View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by UPCommons. Portal del coneixement obert de la UPC
. = M U y e .

International Conference on Model and Data Engineering. "Model and Data Engineering, 9th International
Conference, MEDI 2019: Toulouse, France, October 28-31, 2019: proceedings”. Berlin: Springer, 2019, p. 35-49.

The final authenticated version is available online at https://doi.org/10.1007/978-3-030-32065-2_3

Keeping the Data Lake in Form: DS-kNN
Datasets Categorization Using Proximity Mining

Ayman Alserafi':2, Alberto Abellé!, Oscar Romero', and Toon Calders®

! Universitat Politécnica de Catalunya - BarcelonaTech, Barcelona, Catalunya, Spain
{alserafi,aabello,oromero}@essi.upc.edu
2 Université Libre de Bruxelles (ULB), Brussels, Belgium
3 Universiteit Antwerpen (UAntwerp), Antwerp, Belgium
toon.caldersQuantwerp.be

Abstract. With the growth of the number of datasets stored in data
repositories, there has been a trend of using Data Lakes (DLs) to store
such data. DLs store datasets in their raw formats without any trans-
formations or preprocessing, with accessibility available using schema-
on-read. This makes it difficult for analysts to find datasets that can
be crossed and that belong to the same topic. To support them in this
DL governance challenge, we propose in this paper an algorithm for cat-
egorizing datasets in the DL into pre-defined topic-wise categories of
interest. We utilise a k-NN approach for this task which uses a proximity
score for computing similarities of datasets based on metadata. We test
our algorithm on a real-life DL, with a known ground-truth categoriza-
tion. Our approach is successful in detecting the correct categories for
datasets and outliers with a precision of more than 90% and recall rates
exceeding 75% in specific settings.

Keywords: Data Lake Categorization - k-Nearest-Neighbour - Meta-
data Management - Proximity Mining.

1 Introduction

Today, a lot of data is generated covering different heterogeneous topics and
domains. Those data are frequently stored as tabular datasets which describe
different entities (in the rows) with information about them stored as attributes
(in the columns). A collection of such raw datasets which are stored in their
original schema without preprocessing or transformations is called a Data Lake
(DL) [3,16]. Over its lifetime, a DL becomes very diverse and can cover differ-
ent topics, making it difficult to find and retrieve relevant datasets for analysis.
Therefore, it is a challenge for the users to govern the DL by detecting the group-
ings and underlying structures of similar datasets covering relevant topics for
analytics [3,4, 11]. To tackle this challenge, we propose an automated approach
called DS-kNN to detect such groupings using k-nearest-neighbour (k-NN). The
approach relies on collecting relevant metadata about the datasets when they
are ingested, then we compute proximity models of dataset similarities based on

https://core.ac.uk/display/286456473?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 A. Alserafi et al.

supervised machine learning, and apply those models on new datasets to com-
pute their similarity scores with datasets stored in the DL. Once we computed
the similarities, we apply a k-NN algorithm to categorize the ingested datasets
into the groupings already present in the DL or to classify them as outliers. An
example of the expected results can be seen in Fig. 1. Here, we visualise the DL
as a prozimity graph having datasets as nodes and edges connecting the nodes
showing the similarity scores (R € [0,1]) computed using the proximity model.
Datasets in the same category (cluster) are shown in the same colour. We only
show edges between datasets in the same category. In Fig. 1 (a) we show an ex-
ample of a complete DL proximity graph and in (b) we zoom-in on the specific
part highlighted with a box for showing more details.

delta ators

s?iuttle»l—control

ions

Facu@aries e|@rs
(b)

Fig. 1: A visualisation of the output from DS-kNN data lake (DL) categorization.
A proximity graph shows the datasets as nodes and the proximity scores as edges
between nodes. Fig.(a) complete DL and Fig. (b) a zoomed-in view highlighted
by the red box in (a)

DS-kNN Datasets Categorization Using Proximity Mining 3

The main contributions of this paper are: (1) We propose a kNN-based prox-
imity mining algorithm for finding the correct categories for datasets based on
existing categories in the DL, (2) we evaluate the algorithm in a real-world set-
ting to prove its effectiveness in assigning correct categories to new datasets
ingested in the DL, (3) we experimentally test the effect of different DL settings
on the performance of our approach.

