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1SPCOM Group, Universitat Politècnica de Catalunya-Barcelona Tech, Spain
2Dept. of ECE and Digital Technology Center, University of Minnesota, USA

Abstract—Matrix completion and extrapolation (MCEX) are
dealt with here over reproducing kernel Hilbert spaces (RKHSs)
in order to account for prior information present in the available
data. Aiming at a fast and low-complexity solver, the task is
formulated as one of kernel ridge regression. The resultant
MCEX algorithm can also afford online implementation, while
the class of kernel functions also encompasses several existing
approaches to MC with prior information. Numerical tests on
synthetic and real datasets show that the novel approach is faster
than widespread methods such as alternating least-squares (ALS)
or stochastic gradient descent (SGD), and that the recovery error
is reduced, especially when dealing with noisy data.

Index Terms—Matrix completion, extrapolation, RKHS, kernel
ridge regression, graphs, online learning

I. INTRODUCTION

With only a subset of its entries available, matrix completion
(MC) amounts to recovering the unavailable entries by lever-
aging just the low-rank attribute of the matrix itself [1]. The
relevant task arises in applications as diverse as image restora-
tion [2], sensor networks [3], and recommender systems [4].
To save power for instance, only a fraction of sensors may
collect and transmit measurements to a fusion center, where
the available spatio-temporal data can be organized in a matrix
format, and the unavailable ones can be eventually interpolated
via MC [3]. Similarly, collaborative filtering of ratings given
by users to a small number of items are stored in a sparse
matrix, and the objective is to predict their ratings for the rest
of the items [4].

Existing MC approaches rely on some form of rank min-
imization or low-rank matrix factorization. Specifically, [1]
proves that when MC is formulated as the minimization of
the nuclear norm subject to the constraint that the observed
entries remain unchanged, exact recovery is possible under
mild assumptions; see also [5] where reliable recovery from a
few observations is established even in the presence of additive
noise. Alternatively, [4] replaces the nuclear norm by two low-
rank factor matrices that are identified in order to recover the
complete matrix.

While the low-rank assumption can be sufficient for reliable
recovery, prior information about the unknown matrix can be
also accounted to improve the completion outcome. Forms
of prior information can include sparsity [3], local smooth-
ness [6], and interdependencies encoded by graphs [7], [8],
[9], [10]. These approaches exploit the available similarity
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information or prior knowledge of the bases spanning the
column or row spaces of the unknown matrix. In this regard,
reproducing kernel Hilbert spaces (RKHSs) constitute a pow-
erful tool for leveraging available prior information thanks to
the kernel functions, which measure the similarity between
pairs of points in an input space. Prompted by this, [11],
[12], [13], [14] postulate that columns of the factor matrices
belong to a pair of RKHSs spanned by their respective kernels.
In doing so, a given structure or similarity between rows or
columns is effected on the recovered matrix. Upon choosing
a suitable kernel function, [3] as well as [6], [7], [8], [9],
[10] can be cast into the RKHS framework. In addition to
improving MC performance, kernel-based approaches also
enable extrapolation of rows and columns, even when all their
entries are missing - a task impossible by the standard MC
approaches in e.g. [1] and [4].

One major hurdle in MC is the computational cost as the
matrix size grows. In its formulation as a rank minimization
task, MC can be solved via semidefinite programming [1],
or proximal gradient minimization [15], [16], [8], [17], which
entails a singular value decomposition of the recovered matrix
per iteration. Instead, algorithms with lower computational
cost are available for the bi-convex formulation based on ma-
trix factorization [4]. These commonly rely on iterative mini-
mization schemes such as alternating least-squares (ALS) [18],
[19] or stochastic gradient descent (SGD) [20], [13]. With
regard to kernel-based MC, the corresponding algorithms rely
on alternating convex minimization and semidefinite program-
ming [11], block coordinate descent [12], and SGD [13].
However, algorithms based on alternating minimization only
converge to the minimum after infinite iterations. In addition,
existing kernel-based algorithms adopt a specific sampling
pattern or do not effectively make use of the Representer
Theorem for RKHSs that will turn out to be valuable in
further reducing the complexity, especially when the number
of observed entries is small.

The present contribution offers an RKHS-based approach
to MCEX that also unifies and broadens the scope of MC
approaches, while offering reduced complexity algorithms that
scale well with the data size. Specifically, we develop a novel
MC solver via kernel ridge regression as a convex alternative
to the nonconvex factorization-based formulation that offers
a closed-form solution. Through an explicit sampling matrix,
the proposed method offers an encompassing sampling pattern,
which further enables the derivation of upper bounds on
the mean-square error. Moreover, an approximate solution
to our MCEX regression formulation is developed that also
enables online implementation using SGD. Finally, means of
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incorporating prior information through kernels is discussed
in the RKHS framework.

The rest of the paper paper is organized as follows. Section
II outlines the RKHS formulation and the kernel regression
task. Section III unifies the existing methods for MC under
the RKHS umbrella, while Section IV introduces our proposed
Kronecker kernel MCEX (KKMCEX) approach. Section V
develops our ridge regression MCEX (RRMCEX) algorithm,
an accelerated version of KKMCEX, and its online variant.
Section VI deals with the construction of kernel matrices.
Finally, Section VII presents numerical tests, and Section VIII
concludes the paper.
Notation. Boldface lower case fonts denote column vectors,
and boldface uppercase fonts denote matrices. The (i, j)th
entry of matrix A is Ai,j , and the ith entry of vector a is
ai. Superscripts T and † denote transpose and pseudoinverse,
respectively; while hat ˆ is used for estimates. Matrix F ∈ H
means that its columns belong to a vector space H. The
symbols I and 1 stand for the identity matrix and the all-
ones vector of appropriate size, specified by the context. The
trace operator is Tr(·), the function eig(A) returns the diagonal
eigenvalue matrix of A ordered in ascending order, and λk(A)
denotes the kth eigenvalue of A with λk(A) ≤ λk+1(A).

II. PRELIMINARIES

Consider a set of N input-measurement pairs {(xi,mi)}Ni=1

in X × R, where X := {x1, . . . , xN} is the input space, R
denotes the set of real numbers, and measurements obey the
model

mi = f(xi) + ei (1)

where f : X → R is an unknown function and ei ∈ R is
noise. We assume this function belongs to an RKHS

Hx := {f : f(xi) =

N∑
j=1

αjκx(xi, xj), αj ∈ R} (2)

where κx : X × X → R is the kernel function that spans
Hx, and {αi}Ni=1 are weight coefficients. An RKHS is a
complete linear space endowed with an inner product that
satisfies the reproducing property [21]. If 〈f, f ′〉Hx

denotes
the inner product in Hx between functions f and f ′, the
reproducing property states that f(xi) = 〈f, κx(·, xi)〉Hx ;
that is, f in Hx can be evaluated at xi by taking the inner
product between f and κx(·, xi). With {αi}Ni=1 and {α′i}Ni=1

denoting the coefficients of f and f ′ in (2) respectively, we
have 〈f, f ′〉Hx

:=
∑N
i=1

∑N
j=1 αiα

′
jκx(xi, xj); that is,

〈f, f ′〉Hx
= αTKxα

′ (3)

where α := [α1, . . . , αN ]T , α′ := [α′1, . . . , α
′
N ]T and

(Kx)i,j := κx(xi, xj). In order for 〈·, ·〉Hx
in (3) to be an

inner product, κx must be symmetric and semipositive definite,
meaning 〈f, f〉Hx ≥ 0 ∀f ∈ Hx. As a consequence, Kx will
be symmetric positive semidefinite since αTKxα ≥ 0 ∀α ∈
RN .

While κx is usually interpreted as a measure of similarity
between two elements in X , it can also be seen as the inner
product of corresponding two elements in feature space F

to which X can be mapped using function φx : X → F .
Formally, we write

κx(xi, xj) = 〈φx(xi), φx(xj)〉F . (4)

Function φx is referred to as feature map, and its choice
depends on the application. For an input space of text files,
for example, the files could be mapped to a feature vector that
tracks the number of words, lines, and blank spaces in the file.
Since φx can potentially have infinite dimension, evaluating
the kernel using (4) might be prohibitively expensive. This
motivates specifying the kernel through a similarity function
in X , which bypasses the explicit computation of the inner
product in F . Typical examples include the Gaussian kernel
κx(xi, xj) = exp{− ||xi − xj ||22 /(2η)} with η being a free
parameter, and the polynomial kernel [22]. In certain cases
however, it is difficult to obtain the kernel similarity function
on the input space. Such cases include metric input spaces
with misses (as in MC), and non-metric spaces. The alternative
to both is deriving the kernel from prior information. For
instance, if we have a graph connecting the points in X , a
kernel can be obtained from the graph Laplacian [23].

