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Abstract

Here we study a communication model where signals associate to stim-
uli. The model assumes that signals follow Zipf’s law and the exponent of
the law depends on a balance between maximizing the information trans-
fer and saving cost the cost of communication. We study the effect of
tuning that balance on the structure of signal-stimulus associations. The
model starts from two recent results. First, the exponent grows as the
weight of information transfer increases. Second, a rudimentary form of
language is obtained when the network of signal-stimulus associations is
almost connected. Here we show the existence of a sudden destruction of
language once a critical balance is crossed. The model shows that max-
imizing the information transfer through isolated signals and language
are in conflict. The model proposes a strong reason for not finding large
exponents in complex communication systems: language is in danger.
Besides, the findings suggests that human words may need to be ambigu-
ous to keep language alive. Interestingly, the model predicts that large
exponents should be associated to decreased synaptic density. It is not
surprising that the largest exponents correspond to schizophrenic patients
since, according to the spirit of Feinberg’s hypothesis, decreased synaptic
density leads to schizophrenia. Our findings suggests that the exponent
of Zipf’s law is intimately related to language and that it could be used
to detect anomalous structure and organization of the brain.
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1 Introduction

The XX century witnessed the birth and development of information theory
[1, 2], a theoretical framework devoted to the study of communication systems.
Recently, various new models have been introduced to explain the organization
of word frequencies in human language using an information theory approach
[3, 4, 5]. Word frequencies in human language obey a universal regularity, the
so-called Zipf’s law [6]. If P (f) is proportion of words whose frequency is f in
a text, we obtain

P (f) ∼ f−β (1)

where we typically have β ≈ 2. Eq. 1 is a way of defining Zipf’s law. The models
mentioned above assume a system where signals from a set S communicate about
stimuli from a set R. Signals are equivalent to words and stimuli are the basic
ingredients of word meaning. For instance, the word ’dog’ is associated to visual
stimuli (e.g. the shape of a dog), auditive stimuli (e.g. barking),... All these
stimuli are elicited by the word ’dog’ [7]. Stimuli are sometimes called objects or
events in the origins of language literature (e.g [8, 9]). Those models assume a set
of n signals S = {s1, ..., si, ..., sn} and a set of m stimuli R = {r1, ..., rj , ..., rm}.
Signals link to stimuli and connections are defined by an n ×m binary matrix
A = {aij} where aij = 1 if si and rj are linked and aij = 0 otherwise.

According to Shannon’s standard theory [1], the goal of communication
through isolated signals is maximizing I(S,R), the information transfer between
S and R. One of the most important contributions of the models above is that
Zipf’s law with non-extremal exponents can not be explained by maximizing
I(S,R) alone, which would lead to β → ∞. Zipf’s law with exponents close
to the typical values are obtained when I(S,R) is maximized with a further
constraint. H(S), the entropy of signals has been shown to be, as far as we
know, the best candidate for that constraint [3, 10, 5]. It is known in psycholin-
guistics that the availability a word is positively correlated with its frequency.
The higher the frequency of a word, the higher its availability. That is the
so-called word frequency effect [11]. That frequency dependent availability con-
cerns both the speaker and the hearer of a conversation. Imagine we have n
words (or signals). When all words are equally likely, that is, when all words
have frequency 1/n, all words are taking the smallest frequency possible. In that
case, H(S) = log n, where log n is the maximum value of H(S) [2]. In contrast,
when a word has frequency one (which implies that the remaining words have
frequency zero), H(S) = 0, which is the minimum value of H(S) [2]. H(S) is a
measure of the cost of communication. The higher the value of H(S) the higher
the cost (and the lower the word availability). Notice that computers do not
have the same information access and retrieval constraints of human brains. In
general, information is accessed at a very high speed and frequency effects, when
present, are not so heavy as those imposed by the human brain. One can, in
general neglect H(S) in many computer problems but not in brain word access
and retrieval.

