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Abstract—Autonomous network operation realized by means 

of control loops, where prediction from machine learning (ML) 

models is used as input to proactively reconfigure individual 

optical devices or the whole optical network, has been recently 

proposed to minimize human intervention. A general issue in this 

approach is the limited accuracy of ML models due to the lack of 

real data for training the models. Although the training dataset 

can be complemented with data from lab experiments and 

simulation, it is probable that once in operation, events not 

considered during the training phase appear thus leading into 

model inaccuracies. A feasible solution is to implement self-

learning approaches, where model inaccuracies are used to re-

train the models in the field and to spread such data for training 

models being used for devices of the same type in other nodes in 

the network. In this paper, we develop the concept of collective 

self-learning aiming at improving models error convergence time, 

as well as at minimizing the amount of data being shared and 

stored. To this end, we propose a knowledge management (KM) 

process and an architecture to support it. Besides knowledge 

usage, the KM process entails knowledge discovery, knowledge 

sharing, and knowledge assimilation. Specifically, knowledge 

sharing and assimilation are based on distributing and 

combining ML models, so specific methods are proposed for 

combining models. Two use cases are used to evaluate the 

proposed KM architecture and methods. Exhaustive simulation 

results show that model-based KM provides the best error 

convergence time with reduced data being shared. 

 

Index Terms—Knowledge Management; Network 

Automation; Autonomic Transmission; Self-learning. 

I. INTRODUCTION 

HE optical network is being extended toward the edges of 

operators’ networks [1], fostered not only by the increased 

amount of traffic coming from current and future access 

segment, but also by the stringent requirements that they need 

to support, like low latency and high reliability. The added 

complexity, in addition to highly dynamic traffic, requires the 

network operation to be automated. In this regard, autonomous 

control loops based on Machine Learning (ML) techniques [2] 

have been proposed aiming at reducing human intervention as 

a way to minimize network operational costs. In general, an 

autonomous control loop uses knowledge discovered during a 

ML training phase to predict (near) future network conditions, 

so as to proactively prepare resources to deal with them 

(decision-making). 

Several works in the literature have focused on 

implementing autonomous control loops entailing knowledge 
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usage and decision making. The authors in [3] present a 

predictive Autonomic Transmission Agent (ATA) based 

Artificial Neural Networks (ANN) that predicts the right 

Forward Error Correction (FEC) algorithm configuration for 

short-term operation as a function of real-time monitoring of 

state of polarization (SOP) traces and the corresponding pre-

FEC BER. Note that the control loop is performed at the 

device level, and so the knowledge usage and the decision-

making process. The authors in [4] explore several ML 

approaches based on Decision Trees (DT) and Support Vector 

Machines (SVM) for fault management [5], specifically for 

soft-failure detection, identification and localization taking 

advantage of Optical Spectrum Analyzers (OSA) to monitor 

the optical spectrum. Note this is a distributed system where 

knowledge usage is placed at the device level and decision-

making is placed close to the centralized Software-defined 

Networking (SDN) controller. The authors in [6] demonstrate 

the concept of autonomic networking in disaggregated 

scenarios through use cases for provisioning and self-tuning 

based on the monitoring of optical spectrum. Note that here 

the control loop entails collecting monitoring data from one 

device and tuning the configuration of another one, so 

knowledge usage and decision-making need to be placed in 

some centralized element. Finally, the authors in [7] model 

origin-destination (OD) traffic at the packet layer and use the 

traffic prediction to proactively reconfigure the virtual 

network topology (VNT) to adapt it to current and predicted 

traffic volume and direction. Note this is a purely centralized 

autonomous networking control loop case where knowledge 

usage and decision-making are placed in close to the 

centralized SDN controller. 

In view that knowledge usage and decision making are 

needed not only at the controller level, but also at the local 

node/subsystem level, the control plane should be designed to 

support such variety of use cases and scenarios of autonomous 

networking. For instance, the authors in [8] present the 

benefits of adding a Monitoring and Data Analytics (MDA) 

system and present operators use cases looking at automating 

optical network operation. Several MDA architectures are 

overviewed, from the centralized to alternative hierarchical 

ones that allow to implement control loops at different levels. 

In addition, the works in [9] and [10] provide more details 

regarding MDA architectures and its integration with other 

elements in the control and data planes. 

Enough real data to produce accurate ML models is rarely 

available owing to a plethora of reasons, like the existing legal 

and regulatory context that limits the availability of real 

network performance measurement, as well as the difficulty to 
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obtain training datasets belonging to specific pre-commercial 

and commercial technologies and use them in current and 

forecasted scenarios. In view of that, the authors in [11] 

proposed a learning life-cycle to facilitate ML deployment in 

real operator networks. In particular, they added a ML training 

phase to be carried out after detecting model inaccuracies 

(e.g., in the form of prediction errors), being this the basis of 

self-learning to progressively improve the ML models 

deployed in the network. Such improvement can be made 

faster in the case of the model is being used by several agents, 

which can share model’s inaccuracies among them; they 

called this as collective self-learning. It was demonstrated that 

collective self-learning outperforms individual strategies. 

However, because the size of the training dataset might be 

large to reach high-accuracy and robustness, (data-based) 

collective self-learning increases data to be stored and to be 

exchanged among agents. 

Instead of data, ML models can also be shared among 

agents. An example of such model sharing can be found in 

[12], where the authors proposed to model OD traffic in the 

core as an aggregation model of the conveyed metro flows 

models. In this case, metro flow models are trained by the 

metro SDN controllers and shared with the core SDN 

controller, which composes the model for the core OD. 

In this paper, we go further and target at completing the 

knowledge management (KM) process for truly autonomous 

optical network operation. The KM process entails creating 

and sharing knowledge and it has been applied to achieve 

organizational objectives, like continuous improvement of an 

organization. Those learning organizations are able to adapt 

quickly and effectively to be superior to the competitors in 

their field or market [13]. Here, we apply KM in the context of 

optical transmission and networking and define it as the 

process to autonomously (i.e., without human intervention) i) 

discover; ii) share; iii) assimilate; and iv) use knowledge to 

improve the performance of a network. Note that networks, 

like organizations, consist of a set of networking devices, 

which would probably not achieve a global improvement in 

case of knowledge being individually managed. 