In the rest of this paper, we define the DL and the scenario we consider
in Section 2, we present the DS-kNN algorithm in Section 3, then we test the
algorithm on a real-life DL and we experiment with our algorithm in Section 4,
we present related work in Section 5, and we conclude in Section 6.

2 Preliminaries

We consider a DL consisting of tabular datasets. Those are large heterogeneous
repositories of flat structured data (i.e., CSV, web tables, spreadsheets, etc.).
Such datasets are structured as groups of instances describing real-world entities,
where each instance is expressed as a set of attributes describing the properties of
the entity. We formally define a dataset D as a set of instances D = {I3, I3, ...I,, }.
The dataset has a set of attributes S = {41, As, ...A;, }, where each attribute
A; has a fixed type, and every instance has a value of the right type for each
attribute. We focus on two types of attributes: continuous numeric attributes
with real numbers and categorical nominal attributes with discrete values.

For each dataset, we collect different statistics about their content which we
call content meta-features:

— Nominal attributes: their data profile mainly involves frequency distribu-
tions of their distinct values.

— Numeric attributes: their data profile mainly involves aggregated statis-
tics like mean, min, max, and standard deviations.

We compute similarity scores between pairs of datasets [D,, Dy], as follows:

— Sim(Dg, Dyp): an estimation (R € [0,1]) of the similarity based on the com-
parison of the content meta-features we collect about the datasets and their
attributes. Typically, the information contained in highly similar datasets
would overlap. An example would be a pair of datasets having similar nu-
meric values and distribution of values, or nominal attributes having the
same number of values. Alternatively, it could be based on name string-
similarity between datasets and their attributes.

Scenario. We aim at governing the DL by incrementally maintaining the clusters
of datasets defined for them. We consider the scenario where we initially have an
existing DL for which we know all clusters of datasets based on their categories.
However, given the dynamic nature of DLs, new datasets are frequently ingested.
Thus, we need to compare these new datasets against the datasets already in the
DL to find their similarity with them, and then to find their most appropriate

4 A. Alserafi et al.

Data Lake

Mps-Prox

Fig.2: The data lake categorization scenario using k-NN proximity mining

category based on the similar datasets found in the DL, or to assign them to a
separate category as an outlier.

This shapes the main problem for this research paper: given a collection of
datasets in a DL and a newly ingested dataset, find all pairs of highly simi-
lar datasets, and based on their categories, assign a new category for the new
dataset, or if no highly similar datasets are found then indicate that the dataset
is an outlier. To compute the similarity between the datasets, we use a prox-
imity model, which we call Mpg_ pro.. We discuss how we create this model in
Subsection 2.1.

The scenario discussed is visualized in Fig. 2. Consider that there is a DL
having a group of datasets (white circles) which have annotations of all their
Sim(D,, Dy) relationships between pairs (as seen by the lines linking the datasets).
Groups of datasets with linkages are segmented into categories (seen by the en-
compassing black circles). Those categories are the groupings of the subject-areas
or domains-of-knowledge we have in the DL. We need to automatically use this
DL and its known annotations to create a model Mpg_ pror Which can automat-
ically annotate relationships of a new dataset D; with the Sim(D;, D;) similarity
scores. Therefore, we need to learn a model from the DL and apply it to estimate
the similarity between a new dataset and all other datasets already in the DL,
in order to find the top-k neighbours.

Based on the similarity scores we assign a category to D;. The highlighted
edges between the new dataset D; and some nodes in the DL are those having
the highest similarity scores computed by the model (in this case, we give an
arbitrary example where we use top-3 nearest-neighbours). In our proposed ap-
proach, each of those top neighbours proposes its category as the correct one for
D;, and the most proposed category should be assigned, or if no such similar
datasets are found then D; is marked as an outlier without any relevant category
found. In the case of tied categories among the proposed ones from the top-k
similar datasets, then all of them are assigned to D;. In the example in Fig. 2,

DS-kNN Datasets Categorization Using Proximity Mining 5

category ‘C1’ would be assigned as the final category as it has 2 votes, compared
to only 1 vote by category ‘C3’.

To learn the Mpg_ pror model we use supervised machine learning as de-
scribed in Subsection 2.1.