Having introduced the basics of RKHS, we proceed with
the kernel regression task, where given {mi}Ni=1 we seek to
obtain

f̂ = arg min
f∈Hx

1

N

N∑
i=1

l(mi, f(xi)) + µ′||f ||2Hx
(5)

with l(·) denoting the loss, µ′ ∈ R+ the regularization
parameter, and ||f ||Hx

:= 〈f, f〉Hx
the norm induced by

the inner product in (3). We will henceforth focus on the
square loss l(mi, f(xi)) := (mi − f(xi))

2. Using Kx,
consider without loss of generality expressing the vector
f := [f(x1), . . . , f(xN )]T as f = Kxα, where α :=
[α1, . . . , αN ]T . Using the latter in the square loss, (5) boils
down to a kernel ridge regression (KRR) problem that can be
solved by estimating α as

α̂ = arg min
α∈RN

||m−Kxα||22 + µαTKxα (6)

where m := [m1, . . . ,mN ]T and µ = Nµ′. The weights can
be found in closed form as

α̂ = (Kx + µI)−1m (7)

and the estimate of the sought function is obtained as f̂ =
Kxα̂.

III. KERNEL-BASED MCEX

Matrix completion considers F ∈ RN×L of rank r observed
through a N × L matrix of noisy observations

M = PΩ(F +E) (8)

where Ω ⊆ {1, . . . , N} × {1, . . . , L} is the sampling set of
cardinality S = |Ω| containing the indices of the observed
entries; PΩ(·) is a projection operator that sets to zero the
entries with index (i, j) /∈ Ω and leaves the rest unchanged;
and, E ∈ RN×L is a noise matrix. According to [5], one can



3

recover F from M with an error proportional to the magni-
tude of ||E||2F by solving the following convex optimization
problem:

min
F∈RN×L

rank(F )

subject to ||PΩ(F −M)||2F ≤ δ (9)

where ||·||F is the Frobenius norm, and we assume
||PΩ(E)||2F ≤ δ for some δ > 0. Since solving (9) is NP-
hard, the nuclear norm ||F ||∗ := Tr(

√
F TF ) can be used to

replace the rank to obtain the convex problem [15], [8]

min
F∈RN×L

||PΩ(M − F )||2F + µ ||F ||∗ . (10)

Because F is low rank, it is always possible to factorize
it as F = WHT , where W ∈ RN×p and H ∈ RL×p
are the latent factor matrices with p ≥ r. This factoriza-
tion allows expressing the nuclear norm as [24] ||F ||∗ =

minF=WHT
1
2

(
||W ||2F + ||H||2F

)
which allows reformulat-

ing (10) as

{Ŵ,Ĥ}= arg min
W∈RN×p

H∈RL×p

∣∣∣∣PΩ(M−WHT )
∣∣∣∣2

F+µ
(
||W ||2F +||H||2F

)
(11)

and yields F̂ = Ŵ ĤT . While the solutions to (10) and (11)
are equivalent when the rank of the matrix minimizing (10)
is smaller than p[18], solving (10) can be costlier since it
involves the computation of the singular values of the matrix.
On the other hand, since (11) is bi-convex it can be solved by
alternately optimizing W and H , e.g. via ALS [19] or SGD
iterations [20]. Moreover, leveraging the structure of (11), it is
also possible to optimize one row from each factor matrix at a
time instead of updating the full factor matrices, which enables
faster and also online and distributed implementations [25].

Aiming at a kernel-based MCEX, we model the columns
and rows of F as functions that belong to two differ-
ent RKHSs. To this end, consider the input spaces X :=
{x1, . . . , xN} and Y := {y1, . . . , yL} for the column and row
functions, respectively. In the user-movie ratings paradigm,
X could be the set of users, and Y the set of movies.
Then F := [f1, . . . ,fL] is formed with columns fl :=
[fl(x1), . . . , fl(xN )]T with fl : X → R. Likewise, we rewrite
F := [g1, . . . , gN ]T , with rows gTn := [gn(y1), . . . , gn(yL)]
and gn : Y → R . We further assume that fl ∈ Hx ∀l =
1, . . . , L and gn ∈ Hy ∀n = 1, . . . , N , where

Hx := {f : f(xi) =

N∑
j=1

αjκx(xi, xj), αj ∈ R} (12)

Hy := {g : g(yi) =

L∑
j=1

βjκy(yi, yj), βj ∈ R} (13)

and κx : X × X → R and κy : Y × Y → R are the kernels
forming Kx ∈ RN×N and Ky ∈ RL×L, respectively.

Since W and H span the column and row spaces of F ,
their columns belong to Hx and Hy as well. Thus, the mth

column of W is

wm := [wm(x1), . . . , wm(xN )]T (14)

where wm : X → R and wm ∈ Hx ∀m = 1, . . . , p, and the
mth column of H is

hm := [hm(y1), . . . , hm(yL)]T (15)

where hm : Y → R and hm ∈ Hy ∀m = 1, . . . , p. Hence,
instead of simply promoting a small Frobenius norm for the
factor matrices as in (11), we can also promote smoothness on
their respective RKHS. The kernel-based formulation in [12]
estimates the factor matrices by solving

{Ŵ , Ĥ} = arg min
W∈Hx
H∈Hy

∣∣∣∣PΩ(M −WHT )
∣∣∣∣2

F (16)

+ µTr(W TK−1
x W ) + µTr(HTK−1

y H).

Note that (16) is equivalent to (11) for Kx = I and Ky = I .
Since the constraints W ∈ Hx and H ∈ Hy can be
challenging to account for when solving (16), we can instead
find the coefficients that generate W and H in their respective
RKHSs in order to satisfy such constraints. Thus, if we expand
W = KxB and H = KyC, where B ∈ RN×p and
C ∈ RL×p are coefficient matrices, (16) becomes

{B̂, Ĉ} = arg min
B∈RN×p

C∈RL×p

∣∣∣∣PΩ(M −KxBC
TKy)

∣∣∣∣2
F (17)

+ µTr(BTKxB) + µTr(CTKyC).

Nevertheless, with nonsingular kernel matrices, B and C can
be found by solving (16) and substituting B̂ = K−1

x Ŵ and
Ĉ = K−1

y Ĥ [12].
Alternating minimization schemes that solve the bi-linear

MC formulation (11) tends to the solution to the convex
problem (10) in the limit [19], thus convergence to the global
optimum is not guaranteed unless the number of iterations is
infinite. Since algorithms for kernel-based MC [12] solving
(16) rely on such alternating minimization schemes, they
lack convergence guarantees given finite iterations as well.
In addition to that, their computational cost scales with the
size of F . On the other hand, online implementations have a
lower cost [13], but only guarantee convergence to a stationary
point [26]. In the ensuing section we develop a convex kernel-
based reformulation of MCEX that enables a closed-form
solver which purely exploits the extrapolation facilitated by
the kernels. By casting aside the low-rank constraints, the
computational complexity of our solver scales only with the
number of observations while, according to our numerical
tests, providing better performance. Moreover, we derive an
online implementation that can be seamlessly extended to
distributed operation.