As discussed above, the last pillar for KM, i.e., knowledge 

usage, has been extensively covered in the literature. Hence, in 

this work we concentrate on the other three pillars and present 

a generic architecture for KM, methods for knowledge 

assimilation, and use cases in optical networks. The challenge 

is to develop techniques for knowledge exchange that reduce 

the amount of exchanged data while keeping complexity low. 

Specifically, the contribution of this work is three-fold: 

1 Section II overviews the KM process in optical networks 

and proposes a general architecture to support KM. The 

architecture extends previous works focused on supporting 

control loops and on supporting individual and collective 

self-learning, as it includes full support for KM. 

2 Aiming at remarkably reducing the amount of data to be 

shared (and stored), we present an alternative strategy 

based on sharing and combining ML models that enables 

model-based collective self-learning. Note that ML models 

consist of a set of parameters of moderate size compared to 

the size of training datasets, while capturing their 

knowledge. Nonetheless, that benefit might be at the cost 

of adding complexity in the subsequent ML model 

combination process. Section III presents model 

combination strategies to assimilate knowledge. 

3 Section IV particularizes the architecture and the methods 

for KM for two borderline use cases, namely: i) the purely 

distributed use case for autonomic transmission problem 

[3], and ii) the purely centralized use case for pro-active 

VNT reconfiguration based on traffic prediction [7]. 

The discussion is supported by the numerical results for the 

defined use cases presented in Section V. 

II. KNOWLEDGE MANAGEMENT IN OPTICAL NETWORKS 

A. KM Process Overview 

Fig. 1 presents the architecture proposed to enable KM, 

where two software agents in charge of networking devices 

are represented. Agents collect monitoring/telemetry data from 

the underlying device(s) e.g., an optical transponder (step 1 in 

Fig. 1a) that are consumed by a ML-based application, to 

produce some output (e.g., prediction) based on some ML 

models regarding some device/entity, e.g., the QoT of an 

optical connection. The results can be used by a decision 

maker module (2) to tune configuration parameters in the 

device(s) (3). Note that we just described the typical control 

loop (1-2-3), which focuses exclusively on knowledge usage. 

Now let us assume that the output produced by the ML-

based application based on the measured data is stored (4) and 

that such output could be compared to real data measured 

from the device(s) after some time. If this would be possible, 

we could conceive an algorithm that would monitor the 

accuracy of the current ML models and detect events for 

which the models return inaccurate output (5). For illustrative 

purposes, Fig. 2a shows an example where a model for 

regression has been trained with data points. Note that those 

data points do not need to be uniformly distributed in the 

regions and can form data clusters in some regions of the 

features space, whereas no data points can be found in other 

regions. A prediction for data in an unknown region would 

produce a response value that might be far from the actual 

response measured from the network. Thus, detecting such 

inaccuracies would open the opportunity to increase our 

training dataset with new labeled data (i.e., <X, y>, where X is 

the input data and y the predicted response) and apply ML 

training to produce more accurate ML models that can be 

immediately used by the ML-based application (6). This loop 

(4-5-6) entails knowledge discovery and it is the base for self-

learning [11]. 

As an alternative to the single ML model covering the 

complete features space, one could analyze the structure of the 

training dataset and realize of the presence of data clusters. In  
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Fig. 1. KM Process. New knowledge is discovered (a) and assimilated for operation (b). 
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Fig. 2. Known and unknown regions in the features space. 

such case, specific and more accurate ML models could be 

produced within each of the selected regions as it is suggested 

in the example in Fig. 2b (regions R1..3). In this case, some 

information (meta-data) is needed to specify the region of 

applicability of the model, as well as other important data, like 

the number of samples used to produce the model, etc. In 

addition, note that the lack of a model in the region of a 

collected measurement reveals a new unknown region; those 

collected data need to be stored until the corresponding label 

is obtained and can be used to extend the knowledge to that 

region. 

Imagine now that the knowledge discovery process is 

performed individually per every different device/entity, as the 

measured data could be specific for such device/entity and so 

the corresponding ML models. In such case, knowledge 

discovered from one device/entity cannot be shared among 

different devices/entities. However, let us assume that either 

the measured data can be used unchanged by other 

devices/entities or there exists a function that normalizes the 

measured data (i.e., removes local dependences) so that the 

resulting normalized data can be used to train ML models for 

other devices/entities. Then, new knowledge in the form of 

labeled data can be shared with other agents as soon as it is 

discovered (7), thus enabling collective learning [11]. Note 

that the normalized data received from other agents can be 

used to complement the local training dataset; this increases 

the learning speed since the probability of rare events to be 

observed increases as there are more observers. 

However, sharing knowledge in the form of labeled data 

might entail the exchange of large volumes until the accuracy 

of the ML models does not reach high values. Note that one 

single labeled data point consists of a tuple of values and that 

a complete training dataset can contain a large amount of data 

points. Another alternative to reduce the amount of data being 

exchanged is to produce specific models for the knowledge 

just discovered. These models can be very accurate in a 

particular region of the features space where the new 

knowledge has been discovered. 

The components related to KM in the agent receiving the 

new knowledge are sketched in Fig. 1b. Note that the 

separation between the agent receiving the new knowledge 

and the one discovering it is done for illustrative purposes, as 

there is no limitation about being actually the same agent. 

