View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by UPCommons. Portal del coneixement obert de la UPC
U AUvd cdlid d s |

Information Systems. "New Trends in Databases and Information Systems: ADBIS 2019 Short Papers, Workshops BBIGAP,
QAUCA, SemBDM, SIMPDA, M2P, MADEISD, and Doctoral Consortium: Bled, Slovenia, September 8-11, 2019:
proceedings". Berlin: Springer, 2019, p. 120-125.

The final authenticated version is available online at https://doi.org/10.1007/978-3-030-30278-8_15

Automatically Configuring Parallelism for
Hybrid Layouts

Rana Faisal Munir?, Alberto Abellé!, Oscar Romero', Maik Thiele?, and
Wolfgang Lehner?

! Universitat Politécnica de Catalunya, Barcelona, Spain
{fmunir,aabello,oromero}@essi.upc.edu
2 Technische Universitit Dresden, Germany
{maik.thiele,wolfgang.lehner}@tu-dresden.de

Abstract. Distributed processing frameworks process data in parallel
by dividing it into multiple partitions and each partition is processed
in a separate task. The number of tasks is always created based on the
total file size. However, this can lead to launch more tasks than needed
in the case of hybrid layouts, because they help to read less data for
certain operations (i.e., projection, selection). The over-provisioning of
tasks may increase the job execution time and induce significant waste of
computing resources. The latter due to the fact that each task introduces
extra overhead (e.g., initialization, garbage collection, etc.).

To allow a more efficient use of resources and reduce the job execution
time, we propose a cost-based approach that decides the number of tasks
based on the data being read. The proposed cost-model can be utilized
in a multi-objective approach to decide both the number of tasks and
number of machines for execution.

Keywords: Big data, Hybrid storage layouts, Parallelism, Parquet, Spark

1 Introduction

The competition in businesses demands quick insights from data, which is expo-
nentially growing from petabytes to zettabytes [15]. Researchers have proposed
distributed processing frameworks (e.g., Hadoop ecosystem® and Spark?) for
quickly processing such large volumes of data to meet the business demands.
These frameworks provide distributed storage (e.g., HDFS®) and distributed
processing [6]. In addition, for more efficient analysis, very wide tables [3, 10] are
being used to store non-normalized data in hybrid layouts [2,11]. Through their
built-in operations (e.g., projection, selection), these layouts read data more effi-
ciently from the disk. Hybrid layouts allow to read less data from the disk. This
is not thoroughly exploited by distributed frameworks when deciding the number
of tasks for processing the data. They always decide the number of tasks based

3 https://hadoop.apache.org
* https://spark.apache.org
® https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html

https://core.ac.uk/display/286456487?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Rana Faisal Munir et al.

on the total table size and not on the portion of the table being read. This leads
to the over-provisioning of tasks, where many tasks remain idle — without any
data to process, still present extra overhead (e.g., initialization time, garbage
collection). Furthermore, the idle tasks also waste the computational resources
which are assigned to them. The latter is not considered even in the area of cloud
computing [9, 16, 18], where computational resources are decided based on the
total data size. This leads to wastage of resources and money.

As argued above, we need to decide the number of tasks based on the actual
data read from the disk. To do that, we first need to estimate the read size, which
can be done by utilizing our cost model presented in [12], which estimates the
scan, projection, and selection sizes for hybrid layouts.

In this paper, we propose to extend it further to estimate the makespan of the
job implementing a query based on the estimated reading size. Thus, we design a
framework which takes a user query and data statistics as inputs to estimate the
reading size, and then through a multi-objective optimization method decides
the number of tasks and ezecutors. After configuring the number of tasks and ex-
ecutors, the query would be automatically submitted to a distributed processing
framework.

The main contribution of this work is to discuss the main variables to be
considered in a multi-objective optimization method to configure the number of
tasks and executors of a given query.

The remainder of this paper is organized as follows: In Section 2, we discuss
the related work. In Section 3, we present our approach for configuring the
number of tasks and executors for a given query. Finally, in Section 4, we conclude
the paper.

2 Related Work

Estimating Number of Tasks. There are research works [13,17] for Hadoop,
which estimate the number of mappers and reducers tasks. Moreover, these ap-
proaches do not consider the amount of data read, while estimating the number
of tasks. These works only estimate the tasks based on the available number
of machines and some objectives (such as deadline). As previously argued, the
amount of data read is an important factor in deciding the number of tasks.

Resource Provisioning in Cloud. There have been extensive research works [9,
16, 18] by cloud community on resource provisioning. These works focus more
on deciding the number of machines to process an application. They aim at sav-
ing energy and computational resources, which indirectly leads to cost savings.
However, they make these decisions without considering the reading size. Our
approach could help them to decide resource provisioning in more granular level
and overall, it can help these works to achieve their goals more efficiently.

