
Influence of Developer Factors on Code Quality: A
Data Study
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Abstract—Automatic source-code inspection tools help to as-
sess, monitor and improve code quality. Since these tools only
examine the software project’s codebase, they overlook other
possible factors that may impact code quality and the assessment
of the technical debt (TD). Our initial hypothesis is that human
factors associated with the software developers, like coding
expertise, communication skills, and experience in the project
have some measurable impact on the code quality. In this
exploratory study, we test this hypothesis on two large open
source repositories, using TD as a code quality metric and the
data that may be inferred from the version control systems. The
preliminary results of our statistical analysis suggest that the
level of participation of the developers and their experience in
the project have a positive correlation with the amount of TD
that they introduce. On the contrary, communication skills have
barely any impact on TD.

Index Terms—code quality, technical debt, human factors, data
mining.

I. INTRODUCTION

Digital transformation (DX) —induced by technologies
such as agile development, AI (Artificial Intelligence),
blockchain, and open APIs, among others— fosters enormous
social and economic benefits. DX in software industry de-
mands to reduce time to market and to improve customer expe-
rience, operational excellence and quality. These requirements
have driven the emergence of software technology applications
[1]. For instance, automatic source-code inspection tools are
aimed at reducing the human effort that such activity usually
requires. On the other hand, Version Control Systems(VCS)
help to build, maintain, and evolve projects’ codebase. More-
over, VCS store system logs and development data such as
commit dates, commit authors, to mention a few.

According to Capgemini [2], human resources are a crit-
ical factor even more relevant than technology in DX envi-
ronments. Particularly, developers have an essential role in
software quality [3]. In this regard, studies have shown that
developer factors like experience, involvement, compromise,
and communication have a direct influence on code quality
[4] [5].

In this exploratory study, we assess how developer char-
acteristics impact on code quality. In concrete, we consider
the following developer factors: developers’ participation, their
working experience in the project, and their communications
skills. We use Technical Debt (TD) as the metric for code

quality. In code terms, TD is introduced by developers when-
ever they write ”bad code”. TD impacts negatively on code
quality and increases maintainability [6]. Automatic source-
code inspection tools typically measure TD, and it represents
an appropriate metric because it is calculated as an aggregated
of other relevant quality factors [7].

This paper is a preliminary step in a research project whose
aim is to improve the level of accuracy of the current state-of-
the-art methods and tools in the estimation of the remediation
costs - i.e. those costs associated to with the remediation of
the code defects. Essentially, it is a first approach to gain
knowledge and experience in the tools, models and data that
we used in this study.

The rest of this paper is organised as follows. In Section II,
we review the literature that analyses the impact of developer
factors on code quality. Section III provides the necessary
background for the concepts and tools used. In Section IV,
we describe the design of our experiments and their results.
We address the threats to the validity of our study in Section V.
Finally, Section VI presents the conclusions and future work.

II. RELATED WORK

In this section, we present studies that address the relation-
ship between developers characteristics and code quality.

Rahman and Devanbu [4] studied four open source projects
to analyse how factors such as developer file ownership,
developer file experience, and overall developer experience
impact on code quality. They report the following conclusions.
Multiple developers contributing to the same file reduce defect
code. Developers introduce fewer code defects in their files
than in someone else’s files. Developer general experience has
a weak relationship with code quality.

Alfayez et al. [5] assessed in 38 Apache projects how de-
veloper factors such as the developer’s frequency of commits,
her seniority, and the size of the time lapses between her
commits are related to TD. The research results show that
the introduction of TD by developers is distributed unequally,
with some developers adding more TD than others. This study
also determines that there exist a negative correlation between
seniority and the TD introduced. Finally, the results show
that the higher the time lapse between commits of the same
developer is, the higher the TD that she introduces.
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Li et al. [8] explored the data of 76 developers in four open
software projects in Github to study how the software devel-
opers’ bug-introducing trends change. Initial results identify
two phases in bug introduction: one of increasing and another
of decreasing. Moreover, the authors show that the bigger the
size of the developer commit is, the higher is the number of
bugs introduced.

Qui et al. [9] investigated in six open source projects how
developer quality is related to software evolution. The devel-
oper quality is measured as the rate of non-bug-introducing
commits. The metrics used in this study are the developer
contribution calculated as the number of lines of codes that she
modifies, and the developer ownership measured as the number
of commits that she authors. They concluded that developer
quality increases proportionally with software evolution.

III. BACKGROUND

In this section, we present important concepts considered in
our the study.