IV. KRONECKER KERNEL MCEX

In the previous section, we viewed the columns and rows
of F as functions evaluated at the points of the input spaces
X and Y in order to unify the state-of-the-art on MC us-
ing RKHSs. Instead, we now postulate entries of F as the
output of a function lying on an RKHS evaluated at a tuple
(xi, yi) ∈ X × Y . Given the spaces X and Y , consider the
space Z := X ×Y with cardinality |Z| = NL along with the
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two-dimensional function v : Z → R as v(xi, yj) = fj(xi),
which belongs to the RKHS

Hz :={v :v(xi,yj)=

N∑
n=1

L∑
l=1

γn,lκz((xi,yj),(xn,yl)), γn,l∈R}

(18)
with κz : Z × Z → R. While one may choose any kernel
to span Hz , we will construct one adhering to our bilinear
factorization F = WHT whose (i, j)th entry yields

Fij = v(xi, yj) =

p∑
m=1

wm(xi)hm(yj) (19)

with wm and hm functions capturing mth column vector of
W and H as in (14) and (15). Since w ∈ Hx and h ∈ Hy ,
we can write wm(xi) =

∑N
n=1 bn,mκx(xi, xn) and hm(yj) =∑L

l=1 cl,mκy(yj , yl), where bn,m and cl,m are the entries at
(n,m) and (l,m) of the factor matrices B and C from (17),
respectively. Therefore, (19) can be rewritten as

v(xi, yj) =

p∑
m=1

N∑
n=1

bn,mκx(xi, xn)

L∑
l=1

cl,mκy(yj , yl)

=

N∑
n=1

L∑
l=1

(
p∑

m=1

bn,mcl,m

)
κx(xi, xn)κy(yj , yl)

=

N∑
n=1

L∑
l=1

γn,lκz((xi, yj), (xn, yl)) (20)

where γn,l =
∑p
m=1 bm,ncm,l, and κz((xi, yj), (xn, yl)) =

κx(xi, xn)κy(yj , yl) since a product of kernels is itself a
kernel [22]. Using the latter, (20) can be written compactly
as

v(xi, yj) = kTi,jγ (21)

where γ := [γ1,1, γ2,1, . . . , γN,1, γ1,2, γ2,2, . . . , γN,L]T , and
correspondingly,

ki,j =[κx(xi, x1)κy(yj , y1), . . . , κx(xi, xN )κy(yj , y1),

κx(xi, x1)κy(yj , y2), . . . , κx(xi, xN )κy(yj , yL)]T

=(Ky):,j ⊗ (Kx):,i (22)

where a subscript (:, j) denotes the jth column of a matrix,
and we have used that Kx and Ky are symmetric matrices.
In accordance with (22), the kernel matrix of Hz in (18) is

Kz = Ky ⊗Kx. (23)

Clearly, ki,j in (22) can also be expressed as ki,j =
(Kz):,(j−1)N+i. This together with (21) implies that

v = [v(x1, y1), v(x2, y1), . . . , v(xN , y1), v(x1, y2), (24)

v(x2, y2), . . . , v(xN , yN )]T (25)

can be expressed in matrix-vector form as

v = Kzγ (26)

or, equivalently, v = vec(F ). Note that entries of the
kernel matrix are (Kz)i′,j′ = κx(xi, xn)κy(yj , yl), where
n = j′ modN, i = i′ modN, l = d j

′

N e, and j = d i
′

N e.

Since the eigenvalues of Kz are the product of eigenvalues
of Ky and Kx, it follows that Kz is positive semidefinite and
thus a valid kernel matrix. With the definition of the function
v and its vector form we have transformed the matrix of
functions specifying F into a function that lies on the RKHS
Hz . Hence, we are ready to formulate MCEX as a kernel
regression task for recovering v from the observed entries of
m = vec(M).

Given {((xi, yj),mi,j)}(i,j)∈Ω in Z × R, our goal is to
recover the function v as

v̂ = arg min
v∈Hz

∑
(i,j)∈Ω

(mi,j − v(xi, yj))
2 + µ||v||2HZ (27)

where ||v||2HZ := γTKzγ. Define next e := vec(E) and
m̄ = Sm, where S is an S × NL binary sampling matrix
also used to specify the sampled noise vector ē = Se. With
these definitions and (26), the model in (8) becomes

m̄ = Sv + Se = SKzγ + ē (28)

which can be solved to obtain

γ̂ = arg min
γ∈RNL

||m̄− SKzγ||22 + µγTKzγ (29)

in closed form

γ̂ = (STSKz + µI)−1ST m̄. (30)

Since the size of Kz is NL × NL, the inversion in (30)
can be very computationally intensive. To alleviate this, we
will leverage the Representer Theorem (see [27] for a formal
proof), which allows us to reduce the number of degrees of
freedom of the regression problem. In our setup, this theorem
is as follows.

Theorem 1. Representer Theorem. Given the set of input-
observations pairs {(xi, yj),mi,j)}(i,j)∈Ω in Z × R and the
function v as in (20), the solution to

arg min
v∈Hz

∑
(i,j)∈Ω

(mi,j − v(xi, yj))
2 + µ||v||2HZ (31)

is an estimate v̂ that satisfies

v̂ =
∑

(n,l)∈Ω

τn,lkz((·, ·), (xn, yl)) (32)

for some coefficients τn,l ∈ R, ∀(n, l) ∈ Ω.

Theorem 1 asserts that γ̂ in (29) satisfies γ̂n,l = 0 ∀ (n, l) /∈
Ω. Therefore, we only need to optimize {γn,l : (n, l) ∈ Ω}
which correspond to the observed pairs. In fact, for our vector-
based formulation, the Representer Theorem boils down to
applying on (30) the matrix inversion lemma (MIL), which
asserts the following.

Lemma 1. MIL [28]. Given matrices A,U and V of con-
formal dimensions, with A invertible, it holds that

(UV +A)−1U = A−1U(V A−1U + I). (33)

With (30) A = µI,U = ST and V = KzS
T , application

of (33) to (30) yields

γ̂ = ST (SKzS
T + µI)−1m̄. (34)
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Subsequently, we reconstruct v as

v̂K = KzS
T (SKzS

T + µI)−1m̄ (35)

and we will henceforth refer to as the Kronecker kernel MCEX
(KKMCEX) estimate of v. Regarding the computational cost
incurred by (34), inversion costs O(S3), since the size of the
matrix to be inverted is reduced from NL to S. Clearly, there
is no need to compute Kz = Ky ⊗ Kx. As S has binary
entries, SKzS

T is just a selection of S2 entries in Kz; and,
given that κz((xi, yj), (xn, yl)) = κx(xi, xn)κy(yj , yl), it is
obtained at cost O(S2). Overall, the cost incurred by (34) is
O(S3). Compared to the MC approach in (16), the KKMCEX
method is easier to implement since it only involves a matrix
inversion. Moreover, since it admits a closed-form solution, it
facilitates deriving bounds on the estimation error of v̂K .
Remark 1. Matrices built via the Kronecker product have
been used in regression for different purposes. Related to MC,
[9] leverages Kronecker product structures to efficiently solve
the Sylvester equations that arise in alternating minimization
iterations to find {Ŵ , Ĥ} in (16). On the other hand, [29],
[14] propose a Kronecker kernel ridge regression method that
can be used to extrapolate missing entries in a matrix. How-
ever, the methods in [29], [14] assume a complete training set
and Kronecker structure for the regression matrix; this implies
that the observed entries in M can be permuted to form
a full submatrix. In our formulation, we introduce S which
encompasses any sampling pattern in Ω. Thus, the properties
of the Kronecker product used in [9], [29], [14] cannot be
applied to solve (35) since SKzS

T is not necessarily the
Kronecker product of two smaller matrices.
Remark 2. The KKMCEX solution in (35), differs from
that obtained as the solution of (17). On the one hand,
the loss in (29) can be derived from the factorization-based
one by using the Kronecker product kernel Ky ⊗ Kx and
γ = vec(BCT ) to arrive at

∣∣∣∣PΩ(M −KxBC
TKy)

∣∣∣∣2
F

=
∣∣∣∣m̄− S(Ky ⊗Kx)vec(BCT )

∣∣∣∣2
2
. (36)

One difference between the two loss functions is that (29)
does not explicitly limit the rank of the recovered matrix
F̂ = unvec(v̂R) since it has NL degrees of freedom through
γ̂, while in (17) the rank of F̂ cannot exceed p since B
and C are of rank p at most. In fact, the low-rank property
is indirectly promoted in (29) through the kernel matrices.
Since rank(F ) ≤ min(rank(Kx), rank(Ky)), we can limit
the rank of F̂ by selecting rank deficient kernels. On the other
hand, the regularization terms in (17) and (29) play a different
role in each formulation. The regularization in (17) promotes
smoothness on the columns of the estimated factor matrices
{Ŵ , Ĥ}; or, in other words, similarity between the rows of
{Ŵ , Ĥ} as measured by κx and κy . On the contrary, the
regularization in (29) promotes smoothness on v̂, which is
tantamount to promoting similarity between the entries of F̂
in accordance with κz .