When a model and meta-data are used to share new 

knowledge, the receiving agent needs to assimilate such 

knowledge, starting by understanding what the new 

knowledge is. Assuming that the feature space is modeled in a 

per-region way, the received knowledge can be located (totally 

or partially) in one or more of the known regions or in the 

unknown region; in the former, the model is added to the 

found region(s) and a merge of regions could be performed, 

whereas in the latter, a new region is created. We name 

knowledge extension to the process of identifying the new 

knowledge and updating the regions. Note that a region can be 

modelled using one or more models, so region updating would 

entail generating a new model joining the previous model with 

the received one, or just adding the new model to the pool of 

models. Another process that we call knowledge consolidation 

is in charge of joining models within a region and joining 

nearby regions. Fig. 2c-d illustrate the features space of a 

given problem, where the training dataset contains labeled 

data grouped into three different regions. However, data points 

are not usually uniformly distributed along a region, as regions  
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Fig. 3. Detailed architecture for KM 

are dynamically re-defined as a result of a region merging 

process, triggered whenever new knowledge arrives. 

Finally, changes in the regions and models and meta-data 

generate new operational models that are ready for knowledge 

usage (step 8 in Fig. 1b). 

B. Proposed Architecture 

Fig. 3 presents an extended architecture for KM, where 

more details of the agent are depicted; specifically, knowledge 

discovery and knowledge assimilation in the form of extension 

and consolidation (collectively named self-learning), 

knowledge sharing, and knowledge usage components are 

detailed. In addition, the Knowledge Manager component 

coordinates KM operations. 

The data collected from the underlying physical device(s) is 

processed by an application manager that uses knowledge for 

the autonomous control of the device(s). For the sake of 

generalization, we consider that the configuration of the 

devices is based on a set of algorithms for different problems, 

which generate outputs to a decision maker module in charge 

of finding the best configuration for the forecasted conditions. 

Any problem might require a specific procedure combining 

several techniques (ML, statistics or mathematics) to generate 

its outputs. The role of the application manager in the device 

control loop is to feed the different problems with the required 

inputs and to adjust the decision maker according to the 

observed local performance. 

In addition to these operational tasks, the application 

manager exports pre-processed and labeled data (including 

model predictions and real measurements) to be stored in the 

data repository. Such data is analyzed by the knowledge 

discovery module, which holds two essential roles: i) to 

identify inaccuracies in the current ML models and, ii) to 

populate its internal training dataset and perform ML training 

to produce new models that are stored in the model repository. 

The knowledge discovery loop is the main source of 

knowledge acquisition coming from real data from the 

operation of the underlying device(s). Such new knowledge 

can be afterwards shared with other agents through the 

knowledge sharing module thus, implementing collective self-

learning. Consequently, knowledge discovered by other agents 

is also received and stored in the model repository. 

The activity of knowledge discovery could lead to many 

ML models being stored in the repository, which would hinder 

knowledge usage. For example, in the case of keeping several 

ML models restricted to narrow region in the feature space or 

alternatives models for the same region. Owing to that fact, 

knowledge assimilation applies methods for knowledge 

extension and consolidation focused on reducing the number 

of models used for operation while keeping its overall 

accuracy. As illustrated in Fig. 3, we consider three different 

methods for such task, named model ensemble, model merge, 

and training data re-synthesis. The next section is devoted to 

providing the details for these assimilation methods. 

Finally, following a given scheduling policy, e.g., every 

time a new ML model is made available or with some 

periodicity, the knowledge manager updates the ML models of 

every problem in the knowledge usage module, so the 

algorithms can use them for operational purposes. 

Last but not least, the knowledge usage module plays a pro-

active role to speed-up knowledge discovery, as the algorithm 

can discover that some given measured data locates into an 

unknown region of the features space of their problems. In 

such case, the application manager notifies the knowledge 

manager, which requests the knowledge sharing module to ask 

other agents about labeled data around the measured one, so as 

to produce a specific ML model for that unknown region.  

III. KNOWLEDGE ASSIMILATION 

In this section, we describe in detail three elementary 

methods for assimilating knowledge in the previously 

described context. These options, presented in Fig. 4, are used 

for knowledge extension and consolidation.  

For the sake of simplicity, let us assume that the agents 

focus on one single problem and that they are prepared to 

perform all type of modelling procedures including self-

supervised learning. Regarding the typology of problems, let 

us consider both classification and regression ML-based 

applications; due to their properties, we selected SVM for 

classification and ANN for regression. 

Without loss of generality, let f be a model that receives a 

set X of input data and provide predictions of the target 

response y. Input data can be monitoring data or pre-processed 

data after transforming monitoring data into features, whereas 

the response can be either a numerical value for regression, or 

a class for classification. A model is defined by a set f that 

contains, among others, the type of algorithm and/or technique 

that characterizes the model and the needed parameters, e.g., 

ANN and all the parameters and coefficients of the trained  
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Fig. 4. Knowledge assimilation options: model ensemble (a), model merge (b), and training data re-synthesis (c). 

model. In addition, the meta-data is coupled with the predictor 

and provides the context required to use properly the model. 

An example of meta-data is the characterization of the input 

features space region, i.e., the range of each feature in the 

training data set. Then, before doing a prediction, those ranges 

should be checked to know if the input data is within the 

ranges observed during the training phase or, on the contrary, 

the model will potentially extrapolate the response. 

A. Model ensemble 

This method considers no just one single ML model, but a 

set (ensemble) of models for a problem that e.g., correspond to 

different feasible scenarios that can be observed. Thus, under a 

specific scenario, some models will produce accurate 

predictions, whereas some other will produce inaccurate ones.  

Under the model ensemble method, when a new model is 

trained, e.g., for a new scenario, it is added into the set of 

models used by the problem (Fig. 4a). The new model will be 

used according to the output algorithm to generate one single 

output from the predictions made by a (sub)set of individual 

models in the ensemble. Under this option, the algorithm is the 

responsible of discerning how to combine and/or select 

individual predictions. 

The combination of individual predictions can be done 

according to strategies as simple as using a weighted average 

of the individual responses according to some meta-data 

parameters that serve as weights. However, the availability of 

monitoring data enabling the dynamic evaluation of the 

individual predictions allow the implementation of adaptive 

voting procedures that can approach predictions to actual 

measurements [14]. Model ensemble is an option for 

knowledge extension that requires low computational effort 

and that can be applied to any ML technique and even 

combine different types of ML models. A mathematical 

description for both classification and regression applications 

is provided next. 