A. Technical Debt

Cunningham [10] created the Technical Debt (TD) term
as an analogy between financial concepts and software cost.
There he stated that deficient programming produces debt
and it could generate interest in the future. For example, the
interest can be extra development time, due to the code is not
readable or maintainable. In this way, refactoring represents a
mean for paying off this interest. However, refactoring results
in a costly process [11]. TD is the total cost to fix issues in the
source code, but, at the same time, it can be seen as a mean
to address this cost and improve the quality. Although the TD
concept is usually applied to the source code, Sierra et al. [12]
detected up to five types of TD: design TD, test TD, defect
TD, documentation TD, and requirement TD. Therefore, TD
can be induced in other parts of the project life-cycle and
not just in the implementation and maintenance phases. Still,
source code provides relevant information about the quality
in previous phases — e.g. flawed requirements, deficient
architecture design, etc. Consequently, when the source code
is improved, the overall quality increases [13]. Li et al. [14]
identify five approaches to TD: prioritization, monitoring,
repayment, communication, and prevention. Repayment is the
most common approach.

Some methods have been proposed to address TD. Among
them, SQALE (Software Quality Assessment based on Life-
cycle Expectations) it is worth to mention because it provides
a comprehensive TD estimation framework when compared
with other methods. For instance, in SQALE, the TD concept
encompasses various phases of the development process [15],
not only the coding phase. Roughly, the SQALE method
inspects the source code to calculate the distance between
the current and the target quality. SQALE uses four concepts.
The Quality Model defines the quality requirements related
to the relevant quality characteristics (reliability, efficiency,
maintainability, etc.). The Analysis Model contains a set of
rules to assess quality-requirement violations and calculates

So
na

rQ
ub

e 
su

pp
or

ts
 +

25
 la

ng
ua

ge
s

Source Code
SonarQube DataBase

Compute Engine

SonarQube 
Scanner

Fig. 1. SonarQube Architecture

TD as the sum of the costs required to reach the ”conformity”
code. The Indexes represents costs. For instance, the extra cost
in resources induced by the maintenance activities required to
fix a nonconformity. Finally, the Indicators provide a visual
representation of the TD — e.g., a pyramid indicator depicting
the TD distribution per quality characteristics.

B. SonarQube

SonarQube [16] is a automatic inspection code quality tool.
To understand how SonarQube works, we describe briefly
their components, depicted in Fig. 1. First, the SonarQube-
Scanner component enables to launch the analysis of the
project code. Second, the SonarQube-Server has a Compute
Engine server which performs analysis and reports the status
of the project code. It implements the SQALE method to
analyse the source code against a set of code rules bounded
to specific programming languages called the Quality Profile,
to detect code issues and return a software quality diagnostic.
This diagnostic reports TD measurements that estimate the
effort required to fix the detected maintenance issues. In
our study, we use these issues, called TD items, to perform
our analysis. The SonarQube-Server uses a Web application
to visualise analysis reports and an Elasticsearch server to
execute UI requests. Third, the SonarQube-Plugin component
allows installing plugins to link SonarQube to another support
development tools. Finally, to SonarQube-Database compo-
nent allows storing the analysis results and configurations.

IV. EXPERIMENT

In this Section, we define, first, our Research Questions.
Then, we introduce the Github repositories that we use as
data sources. We then formulate the data metrics that measure
the developer factors we want to correlate with TD. Finally,
we describe the data analyses we perform on the data sources
and report the obtained results.

A. Research Questions

RQ1: Is the participation level of the developers in the
project related to the amount of TD introduced? We expect
that the developers that write more code are the ones that
introduce more TD. However, it can also be expected that



the developers that are more familiar with the project produce
proportionality less TD [5]. That is why we formulate next
RQ.

RQ2: Do the developers that have been involved in the
project for longer produce less TD than the novice ones?
According to [17] [18], developers with higher participation in
a project acquire more expertise, and it could impact on code
quality in terms of less TD introduced in code source. For
this question, we consider developer experience in the project
rather than the developer background.

RQ3: Do the developers communication skills impact on the
efficiency in TD remediation? Communication factors impact
on software quality because efficient communication among
developers increases the opportunity to settle correctness is-
sues [19]. Developers use different communication channels
such as face-to-face, emails, instant messages, social media,
and project management tools, where they comment and dis-
cuss decisions, task status, required changes and other subjects.
This information contains valuable data: code changes, new
issues, bug fixes, and other maintenance tasks. Developers
tend to skip comments on changes, but good documentation
increases team communication and coordination. That is why
we study whether the communication skills of the developers
are related in some way to reducing TD.