A. KKMCEX error analysis

In order to assess the performance of KKMCEX we will
rely on the mean-square error

MSE := Ee{||v − v̂K ||22} (37)

where Ee{·} denotes the expectation with respect to e. Before
we proceed, we will outline Nyström’s approximation.
Definition 1. Given a kernel matrix K and a binary sampling
matrix S of appropriate dimensions, the Nyström approxi-
mation [30] of K is T = KST (SKST )†SK, and the
regularized Nyström approximation is

T̃ = KST (SKST + µI)−1SK. (38)

Nyström’s approximation is employed to reduce the com-
plexity of standard kernel regression problems such as the
one in (6). Instead of K, the low-rank approximation T
is used to reduce the cost of inverting large-size matrices
using the MIL [31]. While it is known that the best low-
rank approximation to a matrix is obtained from its top
eigenvectors, Nyström’s approximation is cheaper. Using Def.
1, the following lemma provides the bias and variance of the
KKMCEX estimator in (35):

Lemma 2. Given the kernel matrix Kz and its regularized
Nyström approximation T̃z with µ > 0, the MSE of the
KKMCEX estimator is

MSE =
∣∣∣∣∣∣(Kz − T̃z)γ

∣∣∣∣∣∣2
2

+ Ee{
1

µ2

∣∣∣∣∣∣(Kz − T̃z)ST ē
∣∣∣∣∣∣2

2
}

(39)

where the first term accounts for the bias and the second term
accounts for the variance.

Lemma 2 shows that the MSE of the KKMCEX can be
expressed in terms of T̃z; see proof in the Appendix. Knowing
that the 2-norm satisfies ||A||22 ≤ ||A||

2
F, we have∣∣∣∣∣∣(Kz − T̃z)γ

∣∣∣∣∣∣2
2

+ Ee{
1

µ2

∣∣∣∣∣∣(Kz − T̃z)ST ē
∣∣∣∣∣∣2

2
}

≤
∣∣∣∣∣∣(Kz − T̃z)

∣∣∣∣∣∣2
F

(
||γ||22 + Ee{

1

µ2

∣∣∣∣ST ē∣∣∣∣2
2
}
)
. (40)

Consequently, the upper bound on the MSE is proportional to
the approximation error of T̃z to Kz . This suggests selecting
{mi,j}(i,j)∈Ω so that this approximation error is minimized;
see also [31] where Ω is chosen according to the so-called
leverage scores of Kz in order to minimize the regression
error. The next theorem uses Lemma 1 to upper bound the
MSE in (39); see the Appendix for its proof.

Theorem 2. Let σNL be the maximum eigenvalue of a
nonsingular Kz , and γ̃ := LTγ, where L is the eigenvector
matrix of Kz− T̃z . If e is a zero-mean vector of iid Gaussian
random variables with covariance matrix ν2I , the MSE of the
KKMCEX estimator is bounded as

MSE ≤ µ2σ2
NL

(σNL + µ)2

S∑
i=1

γ̃i
2 + σ2

NL

NL∑
i=S+1

γ̃2
i +

Sν2σ2
NL

µ2
.

(41)
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Considering the right-hand side of (41), the first two terms
correspond to the bias, while the last term is related to the
variance. We observe that when M is fully observed, that is,
S = NL, the bias can be made arbitrarily small by having
µ → 0. It is also of interest to assess how the MSE bound
behaves as S increases. Considering µ = Sµ′ and fixed values
in (0,∞) for µ′, ||γ̃i||2 and σNL1, the bias term reduces to

S2µ′2σ2
NL

(σNL + Sµ′)2

S∑
i=1

γ̃i
2 + σ2

NL

NL∑
i=S+1

γ̃2
i . (42)

We observe in (42) that as S increases, terms move from the
second summation to the first. Therefore, whether the bias term
grows or diminishes depends on the multiplication factors in
front of the two summations. Since S2µ′2

(σNL+Sµ′)2 ≤ 1 the bias
term in (42) decreases with S. On the other hand, the variance
term becomes ν2σ2

NL

Sµ′2 and decays with S as well. As a result,
the MSE bound in Theorem 2 decays up until S = NL.

V. RIDGE REGRESSION MCEX

Although the KKMCEX algorithm is fast when S is small,
the size of the matrix to be inverted in (34) grows with S,
hence increasing the computational cost. Available approaches
to reducing the computational cost of kernel regression meth-
ods are centered around the idea of approximating the kernel
matrix. For instance, [31] uses Nyström’s approximation,
that our performance analysis in Section IV was based on,
whereas [32] relies on a sketch ofKz formed by a subset of its
columns, hence reducing the number of regression coefficients;
see also [33], where the kernel function is approximated by
the inner product of random finite-dimensional feature maps,
which also speeds up the matrix inversion. In this section,
we reformulate the KKMCEX of Section IV to incorporate a
low-rank approximation of Kz in order to obtain a reduced
complexity estimate for v. Moreover, we also develop an
online method based on this reformulation.

Recall from Eq. (4) that a kernel can be viewed as the
inner product of vectors mapped to a feature space Fz , namely
κz((xi, yj), (xn, yl)) = 〈φz(xi, yj), φz(xn, yl)〉Fz

. Let φ̃z :
X × Y → Rd be a feature map approximating κz so that

κz((xi, yj), (xn, yl)) ' 〈φ̃z(xi, yj), φ̃z(xn, yl)〉. (43)

Then, we define the NL×d feature matrix Φ̃z := [φ̃z(x1, y1),
φ̃z(x2, y1), . . . , φ̃z(xN , yL)]T and form K̃z = Φ̃zΦ̃

T
z . Note

that K̃z is a rank-d approximation of Kz , and that the equality
Kz = K̃z is only feasible when rank(Kz) ≤ d. Consider
Φ̃x = [φ̃x(x1), . . . , φ̃x(xN )] and Φ̃y = [φ̃y(y1), . . . , φ̃y(yL)],
where φ̃x : X → Rdx and φ̃y : Y → Rdy , as the feature
matrices forming low-rank approximations to Kx and Ky ,
respectively. Since Kz = Ky ⊗Kx in KKMCEX, a prudent
choice is Φ̃z = Φ̃y ⊗ Φ̃x. In the next section we will present
means of constructing {Φ̃x, Φ̃y, Φ̃z} maps.

Since K̃z is a valid kernel matrix, upon replacing Kz in
(28) with K̃z , the observation model reduces to

1Note that ||γ̃i||2 and σNL depend on the selected kernel Kz and matrix
F , and do not depend on S.

m̄ = SΦ̃zΦ̃
T
z γ + ẽ, (44)

where ẽ = ē+ S(Kz − K̃z)γ. With this model, the weights
in (29) are obtained as

γ̂ = arg min
γ∈RNL

∣∣∣∣∣∣m̄− SΦ̃zΦ̃
T
z γ
∣∣∣∣∣∣2

2
+ µγT Φ̃zΦ̃

T
z γ. (45)

Letting ξ := Φ̃T
z γ and substituting into (45), we arrive at

ξ̂ = arg min
ξ∈Rd

∣∣∣∣∣∣m̄− SΦ̃zξ
∣∣∣∣∣∣2

2
+ µ ||ξ||22 (46)

which admits the closed-form solution

ξ̂ = (Φ̃T
z S

TSΦ̃z + µI)−1Φ̃T
z S

T m̄. (47)

Using ξ̂, we obtain v̂R = Φ̃z ξ̂ as the ridge regression MCEX
(RRMCEX) estimate. Using the MIL (33) on (47), it follows
that

ξ̂ = Φ̃T
z S

T (SΦ̃zΦ̃
T
z S

T + µI)−1m̄ (48)

and thus,

v̂R = Φ̃z ξ̂ = K̃zS
T (SK̃T

z S
T + µI)−1m̄. (49)

Therefore, (49) shows that v̂R is equivalent to the KKMCEX
solution v̂K in (35) after replacing Kz by its low-rank ap-
proximation K̃z . For error-free approximation, Kz = Φ̃zΦ̃

T
z ,

while ξ̂ in (47) can be viewed as the primal solution to the
optimization problem in (46), and γ̂ in (34) as its dual [21].
Still, obtaining ξ̂ requires multiplying two d × S matrices
and inverting a d× d matrix, which incurs computational cost
O(d2S) when S ≥ d, and SΦ̃z is obtained at cost O(dS).
Thus, the cost of RRMCEX grows linearly with S in contrast
to KKMCEX that increases with S3.