2.1 Proximity Mining: Meta-features metrics and models

For all the datasets in the DL, we collect two metadata types: A.Content-based
and B. Name-based meta-features. The name-based techniques are the most
commonly used metadata in previous research [7,11,13,14]. In our DS-kNN
approach, we propose content-based meta-features as an alternative to name-
based metadata when computing similarity scores. Such content meta-features
include data profiling statistics about the content of the datasets. Thus, we use
two types of metadata for similarity computations:

— Name-based metadata: the naming of datasets and their attributes.

— Content-based metadata: profiling statistics about the data stored in the
datasets. The collected meta-features (described in Table 1) include statis-
tics concerning all attributes collectively, the attribute types found and the
overall number of instances. Those form a concise list of meta-features that
have been proved in our previous work [4] to be effective in predicting re-
lated datasets with similar schemata and stored information. Our purpose
for those meta-features is to describe the general structure and content of the
datasets for an approximate comparison using our proximity mining classi-
fication models.

To compute similarity scores Sim(D,, Dy) from name-based metadata, we
use the Levenshtein distance as a standard string comparison metric [12]. The
output from this comparison is considered as the similarity score from Mps_ pros.
For content meta-features, we construct the Mpg_ pror model using the prox-
imity mining approach from our previous work [4]. First, we compute distances
for each meta-feature m; from Table 1 between each pair of datasets [D,, Dy
using equation 1 which gives the relative difference as a number between 0 and
1. We compute this for all dataset pairs [D,, Dp] in the training sample.

max{m;(Dqa), mi(Dy)} — min{m;(Dg,), m;(Dy)}

distm; (Da, Do) = max{m;(Da), m;(Dy)}

(€]

Once we have the metadata collected and their distances computed, we feed
them to a supervised machine learning algorithm to produce a classification
model which identifies those dataset pairs in the same assigned category. This
creates the proximity mining model to compute similarity scores. For this initial
training sample of datasets we have in the DL, a data analyst should have
incrementally assigned a category cluster to each dataset based on their topics.
The target variable for those classifiers is a binary value whether the datasets in
the pair belong to the same category or not.

We use the two top performing ensemble learning algorithms from [4] to learn
the model, which are the boosting machine learning algorithms AdaBoost [15]

6 A. Alserafi et al.

Table 1: DS-Prox meta-features

Type Meta-feature Description
Number of Instances The number of instances in the dataset
General Number of Attributes The number of attributes in the dataset
Dimensionality The ratio of number of attributes to num-
ber of instances
Attributes by Type Number per Type '_The number of attributes per type (Nom-
inal or Numerical)
Percentage per Type The percentage of attributes per type
(Nominal or Numerical)
Average Number of Values The average number of distinct values per
Nominal Attributes nominal attribute
Standard Deviation of Number of|The standard deviation in the number of’
Values distinct values per nominal attribute
Minimum/Maximum Number of|The minimum and maximum number of
Values distinct values per nominal attribute
Average Numeric Mean The average of the means of all numeric
Numeric Attributes attributes
Standard Deviation of the Numeric|The standard deviation of the means of]
Mean the numeric attributes
Minimum/Maximum Numeric[The minimum and maximum mean of nu-
Mean meric attributes
Missing Attribute Count The number of attributes with missing
values
Missing Values Missing Attribute Percentage The percentage of attributes with missing
values
Minimum/Maximum Number of|The minimum and maximum number of
Missing Values instances with missing values per at-
tribute
Minimum/Maximum Missing Val-[The minimum and maximum percentage
ues Percentage of instances with missing values per at-
tribute
Mean Number of Missing Values [The mean number of missing values from
each attribute
Mean Percentage of Missing Values|The mean percentage of missing values
from each attribute

and LogitBoost [6]. Those algorithms were compared in our previous work to
other algorithms and were found to be the best in finding related schemata. The
positive-class distribution produced by the ensemble model is used as the simi-
larity score Sim(D,, Dy) [15]. Finally, we apply the learnt Mpg_ pro, model on
pairs of one new ingested dataset and each existing datasets in the DL to gen-
erate the similarity scores. We compare the score against a minimum threshold
like in Equation 2. Only pairs passing the threshold are considered as candidate
top-k nearest neighbours to a dataset in our DS-kNN algorithm. We discuss this
in detail in Section 3. Different similarity thresholds lead to a different perfor-
mance of the algorithm, so we test multiple threshold values in our experiments
to discover the best one to use.