If we restrict ourselves to Shannon’s classic information theory, the goal of
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a communication system is maximizing the function

Ω0 = I(S,R) (2)

If we take into consideration the cost of communication, we may write

Ω = λI(S,R)− (1− λ)H(S) (3)

as the function that a natural communication system should maximize [3, 10, 5].
λ is a parameter controlling the balance between maximizing the information
transfer and minimizing the cost of communication. We assume λ ∈ [0, 1]. We
have Ω0 = Ω when λ = 1. Ω0 is suitable for computer or robotic problems
where H(S) can be neglected and Ω (with λ < 1/2 [10, 5]) is specially suitable
for brain based communication systems. Ω seems, a priori, a better choice than
Ω0 for natural communication systems.

We do not claim that Ω is the best function for natural communication
systems but there are some results supporting its usefulness:

• Maximizing Ω, Zipf’s law is obtained for a particular value of λ. If one
replaces H(S) in Eq. 3 by the the effective lexicon size, namely, the
number of signals with at least one association with stimuli, Zipf’s law is
not obtained [3, 5]. Vocabulary size is an important factor for the cost
of communication [12] but does not seem to be essential for Zipf’s law.
Zipf’s law is still reproduced if I(S,R) is replaced by H(R|S) in the model
in [3] but not in the model in [5].

• The exponent of Zipf’s law in single author text satisfies β ∈ [1.6, 2.42]
[10]. Maximizing Ω in a system following Zipf’s law (i.e. searching the
value of β maximizing Ω) can explain the interval of variation of β in
human language [10].

If one considers texts from a single author [13, 14] and does concentrate on
words of a certain type (e.g. nouns) [15, 4], the extremes of the interval of
variation of β correspond to schizophrenic patients [10]. The aim of the present
paper is deepening our understanding of what may happen when β is large and
in particular, what may be happing in schizophrenics with that β. We will show
that that language breaks into pieces when the balance between maximizing
I(S,R) and minimizing H(S) favours too much the former. More precisely, we
will show that the network of signal-interactions becomes suddenly disconnected
when λ takes a critical value in a communication system following Zipf’s law.

2 The model

Maybe the simplest approach for reproducing Zipf’s law for word frequencies is
combining two assumptions. First,

P (k) ∼ k−β , (4)
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where P (k) is the probability that a signal has k connections. Second, p(si) ∼
µi, where p(si) is the probability of using si and

µi =
m∑

j=1

aij . (5)

Eq. 4 and p(si) ∼ µi give Eq. 1. Various models recover Zipf’s law when
maximizing Ω without the constraint in Eq. 4 for a critical value of λ [3, 5].

Going further, we assume
p(si) =

µi

M
, (6)

where

M =
m∑

i=1

µi (7)

is the total amount of links. Assuming Eq. 6 has the virtue of simplicity and
allowing one to explain the interval of variation of β in humans. Interestingly,
Eq. 6 makes some important assumptions that need to be explicited. To that
aim, let us start from a general assumption about p(si, rj), the joint probability
of si and rj , namely

p(si, rj) =
aijp(rj)

ωj
, (8)

where p(rj) is the probability of the j-th stimulus and

ωj =
n∑

k=1

akj (9)

is the number of links of that stimulus.
If we assume

p(ri) =
ωi

M
, (10)

and replace it in Eq. 10 Eq. 8 we obtain

p(si, rj) =
aij

M
. (11)

Replacing Eq. 11 into p(si) =
∑m

j=1 p(si, rj) we recover Eq. 6. The models in
[10, 5] assume Eq. 10 (hence assume Eq. 6 and 11). In contrast, the model in
[3] assumes that p(rj) is constant for each j and considers a particular case, i.e.
p(rj) = 1/m.

