data-based and model-based policies at different phases of the

network learning process reached minimal shared data

volumes without compromising the convergence towards

highly accurate models.

ACKNOWLEDGMENT

The research leading to these results has received funding

from the European Commission for the H2020-ICT-2016-2

METRO-HAUL project (G.A. 761727), from the AEI/FEDER

TWINS project (TEC2017-90097-R), and from the Catalan

Institution for Research and Advanced Studies (ICREA).

REFERENCES

[1] L. Velasco, P. Wright, A. Lord, and G. Junyent, “Saving CAPEX by

Extending Flexgrid-based Core Optical Networks towards the Edges,”

IEEE/OSA Journal of Optical Communications and Networking, vol.
5, pp. A171-A183, 2013.

[2] D. Rafique and L. Velasco, “Machine Learning for Optical Network

Automation: Overview, Architecture and Applications,” IEEE/OSA
Journal of Optical Communications and Networking, vol. 10, pp.

D126-D143, 2018.

[3] M. Ruiz, F. Boitier, P. Layec, and L. Velasco, “Self-Learning
Approaches for Real Optical Networks,” in Proc. IEEE/OSA Optical

Fiber Communication Conference (OFC), 2019.

[4] B. Shariati, M. Ruiz, J. Comellas, and L. Velasco, “Learning from the
Optical Spectrum: Failure Detection and Identification [Invited],”

IEEE/OSA Journal of Lightwave Technology, vol. 37, pp. 433-440,

2019.

[5] L. Velasco and D. Rafique, “Fault Management Based on Machine

Learning [Invited],” in Proc. IEEE/OSA Optical Fiber Communication

Conference (OFC), 2019.

[6] L. Velasco, A. Sgambelluri, R. Casellas, Ll. Gifre, J.-L. Izquierdo-

Zaragoza, F. Fresi, F. Paolucci, R. Martínez, and E. Riccardi, “Building

Autonomic Optical Whitebox-based Networks,” IEEE/OSA Journal of
Lightwave Technology, vol. 36, pp. 3097-3104, 2018.

[7] F. Morales, M. Ruiz, Ll. Gifre, L. M. Contreras, V. López, and L.

Velasco, “Virtual Network Topology Adaptability based on Data
Analytics for Traffic Prediction,” IEEE/OSA Journal of Optical

Communications and Networking (JOCN), vol. 9, pp. A35-A45, 2017.

[8] L. Velasco, A. Chiadò Piat, O. González, A. Lord, A. Napoli, P. Layec,
D. Rafique, A. D'Errico, D. King, M. Ruiz, F. Cugini, and R. Casellas,

“Monitoring and Data Analytics for Optical Networking: Benefits,

Architectures, and Use Cases,” accepted in IEEE Network Magazine
(DOI: 10.1109/MNET.2019.1800341), 2019.

[9] Ll. Gifre, J.-L. Izquierdo-Zaragoza, M. Ruiz, and L. Velasco,

“Autonomic Disaggregated Multilayer Networking,” IEEE/OSA
Journal of Optical Communications and Networking, vol. 10, pp. 482-

492, 2018.

[10] L. Velasco, Ll. Gifre, J.-L. Izquierdo-Zaragoza, F. Paolucci, A. P. Vela,

A. Sgambelluri, M. Ruiz, and F. Cugini, “An Architecture to Support

Autonomic Slice Networking [Invited],” IEEE/OSA Journal of
Lightwave Technology, vol. 36, pp. 135-141, 2018.

[11] L. Velasco, B. Shariati, F. Boitier, P. Layec, and M. Ruiz, “A Learning

Life-Cycle to Speed-up Autonomic Optical Transmission and
Networking Adoption,” IEEE/OSA Journal of Optical Communications

and Networking, vol. 11, pp. 226-237, 2019.

[12] F. Morales, Ll. Gifre, F. Paolucci, M. Ruiz, F. Cugini, P. Castoldi, and
L. Velasco, “Dynamic Core VNT Adaptability based on Predictive

Metro-Flow Traffic Models,” IEEE/OSA Journal of Optical

Communications and Networking (JOCN), vol. 9, pp. 1202-1211,
2017.

[13] P. Senge, The Fifth Discipline: The Art and Practice of the Learning

Organization, Doubleday/Currency, 1990.

[14] T.G. Dietterich, “Ensemble Methods in Machine Learning,” in Proc.

Multiple Classifier Systems (MSC), Lecture Notes in Computer

Science, vol 1857, 2000.

[15] A. C. Rencher, Multivariate Statistical Inference and Applications,

Wiley, 1st ed., 1997.

[16] B. Scholkopf and A. L. Smola, Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond, MIT Press

Cambridge, 2001.

[17] D. P. Kroese, T. Taimre, and Z. Botev, Handbook of Monte Carlo
Methods, Wiley, Wiley, 1st ed., 2011.

[18] L. Velasco and M. Ruiz, Provisioning, Recovery and In-operation

Planning in Elastic Optical Networks, Wiley, 1st ed., 2017.

[19] METRO-HAUL project, “Deliverable D3.1: Selection of metro node

architectures and optical technologies,” [on-line: https://metro-haul.eu],

2018.

[20] M. Ruiz, F. Coltraro, and L. Velasco, “CURSA-SQ: A Methodology for

Service-Centric Traffic Flow Analysis,” IEEE/OSA Journal of Optical

Communications and Networking (JOCN), vol. 10, pp. 773-784, 2018.