B. Data Collection

We extract data from the GitHub repositories listed in Table
I. For this preliminary study, we have selected two projects
with +50 contributors, +5000 commits, Java as the coding
language, recent activity, and overall git repository available.
From the GitHub repositories, we obtain the following data
from each commit as well as the date of the first commit and
date of the last commit of each developer:

• Author - name and email
• Deleted and added lines
• Size of the commit message
In SonarQube, each issue represents a unit of work that

increases TD, and it is linked to the specific Author (i.e. the
developer) who produced it. SonarQube categorises issues as
follows:

• Bug - may generate a fault.
• Vulnerability - potential security problem.
• Code Smell - increases maintainability (duplicates, com-

ments, etc.).
In or study, we select from the Sonar Database the number

of code smells, i.e. of TD items related to maintainability, that
are produced by the different Authors. Finally, we join, by
Author, such information with the commit data from Github.
In Fig. 2. we show the data extraction process.

C. Metrics Definitions

Table II summarizes the metrics used to analyze the devel-
oper factors.

First, to analyze the Development Participation factor, we
decide to use the total lines of code (LOC) edited by a
developer. Although this metric is used frequently in literature
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TABLE I
OPEN SOURCE PROJECTS

Project Commits Number of contributors
JabRef 12,527 210

Sonar-Java 6,136 50

[20] [17], there is not a single consensual definition. In our
study, we follow the example of [4] and calculate the Total
lines of code edited by a developer i (LOCedited(i)

) as follows:

LOCedited(i)
= LOCadded(i)

+ LOCdeleted(i)
(1)

We measure Development experience as the number of
months (Timepart(i) ) in which a developer i participates in
the software project. Here, we consider that this number
of months spans from the date of first developer commit
(firstcommit(i)) till the date of last developer commit
(lastcommit(i)) in the particular project.

We measure Developer skill communication as the level of
detail (size of comments SoC(i)) measured in number of lines
in a commit.

Finally, Code Quality is measured in TD items produced by
a developer in a software project TDintroduced(i)

. Also, we get
number of TD items unresolved by developer TDunresolved(i)

.

D. Data Analysis

To address our research questions presented in Section IV-A,
we analyze the correlation between developer attributes and
TD by of means statistical tools commonly applied in the
literature. Concretely, we use the Spearman’s correlation test
[21] to assess the relation between ranked variables. Results
are summarized in Table III. In the first column of Table
III, we observe the Spearman’s correlation coefficient (%) that
indicates strength and direction of the association/relationship
between evaluated variables. In the second column of Table III,



TABLE II
EVALUATION METRICS

Factor Metric
Development participation LOC Edited
Development experience Time participating in the project

Development skill communication Size of commit coment

the level of statistical significance (p-value) of the correlation
coefficient is presented. In this way, if p < 0.05 then it
means the obtained correlation coefficient value has a statis-
tical significance. To run the Spearman’s correlation we use
the software SPSS Statistics. Here, the null hypothesis (H0)
states that there is no association between ranked variables
(H0 : % = 0). The alternative hypothesis (HA) states there
is an association between ranked variables (HA : % 6= 0).
Hypotheses for each RQ are as follows:

To answer RQ1. H0 : % = 0, the correlation coefficient
between number of LOCedited(i)

and TDintroduced(i)
is equal

to zero. HA : % 6= 0, the correlation coefficient between
number of LOCedited(i)

and TDintroduced(i)
is not equal to

zero.
For RQ1, we evaluate the relationship between LOC, com-

puted using Eq. 1, and TDintroduced. In the Fig. 3 we can
observe that exist a tendency between LOCedited and the
TD. Here, the Spearman’s correlation test shows a positive
strong correlation between LOCedited and TDintroduced

by each developer (see first column of Table III. Further,
we have obtained a significantly lower than 0.05 (see last
column of Table III). Therefore, we can accept our HA

(correlated variables). We can conclude there is a statistically
significant, strong positive correlation between LOC and TD,
% = 0.7411, p = 0.000034. An increase in LOC was strongly
associated with an increase in the TD.

To answer RQ2. H0 : % = 0, the correlation coefficient
between Timepart(i) and TDintroduced(i)

is equal to zero.
HA : % 6=, correlation coefficient between number of the
Timepart(i) and TDintroduced(i)

is not equal to zero.
Here, we evaluate the relation between participation time

Timepart(i) in the project and TD items introduced per
developer. In this case, the Spearman’s correlation test shows a
positive strong correlation between Timepart(i) in the project
and TD items introduced per developer. Also, in Table III,
we see the Spearman’s correlation is statistically significant
(i.e., p < 0.05). Therefore, we can accept the HA (correlated
variables). We can conclude there was significant positive
correlation between Timepart(i) participating in the project
and TD items introduced, % = 0.5439, p = 0.006004.