We define H(R|S) as the conditional entropy of stimuli when signals are
known. We may write Eq. 3 as

Ω = −λH(R|S)− (1− λ)H(S) (12)

as in the model in [3] when p(rj) is constant. That is not the case of the present
article and related models [10, 5].
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The assumption p(rj) ∼ ωj means that the probability of each stimulus is
dictated by the structure of signal-stimulus associations. In other words, the
probability of perceiving p(rj) in the ‘real world’ is neglected. One may think
that is a very radical assumption but in fact, human language is a communica-
tion tool allowing one to detach from the here and now. Nonetheless, displaced
reference, our ability to talk about something that is distant in time or space, is
a salient feature of human language [16, 17], Displaced reference is not uniquely
human since bees have it [18]. Because of displaced reference, we can talk of
’dogs’ even when there is no ’dog’ in front of us. It seems wise to assume that
talking about present stimulus is not the rule of human language and it seems
that in some cases such as schizophrenia, the detachment from the here and
know could be extreme. Various core aspects of schizophrenia such as false be-
lieves, hallucinations [19] and various cognitive impairments, including attention
problems [20], suggest that interacting with the ’real world’ is difficult. In fact,
schizophrenics seem optimal candidates for p(rj) ∼ ωj . Schizophrenics speakers
are a very special case in the results that will follow. We will return to them in
the discussion.

For the present article, we assume a communication system following Zipf’s
law by means of Eq. 6. The distribution of links per signal is given by P =
{P (1), ..., P (k), ..., P (m)} and the distribution of links per stimulus is given by
Q = {Q(0), ..., Q(k), ..., Q(n)}, where Q(k) is the probability that a stimulus
has k links. We are assuming that Q(k) is defined for k = 0 while P (k) does
not because we allow unlinked stimuli but do not allow unlinked signals. Here
we take the simplest distribution for Q as in [10], that is

Q ∼ binomial

( 〈k〉P
m

,n

)
, (13)

where 〈...〉P is the expectation operator over P . Thus, 〈k〉P is the mean signal
degree. We may define the information theory measures that matter in the
calculation of Ω assuming p(rj) ∼ ωj (or p(si) ∼ µi) for any pair of P and Q.
The calculation of Ω is straightforward once we know [10, 5]

H(S) = log M −H(R|S) (14)
H(R) = log M −H(S|R) (15)

where M = n 〈k〉P = m 〈k〉Q and

H(R|S) =
〈k log k〉P
〈k〉P

(16)

H(S|R) =
〈k log k〉Q
〈k〉Q

. (17)

The present model integrates two recent results. The first result is that β∗,
the value of β maximizing Ω grows with λ till λ = λ∗. Then, we have β → ∞
for λ > λ∗ [10]. The behavior of β∗ is illustrated in Fig. 1. It can be shown that
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λ∗ < 1/2 and a heuristic argument suggests the existence of a discontinuity at
λ = λ∗ [10]. The idea is very simple. Eq. 3 can be written as

Ω = (2λ− 1)λH(S)− λH(S|R) (18)

knowing that I(S,R) = H(S)−H(S|R) [2]. Eq. 18 indicates that maximizing Ω
minimizes H(S) if λ < 1/2 and maximizes H(S) if λ > 1/2. β →∞ minimizes
H(S|R) and maximizes H(S) (recall Eq. 17 and 14), so β →∞ is expected for
λ > 1/2. Since maximizing Ω for λ = 0 gives a finite value of β∗ (Fig. 2), β
must diverge for 0 < λ ≤ 1/2. Notice that maximizing Ω for λ = 0 is equivalent
to minimizing H(S), the signal entropy.

The second result is that a communication system gets a rudimentary form
of language if the bipartite network of signal-stimulus associations is connected
or almost connected [9]. Roughly speaking, connectedness is the possibility of
starting from a signal (or a stimuli) and reaching the remaining signals and
stimuli of the network crossing the links of the network. Fig. 3 A and B
show, respectively, an almost connected and a disconnected bipartite networks.
Almost connectedness means that a wide majority of vertices (e.g. 90%) lay in
the largest connected component [9]. When exponents are close to the real ones,
it has been shown that Zipf’s law provides almost connectedness under a general
set of conditions [9]. Connectedness is intimately related to two essential traits
that researchers have identified as essential aspects of human language: syntax
and symbolic reference [21]. Signal-stimulus associations allow one to define
signal-signal associations. More importantly, the network of signal-stimulus
association specifies allowed and forbidden signal-signal associations. Taking
the example of words, we can explain why the syntactic combination of “drive
cars” is a sensible combination in the sentence “John drives cars” and why it is
not the combination “drives onions” in the sentence “John drives onions”. The
combination of ’drive’ and ’car’ in “John drives cars” exemplifies the relationship
between a verb and its argument. As in [9], we adopt the convention that two
signals (or two words) si and sk can be combined syntactically if and only if
they are linked to at least one common stimulus, that is, if ξ > 0 where