By choosing an appropriate feature map so that d � S,
it is possible to control the computational cost of calculating
ξ̂. However, reduced computational cost by selecting a small
d might come at the price of an approximation error to Kz ,
which correspondingly increases the estimation error of v̂R.
The selection of a feature matrix to minimize this error and
further elaboration on the computational cost are given in
Section VI.

A. Online RRMCEX

Online methods learn a model by processing one datum at a
time. An online algorithm often results when the objective can
be separated into several subfunctions, each depending on one
or multiple data. In the context of MC, online implementation
updates F̂ every time a new entry Mi,j becomes available. If
we were to solve (34) each time a new observation was be-
coming available, inverting an S×S matrix per iteration would
result in an overall prohibitively high computational cost. Still,
the cost of obtaining an updated solution per observation can
stay manageable using online kernel regression solvers that
fall into three categories [34]: dictionary learning, recursive
regression and stochastic gradient descent based. Akin to [35],
[36], we will pursue here the SGD.
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Consider rewriting (46) entrywise as

ξ̂ = arg min
ξ∈Rd

∑
(i,j)∈Ω

[
mi,j − φ̃Tz (xi, yj)ξ

]2
+ µ ||ξ||22 . (50)

With n denoting each scalar observation, SGD iterations form
a sequence of estimates

ξ̂n = ξ̂n−1−tn
[
φ̃z(xi, yj)(φ̃

T
z (xi, yj)ξ̂

n−1 −mi,j) + µξ̂n−1
]

(51)
where tn is the step size, n = 1, . . . , S and the tuple (i, j)
denotes the indices of the entry revealed at iteration n. With
properly selecting tn, the sequence ξ̂n will converge to (50)
at per iteration cost O(d) [37]. Apart from updating all entries
in the matrix, (51) can also afford a simple distributed
implementation using e.g., the algorithms in [38].
Remark 3. Online algorithms for MC can be designed to solve
the factorization-based formulation from (11) rewritten as

arg min
W∈RN×p

H∈RN×p

∑
(i,j)∈Ω

(
(mi,j−wT

i hj)
2+

µ

|Ωwi |
||wi||22+

µ

|Ωhj |
||hj ||22

)
(52)

where wT
i and hTj denote the ith and jth rows of H and

W respectively, Ωwi = {j : (i, j) ∈ Ω}, and Ωhj = {i :
(i, j) ∈ Ω}. When mi,j becomes available, algorithms such
as SGD and online ALS update the rows {wT

i , hTj } of the
coefficient matrices. This procedure can also be applied to the
kernel MCEX formulation in (16), that solves for W and H ,
although the rows {wT

i , hTj } cannot be updated independently
due to the involvement of the kernel matrices [13]. Then, all
entries in the ith row and jth column of F̂ are also updated per
iteration, as opposed to our method which updates the whole
matrix.

VI. CHOOSING THE KERNEL MATRICES

In this section, we provide pointers on how to build ma-
trices Kz for KKMCEX and Φ̃z for RRMCEX when prior
information about either the matrix F , or the input spaces X
and Y , is available.

A. Kernels based on the graph Laplacian

Suppose that the columns and rows of F lie on a graph,
that is, each entry of a column or row vector is associated
with a node on a graph that encodes the interdependencies with
entries in the same vector. Specifically, we define an undirected
weighted graph Gx = (X , Ex,Ax) for the columns of F ,
where X is the set of vertices with |X | = N , Ex ⊆ X ×X is
the set of edges connecting the vertices, and Ax ∈ RN×N is a
weighted adjacency matrix. Then, functions {fl : X → R}Ll=1

are what is recently referred to as a graph signal [39], that is,
a map from the set X of vertices into the set of real numbers.
Likewise, we define a graph Gy = (Y, Ey,Ay) for the rows of
F , i.e., {gn : Y → R}Nn=1, which are also graph signals. In a
matrix of user-movie ratings for instance, we would have two
graphs: one for the users and one for the movies. The graphs
associated with the columns and rows yield the underlying
structure of F that can be used to generate a pair of kernels.

Using Ax and Ay , we can form the corresponding graph
Laplacian as Lx := diag(Ax1)−Ax and likewise for Ly , that
can serve as kernels. A family of graphical kernels results
using a monotonic inverse function r†(·) on the Laplacian
eigendecomposition as [40]

K = Qr†(Λ)QT . (53)

A possible choice of r(·) is the Gaussian radial basis function,
which generates the diffusion kernel r(λi) = eηλi , where λi
is the ith eigenvalue of L, and η a weight parameter. Alterna-
tively, one can choose just the linear function r(λi) = 1+ηλi,
which results in the regularized Laplacian kernel. By applying
different weighting functions to the eigenvalues of Lx and
Ly , we promote smoother or more rapidly changing functions
for the columns and rows of F̂ [41]. While Kx and Ky are
chosen as Laplacian kernels, this would not be the case for
Kz = Ky ⊗Kx used in our KKMCEX context since it does
not result from applying r†(·) to a Laplacian matrix. However,
since Kx = QxΣxQ

T
x and Ky = QyΣyQ

T
y , the eigende-

composition of Kz is Kz = (Qy⊗Qx)(Σy⊗Σ)(QT
y ⊗QT

x ),
and the notions of frequency and smoothness carry over. In
other words, we are still promoting similarity among entries
that are connected on the row and columns graphs through
Kz .

A key attribute in graph signal processing is that of “graph
bandlimitedness”, which arises when a signal can be generated
as a linear combination of a few eigenvectors of the Laplacian
matrix. Therefore, a bandlimited graph signal belongs to an
RKHS that is spanned by a bandlimited kernel [23] that sup-
presses some of the frequencies of the graph. A bandlimited
kernel is derived from the Laplacian matrix of a graph as
in (53), using

r(λi) = 0 ∀i /∈ Ψ, (54)

where Ψ ⊆ N contains the indices of frequencies not to be
suppressed. As mentioned earlier, we define a graph for the
columns and a graph for the rows of F . Therefore, graph
signals contained in the columns and rows may be bandlimited
with different bandwidths. In order to form Kz our KKMCEX
approach, we will need to apply different weighting functions
akin to the one in (54) for kernel matrices Kx and Ky .

B. Kernels from known basis or features

In some applications the basis that spans the columns or
rows of the unobserved matrix is assumed known, although
this basis matrix needs not be a kernel. In order to be able
to include such basis into the kernel framework, we need to
generate kernel functions that span the same spaces as the
columns and rows of F .

Consider the input sets {X ,Y} whose entries can be
mapped into an Euclidean space through feature extraction
functions θx : X → Rtx and θy : Y → Rty such that
θx(xi) := xi and θy(yj) := yj . For instance, in a movie
recommender system where the users are represented in X
and the movies in Y , each coordinate of yj could denote
the amount of action, drama and nudity in the movie, and
xi would contain weights according to the user’s preference
for each attribute. We may then use the feature vectors to
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determine the similarities among entries in X and Y by means
of kernel functions.

Let X := [x1, . . . ,xN ]T and Y := [y1, . . . ,yL]T . If
span(F ) ⊆ span(X) and span(F T ) ⊆ span(Y ), we may
conveniently resort to the linear kernel. The linear kernel
amounts to the dot product in Euclidean spaces, which we use
to define the pair κx(xi, xj) = xTi xj and κy(yi, yj) = yTi yj .
This leads to a straightforward construction of the kernel
matrices for KKMCEX as Kx = XXT and Ky = Y Y T .

Besides the linear kernel, it is often necessary to use a
different kernel class for each κx and κy chosen to better
fit the spaces spanned by the rows and columns of F .
For instance, the Gaussian kernel defined as κx(xi, xj) =
exp{− ||xi − xj ||22 /(2η)}, is a widely used alternative in the
regression of smooth functions.