Tuning Configurable Parameters. There are research works [8,14] to tune the
configurable parameters of distributed processing frameworks. In [5], the shuffle

Automatically Configuring Parallelism for Hybrid Layouts 3

performance in Spark is improved by controlling the total number of shuffle
files. These works do not explicitly consider the degree of parallelism. Their
main aim is to fine tune a distributed processing framework. Our approach can
be complementary to these works.

[1] presents a cost model for Spark SQL to evaluate different query plans.
However, it does not configure the number of tasks and executors. We can use
this work as complementary to ours, as well.

3 Owur Approach

In this section, we discuss our proposed approach. It is based on a cost model
which can be utilized in a multi-objective optimization method for configuring
the number of tasks and executors.

For cost model, we propose to extend our previous work [12], that estimates
the reading size for hybrid layouts. The reading size can be further used in esti-
mating the number of tasks and executors. The number of tasks always depends
on the size of partition (also known as input split), which we need to consider
in the extended cost model.

Moreover, we focus on read-only analytical jobs, to estimate the amount
of data read for their first operation and based on that, we try to find the best
partition size to control the number of tasks. Given the simplicity of a file system
(far from that of a DBMS), only three operations need to be considered: scan,
projection, and selection. These three operations can be generalized to selection
sorted and selection unsorted, because scan and projection operations are just
the extreme cases of selection unsorted with selectivity factor of 1 (i.e., they read
all Row Groups - RGSs), and when you can choose the attributes in the output.

3.1 Estimating Number of Tasks

Modern distributed processing frameworks decide the number of tasks based on
the total file size (which is the actual size of data without metadata) and the
partition size. Moreover, all tasks cannot be executed at once, if the number
of executors is less than the total number of tasks. Thus, we need multiple
rounds/waves to finish the job.

3.2 Types of Partitions

As discussed earlier, data is processed by dividing into multiple partitions and
each partition is processed in a separate task. These tasks process different
amount of data presented in each partition, based on the number of referred
attributes and the selection predicate. For instance, selection unsorted always
reads all RGs, thus every task processes a full partition except the last one,
whose partition might not be completely full, as shown in Figure la.

On the other hand, selection sorted has high probability of skipping some
RGs, thus, it can have empty partitions, which only read metadata. Additionally,

4 Rana Faisal Munir et al.

. Matches
i Full Partition Full Partition Full Partition Full Partition Last Partition ! | RG | Predicate
|(a) : :
Selection : : Does not
Unsorted | RGO ||RG 1 RG2||RG3 RG4||RG5 RG6||RG 7 RG 8 [me | aten
H Predicate

Empty Partition Partial Partition Full Partition Partial Partition

(b)

Selection !
Sorted | ||RGO||RG1 RG2|| RG3 RG4||RG5 RG6 | |RG 7 RG 8

Fig. 1. Type of partitions in selection sorted and unsorted

it has full partitions that contain all matching RGs and two partial partitions, the
first (from where selection starts) and last one (where selection ends), because
requested data will not start just at the beginning and finish just at the end of
a partition, as exemplified in Figure 1b.

3.3 Task’s Cost Estimation

The total cost of a task depends on four factors: initialization cost, I/O cost,
CPU cost, and networking cost. The initialization cost is constant and can be
determined according to the execution environment. The I/0O cost depends on
the amount of data read within a task and the disk bandwidth. We do not
consider CPU cost due to its negligible impact compared to I/0 cost (existing
works [2,11] already proved that this is enough to capture the execution trend).
Finally, we focus on the first operation loading data, thus networking cost for
shuffling is also considered to be zero [2]. However, there is still a networking cost
for metadata, because current solutions require to sequentially transfer metadata
to all other executors before start processing the data. Typically, it is read and
transferred by the master or driver executor.

Each partition has an initialization cost, which is a constant, and I/O cost
(which depends on the amount of metadata and data read inside the partition).
As shown in Figure 1, full partitions read all RGs inside and partial partitions
only read the matching RGs. Whereas, last partitions read the remaining data
and empty partitions only read metadata. These costs help to estimate the total
cost of each task, which can help to estimate the average cost.

3.4 Estimating Makespan

As discussed earlier, each task processes different amounts of data and thus,
some tasks can finish earlier compared to others. Likewise, each executor can
finish its assigned tasks in different times. Thus, we should estimate makespan
based on the executor that is processing largest stack of tasks, which can be
estimated using the number of executors active in the last wave. This would help
to estimate standard deviation among tasks and used it further for estimating
overall makespan of an operation.

Automatically Configuring Parallelism for Hybrid Layouts 5

For makespan, there are two scenarios based on the number of executors
active in the last wave. In the first scenario, there is only one executor in the
largest stack. In this case, the last task is processing the remaining data and
then, we do not need to take any standard deviation, because there is one single
largest stack. Thus, we just add the average duration of all task in that stack. In
the second scenario, the makespan depends on metadata transfer, the average
cost of a task, the number of executors running in the last wave, and their
standard deviation. Thus, we need to estimate expected maximum [4] of those,
which accounts for the standard deviation of the addition of tasks, as well as the
maximum among executors in the last wave.