ξik =
∑

j

aijajk (19)

The idea behind ξij > 0 is that si and sk must be semantically compatible. If
si =’drive’ and sk =’car’ we would have ξ > 0 and if si =’drive’ and sk =’onion’
we would have ξ = 0 (Fig. 4). If two signals are linked to the same stimulus
it does not mean that the signals are synonyms since stimulus here are not
meanings but components of meaning. The meaning of ’drive’ is linked among
others, to the visual, tactile,... experiences of driving, the objects that can be
driven,... whereas ’car’ is associated to the visual shape of a car, the action
of driving, ... The fact that ’drive’ and ’car’ share one or more stimuli does
not mean that ’drive’ and ’car’ are synonyms. When the network of signal-
object associations is connected, we have that for every signal there is at least
another signal sharing stimuli. We could also define a network of signal-signal
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associations defined by a binary n×n matrix B = {bik} where bik = 1 if ξik > 0
and bik = 0 otherwise. B is a rudimentary syntactic network where vertices
are words and two words are linked if the can be combined syntactically [22].
The properties of real syntactic networks have been studied at the global [22]
and sentence level [23]. The small-word phenomenon and heterogenous degree
distribution have been reported at the global level. In a system following Eq. 4
with β ≈ 2, the signal degree distribution in B has a power tail with the same
exponent [9], which is consistent with the degree distribution of real syntactic
networks [22].

In Peirce’s view, there are three ways in the which words and objects of the
’world’ can associate: iconically (by similarity), indexical (by spatial or tempo-
ral cooccurrence) or symbolically (by convention) [24]. According to Deacon, an
essential aspect of symbolic reference is that real words not only evoke stimuli
(or meanings) but also other words [24]. Deacon tried to define symbolic refer-
ence but his proposal has been criticized due its lack of precision [25, 26]. Taking
the idea of ’signals evoking other signals’, Ferrer i Cancho and colleagues have
defined symbolic reference as connectedness in the network of signal-stimulus
associations [22]. The definition is not ambiguous and relies on standard con-
cepts of graph theory [27]. When a network is connected, one may start from a
certain signal and reach its first neighbours (stimulus) and from them one can
get to the second neighbours (signals). One can continue from 2nd neighbours
to 3rd, 4th, and so on till all the signals and stimulus in the network have been
reached. We define L, the normalized size (in number of vertices) of the largest
connected component, as

L =
l

n + m
, (20)

where l is the number of vertices in the largest connected component and n+m
is the total amount of vertices. L is a measure of the expressive power of the
rudimentary language emerging from signal-object associations. If L = 1 then
all signals can be combined in a grammatically correct discourse. If L < 1 then
that is possible only for a fraction of signals. We will show that L is controlled
by λ.

3 Results

For each value of λ,

• We obtained β∗, value of β maximizing Ω, exploring β ∈ [0, 10] with a
resolution ε = 0.1.

• We calculated the mean value of L in random bipartite network where
signal degree follows Eq. 4 with β = β∗. Links with stimuli are formed
chosing stimuli at random (all stimuli are equally likely so Eq. 13 follows).
Means were calculated over 1000 replicas.

Fig. 5 shows the evolution of a small network of signal-stimulus associations as λ
grows. At a critical value of λ, the size of the largest connected component falls
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abruptly. In general, L falls abruptly to a small value for λ = λ∗ (Fig. 6). λ∗ is
the point where β diverges and I(S,R) and H(S) reach their maximum value
[10]. The steepness of the fall grows with n. Fig. 7 illustrates what happens to
L, I(S,R) and H(S) at the same time.