1, Sim(Da7 Db) > Crel
0, otherwise

Top(Dg, Dy) = { (2)

DS-kNN Datasets Categorization Using Proximity Mining 7

3 DS-kNN: A proximity mining based k-
nearest-neighbour algorithm for categorizing
datasets

Algorithm 1: DS-kNN Categorization of a dataset ingested in a Data Lake

Input: A new ingested dataset D,, each existing dataset Dj in the data lake
DL, Dataset-level meta-features distance metrics M F' for each pair of
datasets {Da, Dy}, the category Catp, for each existing dataset in the
DL, the classification model Mgs—proz, algorithmic parameters: the
number k of nearest neighbours, and the similarity score threshold c;.;

Output: The set SP of the ingested dataset and its similarity scores

Sim(Da, Dy) and category Catp, for each pair {Dg, Dy} passing crer,
the set SP-Top of top matching k datasets and their categories, the
assigned category for the new dataset Catp,

SP « 0

SP-Top + 0

foreach {D,, Dy} C DL and a # b do

[Da, Db7 Sz’m(Da, Db)} = Mds—prox (MF{DQ,Db})§
if Sim(Da, Dy) > cret then

SP < SPU{[Da, Dy, Sim(Da, D), Catp,]};
end

end
SP-Top = Top-k_Nearest_Neighbours(SP, k); \\Retrieve the subset of the
highest ranking k-pairs by similarity score
Catp, = Top-category(SP-Top); \\Get category with majority vote from Top-k
if (Catp, = NULL) then
Catp, =" Outlier’;
end

We propose an algorithm for computing the categories of an ingested dataset
as described in the scenario in Section 2. After learning the classification model
Mps— proz, we apply the classifier to each new pair [D,, Dy] where D, is any
new ingested dataset and Dy, is each of the existing datasets in the DL, in order
to achieve the similarity score Sim(D,, Dy) with all datasets in the DL. Then,
we apply k-NN in our proposed DS-KNN Algorithm 1 to compute the category
for a new dataset. k-NN was also successful in similar categorization problems,
like in free-text document categorization [8].

First, our algorithm applies the Mpg_ pro model on all the dataset pairs
for the new dataset D, to compute their similarity scores, and those passing
the minimum threshold are stored in the set SP. To improve efficiency, a heap
data structure could be used to store the datasets with their similarity scores for
quick search and retrieval of top-k nearest-neighbours. The next step involves
finding those top-k nearest-neighbours which are existing datasets in the DL
with the highest similarity scores to D,. Finally, we assign the category with the

8 A. Alserafi et al.

most number of pairs in the top-k nearest neighbours as the assigned category
based on simple majority voting by top-k nearest neighbours. If no top-k nearest
neighbours are found then the dataset is marked as an ‘outlier’ with no proposed
category.

The algorithm has the following parameters as input:

— The number of neighbours (k): the top-k number of nearest neighbours
which our algorithm uses to predict the new category for an ingested dataset.

— The proximity model (Mgs_prog): this is the proximity mining model
created using our approach described in Section 2. We use different mod-
els depending on the metadata, i.e. content-based, dataset-name based or
attribute-name based.

— The similarity threshold (c,¢;): the minimum allowed similarity score to
consider a dataset pair as candidate nearest neighbour.

4 Experimental Evaluation

We test our proposed categorization algorithm on a real-life DL. We describe the
dataset used, the experimental setup and our results with a detailed discussion
of the performance of DS-kNN.

4.1 Dataset: OpenML DL ground-truth

We created a ground-truth based on manual annotations of 203 datasets from a
real-life DL called OpenML*. It consists of different datasets covering heteroge-
neous topics, each having a name and a description. The categories found in the
ground-truth are visualised in Fig. 1.

The sample of datasets collected from OpenML is scraped to extract datasets
having a description of more than 500 characters. The descriptions helped the
manual annotators deciding on the assigned topic for each dataset. Out of the 514
datasets retrieved, we selected 203 with meaningful descriptions (i.e., excluding
datasets whose descriptions do not allow to interpret its content and to assign
a topic). A domain expert and one of the authors collaborated to manually
label the datasets with their topic. The datasets were labelled by both their
broad subject (e.g., ‘social demographics’) and their more specific entity they
describe (e.g., ‘citizens census data’). The interested reader can download the
two annotated datasets from GitHub®.