Let E=<f1, f2,…,fn> be the ensemble containing all available 

models for a given problem. Given an input data sample 

X=<x1, x2,…, xm>, we define the subset of models E*(X) ⊆ E 

containing all the models within the region of the features 

space that contains X that are eligible for predicting the 

response of the sample. This eligibility can be computed in 

terms of the probability that the sample belongs to the 

statistical distribution of that training data used to fit the 

model. Then, assuming that πi contains the characterization of 

the probability distribution of the input data variables of model 

fi, such model can be included in E* if and only if P(X | πi )>ε, 

where ε∊[0,1] needs to be selected beforehand. A typical 

conservative configuration skipping those models whose 

training data statistical characteristics largely differ from 

sample X could be ε=0.05 [15]. 

Once the ensemble subset selection has been carried out, 

the individual predictions y’ are obtained for each model in 

E*(X), which are afterwards combined to produce a single 

combined prediction y*. This combination is the result of 

applying a function that considers a weight wi∊ℝ+ for the 

prediction of every individual model fi ∊ E*(X). In the case of 

classification where the response is one of the classes c∊C, y* 

is the class of the most common response considering the 

weights of the models. Specifically, y* can be computed as: 

( )
*

*

( )

( ) arg max

i

i i
c C f E X

y X w y c
 

  
=  == 

  
 . (1) 

In the case of regression, weighted average of the 

individual responses can be used, where W is the sum of the 

individual weights: 

*

*

( )

1
( ) · ·

i

i i

f E X

y X w y
W 

=  . (2) 

Let us now focus on how the accuracy of the models can be 

evaluated. Let us assume that both individual and combined 

predictions are stored in the data repository (see Fig. 3) until 

the measured y is available. Then, by comparing the measured 

y with the individual predictions, the accuracy of each model 

in E*(X) can be evaluated. In particular, we define the subsets 

E*
acc(X) and E*

ina(X) as the accurate and inaccurate model 

subsets, respectively. Subset E*
acc(X) contains the models that 

produced good predictions, i.e., either those models that 

predicted the right class in a classification use case or those 

models that predicted a response within a confidence interval, 

e.g., 95%, in a regression use case. Note that E*
ina(X) = E*(X) \ 

E*
acc(X). 
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By classifying the models into accurate and inaccurate, we 

can dynamically update the individual weights wi used for 

combination purposes; minimum (wmin) and maximum (wmax) 

values are used to keep weights within a given range. Thus, 

the weight of inaccurate models can be reduced according to 

parameter ρ∈[0,1], as:  

( ) *

minmax · , , ( )i i i inaw w w f E X=   , (3) 

whereas accurate models can be promoted by increasing its 

weight according to parameter τ ≥ 1, as:  

( ) *

maxmin · , , ( )i i i accw w w f E X=   . (4) 

Note that magnitudes and the cross-relation of ρ and τ allow 

configuring different strategies, ranging from a long-term 

persistence of past accurate models to a short-term memory 

configuration leading to fast changes towards current good 

models. 

B. Model merge 

This method consists in merging individual ML models 

obtaining one single model for using the knowledge, which 

simplifies its operation (Fig. 4b). Note that the combination of 

model parameters in this method is key to assimilate the 

individual knowledge. Parameters of the joint model can be 

modified by the merging procedure as soon as new models are 

available. This methodology can provide potential benefits for 

those cases where model parameters can be partially updated 

without affecting the robustness and accuracy of the non-

updated part.  

For simplicity, in this section we focus on merging a pair of 

individual models based on linear SVMs in the context of a 

binary classification problem, where two classes are linearly 

separable; merging n models can be defined as a concatenation 

of n-1 merge operations of model pairs. 

Assuming that trained models fi and fj are linear SVMs, the 

coefficients of the decision hyperplanes of each model that 

perfectly divides the feature space region into two separated 

response classes can be easily obtained from the set of support 

vectors Vi and Vj [16]. Then, let Βi =[β0
i, β1

i,…, βm
i] and Βj 

=[β0
j, β1

j,…, βm
j] be the vector of linear coefficients (i.e., the 

coefficient of every feature plus the intercept) of fi and fj, 

respectively. Furthermore, in addition to meta-data πi and πj 

containing the statistical distributions of input features, the 

training data set size of every model (denoted as si and sj) is 

available. 

The combined model, defined by the coefficients vector Β*, 

can be computed using eq. (5), where the coefficients of the 

combined model are the weighted average of the coefficients 

of the individual models. Here, weights are computed by 

means of function g(s) that depends on the number of training 

data samples of each model. Without loss of generality, we 

can assume that g(s) is a simple transfer function such as the 

identity or the logarithm.  

*
· ( ) · ( )

, 0..
( ) ( )

k k

i i j j

i j

g s g s
B k m

g s g s

  +
=  = 

+  

. (5) 

Equation (5) produces a combined model regardless of the 

characteristics of the individual models. However, it is worth 

noting that models with dissimilar characteristics can produce 

inaccurate combined models. A simple but efficient procedure 

to avoid worsening the overall accuracy is to guarantee that 

the combined model stays within the margin hyperplanes of 

both individual models. Fig. 5 illustrates the proposed 

procedure for a simple example with just two input features. 

Fig. 5a-b show two initial models to be combined, where the 

decision and margin hyperplanes are depicted with solid and 

dashed lines, respectively. Hyperplanes are depicted only in 

the range of the features observed for each variable; shadowed 

area in feature x1 axis summarizes such range. In addition, the 

support vectors are depicted with markers on the 

corresponding margins, using a different marker shape for 

each class.  