To answer RQ3. H0 : % = 0, the correlation coefficient
between SoC(i) and TDunresolved(i)

is equal to zero. HA :
% 6=, the correlation coefficient between number of SoC(i) and
TDunresolved(i)

is not equal to zero.
Finally, in order to test this hypothesis, we evaluate the

relation between the size of comments (SoC) and the TD
introduced by each developer. In this case, the Spearman’s
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correlation test shows a weaker association between SoC
and TD. We can also validate the Spearman’s correlation
coefficient since the significance (Sig.) is lower than 0.05.
We accept HA and we conclude there was a statistically
significant, weak positive correlation between SoC and TD,
% = 0.0072, p = 0, 000068.

TABLE III
VARIABLE CORRELATION RESULTS BY USING SPEARMAN’S CORRELATION

TEST

Variable Correlation Coefficient (%) Sig.
LOCedited 0.7411 0.000034
T imepart(i) 0.5439 0.006004

SoC(i) 0.0072 0,000068

V. THREATS TO VALIDITY

This Section addresses the most important validity threats
that we identify in our study.

A. Conclusion Validity

We use Spearman’s correlation test to analyze the relation-
ship between developer factors and code quality. We used it
because it is less sensitive to the outliers that exist due to the
inherent heterogeneity of the data that comes from different
open source projects, as it is reported in another studies [5].

B. Construct Validity

Here our main concern was the accuracy of the tools that
we used to assess TD. For mitigating this threat, we selected
SonarQube because it is widely accepted by practitioners [22].

C. Internal Validity

We obtained data from open source projects, so our first
concern was related to the completeness of data. Thus, we
collected data from the start time of the projects to avoid biases
and missing data.



Most important, another threat to internal validity comes
from the suitability of the metrics that we use to test our
hypotheses. As this is an exploratory study, we prioritized
the definition of simple metrics and the use of those already
present in the literature.

D. External Validity

We acknowledge that this is the most significant threat to the
validity of our study. Our conclusions cannot be generalized
to other scopes because we considered only two specific Java
open source projects. Again, as this is an exploratory study,
we prioritized the mastery of the different methods, tools, and
data sources.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we present an analysis to determine whether
code quality measured in terms of TD is affected by developers
factors. We use data from two open source projects, analyzing
a total of 18663 commits. We investigate the relation between
developer participation, developer experience, and communi-
cation skills with TD by using statistical tests.

In the case of developer participation, we find a strong
positive correlation between the edited LOC and the amount
of TD introduced by each developer, implying that the TD
produced is proportional to the LOC edited.

In the second case, we measure the developer experience
as time working in a project and the statistical analysis shows
that this factor is significantly correlated with TD. However,
in order to gain further insight, in future work, we plan to
consider also the frequency of commits and the experience of
the developers in other similar projects.

Finally, the communication skills of a developer, measured
as the number of lines used by a developer to comment on
her commits, and the number of TD issues have a weaker
asociation.

As further work, we plan to consider more properly the dis-
tinct features of open source projects. In this type of projects,
there exists a wide diversity in the developers regarding their
involvement degree and collaboration type. Therefore, we plan
to characterize different role types to obtain more significant
insights. In this regard, we think that could be interesting to
track the expertise evolution of those developers with a higher
level of participation.

Furthermore, we plan to extend and refine the metrics that
we use in this study. For instance, regarding developer expe-
rience, we are pondering to take into account the developer’s
background in other related projects. Regarding, developers’
communication skills, we plan to go beyond the measurement
of the size of their comments to consider also content analysis.

Finally, we also envision the possibility of integrating the
analytical methods that we have introduced in this paper into
the framework and tools developed in the Q-Rapids’ project
[23] [24]. Here, the ultimate aim would be to help to provide
accurate estimates on the effort required to remediate code
defects induced by developers.
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L. Guzmán, A. M. Vollmer, X. Franch, and A. Jedlitschka, “Q-rapids
tool prototype: Supporting decision-makers in managing quality in rapid
software development,” in Information Systems in the Big Data Era,
J. Mendling and H. Mouratidis, Eds. Cham: Springer International
Publishing, 2018, pp. 200–208.

[24] L. Guzmán, M. Oriol, P. Rodrı́guez, X. Franch, A. Jedlitschka, and
M. Oivo, “How can quality awareness support rapid software develop-
ment? – a research preview,” in Requirements Engineering: Foundation
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