C. Feature maps for RRMCEX

Aiming to construct Φ̃z that approximates Kz at reduced
complexity, we choose φ̃z with d� S. To approximate linear
kernels, let φ̃x(xi) = xi and φ̃y(yj) = yj so that we can
set φ̃z(xi, yj) = φ̃y(yj) ⊗ φ̃x(xi) and Φ̃z = Y ⊗X . Note
that in this case Φ̃zΦ̃

T
z yields a zero-error approximation to

Kz = (Y ⊗X)(Y ⊗X)T , which renders the KKMCEX and
RRMCEX solutions equivalent.

On occasion, X and Y may have large column dimension,
thus rendering Y ⊗ X undesirable as a feature matrix in
RRMCEX. In order to overcome this hurdle, we build an
approximation to the column space of Y ⊗X from the SVD
of X and Y . Consider the SVDs of matrices X = UxDxV

T
x

and Y = UyDyV
T
y , to obtain Y ⊗X = (Uy ⊗ Ux)(Dy ⊗

Dx)(V T
y ⊗ V T

x ). Let Φ̃z = UdDd, where Ud and Dd

respectively hold the top d singular vectors and singular values
of Y ⊗X . The SVD has cost O(Nt2x) for X and O(Lt2y)
for Y . Comparatively, the cost of building Kx and Ky

for the linear kernel is O(N2tx) and O(L2ty), respectively.
Therefore, choosing RRMCEX over KKMCEX in this case
incurs no extra overhead.

When a function other than the linear kernel is selected,
obtaining an approximation is more complex. To approximate
a Gaussian kernel on X ×X , the vectors {φ̃x(xi)}Ni=1 can be
obtained by means of Taylor series expansion [42] or random
Fourier features [33], which can also approximate Laplacian,
Cauchy and polynomial kernels [33], [43]. Therefore, the maps
φ̃x and φ̃y must be designed according to the chosen kernels.

In some instances, such as when dealing with Laplacian
kernels, X and Y are not available and we are only given
Kx and Ky . We are then unable to derive approximations to
the kernel matrices by means of maps φ̃x and φ̃y . Nevertheless,
we can still derive an adequate Φ̃z to approximate Kz .
Indeed, Mercer’s Theorem asserts that there are eigenfunctions
{qn}NLn=1 in Hz along with a sequence of nonnegative real
numbers {σn}NLn=1, such that

κz((xi, yj), (xn, yl)) =

NL∑
n=1

σnqn(xi, yj)qn(xn, yl). (55)

We can find (55) from the eigendecomposition Kz =
QzΣzQ

T
z , where qn is the nth eigenvector in Qz and σn

the nth eigenvalue in Σz . If Kz is low rank, we can con-
struct Φ̃z = QdΣ

1
2

d , where Qd and Σd respectively hold
the top d eigenvectors and eigenvalues of Kz . Note that,
since Kz = (Qy ⊗ Qx)(Σy ⊗ Σx)(QT

y ⊗ QT
x ), we only

need to eigendecompose smaller matrices Kx and Ky at
complexity O(N3+L3). In some cases however, such as when
using Laplacian kernels, the eigendecompositions are readily
available, and Φz can be built at a markedly reduced cost.

VII. NUMERICAL TESTS

In this section, we test the performance of the KKMCEX,
RRMCEX and online (o)RRMCEX algorithms developed in
Sections IV, V and V-A, respectively; and further compare
them to the solution of (16) obtained with ALS [19] and
SGD [13]. We run the tests on synthetic and real datasets,
with and without noise, and measure the signal-to-noise-ratio
(SNR) as ||F ||

2
F

||E||2F
. The algorithms are run until convergence

over Nr = 50 realizations with different percentages of
observed entries, denoted by Ps = 100S/(NL), which are
taken uniformly at random per realization. As figure of merit,
we use

NMSE =
1

Nr

Nr∑
i=1

∣∣∣∣∣∣F̂i − F ∣∣∣∣∣∣2
F

||F ||2F
(56)

where F̂i is the estimate at realization i. We show results
for the optimal combination of regularization and kernel
parameters, found via grid search. Finally, ALS and SGD are
initialized by a product of two random factor matrices, an both
are stopped.

A. Synthetic data

We first test the algorithms on synthetic data. The 250×250
data matrix is generated as F = KxΓKy , where Γ is a
250 × 250 matrix of Gaussian random deviates. For Kx and
Ky we use Laplacian diffusion kernels with η = 1 based
on Erdös-Rényi graphs, whose binary adjacency matrices are
unweighted and any two vertices are connected with probabil-
ity 0.03. The resulting F is approximately low-rank, with the
sum of the first 10 eigenvalues accounting for 96% of the total
eigenvalue sum. Therefore, we set the rank bound p to 10 for
the ALS and SGD algorithms. Whether F is approximately
low-rank or exactly low-rank did not affect our results, as
they were similar for matrices with an exact rank of 10. For
KKMCEX, Kz = Ky⊗Kx, and for RRMCEX Φ̃z = QdΣ

1
2

d ,
where Qd contains the top 250 eigenvectors of Kz , and Σd

the corresponding top 250 eigenvalues.
Fig. 1 shows the simulated NMSE when M is noiseless (a)

or noisy (b). We deduce from Fig. 1a that all algorithms except
SGD achieve a very small NMSE, below 0.003 at Ps = 1%
that falls to 0.007 at Ps = 10%. Of the three algorithms,
KKMCEX has the smallest error except at Ps = 1%, where
RRMCEX performs best. Although the error drops below
0.005 for SGD at Ps > 4%, it is outperformed by the other
algorithms by an order of magnitude. Fig. 1b shows the same
results when Gaussian noise is added to F at snr = 1. We ob-
serve that KKMCEX and RRMCEX are matched and attain the
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Figure 1: NMSE vs Ps for (a) synthetic noiseless matrix; and (b)
synthetic noisy matrix.

lowest error, whereas ALS and SGD have larger errors across
Ps. This corroborates that thanks to the regularization term that
smoothes over all the entries instead of row or column-wise,
the noise effect is reduced. Interestingly, RRMCEX is able
to reduce the noise effect despite the bias it suffers because
it only uses the top 250 eigenvalues of Kz from a total of
62,500. This is mainly due to the additive noise being evenly
distributed across the eigenspace ofKz . Therefore, by keeping
only the eigenvectors associated with the top 250 eigenvalues
in Kz , we are discarding those dimensions in which the SNR
is lower.

Fig. 2 depicts the time needed for the algorithms to perform
the simulations reported in Fig. 1. We observe in Fig. 2a that
RRMCEX has an almost constant computation time, whereas
the time for KKMCEX grows with Ps as expected since the
size of the matrix to be inverted increases with S. On the
other hand, ALS and SGD require less time than KKMCEX
for the larger values of Ps, but are always outperformed by
RRMCEX. Moreover, the ALS time is reduced as Ps increases
because the number of iterations required to converge to the
minimum is smaller. Fig. 2b suggests that the noise only
impacts ALS, which has its computation time rise considerably
across all Ps. Overall, Figures 1 and 2 illustrate that RRMCEX
has the best performance for the synthetic matrix both in terms
of NMSE and computational cost.

B. Temperature measurements

In this case, F has size 150× 365 comprising temperature
readings taken by 150 stations over 365 days in 2002 in the
United States2. The columns and rows of F are modeled as
graph signals with Ax and Ay for the graphs formed by

2http://earthpy.org/ulmo.html
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Figure 2: Time vs Ps for (a) synthetic noiseless matrix; and (b)
synthetic noisy matrix.

the stations and the days of the year, respectively. We use
Laplacian diffusion kernels both for Kx and Ky , while Kz

and Φ̃z are obtained as in the tests on synthetic data, except
that Φ̃z is constructed with the top 150 eigenvectors of Kz .
The matrix Ax is obtained as in [8], where a graph G with
unweighted adjacency matrix P is generated for the stations,
and each station is a vertex connected to the 8 geographically
closest stations. Next, we obtain the undirected graph G′ with
symmetric adjacency matrix P ′ = sign(P T +P ). Finally, the
entries of Ax are constructed as (Ax)i,j = exp(− N2di,j∑

i,j di,j
),

where {di,j} are geodesic distances on G. We adopt a graph
on which each day is a vertex and each day is connected to
the 10 past and future days to form Ay .