By solving equation (5) and assuming g(si)=g(sj), the 

combined decision hyperplane is depicted in Fig. 5c, where 

the original margins and support vectors are depicted; we 

observe in Fig. 5c that the combined decision hyperplane 

remains within the margin hyperplanes of the individual  
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Fig. 7. KM applied to the purely distributed (a) and centralized (b) use cases 

models along the corresponding feature spaces and as such, 

the combined model does not lead to worse decisions. In 

consequence, to validate the combined model, one just need to 

verify that combined decision hyperplane and original margins 

do not intersect in the regions; otherwise, model merge cannot 

be performed with enough goodness-of-fit assurance. 

Assuming that the merged model is validated, it is 

important to update the new margin hyperplanes and support 

vectors. To keep the main properties of SVM, margins can be 

generated by finding those parallel hyperplanes with respect to 

the decision hyperplane, such that intersect with the closest 

support vector/s. Fig. 5d shows the combined margins and the 

support vectors associated to the combined model. 

Finally, recall that meta-data is required also for the 

combined model. Particularly, the region in the features space 

where such model can be applied is found by computing the 

union of the regions of the individual models. 

C. Training data re-synthesis 

Finally, this method consists in generating the response 

from the individual ML models in the given regions to obtain 

a synthetic training dataset from which a new ML model is 

trained (Fig. 4c). The training data re-synthesis from ML 

models enables reducing the amount of data being exchanged 

among agents, as well as the data being locally stored. 

The synthetic data generation procedure needs to consider 

the specifics of both the problem and the techniques for 

modelling, to guarantee the persistence of the characteristics 

of the observed data. Note that some of the shared models 

and/or part of the synthetic data could need to be kept for 

future retraining cycles. 

This option can be applied to both classification and 

regression problems. In the case of classification using SVMs, 

we need to guarantee that synthetic samples are not generated 

inside the space defined by margin hyperplanes. Indeed, data 

re-synthesis should be restricted to generating samples on the 

margins, i.e., synthetic support vectors. Fig. 6a illustrates an 

example where two linear SVMs cannot be merged due to the 

intersection of the combined decision hyperplane with one of 

the margins. When the re-synthesis method is applied, a 

number of synthetic samples on the margins of every model 

are firstly generated (transparent markers) to afterwards train a 

new SVM. Note that the SVM training algorithm finds the 

best SVM configuration, including the most proper kernel. 

This can be easily automatized by simply training with 

different kernels and returning the most accurate model. In 

Fig. 6a, a polynomial kernel has been chosen for the combined 

model in order to keep separable classes, where some of the 

synthetic samples generated become the support vectors of the 

combined model (solid markers). 

In the case of regression, the synthesis of data points is 

performed by generating random samples that fit the statistical 

properties of the input region of the features space of every 

original model, e.g., following a Montecarlo approach [17]. 

Then, the corresponding models are used to generate the 

response to label the sample. Once a significant amount of 

data samples has been generated for every model, the 

combined model is trained. Note that although in this paper we 

use ANN for regression, the above procedure can be applied to 

other techniques. 

Fig. 6b shows a simplified regression problem where one 

single feature is used to predict the response y; two non-

overlapping models are to be combined. Dashed lines illustrate 

how inaccurate each model can be when it is used for 

prediction using as input a data point that it is outside its 

region of the feature space (extrapolation). On the contrary, 

the combined model once trained from synthetically generated 

data samples (depicted as triangles) preserves the goodness-of-

fit of both individual models. 

As a conclusion, every method described in this section for 

knowledge assimilation has its pros and cons, which makes 

that the method fits better in some use cases than in others. 

Table I summarizes the main pros and cons of extension and 

consolidation methods. 

IV. USE CASES 

In view of Table I, this section defines two borderline use 

cases for illustrative purposes, where the architecture for KM  
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Table I. Pros and cons of knowledge assimilation methods 

Extension 

• Model 

Ensemble 

Pros: negligible assimilation complexity 

Cons: High storage and complex knowledge usage 

Consolidation 

• Model 

Merge 

Pros: Low storage and simple knowledge usage 

Cons: High assimilation complexity (algorithmic) 

and risk to degrade model accuracy 

• Data re-

synthesis 

Pros: Simple knowledge usage 

Cons: High storage and high assimilation 

complexity (computational). 
 

and the methods for knowledge sharing and assimilation 

presented in the previous sections are applied. The first use 

case uses KM in a purely distributed scenario, where 

knowledge is shared among the different network nodes, 

whereas the second use case uses KM in a purely centralized 

scenario, where although knowledge is shared among models, 

the whole KM process is entirely carried out in the MDA 

controller running besides the SDN controller. The use cases 

highlight the flexibility of the proposed architecture for KM, 

which can be easily adapted for different applications in 

multilayer network scenarios. In fact, the placement of 

knowledge components has been forced to fit these two 

borderline use cases, but it does not preclude other 

configurations to be feasible and even better in terms of 

performance. These use cases will be considered in the next 

section for the validation of the proposed architecture. 

The architecture of the purely distributed use case is 

represented in Fig. 7a and is based on the autonomic 

transmission application in [3], where an autonomic agent 

running in the optical transponders collects and processes SOP 

and pre-FEC BER monitoring data at a rate of one sample 

every 278 µs, and it is able to anticipate QoT degradation 

caused by fiber stressing events. The prediction anticipates 

such degradation tens of ms before it actually happens by 

applying properly trained ML models; the output is used to 

configure the number of iterations to be performed by the 

error correction algorithm in the FEC module. 

In this use case, it is clear the need of adopting continuous 

learning, justified by the impossibility to accurately train ML 

models to predict every possible physical fluctuation for all 

possible network scenarios before entering into operation. 

Moreover, since similar SOP fluctuations are plausible to 

happen in different links at different time, the benefits of 

sharing knowledge are expected to be high, as the relationship 

between SOP fluctuations and QoT in the event of gusts of 

wind in aerial fiber cables can be learnt in some part of the 

network and shared among the nodes.  