Table 2 shows the number of datasets per category assigned based on topic
grouping type. We only show the top 10 categories found by size for each group-
ing. The total number of categories is also given and the number of categories
bigger than a specific size (i.e., with at least this number of members), and the
number of outliers (datasets with their own specific category without any other
members). As can be seen in the table, the datasets in the DL we use in the
experiments cover heterogeneous topics and different category sizes.

4 http://www.openml.org
® https://github.com/AymanUPC/ds-knn

DS-kNN Datasets Categorization Using Proximity Mining 9

Table 2: A description of the 203 OpenML categorized datasets collected.
Datasets are categorized by subject and by entity.

No. of
Categories

Category
Type

Categories by Type Categories by |Outliers
Size

Subject 53 Computer Software (17), Social Demo-|8+ members (8), |21
graphics (17), Image Recognition (16),|5+ members (14),
Health (14), Robot (11), Disease (11),|3+ members (25)
Natural Water (8), Ecology (8), Computer
Hardware (6), Motion Sensing (5)

Entity 7 Computer Software defects (16), Citi-|8+ members (8), |47
zens Census Data (12), Digit Handwrit-|5+ members (12),
ing Recognition (12), Diseases (11), Robot |3+ members (21)
Motion Measurements (11), Health Mea-
surements (10), Chemical Contamination
(8), Plantation Measurements (8), CPU
Performance Data (6), Animal Profile (5)

4.2 Experimental Setup

Our goal is to test the performance of the DS-kNN algorithm in correctly assign-
ing the right category to datasets. We compare the performance of the DS-Prox
content-based models when applied in DS-kNN against the baseline models of
dataset-names and attribute-names, which are the commonly used metadata in
previous work [7,11,13,14] (see Section 5). We implement DS-kNN based on
those different models in Java using a Postgres SQL database as its backend for
storing the metadata, and we feed it with the datasets from the OpenML DL.
We initially tested the algorithm on a random sample of datasets using different
values for k € {3,5,7,9,11,13} and found the best performing value under the
same settings was k = 3, so we conduct all our trials in the experiments using
k = 3. To test the generalizability and adaptability of DS-kNN under different
DL settings, we also conduct trials with the algorithm under the following dif-
ferent settings which affect the ground-truth used in the training and testing of
Mdsfpro:c:

— Different category sizes: we test DS-kNN with all the datasets (including
outliers where category size is just 1 dataset) and with categories that at
least contain the following number of members (3,5,8). We test different
sizes of categories to check if the algorithm is affected by category sizes.

— Different ground-truth types: We test the algorithm with the broad (1)
subject-based categories and the more detailed (2) entity-based categories.

For each DL setting, we compare the performance of the DS-kNN algorithm
using the following input parameters:

— Different models (Mgs—pros): we test the different models generated by
different metadata, which are (1) Dataset Name, (2) Attribute Name and
(3) DS-Prox Content.

10 A. Alserafi et al.

— Different similarity thresholds: we use different thresholds for Sim(D,, Dy)
including (0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7, 0.8, 0.9)

We test the different combinations of the above parameters and settings
which resulted in the execution of a total of 240 independent trials. We utilise
a leave-one-out experimental setup to test our categorization algorithm in each
trial, as seen in Fig. 2, so for each experimental trial we train the model under
the same settings and with the same parameters 203 times, where for each run
we keep a single dataset out from the training of the model and treat it as the
new test dataset. We train the proximity model with all the datasets in the
DL except the test dataset, we apply the proximity model on the test dataset
with all dataset pairs found in the DL, and we run our algorithm to compute
its allocated category or to mark it as an outlier. We apply Algorithm 1 on the
test dataset and we find the top categories it should be allocated to. The goal is
to maximise the number of correctly assigned categories based on top-k nearest
neighbours.

To evaluate the effectiveness, we consider our algorithm as an example of
a multi-class classification problem. We evaluate whether each dataset gets as-
signed the correct category based on top-k nearest neighbours. We compute the
number of correctly annotated categories and outliers by measuring recall, pre-
cision and F1-scores which are commonly used for evaluation in similar settings
[1,2,11]. We compute the F1 score as the harmonic mean of the recall and the
precision [12]. The evaluation metrics are described in Equations (3),(4) and
(5) respectively. Here, TP means true-positives which are the datasets correctly
classified to their category. F'N are false negatives, and F'P are false positives.
We compute the evaluation metrics per category and average the final scores
from all categories to achieve macro-averaging scores [12]. For example, consider
we have in the ground-truth two categories C'l and C2 consisting of 10 datasets
each. C'1 had 9 TPs and 1 FP (i.e. a dataset from a different category incorrectly
assigned to it by DS-kNN) while C2 had 8 TPs and 2 FPs, therefore they will
have a precision of 0.9 and 0.8 respectively. Therefore, the macro-precision will
be 28109 — (.85,