Fig. 3 shows the simulated tests for (a) the matrix of temper-
ature readings, and (b) the same matrix with additive Gaussian
noise at snr = 1. Fig. 3a demonstrates that KKMCEX achieves
the lowest error for the first three data points, while afterwards
ALS has a slight edge over KKMCEX. The real data matrix
F is approximately low rank, since the sum of the first
10 singular values accounts for 75% of the total sum. This
explains why RRMCEX fares worse than KKMCEX. Because
it only contains the top 150 eigenvectors of Kz , which is
full rank, the vectorized data m lies in part outside the space
spanned by Φ̃z . Indeed, increasing the number of eigenvectors
in Φ̃z results in a lower error, although the computational
cost increases accordingly. Fig. 3b further demonstrates that
the addition of noise has the least impact on RRMCEX, which
attains the lowest error slightly below KKMCEX. On the other
hand, ALS has a marginally higher error whereas the gap
between SGD and the other three methods remains. Fig. 4
depicts the computational time for the results in Fig. 3a, which
are similar to those obtained for the synthetic dataset.
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Figure 3: NMSE vs Ps for the matrix of temperature measurements
(a) without noise, and (b) with noise.
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Figure 4: Time vs Ps for the noiseless matrix of temperature
measurements.

C. Mushroom dataset

The Mushroom dataset3 comprises 8,124 labels and as many
feature vectors. Each label indicates whether a sample is edible
or poisonous, and each vector has 22 entries describing the
shape, color, etc. of the mushroom sample. After removing
items with missing features, we are left with 5,643 labels and
feature vectors. Here, we solve a clustering problem in which
F is a 5, 643×5, 643 adjacency matrix, where Fi,j = 1 if the
ith and the jth mushroom samples belong to the same class
(poisonous or edible), and Fi,j = −1 otherwise.

We encode the matrix stacking the feature vectors via one-
hot encoding to produce a 5, 643 × 98 binary feature matrix
analogous to X in Section VI-B. We build the kernel matrix
Kx from the Pearson correlation coefficients of the rows of
X , and let Ky = Kx. The feature matrix Φ̃z for RRMCEX
is built using the top 3,000 left singular vectors of X ⊗X .

Fig. 5a shows the test results on the mushroom adjacency
matrix from S = 2, 000 (Ps = 0.006%) to S = 20,000

3http://archive.ics.uci.edu/ml
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Figure 5: results for the mushroom adjacency matrix as (a) NMSE
vs Ps, and (b) time vs Ps.

(Ps = 0.036%) in steps of 1,000 observations. KKMCEX and
RRMCEX achieve similar NMSE, while SGD has an error
one order of magnitude higher, and ALS outperforms both
by around one order of magnitude. This difference with ALS
is because regression-based methods restrict the solution to
belong to the space spanned by the basis matrix. On the other
hand, when solving (16), we do not enforce the constraints
W ∈ Hx, H ∈ Hy [12], [13]. Therefore, when the prior
information encoded in the kernel matrices is imperfect, ALS
might be able to find a factorization that fits better the data at
the cost of having Ŵ /∈ Hx and Ĥ /∈ Hy . However, in Fig. 5b
we see that the computational cost for ALS and SGD is much
higher than for KKMCEX and RRMCEX for the smaller Ps.
On the other hand, the time for ALS decreases with S due to
requiring les iterations to converge, whereas for KKRRMCEX
and RRMCEX it increases with S.

D. Online MC

In the online scenario, we compare the (o)RRMCEX al-
gorithm with online (o)ALS and SGD. One observation is
revealed per iteration at random, and all three algorithms
process a single observation per iteration in a circular fashion.
Per realization, we run tests on both synthetic and temperature
matrices with Ps = 10%, that is, S = 6,250 and S = 5,475
observations for the synthetic and temperature matrices, re-
spectively, for a single realization.

Fig. 6a depicts the tests for the noiseless synthetic matrix.
Clearly, (o)RRMCEX converges much faster than SGD and
(o)ALS. Indeed, as opposed to SGD and (o)ALS, which
require several passes over the data, (o)RRMCEX approaches
the minimum in around 6,000 iterations. Moreover, it achieves
the smallest NMSE of 0.0004, which is slightly below the
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Figure 6: NMSE vs time for the online algorithms on the (a)
synthetic noiseless matrix; and (b) matrix of noiseless temperature
measurements. Each mark denotes 1000 iterations have passed.
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Figure 7: NMSE vs time for the mushroom adjacency matrix. Solid
lines denote S = 20,000, and dotted lines denote S = 10,000. Each
mark denotes 10000 iterations have passed.

0.0011 obtained by SGD. Fig. 6b shows the results for the
temperature matrix without noise. Again, we observe that
(o)RRMCEX converges the fastest to the minimum, whereas
SGD requires many passes through the data before it starts
descending, while (o)ALS converges much faster than with
the synthetic data. Regarding the NMSE, (o)RRMCEX and
SGD achieve the same minimum value.

The tests on the Mushroom dataset are run with S = 10,000
(Ps = 0.033%) and S = 20,000 (Ps = 0.036%) observa-
tions following the same procedure as with the synthetic and
temperature datasets. Fig. 7 shows results for the Mushroom
adjacency matrix with the error for S = 20,000 plotted in
solid lines, and for S = 10,000 in dotted lines. We observe
that for S = 20,000, (o)RRMCEX crosses the minimum of
(o)ALS and SGD in 7 seconds, whereas (o)ALS and SGD
converge to this minimum in 12 and 200 seconds, respectively.
Afterwards, the line for (o)RRMCEX keeps descending until
an error of 0.012 is reached. For S = 10,000 the convergence
time of (o)RRMCEX and SGD remains almost unchanged,

whereas for (o)ALS it increases to 26 seconds. Moreover, the
error of both (o)ALS and SGD grows much larger, whereas
(o)RRMCEX exhibits just a small increase.

VIII. CONCLUSIONS

In this paper, we have taken a comprehensive look at MC
under the framework of RKHS. We have viewed columns
and rows of the data matrix as functions from an RKHS,
and leveraged kernel theory to account for the available prior
information on the contents of the sought matrix. Moreover,
we have developed two estimation algorithms that offer sim-
plicity and speed as their main advantages. When the number
of observed data is small, KKMCEX obtains the full matrix
estimate by inverting a reduced-size matrix thanks to the
Representer Theorem. On the other hand, when the number of
observations is too large for KKMCEX to handle, RRMCEX
can be employed instead in order to lower the computational
cost with no impact on the recovery error when noise is
present. In addition, RRMCEX can be easily turned into an
online method implemented via SGD iterations. Compared
to mainstream methods designed for the factorization-based
formulation, namely ALS and SGD, our RRMCEX exhibited
improved performance in simulated and real data sets.

Our future research agenda includes improving both KKM-
CEX and RRMCEX through parallel and accelerated regres-
sion methods, as well as designing robust sampling strategies
for MCEX formulated as a kernel regression.

APPENDIX

A. Proof of Lemma 1

For the KKMCEX estimator (35), the MSE is given as

MSE := Ee{||v − v̂K ||22} = Ee{||v −Kzγ̂||22}. (57)

Plugging the estimator from (34) into (57) yields

MSE = Ee{
∣∣∣∣v −KzS

T (SKzS
T + µI)−1(Sv + ē)

∣∣∣∣2
2
}

=
∣∣∣∣(I −KzS

T (SKzS
T + µI)−1S)v

∣∣∣∣2
2

+ Ee{
∣∣∣∣KzS

T (SKzS
T + µI)−1ē

∣∣∣∣2
2
} (58)

where we have used that E{e} = 0. Further, the first
and second terms in (58) are the bias and variance of the
KKMCEX estimator, respectively. If we substitute v = Kzγ
into the first term of (58), we obtain

bias =
∣∣∣∣(I −KzS

T (SKzS
T + µI)−1S)Kzγ

∣∣∣∣2
2

=
∣∣∣∣(Kz −KzS

T (SKzS
T + µI)−1SKz)γ

∣∣∣∣2
2

=
∣∣∣∣∣∣(Kz − T̃z)γ

∣∣∣∣∣∣2
2

(59)
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where T̃z is the regularized Nyström approximation of Kz

in (38). On the other hand, the variance term is

var = Ee{
∣∣∣∣KzS

T (SKzS
T + µI)−1ē

∣∣∣∣2
2
}

= E{ 1

µ2

∣∣∣∣KzS
T (SKzS

T + µI)−1

(µI + SKzS
T − SKzS

T )ē
∣∣∣∣2

2
}

= Ee{
1

µ2

∣∣∣∣KzS
T −KzS

T (SKzS
T + µI)−1SKzS

T ē
∣∣∣∣2

2
}

= Ee{
1

µ2

∣∣∣∣(Kz −KzS
T (SKzS

T + µI)−1SKz)S
T ē
∣∣∣∣2

2
}

= Ee{
1

µ2

∣∣∣∣∣∣(Kz − T̃z)ST ē
∣∣∣∣∣∣2

2
}. (60)

Adding the two terms in (59) and (60), we obtain the MSE
in (39).