In addition, knowledge usage needs to be embedded into 

the device agent due to the extremely high data collection rate 

and the need of rapid decision making and device 

configuration; it is a case of device-level control loop. 

Regarding knowledge discovery, recall that it entails 

analyzing predictions and real measurements to find 

inaccuracies (wrong classification) that could lead to training 

new ML models. The placement of this component cannot be 

done neither in the device agents because of their limited 

computational resources, not in the centralized SDN controller 

because of the large amount of data to be transferred. In this 

case, the node agent seems the most proper place to deploy the 

knowledge discovery component. Consequently, knowledge 

sharing is carried out among the node agents that exchange 

models and/or data and implement knowledge assimilation to 

complete the KM process. 

The architecture of the purely centralized use case is 

represented in Fig. 7b and is based on the autonomic VNT 

reconfiguration in [7]. OD traffic monitoring samples are 

collected from the packet nodes in the network and used to 

predict the OD traffic expected for the next time interval, e.g. 

1 hour. Traffic prediction is used to feed a VNT re-

optimization problem that finds the best VNT configuration 

for the forecasted OD traffic matrix [18]. 

Here, a variety of reasons, like the continuous traffic 

increment, the introduction of new services with strong 

requirements, etc., make KM process implementation for 

continuous learning to be a good choice. In this use case, 

although different architectures could be feasible, the network-

wide control loop entails that knowledge components are 

located in the MDA controller. Hence, monitoring traffic data 

can be collected at a coarse interval, e.g. 15 minutes, and 

analyzed in the MDA controller for dynamic VNT 

reconfiguration purposes. Continuous learning is needed to 

adapt models to traffic evolution; here an inaccuracy is 

defined as a prediction with error above some defined 

threshold. Notwithstanding the centralized architecture, 

knowledge sharing can be carried out among OD traffic 

models; here knowledge assimilation based on data exchange 

can be an option, in the case of enough storage is available. 

The selection of the subset of OD to whom share knowledge is 

also important in the case of ODs can be classified as a 

function of the type of traffic they convey. 

Finally, note that in both use cases, the SDN controller 

should be in charge of setting the proper configuration 

parameters and policies for the KM process. In particular, 

policies should specify what, when, how, and to whom 

knowledge needs to be shared, when knowledge assimilation 

should be carried out, etc. 

V. RESULTS 

In this section, we first introduce the simulation 

environment used for performance evaluation and define the 

specifics of the two selected use cases. Next, we study and 

compare the performance from applying KM and start by 

considering KM based on data exchange, where data related to 

the detected inaccuracies is distributed, as well as based on 

model exchange, where the knowledge assimilation techniques 

presented in Section III are applied. 

A. Simulation Environment and Use Cases 

For performance evaluation of the proposed KM process, a 

simulation environment has been developed in R. A network 
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consisting of a number of nodes, each composed of several 

devices, and connected by a set of links is reproduced. 

Specifically, we configured a scenario reproducing a small-

size metro network consisting in 10 locations, where each 

location consists of both a packet node and an optical node 

each equipped with 10 ports. 

Initial datasets for each use case were generated based on 

the topology characteristics and end-users information from 

[19] and initial ML models for each device were trained. Each 

device includes a data generator to synthetize monitoring data 

for the target use case. Operation was emulated by generating 

synthetic monitoring samples that include events that were not 

observed during the initial ML training phase, so new 

knowledge is discovered. 

In the case of the purely distributed autonomic transmission 

use case, devices emulate optical receivers and generate 

synthetic monitoring samples at a rate of 278 µs (3600 

samples/s). Each sample consists of a 42-byte tuple <t, S, 

BER>, where t is the timestamp, S is the set of values of the 

three Stokes parameters, and BER is the pre-FEC BER 

measurement. Realistic fiber stressing events causing 

correlated SOP and pre-FEC BER fluctuations were randomly 

generated based on the experimental measurements carried out 

in [3]. For this use case, we considered SVMs to predict the 

proper configuration of the FEC module (i.e., number of FEC 

iterations) as a function of pre-computed features gathering 

the current value and trend of each of the Stoke parameters. 

Note that those features can be easily pre-computed from the 

generated synthetic monitoring data [3]. Finally, an inaccuracy 

is defined as a misclassification, i.e., the model predicts a 

wrong number of FEC iterations. 

For the purely centralized autonomic VNT reconfiguration 

use case, devices emulate network interfaces in packet nodes. 

We used the CURSA-SQ methodology in [20] to generate 

realistic packet traffic flow samples with granularity 15 

minutes, emulating the monitoring data collected from those 

interfaces. Each sample consists of a 64-byte tuple <t, OD, B>, 

where t is the timestamp, OD is a string identifying the OD 

flow, and B is the bitrate measurement in b/s. OD traffic is 

predicted using ANNs whose inputs are the measurements in 

the last hour and the number of hidden neurons equals to the 

number of inputs, in line with the modelling approach 

presented in [7]. Here, an inaccuracy is defined as a prediction 

for which the magnitude of the error for a real measurement is 

greater than the percentile 95% of the error observed during 

the training phase. 

The simulation environment follows the KM architecture 

proposed in Fig. 3, where the different KM components can be 

placed in node agents and/or the MDA controller to compose 

the distributed and centralized scenarios presented in Fig. 7, as 

well as any other intermediate configuration. Moreover, the 

configuration of the policies for knowledge discovery, 

assimilation, and sharing can be configured from the SDN 

controller. Finally, the MDA controller collects relevant 

network performance evaluation data, including the evolution 

of the accuracy of the models and the amount of shared data. 