TP

recall = ———— (3)
TP+ FN
. TP (1)
Tecitsion = —————
P TP+ FP

(Recall x Precision)
Fl-score =2 X

(5)

Recall + Precision

DS-kNN Datasets Categorization Using Proximity Mining

Dataset-Name, Entity, Size = 1+

Attribute-Name, Entity, Size = 1+

11

DS-Prox, Entity, Size = 1+

100% i 100% 100%
° 0.9 /OAB 0.9
90%- 717106 90%- 8'7
80%: 707 80%- :
70%- 70%-
c J1 c c
S 60%- / S 60% S
k7] /0.4 k7l -
‘S 50%- A S 50% S
1 / Q £
a 40% #03 O 40% a
30% 0_1(')‘ 0.2 30%
20% /0 : 20%
10% / 10%:
Y
0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80% 100%)
Recall Recall Recall
(a) (b) (c)
Dataset-Name, Subject, Size = 1+ Attribute-Name, Subject, Size = 1+ DS-Prox, Subject, Size = 1+
100%" 7 100%
90%- 90%-
80%- 0%
70%- 70%
S 60%- s S 0%
o @ a2
o o
g 0% g § o
a 40% a & 40%
30% 30%-
20%- 20%-
10% 10%-
0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80% 100%
Recall Recall Recall
(d) (e) ()
Dataset-Name, Entity, Size = 8+ Attribute-Name, Entity, Size = 8+ DS-Prox, Entity, Size =8+
100%" o 9\\\'0.8 T 100% 100?
90% - ~~-+} 0.4 90%- 90%
80%- 0_8-5 0.2 0 80% 80%
70%- 0.7 0.30-9' 70%- 70%
c c S 9%~
S 60%- S 60%- 2 60%
(7] v =
g 0% g 50%-] 50%
& 40%- O 40%- o 40%
30%- 30%- 30%
20%- 20%- 20%
10%- 10%- 10%
0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80% 100%
Recall Recall Recall
(2) (h) (i)
. . Attribute-Name, Subject, Size = 8+ DS-Prox, Subject, Size = 8+
Dataset-Name, Subject, Size = 8+ o0 N i
100%
100%" \\7 9057 900'07
oo 09 08 0504 v y
= 80%- 80%-
o 06 O3 709 709
%- 0.10.0 % o
c 70% 0.7 02 c . c X
S 60% -% 60% % 60%-
2 o g 50% g 50%
4 pey =
& a0%- & 40% & 40%
30%- 30%- 30%-
20%- 20%- 20%-
10% 10%- 10%-
0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80% 100%
Recall Recall Recall
I - Dataset Name <> Attribute Name (O DS-Prox AdaBoost >k DS-Prox LogitBoost I

Fig. 3: Performance of DS-kNN using different models, different ground-truths,
and different category sizes

12 A. Alserafi et al.

4.3 Results

We present the precision-recall curves from our experiments in Fig. 3. Each
graph plots the macro-averaging performance resulting from leave-one-out cross-
validation of a specific model for a specific ground-truth type and category sizes
(which are labelled above the chart). For all our results we use percentages for the
performance metrics. Here, we plot recall against precision for each of the differ-
ent model types used in DS-kNN and the different minimum category sizes we use
in the experiment. The numbers annotated on the points indicate the similarity
threshold (also indicated by the size of the points, where bigger size indicates a
higher similarity threshold). We show the results for the non-restricted (category
size = 14) which includes outliers and the biggest category sizes (category size
= 8+). Each model type has a different symbol and colour. For DS-Prox, circles
indicate AdaBoost-based model and stars indicate LogitBoost-based model. We
also present in Table 3 the evaluation metrics for the top performing parameters
for DS-KNN (in terms of Fl-scores) for each model type, category sizes, and
ground-truth type.

Table 3: The evaluation of DS-KNN for k£ = 3 and different model types, ground-
truth types and minimum category sizes. For each setting, we only show here
the best performing similarity threshold based on F1-scores.