4 Discussion

We have seen that a communication system maximizing Ω undergoes an abrupt
transition to disconnectedness for λ > λ∗. We have seen that the transition is
caused by a sudden transition from a finite value of β to β → ∞, where the
chance that a stimulus has two links vanishes as m grows. The disconnection of
the network when β → is easy to understand. In general, a unipartite graph with
N vertices and M edges cannot be connected if M < M ∗ where M∗ = N − 1 is
the number of edges of a tree of N vertices [27]. Thus, a bipartite graph with
N = n + m vertices cannot be connected if M < n + m − 1. In other words,
connectedness is not possible if 〈k〉P < (n + m + 1)/n. When β →∞, we have
〈k〉P = 1 and 〈k〉P < (n + m + 1)/n holds trivially provided m > 1. In sum,
connectedness is impossible for β →∞ and m > 1.

In Section 2, we have reviewed a heuristic argument suggesting the transition
from a highly connected phase to disconnectedness in our model is discontin-
uous. Discontinuous phase transitions are widespread in nature. For instance,
the melting of ice into water or the transformation of boiling water into vapour
are discontinuous in normal circumstances. In a communication context, the
models in [3, 5] show a continuous phase transition between no communication
and a perfect communication phase when Ω is minimized with no constraint on
P . There, the presence of Zipf’s law in the vicinities of the phase transition is
the hallmark of a continuous phase transition. In contrast, the phase transition
from disconnectedness to connectedness in a classic Erdös-Rényi graph [28, 29]
is continuous [30, 31]. The hallmark of continuous phase transition in classic
unipartite graphs is a power distribution of connected component sizes [30],
which is related to a critical branching process [32] at the threshold for con-
nectedness. Other examples of continuous phase transitions are the transition
from resistivity to superconductivity (continuous in the absence of an external
magnetic field) and the conversion of iron from paramagnetic to ferromagnetic
form [33]. In a communication context, the model examined here shows not
only apparently shows a discontinuous transition to disconnectedness but also
to maximum information transfer and maximum cost for λ = λ∗ [5].

The divergence of β for λ = λ∗ is accompanied by a jump to maximum infor-
mation transfer (Fig. 7). Increasing λ increases I(S,R) but decreases the size
of the largest connected component (the significance of the decrease depends on
the size of the system). At the point where the I(S,R) is maximum, L is mini-
mum. In a communication system maximizing Ω, communication using isolated
signals and language are in conflict. Human speakers may need to regulate λ
in order to maximize information transfer but avoid reducing the size of the
largest connected component too much. Interestingly, the regulation of the size
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of the largest connected component can be done indirectly because increasing
I(S,R) also increases H(S), the cost of communication. Word ambiguity may
not be a mere defect but a requirement for connectedness and thus language.
Our findings suggests a possible scenario for the origins of language. Reducing
λ (giving more weight to minimizing H(S)) maximizes the chance of connected-
ness. The emergence of connectedness could be a side effect of saving the cost
of communication.

A theory of word frequencies needs answering different questions:

1. Why do words arrange themselves according to Zipf’s law (Eq. 1)?

2. Why do humans choose some particular values of β?

3. Why is there variation in β?

4. What are the limits of that variation?

5. What is the link between Zipf’s law and human language?

Many answers have been proposed for Questions 1-2 [5]. As far as we know,
Question 1 and 2, have only been answered assuming that words are used ac-
cording to their meaning in [3, 4, 5]. Choosing values of β near 2 could be an
optimal solution for a conflict between maximizing the information transfer and
saving the cost of communication [3, 5]. Questions 3 and 4 have begun to be
addressed in [10, 4]. The idea is that the lower bound and the upper bounds
of β are obtained when maximizing Ω for λ = 0 and λ = λ∗, respectively. The
present article sheds new light on Questions 3, 4 and 5. As for 3, variation in
β my be due to the chance of connectedness. As for 4, it has been argued that
the variation of β is constrained by the fact that maximizing Ω for λ ∈ [0, 1]
gives a narrow interval of exponents [10]. It has been argued that the interval of
variation of β excludes β → ∞ because the maximum cost, i.e. H(S) = log n,
is paid in that case. The argument has some drawbacks. H(S) = log n is a
slow growing function of n. In practice, significant difference in log n for two
different systems can only be obtained if the respective values of n differ in at
least one order of magnitude. In order to explain why β → ∞ is not found,
one has to argue that speakers, in general, are very sensitive to the variation of
log n, which we do not know. Instead, one may propose a stronger argument:
β →∞ is not found because the chance of connectedness is 0 for m > 1 (as seen
above). That is a compelling reason for not finding large β in human language.
We do not mean that large β is impossible to attain in humans, but it would be
surprising to find it in a system combining words through semantic constraints.
In sum, the present article puts another step forward in the construction of a
theory of word frequencies. As for 5, our work suggests that the exponent of
Zipf’s law is an important factor for the presence or absence of language.

The largest values of β than have been found up to now in single author
text samples correspond to schizophrenic patients in the acute phase of the
illness [10, 35]. One of the most salient features of schizophrenia is ’disorder
of thought’ [36]. Disorder of thought may be described as disturbances in the
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structure, organization and coherence of thought that are reflected in reduced
intelligibility and increased disorganization of speech that is difficult, if not
impossible, for the listener to comprehend [37]. Our model makes two relevant
predictions for the case of schizophrenics. First, the chance of being on the edge
of an abrupt transition grows with the value of β, so schizophrenics with large
exponents may be threatened by an apparently discontinuous phase transition
where language breaks into pieces. Second, if n is small, the decrease in the size
of the largest connected component with λ (and therefore β) is significant (recall
Fig. 6). The larger the value of β, the smaller the size of the largest connected
component. Both predictions are apparently consistent with the appearance of
thought disorder in schizophrenia. It is hard to imagine how a schizophrenic can
construct a coherent discourse if the size of the largest connected component
has dramatically decreased.

The network of signal-stimulus associations is an emergent structure of the
neural substrate. Integrating stimuli of various kinds with words implies con-
necting distant neural tissues. In order to have an example of mind, visual
and temporal stimuli tend to be related to occipital and temporal areas of the
human brain [7]. It is reasonable to think that the density of synapsis has an
influence on the largest connected component of the network of signal-stimulus
associations. Thus, β, specially for small n, can be seen as an indicator of the
size of the largest connected component, which would be in turn an indicator of
the density of the neural substrate. The link density of the network of signal-
stimulus associations is δ = 〈k〉P /m. It can be easily seen that 〈k〉P decreases
with β (see Appendix). For large m and β > 2 we have (see Appendix)

〈k〉 ≈ 1− β

2− β
. (21)

If our hypothetical correspondence between β and synaptic density (or size
in words of the largest connected component) was correct, one would expect
that the smallest synaptic density would be for the largest values of β, which
corresponds to schizophrenic patients in the acute phase [35]. Interestingly, it
has been speculated that excessive synaptic pruning occurs in schizophrenia,
which may lead to psychosis when it reaches a threshold [19, 38, 39]. Our
work is consistent with the spirit of Feinberg’s hypothesis, relating the onset of
schizophrenia to a critical decrease in synaptic density [40]. We do not mean
that a critically low synaptic density is the only possible cause of schizophrenia
and that reduced synaptic density must always originate through the exact
mechanisms that Feinberg proposed. Instead, we claim it is not surprising
that large exponents belong to schizophrenic patients since those exponents
predict a decreased synaptic density, which is an important factor that may
lead to schizophrenia [41, 19]. Our work suggests that the exponent of Zipf’s
law could be used to detect synaptic density alterations and more importantly,
disconnected brain areas.