B. Data-based Knowledge Management 

Let us first evaluate the performance of KM based on 

sharing data. We assume that inaccuracies are shared when  
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Fig. 8. Data-based KM performance for the distributed (a) and centralized (b) use cases 
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Fig. 9. Extended data policy analysis 
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Fig. 10. Model-based KM performance for the distributed (a) and centralized (b) use cases 
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Table II. Convergence Time Gain w.r.t No Sharing (%) 

 
Multiplier of shared data per inaccuracy 

x1 x2 x3 x4 

Distributed 36.8 45.5 61.25 63.2 

Centralized 47.5 66.25 71.3 72.5 
 

they are detected. Specifically, we consider two different 

policies for data sharing: i) inaccuracies, where inaccurate 

data points are shared. Specifically, we consider that a small 

window of samples (e.g., 30 samples) is needed to be shared 

to compute the features for the inaccuracy in the case of the 

purely distributed autonomic transmission, whereas just one 

sample is needed in the case of the purely centralized VNT 

reconfiguration. Note that this policy is adapted from the 

collective self-learning approach presented in [11]; and ii) 

extended data, where inaccurate data points go hand in hand 

with other data points that, although they were not been 

identified as inaccuracies, could be potentially useful to 

improve ML models. Although other options could be 

considered for selecting such additional data points, an 

extended window to allow compute the evolution of the 

features is shared in the case of autonomic transmission, 

whereas individual samples measured immediately before the 

inaccuracy are shared in the case of VNT reconfiguration. The 

amount of additional data points that provides the best trade-

off between accuracy and data volume depends of the use case 

and scenario and it will be analyzed. Finally, ML model re-

training is carried out periodically, e.g., every hour, provided 

that inaccurate data points are available. 

Fig. 8 shows the performance of the proposed data-based 

KM in terms of the evolution of the prediction error against 

emulated operation time, for both the purely distributed 

autonomic transmission (Fig. 8a) and the purely centralized 

VNT reconfiguration (Fig. 8b) use cases. For benchmarking 

purposes, we included the performance of no sharing 

knowledge. For convenience, prediction error has been 

normalized to the error of the initial models, whereas 

operation time was normalized to the time when the less 

accurate approach reaches a low target error (e.g., 0.1%). 

Interestingly, the results show similar behavior for both use 

cases, where large benefits from knowledge sharing are 

observed. In particular, extended data sharing shows a better 

convergence time, reaching the target error 60-70% faster than 

without sharing knowledge. Moreover, is that policy the only 

one that achieves negligible errors around 0.01%. The 

inaccuracies sharing policy shows also excellent performance 

and although its convergence time is above than that of the 

extended data sharing one, it is over 35% faster than no 

sharing knowledge. In fact, both data sharing policies show a 

similar error evolution until reaching error around 3-4%, 

which makes that the policy selection needs to be based on 

other criterion in case the target error criterion can be relaxed. 

In fact, particular interest should be payed to the amount of 

total data that is shared. This criterion is relevant mainly for 

the purely distributed use case, as such data is exchanged  
 

Table III. Total amount of shared data (in MB) 

Use case 
Model-

based 

Min data 

reduction 

Data-based 

(inaccuracies) 

Data-based 

(extended) 

Distributed 2.6 99% 333.4 1333.5 

Centralized 1.5 90% 15.2 60.9 
 

among agents that are not in the same location. Table II shows 

the gain in terms of convergence time as a function of the data 

shared per inaccuracy for the purely distributed and the purely 

centralized use case. The multiplier refers to the amount of 

additional data that is shared, where x1 is equivalent to the 

inaccuracies sharing policy. The amount of additional data that 

needs to be exchanged to achieve the gains showed in Fig. 8 

represents an increment of 3 times (x4) the amount of data 

exchanged with the inaccuracies sharing policy. 

Fig. 9a and Fig. 9b show the number of inaccuracies and the 

total data volume shared during the entire simulation as a 

function of the amount of data exchanged per inaccuracy for 

the purely distributed and the purely centralized use case, 

respectively. The evolution of the total number of inaccuracies 

shows how they are reduced when the amount of extended 

data is increased (about 1/3 in the case of the distributed and 

60% in the case of the centralized use case). Such reduction is 

the base of the achieved convergence gain. Regarding the 

amount of total data shared, although acceptable for the purely 

centralized use case, it is above 1 GB for the purely distributed 

one. Recall that every accuracy entails 30*42 bytes in the case 

of autonomic transmission, and 64 bytes in the case of VNT 

reconfiguration to be shared with (10*10+9) agents. Even with 

the reduction of the number of inaccuracies, the volume of 

exchanged data is high under the extended data policy. 

In view of these results, and considering that the probability 

of discovering inaccuracies decreases with time, a mixed data-

based approach can be followed; the inaccuracy sharing policy 

can be first applied to allow an initial fast convergence with a 

reasonable amount of data being shared, followed by the 

extended data sharing policy after reaching a certain error 

level to increase even more models’ accuracy. 

C. Model-based Knowledge Management 

Let us now explore policies based on sharing models and 

knowledge assimilation by means of the methods proposed in 

Section III. Recall that, in addition to the models, meta-data is 

needed to specify their region of applicability; specifically, we 

limit meta-data to specify the range (minimum and maximum) 

of each input feature. For the ongoing analysis, we assume 

that the model ensemble method is configured with a short-

term memory tuning. Specifically, the following configuration 

was chosen: ρ=0.6, τ=1.5, wmin=1, wmax =10. Regarding model 

merge and training data re-synthesis, we used them according 

to the characteristics of the ML techniques used for the purely 

distributed (SVM) and purely centralized (ANN) use cases, 

respectively. 

Aiming at evaluating the performance of different policies 

and the impact of the main blocks involved in knowledge 
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assimilation, i.e., knowledge extension and consolidation, we 

compare three basic policies: i) extension, where every new 

shared model is added to a device models pool and used 

together with the model ensemble method, without any 

consolidation action; ii) consolidation, where just a single 

model is maintained, i.e., incoming shared models update the 

model by either model merge or training data re-synthesis 

methods, depending on the use case; iii) extension and 

consolidation, where both knowledge extension and 

consolidation is continuously performed to keep moderated 

the size of the models’ pool (we limited its size to 10 models). 

Meta-data is used to join models within a region or, if 

necessary, in nearby regions of the features space. 