3.5 Multi-Objective Optimization

As presented earlier, we would like to optimize two objectives (i.e., makespan
and resource usage), which are mutually contradicting, i.e., if we want to reduce
makespan, we require more computational resources and vice versa. Thus, we
need to find a trade-off between them that satisfies user requirements and con-
straints. Additionally, to avoid unfavorable or even impossible configurations, we
also need to consider three constraints. Firstly, the partition size must always be
greater than or equal to the RG size. Secondly, we must have enough partitions
to utilize all assigned executors. Finally, it must enforce the maximum limit on
the number of executors.

‘We propose to use an existing multi-objective optimization approach, namely
NSGA-II [7], implementing genetic algorithms. It takes objective functions along
with constrains as input, and produces the Pareto front as an output. Typically,
there is no single optimum in a multi-objective optimization problem, but a
Pareto front which contains many potentially optimal solutions depending on
user prioritization of one objective or another. Our framework® facilitates the
user choice by reducing the many possible configurations to very few (belong-
ing or close to the Pareto front), so helping her to select one according to her
preferences.

4 Conclusions

Big Data systems process data on a cluster by creating multiple tasks. Typically,
they create tasks based on the total size of the table, rather than based on the
reading size of the query. Thus, we propose a multi-objective approach based
on our extended cost model to configure the number of tasks and executors
for a given query based on the reading size. The proposed approach will be
implemented as a framework, that automatically configures the number of tasks
and executors for a given query.

5 http://www.essi.upc.edu/dtim/tools/adbis2019

Rana Faisal Munir et al.

Acknowledgement

This research has been funded by the European Commission through the Eras-
mus Mundus Joint Doctorate “Information Technologies for Business Intelligence
- Doctoral College” (IT4BI-DC).

References

1.

2.

10.

11.

12.

13.

14.

15.
16.

17.

18.

L. Baldacci and M. Golfarelli. A cost model for Spark SQL. TKDE, 31(5):819-832,
2019.

H. Bian, Y. Tao, G. Jin, Y. Chen, X. Qin, and X. Du. Rainbow: Adaptive layout
optimization for wide tables. In ICDE, pages 1657-1660, 2018.

H. Bian, Y. Yan, W. Tao, L. J. Chen, Y. Chen, X. Du, and T. Moscibroda. Wide
table layout optimization based on column ordering and duplication. In SIGMOD,
2017.

G. Dasarathy. A simple probability trick for bounding the expected maximum of
n random variables. Technical report, Arizona State University, 2011.

A. Davidson and A. Or. Optimizing shuffle performance in Spark. Technical report,
UC Berkeley, 2013.

J. Dean and S. Ghemawat. MapReduce: simplified data processing on large clus-
ters. Commun. ACM, 51(1), 2008.

K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evolutionary Computation, 6(2):182—
197, 2002.

A. Gounaris and J. Torres. A methodology for Spark parameter tuning. Big Data
Research, 11:22-32, 2018.

M. T. Islam, S. Karunasekera, and R. Buyya. dSpark: Deadline-based resource
allocation for big data applications in Apache Spark. In e-Science, pages 89-98,
2017.

Y. Li and J. M. Patel. WideTable: An accelerator for analytical data processing.
PVLDB, 7(10), 2014.

R. F. Munir, A. Abell6, O. Romero, M. Thiele, and W. Lehner. ATUN-HL: Auto
tuning of hybrid layouts using workload and data characteristics. In ADBIS, pages
200-215, 2018.

R. F. Munir, A. Abell6, O. Romero, M. Thiele, and W. Lehner. A cost-based
storage format selector for materialization in big data frameworks. Distributed and
Parallel Databases, 2019.

P. P. Nghiem and S. M. Figueira. Towards efficient resource provisioning in MapRe-
duce. JPDC, 95:29-41, 2016.

P. Petridis, A. Gounaris, and J. Torres. Spark parameter tuning via trial-and-error.
In INNS, pages 226-237, 2016.

K. V. Shvachko. HDFS scalability: the limits to growth. Login, 35(2):6-16, 2010.
S. Sidhanta, W. M. Golab, and S. Mukhopadhyay. Optex: A deadline-aware cost
optimization model for Spark. In CCGrid, pages 193-202, 2016.

A. Verma, L. Cherkasova, and R. H. Campbell. Resource provisioning framework
for MapReduce jobs with performance goals. In USENIX, pages 165-186, 2011.
W. Wu, W. Lin, C. Hsu, and L. He. Energy-efficient Hadoop for big data analytics
and computing: A systematic review and research insights. Future Generation
Comp. Syst., 86:1351-1367, 2018.