The model presented here indicates a track for other related cases. While
schizophrenics with large exponents seem to face the problem of the destruction
of connectedness, children seem to face an inverse problem, i.e. the development
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of connectedness. The relatively short time elapsed from the single-word to
multiple-word utterances (of the order of several months [34]), suggests that the
emergence of syntactic communication in children could be a phase transition
to connectedness in the network of word syntactic interactions. According to
our model of a rudimentary form of language, that transition would be an
epiphenomenon of a transition to connectedness in the network of signal-stimuli
associations. Whether the presumable phase transition would be continuous
or not would depend of the presence or not of a special signature: scaling in
the distribution of connected component sizes in the network of word syntactic
interactions. We know that the network of syntactic interactions of adults is
(almost) connected [22] but the signature above may be found in children at a
critical time. To sum up, our findings open new research prospects and support
that Zipf’s law is an essential aspect of human language.

Appendix

We assume k is a random discrete variable whose probability is

P (k) = ck−β (22)

where β is a constant and

c =
1∑m

k=1 k−β
(23)

is a normalization term. 〈k〉, the mean value of k is

〈k〉 = c
m∑

k=1

k1−β . (24)

We can approximate 〈k〉 replacing summations by integrals and write

〈k〉 ≈
∫ m

1
k1−βdk∫ m

1
k−βdk

. (25)

Solving the integrals we obtain

〈k〉 ≈ (1− β)(m2−β − 1)
(2− β)(m1−β − 1)

. (26)

For m →∞ and β > 2, we get

〈k〉 ≈ 1− β

2− β
. (27)
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Figure 1: β∗, the value of β maximizing Ω for n = m = 10 (circles), n =
m = 102 (squares), n = m = 103 (diamonds) and n = m = 104 (triangles).
β is the exponent of Zipf’s law, Ω is the energy function that communication
maximizes, n is the number of signals and m is the number of stimuli. λ tunes the
balance between information transfer and cost of communication. When λ = 0
communication is totally balanced towards saving the cost of communication
whereas it is totally balanced towards information transfer when λ = 0.
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Figure 2: β∗, the value of β minimizing H(S) versus m. H(S) is the signal
entropy and m is the number of stimuli.
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BA

Figure 3: Two bipartite networks. White and black are used for each vertex
partition. A. An almost connected networks. B. A disconnected network.
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’onion’´drive´’car´

Figure 4: A possible implementation of the constrains of the verb ’drive’ with
possible arguments ’car’ and ’onion’. White circles are words and black circles
are stimuli. ’car’ is an allowed argument of the verb ’drive’ and therefore there
is a link between ’drive0 and a stimulus associated to ’car’. ’onion’ is not a valid
argument of ’drive’, so no stimulus linked to ’drive’ is linked to ’onion’. ξik, the
number of shared stimulus by the pair (si, sk), is 1 for (’drive’,’onion’) and 0 for
(’drive’,’onion’).

18

721



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
λ

1

1.5

2

2.5

3

3.5

4

β∗

A
B

C

Figure 5: The evolution of β∗ versus λ (gray curve) and the structure of network
of signal-stimulus associations with n = m = 100. White and black circles
indicate, respectively, signals and stimuli. The curve for β∗ ends at the point
of divergence at λ = λ∗ ≈ 0.37. A, B and C are examples of the kind of the
topologies found for λ = 0, λ = λ∗ and λ > λ∗.
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Figure 6: L, the normalized size of the largest connected component versus λ,
the parameter controlling the balance between I(S,R) and H(S) in Ω. The
connected component size is measured in vertices. n is the number of signals
and m is the number of objects. A. m = 102. B m = 103. C. m = 104. D.
m = 105.
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Figure 7: An example of the behavior of L (black), the normalized size in ver-
tices of the largest connected component, I(S,R) (dark gray), the information
transfer and H(S) (light gray), the signal entropy, versus λ, the parameter reg-
ulating the balance between maximizing I(S,R) and H(S) in Ω. A sudden
change of behavior is found for λ ≈ 0.37. n = m = 100 was used.
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