Fig. 10 shows the evolution of model error against time for 

the above model-based policies and the defined use cases. For 

the sake of comparison, we included the two data-based KM 

policies previously analyzed in Fig. 8. The results show that 

the policy combining knowledge extension and consolidation 

achieves a performance comparable to that of the data-based 

KM thus, validating in terms of accuracy a KM process based 

on sharing models instead of monitoring and pre-processed 

data. The other two policies show worse performance and lead 

to either an increasing number of models, which makes 

difficult a practical operation, because of the large number of 

models, and reduces the potential of incremental learning, or 

to a forced consolidation, which combines models with 

dissimilar characteristics in different regions, which increases 

errors that reduce the gain obtained by the acquired new 

knowledge (see Section III.B). 

Once the excellent performance of the model-based KM 

with the policy combining knowledge extension and 

consolidation has been demonstrated, its practical applicability 

depends mainly on the amount of data involved in knowledge 

sharing, as compared to data-based KM policies. Fig. 11a and 

Fig. 11b show the evolution of the ratio between the data 

shared by each data-based policy and the combined policy of 

the model-based one as a function of model errors for the 

distributed and centralized use cases, respectively. Ratio equal 

to 1 (highlighted as a dashed line) represents the case where 

data-based and model-based policies exchange the same 

amount of data, whereas when the ratio is lower than (higher 

than) one entails data-based (model-based) policy exchanging 

less data. As it can be observed, data-based policies provide 

benefits in terms of exchanged data only when very low error 

are achieved. In the rest of cases, model-based KM reduces 

the amount of shared data several orders of magnitude in both 

the distributed and centralized use cases. Table III 

complements Fig. 11 and presents the total amount of data 

exchanged at the end of simulations by each of the policies for 

each of the use cases. 

As a conclusion, the combined knowledge extension and 

consolidation policy of model-based KM provides virtually 

the best performance and it is the most scalable option by far. 

Nevertheless, one can combine different policies by selecting 

the one that better fits the current scenario. In particular, the  
 

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1

Model-based

Mixed

0

0.5

1

1.5

2

2.5

3

Normalized Time

To
ta

l a
m

o
u

n
t 

o
f 

sh
ar

ed
 d

at
a 

(M
B

)

a)

b)

 
Fig. 12. Model-based and Mixed knowledge sharing 

selection of data-based and model-based policies at different 

times of the KM process as a function of model’s accuracy 

could provide the best performance. This is highlighted in Fig. 

12a and Fig. 12b, where a mixed strategy combining data-

based and model-based policies are compared in terms of the 

total amount of shared data for the distributed and centralized 

use case, respectively. According to the performance results in 

Fig. 10, the mixed policy providing the optimal performance 

would consists of the model-based policy for the initial phase 

until models reach error around 1%, followed by the data-

based inaccuracies policy, until the error reaches around 0.1% 

and complemented by the extended data-sharing policy to 

reach a negligible error around 0.01%. As it can be observed, 

the mixed policy allows reducing even more data volumes 

involved during knowledge sharing. 

VI. CONCLUDING REMARKS 

The Knowledge Management (KM) process has been 

proposed aiming at a truly autonomous optical network 

operation. KM is based on four main pillars: i) knowledge 

discover; ii) knowledge share; iii) knowledge assimilate; and 

iv) knowledge usage. These pillars allow optical networks to 

autonomously discover and disseminate knowledge that can be 

used to adapt its configuration to variable conditions without 

human intervention. 

A general architecture to support KM has been proposed 

that extend beyond typical control loop implementation and 

allows for knowledge sharing among different agents 

disregarding they run distributed in the network nodes or 

centralized in a controller, like the Monitoring and Data 

Analytics (MDA) one. Such knowledge sharing enables 

collective self-learning, which has been demonstrated to 

reduce models error convergence time. 

However, knowledge sharing entails data distribution and 

storage and hence, keeping limited the amount of data is a key 

issue. In that regard, two alternative strategies consisting on 

the distribution of data samples related to model inaccuracies 

(data-based) and models representing such inaccuracies 

(model-based) are studied. For the latter strategy, three 

methods for knowledge assimilation are proposed: i) model 

ensemble, ii) model merge, and iii) training data re-synthesis. 
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With these methods, knowledge assimilation can be 

implemented by means of two main actions to manage ML 

models: extension and consolidation. Such actions are carried 

out in the knowledge assimilation component in the 

architecture. In particular model ensemble, allows an efficient 

and accurate use of ML model pools, model merge allows 

combining the coefficients of different models to produce a 

combined model and training data re-synthesis allows to 

consolidate different models based on regenerating data from 

them that are used to train new models. 

Two illustrative use cases have been used to illustrate the 

potential application of the KM architecture and to evaluate 

different policies for knowledge sharing and assimilation: i) 

the purely distributed autonomic transmission use case, where 

knowledge is used at the optical transponder system level and 

knowledge sharing and assimilation is carried out at the node 

level; and ii) the purely centralized VNT reconfiguration use 

case, where all the components run at the MDA controller 

level. Note that even in this case, a different model is kept for 

every of the origin-destination traffic flows in the VNT, so 

knowledge sharing and assimilation takes also place. 

The KM process has been evaluated by simulation on a 

metro network scenario for the defined use cases in terms of 

model error convergence time and amount of data shared 

among agents. Two different data-based policies were studied 

and concluded that sharing data inaccuracies and retraining 

ML models leads to a fast error convergence time until 

reaching a certain low error, where error can be reduced even 

more when additional (extended) data was shared along with 

the inaccuracies. In addition, a model-based policy based on 

applying coordinated extension and consolidation actions 

demonstrated similar convergence time than data-based 

policies with few orders of magnitude less of data being 

shared among agents. Indeed, the combination of the three 

data-based and model-based policies at different phases of the 

network learning process reached minimal shared data 

volumes without compromising the convergence towards 

highly accurate models. 
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