Model Type Ground Min. Cat-|Similarity [Recall |Precision |[Fl-score
Truth Type |egory Size|Threshold

Attribute Name Entity 1 0.7 67.9 91.3 77.9
Attribute Name Entity 3 0.3 55.8 75.3 64.1
Attribute Name Entity 5 0.3 57.5 78.3 66.3
Attribute Name Entity 8 0 74.6 81.5 77.9
Attribute Name Subject 1 0.7 56.5 88.6 69
Attribute Name Subject 3 0.4 47.2 67 55.4
Attribute Name Subject 5 0.3 55.1 71.4 62.3
Attribute Name Subject 8 0.1 70.9 76.7 73.7
Dataset Name Entity 1 0.6 74.7 94.4 83.4
Dataset Name Entity 3 0.4 49.9 90.1 64.4
Dataset Name Entity 5 0.4 59.6 98.5 74.3
Dataset Name Entity 8 0.4 64 98 77.4
Dataset Name Subject 1 0.6 58 90.8 70.7
Dataset Name Subject 3 0.4 47.9 74.5 58.3
Dataset Name Subject 5 0.4 55.7 98.9 71.3
Dataset Name Subject 8 0.4 62.1 98.3 76.1
DS-Prox Content Entity 1 0.9 66.8 90.5 76.8
DS-Prox Content Entity 3 0.2 53.9 61.2 57.4
DS-Prox Content Entity 5 0.3 68.4 81.9 74.6
DS-Prox Content Entity 8 0 85.9 87.8 86.8
DS-Prox Content Subject 1 0.9 52.8 84.8 65.1
DS-Prox Content Subject 3 0.1 44.5 54.4 48.9
DS-Prox Content Subject 5 0.2 58.7 70 63.9
DS-Prox Content Subject 8 0.5 86.8 89.4 88.1

As could be seen from the results, DS-kNN performs comparatively well with
the attribute-name and the DS-Prox content-based models for category size 1+,
but for larger category sizes the DS-Prox content models are better in assigning
the correct categories. For example, DS-Prox content leads to a precision of about
90% and recall higher than 80% for category sizes of at least 8 members and the

DS-kNN Datasets Categorization Using Proximity Mining 13

entity-based ground-truth, while attribute-name model can only achieve 82%
precision and 75% recall. Dataset-name based model performs worse in terms of
recall with 64% but much better precision with 98%. The results also indicate
that the choice of the similarity threshold can affect the performance of DS-kNN.

In general, DS-kNN performs better with bigger category sizes than smaller
category sizes as it becomes easier for the algorithm to find relevant top-k nearest
neighbours. However, it is still good in detecting outliers and other categories
as seen for the performance for ‘min. category size’ = 1, for example a recall
of 75% and precision of 95% for dataset-name based model. The dataset-name
model performs better in detecting outliers as seen from this result. The DS-kNN
algorithm performed equally good with both ground-truth types under the same
settings and with the same parameters, yet slightly better with the more specific
entity-based ground-truth with small category sizes and outliers. This indicates
the adaptability of DS-KNN to different DL settings and properties.

5 Related Work

Categorization of datasets from heterogeneous domains is an emerging research
topic, and relevant previous research include [11], where they utilise the at-
tribute names to cluster the datasets into categories using a probabilistic model.
Datasets are assigned to different categories using different probabilities. They
tackle the multi-label classification of datasets and retrieval of datasets from
relevant domains by querying systems. Our approach improves this approach by
using a machine-learning based approximate proximity mining technique instead
of the Jaccard similarity of exact values. We also use content-based metadata
for categorizing and not only name-based metadata. This is important for DLs
where datasets are not well maintained with meaningful attribute names.

Clustering could also be applied to other types of semi-structured datasets
like ontologies [1] and XML documents [2,10], etc. In [1], they propose an al-
gorithm to cluster instances from different ontologies based on their structural
properties in the ontology graphs. Their goal is to facilitate ontology match-
ing rather than domains discovery. Similarly, in [2,10] they cluster the semi-
structured documents based on their structure similarity and linguistic match-
ers.

Clustering free-text without any structure is also possible. For example, [5]
aims to cluster short text messages by computing TF-IDF word similarity be-
tween free-text documents. Similarly, [8] categorizes free-text documents using
a k-NN based algorithm by first extracting TF-IDF weighted labels and feeding
them to the algorithm. Another specific application would be clustering stream-
ing data where a sliding window algorithm could be used [9], where they also
use k-NN when finding relevant clusters for a given data instance ingested in a
stream of data points.