B. Proof of Theorem 2

Since Kz − T̃z appears in the bias and variance terms
in Lemma 1, we will first derive an upper bound on its
eigenvalues that will eventually lead us to a bound on the
MSE. To this end, we will need a couple of lemmas.

Lemma 3. Given a symmetric matrix A ∈ RN×N and
a symmetric nonsingular matrix B ∈ RN×N , it holds
that λk(AB) = λk(B

1
2AB

1
2 ); and also λk(AB) ≤

λk(A)λN (B).

Proof. Since B is invertible and symmetric, we can write
AB = B−

1
2 (B

1
2AB

1
2 )B

1
2 . Therefore, AB is similar to

B
1
2AB

1
2 , and they both share the same eigenvalues. Let

U ⊂ RN \ {0}. From the min-max theorem [44], the kth

eigenvalue of A satisfies

λk(A) = min
U

{
max
x∈U

xTAx

xTx
| dim(U) = k

}
. (61)

Therefore, we have

λk(AB) = λk(B
1
2AB

1
2 )

= min
U

{
max
x∈U

xTB
1
2AB

1
2x

xTx
| dim(U) = k

}

= min
U

{
max
x∈U

xTB
1
2AB

1
2x

xTB
1
2B

1
2x

xTBx

xTx
| dim(U) = k

}

≤ min
U

{
max
x∈U

xTAx

xTx
| dim(U) = k

}
λN (B)

= λk(A)λN (B). (62)

The following lemma bounds the eigenvalues of Kz − T̃z ,
and the regularized Nystrom approximation T̃z in (38).

Lemma 4. With Kz as in (23) and T̃z as in (38), the
eigenvalues of Kz − T̃z are bounded as

Kz − T̃z �
µσNL
σNL + µ

I ′S + σNLIS (63)

where σNL is the largest eigenvalue of Kz , IS := diag([0,
0, . . . , 1, 1]) has S zeros on its diagonal, and I ′S := I − IS .

Proof. Using the eigendecomposition Kz = QzΣzQ
T
z , we

can write

Kz − T̃z = Kz −KzS
T (SKzS

T + µI)−1SKz

= QzΣ
1
2
z

[
I −Σ

1
2
zQ

T
z S

T (SQzΣ
1
2
z Σ

1
2
zQ

T
z S

T

+µI)−1SQzΣ
1
2
z

]
Σ

1
2
zQ

T
z . (64)

Applying the MIL to the matrix inside the square brackets
of (64), we arrive at

I −Σ
1
2
zQ

T
z S

T (SQzΣ
1
2
z Σ

1
2
zQ

T
z S

T + µI)−1SQzΣ
1
2
z

= (I +
1

µ
Σ

1
2
zQ

T
z S

TSQzΣ
1
2
z )−1. (65)

That in turn implies

Kz − T̃z = µQzΣ
1
2
z (µI + Σ

1
2
zQ

T
z S

TSQzΣ
1
2
z )−1Σ

1
2
zQ

T
z

= µQzΣ
1
2
z (Σz + µI −Σz + Σ

1
2
zQ

T
z S

TSQzΣ
1
2
z )−1Σ

1
2
zQ

T
z

= µQzΣ
1
2
z

[
(Σz + µI)

1
2

(
I − (Σz + µI)−

1
2 Σz(Σz + µI)−

1
2

+(Σz + µI)−
1
2 Σ

1
2
zQ

T
z S

TSQzΣ
1
2
z (Σz + µI)−

1
2 )
)

(Σz + µI)
1
2

]−1

Σ
1
2
zQ

T
z

= µQzΣ
1
2
z (Σz + µI)−

1
2 (I − P )−1(Σz + µI)−

1
2 Σ

1
2
zQ

T
z

(66)

where

P =Σz(Σz + µI)−1 (67)

− (Σz + µI)−
1
2 Σ

1
2QT

z S
TSQzΣ

1
2 (Σz + µI)−

1
2 .

Regarding the eigenvalues of Kz − T̃z in (66), we can bound
them as

λ(Kz − T̃z)

= µλ(QzΣ
1
2
z (Σz + µI)−

1
2 (I − P )−1(Σz + µI)−

1
2 Σ

1
2
zQ

T
z )

= µλ(Σ
1
2
z (Σz + µI)−

1
2 (I − P )−1(Σz + µI)−

1
2 Σ

1
2
z )

= µλ((I − P )−1(Σz + µI)−1Σz)

≤ µσNL
σNL + µ

λ((I − P )−1) (68)

where λ(·) denotes the eigenvalues of a matrix, and we have
applied Lemma 3 on the third equality and the last inequality.
Knowing that λ(I − P ) = I − λ(P ) we can now bound the
eigenvalues of P as

λ(P )=λ(Σ
1
2
z (Σz+µI)−

1
2QT

z (I−STS)Qz(Σz+µI)−
1
2 Σ

1
2
z )

= λ(QT
z (I − STS)Qz(Σz + µI)−1Σz)

≤ σNL
σNL + µ

λ(QT
z (I − STS)Qz)

=
σNL

σNL + µ
λ(IS) (69)

where we have applied Lemma 3 on the second and third
inequalities, and IS := diag[0, 0, . . . , 1, 1] has S zeros on its
diagonal. Next, we have that I−P � I− σNL

σNL+µIS , and thus

(I − P )−1 � I ′S +
σNL + µ

µ
IS (70)
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where I ′S := I − IS . Finally, combining (70) with (68) yields

Kz − T̃z �
µσNL
σNL + µ

I ′S + σNLIS (71)

which concludes the proof.

Using Lemmas 3 and 4, we can proceed to establish a bound
on the bias and variance. Considering the eigendecomposition
Kz − T̃z = LΛLT , we can write the bias in (59) as

bias =
∣∣∣∣LΛLTγ

∣∣∣∣2
2
. (72)

With γ̃ := LTγ, and using Lemma 4 the bias is bounded as

bias = ||LΛγ̃||22 = γ̃TΛ2γ̃

≤ µ2σ2
NL

(σNL + µ)2
γ̃T I ′Sγ̃ + σ2

NLγ̃
T ISγ̃

=
µ2σ2

NL

(σNL + µ)2

S∑
i=1

γ̃i
2 + σ2

NL

NL∑
i=S+1

γ̃2
i . (73)

To bound the variance in (60), recall that e is a Gaussian
random vector with covariance matrix ν2I , while ē has
covariance matrix ν2SST . Then (60) is a quadratic form in
e, whose the variance becomes

var = Ee{
1

µ2

∣∣∣∣∣∣(Kz − T̃z)ST ē
∣∣∣∣∣∣2

2
}

=
ν2

µ2
Tr(S(Kz − T̃z)2ST )

=
ν2

µ2
Tr((Kz − T̃z)2STS). (74)

The matrix inside the trace in (74) has NL−S zero entries in
its diagonal. Lemma 4, on the other hand, implies that diagonal
entries of Kz− T̃z are smaller than its largest eigenvalue; that
is,
[
Kz − T̃z

]
i,i
≤ σNL. Coupling this with (74) yields

var ≤ Sν2σ2
NL

µ2
. (75)

Finally, combining the bias bound in (73) with the variance
bound in (75), yields the bound for the MSE as

MSE ≤ µ2σ2
NL

(σNL + µ)2

S∑
i=1

γ̃i
2 + σ2

NL

NL∑
i=S+1

γ̃2
i +

Sν2σ2
NL

µ2
.

(76)
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