14 A. Alserafi et al.

6 Conclusion

We proposed DS-kNN, a categorization algorithm for classifying datasets into
pre-defined topic-wise groups. Our algorithm can be applied in a DL environment
to support users in finding relevant datasets for analysis. Our algorithm uses
extracted metadata from datasets to compute their similarities to other datasets
in the DL using a proximity mining model and name strings comparisons. Those
similarity scores are fed to DS-kNN to decide on the most relevant category for
a dataset based on its top-k nearest neighbours. Our algorithm was effective
in categorizing the datasets in a real-world DL and detecting outliers, yet our
results can be improved to achieve better performance. In the future, we will test
the same k-NN algorithm but using different proximity models based on finer
granularity metadata extracted about the content of attributes in the datasets.
We also seek to improve our algorithm with semantic analysis of values found
in the attributes to complement the syntactical comparisons we compute in the
proximity models.

References

1. Algergawy, A., Massmann, S., Rahm, E.: A Clustering-Based Approach for Large-
Scale Ontology Matching. In: East European Conference on Advances in Databases
and Information Systems (ADBIS), pp. 415-428. Springer (2011)

2. Algergawy, A., Schallehn, E., Saake, G.: A schema matching-based approach to
XML schema clustering. In: Proceedings of the International Conference on Infor-
mation Integration and Web-based Applications & Services. pp. 131-136. ACM
(2008)

3. Alserafi, A., Abell6, A., Romero, O., Calders, T.: Towards Information Profiling:
Data Lake Content Metadata Management. In: DINA Workshop, ICDM (2016)

4. Alserafi, A., Calders, T., Abellé, A., Romero, O.: DS-prox: Dataset proximity min-
ing for governing the data lake. In: International Conference on Similarity Search
and Applications SISAP. vol. 10609 LNCS, pp. 284-299. Springer (2017)

5. Baralis, E., Cerquitelli, T., Chiusano, S., Grimaudo, L., Xiao, X.: Analysis of twit-
ter data using a multiple-level clustering strategy. In: International Conference on
Model and Data Engineering. pp. 13—24. Springer (2013)

6. Friedman, J., Hastie, T., Tibshirani, R., et al.: Additive logistic regression: a statis-
tical view of boosting (with discussion and a rejoinder by the authors). The annals
of statistics 28(2), 337-407 (2000)

7. Gallinucci, E., Golfarelli, M., Rizzi, S.: Schema profiling of document-oriented
databases. Information Systems 75, 13—25 (2018)

8. Han, E.H.S., Karypis, G., Kumar, V.: Text categorization using weight adjusted
k-nearest neighbor classification. In: Pacific-asia conference on knowledge discovery
and data mining. pp. 53-65. Springer (2001)

9. Hentech, H., Gouider, M.S., Farhat, A.: Clustering heterogeneous data streams
with uncertainty over sliding window. In: International Conference on Model and
Data Engineering. pp. 162-175. Springer (2013)

10. Lee, M.L., Yang, L.H., Hsu, W., Yang, X.: Xclust: clustering XML schemas for
effective integration. In: Proceedings of the international conference on Information
and knowledge management. pp. 292-299. ACM (2002)

11.

12.

13.

14.

15.

16.

DS-kNN Datasets Categorization Using Proximity Mining 15

Mahmoud, H.A., Aboulnaga, A.: Schema clustering and retrieval for multi-domain
pay-as-you-go data integration systems. In: Proceedings of the ACM SIGMOD
International Conference on Management of data. pp. 411-422. ACM (2010)
Manning, C.D., Raghavan, P., Schiitze, H.: An Introduction to Information Re-
trieval. No. ¢ (2009)

Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.
VLDB Journal 10(4), 334-350 (2001)

Shvaiko, P.: A Survey of Schema-based Matching Approaches. Journal on Data
Semantics 3730, 146-171 (2005)

Tan, P.N., Steinbach, M., Kumar, V.: Introduction to data mining. Pearson Edu-
cation (2006)

Terrizzano, 1., Schwarz, P., Roth, M., Colino, J.E.: Data Wrangling: The Challeng-
ing Journey from the Wild to the Lake. In: 7th Biennial Conference on Innovative
Data Systems Research CIDR’15 (2015)

